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Abstract

 

Posttraumatic stress disorder (PTSD) results when individuals are exposed to a life 

threatening event, assault, serious injury, or other traumatic incident. Individuals with 

PTSD are impaired in their ability to extinguish fear memories, resulting in intrusive 

symptoms that impair their ability to live otherwise healthy lives. It remains unclear why 

some individuals exposed to traumatic events develop PTSD while others do not. 

Acetylcholine has been shown to play a critical role in fear learning, but its role in fear 

extinction is not well understood. This study utilized a rat model of fear learning and 

extinction to determine if individual differences in fear and extinction learning are 

correlated with markers of cholinergic signaling. This study examined M1 muscarinic 

acetylcholine receptor (M1 mAChR) and acetylcholinesterase (AChE), both heavily 

expressed in the basolateral amygdala (BLA), a region that has been heavily implicated in 

the acquisition, consolidation, and recall of fear and extinction memories. The goal of the 

present study was to determine if individual differences in these proteins involved in 

cholinergic signaling in the BLA potentially underlie the individual differences observed 

in the fear learning and extinction processes. Rats were conditioned using a Pavlovian 

fear conditioning and extinction paradigm and behavior was analyzed by measuring 

extent of freezing behavior during each stage of the trial. Grouped differences were found 

in ability to undergo fear extinction learning and to recall the fear extinction memory. 
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Coronal brain sections were processed for immunofluorescence, labeling for M1 mAChR 

and AChE, and imaged in order to measure extent of protein expression. Significant 

correlations were observed between individual’s BLA M1 mAChR densities and ability 

to undergo fear acquisition and ability to recall fear extinction memories. This lead to the 

conclusions that M1 mAChR are functioning in the BLA in the processes of fear memory 

acquisition and extinction memory consolidation and that high expression of M1 mAChR 

allows for improved ability to undergo fear memory acquisition, resulting in a deficit in 

fear extinction. No significant correlations were observed between BLA AChE 

expression and any fear or extinction learning phase. These results add to the growing 

body of literature implicating M1 mAChR in fear and extinction learning. Therapeutic 

strategies aimed at altering muscarinic signaling in the amygdala could be implemented 

in order to enhance fear extinction in animals and patients with PTSD.  
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Chapter 1: Introduction

A. Fear Learning and Extinction 

Fear is the natural, seemingly instantaneous response to a stimulus that is perceived as 

potentially harmful or threatening. It keeps us safe. It causes soldiers to swerve when they 

see a bomb in the road during a battle; it causes us to reach for the phone or a frying pan 

when we come across a stranger sifting through our drawers in a dark kitchen; and it 

causes us to run screaming when we happen across a bear while walking in the woods. It 

keeps animals safe too. It causes a deer to run when it hears a hunter approaching; it 

causes a fish to swim when it senses movement in the current as a shark speeds toward it; 

and it causes a rat to freeze when it hears a snake slithering toward it. All of these are 

appropriate responses to frightening or potentially threatening situations which keep 

individuals safe.  

Fear-inducing situations such as these can be very impactful and can cause strong 

association memories to form by associating environmental cues such as sights, sounds, 

and even internal stimuli with the fearful situation. Fear-association memories can then 

later be triggered in a different situation by the same cues, causing fear memories to be 

activated, which induce a biological and behavioral fear response, allowing an individual 

to defend itself. 
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What about when fear responses are generalized and become inappropriate? When 

throwing a friend a party, you don’t expect them to call the police or reach for a frying 

pan when their family and friends yell “surprise”. A paper bag on a city road should not 

cause a veteran to swerve into oncoming traffic. The fear of being presented with a 

potentially threatening situation should not keep an individual from being able to leave 

the safety of their home. These inappropriate responses to non-threatening situations are a 

hallmark of posttraumatic stress disorder.  

Posttraumatic stress disorder (PTSD) is a disorder that results when an individual is 

exposed to a life threatening event, assault, serious injury, or other traumatic incident. 

Strong associations are made which cause re-experiencing, avoidance behavior, negative 

mood changes, and hyper-arousal (American Psychiatric Association, 2013, p 271-280; 

Wilson and Reagan, 2016). Associations formed when experiencing a traumatic event 

can be so strong that individuals are unable to differentiate between a fearful stimulus and 

a similar harmless stimulus, causing inappropriate behavioral or physiological responses. 

However, not all individuals exposed to a traumatic event, even the same traumatic event, 

will develop PTSD. Where some individuals are able to undergo extinction learning, or 

the learning that a once fear-inducing stimulus is no longer an indication of danger, other 

individuals have a more difficult time undergoing extinction. The necessity to better 

understand and treat PTSD is very evident, with the yearly prevalence in America being 

3.5% and veteran prevalence being higher than 13% (Kessler et al., 2005; Tamelian and 

Jaycox, 2008; for review see Wilson and Reagan 2016). The neurological differences 

between good and poor extinguishers are of great intrigue. The development of animal 

models has been an extremely useful tool in the understanding of individual differences 
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of fear learning and fear extinction (Fendt and Fanselow, 1999; Zoladz and Diamond, 

2016; Wilson and Reagan, 2016; Wilson and Fadel, 2017).  

Classical or Pavlovian conditioning, a technique often used in fear learning and fear 

extinction animal behavioral models, is the learned association between a neutral 

stimulus, such as a tone (conditioned stimuli, CS) and a biologically relevant stimulus, 

such as food or pain (unconditioned stimuli, US). This is a crucial ability for survival and 

allows individuals to associate safe and harmful situations with unconditioned stimuli, 

and is thus conserved across higher organisms (Pavlov, 1927; for review see Milad and 

Quirk, 2012 and Orsini and Maren, 2012).  

This study takes advantage of this natural phenomenon in order to study fear learning, 

fear extinction, and the neurochemical mechanisms and functional receptors involved. 

The fear learning and extinction behavior protocol induces an association between a tone 

(CS) and a shock (US). Pairing of a weak stimulus, CS, with a strong stimulus, US, 

causes an overall strengthening of neural pathways, a property called associativity (Orsini 

and Maren, 2012). After an association has been made, the CS is repeatedly presented to 

induce fear extinction. Fear extinction is a learning process which occurs upon repeated 

re-exposure of the CS in the absence of the US, resulting in the CS no longer inducing a 

fear response. Upon re-exposure, the brain can respond in two different ways: the original 

fear memory can be reconsolidated, where the fear is strengthened and remains intact, or 

an extinction memory can be formed. Extinction occurs when the memory retrieval 

induces the formation of a new associated memory between the CS and the absence of 

the US, causing a reduced or absent conditioned fear response. This new memory does 

not modify or replace the original fear memory, but rather competes with it, masking its 
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expression, which can be demonstrated by observed instances of spontaneous recovery, 

renewal, or reinstatement (Baldi and Bucherelli, 2015; Baldi and Bucherelli, 2010; Myers 

and Davis, 2007; Quirk and Mueller, 2008). There is a natural, observable variation in 

individual ability to undergo fear extinction, as seen commonly in individuals with PTSD 

(Horn et al., 2016).  

This study investigates some of the suspected underlying mechanisms of fear and 

extinction learning, as well as the individual differences in ability to undergo fear and 

extinction learning. This study is unique in that no pharmacological manipulations were 

made and protein expression is directly correlated to freezing behavior in order to 

extrapolate how protein expression level relates to fear learning, extinction learning, and 

specific learning phase.  

B. Anatomy of Fear Learning and Extinction  

Brain structures involved in the processing of fear and fear learning, including the 

prefrontal cortex (PFC), thalamus, hippocampus, and the amygdala, are conserved across 

species (Milad and Quirk, 2012). Environmental information is sent to the amygdala from 

the thalamus, PFC, and hippocampus (Fendt and Fanselow, 1999). This includes 

information about context, past experiences, and any perceived environmental stimuli, 

including sights, sounds, tactile information, etc. Sensory information is transmitted from 

the thalamus to the lateral amygdaloid nuclei (LA), where contextual information from 

the hippocampus is sent to the basolateral anygdaloid nuclei (BLA). Intrinsic connections 

between the LA and BLA allow for passage of information from the LA to the BLA to 

the central nucleus (CEA), as well as direct excitatory connections from the LA to the 

CEA. BLA neurons also have projections to the intercalated (ITC) nuclei, which then 
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synapse on to the BLA-CEA projection, allowing for filtering of information passed from 

the BLA to the CEA (Orsini and Maren, 2012). The CEA projects to the hypothalamus 

and brain stem, initiating behavioral and physiological responses, including freezing or 

running, autonomic responses, and inducing stress and startle responses (Sah and 

Westbrook, 2008). This initial response to threatening stimuli occurs much quicker than 

situational evaluation can occur, which allows individuals to respond seemingly 

instantaneously in preparation for fight or flight action (Principles of Neural Science, 

page 1478; Milad and Quirk, 2012).  

Long-term memory formation and consolidation then occurs, allowing the animal to 

recall details about the threatening situation, should it be presented again. Synaptic 

plasticity caused by associative cued-fear learning can be observed in both the LA and 

the BLA, shown by enhanced excitatory postsynaptic potentials, increasing synaptic 

plasticity between BLA and CEA fear-out-put circuits (Sah and Westbrook, 2008; Orsini 

and Maren, 2012). Consolidation of the fear memory in the amygdala is required for 

stable long-term memory storage, and requires new protein synthesis. This can be 

demonstrated by giving intra-amygdalar protein synthesis inhibitors after fear 

conditioning, which prevents memory consolidation and subsequent recall (Maren et al. 

2003).  

Cued-fear extinction occurs upon repeated exposure of the CS in the absence of the 

US, similar to the practice of exposure therapy (Orsini and Maren, 2012). Extinction was 

first considered to be a specific type of learning when Pavlov observed spontaneous 

recovery of appetitive responses in dogs over time (Pavlov, 1927).  
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Like cued-fear learning, cued-fear extinction learning relies on multiple brain regions, 

which connect and communicate to make a plastic network. The amygdala, PFC, and 

hippocampus are the major players in this network, and, while each function in 

acquisition, consolidation, and retrieval, each has a set of major functions. The 

hippocampus functions in extinction context recall, the PFC mediates extinction 

consolidation, and the amygdala is thought to be where extinction memories are acquired 

and stored (Baldi and Bucherelli, 2015; Power et al., 2003b; Orsini and Maren, 2012). 

Hippocampal CA1 and ventral subiculum regions project to the LA, BLA, CEA, and the 

PFC. The BLA projects to each sub-region of the hippocampus and PFC. These dense 

reciprocal projections between the amygdala and hippocampus allow for fast and 

effective communication, which has been shown to be crucial for retrieval of context-

aspects of extinction memories (Herry et al., 2008; Orsini and Maren, 2012). The PFC is 

subdivided into the prelimbic cortex (PL), which projects to the BLA and CEA, and the 

infralimbic cortex (IL), which projects to the basomedial amygdala (BM), ITC cells, and 

CEA (McDonald et al., 1996; Orsini and Maren, 2012). IL suppression of BLA through 

inhibitory circuits, including ITC cells, causes suppression of fear response (Quirk et al., 

2003; Likhtik et al., 2008; Akirav et al., 2006; Sah and Westbrook, 2008; Orsini and 

Maren, 2012). Once extinction has been acquired, information about the CS, tone 

specifically, is relayed to the amygdala, not by the thalamus, but by the auditory cortex, 

indicating that after extinction there is a redistribution or rearrangement of information 

about the CS throughout the fear circuit (Pape and Pare, 2010; Orsini and Maren, 2012).  

Cue based extinction recall involves a network of brain regions, which include the 

hippocampus, PFC, and the amygdala. The hippocampus functions in resolving meaning 
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of the presented CS using contextual cues (Quirk and Mueller, 2008). The PFC, 

specifically the IL, has been shown to be important for retrieval of extinction memory 

and suppression of fear (Myers and Davis, 2007). The importance of the IL in this 

process has been shown in electrophysiology and inactivation studies, where presentation 

of the extinguished CS, specifically, causes IL firing and BLA inactivation before 

extinction retrieval results in a fear response (Herry and Garcia, 2002; Milad and Quirk, 

2002; Sierra-Mercado et al., 2006). Herry et al. (2008) and Senn et al. (2014) showed that 

the BLA contains separate populations of cells, fear neurons and extinction neurons, 

which are active specifically during fear or extinction, respectively. The BLA cell 

population which project to the PL is involved in fear and is activated during high fear 

situations, whereas the cell population projecting to the IL is involved in extinction and is 

activated during extinction behavior (Herry et al., 2008; Senn et al., 2014). While many 

brain regions are critical for the learning and expression of fear and extinction memories, 

this study’s main focus was the amygdala, specifically the BLA due to its central role in 

each aspect of the fear learning and extinction process outlined above. 

C. Cholinergic Regulation of Fear Learning and Extinction 

Now that the neural structures and connections have been outlined, what role does 

the cholinergic system, and specifically M1 muscarinic receptors, play in fear learning 

and extinction? It has been suggested that acetylcholine (ACh) is important for learning 

and memory (reviewed in Power et al., 2003b, Wilson and Fadel, 2017, and Gold, 2003). 

Increases in ACh were shown to increase learning and cognitive function while decreases 

were shown to diminish such function (Power et al., 2003b). Gold (2003) review’s 

literature in support of the idea that ACh controls the activity and extent of contributions 
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of various brain regions during learning in a variety of situations. It has been shown that 

the amygdala is the regulatory region modulating extinction learning and memory 

formation occurring in other regions, and that these regions compete over control of what 

is learned in the processing of information (Gold, 2003). However, Thiele et al. argues in 

a 2013 review that the local distribution and contribution of muscarinic signaling is what 

determines the cognitive tasks a brain region controls, rather than the release of 

acetylcholine alone. As thoroughly examined in Wilson and Fadel’s 2017 review, current 

evidence suggests that fear extinction learning is regulated by activation of 

acetylcholine’s metabotropic, muscarinic receptors (mAChR). Current research indicates 

that mAChR activation is crucial for fear acquisition, consolidation, and potentially 

recall, as well as extinction memory consolidation, and potentially cued fear extinction 

acquisition (Wilson and Fadel 2017).  

It has been demonstrated that there is dense cholinergic presence in the brain 

regions involved in fear learning outlined above. The hippocampus and amygdala, 

specifically the BLA, were shown by Muller, Mascagni, and McDonald to have very 

dense cholinergic projections originating in the basal forebrain (2011). These projections 

terminate heavily on pyramidal neurons of the BLA, which postsynaptically express high 

levels of M1 mAChR. McDonald and Mascagni (2010) demonstrated through 

immunoperoxidase labeling studies that, while M1 mAChR is present throughout the 

basolateral complex of the amygdala (BLC), the anterior subdivisions of the BLA and LA 

contain the highest levels of mAChR expression of any amygdalar nuclei. This study also 

showed M1 mAChR expression is most dense in the cell bodies of pyramidal neurons 

within these regions with light expression in the neuropil. Choline acetyltransferase and 
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acetylcholinesterase (AChE) expression in the BLA has been shown to be some of the 

densest in the brain, further indicating the importance of cholinergic function in this 

region (Ben-Ari et al., 1977). This would lead one to assume that this region and its 

functions are largely modulated by cholinergic neurotransmission and cholinergic 

receptors.   

As outlined in Wilson and Fadel’s 2017 review, multiple drug studies have 

determined mAChR are important for fear learning. By giving mAChR antagonists prior 

to fear conditioning systemically or intracerebrally, studies have indicated that mAChR 

function is important for acquisition of cued and contextual fear (Rudy, 1996; Young et 

al., 1995; Feiro and Gould, 2005; Jiang et al., 2016; Fornari et al., 2000; for review see 

Wilson and Fadel, 2017). Drug studies examining fear consolidation, specifically, have 

generated varied results: several studies indicate that mAChR activation is not crucial for 

cued fear consolidation (Young et al., 1995; Anagnostaras et al., 1995; Wilson and Fadel, 

2017), whereas several studies have shown that mAChR antagonists decrease contextual 

fear consolidation (Bucherelli et al., 2006; Passani et al., 2001; Wilson and Fadel, 2017) 

and mAChR agonists increase contextual or cued fear consolidation (Vazdarjanova and 

McGaugh, 1999; Power et al., 2003a; Young and Thomas, 2014; Wilson and Fadel, 

2017). Young, Bohenek, and Fanselow, however, found that administration of a mAChR 

inhibitor actually increased consolidation of the fear memory (1995). A recent paper by 

Patricio et al. (2017) found that M1 mAChR are required for context fear memory recall. 

Collectively, these results indicate that ACh and mAChR are important for fear 

acquisition, and ACh may be important for consolidation, but mAChR are thought not to 
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be. These studies indicate a necessity for further studies elucidating the function of 

mAChR in the fear memory processes.  

Literature examining the role of mAChR in extinction learning is also analyzed in 

Wilson and Fadel (2017). As of 2007, only 2 studies had looked at the role of cholinergic 

transmission in fear extinction, so the body of work surrounding this process is much 

smaller (Myers and Davis, 2007). However, the studies conducted thus far indicate that 

ACh and mAChR are important for extinction acquisition and consolidation in multiple 

different brain regions. Santini et al. (2012) highlighted the importance of mAChR by 

injecting the non-selective mAChR inhibitor scopolamine systemically and into the IL 

before and after extinction learning. Systemic injections both before and immediately 

after extinction were shown to impair extinction consolidation, shown by poor recall of 

extinction memory. Intra-IL injections were shown to impair extinction when 

administered before extinction learning, but not when administered after, indicating that 

mAChR in the IL are important for acquisition of extinction memory but not 

consolidation. Additionally, when given a general mAChR agonist systemically before or 

after extinction learning, recall of extinction memory was facilitated. Together, these data 

indicate that mAChR are important for extinction memory acquisition and consolidation, 

and IL mAChR are important for extinction memory acquisition alone (Santini et al. 

2012). Boccia et al. (2009) examined the role of mAChR in the BLA in contextual 

extinction memory consolidation. While not addressing cued-extinction memory, Boccia 

et al. found that bi-lateral BLA injection of a general mAChR agonist, oxotremorine, 

immediately following extinction training improved the rat’s ability to undergo 

consolidation of contextual extinction memories (2009). In a different type of 
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conditioning paradigm, Schroeder and Packard (2004) tested the effect of systemic and 

intra-BLA oxotremorine on amphetamine-induced conditioned place preference 

extinction consolidation. This study found that both systemic and intra-BLA treatment 

given post-extinction training facilitated extinction learning, further indicating that 

mAChR are functioning in extinction consolidation (Schroeder and Packard, 2004). 

Zelikowsky et al. found that post-extinction training mAChR inhibition by systemic 

scopolamine injection impaired rats’ ability to undergo extinction consolidation (2013). 

Together, these findings seem to indicate that mAChR are important in extinction 

learning consolidation and mAChR inhibition prevents this process, where mAChR 

enhancement improves consolidation. My data, along with previous work, allows for the 

solidification of the hypothesis that mAChR are highly functional in the BLA’s role in 

extinction acquisition and extinction memory consolidation. The Mott and McDonald 

laboratories are currently undergoing collaborative efforts to better understand 

muscarinic signaling within the amygdala, and this study aids in that effort. 

D. Objective, Hypothesis, and Aims 

The objective of this study was to generate a group of animal that demonstrated 

grouped and individual differences in ability to extinguish learned fear and to examine 

the expression levels of two crucial proteins involved in cholinergic signaling in animals 

that underwent a fear learning and fear extinction paradigm. This was done in order to 

understand if M1 mAChR and AChE BLA expression correlate to the animal’s ability 

undergo the processes necessary for fear and extinction learning. Previous research by 

Joshua McElroy in Dr. Mott and Dr. Wilson’s lab found a positive correlation between 

expression of the cholinergic markersM1 mAChR and vesicular acetylcholine transporter 
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(VAChT) in the basolateral amygdala and the ability of an animal to undergo extinction 

learning. These findings led us to propose the following hypothesis:  

We hypothesized that BLA level of the cholinergic proteins M1 mAChR and 

AChE would positively correlate with extinction learning. Additionally, we hypothesized 

that expression of these proteins would demonstrate variations between individuals. To 

test these hypotheses, the following aims were proposed and accomplished: Aim 1: 

Determine if animals demonstrate grouped and individual differences when tested in fear 

learning and fear extinction paradigm, and Aim 2: Determine if there is a correlation 

between M1 mAChR and AChE expression in the BLA and individual differences in fear 

and extinction learning. 
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Chapter 2: Methods

The experiments conducted for this study included the generation of 2 groups of rats: 

one groups of 8 rats and a second group of 12 rats. A fear conditioning paradigm was 

used to condition fear to a US, tone, and induce fear extinction learning. Brain sections 

from each animal were fluorescently labeled for proteins involved in the cholinergic 

pathway. Labeled tissue was imaged using confocal and widefield fluorescence 

microscopy. The images were then analyzed and the data collected was analyzed 

alongside the data generated during behavioral conditioning trials.  

A. Animal Model of Fear Conditioning and Extinction 

Learning  

The fear conditioning and extinction paradigm used for this project was previously 

described in Sharko et al. (2016). The two groups of rats fear conditioned were done so 

separately and were slightly different and thus will be referred to and presented as 

separate. Group 1 (n=8) underwent ferret odor exposure trials, which were performed one 

week prior to fear conditioning. The ferret odor exposure behavioral trial was conducted 

by placing each individual rat into a Plexiglas cylinder that contains a small piece of 

fabric hanging inside the cylinder that has been soaked in ferret scent. Rats were kept in 

the cylinder for 60 minutes while freezing behavior was recorded using FreezeScan 

software (CleverSys Inc., Reston, VA). These data showed no significant differences 
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between individuals or groups (data not shown). Group 2 (n=12) were not exposed to 

ferret (predator) odor while all other paradigm parameters were kept the same between 

the two groups. Previous research conducted in the Wilson lab found that ferret scent 

exposure did not change the outcome of the observed behavioral patterns and thus it was 

decided not to conduct such behavioral trial on group 2 rats (unpublished data). 

1. Subjects 

Two groups (referred to as group 1 and group 2) of adult (9 weeks old) male Long 

Evans outbred rats 175-200 grams upon arrival were used for this study (n=8 and 12, 

respectively). Rats were singly housed and maintained a 12-hour light-dark cycle with 

free access to food and water. Upon arrival, rats were handled and weighed daily (weight 

change data not shown) for at least one week prior to the fear conditioning to habituate to 

experimenter. 

2. Fear Conditioning and Extinction Behavior Paradigm  

 

Figure 2.1: Fear and Extinction Behavior Paradigm. Visual representation of 

the fear learning and fear extinction paradigm used in this study. 

 

 Day 1: Acquisition of Conditioned Fear:  Rats were individually placed in a shock box 

(Med Associates Inc., Vermont) (Context A, shock box), with a floor of evenly spaced 
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stainless steel rods which were connected to a shocking apparatus which delivered the 

foot shock (Figure 2.1.a). The shock box was inside a sound-attenuating box containing a 

ventilation fan and light. Unconditioned freezing behavior was recorded for the first 3 

minutes of time in the box. Rats were then conditioned to the unconditioned stimulus 

(tone) with three 10 second tones (80db, 2kHz) co-terminating with a mild foot shock 

(1mA, 1 sec) at 60 second intervals. The shock box was cleaned between trials with 5% 

ammonium hydroxide.  

Day 2: Context Recall: On day 2, 24-hours after fear acquisition, rats were placed 

back into the original shock box (Context A) for 8 minutes without the presentation of 

tone or shock to assess context conditioned freezing (Figure 2.1.b).  

Day 3: Fear Recall & Extinction Acquisition: On day 3, 48-hours after fear 

acquisition, rats were assessed for cue conditioned freezing and within-session extinction 

learning using a novel chamber (Context B) with visual and olfactory cues distinct from 

those of the shock box (Figure 2.1.c). Animals were brought into the testing facility in a 

different manner (cages carried individually as opposed to in pairs and pushed on a cart) 

and tested in a different testing room. Context B was a Plexiglas bowl placed in a sound-

attenuating box with a ventilation fan and light, cleaned with 70% ethanol between 

animals, lined with bedding, and scented with lemon extract (20µL). After unconditioned 

freezing in the novel environment was assessed for 3 minutes, rats were presented with 

twenty 10 second tones (80db, 2 kHz) at 60 second intervals.  

 Day 5: Extinction Recall: On day 5, 48-hours after extinction learning, animals were 

placed back in the extinction learning chamber (Context B, all other visual and olfactory 
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cues consistent with testing on day 3) and presented with twenty 10 second tones (80 db, 

2kHz) to assess for fear extinction learning recall (Figure 2.1.d).  

B. Tissue Preparation, Immunofluorescence, & Image 

Collection & Analysis 

Two hours after the start of extinction recall on day 5, animals were anesthetized by 

5% isoflurane inhalation for 5 minutes, transcardially perfused with 100mL of cold 0.1M 

phosphate buffered saline (pH 7.4) then 300mL cold 4% paraformaldehyde in 0.1M 

phosphate buffered saline (pH 7.4). Brains were immediately removed and post-fixed for 

2 days in 4% paraformaldehyde in 0.1M phosphate buffered saline (pH 7.4) at 4°C. 

Brains were moved to 15% sucrose for 1 day and 30% sucrose until saturated. Coronal 

sections at 50µm were cut on a microtome and stored at -20°C in anti-freezing solution 

(30% ethylene glycol and 30% sucrose in 0.1M phosphate buffer, pH 7.4) until 

immunofluorescence processing. One tissue section per rat was labeled for M1 mAChR 

and the neighboring section was labeled for AChE. Tissue sections labeled and imaged 

ranged from Bregma -2.05mm to Bregma -2.30mm, according to Paxinos and Watson, 

The Rat Brain in Stereotaxic Coordinates (2008), all of which contained anterior BLA. 

All tissue was processed, imaged, and analyzed blindly together.   

Immunofluorescence labeling with M1 mAChR antibody was used to measure protein 

expression in the amygdalar complex. Tissue was washed for 10 minutes 3 times in 

0.05M tris-buffered saline solution (TBS) (pH 7.6). Tissue was exposed to pre-block for 

30 minutes, consisting of 0.5% Triton and 10% normal goat serum in 0.05M TBS. Tissue 

was washed for 5 minutes 3 times in 0.05M TBS. Tissue was incubated at room 

temperature overnight in 0.5% triton, 2% NGS, anti-M1 mAChR primary antibody 
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(1:500; rabbit polyclonal; mAChR-M1-Rb-Af340; AB_2571791; Frontier Institute co., 

ltd.). Frontier Institute’s M1 mAChR antibody specificity was confirmed by Narushima 

et al. using an M1 knock-out brain (2007). The next day, tissue was washed for 10 

minutes 3 times in 0.05M TBS, then incubated for 2 hours, protected from light, in 0.5% 

triton, 2% normal goat serum, goat anti-rabbit conjugated Alexa Fluor 546 secondary 

antibody (1:400; A-11035; Thermo Fisher). Tissue was washed for 10 minutes 2 times in 

0.05 TBS and exposed to DAPI staining solution (GTX16206; Lot# 821700090; 

GeneTex Inc.) for 10 minutes. Tissue was washed for 5 minutes 2 times in 0.05M TBS, 2 

times for 5 minutes in 0.05M tris-buffered solution (TB) (pH 7.4), mounted on 0.5% 

gelatinized slides, and allowed to dry. Slides were coverslipped using ProLong Diamond 

Antifade Mountant (P36970; Invitrogen, Thermo Fisher) and kept flat at 4°C until 

imaging. Controls for antibody specificity were conducted by exposing one piece of 

experimental tissue only to secondary antibody, goat α-rabbit conjugated Alexa Fluor 546 

secondary antibody. This tissue, imaged under identical parameters as that for 

experimental tissue, showed no detectable staining (data not shown).  

All M1 mAChR image collection was conducted using a Leica SP8 multiphoton 

confocal microscope system equipped with the Leica Application Suite X (2.0.1.14392) 

(Leica Microsystems). Laser and detector settings were kept consistent throughout image 

collection (format: 1024x1024, speed: 400Hz, image size: 369.05µm x 369.05µm, pixel 

size: 360.75µm x 360.75µm, optical section: 4µm, 3.59 Airy Unit, z-step size: 2.5µm, 

solid state diode 552nm laser settings: laser intensity: 3.2%, emission spectrum: 560nm-

590nm, gain: 840.0V, offset: -30.0%).  A gridded Z-series through the BLA of each 

tissue section was collected with 40x objective, an optical zoom of 0.75, at 3.59 Airy 
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Units. Mosaic merge and maximal projection settings were optimized for each image 

using the accompanying LAS AF 3 software. Merged maximal projection images were 

used to perform all image analysis.  

One neighboring tissue section from each rat was labeled for acetylcholinesterase 

(AChE), which allowed for both measured AChE protein expression and to identify the 

BLA in M1 mAChR labeled tissue, seeing that AChE cleanly and clearly labels the BLA. 

The labeling protocol used was identical to that outlined above, with the exception of the 

serum used, which here was BSA. The primary antibody used was anti-acetylcholine 

mouse monoclonal antibody (1:75; ZR3 clone, MA3-041, Thermo Fisher) with a chicken 

anti-mouse Alexa Fluor 647 (1:400; A-21463; Thermo Fisher).  

All AChE image collection was conducted using an Invitrogen EVOS FL Auto cell 

imaging system, equipped with a Cy5 LED light cube (Thermo Fisher). Grid images were 

collected at 20X with Cy5 light intensity at 65%, exposure 0.1 msec, and gain set to 

1.0V. Images were auto-merged by the Invitrogen EVOS FL Auto 2.0 Imaging system; 

merged images were used to perform all image analysis. 

Fiji ImageJ 1.51h was used to analyze all images (National Institute of Health, USA). 

Several data points were collected from each image (not all data shown). Images were 

analyzed by converting image to a red-green-blue stack (RGB stack) and recording the 

histogram mean of the red channel alone for M1 mAChR and AChE images, measuring 

the average pixel intensity. Using the adjacent tissue section labeled for AChE as a 

reference, the BLA of M1 mAChR images was circled using the freehand selection tool 

and the histogram mean was recorded for the BLA in the red channel. Using a standard 

size oval, a small consistent region of the CEA in each image was selected and the 
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histogram mean was recorded. To generate a value of M1 mAChR expression for each 

animal, the histogram mean of M1 mAChR measured in the BLA was divided by the 

histogram mean of M1 mAChR measured in the CEA. The same was done for AChE 

images. All values generated for each rat are an average of each hemisphere (unless 

otherwise stated) on one tissue section from each animal. Only image analysis of group 2 

is shown. The histogram mean values showing average pixel intensity collected and used 

for individual rat image analysis of M1 mAChR labeled tissue and AChE labeled tissue 

can be found in Table A.1 and Table A.2, respectively. 

C. Statistical Analysis  

All freezing behavior was recorded and assessed using FreezeScan software 

(CleverSys Inc., Reston, VA). FreezeScan software parameters were designated to detect 

freezing behavior as the animal not moving except breathing. Data were collected in 60 

second bins and presented as a percent of freezing behavior during each 1 minute bin of 

each trial. For analysis of behavior data, groups were separated into high and low 

responders based extinction acquisition; the last 10 minutes of day 3 cue-conditioned 

freezing & extinction acquisition the animals were divided into high and low responders 

based on a median split of the average percent freezing. This distinction allows for 

examination of grouped differences in ability to undergo fear extinction learning. Rats in 

group 1 with an average percent freezing below 22% during extinction learning were 

determined to be low responders (good extinction learning), where rats above 22% 

freezing were determined to be high responders (poor extinction learning) (n=4 per 

group). Rats in group 2 with an average percent freezing below 34% during extinction 

learning were determined to be low responders (good extinction learning), where rats 
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above 34% freezing were determined to be high responders (poor extinction learning) 

(n=6 per group).  Statistical analysis was conducted using Graph Pad Prism (Prism 5 for 

Windows, version 5.02). High versus low responders in each group were compared by 

two-way analysis of variance (ANOVA; high vs. low freezing) with repeated measures 

across time bins (significance level p<0.05). Bonferroni post-tests were conducted to 

compare individuals over time. Graphs showing grouped high vs low responder freezing 

across the experiment (Figure 3.1.e, 3.2.e) were generated by taking the average time bin 

for each animal during each stage and comparing by two-way ANOVA (high vs low 

freezers) with Bonferroni post-tests to compare over time. Amygdalar nuclei protein 

expression was analyzed by a paired t-test (Figure 3.3.d, 3.5.e).  

Liner regression and correlation analysis was conducted using Graph Pad Prism in 

order to analyze correlations between freezing behavior and protein expression. Both 

receptors’ expression was compared separately to freezing behavior across various time 

points throughout the behavior paradigm which represented different stages of the fear 

and extinction learning process, outlined in Table 3.1. Average freezing behavior during 

learning phases was correlated with AChE or M1 mAChR protein expression in the BLA. 

This was used to ascertain correlation between specific learning phases and cholinergic 

protein expression. Rats were not grouped into high and low responder groups for 

receptor expression analysis, but were considered individually in order to examine 

individual differences in the fear and extinction learning process. Pearson correlation and 

linear regression analysis (95% confidence interval) were conducted comparing AChE 

and M1 mAChR BLA/CEA values to average percent freezing during each designated 

learning process (TABLE 3.1).  
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Chapter 3: Results

A. Behavior Results 

Two separate groups of rats were submitted to the fear learning and fear 

extinction paradigm described above, referred to as group 1 and group 2 (analyzed and 

discussed separately). High and low responder groups were determined by a median split 

of the average percent freezing of the last 10 minutes of day 3 cue-conditioned freezing& 

extinction learning, grouping rats into within session extinction (low responders) versus 

those who did not undergo within session extinction (high responders).  

1. Group 1 Behavior Results: 

Although there were observed individual differences, all rats in group 1 acquired 

the conditioned fear on day 1 of the behavior paradigm (F[1,6]= 0.01; p=0.94) (Figure 

3.1.a, e). Group 1 then shows high individual variation and overall poor context recall in 

both high and low responder groups, indicating poor fear memory recall (F[1,6]= 1.69; 

p=0.24) (Figure 3.1.b, e). Group 1 rats showed varied cue-conditioned freezing and 

extinction learning on day 3, but did not show significant differences between groups 

(F[1,6]=1.20; p=0.316) (Figure 3.1.c). Cued-fear recall and extinction learning, on day 3, 

can be broken into 2 different phases: the first few tone exposures (tones 1-5, minutes 5-

9) which indicate cue-fear recall in response to experiencing the CS in a new context, and 

the last 10 CS/tone presentations when the rats were undergoing within-session extinction 
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acquisition, learning that the CS is no longer associated with the US. Group 1 shows 

varied cue-fear memory recall across individuals but did not show significant differences 

between groups (F[1,6]=0.60; p=0.698) (Figure 3.1.c, e). When examined alone, the last 

10 tone presentations of cue exposure, indicating fear extinction learning, show 

significant differences between high and low responders (F[1,6]=8.60; p=0.026) (Figure 

3.1.c, e). Animals were grouped into high vs low responder groups based on the median 

split of freezing during this behavioral stage (median value = 21.77%). Group 1 rats 

showed individual variation during extinction recall on day 5, but did not show 

significant differences between groups (F[1,6]=2.17; p=0.316) (Figure 3.1.d). Extinction 

recall, on day 5, can also be broken into 2 different phases: the first few tone exposures 

(tones 1-5, minutes 2-6) which indicate recall of the previously learned extinction 

memory, and the last 10 tone presentations indicating within session extinction learning 

for those individuals who had not yet undergone extinction learning, or extinction 

learning reinforcement. Group 1, however, had very few individuals recall the previously 

acquired fear extinction memory and was not significantly different between high and 

low responder groups (F[1,6]=1.55; p=0.431) (Figure 3.1.d, e). Finally, both high and 

low responders undergo within session extinction learning (F[1,6]=2.75; p=0.148) 

(Figure 3.1.d, e). 
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Figure 3.1: Group 1- Grouped Differences in Freezing Behavior During Fear and 

Extinction Paradigm. Group 1 rats were divided into high and low responder groups 

based on a median split of the mean percent freezing during the last 10 tones of day 3, 

c (median= 21.77%). There we no grouped statistical differences during any phase. 

Graph e breaks up the behavior paradigm into the learning segments outlined in Table 

3.1 and shows that high and low responder groups show a statistical difference during 

day 3 cued fear extinction. Arows indicate tone presentation, lightninig bolts indicate 

shock presentation, asterisks indicate statistical significance (*=p<0.05). 
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2. Group 2 Behavior Results:  

Although there were observed individual differences, all rats in group 2 acquired 

fear on day 1 of the behavior paradigm and did not show high vs low grouped differences 

(F[1,10]=2.46; p=0.148) (Figure 3.2.a, e). Group 2 then shows context recall and within 

session context extinction on day 2, which shows grouped differences between high and 

low responders, with high responders showing better context recall than the low 

responders (F[1,10]=8.40; p=0.0159) (Figure 3.2.b, e). Grouped differences between high 

and low responders on day 3 cue-conditioned freezing and extinction learning was found 

to be significant (F[1,10]=14.47; p=0.0035) (Figure 3.2.c). Fear recall and extinction 

learning can be broken into 2 different phases: the first few tone exposures (tones 1-5, 

minutes 5-9) which indicate cue-conditioned freezing in response to experiencing the CS 

in a new context, and the last 10 CS/tone presentations when the rats were undergoing 

within-session extinction learning, learning that the CS is no longer associated with the 

US. All animals in group 2 showed good cue-condition freezing, indicating both high and 

low responders were able to recall the CS-associated fear memory (F[1,10]=4.61; 

p=0.0572) (Figure 3.2.c, e). The last 10 tone presentations of cue exposure, indicating 

fear extinction learning, show stark differences in group 2 split between high and low 

responders, indicating low responders underwent cued fear extinction learning 

(F[1,10]=17.58; p=0.0018) (Figure 3.2.c, e). Animals were grouped into high vs low 

responder groups based on the median split of freezing during this behavioral stage 

(median value = 34.27%).Grouped differences between high and low responders on day 5 

extinction recall was found to be significant (F[1,10]=5.22; p=0.0454) (Figure 3.2.d). 

Extinction recall, on day 5, can also be broken into 2 different phases: the first few 
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minutes of tone exposure (tones 1-5, minutes 2-6) which indicate recall of the previously 

learned extinction memory, and the last 10 tone presentations indicate within session 

extinction learning for those individuals who had not yet undergone extinction learning, 

or extinction learning reinforcement. Group 2 shows very clear distinctions between high 

and low responders extinction recall, where high responders demonstrated a recovery of 

the fear memory and subsequent freezing response and low responders demonstrated 

recall of the fear extinction memory (F[1,10]=13.23; p=0.0046) (Figure 3.2.d, e). Finally, 

both high and low responders undergo within session extinction learning (F[1,10]=0.32; 

p=0.585) (Figure 3.2.d, 3.2.e). Group 2 rats demonstrate clear grouped differences in the 

extinction processes, including acquisition and recall. This test does not indicate if recall 

differences are due to individual differences in ability to recall extinction memory or 

differences in ability to consolidate the extinction memory.  

It is questionable as to if group 1 and group 2 rats can be combined. One reason is 

that that group 2 did not undergo ferret odor exposure prior to fear conditioning. Zoladz 

and Diamond’s 2016 review examined the effect predator-based psychological stress has 

on animal models used to study PTSD. The PTSD model examined equated predator 

exposure to “an inescapable, life-threatening experience”, a classified PTSD-inducing 

experiences. However, they found that predator exposure alone did not produce PTSD-

like symptoms and that this may not produce symptoms translatable to humans (Zoladz 

and Diamond, 2016). Considering behavioral inconsistencies observed in group 1 and as 

of yet inconclusive results exploring the implications of ferret odor exposure on fear 

acquisition and fear extinction learning, group 1 was not included in imaging or 

correlation analysis.   
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Figure 3.2: Group 2- Grouped Differences in Freezing Behavior During Fear and 

Extinction Paradigm. Group 2 rats were divided into high and low responder groups 

based on a median split of the mean percent freezing during the last 10 tone 

presentations of cued-fear recall & extincion acquisition, c (median= 34.27%). High vs 

low responder groups showed strong statistical differences during extinction 

acquisition (c, e) and extinction recall (d, e). Graph e breaks up the behavior paradigm 

into the learning segments outlined in Table 3.1. Arows indicate tone presentation, 

lightninig bolts indicate shock presentation, asterisks indicate statistical significance 

(*=p<0.05; **=p<0.01; ***=p<0.001). 
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B. Fluorescent Imaging Results and Analysis  

M1 mAChR labeling and distribution observed in this study was similar to that 

observed in McDonald and Mascagni (2010). Dense M1 mAChR cell body labeling is 

evident in many temporal lobe structures imaged, including the LA, BLA, BLV, and the 

periform cortex (Pir), where cell body labeling is absent in BMA and CEA (Figure 3.3.a, 

b, A.1). The M1 mAChR positive cells labeled in Figures 3.3 and 3.4 have the 

morphology of pyramidal-like neurons, with a somewhat triangular cell body and 

between 1 and 3 apparent projections emanating from the apex and base of the cell, 

evident in high magnification images (Figure 3.4.a, b) (Sah et al., 2003). The labeled 

neurons also appear to have a random organization, opposed to the parallel organization 

seen in the Pir (Figure 3.3.a, b), which is typical of the cortex and hippocampus (Sah et 

al., 2003). Consistent with the cell body labeling seen in McDonald and Mascagni, this 

labeling pattern indicates that the M1 mAChR labeling observed and analyzed consists 

largely of postsynaptic receptors contained within the cell body of pyramidal neurons 

(2010). While labeling was observed in a number of regions, the BLA consistently had 

the densest M1 mAChR cell body labeling; this is illustrated in Figure 3.3. d, showing a 

higher average M1 mAChR expression in the BLA than in the CEA, when averaging left 

and right amygdala from each animal. Figure 3.3.c illustrates that left and right amygdala 

differs on average by no more than 5 units (on scale of 0-255). This indicates that M1 

mAChR amygdalar expression does not vary from left and right in each animal, and the 

averaging of these values does not alter analysis. However, variation from animal to 

animal can be drastic, as is evident in intensity differences between images 3.3.a and b. 
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Labeling in the BLA was primarily cell body labeling, which can be clearly seen 

in the higher power image showing M1 mAChR + DAPI labeling (Figure 3.4. a, b). It has 

been reported that approximately 85% of neurons in the basolateral nuclear complex 

(BLC) of the amygdala (consisting of the LA, BLA, and BM) are positive for 

calcium/calmodulin protein kinase II (CaMK), a known marker of pyramidal neurons, 

and almost all CaMK positive/pyramidal neurons in the BLC are also M1 mAChR 

positive cells (McDonald, 1992; McDonald and Mascagni 2010). However, when 

examining M1 mAChR + DAPI labeled tissue, it appears that a far lower percentage than 

85% of BLC neurons are M1 mAChR positive (Figure 3.4.a, b). This could be explained 

by examining the other types of cells in the BLC, such as inhibitory neurons, including 

those imaged in Figure 3.4.c, parvalbumin (PV) interneurons. A more detailed analysis of 

cell counts in M1 mAChR and DAPI labeled images is required to clarify this idea. 

Figure 3.4.a and b also illustrate a variation in extent of M1 mAChR cell body labeling. 

These images are 40X Z-series images collected in the center of the BLA. Image a 

appears to have fewer M1 mAChR positive cells compared to image b. Similar 

background levels indicate this is not an artifact of tissue processing or imaging, but 

rather could be indicative of the idea that individuals have different levels of M1 mAChR 

positive cells in the BLA. This, too, requires further analysis for clarification. 
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Figure 3.3: M1 mAChR Immunofluorescence. Image a has low BLA M1 mAChR 

expression. Image b has high BLA M1 mAChR expression. Image a and b are 

approximately Bregma -2.16mm (Paxinos and Watson, 2008); scale bars are 200µm. 

Graph c column 1 and 2 illustrate the measured differences between M1 mAChR 

protein expression levels in the different hemispheres (left/right designation arbitrary). 

The 3
rd

 column, illustrating hemisphere differences, was generated by taking the 

absolute value of the M1 mAChR left value minus the M1 mAChR right value. This 

indicates that measurable left versus right differences are relatively small and can thus 

be averaged for analysis. Graph d shows that BLA M1 mAChR expression levels are 

significantly higher than that observed in the CEA (t(DF)=11, p<0.0001). 
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Figure 3.4: Basolateral Amygdala M1 mAChR+ Cell Density. Image a and b are 

images of BLA collected at 40X on the confocal, red is M1 mAChR, blue is DAPI. 

Image a has far fewer M1 mAChR+ cells than image b, while they both have similar 

background levels. Image a and b scale bar 10µm. Image c is a gridded confocal image 

of a rat amygdala labeled for parvalbumin (PV), illustrating that the amygdala has a 

relatively dense PV interneuron population, which helps to explain the density of M1 

mAChR negative cells seen in images a and b (cells that are DAPI labeled but not M1 

mAChR labeled). Image c scale bar 200µm. 
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Tissue sections for M1 mAChR labeling were selected based on McDonald and 

Mascagni’s analysis of density of M1 mAChR labeling from rostral to caudal amygdala, 

with the most robust M1 mAChR immunoreactivity seen in the anterior divisions of the 

basolateral amygdala (2010). Tissue sections labeled and imaged ranged from Bregma -

2.05mm to Bregma -2.30mm, according to Paxinos and Watson, The Rat Brain in 

Stereotaxic Coordinates (2008), all of which contained BLA seen to be densely labeled 

with M1 mAChR in McDonald and Mascagni (2010). The CEA showed some neuropil 

labeling and an absence of cell body labeling across all animals (Appendix A, Figure 

A.1). We felt confident normalizing BLA M1 mAChR intensity to CEA M1 mAChR 

intensity due to McDonald and Mascagni’s assertion that the majority of differences 

between amygdalar nuclei was due to cell body labeling, not neuropil labeling (2010). 

One issue that was observed upon image collection and analysis was that overall 

intensity varied, not just in the amygdala, but the entire image. This begs the question as 

to if variations are due to overall artefactual intensity or legitimate changes in receptor 

expression. This issue was the motivation behind using the histogram mean BLA value 

divided by the mean CEA value. Control sections with no primary antibody labeling were 

imaged and analyzed but generate no measureable autofluorescence. Additionally, 

images were collected in an arbitrary cortical region, the barrel field of the somatosensory 

cortex (S1BF) (Figure A.2). The ratio comparing intensity of M1 mAChR labeling seen 

in the BLA of a high M1 mAChR expresser and a low expresser compared to the ratio 

comparing intensity of labeling see in the S1BF of the same high (Figure A.2.a) and low 

(Figure A.2.b) expresser shows that differences observed in M1 mAChR expression are 

not uniform across an entire tissue section (Figure A.2.c). Where high and low M1 
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mAChR expressers appear to have a uniform brightness or dimness in amygdalar images, 

this analysis shows that the changes observed in the BLA are greater than those seen 

across an entire tissue section and are thus not due to differences in perfusion or tissue 

processing. More controls will need to be imaged in order to further prove this finding 

and validate this technique and the correlation findings.  

While some structures can be differentiated by examining M1 mAChR labeling 

alone, AChE labeling was conducted to cleanly and reliably identify temporal lobe 

nuclei. AChE was one of the labels used in Paxinos and Watson (2008) to differentiate 

between brain regions due to its clearly defined expression pattern. Amygdala AChE 

expression has been observed to be some of the densest in the brain, which allowed for 

clean distinguishing of amygdalar nuclei (Ben-Ari et al. 1997; Girgis 1980). This is 

useful in this study for amygdalar nuclei separation.  

AChE expression in this study closely matches that previously observed; dense 

expression in the BLA, clear distinction from the LA, which has significantly lower 

expression, and even lesser amounts seen in the CEA (Figure 3.5.a, b, c), illustrated 

between the BLA and CEA in figure 3.5.e, where average BLA expression is almost 

double that of CEA. Only neuropil AChE labeling is visible in the BLA and LA, as is 

reported in studies which utilize an AChE stain, versus AChE antibody labeling used here 

(Ben-Ari et al. 1997; Girgis 1980). Images 3.5.a and b illustrate the drastic differences in 

AChE labeling observed from animal to animal, where figure 3.5.c is an enlarged version 

of figure 3.5.b that has been brightened 3-fold. To generate AChE expression values for 

analysis, left and right amygdalar values were averaged. However, figure 3.5.d illustrates 

that the average left vs right AChE differences was more than double that observed in M1 
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mAChR image analysis. Image 3.5.f is a confocal image showing the most drastic left vs 

right disparities. This begs the question as to if AChE functionality varies between left 

and right amygdala in each animal. Further analysis is required to resolve these issues.  

 

Figure 3.5: Acetylcholinesterase Immunofluorescence. Image a. AChE labeled 

section considered high expressing. Image b. AChE labeled section considered low 

expressing. Image c. magnified version of image b that has been brightened 3-fold to 

allow for visible labeling. Figure d. illustrates the measured hemispheric differences in  

AChE protein expression (left/right designation arbitrary); column 3 illustrates 

hemisphere differences and was generated by taking the absolute value of the AChE 

left value minus the right value. This indicates that some animals have subtle 

hemispheric differences, where others have much more drastic differences. Graph e 

shows that BLA AChE expression levels are significantly different than that observed 

in the CEA (t(DF)=11, p<0.0001). Image f is a confocal image collected to illustrate 

large left right discrepancies in AChE labeling (scale bar 1000µm) 
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 Correlation analysis between AChE and M1 mAChR was conducted to examine if 

there was a correlation between these two protein’s expressions of these two proteins in 

the BLA or if the different protein levels observed existed independent of overall 

cholinergic influence. No statistical significance was observed between the two proteins 

expression level (F[1,10]=1.194; p>0.1) (FUGURE 3.6). This finding suggests that if 

significant correlations are observed, they are not due to increased cholinergic proteins, 

as was suggested in early studies (Power et al., 2003b; Gold, 2003). 

 

Figure 3.6: Correlation- M1 mAChR vs AChE Protein 

Expression Levels. No significant correlation exists 

between BLA M1 mAChR expression and BLA AChE 

expression.  

 

C. Correlation between Behavior and Image Analysis 

Correlation analysis was conducted to compare the extent of protein expression 

(M1 mAChR or AChE) to the stages of fear and extinction learning by examining levels 
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of measured freezing behavior in specific time bins, outlined in TABLE 3.1 (group 2 

only). These time bins were also used to generate figure 3.1.e and 3.2.e.  

Table 3.1: Freezing behavior representing stages of fear learning used for 

imaging correlation analysis 

 

Learning 

processes 

Stage of behavior 

paradigm  

Time bins used for 

analysis of 

learning processes 

Correlation analysis 

Fear 

Acquisition 

Day 1: 

Acquisition of 

Conditioned Fear 

Average of last 3 

minutes 

M1 BLA/CEA: p=0.0251 

AChE BLA/CEA: p>0.05; 

n.s. 

Context 

Fear Recall  

Day 2: Context-

Conditioned 

Freezing  

Average of 

minutes  

2-5 

M1 BLA/CEA: p>0.05; n.s. 

AChE BLA/CEA: p>0.05; 

n.s. 

Cued-Fear 

Recall 

Day 3: Cued-Fear 

Recall & 

Extinction 

Acquisition 

Average of tones 

2-6 (minutes 5-9) 

M1 BLA/CEA: p>0.05; n.s.  

AChE BLA/CEA: p>0.05; 

n.s. 

Extinction 

Acquisition 

Day 3: Cued-Fear 

Recall & 

Extinction 

Acquisition 

Average of tones 

10-19 (minutes 13-

22) 

M1 BLA/CEA: p>0.05; n.s. 

AChE BLA/CEA: p>0.05; 

n.s. 

Extinction 

Recall 

Day 5: Extinction 

Recall 

Average of tones 

1-5 (minutes 2-6) 

M1 BLA/CEA: p=0.0230 

AChE BLA/CEA: p>0.05; 

n.s. 

Delayed 

Extinction 

Acquisition 

Day 5 Extinction 

Recall 

Average of tones 

10-19 (minutes 11-

21) 

M1 BLA/CEA: p>0.05; n.s. 

AChE BLA/CEA: p>0.05; 

n.s. 

 

1.  M1 mAChR behavior correlation results  

The histogram mean values showing average pixel intensity collected and used 

for individual rat image analysis of M1 mAChR labeled tissue can be found in TABLE 

A.1. Correlation analysis between M1 mAChR expression and fear acquisition, 

represented by the average percent freezing in the last 3 minutes of day 1, was found to 
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be statistically significant (F[1,10]=6.929; p=0.0251) (Figure 3.7.a.). Correlation analysis 

between M1 mAChR expression and contextual-fear recall, represented by the average 

percent freezing during minutes 2-5 of day 2, was found not to be statistically significant 

(F[1,10]=0.2724; p=0.6131) (Appendix A, Figure A.3.a). Correlation analysis between 

M1 mAChR expression and cued-fear recall, represented by the average percent freezing 

during minutes 5-9, capturing behavior after the first tone presentation of day 3, was 

found not to be statistically significant (F[1,10]=0.040; p=0.8455) (Figure 3.7.b).  

 

Figure 3.7: Correlation- M1 mAChR expression levels vs fear learning processes. 

Figures a and b examine the correlation between M1 mAChR BLA expression levels 

and different aspects of the fear learning process, including fear acquisition, a, 

measured by the average percent freezing during last 3 minutes of day 1, and cued 

fear recall (or consolidation), b, measured by the average percent freezing during 

minutes 2-5 of day 3. No statistical significance was found between M1 mAChR 

expression and fear recall, b. Statistical significance was found between fear 

acquisition and M1 mAChR BLA expression, a.  

 

This analysis captures the aspects involved in fear memory, including contextual 

and cued fear memory acquisition, consolidation, and recall. The significant correlation 

observed between M1 mAChR expression and fear acquisition would indicate that this 

proteins expression level positively correlates with the rat’s ability to acquire fear. This 

indicates that PL projections from the PFC to the BLA synapse onto M1 mAChR+ 
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pyramidal neurons in the BLA, allowing for inhibition of M-current which allows for 

synaptic plasticity to occur. A number of studies discussed previously have found similar 

results, reinforcing this finding (Rudy, 1996; Young et al., 1995; Feiro and Gould, 2005; 

Jiang et al., 2016; Fornari et al., 2000; for review see Wilson and Fadel, 2017). 

The non-significant correlation observed between contextual- and cued-fear recall 

seems to indicate that M1 mAChR are not functioning in either consolidation or recall of 

the fear memory. However, several studies would disagree with this finding. A recent 

study by Patricio et al., found that M1 mAChR are important in the recall of contextual-

fear memories (2017). Similarly, Young and Thomas found that specific M1 mAChR 

activation increases the consolidation of fear memories (2014). Young, Bohenek, and 

Fanselow, however, found that administration of a mAChR inhibitor actually increased 

consolidation of the fear memory (1995). Further studies are necessary to elucidate the 

precise function and involvement of M1 mAChR in the fear learning process.  

Correlation analysis between M1 mAChR expression and extinction acquisition, 

represented by the average percent freezing during minutes 13-22, capturing behavior 

through the last 10 tone presentations of day 3, was found not to be statistically 

significant (F[1,10]=2.367; p=0.155) (Figure 3.8.a). Correlation analysis between M1 

mAChR expression and extinction recall, represented by the average percent freezing 

during the first 5 minutes after the first tone presentation (minutes 2-6) of day 5, was 

found to be statistically significant (F[1,10]=7.198; p=0.0230) (Figure 3.8.b). Correlation 

analysis between M1 mAChR expression and delayed extinction acquisition, represented 

by the average percent freezing during minutes 10-19, capturing behavior through the last 
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10 tone presentations of day 5, was found not to be statistically significant 

(F[1,10]=0.5613; p=0.4710) (Appendix A, Figure A.3.b).  

 

Figure 3.8: Correlation- M1 mAChR expression levels vs the extinction 

learning processes. Figures 3.8.a and b examine the correlation between BLA M1 

mAChR expression levels and different aspects of the extinction learning process, 

including extinction acquisition, a, measured by the average percent freezing during 

tones 10-19 on day 3, and extinction recall (or consolidation), b, measured by the 

average percent freezing during tones 1-5 on day 5. A trend was observed between 

extinction acquisition and M1 mAChR expression, a, where a statistically 

significant correlation was observed between extinction recall and BLA M1 

mAChR expression.  

 

 This analysis captures the aspects involved in cued-fear extinction memory, 

including acquisition, consolidation, and recall. Contextual-fear extinction was not 

thoroughly analyzed due to the nature of the behavior paradigm and focus of this study. 

The non-significant correlation observed during extinction acquisition would seem to 

indicate that M1 mAChR are not functioning in the rat’s ability to acquire the extinction 

memory, where they were seen to function in fear memory acquisition. The significant 

positive correlation observed between M1 mAChR expression and percent freezing 

during re-exposure to the previously extinguished fear memory indicates that higher M1 

mAChR protein expression indicates a deficit in rat’s ability to recall the extinction 
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memory. This study does not allow for the differentiation between consolidation and 

recall so this finding could, likewise, be indicating that high M1 mAChR protein 

expression prevents consolidation of extinction memories. This finding is the opposite of 

the original hypothesis, which stated that higher M1 mAChR expression was expected to 

improve extinction acquisition.  

This finding also contradicts previous research conducted in the Mott and Wilson 

labs by Joshua McElroy, a study which found that animals with higher BLA M1 mAChR 

protein expression were better able to undergo extinction learning (McElroy, 2016). The 

current study’s finding could be due to the solidity of the previously acquired fear 

memory, which is enhanced by high levels of M1 mAChR protein expression in the BLA, 

and that more extinction training is required to allow for proper extinction memory recall 

in the high responding rats. Delayed extinction acquisition, measuring the within session 

extinction that occurs on the second round of CS exposure, could allow individuals to 

better acquire the extinction memory. Delayed extinction acquisition was found not to be 

correlated to M1 mAChR expression. This is to be expected due to the poor correlation 

seen between M1 expression and the initial extinction acquisition.   

Few studies have examined mAChR function in the various phases of cued-fear 

extinction memory, one of the reasons this study is very important. Those that have 

studied this process have found M1 mAChR function to be important for extinction 

memory processes. While not addressing cued-extinction memory, Boccia et al. found 

that a general mAChR agonist improved the rat’s ability to undergo contextual extinction 

consolidation, specifically (2009). Santini et al. found that mAChR are important for both 

extinction memory acquisition and consolidation (2012). Zelikowsky et al. found that 



40 

 

mAChR inhibition impaired rat’s ability to extinguish conditioned fear (2013). Schroeder 

and Packard showed that mAChR agonists improve ability to extinguish amphetamine-

induced place preference (2004). These findings, along with those in the present study, 

paint a confusing picture of M1 mAChR involvement in fear extinction. As it currently 

stands, it seems safe to say that mAChR are, at the very least, important in extinction 

learning. My data, along with previous work, allow for the solidification of the 

hypothesis that M1 mAChR are highly functional in the BLA’s role in extinction 

acquisition and extinction memory consolidation. The precise function and if up or down 

regulation of M1 mAChR would be beneficial in extinction learning, however, is 

somewhat more confusing. Previous literature outlined above would seem to indicate that 

more mAChR functionality would mean better extinction consolidation, although not 

specifically speaking to which receptor subtype. This study found that higher M1 

mAChR expression, specifically, indicates worse extinction consolidation.  

2.  AChE behavior correlation results 

The histogram mean values showing average pixel intensity collected and used 

for individual rat image analysis of AChE labeled tissue can be found in TABLE A.2. 

Correlation analysis between AChE expression and fear acquisition, represented by the 

average percent freezing in the last 3 minutes of day 1, was found not to be statistically 

significant (F[1,10]=0.1831; p=0.6778) (Figure 3.9.a). Correlation analysis between 

AChE expression and contextual-fear recall, represented by the average percent freezing 

during minutes 2-5 of day 2, was found not to be statistically significant (F[1,10]=3.260; 

p=0.1011) (appendix A, Figure A.4.a). Correlation analysis between AChE expression 

and cued-fear recall, represented by the average percent freezing during minutes 5-9, 
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capturing behavior after the first tone presentation of day 3, was found not to be 

statistically significant (F[1,10]=1.716; p=0.2195) (Figure 3.9.b).  

 

Figure 3.9: Correlation- AChE expression levels vs fear learning processes. 

Figures 3.9.a and b examine the correlation between AChE expression levels 

and different aspects of the fear learning process, including fear acquisition, a, 

measured by the average percent freezing during last 3 minutes of day 1, and 

cued fear recall (or consolidation), b, measured by the average percent freezing 

during minutes 2-5 of day 3. No statistical significance was found for either 

analysis. 

 

Correlation analysis between AChE expression and extinction acquisition, 

represented by the average percent freezing during minutes 13-22, capturing behavior 

through the last 10 tone presentations of day 3, was found not to be statistically 

significant (F[1,10]=0.6590; p=0.4358) (Figure 3.10.a). Correlation analysis between 

AChE expression and extinction recall, represented by the average percent freezing 

during the first 5 minutes after the first tone presentation (minutes 2-6) of day 5, was not 

found to be statistically significant (F[1,10]=0.1703 ; p=0.6885) (Figure 3.10.b). 

Correlation analysis between AChE expression and delayed extinction acquisition, 

represented by the average percent freezing during minutes 10-19, capturing behavior 
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through the last 10 tone presentations of day 5, was found not to be statistically 

significant (F[1,10]=0.5613; p=0.5914) (appendix A, Figure A.4.b).  

 

Figure 3.10: Correlation- AChE expression levels vs Extinction Learning 

Processes. Figures 3.10.a and b examine the correlation between AChE 

expression levels and different aspects of the extinction learning process, 

including extinction acquisition, a, measured by the average percent freezing 

during tones 10-19 on day 3, and extinction recall (or consolidation), b, 

measured by the average percent freezing during tones 1-5 on day 5. No 

statistical significance was found for either analysis. 

 

 While studies have examined the role of AChE in the fear learning process, many 

of those studies have done so using acetylcholinesterase inhibitors or have been studies 

examining nicotinic receptor functioning, not AChE. This can be done because AChE 

inhibitors reverse nicotine withdrawal effects (Wilson and Fadel, 2017). Understanding 

what roles all aspects of the cholinergic system play in fear and extinction learning and 

memory is necessary if treatments for fear related disorders are to be developed 

surrounding the cholinergic system. However, the results presented in this study would 

lead us to conclude that AChE protein expression does not directly dictate one’s ability to 

acquire, consolidate, or recall fear or extinction memories.  
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Chapter 4: Conclusions

The observable deviation of group 2 rats into two different responder groups, high 

and low responders was similar to that observed by Sharko et al. (2016) and McElroy 

(2015). Similar to these two studies, the results of this study show that rats demonstrate 

observable and quantifiable individual differences that go beyond behavioral differences. 

While grouped differences cannot be seen in ability to acquire fear, when comparing 

individual differences in this ability to protein expression, substantial individual 

differences can be observed, and these differences positively correlate to M1 mAChR 

protein expression. These data seem to indicate that an animal’s ability to acquire cued-

fear is dependent upon M1 mAChR expression, with better fear acquisition correlating to 

higher M1 mAChR BLA expression.  

Statistically significant differences were observed between high and low 

responder groups in ability to acquire cued-extinction memory due to repeated CS 

exposure during the second half of the day 3 trial. When examining correlation between 

individual differences in extinction acquisition and M1 mAChR expression, a trend is 

visible but no statistical differences were observed. A significant correlation was 

observed between M1 mAChR expression level and rats ability to recall cued-extinction 

memory during the first 5 tone presentations on day 5. This behavior paradigm does not 

indicate if this difference is due to M1 mAChR function in extinction memory 

consolidation or recall, where previous literature seems to indicate mAChR are 
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functioning in extinction consolidation (Boccia et al., 2009; Santini et al., 2012; Schroder 

and Packard, 2004; Zelikowsky et al., 2013).  

The several significant correlative findings discussed implicate M1 mAChR in the 

initial fear acquisition and the consolidation of extinction memory. Together, these two 

findings seem to indicate that those individuals that had better initial fear acquisition, 

potentially caused by higher M1 mAChR expression levels, had worse extinction recall 

or consolidation. These data allow for two different interpretations: M1 mAChR function 

in directly inhibiting the extinction learning pathway (IL pathway), or that M1 mAChR in 

the BLA primarily function in strengthening the fear learning pathway (PL pathway) 

which inhibit extinction by making the strongly formed fear memory difficult to 

overcome. If M1 mAChR are directly functioning in inhibition of the IL pathway, giving 

animals an M1 mAChR antagonist during extinction learning processes would 

theoretically result in improved extinction learning, and a M1 mAChR agonist would 

inhibit extinction learning. Seeing that the opposite has been observed, where mAChR 

antagonists impair extinction and mAChR agonists enhance extinction, this interpretation 

of these data is unlikely to be correct (Boccia et al., 2009; Santini et al., 2012; Schroeder 

and Packard, 2004; Zelikowsky et al., 2013). However, the interpretation could be true 

that M1 mAChR are primarily functioning in the strengthening of fear learning pathway, 

creating a stronger fear memory than that of individuals with less dense BLA M1 

mAChR expression. This interpretation is consistent with previous studies that show that 

mAChR agonists improve fear learning and antagonists impair fear learning (Feiro and 

Gould, 2005; Fornari et al., 2000; Jiang et al., 2016; Power et al., 2003a; Rudy, 1996; 

Vazdarjanova and McGaugh, 1999; Young et al., 1995; Wilson and Fadel, 2017). 
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Furthermore, this interpretation does not discount a role for M1 mAChR in fear 

extinction, for beyond-physiological activation or inhibition of M1 mAChR in the BLA 

during fear extinction learning processes could still be effecting ability to undergo 

extinction acquisition, consolidation, or recall.  

No significant correlations were observed between AChE protein expression and 

fear learning or extinction phases or between extent of M1 mAChR expression. This 

seems to indicate that overall cholinergic protein expression is not the driver of individual 

ability to learn or extinguish fears.  

Few studies thoroughly examine fear learning and even fewer examine fear 

extinction. In studies that do examine these processes, there is such a myriad of 

behavioral paradigms utilized, comparing any two studies can challenging. Attempting to 

understand the mechanisms of not only fear and emotion, but all aspects of behavior, is a 

relatively new aspect of neuroscience, which is itself a relatively new and unexplored 

field. Nevertheless, it is crucial. Understanding the mechanisms behind fear and 

extinction learning, a primal and complex behavioral system, would aid in our 

understanding of a variety of emotional behaviors and disorders, including other trauma 

and stressor related disorders, such as stress and adjustment disorders. The ability to 

utilize animals in neuroscience allows us to deeply examine neurological underpinnings 

that would be impossible to investigate in humans. It is important to remember that the 

goal of animal studies is not to cure the animal’s diseases or disorders and that our work 

must be more or less directly translatable to humans. To our great fortune, the rodent fear 

circuit has been shown to be homologous to that observed in humans (for review, see 

Milad and Quirk, 2012). As such, drug treatments administered to rodents can be 
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expected to have similar effects in human trials. This study along with previous fear and 

extinction learning studies would seem to encourage the use of M1 mAChR positive 

allosteric modulators (PAM) in the treatment of PTSD. PAMs reversibly bind to 

allosteric receptor sites, causing conformation changes that result in an increase in 

receptor cooperativity and increasing binding of its neurotransmitter, such as ACh in the 

case of mAChR (Jakubik and El-Fakahany, 2010). A survivor of abuse or veteran of war 

seeking treatment for PTSD would be encouraged to undergo exposure therapy. During 

therapy sessions, individual identifiable triggers would be presented, terminating with the 

PAM binding M1 mAChR in the amygdala. Administration timing would be critical, 

seeing that the consolidation process occurs for a limited period of time. The drug would 

need to be given in time for it to pass the blood-brain barrier, enter the amygdala, and 

react with receptors at the beginning of the consolidation process. This should, in theory, 

allow for improved consolidation of the newly acquired extinction memory. Rodent trials 

should give similar results; PAM treatment immediately following extinction acquisition 

should cause all individuals to have a low percent freezing during extinction memory 

recall. Such treatment given before fear acquisition would be expected to have a similar 

result, seeing that preventing strong fear memory formation could cause a weaker PL fear 

pathway and allow for improved extinction. However, this would also not be 

translationally useful seeing that one would have to know when an event would be 

occurring which would cause them to develop PTSD, allowing them to take the drug 

immediately before the event occurs, or would have to take the drug chronically, which 

could be damaging, expensive, and, if nothing else, excessive.  
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 The necessity for better understanding and treatment of PTSD is very evident, 

with the yearly prevalence in America being 3.5% and combat-veteran prevalence being 

higher than 13% (Kessler et al., 2005; Tamelian and Jaycox, 2008; for review see Wilson 

and Reagan 2016). This study uniquely adds to the growing body of literature implicating 

components of the cholinergic system in the process of fear learning and fear extinction, 

allowing us to inch closer to a mechanistic understanding and useful treatment for PTSD.  
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Chapter 5: Future Directions

Additional image collection is necessary for the solidification of the results of this 

study. The difficulty with which metabotropic receptors are labeled and imaged made 

high power confocal image collection a necessity, as opposed to widefield microscopy 

used for AChE labeled tissue imaging. Seeing the considerable amount of time M1 

mAChR image collection takes and the cost of collection, it was first necessary to 

determine if significant, meaningful correlations existed between behavior and protein 

expression. Now that such correlation has been established, it is pertinent to continue 

image collection and generate amygdalar images from no fewer than 3 tissue sections for 

each animal in group 2. Additionally, proper controls from each animal must be 

collected. This would consist of image collection of a second region unassociated with 

the described behavioral process, as presented and described in figure A.2. It is our belief 

that further image collection will strengthen the protein-behavioral correlations observed. 

In addition, continued EVOS image collection of AChE labeled tissue, bringing theimage 

collection up to at least 3 sections per animal, is also valuable for elucidating any 

correlations. Additionally, analysis of hemispheric differences in AChE expression 

within each animal could prove to be a more valuable means for evaluating the protein’s 

role in the fear and extinction learning processes.  

In addition to this, expanding the present study to examining other muscarinic 

receptors would be of great value. In a recent publication out of the Mott and McDonald 
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labs, M2 mAChR were implicated in the modulation of cholinergic terminals within the 

BLA (Fajardo-Serrano et al., 2017). Examining M2 mAChR expression and the PV 

interneuron population in behaved tissue could give valuable insight into how the 

interneuron population within the BLA relates to fear learning and extinction processes. 

Seeing that many behavioral studies utilize scopolamine, a non-selective mAChR 

antagonist, it would be useful to examine not only M2 mAChR but also M3, M4, and M5 

mAChR in order to clarify which of the mAChR are the main contributors in BLA 

function and regulation of fear learning and extinction.  
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Appendix A: Supplemental Data and Figures

 

 

Figure A.1. M1 mAChR CEA expression. Image b is a high magnification image 

of M1 mAChR labeled CEA, outlined by the white box in image a, showing only 

neuropil labeling (no cell body labeling) in this region. Image a scale bar 200µm. 
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Figure A.2. S1BF image collection and comparison. Barrel field of the 

somatosensory cortex (S1BF) imaged to allow for comparison to temporal 

lobe images collected. Image a was collected from a high amygdalar M1 

mAChR expresser, where image b was collected from a low expresser. Scale 

bar 100µm in a, b is same magnification. Figure c shows that the differences 

between the high and low expressers is more significant in the BLA than in 

arbitrary cortical regions.  
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Figure A.3: Correlation- M1 mAChR expression levels vs contextual fear 

recall and delayed extinction acquisition. Figures a and b examine the 

correlation between M1 mAChR BLA expression levels and different aspects 

of the fear learning and extinction process. In figure a, context recall values 

were generated by the average percent freezing during minutes 2-5 of day 2. No 

statistical significance was found between M1 mAChR expression and context 

recall. In figure b, delayed extinction acquisition values were generated by the 

average percent freezing during minutes 11-21 of day 5. No statistical 

significance was found between M1 mAChR BLA expression and delayed 

extinction acquisition. 

 

 

Figure A.4: Correlation- AChE expression levels vs contextual fear recall 

and delayed extinction acquisition. Figures a and b examine the correlation 

between AChE BLA expression levels and different aspects of the fear learning 

and extinction process. In figure a, context recall values were generated by the 

average percent freezing during minutes 2-5 of day 2. No statistical significance 

was found between AChE expression and context recall. In figure b, delayed 

extinction acquisition values were generated by the average percent freezing 

during minutes 11-21 of day 5. No statistical significance was found between 

AChE BLA expression and delayed extinction acquisition. 
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Table A.1: The histogram average pixel intensity of M1 mAChR labeled 

tissue with hemispheres averaged  

Designated 

Rat Number 

Averaged 

M1 

intensity: 

entire 

image 

Averaged 

M1 

intensity: 

LA + BLA 

Averaged 

M1 

intensity: 

BLA 

Averaged 

M1 

intensity: 

CEA 

Averaged 

M1 

intensity: 

BLA/CEA 

186 41.59 49.47 51.88 38.00 1.36 

187 38.19 43.03 43.94 34.69 1.27 

188 30.02 33.67 35.68 26.00 1.37 

189 47.50 52.13 53.09 37.43 1.42 

190 29.83 33.29 35.04 30.17 1.16 

191 37.78 42.94 45.51 33.90 1.34 

192 48.01 52.01 53.46 42.14 1.27 

193 32.20 35.28 37.54 32.11 1.17 

194 59.73 69.78 72.11 49.59 1.45 

195 33.49 40.01 40.77 33.31 1.22 

196 40.84 44.75 48.95 34.62 1.41 

197 39.91 42.89 44.68 34.76 1.28 

 

Table A.2: The histogram average pixel intensity of AChE labeled tissue 

with hemispheres averaged 

Designated 

Rat Number 

Averaged 

AChE 

intensity: 

entire 

image 

Averaged 

AChE 

intensity: 

LA + BLA 

Averaged 

AChE 

intensity: 

BLA 

Averaged 

AChE 

intensity: 

CEA 

Averaged 

AChE 

intensity: 

BLA/CEA 

186 69.47 76.53 83.60 56.12 1.49 

187 55.80 61.09 63.94 49.69 1.29 

188 39.50 45.28 48.50 34.55 1.40 

189 33.91 36.27 37.73 30.89 1.22 

190 40.12 46.13 49.24 33.64 1.46 

191 31.70 32.78 34.89 30.14 1.16 

192 37.41 43.62 47.52 32.80 1.45 

193 39.79 49.65 54.34 33.65 1.61 

194 32.32 36.94 39.38 30.56 1.29 

195 36.29 41.42 43.94 31.41 1.40 

196 35.79 46.77 51.43 32.78 1.57 

197 32.20 34.11 35.45 29.84 1.19 
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