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Abstract

A commonly encountered data type in real life is count data, especially in self-

reported behavioral studies. One issue of the self-reported count data is the inac-

curacy. In the first part of the dissertation, we are going to address one specific

type of inaccuracy in bivariate count data–heaping. Copula functions are used for

the formulation of the bivariate distribution. Using copula functions for solving data

inaccuracy problems is still a new area, which we are going to explore in this disser-

tation.

We also discuss the methods for variable selection when the explanatory variables

are highly correlated. In particular, our method is based on the sparse Bayesian infi-

nite factor models (Bhattacharya and Dunson, 2011). The classic Bayesian variable

selection priors are integrated into the factor analysis method. The proposed method

can accommodate both binary and continuous variables.

In the last part of this dissertation, we extend the Bayesian factor models into

the nonparametric setting. As sometimes the normality assumption can be too strict

for the data, or there are outliers that might affect the model performance, our

proposed method relaxes the normality assumption, while simultaneously groups the

correlated explanatory variables. Our proposed method is one of the first explorations

of allowing nonparametric assumption for in a Bayesian factor analysis setting.
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Chapter 1

Introduction

Correlated variables scenarios are often encountered in real life data analyses. In

the case where the responses are correlated, modeling them simultaneously can be

challenging, especially when they are not from the multivariate Gaussian distribu-

tion. As in the case when the covariates are correlated, both the estimation and

the prediction procedures would be affected, as well as the selection of important

predictors.

In this dissertation, I will develop an estimation solution when the response is

a bivariate vector, with marginal count distribution (Poisson, zero-inflated Poisson,

negative binomial, zero-inflated negative binomial). More specifically, the marginal

count data are heaped on certain values. Heaped data commonly result from retro-

spective studies, where subjects are asked to recall the frequency that which certain

events happened over a period of time. Because questions are asked after the events

have happened, the reported counts are often an approximation of the underlying

true counts. In the literature, there are existing methods for dealing with this type

of univariate count data. Inspired by a real life data set, I will extend the existing

methods to much more complicated bivariate cases.

In a second research focus, I address the case when the number of covariates is large

and correlated. In this case, caution should be taken for the selection of the important

groups of covariates. There is a rich literature of methods for variable selection

under both frequentist and Bayesian schemes. A classic approach to variable selection

is to use a hierarchical normal mixture model with latent variables. Combining

1



this classic method with Bayesian infinite-factor models, we develop a method for

correlated covariates selection under the simplest setting where both the response

and the covariates are continuous. I will extend this method to the binary response

scenario.

To relax the normal assumption for the continuous response, I will explore non-

parametric Bayesian latent factor models, with correlated variable selection. Al-

though the idea of nonparametric latent factor model has been suggested in the

Bayesian literature, most of the developments tried to relax the dimension of latent

factors based on a nonparametric distribution. I assume a Dirichlet process as the

underlying distribution for the response, and examine the performance of my variable

selection method, as well as the resulting factor loading matrix.

In this dissertation, each of chapters 2 through 4 can be seen as a separate tar-

geted manuscript. Chapter 2 describes the methods for bivariate heaped count data,

using frequentist methods. In Chapter 3, Bayesian factor models will be introduced.

Correlated variable selection under parametric assumptions will be developed and

then applied to real data. Chapter 4 extends the methods in Chapter 3 to the non-

parametric scenario, to allow heavy tails and multimodal densities. I conclude the

dissertation in Chapter 5 with future research ideas and applications.

2



Chapter 2

Copula-based regression models for a bivariate

zero-inflated heaped count outcome

We present a new approach to modeling bivariate zero-inflated count outcomes

which are heaped on certain values. We discuss heaping under two assumptions,

interval-censored heaping and scaled heaping. Multiple imputation is used for interval-

censored heaping to obtain an estimate of the probability of heaping. Mixture mod-

eling is applied when the data are from scaled heaping. We adopt several copula

functions to account for correlation between paired outcomes. Simulation studies

are presented to illustrate the performance of our methods. We also briefly compare

estimation via inference functions for margins (IFM) with maximum likelihood esti-

mation. This chapter was motivated by a desire to analyze data from a real-life study

on the intervention for risk reduction among HIV African-American serodiscordant

couples, on which we apply our methods.

2.1 Introduction

Heaped data commonly exist in self-reported studies. This type of data exhibits

"inflated" frequencies at certain outcomes, resulting from, for example, rounded re-

sponses or digital preferences. One can observe resulting high frequencies on certain

intervals, as shown in Figure 2.1 with taller bars for more commonly reported out-

comes. Heaping is a special case of data coarsening (Heitjan and Rubin, 1991).

Ignoring the heaping feature of the data can lead to biased estimates and incorrect

3
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Figure 2.1 Heaping feature in a smoking behavior study.

inference.

Heaping in univariate responses has been studied extensively in the literature. One

paper proposed a mixture-model approach for continuous smoking cession data (Bar

and Lillard, 2011). Heaping in self-reported income data has also been addressed

(Zinn and Würbach, 2016). Bayesian mixture models for heaping were developed

for longitudinal count data (Suchard et al., 2015). Most of these researcher studied

heaping under continuous distributions, such as the gamma distribution for annual

income data and the normal distribution for quit smoking age. Heaping in count

data has been discussed as well, with available commands for univariate outcomes in

Stata (Cummings et al., 2015). However, to our knowledge, heaping in the bivariate

responses has not been studied.

One study targeting risk reduction intervention for HIV-serodiscordant African

American couples motivated the methodology development in this chapter (NIMH

Multislice HIV/STD Prevention Trial for African American Couples Group, 2008).
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In this study, HIV-serodiscordant couples were recruited and randomly assigned to the

intervention group or the active comparison group. One aim was to reduce the number

of unprotected vaginal sex episodes within couples, as well as reducing the probability

of having unprotected vaginal sex completely. Questions were asked regarding the

subjects’ sexual behaviors. When asked to report the number of unprotected vaginal

sex episodes (with their study partner) in the last 90 days, the answers from the

female and male members were generally different, and exhibited heaping. One way

to address the question of whether the intervention was effective was to model the

correlated responses simultaneously, which is our goal in this chapter.

To address the analysis of heaped bivariate heaped data, the first issue we face

is to choose which of two scenarios could lead to the heaped responses. The first

scenario is that data are being rounded to the nearest observed heaping point, i.e.

the heaping mechanism is interval-censoring. The second scenario assumes that data

are being scaled down or up, i.e. the heaping mechanism is scaling. Scaling occurs,

for example, when a person is asked to recall the number of events that occurred in

the last month, but the respondent considers the number of events in a week and then

multiplies that count by 4 to give as a response. In the case of scaling, the probability

of heaping can be estimated directly using mixture models. However, the estimation

of the heaping probability when the data are interval-censored is less straightforward.

By using multiple imputation, we provide one crude way of estimating the heaping

probability.

The second issue we face is how to take the correlation into account between the

two responses of paired data. Unlike the normal distribution, there are no standard

forms for the probability density function of multivariate count distributions. One

parameterization for bivariate Poisson and two parameterizations for the negative

binomial distributions have been presented (Famoye, 2010; Marshall and Olkin, 1985).

Another well-known method for modeling multivariate distribution is to use copula

5



functions. Copula functions have been extensively used for multivariate continuous

responses, for which case the copula function is unique. When the responses are

discrete, the copula is unique on the range of the marginal distribution. Hence,

it makes utilizing copula functions possible for discrete variables. Bivariate copula

constructions were developed for multivariate discrete data (Panagiotelis et al., 2012).

Joint regression analysis of correlated data was studied using Gaussian copulas (Song

et al., 2009), as well as some other applications (Zhao and Zhou, 2012; Nikoloulopoulos

and Karlis, 2010).

In this chapter, we combine the techniques of addressing univariate heaping count

data with copula functions, and more importantly extend the univariate techniques to

the bivariate cases. We are going to use multiple imputation for data with interval-

censored heaping. For scaled heaping, we are going to illustrate an application of

mixture models using copula functions. Maximum likelihood estimation (MLE) is

used for both point estimates. Bootstrapping is used for the variance estimation under

the interval-censored heaping assumption. Simulation studies are done to evaluate the

performance of the methods. More specifically, we compare the estimation method

using two-step inference function for margins (IFM) with MLE (Joe, 1997). Real

data analysis is carried out in the last section before the conclusion for this chapter.

2.2 Methods

Copula Functions and Count Marginals

Suppose we have n pair of count observations (Yi1, Yi2), i = 1, ..., n, where Yij, j =

1, 2 follows a zero-inflated count distribution with parameters (ωij, µij). Here, ωij and

µij are the zero-inflation probability and the mean for Yij. Note that, the non-zero-

inflated count distribution is a special case for zero-inflated count distribution, with

ωij = 0. In this chapter, we only consider the zero-inflated count distributions. When

Yij follows a negative binomial distribution, an additional dispersion parameter αij

6



is introduced. It is well-known that the probability distribution function of Yij is,

p(Yij = yij) =



















ωij + (1 − ωij)f(yij|µij) yij = 0

(1 − ωij)f(yij|µij) yij = 1, 2, ...

(2.1)

The distribution for Yi1 and Yi2 are not necessarily the same. They can follow different

distributions. Later we will see that they can have different heaping patterns as well.

Sklar’s theorem states that for any q−dimensional random vector Y = (Y1, Y2, ...,Yq)

with marginal cumulative distribution functions (cdf), F1(·), F2(·), ..., Fq(·), there ex-

ists a copula function C such that,

F (y1, ..., yq) = C(F1(y1), ..., Fq(yq)|θ),

where θ is the dependency parameter vector with length q − 1. It also states when

the multivariate cdfs are continuous, the copula representation is unique. In the case

of discrete marginals, the copula is unique on
∏q

k=1 Ran(Fk), where Ran(Fk) is the

range of the marginal distribution Fk.

In our case, q = 2 and the joint cdf of (Yi1, Yi2) can be written as,

F (yi1, yi2) = C(F1(yi1), F2(yi2)|θ), (2.2)

where F1(·) and F2(·) are the cdfs of the marginal count distributions, and scalar θ is

the dependency parameter. Table 2.1 shows some commonly used copula functions.

The Frank and Normal copulas can accommodate positive or negative correlation,

while the Clayton copula only allows positive correlation. The Product, Frank, and

Clayton copulas all belong to the Archimedean copulas family, which admits an ex-

plicit formula. Although the normal copula does not have an explicit formula, it

has the most straightforward interpretation for the dependency parameter, which is

interpreted the same as for the Pearson correlation parameter.

The joint cdf of Yi1 and Yi2 is expressed using a chosen copula function as shown

in Equation 2.2. In order to obtain the joint probability distribution function (pdf)

of Yi1, and Yi2, one needs to write it into four parts,

7



Table 2.1 Commonly Used Copula Functions

Copula type Function C(u, v) Dependence
Product uv NA
Frank −r−1 log((η − (1 − e−ru)(1 − e−rv))/η) r ∈ R\{0}
Normal Φ2 [Φ−1(u), Φ−1(v); r] −1 ≤ r ≤ +1
Clayton (u−r + v−r − 1)−1/r r ∈ [0, ∞)

Note: η = 1 − exp(−θ), u and v are the marginal cdf of each response.

f(yi1, yi2) = C(F1(Yi1 ≤ yi1), F2(Yi2 ≤ yi2)|θ)

− C(F1(Yi1 ≤ yi1 − 1), F2(Yi2 ≤ yi2)|θ)

− C(F1(Yi1 ≤ yi1), F2(Yi2 ≤ yi2 − 1)|θ)

+ C(F1(Yi1 ≤ yi1 − 1), F2(Yi2 ≤ yi2 − 1)|θ), (2.3)

where F1(·), F2(·) are the cdfs of the marginal zero-inflated count variables, and θ

is the dependence parameter between Yi1 and Yi2 . Once the likelihood for each

observation is known, the estimation can be done using MLE on Equation 2.4.

l(y1, y2) =
n
∑

i=1

log li =
n
∑

i=1

log f(yi1, yi2) (2.4)

One estimation method named inference functions for margins (IFM) was pro-

posed to obtain the estimated parameters when the response is high-dimensional (Joe,

1997). This approach consists of estimating univariate parameters from separately

maximizing each univariate likelihood, and then estimating dependency parameters

from the multivariate likelihood. We will carry out a short simulation study in Chap-

ter 2.3 to compare the performance of this method versus MLE (which simultaneously

estimates all parameters).

Suppose f1(yi1) and f2(yi2) are the two univariate pdfs of Yi1 and Yi2, the IFM

estimation is obtained by first maximizing the two marginal likelihood separately,

i.e.,

lj(µj) =
n
∑

i=1

log fj(yij|µj), j = 1, 2,

8



where µ1 and µ2 are the parameters corresponding to the two responses respectively.

Given µ̂1 and µ̂2, then maximizing the joint log likelihood

l(θ|yi1, yi2, µ̂1, µ̂2) =
n
∑

i=1

logf(θ|yi1, yi2, µ̂1, µ̂2),

we obtain the estimation for the dependency parameter θ̂. The parameter estimates

asymptotically follow a multivariate normal distribution. The standard error estima-

tion can be carried out using Jackknife or bootstrapping methods.

Heaping and Multiple Imputation

The copula functions mentioned in the previous section can be applied to any mul-

tivariate standard count distributions. When data exhibit excessive heaping features,

directly applying copula functions would lead to biased estimation of the parameters.

In this chapter, we assume the heaping points are defined ex ante. The identification

of heaping points was discussed in a previous study, where the authors used the com-

parison between the empirical cdf and the hypothesized cdf to identify the heaping

points (Zinn and Würbach, 2016). There are two commonly encountered heaping

mechanisms (Cummings et al., 2015), heaping due to mixture of scaled distributions

and interval-censored responses. We will apply the same heaping mechanisms for the

bivariate cases.

We consider the mixture of scaled distributions first. There are two behaviors in

this type of heaping data, subjects who report an exact count and subjects who recall

based on the frequency over 1/k th of a specified period of time and then report k

times that amount (Cummings et al., 2015). Here we are assuming that there is only

one k. The generalization of multiple different ks is straightforward.

We will use an indicator variable bi to distinguish the behaviors, with bi = 1

indicating that the subject reports from the scaled behavior, and bi = 0 indicating the

subject reports on the original scale. Hence, the marginal cdf of Yij, i = 1, ..., n, j =

9



1, 2, is

Fj(Yij ≤ yij) = p(bij = 0)Fj(Yij ≤ yij|µij, ωij)

+ I(yijmod k=0)p(bij = 1)Fj(Yij ≤
yij

k
|
µij

k
, ωij), (2.5)

where µij is the mean of Yij, and ωij is the zero-inflated probability. Similar to logistic

regression, one can specify the covariates that predict the probability of having a

scaled heaping behavior, i.e. p(bij = 1). By substituting Equation 2.5 into Equation

2.3, the likelihood of each pair observations is known and estimation can be carried

out using either maximum likelihood estimation or IFM.

The straightforward way of estimating the heaping probability does not apply to

the interval-censored heaping. When the data exhibit interval-censored feature, the

observed data no longer follow a standard count distribution. For example, in studies

related to cigarette counts, the observed data might have excessive frequencies on

multiples of 5s, 10s or 20s, as subjects might recall based on packs or half packs.

Here we use h to denote the value that data heap on multiples of h, e.g. h = 5, 10, 20.

If the data only heap on multiples of 5s, the observed value 40 can be either the true

cigarette count or it is resulted from rounding up or down from 36 to 44.

Similar as in the univariate case, given that yij mod h = 0, we assume that only if

the true value falls into a close neighborhood of the observed yij, [yij −⌊h
2
⌋, yij +⌊h

2
⌋],

can be reported as the yij, where we define "close" as ⌊h
2
⌋, the floor function of h

2
. This

assumption is crucial for the multiple imputation we are going to show. Once the

heaping points have been "replaced" with regular count values, the usual procedure

using copula functions can be applied directly.

The seconed assumption for interval-censored data is that subjects round up or

down at random. That is, each person has the equal probability P (Hij = 1) = pj of

rounding up or down to the nearest multiples of h, where Hi is the indicator variable

for heaping and j = 1, 2. This implies that variables Hij and the count Yij are

10



independent. As suggested in a previous study (Bar and Lillard, 2011), we will use

p̂j =
Oj − Ej

n
(2.6)

to estimate the heaping probability, where Oj is the observed number of yijs that

satisfy yij mod h = 0, and Ej is the expected number of that yijs that fall on these

value given the estimated parameters, µij and ωij.

Now suppose we observe the data heap at multiples of h = 5, e.g. 5, 10, 15, 20, ....

As stated earlier, only counts in a close neighborhood of 5, 10, 15, 20, ... can heap at

these values. More specifically, only Yij falls into [5 − ⌊h/2⌋, 5 + ⌊h/2⌋], [10 − ⌊h/2⌋,

10 + ⌊h/2⌋],..., can take values of 5, 10, ... respectively.

Given that an observed value satisfies yij mod h = 0, we use Bayes’ rule to get

the probability of yij being heaped,

P (Hij = 1|yij mod h = 0) =
P (yij mod h = 0|Hij = 1)P (Hij = 1)

P (yij mod h = 0)

=
p̂j
∑yij+⌊ h

2
⌋

yij−⌊ h
2

⌋
P (yij|µ̃ij, ω̃ij)

P (yij mod h = 0|Hij = 1)P (Hij=1) + P (yij mod h = 0|Hij = 0)P (Hij = 0)
,

(2.7)

where p̂ij is the estimation we get from Equation 2.6, µ̃ij and ω̃ij are the initial estima-

tors of the parameters from estimating the univariate zero-inflated count distribution

respectively for Y1 and Y2. The "missing" value, i.e., the heaping value imputation is

done using this conditional probability.

For yijs that do not fall on the heaping values, we use the observed values during

the estimation process. For the ones that fall on the heaping values, the imputation

probability is decided by Equation 2.7. If Hij = 1, we randomly sample a number from
[

yij − ⌊h
2
⌋, yij + ⌊h

2
⌋
]

, and use it as the "observed" data. The steps of our algorithm

are shown below,

Step 1 Estimate the two responses separately using zero-inflated count models,

ignoring the heaping patterns. Obtain the estimated parameters ω̃1, µ̃1, ω̃2, µ̃2, θ̃.

11



In the simplest case, all Yi1 has the same mean µ1, zero-inflated probability ω1, and

all Yi2 has the same mean µ2, zero-inflated probability ω2.

Step 2 Given the estimated parameters in Step 1, one can estimate the marginal

heaping probability for Y1 and Y2, p̂1 and p̂2.

Step 3 For each yij that falls on the heaping values, randomly assign it with a new

value from
[

yij − ⌊h
2
⌋, yij + ⌊h

2
⌋
]

, with probability P̂ (Hij = 1|yij mod h = 0), from

Equation 2.7.

Step 4 Create 5 imputed data sets and analyze each one as it is from a zero-inflated

distribution.

Step 5 Average over the 5 estimated parameters to get the point estimates.

It has been shown that there is no significant difference between 5 imputation datasets

and 100 imputation datasets (Heitjan and Rubin, 1990). Hence, we decide to use 5

here to reduce the imputation time.

To obtain estimates of the standard errors, we apply bootstrapping on the original

data for 500 times. Multiple imputation is applied on each bootstrapped data set.

Previous simulation studies have demonstrated that when using multiple imputation

and bootstrap simultaneously, bootstrapping the original data, and then applying

multiple imputation to the bootstrapped datasets give better results than vice versa

(Schomaker and Heumann, 2016). For the IFM method, we sample directly from

the original data set to obtain the standard errors estimation under scaled heaping

assumption. The performance of IFM under the interval-censored heaping assumption

will not be discussed.

12



2.3 Simulation Studies

Simulations were used to examine the performance of our method. For interval-

censored data, we simulated data under three heaping scenarios, with heaping prob-

ability on multiples of h = 5 for Y1 and Y2 respectively as (1)p1 = 0.3, p2 = 0.25,

(2) p1 = 0.4, p2 = 0.2, and (3) p1 = 0.35, p2 = 0.35. Other parameters set-up is,

n = 2000, ω1 = 0.15, ω2 = 0.2, Y1 ∼ NegBin(µ1 = 14, α1 = 3), Y2 ∼ NegBin(µ2 =

17, α2 = 4) and initial Pearson’s correlation of Y1 and Y2 is ρ = 0.5. We simulate 30

data sets for each scenario.

For scaled heaping, we assume,

• Y1 and Y2 both follow a zero-inflated Poisson distribution with µ1 = 19, ω1 =

0.15, µ2 = 14, ω2 = 0.15, initial Pearson correlation ρ = 0.6, and p(bi1 = 1) =

0.25, p(bi2 = 1) = 0.25. The scaled heaping happens on multiples of h = 4.

• Y1 and Y2 both follow a zero-inflated Poisson distribution with µ1 = 22, ω1 =

0.2, µ2 = 14, ω2 = 0.15, initial Pearson correlation ρ = 0.6, and p(bi1 = 1) =

0.3, p(bi2 = 1) = 0.4. The scaled heaping happens on multiples of h = 4.

• Y1 and Y2 both follow a zero-inflated Poisson distribution with µ1 = 15, ω1 =

0.3, µ2 = 31, ω2 = 0.3, initial Pearson correlation ρ = 0.6, and p(bi1 = 1) =

0.35, p(bi2 = 1) = 0.25. The scaled heaping happens on multiples of h = 4.

We simulate 100 data sets for each scenario. Clayton copula function is used for the

bivariate distribution, since the dependency parameter of it has the simplest Kendall’s

τK expression, τK = θ
θ+2

(Naifar, 2011).

The 95% coverage probabilities of the nominal 95% confidence intervals for the

interval-censored heaping are 92.08%, 91.67%, and 90.00% respectively, excluding

the dependency parameter. The 95% coverage probabilities are 92.11%, 94.86%, and

13



Table 2.2 Simulation results with 30 simulations, interval-censored heaping.

True value Bias SD True value Bias SD True value Bias SD

ω1 = 0.15 0.009 0.006 ω1 = 0.15 0.009 0.006 ω1 = 0.15 0.007 0.005
ω2 = 0.2 0.007 0.006 ω2 = 0.2 0.007 0.006 ω2 = 0.2 0.008 0.006
p1 = 0.3 0.037 0.094 p1 = 0.4 0.044 0.022 p1 = 0.35 0.040 0.020
p2 = 0.25 0.021 0.129 p2 = 0.2 0.015 0.011 p2 = 0.35 0.036 0.018
µ1 = 14 0.133 0.138 µ1 = 14 0.174 0.133 µ1 = 14 0.168 0.110
α1 = 3 0.135 0.102 α1 = 3 0.140 0.153 α1 = 3 0.121 0.091
µ2 = 18 0.181 0.018 µ2 = 18 0.139 0.127 µ2 = 18 0.173 0.120
α2 = 3 0.142 0.011 α2 = 3 0.161 0.144 α2 = 3 0.165 0.108

Table 2.3 Simulation results with 100 simulations, scaled heaping.

True value Bias SD True value Bias SD True value Bias SD

ω1 = 0.15 0.014 0.011 ω1 = 0.2 0.015 0.011 ω1 = 0.3 0.017 0.013
ω2 = 0.15 0.014 0.011 ω2 = 0.15 0.014 0.009 ω2 = 0.3 0.016 0.013
p1 = 0.25 0.027 0.021 p1 = 0.3 0.023 0.018 p1 = 0.35 0.031 0.025
p2 = 0.25 0.028 0.021 p2 = 0.4 0.027 0.022 p2 = 0.25 0.027 0.022
µ1 = 19 0.219 0.174 µ1 = 22 0.209 0.166 µ1 = 15 0.221 0.171
µ2 = 14 0.180 0.143 µ2 = 14 0.182 0.134 µ2 = 31 0.288 0.252

θ = 0.226 0.083 0.052 θ = 0.129 0.066 0.049 θ = 0.088 0.087 0.065

90.00% respectively for the scaled heaping simulations. Table 2.2 and Table 2.3 show

the overall estimation bias of the parameters, with their standard deviations.

Table 2.4 Simulation results under scaled heaping setting 1, comparing IFM with
MLE.

True value Difference SD

ω1 = 0.15 0.009 0.009
ω2 = 0.15 0.007 0.008
p1 = 0.25 0.016 0.023
p2 = 0.25 0.009 0.012
µ1 = 19 0.080 0.071
µ2 = 14 0.074 0.064

θ = 0.226 0.058 0.083

As shown in Table 2.4, the absolute difference between the IFM method the MLE

method is small, demonstrating the effectiveness of the IFM.
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2.4 Real Data Analysis

We are going to use Global Adult Tabacco Survey (GATS). GATS is a nationally

representative household survey that was launched in February 2007 as a new compo-

nent of the ongoing Global Tobacco Surveillance System. It consists of demographic

information, smoking behavior, as well as other information. Bangladesh 2009 data

will be used in this section.

Two questions are used for the development of our bivariate response, "On aver-

age, how many Bidis do you currently smoke each day?" (Y1) and "On average, how

many manufactured cigarettes do you currently smoke each day?" (Y2). The Pear-

son correlation coefficient is −0.46. For simple demonstration, we use age, sex, and

residence as the predictors for the count part. One predictor, age, is used for the

zero-inflation part. Frank copula function is chosen for modeling the dependency

between the two responses. For both responses, we assume a negative binomial dis-

tribution. There were n = 423 observations in the final analysis data set. Table 2.5

shows the frequencies of Y1 and Y2 respectively. Clearly, the frequencies are high at

the multiples of 5. The results of our model, as well as the results from modeling

them independently, are shown in Table 2.6.

Comparing the result of our bivariate model with the two univariate model results,

the age effects in both of the zero-inflation parts are very similar. For the mean of the

response Y1, the residence does not have a significant effect in the bivariate model,

while it’s significant in the univariate model. All other significance levels are the

same.

Eban

The Eban study is a multisite serodiscordant couples’ intervention targeting to

reduce unprotected vaginal sex within African American HIV-serodiscordant couples.
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Table 2.5 Frequencies of the two responses.

Y1 Frequency Y2 Frequency

0 1126 0 703

1 34 1 38
2 37 2 100
3 27 3 98
4 45 4 90
5 53 5 149
6 34 6 95
7 16 7 46
8 57 8 57
9 9 9 1
10 92 10 304

11 0 11 2
12 81 12 67
13 16 13 2
14 9 14 5
15 66 15 73

16 10 16 5
17 0 17 0
18 4 18 4
19 0 19 0
20 63 20 128

21 1 21 0
22 2 22 2
23 0 23 1
24 2 24 0
25 210 25 7
... ... ... ...

Couples were randomly assigned to the treatment and the placebo groups. Sexual be-

haviour questions were asked at three follow-up times. We are going to use responses

3 months after the intervention. In this application, Y1 is the answer from males to

the question of number of unprotected vaginal sex episodes in the last 90 days, and

Y2 is the answer from females to the same question. Note that in a given observation,

Y1 and Y2 are the male/female in a specific serodiscordant couple. Thus, responses

are expected to be similar.

Both responses are assumed to follow a negative binomial distribution. Three
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Table 2.6 Bivariate Negative Binomial model with Frank copula and corresponding independent models, Global Adult
Tabacco Survey Bangladesh 2009.

Bivariate Model Univariate Model
Y1 Y2 Y1 Y2

Predictors Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI
Intercept 2.70 (2.47, 2.94) 2.11 (1.93, 2.28) 2.62 (2.43, 2.81) 2.17 (2.03, 2.31)

Age 0.00 (−0.01, 0.00) 0.00 (-0.00, 0.01) 0.00 (−0.01, 0.02) 0.00 (−0.00, 0.01)
Sex −0.71 (−1.03, −0.34) −1.36 (-2.34, -0.72) −0.75 (−0.97, −0.53) −1.80 (−2.31, −1.28)

Residence 0.08 (−0.06, 0.21) −0.12 (-0.22, -0.03) 0.11 (0.01, 0.22) −0.22 (−0.30, −0.13)
α 1.95 1.75 2.34 2.36

Zero Inflation
Intercept 1.32 (0.98, 1.62) −2.52 (-2.93, -2.01) 1.37 (1.07, 1.67) −2.29 (−2.64, −1.94)

Age −0.03 (−0.03, −0.02) 0.04 (0.03, 0.04) −0.03 (−0.03, −0.02) 0.04 (0.03, 0.04)
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variables are used for modeling the mean of the count. For Y1, male age (continuous),

treatment status (binary), and marital status (binary) are the predictors. For Y2, the

age is substitute with female age. The zero-inflation part has only one predictor,

treatment status. The Clayton copula is used for modeling the positive dependency

between the responses. The result is shown in Table 2.7.

Again, most of the results are similar. Using a bivariate model, we detect a

significant age effect on the number of unprotected sex among women. Moreover,

we detect a significant effect of treatment on increasing the probability of not having

unprotected sex at all. Note that the wide confidence intervals in the zero-inflation

part might be due to the bootstrap random sampling.

2.5 Conclusion and Discussion

In this chapter, we proposed a way to handle bivariate heaping data. We discussed

both interval-censored heaping and scaled heaping scenarios. Copula functions are

used for establishing the joint distribution of two responses.

When the data are interval heaped, directly applying copula functions might result

in unreliable estimates. This is due to the fact that the use of copula functions is

based on marginal cumulative functions. For each value that falls on the multiples of

h, the likelihood of that observation becomes larger than what it should have been.

Hence, we developed an algorithm of multiple imputation to improve the estima-

tion accuracy. Bootstrapping was used to obtain the standard error estimates. In our

simulation studies, we showed the coverage probability under 30 simulation data sets

for three scenarios, which have not been shown in some of the current literature. The

less than 95% coverage probability might be due to the small number of simulations.

However, a model for the heaping probability might improve the performance of our

method.

Scaled heaping data are easier to address. It is a special case of mixture of
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Table 2.7 Bivariate Negative Binomial model with Clayton copula and corresponding independent models, Eban Study.

Bivariate Model Univariate Model
Y1 Y2 Y1 Y2

Predictors Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI
Intercept 0.71 (−0.65, 1.83) 2.51 (1.04, 4.05) 0.60 (−1.06, 2.26) 2.52 (1.03, 4.02)

Age −0.01 (−0.03, 0.02) −0.04 (-0.07, -0.02) −0.01 (−0.04, 0.02) −0.04 (−0.07, 0.01)
Married −0.66 (−1.13, −0.22) −0.12 (-0.63, 0.36) −0.70 (−1.17, −0.23) −0.02 (−0.52, 0.48)

Treatment −0.99 (−1.48, −0.54) −0.61 (-1.20, -0.10) −1.02 (−1.52, −0.51) −0.6 (−1.12, −0.08)
α 0.34 0.31 0.29 0.26

Zero Inflation
Intercept 1.89 (−1.06, 11.39) 1.06 (-2.04, 9.69) 0.60 (−0.80, 2.00) 0.29 (−1.14, 1.73)

Treatment 2.48 (0.07, 12.12) 1.96 (-0.17, 10.94) 1.03 (−0.28, 2.34) 0.83 (−0.43, 2.10)
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distributions. The direct modeling of the mixture probabilities is feasible. The usual

logistic regression was used for modeling the heaping probability and the zero-inflation

probability. Based on the simulations results, we note that the coverage probabilities

are acceptable but not satisfying. This raises the question of how well the copula

functions can perform when the marginals are from mixture distributions. Future

studies are needed to answer this question.
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Chapter 3

Bayesian variable selection for correlated

data: a factor analysis approach

In this chapter we present a method for the selection of grouped correlated predic-

tors. With sparse Bayesian infinite factor modeling as the cornerstone, we combine

a classic Bayesian variable selection prior. More specifically, a normal mixture distri-

bution is used for the factor loading elements corresponding to the response variable.

The latent factor selection probabilities are modeled using Bernoulli distributions.

These selection probabilities admit sparse Bayesian infinite factor models, and the

number of latent groups is determined automatically while the selection is being com-

pleted. Gibbs sampling is used to generate the posterior distribution (Geman and

Geman, 1984). Our method provides a way of selecting correlated variables as a

group. Moreover, our method accommodates binary variables, which is applied to

the previously studied colon cancer data.

3.1 Introduction

In studies involving large number of predictors p, it is always crucial to only select

the relevant explanatory variables in the final model. Especially in the gene selection

problems, we usually observe large amount of genes p, compared to the total number of

subjects n in the study. This is known as the "Large p, small n" problem (West, 2003).

When the number of observations is smaller than the number of predictors, ordinary

least squares would fail to provide valid results, since XT X is degenerated. Moreover,
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the genes sharing the same pathway are known to be highly correlated. Therefore, in

order to select the most significant genes, we have to overcome the high correlations

among predictors, since the classic variable selection assumes independence.

There are two issues that need to be addressed when one wants to select the impor-

tant predictors with high correlations. One is grouping correlated predictors, such

that, fewer lower-dimensional independent factors can represent the original high-

dimensional correlated explanatory variables. Moreover, the independence among

factors make the usual variable selection technique applicable in this originally corre-

lated setting. The second issue is how to select the factors, which represent the orig-

inal predictors. Given that the number of predictors is large, for example, p = 3000,

even after grouping, the number of groups can still be relatively large. The selection

of the important groups is necessary. Here, our main focus is to select correlated

variables together, instead of focusing on individual variables.

The ideal correlated variable selection method should be able to eliminate non-

significant variables and simultaneously select whole groups of correlated variables.

One of the most classic methods in dealing with variable selection for correlated data

is elastic net (Zou and Hastie, 2005), which is an extension of the Lasso estimate

(Tibshirani, 1996; Zou, 2006). This method provides a state-of-art solution from the

frequentist point of view. It has the built-in ability for variable selection, mean-

while, allows the correlated variables to have similar coefficients. The corresponding

Bayesian Lasso and Bayesian elastic net have been proposed, which have shown that

the marginal posterior mode of the regression coefficients is equivalent to estimates

given by the Lasso and elastic net (Park and Casella, 2008; Li and Lin, 2010).

While there is a rich literature on grouping and clustering similar observations

(Tadesse et al., 2005; Kim et al., 2006), especially in the unsupervised machine learn-

ing field, the grouping of similar variables have been studied less often. One popular

method for addressing this topic is factor analysis in both frequentist and Bayesian
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settings. The correlations between variables are represented by the factor loading

matrix. In this chapter, we are going to use Bayesian factor models to group the

correlated variables.

Nonparametric Bayesian methods for grouping correlated predictors have also

been used with Indian buffet process and Dirichlet process (Knowles and Ghahramani,

2007; P. et al., 2012). In both papers, they elegantly group observed correlated

variables together with the number of latent factors unspecified. The difference is that

when using the India buffet process, predictors can load on multiple latent factors,

while Dirichlet process only allows one group for each predictor. These methods

focused on the flexibility of the number latent factors, as well as the grouping of

correlated variables. The sparse Bayesian infinite factor models have been proposed

for allowing flexible latent factor number as well (Bhattacharya and Dunson, 2011). In

their paper, they used a shrinkage prior that can automatically discard unimportant

latent factors, while simultaneously grouping the correlated variables.

Strategies have been discussed and compared for Bayesian spike and slab variable

selection with classic methods (Ishwaran and Rao, 2005). They pointed out with in-

creasing number of variables, the variable selection task becomes difficult when using

spike and slab approaches. This again confirms the necessity of reducing the number

of variables in order to have decent performance of variable selection. The original

“spike and slab”is referred to a mixture distribution of a uniform flat distribution

(the slab) and a degenerate distribution at zero (the spike) (Lempers, 1971; Mitchell

and Beauchamp, 1988). In this chapter we are going to apply a well-known version of

the spike and slab prior (George and McCulloch, 1993) on the latent factors, which

assumes two mixture of the scaled normal distributions. Some other analogous con-

structions of the spike and slab prior, such as the mixture of point mass function with

a normal distribution have also been commonly used in the literature (Kim et al.,

2006; Bobb et al., 2015).
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The discussion of “Large p, Small n ” problems has been growing quickly in re-

cent years, including the elastic net mentioned before (Zou and Hastie, 2005). Using

frequentist methods, some of the literature discussed how to control the type I error

rate α in high-dimensional data (Wasserman and Roeder, 2009). Others using penal-

ized methods studied the oracle properties, and consistency in group identification

(Hoerl and Kennard, 1970; Tibshirani, 1996; Zou, 2006; Sharma et al., 2013).

Bayesin factor regression models have also been used in addressing "Large p,

Small n" problems (West, 2003). The spike and slab prior has been assigned on

every element of the factor loading matrix in the Bayesian factor model. Later,

another study applied a similar method with different priors on gene expression data

sets (Carvalho et al., 2012). One study has suggested to use a correlation-based

stochastic search method on this type of data, which is an extension of the popular

stochastic search variable selection (SSVS) (Kwon et al., 2011). Although the method

that we are going to present is also covariance-based, the fundamental philosophy of

our method is that we assume the correlations between predictors are induced by the

latent sources, which is different from solely correlation-based method.

Despite the popularity of Bayesian factor regression for handling "Large p, Small n"

problems, few of them allowing infinite number of latent factors. Moreover, the latent

factor selection under this indefinite latent factor number assumption has not been

discussed to our knowledge. Therefore, the sparse Bayesian infinite factor model will

be the cornerstone of this chapter (Bhattacharya and Dunson, 2011). This method

can group correlated variables using factor loading matrix, and automatically make

the adaption to shrink the number of latent groups. The authors have also proved

the order independence of their factor loading matrix and the posterior distributions

have explicit forms. Therefore, Gibbs sampling can be directly used and the posterior

sampling is stable (Geman and Geman, 1984).

In this chapter, we are going to extend the sparse Bayesian infinite factor model
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to incorporate variable selection probabilities. The method is presented in the next

section. We will introduce the sparse Bayesian infinite factor model first, and then

combine it with Bayesian selection priors. Prior and Posterior distributions will be

presented, as well as one way of selecting the original predictors based on the selection

of latent factors. Simulation studies are done in Chapter 3.3, and a real data analysis

is presented in Chapter 3.4. We will conclude this chapter in Chapter 3.5.

3.2 Methods

A typical latent factor model has the form

yi = Ληi + ǫi, ǫi ∼ Np+1(0, Σ), (3.1)

where i = 1, ..., n is the indicator for observations, and yi is the (p + 1)-dimensional

continuous variable, with the first element yi1 being the response, yi2, ..., yi(p+1) being

the explanatory variables. All yis consist of the data matrix Y = (y1, ..., yn)T , which

has dimension n × p. Without loss of generality, we assume all columns of Y have

been centered and scaled before analysis. ηi is the k × 1 latent factors, that are

independently distributed between observations with Nk(0, Ik). Λ is a (p + 1) × k

factor loading matrix, and ǫi is an idiosyncratic error with variance-covariance matrix

Σ = diag(σ2
1, ..., σ2

p+1). In the next chapter, we would relax the assumption for the

error term of the response, ǫi1. By marginalizing the latent factors, the distribution

of yi becomes Np(0, Ω), Ω = ΛΛT + Σ.

The number of latent factors k is usually unknown. One advantage of the sparse

Bayesian infinite factor model is that it can group correlated variables into latent

groups, at the same time, automatically update the number of latent factors k. The

idea is to use a shrinkage prior for the latent factor loading element λjk, such that

the number of non-zero elements in Λ is decreasing as k increases. We assign the

factor loading element λjk a normal prior with mean 0 and precision φjhτh, where
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j = 2, ..., p + 1, h = 1, ..., k. Both φjh and τh have their own prior distributions, and

the prior distribution of τh depends on h. Hence, as h increases, τh can increase

stochastically. The elements of the factor loading matrix are then generated from a

small neighborhood of zero as the factor number increases.

Under their working frame, we modify the prior distribution for the first row of

Λ. The first row of Λ, λ1·, represents the relationship between the response and the k

latent factors. For each element of λ1h, h = 1, ..., k, we assume the prior distribution

is,

λ1h|φ1h, γh ∼ (1 − γh)N(0, c1hφ−1
1h ) + γhN(0, c2hφ−1

1h ), (3.2)

where γh is an indicator variable with P (γh = 1) = 1 − P (γh = 0) = ph, and ph is

the selection probability of latent factor ηh. This is the selection prior suggested in

previous studies (George and McCulloch, 1993). The constants c1h and c2h are chosen

such that c1h is small c2h is relatively large. Therefore, if ηh is selected, i.e. γh = 1,

we would sample from the prior N(0, c2hφ−1
1h ), which has a large variance. Hence, it

covers a wide range of the real line. If ηh is not selected, i.e. rh = 0, the factor loading

element λ1h is then sampled from N(0, c1hφ−1
1h ), which has a small variance when c1h

is small.

To automatically adapt the number of latent factors, the suggested way is to

choose the probability of adapting at p = 1
exp(1+0.0005i)

, where i here is the iteration

number (Bhattacharya and Dunson, 2011). They have stated this probability has

been chosen to satisfy the diminishing adaption condition theorem in a previous

study (Roberts and Rosenthal, 2007). We will follow their suggestion, and make the

adaption based on the magnitude of the factor loadings. When every element in that

column is smaller than a predefined small number, e.g. |λjk| < 0.001, this redundant

column is dropped and the latent factor number is reduced by 1. On the hand, the

number of latent factors would be increased by one if any element of the factor loading

at iteration i is greater than 0.001.
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When the response is binary, we use data augmentation and create a latent con-

tinuous variable Zi that connects the observed binary response yi1 with the latent

factors ηi, where Zi ∼ N(λ1·ηi, 1). The generation of the latent continuous variable

Zi is based on the value of observed Yis (Albert and Chib, 1993). That is, generate

Zi > 0 from a truncated normal distribution from below if Yi = 1, and generate

Zi < 0 from a truncated normal distribution with upper limit 0 if Yi = 0. Thus, the

posterior joint distribution of λ1· and Z = (Z1, ..., Zn) is

π(λ1·, Z|y) = Cπ (λ1·)
n
∏

i=1

{I(Zi > 0)I(yi = 1) + I(Zi ≤ 0)I(yi = 0)} × π (Zi) (3.3)

The posterior sampling of the truncated normal distribution is done using exponential

rejection sampling (Geweke, 1991). After obtaining the continuous variable Zis, the

latent factor loading method can be applied as usual.

The prior specifications are shown below,

• ηi ∼ Nk(0, Ik)

• σ−2
j ∼ Gamma(aσ , bσ), j = 1, ..., p, p + 1, where σ2

j is the diagonal element of Σ

in Equation 3.1.

• λjh|φjh, τh ∼ N(0, φ−1
jh τ−1

h ), j = 2, ..., p, p + 1, h = 1, ..., k

• λ1h|φjh, γh, c1h, c2h ∼ (1 − γh)N(0, φ−1
jh c1h) + γhN(0, φ−1

jh c2h)

• rh ∼ Bernoulli(πh), where πh = 0.5 is the uniform or "indifference" prior for

selection probabilities.

• c1h and c2h are shrinkage parameters, e.g. c1h = 0.1, c2h = 1, or c1h =

0.1h−1, c2h = 0.9h−1

• φjh ∼ Gamma(ν/2, ν/2)

• τh =
∏h

l=1 δl, δ1 ∼ Gamma(a1, 1), δl ∼ Gamma(a2, 1), for l ≥ 2
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The parameter τh is the shrinkage parameters mentioned before for automatically

decreasing the dimension of the factor loading matrix, as the number of latent factors

k increases.

One can use the posterior mean of the selection probabilities to decide which la-

tent factors to select in order to predict the response. The selection probabilities

and the factor loading elements give a general idea of which original variables are of

importance. Depending on the ideal size of the final model, we suggest to combine

the posterior mean of selection probabilities with the quantiles of the posterior mean

of the factor loading matrix. First, given the posterior mean of selection probabilities

of the latent factors. A cut-off probability of 0.5 will be used in this chapter. That is,

we first select the latent factor groups based on the posterior mean of the selection

probabilities. Then, one can examine the factor loading columns that are correspond-

ing to these selected latent factors. Given the posterior mean of the factor loading

matrix Λ̂, one can select the original predictors which have large factor loading in

absolute values. The definition of "large" depends on different situations. One can

decide based on the target final model size. Some ad hoc methods can be applied,

such as trying different quantile cut-off point, and selecting the one with least mean

square error.

Gibbs sampling is used to generate samples from posterior distributions. Suppose

the number of latent factors is k∗ at the current iteration. We use π(x|−) to denote

the conditional distribution on all other variables. The posterior distributions are,

• Sample ηi, i = 1, ..., n, from conditionally independent posteriors

π(ηi|−) ∼ Nk∗{(Ik∗ + ΛT
k∗Σ−1Λk∗)−1ΛT

k∗Σ−1yi, (Ik∗ + ΛT
k∗Σ−1Λk∗)−1}

• Sample σ−2
j , j = 1, ..., p, p + 1, from conditionally independent posteriors

π(σ−2
j |−) ∼ Gamma

(

aσ +
n

2
, bσ +

1

2

n
∑

i=1

(yij − λT
j ηi)

2

)
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• Sample each row of Λk∗, λT
j , j = 2, ..., p, p + 1 from conditionally independent

posteriors (given the latent factors, the predictors are independent, hence each

row of Λk∗ are independent)

π(λj|−) ∼ Nk∗{(D−1
j + σ−2

j ηT η)−1ηT σ−2
j y(j), (D−1

j + σ−2
j ηT η)−1},

where η is the n × k∗ latent factor matrix, with each row corresponding to

each observation, Dj = diag(φ−1
j1 τ−1

1 , ..., φ−1
jk∗τ−1

k∗ ), and y(j) = (y1j, ..., ynj)
T , for

j = 2, ..., p + 1.

• Sample the first row of Λk∗, λT
1 in a similar fashion, just replace Dj with Dy =

diag{φ−1
11 ((1 − r1)c11 + r1c21), ..., φ−1

1k∗((1 − rk∗)c1k∗ + rk∗c2k∗)}.

• Sample φjh, j = 2, ..., p, p + 1, h = 1, ..., k∗ from

π(φjh|−) ∼ Gamma

(

ν + 1

2
,
ν + τhλ2

jh

2

)

.

• Sample φ1h, h = 1, ...k∗ from

(1 − rh)Gamma

(

ν + 1

2
,
ν + λ2

1h/c1h

2

)

+ rhGamma

(

ν + 1

2
,
ν + λ2

1h/c2h

2

)

.

• Sample πh, h = 1, ..., k∗, which is the probability of π(rh = 1) from

π(rh = 1|−) =
π(λ1h|rh = 1, ...)

π(λ1h|rh = 1, ...) + π(λ1h|rh = 0, ...)
.

• Sample δ1 from

π(δ1|−) ∼ Gamma

{

a1 +
pk∗

2
, 1 +

1

2

k∗

∑

l=1

τ
(1)
l

p+1
∑

j=2

φjlλ
2
jl

}

,

and sample δh, h ≥ 2 from

π(δh|−) ∼ Gamma

{

a2 +
p

2
(k∗ − h + 1), 1 +

1

2

k∗

∑

l=h

τ
(h)
l

p+1
∑

j=2

φjhλ2
jl

}

,

where τ
(h)
l =

∏l
t=1,t6=h δt for h = 1, ..., k∗.
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• In the case when yi1 is binary, sample Zi, i = 1, ..., n from Zi ∼ N(λ1·ηi, 1)

truncated at left by 0 if yi1 = 1. Sample Zi ∼ N(λ1·ηi, 1) truncated at right by

0 if yi1 = 0. For the sampling of Λ and η, replace the corresponding elements

in yi respectively.

Other than the response, we assume continuous distributions for all the predictors.

However, the predictors can be binary as well. The extension to allow multinomial

distribution is straightforward (Albert and Chib, 1993). In the next sections, we

are going to present a simulation study assuming all variables are continuous. The

performance of our methods when the response is binary is examined in the Chapter

3.4 real data application.

3.3 Simulation Studies

To examine the performance of our methods, simulation studies were done under

three scenarios. For each simulation setting, we generate n = 200 subjects, with

the first 100 subjects as the training set and the rest of the 100 subjects as the

testing set. Thus, the modeling is based on 100 observations. We compare the mean

squared prediction error from our methods with the results from Lasso and elastic

net methods, which are readily available in R package glmnet. The three simulation

settings are,

• Setting 1, p = 100, k = 5, 2 out of 5 latent factors predict the response.

• Setting 2, p = 300, k = 7, 4 out of 7 latent factors predict the response.

• Setting 3, p = 500, k = 10, 4 out of 10 latent factors predict the response.

We generate non-zero elements of the factor loading matrix Λ from a normal dis-

tribution with mean 0 and variance 9 for all three settings. And the location of

these non-zero elements are randomly selected out of the p rows for each column.

30



For setting 1, the numbers of non-zero columns from left to right are 10, 9, 8, 7, 6,

respectively. For setting 2, the numbers are 14, 11, 8, 9, 10, 13, 12. For setting 3, they

are 20, 15, 11, 12, 16, 13, 17, 18, 18. The number of non-zero elements for each column

is between 2k to k + 1. The diagonal elements of Σ, σ2
1, ..., σ2

p+1 are 0.01 in all three

settings. Note that, since the location of the non-zero factor loading is randomly

selected. It is possible that a predictor has loading on more than one latent factor.

The parameters of the prior distributions are, σ−2
j ∼ Gamma(aσ = 1, bσ = 0.3),

where aσ is the shape parameter and bσ is the rate parameter. For the parameter for

φjh, i.e. ν, we randomly sample a number from unif(2, 4). The a1 and a2 for the

shrinkage parameters δ1 and δh, h = 1, ..., k are randomly sampled from unif(1.1, 3.1)

and unif(2.1, 4.1), respectively. We assign c1h = 0.1, c2h = 1. We generate 25000

posterior samples with the first 5000 as the burn-in, and collect every 5th sample.

In Table 3.1 and Table 3.2, we illustrate the prediction and estimation perfor-

mances of this methods. We report the mean square prediction error (MSPE),

absolute average prediction error (AAPE), and maximum absolute prediction error

(MAPE) in Table 3.1. The MAPE can be seen as a measure for the worst perfor-

mance of the methods. In Table 3.2, we report the mean square error (MSE), absolute

average bias (AAB), and maximum absolute bias (MAB) for the estimated β, that

is, the original coefficients. Overall, the performance is quite well.

The variable selections using latent factor selection probabilities and the quantiles

of the factor loadings are shown in Tables 3.3. The results from different cut-off

quantiles are for comparison. Under the simulation setting 1, the 92.5th quantile

cut-off point has the best false positive and true positive, i.e. power performance.

The advantage of elastic net is not obvious in this case. Under the second setting, the

96.5th quantile cut-off point and the elastic net has similar performance. For the last

simulation setting, p = 500, k = 10, the 97.5th quantile cut-off point has acceptable

performance, though the false positive rate is relatively high. Note that, the Lasso
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Table 3.1 Simulation study results based on N = 100 simulation data sets, mean
squared prediction error (MSPE), average absolute prediction error (AAPE), and
maximum absolute prediction error (MAPE) of Y.

Setting 1 Y Proposed Method Lasso Elastic Net
MSPE mean 0.0116 0.0144 0.0147

min 0.0080 0.0087 0.0093
max 0.0151 0.0219 0.0235

AAPE mean 0.0860 0.0953 0.0967
min 0.0723 0.0748 0.0771
max 0.1010 0.1210 0.1188

MAPE mean 0.2929 0.3251 0.3306
min 0.2047 0.1989 0.2315
max 0.4412 0.4780 0.5260

Setting 2 Y Proposed Method Lasso Elastic Net
MSPE mean 0.0305 0.0179 0.0179

min 0.0088 0.0105 0.0108
max 0.9477 0.0320 0.0317

AAPE mean 0.1022 0.1063 0.1065
min 0.0769 0.0810 0.0826
max 0.7708 0.1372 0.1382

MAPE mean 0.3471 0.3663 0.3736
min 0.2283 0.2469 0.2417
max 2.7545 0.5017 0.6131

Setting 3 Y Proposed Method Lasso Elastic Net
MSPE mean 0.0987 0.0194 0.0185

min 0.0078 0.0107 0.0094
max 2.0050 0.0317 0.0317

AAPE mean 0.1439 0.1111 0.1081
min 0.0724 0.0799 0.0755
max 1.1605 0.1466 0.1424

MAPE mean 0.4845 0.37703 0.3684
min 0.2149 0.2554 0.2596
max 3.3049 0.5330 0.5280

performs the worst under all three settings.

3.4 Real Data Analysis

We apply our method on the Alon colon cancer data set that was used in some

previous studies (Alon et al., 1999; Yang and Song, 2010). This data set contains

p = 2000 genes and n = 62 observations in total. We use the first 40 observations as
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Table 3.2 Simulation study results based on N = 100 simulations, mean square
error (MSE), average absolute bias (AAB), and maximum absolute bias (MAB) of
the original β.

Setting 1 β Proposed Method Lasso Elastic Net
MSE mean 0.0007 0.0013 0.0015

min 0.0006 0.0004 0.0008
max 0.0008 0.0033 0.0034

AAB mean 0.0104 0.0122 0.0143
min 0.0091 0.0070 0.0104
max 0.0140 0.0248 0.0257

MAB mean 0.1175 0.2055 0.1896
min 0.0990 0.1192 0.1179
max 0.1496 0.4479 0.3376

Setting 2 β Proposed Method Lasso Elastic Net
MSE mean 0.0001 0.0003 0.0001

min 0.0001 0.0003 0.0004
max 0.0006 0.0014 0.0010

AAB mean 0.0042 0.0073 0.0051
min 0.0036 0.0049 0.0034
max 0.0055 0.0103 0.0107

MAB mean 0.0635 0.2158 0.1699
min 0.0539 0.0997 0.0796
max 0.3424 0.4110 0.3718

Setting 3 β Proposed Method Lasso Elastic Net
MSE mean 0.0001 0.0006 0.0003

min 0.0001 0.0002 0.0001
max 0.0050 0.0016 0.0008

AAB mean 0.0030 0.0052 0.0043
min 0.0024 0.0032 0.0028
max 0.0103 0.0091 0.0072

MAB mean 0.0721 0.3013 0.2085
min 0.0479 0.1041 0.0888
max 1.4060 0.6868 0.4603

the training set and the rest of the 32 observations as the testing set. The response is

binary with 0 being healthy patients, and 1 being diagnosed with colon cancer. The

training set has 27 patients with colon cancer, and 13 healthy patients. The testing

set has 13 patients with colon cancer, and 9 healthy patients.

We used the same priors as shown in the simulation studies, and we generated

25000 posterior samples with the first 5000 as the burn-in, and collected every 5th
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Table 3.3 Percentages of false positives and true positives from Variable selection
under three settings, with selected quantiles reported.

Setting 1: p = 100, k = 5
Quantiles

90th 92.5th 95th Lasso Elastic net
False positives (%)
mean 21.62 0.71 1.00 21.50 20.09
min 11.11 0.00 0.00 0.00 0.00
max 36.36 38.10 53.33 68.00 61.29
True positives (%)
mean 96.88 93.56 62.19 53.25 80.50
min 87.50 81.25 43.75 25.00 68.75
max 100.00 93.75 62.50 81.25 100.00

Setting 2: p = 300, k = 7
Quantiles

90th 92.5th 95th Lasso Elastic net
False positives (%)
mean 19.95 5.35 5.31 13.85 9.79
min 6.25 0.00 0.00 0.00 0.00
max 34.48 13.79 12.07 64.10 50.91
True positives (%)
mean 96.41 90.54 68.93 29.09 75.17
min 71.74 69.57 50.00 13.04 54.35
max 100.00 95.65 78.26 47.83 89.13

Setting 3: p = 500, k = 10
Quantiles

90th 92.5th 95th Lasso Elastic net
False positives (%)
mean 31.03 16.75 16.62 17.48 10.82
min 0.00 0.00 0.00 0.00 0.00
max 46.32 31.96 25.77 72.88 44.58
True positives (%)
mean 96.23 87.52 69.82 27.51 76.52
min 52.31 41.54 32.31 12.31 61.54
max 100.00 95.38 78.46 41.54 84.62

sample. Our proposed method did not perform as well as Lasso and elastic net in

classifying the 40 observations in the training set. It performed as well as elastic net

in the prediction of Y s in the testing set. Figure 3.1 shows four selected elements in

the factor loading matrix Λ, λ1,1, λ1,5, λ1,8, and λ1903,5. The chains have acceptable

convergence.

34



Table 3.4 Summary of the colon cancer probability of successfully classification
results for training set and testing set.

Method Training Testing
Proposed Method 33/40 17/22

Lasso 38/40 14/22
Elastic Net 39/40 17/22

Table 3.5 Top 32 selected genes for classification, based on 99.8th quantile cut-off
point.

Gene number Gene name Gene number Gene name
28 T63484 111 R78934
305 Z11584 455 L02426
482 D00761 538 R37428
612 R52000 629 T60318
709 T67921 712 T90036
739 X12369 744 X53004
758 T78104 785 D13627
806 X15882 834 U29092
840 X66975 1052 U02493
1053 T72599 1071 H40108
1170 X17644 1239 L37112
1296 X82166 1306 D17400
1386 L40992 1401 D13243
1434 R85479 1566 X07384
1601 U21914 1631 X63469
1642 L05485 1997 H18490

The 2000 genes have been grouped into 10 latent factor groups. Figures 3.4 to 3.4

show the posterior mean of the factor loading matrix Λ(−1), which does not include

the first row. Figure 3.4 shows that most of the genes from gene number 1 to 100 have

obvious loadings on the first 6 latent factors. Some of the genes between gene number

501 to 600 (Figure 3.4), 1001 to 1100 (Figure 3.4), and 1501 to 1600 (Figure 3.4) have

negative loading on the latent factor 10. There are many genes from 1 to 100, and

1501 to 1600 have large loading on latent factor 1 (Figures 3.4 and 3.4).

In these figures, we can obtain the information of which variables "come from"

the same "source". The top selected 32 genes based on the posterior means of selec-

tion probability and factor loading matrix are shown in Table 3.5. Most of the top
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Figure 3.1 Selected factor loading elements, from left to right, first row to second
row, Λ1,1, Λ1,5, Λ1,8, and Λ1903,5.
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Figure 3.2 Posterior means of factor loading for genes 1 to 100 on the latent
factors.

32 genes selected have been reported in previous studies. Genes T78104, D00761,

X15882, X12369, X66975, R37428, X17644, D13627, U29092, U02493, and X63469

have been identified in a study for systems-level molecular mechanisms of tumorige-

nesis (Hernández et al., 2007). Other genes, for example, H18490, T90036, D17400,

D13243, T60318, H40108, R78934, X12369, and X15882 have also been identified in

other studies (Au et al., 2005; Li and Li, 2008; Rao and Dey, 2005; Shaik and M.,
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Figure 3.3 Posterior means of factor loading for genes 501 to 600 on the latent
factors.
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Figure 3.4 Posterior means of factor loading for genes 1001 to 1100 on the latent
factors.

2007; Li and M., 2002).
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Figure 3.5 Posterior means of factor loading for genes 1501 to 1600 on the latent
factors.

3.5 Conclusion and Discussion

In this chapter we proposed a method for selection of latent factors. More specifi-

cally, we innovatively combined the classic spike and slab priors with one of the newly

developed sparse Bayesian infinite factor models. Our method is straightforward and

easy to apply based on existing methods.

The proposed method has good performance when all the variables are from con-

tinuous normal distribution. More specifically, under the scenario when p > n, our

method can select the predictors based on their latent groups. For now, the selec-

tion of the original predictors are based on a cut-off quantile that one sees to fit. In

general, we suggest to examine the posterior means of selection probability and the

factor loading matrix. By only evaluating the columns with larger than 0.5 selec-

tion probability, the number of the original predictors can be significantly reduced.

Further, the predictors that have large loadings in the same column are in the same

latent factor group. This can usually be observed directly.
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The quantile cut-off point method is suggested for a direct method of variable

selection. The choice of a specific cut-off point depends on the number of original

explanatory variables, and the target number of variables to keep in the model. As

shown in the real data analysis section, we reported the top 32 genes. Some studies

on the same data set report top 16, 18, 20, 50 genes. One can adjust the cut-off point

according to the study goal.

Our proposed method has not outperformed existing method elastic net when

dealing with binary response, as seen in the real data analysis. Since the updating

process takes a long time, future study can focus on improving the efficiency when

modeling non-normal distributions within the latent factor framework. Moreover,

one might relax the distribution assumptions of the variables and allow Poisson,

multinomial, Gamma distributions, as well as others. For example, when the response

follows a multinomial distribution with g categories, one can define g−1 cut-off points

for the latent continuous variable Z (Albert and Chib, 1993).

The important difference between our proposed method and existing methods is

that we assume observed correlated variables come from some latent groups. The cor-

relations between variables are induced by the same group membership. Therefore,

comparing with the methods with shrinkage parameters or priors directly applied on

the observed variables, our method provides additional information of the latent rela-

tionship between variables, while simultaneously select the important latent groups.
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Chapter 4

Nonparametric Bayesian latent factor

modeling

In this chapter, we explore the nonparametric Bayesian latent factor modeling.

We built upon the sparse Bayesian factor models mentioned in Chapter 3, and utilized

the Dirichlet process for the response variable in order to allow a non-normal distri-

bution. To circumvent the non-closed form of the posterior distributions, Bayesian

hierarchical models are applied in this chapter. Our objective is to group correlated

variables, while simultaneously clustering similar observations into clusters.

4.1 Introduction

In this chapter, we are going to explore nonparametric Bayesian latent factor

modeling. There are quite a few studies on using nonparametric assumptions for the

number of latent factors, as mentioned in the last chapter. Their focus is on the

factor loading matrix, or the number latent factors. However, none of them relaxes

the normality assumption for the response variable.

There are two main motivations for assuming a nonparametric distribution for

the response variable. First, using Gaussian process and Dirichlet process, one can

achieve the classification of observations (Kim and Lee, 2007; Teh et al., 2005). Both

of these processes are a distribution over distributions and have wide application in

the machine learning area. Therefore, by imposing the nonparametric assumption, we

can cluster similar observations while grouping correlated variables. Second, there are
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circumstances when the normal assumption becomes too strict for certain variables.

When the response exhibits heavy tails or multimodality, methods have been proposed

to flexibly estimate the mean function meanwhile allowing the residual density to

change nonparametrically with predictors (Pati and Dunson, 2014) . In this chapter,

we are going to use the same framework, with the residual density being independent

of the predictors.

For Bayesian latent factor regression, the common assumption of the distribution

of all continuous variables is the normal distribution. Based on the methods from

last chapter, we are going to relax the Gaussian assumption for the response, and

to assume a nonparametric distribution for the response. More specifically, Dirichlet

process is used for building the distribution of the response to allow a heavy tail

distribution, as well as a multimodal feature.

The Dirichlet process is a distribution over distributions, which is commonly used

in Bayesian nonparametric modeling. A Dirichlet process G which has base distribu-

tion G0 and concentration parametrer α0, is a probability measure over a measurable

space (Θ, B). For any finite measureble partition (A1, ..., Ar) of Θ, the random vec-

tor (G(A1), ..., G(Ar)) is distributed as a finite-dimentional Dirichlet distribution with

parameters (α0G0(A1), ..., α0G0(Ar)), i.e.,

(G(A1), ..., G(Ar)) ∼ Dir(α0G0(A1), ..., α0G0(Ar)).

A detailed introduction of the Dirichlet process can be referred elsewhere (Teh, 2010;

Teh et al., 2006).

The original construction of the Dirichlet process is cumbersome when used for

generating posterior distributions. In this chapter, we are going to use the stick-

breaking construction of Dirichlet process to accelerate posterior sampling (Ishwaran

and James, 2001, 2003). By using a blocked Gibbs approach, one can avoid marginal-

izing over the prior (Ishwaran and James, 2001). Hence, it makes directly sampling of

the nonparametric posterior possible. More specifically, the stick-breaking construc-
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tion of Dirichlet process is defined as,

G =
∞
∑

q=1

πqδθq
,

where πq = Vk
∏q−1

l=1 (1 − Vq), Vk ∼ Beta(1, bq), bq = α0, δ is the Dirac delta function,

and θq ∼ G0. The G0 is the base function and {θq}
∞
q=1 ∼ G0 independently. {πq}

∞
q=1

are the weights that sum up to 1.

In the next sections, we are going to introduce on how to apply the Dirichlet

process assumption under the sparse Bayesian latent factor model framework. Then

we will present a small simulation study, and one real data analysis. We conclude

this chapter in the Chapter 4.5 with possible future work.

4.2 Methods

With similar notations as in chapter 3, we use Bayesian hierarchical model to

separate the original model into two parts

yi = fi + ǫi

fi = Ληi + ei (4.1)

where i = 1, ..., n is the indicator for observation, and yi is the (p + 1)-dimensional

continuous variable vector, including the first term for the response. The difference

between this model and the model in Chapter 3 is that we define an intermediate

latent variable fi ∼ N(Ληi, Σe), so that the latent factor model has two layers, and

we separate the distribution of the error ǫi and the distribution of the factor loading

matrix Λ apart.

The Gibbs sampler can be implemented independently given fi. We assume ei has

the usual distribution, which is ei ∼ Np(0, Σe), where Σe = diag(σ2
1, ..., σ2

p+1). The

nonparametric distribution of the response yi1 is assumed through the first element

of ǫi, that is ǫi1. For the rest of ǫi, ǫi(−1), that is ǫi without the first element, fol-

lows Np(0, Σǫi(−1)
), where Σǫi(−1)

is a diagonal matrix with positive diagonal elements.
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Recall that if yi1 follows a normal distribution, we have

π(yi1|−) = N(fi1, θ−1
q ).

Now we are going to show how to modify this normality assumption into a Dirichlet

process.

The error term corresponding to the response ǫi1 follows a location-scale sym-

metrized stick-breaking mixtures of Gaussians (Pati and Dunson, 2014). That is,

ǫi1 ∼ f(·) =
∫

N(·; µ, θ−1)dP s(µ, θ), dP s(µ, θ) =
1

2
dP (−µ, θ) +

1

2
dP (µ, θ),

P =
∞
∑

q=1

πqδ(µq ,θq), (µq, θq) ∼ P0

(4.2)

where {θq} is the weights, and µq ∼ N(0, σ2
µ), θq ∼ Gamma(αθ, βθ). For simplicity,

we assume that every "cluster" of the Dirichlet process has the same prior distribution,

as denoted by N(0, σ2
µ), and Gamma(αθ, βθ).

We are going to assume the number of weights is finite N . The validity has been

proved and we can replace πN with 1−π1 − ...−πN−1, which is equivalent to replacing

VN with VN = 1 (Ishwaran and James, 2001). The definition of π1, ..., πN becomes,

π1 = V1, and πq = (1 − V1)(1 − V2) · · · (1 − Vq−1)Vq, q = 2, ..., N, (4.3)

where V1, ..., VN−1 follow independent distribution Beta(aq, bq), and VN = 1. Again,

for simplisity, we assume a1 = ... = aq = ... = aN = a, and b1 = ... = bq = ... = bN =

b, i.e. V1, ..., VN have the same distribution. The resulting distribution for ǫi1 is,

f(·) =
N
∑

q=1

πq

2
{N(·; −µq, θ−1

q ) + N(·; µq, θ−1
q )}. (4.4)

The general idea of using this as the new error distribution is to allow multimodal-

ity for the response, at the same time constraining the error term to be symmetric

about zero. The distribution for yi1 becomes,

π(yi1|−) =
N
∑

q=1

πq

2
{N(fi1 − µq, θ−1

q ) + N(fi1 + µq, θ−1
q )}. (4.5)
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To facilitate the smapling from posterior distributions, We are going to apply blocked

gibbs sample (Ishwaran and James, 2001).

As shown in Equation 4.1, given fi, yi follows a (p + 1)-dimensional multivariate

normal distribution with mean fi, and a diagonal variance covariance matrix Σǫ.

The sampling of the second part of Equation 4.1 can be completed using the same

methodology in chapter 3. Instead of sampling based on the observed data Y , we

sample based on the intermediate variable f . Hence, replacing all the ys in the

previous chapter with fs.

The main focus of this chapter is to sample the posterior distribution for the

first part of Equation 4.1. Note that, from Equation 4.5, we can treat the Dirichlet

process modeling as an clustering procedure that cluster similar responses into one

group, which means that they come from the same mixture distribution 0.5N(fi1 +

µq, θ−1
q ) + 0.5N(fi1 − µq, θ−1

q ).

In order to sample from the posterior distributions of the cluster information,

we apply the blocked gibbs algorithm (Ishwaran and James, 2001). This algorithm

provide a direct way of sampling the cluster information for each observation, so that

we would know which q that each observation yi1 belongs. Let Zqi
= (µq, θq), which

stands for the cluster information for observation i, i = 1, ..., n, and qi = 1, ..., N . To

summarize the prior procedures,

(yi1|Z, q, f...) ∼ind π(yi1|Zqi
, f...), i = 1..., n,

(qi|µq, θq) ∼ind
∞
∑

q=1

πqδ(µq ,θq)

(µq, θq) ∼ P0 = N(0, σ2
µ) × Gamma(αθ, βθ)
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The direct sampling order of the posterior distributions are,

(Z|q, Y, ...)

(q|Z, π, Y, ...)

(π|q),

and the sampling of other parameters follows.

The new latent factor model is based on the intermediate latent variable fi, which

has the same dimension as yi. It follows

fi ∼ N(Ληi, Σf ),

where Σf is a diagonal matrix. For the part of grouping correlated variables, we use

the same scheme as shown in chapter 3.

Suppose at current iteration there are m clusters and they are {q∗
1, ..., q∗

m}. Given

all initial values and prior distributions, we first update the allocation variable q,

as well as the the stick-breaking random variables π, Z = (µq, θq), which shows as

following:

1. Draw (µq∗

j
|q, y1, ...) from the density

π(µq∗

j
|−) ∝ N(0, σ2

µ)
∏

{i:qi=q∗

j
}

π(yi1|µq∗

j
, ...), j = 1..., m. (4.6)

2. Draw (θq∗

j
|q, y1, ...) from the density

π(θq∗

j
|−) ∝ Gamma

(Mq∗

j

2
+ αθ, βθ +

∑

i:qi=q∗

j

(yi1 − fi1)2
)

, j = 1..., m, (4.7)

where Mq∗

j
is the number of qi that equals q∗

j .

3. For each observation i, draw qi

(qi|Z, π, y1, ...) ∼
N
∑

q=1

πq,iδq(·), i = 1, ..., n, (4.8)

where (π1,i, ..., πN,i) ∝ (π1π(yi1|Z1), ..., πNπ(yi1|ZN)).
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4. From the conjugacy of the Dirichlet distribution to multinomial sampling, we

have

π1 = V ∗
1 , πq = (1 − V ∗

1 )(1 − V ∗
2 ) · · · (1 − V ∗

q−1)V
∗

q , q = 2, ..., N − 1. (4.9)

where V ∗
q ∼ Beta(a+ Mq , b+

∑N
l=k+1 Ml) for q = 1, ..., N −1. Mq is the number

of qi that equals q.

5. Recall that the prior distribution for fi1 is π(fi1) = N(λ1·ηi, σ2
1). The posterior

distribution of fi1 given all other variables is,

π(fi1|−) = N((σ−2
1 + θqi

)−1(σ2
1λ1·ηi + θqi

yi1), (σ−2
1 + θqi

)−1), i = 1..., n. (4.10)

For fi(−1) = (fi2, ..., fiq), the posterior distribution is,

π(fi(−1)|−) = N((Σ−1
e(−1) + Σ−1

ǫ(−1))
−1(Σ−1

e(−1)Λ(−1)·η(−1)i (4.11)

+ Σ−1
ǫ(−1)y(−1)i), (Σ−1

e(−1) + Σ−1
ǫ(−1))

−1),

where (−1) denotes with the first element removed.

The posterior distribution of the latent factor part fi = Ληi+ei can be constructed

the formulas in Chapter 3.

4.3 Simulation Study

We simulate 50 data sets each for two settings, both with sample size n = 200.

We generate p = 50 and p = 100, respectively for the two settings, both including one

response. For setting 1, when p = 50, the error term of the response Yi1, i = 1, ..., n,

follows,

ǫi1 ∼
2

10
{0.5N(1.5, 0.03) + 0.5N(−1.5, 0.03)}

+
3

10
{0.5N(9, 0.02) + 0.5N(−9, 0.02)}

+
2

10
{0.5N(30, 0.01) + 0.5 ∗ N(−30, 0.01)}

+
3

10
{0.5N(20, 0.01) + 0.5 ∗ N(−20, 0.01)}.
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The error term of the response in the setting 2 follows,

ǫi1 ∼
3

10
{0.5N(3, 0.03) + 0.5N(−3, 0.03)}

+
3

10
{0.5N(15, 0.02) + 0.5N(−15, 0.02)}

+
4

10
{0.5N(50, 0.01) + 0.5 ∗ N(−50, 0.01)}.

For the rest of the set-up, the elements of the factor loading matrix Λ are generated

from N(0, 1), ǫi2, ..., ǫip, i = 1, ..., n are from N(0, 0.01). The number of clusters is

N = 20. The prior parameters settings are, σ2
µ = 4, αθ = 10, βθ = 1, which is chosen

to make the different clusters distinct. The rest of the prior parameters are the same as

in Chapter 3, σ−2
j ∼ Gamma(aσ = 1, bσ = 0.3), ν ∼ unif(2, 4), a1 ∼ unif(1.1, 3.1),

and a2 ∼ unif(2.1, 4.1). We generate 25000 posterior samples with the first 5000 as

the burn-in, and collect every 5th sample.

The density plots of the responses for both settings are shown in Figure 4.3 and

Figure!4.3. We see the response variables are multimodal. We compare the mean

square error (MSE), average absolute bias (AAB), and maximum average bias (MAB)

from this nonparametric method with the method in chapter 3, as well as Lasso and

elastic net.

Table 4.1 Simulation study results from setting 1 based on N = 50 simulations
with p = 50, k = 4, mean square error (MSE), absolute average bias (AAB), and
maximum average bias (MAB) of standardized Y.

Y Nonparametric Parametric Lasso Elastic Net
MSE mean 0.9621 0.9530 0.9937 1.0070

min 0.9156 0.8771 0.9302 0.9418
max 0.9927 0.9857 0.9950 1.0999

AAB mean 0.8162 0.8127 0.8291 0.8362
min 0.7826 0.7682 0.8023 0.7976
max 0.8323 0.8314 0.8360 0.8731

MAB mean 1.8689 1.8733 1.8226 1.8936
min 1.7104 1.7378 1.7554 1.7709
max 2.0819 2.0987 1.9512 2.0912
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Figure 4.1 Density of the response Y1 from the N = 50 simulation dataset under
setting 1.
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Figure 4.2 Density of the response Y1 from the N = 50 simulation dataset under
setting 2.
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Table 4.2 Simulation study results from setting 2 based on N = 50 simulations
with p = 100, k = 10, mean square error (MSE), absolute average bias (AAB), and
maximum average bias (MAB) of standardized Y.

Y Nonparametric Parametric Lasso Elastic Net
MSE mean 0.9532 0.9453 0.9950 1.0184

min 0.8827 0.8725 0.9950 0.9950
max 0.9858 0.9831 0.9950 1.1114

AAB mean 0.7625 0.7617 0.7746 0.7917
min 0.7348 0.7329 0.7691 0.7715
max 0.7778 0.7752 0.7791 0.8488

MAB mean 1.7990 1.8426 1.6713 1.7852
min 1.6469 1.6689 1.6335 1.6447
max 1.9730 2.1020 1.7387 2.0405

We notice that both nonparametric and parametric methods perform better than

Lasso and Elastic net, in terms of mean square error. Interestingly, the performance of

the nonparametric method is not better than the parametric one, based on the mean

square error. One might also notice that among all four methods, the nonparametric

method has the lowest MAB, which means that under our simulated settings the

nonparametric method has the best performance for the worst case scenario. The gain

of the nonparametric assumption is that we safely model the data without worrying

whether the normality assumption holds.

4.4 Real Data Analysis

We use data from Carneigie Mellon University on estimation for percentage of

body fat. The predictors in this data set are age (years), weight (lbs), height

(inches), neck circumference (centimeters), chest circumference (centimeters), ab-

domen 2 circumferences (centimeters), hip circumferences (centimeters), thigh cir-

cumference (centimeters), knee circumference (centimeters), ankle circumference (cen-

timeters), biceps circumference (centimeters), forearm circumference (centimeters),

and wrist circumference (centimeters). There are n = 252 subjects. Figure 4.4 shows

the density plot of the percentage of body fat. It does not appear to be normally
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Figure 4.3 Density plot of the percentage of body fat.

distributed and there is a slight hint of bimodality. The mean square error (MSE),

average absolute bias (AAB), and maximum absolute bias (MAB) are shown in Ta-

ble 4.3.

Similar as the simulation results, the nonparametric method has not out-performed

the original parametric method. Among all four methods, the parametric method has

the lowest MSE. Comparing with the nonparametric method to the Lasso and Elastic

net, all three measures are still higher. We argue that as we can see in Figure 4.4, the

multimodality of the response is less obvious than we would prefer. The advantage

of it does not appear in this case.

Table 4.3 Mean squared error results from four methods, using bodyfat data.

Y Nonparametric Parametric Lasso Elastic Net
MSE 0.3095 0.2582 0.2948 0.3001
AAB 0.4479 0.4147 0.4455 0.4522
MAB 2.0347 1.3448 1.8994 1.7586
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4.5 Conclusion and Discussion

In this study we proposed a nonparametric Bayesian latent factor modeling, with

the nonparametric assumption for the response variable. We started with the latent

factor models in Chapter 3, which is focused on variable selection. This method has

been extended to allow nonparametric assumption for the response variable. More

specifically, we discuss the application of stick-breaking construction of Dirichlet pro-

cess in the Bayesian latent factor modeling.

The results from the simulation study interestingly showed that the parametric

model actually performed better than the nonparametric model, when the response

is from a multimodal mixture of distributions. This presents some ideas for future

study. Since we have only done a small simulation study, a more extensive one might

reveal that the nonparametric method is better. This brings out the problem of

computing time. The algorithm of sampling from the posterior distributions should

be optimized, in order to reduce computing time. The computing time for the non-

parametric method is significantly longer than the parametric counterpart. This is

because we introduced the intermediate latent factors, as well as the Dirichlet process

clustering variables. Currently the updates of some of the variables are done element

wise. Future study can focus on block updates for the posterior distributions.

The most important question is whether combining factor analysis with clustering

techniques is possible under the Bayesian setting. This certainly is very useful for

real data analysis. One can imagine for the colon cancer data in Chapter 3, suppose

we did not know the whether one has colorectal cancer or not, instead, we had

some continuous measurement. Using the proposed method in this chapter, we can

automatically group people into several groups (ideally 2, with and without cancer),

meanwhile, find out which groups of genes are important.

One of the strengths when using Bayesian latent factor modeling is that it allows

multivariate response. Since the method treating all variables, both responses and
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predictors, as the observed variables, the dimension of the response vector can be

arbitrary. Even though we only discuss the nonparametric assumption for univariate

response, the extension to multivariate cases is straightforward.
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Chapter 5

Conclusions and future work

5.1 Conclusions

The dissertation has addressed two statistical questions, and explored the exten-

sion of Bayesian sparse latent factor modeling into the nonparametric settings.

The first question being addressed is how to handle bivariate count heaping data.

We has discussed two situations of heaping, interval censored heaping and scaled

heaping. The bivariate probability distributions are expressed in terms of four parts

of copula functions. For both heaping scenarios, our methods on the simulation data

sets have presented adequate results. Note that the coverage probabilities are gener-

ally less than 95%. Additional simulation studies were done without the data being

heaped. However, the resulting coverage probabilities were similar as before. There-

fore, caution needs to be taken when using copula to modeling mixture distributions.

In chapter 3, we propose a method for group variables selection. Our method has

good performance especially when the variables are all continuous. When the response

is binary, we compared our method with the elastic net method and the prediction

error is larger using our method. However, we argue that our methods, first, can be

used without any preproccessing. Second, since predicting a binary variable requires

a cut-off point, the randomness of this value might affect the performance of our

method.

The Bayesian sparse latent factor modeling has been extended to the nonpara-

metric setting in chapter 4. It simultaneously achieves the grouping of correlated
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variables and clustering similar observations. By using a vector of intermediate vari-

ables, the bayesian latent factor model has been connected with Dirichlet process.

The application of the nonparametric assumption on Bayesian latent factor modeling

is relatively new and offers a lot of possibilities.

5.2 Future work

Both the advantages and disadvantages of the methods suggested in this disser-

tation can be further studied. For interval censored bivariate heaping, how to handle

heaping in zero-inflated count data while modeling the probability of heaping can be

further explored. At the same time, one should always keep in mind that the multi-

variate distribution is expressed using copula functions. Hence, the accuracy of the

individual likelihood when heaping exists should be handled with caution, especially

when the person has observed count 0. For the scaled heaping scenario, we applied

copula functions for mixture modeling. More simulation studies should be carried

out and the 95% coverage probability needs to be validated.

Group variable selection method suggested in chapter 3 can be developed for

Poisson, multinomial, and other distributions. Improving the posterior sampling

efficiency and stability should be one the objectives when extending the method to

the aforementioned distributions.

The nonparametric Bayesian latent factor modeling in chapter 4 can be extend to

other nonparametric settings, such as Gaussian process. The efficiency of posterior

sampling can be improved. We used blocked Gibbs sampler approach for posterior

sampling. Other sampling techniques should be considered and appplied. Again,

more simulation studies should be done to examine the performance of this method.
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