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ABSTRACT 

This work focused on the synthesis and characterization of polymer-grafted 

nanoparticles for various applications including drug-delivery, directed self-assembly and 

mechanical reinforcement applications. The surfaces of inorganic particles were modified 

with polymers of different composition, chain length, graft density and polymer 

architecture depending on the specific needs of each project. The surface modifications 

were mainly achieved by surface-initiated reversible addition fragmentation chain transfer 

(RAFT) polymerization, which is a very versatile technique to prepare nanocomposites 

with desired properties. 

The first part of this work (Chapters 2 & 3) focused on novel self-assembly 

techniques. Chapter 2 described the design and characterization of a new self-assembly 

technique called surface-initiated polymerization-induced self-assembly (SI-PISA). We 

rationally designed this one-pot synthesis method based on mixed brush grafted silica 

nanoparticles. Nano-assemblies with different shapes including 1D strings, 2D disks, 3D 

vesicles and solid spheres were obtained at high solid content in various solvent systems. 

The scheme is based on sequential SI-RAFT polymerization strategy. A solvent-miscible 

brush was first grafted onto 15 nm silica NPs, and self-assembly was subsequently induced 

by the polymerization of a second brush that was solvent-immiscible. Self-assembly 

occurred in situ with the SI-polymerization of the second brush. The shape of the nano-

objects was found to be controlled by the chemical structure of grafted polymers, chain 

length of grafted polymers, and reaction media.
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          In Chapter 3, we utilized the low blocking efficiency of reversed monomer addition 

order in combination with surface initiated RAFT polymerization to establish a facile 

procedure towards mixed polymer brush grafted nanoparticles SiO2-g-(PS1, PS1-b-

PMAA). The SiO2-g-(PS, PS-b-PMAA) nanoparticles were analyzed by GPC 

deconvolution, and the fraction of each polymer component was calculated. Additionally, 

the SiO2-g-(PS, PS-b-PMAA) were amphiphilic in nature, and showed unique self-

assembly behavior in water. 

The second part of this work (Chapter 4) is based on a drug delivery application. A 

pH and thermal dual-responsive nanocarrier with silica as the core and block copolymer 

composed of poly(methacrylic acid) (PMAA) and poly(N-isopropylacrylamide) (PNIPAM) 

as the shell was prepared by surface initiated RAFT polymerization. These dual-responsive 

nanoparticles were used as carriers to deliver the model drug doxorubicin (DOX) with 

unusually high entrapment efficiency and loading content. The release rate was controlled 

by both pH and temperature of the surrounding medium. Moreover, these particles 

selectively precipitated at acidic conditions with increased temperature, which may 

enhance their ability to accumulate at tumor sites. Cytotoxicity studies demonstrated that 

DOX-loaded nanoparticles are highly active against Hela cells, and more effective than 

free DOX of equivalent dose. A cellular uptake study revealed that SiO2-PMAA-b-

PNIPAM nanoparticles could successfully deliver DOX molecules into the nuclei of Hela 

cells. All these features indicated that SiO2-PMAA-b-PNIPAM nanoparticles are a 

promising candidate for therapeutic applications. 

The third part of this work (Chapter 5 & 6) is surface functionalization of silica 

nanoparticles with low Tg rubbery polymers, and the use of these polymer-grafted 
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nanoparticles as mechanical reinforcement fillers. Chapter 5 documented the collaborative 

work between our research group and Michelin North America Inc. to study the influence 

of grafting density and molecular weight of grafted polymer on mechanical properties of 

polyisoprene tire rubber. The grafting of polyisoprene (PIP) to different types of silica has 

been studied and developed by RAFT polymerization processes.  This has been shown to 

be applicable for preparing grafted nanoparticles that are useful for exploring new surface 

interactions between silica fillers and rubber materials. Scale up approaches have been 

successful and detailed mechanical property studies were documented to assess the 

potential of these new graft architectures on improving rubbery composite properties. 

Chapter 6 is focused on another rubber material, polychloroprene. Compared with other 

rubbers, polychloroprene exhibits excellent resistant to oil, grease, wax, ozone and harsh 

weather conditions. RAFT polymerization and surface-initiated RAFT polymerization (SI-

RAFT) of polychloroprene was studied. The SI-RAFT polymerization rate of chloroprene 

was found to be slower than free solution RAFT polymerization, and further regulated by 

graft density of the grafted polymers. The resulting polychloroprene-grafted silica 

nanoparticles were directly crosslinked to get matrix-free polychloroprene nanocomposites 

that showed good nanoparticle dispersion and superior mechanical properties compared 

with unfilled polychloroprene rubber
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CHAPTER 1 

INTRODUCTION 
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1.1 Controlled Radical Polymerization. 

Free radical polymerization has been widely used for industrial applications due to 

its advantages like mild polymerization conditions, wide monomer selections, and high 

molecular weight of polymers. However, free radical polymerization is often limited by 

irreversible chain transfer and termination, which results in a large number of branched 

polymers and polydisperse polymers. Beginning in the 1980’s, controlled radical 

polymerization (CRP) was developed to prepare polymers with controlled molecular 

weight, narrow polydispersity and complicated architectures. This kind of polymerization 

is also referred to as living polymerization, in which all chains will be initiated early in the 

reaction, grow at the same rate, and lack termination reactions.2 Major CRP techniques 

include nitroxide mediated polymerization (NMP)3-4, atom transfer radical polymerization 

(ATRP)5-6 and reversible addition-fragmentation (RAFT) polymerization.7-8  

RAFT polymerization was first discovered and reported by Common-wealth 

Scientific and Industrial Research Organization (CSIRO) in Australia.9 As the most 

recently discovered living radical polymerization, it has a mechanism that is fundamentally 

different from nitroxide-mediated polymerization (NMP) and atom transfer radical 

polymerization (ATRP). RAFT polymerization employs a degenerative chain transfer 

process while the two others rely on a persistent radical effect. The basic mechanism of 

RAFT can be viewed simply as a free radical polymerization that incorporates a chain 

transfer agent. Thus, most conventional initiators and monomers can be applied to RAFT 

polymerization, making it a versatile method for making polymers with narrow molecular 

weight distribution. A detailed mechanism of RAFT polymerization is shown in Scheme 

1.1. Radical-radical termination is minimized through the reversible trapping of active 
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radicals into dormant species. This process is achieved using dithioester compounds known 

as RAFT agents. The thiocarbonylthio moiety of the RAFT agent is reactive towards 

radicals, in particular, they react with propagating radicals to form a carbon centered 

intermediate. This intermediate will then undergo β-scission, to release a new radical that 

is capable of reinitiating propagation.  The reinitiated chain will then reversible add to 

another chain transfer agent. Finally, a symmetric equilibrium will be established between 

propagating radicals and dormant carbon centered radicals. When RAFT agent, monomer, 

initiator and reaction conditions are well chosen, excellent control can be achieved with 

PDI as low as 1.1. Another feature for RAFT polymerization is that once polymerization 

is stopped appropriately, the thiocarbonylthio end group can be preserved, which can serve 

as a macro-CTA. Upon isolation and addition of another monomer, well controlled block 

copolymers can be produced.  

 

 

Scheme 1.1. Mechanism of RAFT polymerization10 
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1.2 Nanocomposites. 

It is now well accepted that the incorporation of nanoparticles into a polymer matrix 

can significantly improve the mechanical, optical, and electrical properties of the resulting 

polymer nanocomposites (PNCs). 11-14 The advantage of nanocomposites comes from the 

large interfacial area that brings forth the property enhancements not seen with larger scale 

fillers. However, the large interface increases the unfavorable enthalpic interaction 

between hydrophobic organic polymer matrix and hydrophilic inorganic filler that often 

causes the aggregation of nanoparticles. For example, untreated silica nanoparticles easily 

aggregated into micon-sized clusters in tire rubber matrix, which compromised the 

mechanical performance of the resulting composites.15-16 Aggregated nano-fillers will lose 

the advantage of large exposed surface area and will not be significantly different from 

micron-sized fillers. To increase nanoparticle dispersion in polymer matrices, it is vital to 

create a compatible interface by grafting organic molecules, either ligands or polymers, to 

inorganic particle surfaces. 

Grafting polymer brushes to inorganic particle surfaces has shown great success in 

promoting filler-matrix compatibility.17-19 Various parameters were found to influence 

filler dispersion including polymer molecular weight, polymer graft density, polymer 

architecture and polymer composition. For example, Kumar et al. found that dispersion 

was influenced by the long and short range enthalpic interactions of the nanoparticles and 

the entropic displacement of polymer chains on the nanoparticle surface. A variety of self-

assembled anisotropic structures or well dispersed particles could be realized by 

manipulating polymer graft density (σ) and chain length (N) in a polystyrene matrix.20 

Figure 1.1 shows the experimentally obtained filler morphologies obtained by Kumar et al. 
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Evenly dispersed particles were obtained with sufficient polymer coverage. Numerous 

polymer chemistries have been achieved on filler surfaces though the majority of polymeric 

species tend to be derived from chain growth monomers. 

 

Figure 1.1: Experimentally obtained morphology diagram representing polystyrene grafted 

silica nanoparticles in polystyrene.20  

 

Bimodal brush grafted nanoparticles are nanoparticles with two populations of 

polymer brushes attached to the surface that usually consists of a long molecular weight, 

low graft density population and a low molecular weight, high graft density population.21 

Each of these two population of brushes has their own functionality in achieving perfect 

particle dispersion or particular dispersion states. The long chain population entangles with 

the matrix and the short chain population screens particle core-core interaction by fully 

covering the surfaces. The first successful preparation of bimodal polymer grafted 

nanoparticles was reported by Benicewicz et al. using a sequential surface-initiated RAFT 

polymerization for the synthesis of bimodal styrene brushes on silica nanoparticles.22 

Matyjazewski at al. presented a different approach toward bimodal styrene brushes on 

silica via surface-initiated ATRP.23 With effective synthetic methodology established 
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bimodal brush systems have been explored for various thermomechanical, electrical, and 

optical enhancements.17, 19, 24  

1.3 Surface grafting strategies. 

Generally, surface functionalization of nanoparticles includes two synthetic 

strategies: grafting-to and grafting-from. In grafting-to method, polymers are pre-made in 

the first step, which will then react with the nanofiller surface through active chain-end 

group chemistry. Due to steric hindrance, the graft density depends on the molecular weight 

and flexibility of the molecules, and is found to be on the lower end compared with 

grafting-from strategy. Once initial polymers are attached, it becomes increasingly difficult 

for the following polymer chains to diffuse to the surface and attach.  

In the grafting-from method, polymerization is initiated from the particle surface 

and the polymer grows in-situ. This method overcomes the steric hindrance effect and can 

achieve relatively high graft density. A variety of controlled radical polymerization (CRP) 

techniques have been employed to graft a wide range of polymers from nanoparticle 

surfaces such as ATRP25-26, NMP27-28 and RAFT29-30.  

 

1.4 Inorganic substrates.  

Many types of NPs have been modified using the above mentioned approaches, 

including titania,32 silica,33 barium titanate,34, zirconia,35 iron oxide,36 CNTs,37 and others. 

Each kind of inorganic core has its unique properties and application. For example, silica 

nanoparticles are widely used for rubber fillers and drug delivery applications due to its 

biocompatibility.38-40 Titania nanoparticles are suitable for LED applications because of 

their high transparency, high refractive index and very low absorption coefficient in the 
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Figure 1.2. Various methods for grafting polymer chains to a substrate surface: A) 

physisorption, B) grafting-to and C) grafting-from methods. 31 

 

 

visible range.41 Iron oxide nanoparticles are ideal candidates for bioimaging and recyclable 

delivery system due to their magnetic responsiveness.42-43 Barium titanate nanoparticles 

have high dielectric constant and find applications in insulator fillers.18 In most cases, 

different nanoparticles possess different surface chemistry and coupling agents need to be 

chosen carefully that provide sufficient reactivity with the substrate. Silane coupling agents 

are the most widely used which works well with silica substrates but lacks reactivity with 

metal oxides. Phosphate/phosphonate and amine based ligands have been used to 

complement silane coupling agents. Thiol-gold bonding is widely used for 

functionalization of gold nanoparticles.44  However it has been reported that the gold-thiol 

bond with bonding energy 30-50 kcal/mol is not as strong as normal covalent bonds and 

may result in rearrangement or loss of surface grafted chains.45 
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Figure 1.3 Schematic illustration of the various types of NPs available, the forms of surface 

functionalization, and the applications that these materials can impact.12 

 

 

 

1.5 Nanocomposites via RAFT polymerization 

Nanocomposites via RAFT polymerization is a versatile surface modification 

method that has been used throughout this dissertation. It could be applied to grafting to, 

grafting from and physisorption. The polymers prepared by RAFT polymerization will 

have thiocarbonyl end groups that could be reduced to thiols with NaBH4.
46 Both thiol and 

thiocarbonyl end groups could easily bind to gold nanoparticle surfaces for the fabrication 

of gold nanocomposites which are found useful in sensing, nanomedicine and catalytic 

applications.47-48 Metal oxide nanoparticles have been modified using RAFT polymers 
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with organophosphorus moieties. Click chemistry has also been used to functionalize silica 

nanoparticles where alkyne terminated polymer chains were clicked to azide surface 

functionalized silica nanoparticles.49  

The grafting from strategy relies on surface-initiated RAFT polymerization. 

Compared with grafting to strategy, this method could achieve higher graft density and a 

better control of obtaining specific graft densities. Benicewicz et al. first developed the SI-

RAFT procedure by sequentially adding an aminosilane coupling reagent followed by an 

activated RAFT agent to silica nanoparticle surfaces. Figure 1.8 demonstrates nanoparticle 

functionalization using an activated RAFT agent.10 Activated RAFT agents contain a 

modified carboxylic acid that possess excellent leaving group chemistry by reacting 

prestine RAFT agents with 2-mecatothiazoline and N-hydroxysuccinimide (NHS) esters. 

The process proved to be a versatile method for surface modification of silica nanoparticles 

with effective graft densities of 0.01 – 0.7 ch/nm2 being achieved. One advantage of SI-

RAFT over SI-ATRP or any other type of  surface initiated controlled radical 

polymerization is that the graft density could be determined prior to polymerization by 

quantitively measuring the characteristic UV-vis absorption of the RAFT-grafted 

nanoparticles. The versatility of RAFT has allowed for nanocomposites to be synthesized 

for many applications including hybrid materials, thermosresponsive, optical, electrical, 

self-healing, and drug delivery.  
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Figure 1.4. Synthesis and attachment of activated RAFT agent to SiO2 nanoparticle.10  

 

 

1.6 Polymerization-induced self-assembly 

Self-assembly of amphiphilic block copolymers in selective solvents has been 

extensively studied in the past twenty years. A broad range of nano-objects have been 

created including spheres, rods, tubes, and vesicles.50 These self-assembled nanomaterials 

have been found useful in biomedical, catalysis, and cosmetic applications. 51 A typical 

method to induce self-assembly behavior includes several steps. First, block copolymers 

are prepared in a good solvent for both blocks, followed by purification and redispersion 

to form a dilute solution. Then, a selective solvent is introduced dropwise to induce the 

collapse of one of the blocks, generating the desired aggregated structure. These multiple 

preparation processes are time consuming and more importantly, polymer concentration is 

limited, which prevents large scale production for commercial applications.52 In recent 

years, polymerization-induced self-assembly (PISA) emerged as a more convenient 

technique to prepare self-assembled nanomaterials in large scale. In PISA, self-assembly 
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occurs in-situ with polymerization, and the solid content of reaction solution could be as 

high as 30 wt%. 

The term “polymerization-induce self-assembly” was first introduced by Pan et al. 

where they chain extended trithiocarbonate terminated poly(4-vinylpyridine)(P4VP) with 

styrene in methanol.1 P4VP was first prepared by reversible addition-fragmentation 

transfer (RAFT) polymerization with 10kDa molecular weight and narrow PDI. Then, 

chain extension of styrene was carried out in methanol which is a good solvent for P4VP 

and styrene monomers, but a none-solvent for polystyrene(PS). As the PS block increases, 

the polymers get more and more solvophobic, and beyond a certain point, aggregation 

occurs with PS forming the core and P4VP being the corona. Visually, one could observe 

the turbidity change of the reaction mixture from a clear, to light blue opalescent, and 

eventually, a milky-white solution was formed. On the microscopic level revealed by TEM, 

spherical nanoobjects could be observed after 2 hrs, and then rod-like structures after 24hrs. 

By carefully adjusting the ratio between styrene monomer and RAFT agent, vesicle shaped 

structures could also be created.  

            Scheme 1.2. Principle of Polymerization-Induced Self-Assembly Conducted in 

aqueous media. 
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Inspired by initial discovery of PISA in methanol and ethanolic solvents, the Armes 

group conducted a series of PISA experiments in water, a more environmentally friendly 

and convenient solvent. 53 The succesful PISA in water requires careful selection of a 

water-miscible monomer, which when polymerized, formed a water-insoluble polymer. 

Some examples include N-isopropylacrylamide (PNIPAM),54 N,N-diethylacrylamide 

(DEAA),55 2-methoxyethyl acrylate (MEA),56 and 2-hydroxypropyl methacrylate 

(HPMA).57 However, in most cases, only spherical nanoobjects could be observed. Blanaz 

et al. performed aqueous dispersion polymerization with HPMA as a core forming 

monomer and poly(ethylene glycol) (PEG) as corona, which provided access to non-

spherical morphologies like worms and vesicles.51 The trend of morphology change ( from 

spheres to worms to vesicles) as the hydrophobic block increaases, is similar to the PISA 

Figure 1.5. Optical photos of the RAFT polymerization and TEM images of the 

morphologies formed at 2h and 24h.1 
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cases in organic solutions discussed above. Moreover, the transition from worms to vesicle 

structures was carefully studied. TEM images clearly provided evidence that highly 

branched worms swell at junction points, and then wraps around to form jellyfish structures, 

and finally enclose to form vesicles. 57 All this remarkable evolution in copolymer 

morphology happened within 2h at 70°C, with high HPMA conversion.   

 

1.7 Research Outline 

The goal of this research was to functionalize inorganic nanoparticles with grafted 

polymers using new surface chemistry and novel polymer architecture and apply these 

polymer-grafted nanoparticles to various research areas including drug-release, directed 

self-assembly and mechanical reinforcement. The results are encouraging and proved the 

versatility of polymer-inorganic composite materials. With the right combination of core 

material (silica, gold, magnetic, etc.), polymer structure (water soluble polymers, low Tg 

polymers, stimuli responsive polymers, etc.), and polymer architecture (block copolymer, 

bimodal polymers, mixed brush polymers, etc.), we were able to fabricate novel materials 

that meet the specific requirements in a wide range of applications in nanotechnology.   

The first part of this work (Chapters 2 & 3) focused on novel self-assembly 

techniques. Chapter 2 described the design and characterization of a new self-assembly 

technique called surface-initiated polymerization-induced self-assembly (SI-PISA). We 

rationally designed this one-pot synthesis method based on mixed brush grafted silica 

nanoparticles. Nano-assemblies with different shapes including 1D string, 2D disks, 3D 

vesicles and solid spheres were obtained at high solid content in various solvent systems. 

The scheme is based on sequential SI-RAFT polymerization strategy. A solvent-miscible 
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brush was first grafted onto 15 nm silica NPs, and self-assembly was subsequently induced 

by the polymerization of a second brush that was solvent-immiscible. Self-assembly 

occurred in situ with the SI-polymerization of the second brush. The shape of the nano-

objects was found to be controlled by the chemical structure of grafted polymers, chain 

length of grafted polymers, and reaction mediums. 

In Chapter 3, we utilized the low blocking efficiency of reversed monomer addition 

order in combination with surface initiated RAFT polymerization to establish a facile 

procedure towards mixed polymer brush grafted nanoparticles SiO2-g-(PS1, PS1-b-PMAA). 

The SiO2-g-(PS, PS-b-PMAA) nanoparticles were analyzed by GPC deconvolution, and 

the fraction of each polymer component was calculated. Additionally, the SiO2-g-(PS, PS-

b-PMAA) were amphiphilic in nature, and showed unique self-assembly behavior in water. 

The second part of this work (Chapter 4) is based on drug delivery application. A 

pH and thermal dual-responsive nanocarrier with silica as the core and block copolymer 

composed of poly(methacrylic acid) (PMAA) and poly(N-isopropylacrylamide) (PNIPAM) 

as the shell was prepared by surface initiated RAFT polymerization. These dual-responsive 

nanoparticles were used as carriers to deliver the model drug doxorubicin (DOX) with 

unusually high entrapment efficiency and loading content. The release rate was controlled 

by both pH and temperature of the surrounding medium. Moreover, these particles 

selectively precipitated at acidic conditions with increased temperature, which may 

enhance their ability to accumulate at tumor sites. Cytotoxicity studies demonstrated that 

DOX-loaded nanoparticles are highly active against Hela cells, and more effective than 

free DOX of equivalent dose. A cellular uptake study revealed that SiO2-PMAA-b-

PNIPAM nanoparticles could successfully deliver DOX molecules into the nuclei of Hela 
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cells. All these features indicated that SiO2-PMAA-b-PNIPAM nanoparticles are a 

promising candidate for therapeutic applications. 

The third part of this work (Chapter 5 & 6) is surface functionalization of silica 

nanoparticles with low Tg rubbery polymers, and the use of these polymer-grafted 

nanoparticles as mechanical reinforcement fillers. Chapter 5 documented the collaborative 

work between our research group and Michelin North America Inc. to study the influence 

of grafting density and molecular weight of grafted polymer on mechanical properties of 

polyisoprene tire rubber. The grafting of polyisoprene (PIP) to different types of silica has 

been studied and developed by RAFT polymerization processes.  This has been shown to 

be applicable for preparing grafted nanoparticles that are useful for exploring new surface 

interactions between silica fillers and rubber materials. Scale up approaches have been 

successful and detailed mechanical property studies were documented to assess the 

potential of these new graft architectures on improving rubbery composite properties. 

Chapter 6 is focused on another rubber material, polychloroprene. Compared with other 

rubbers, polychloroprene exhibits excellent resistant to oil, grease, wax, ozone and harsh 

weather conditions. RAFT polymerization and surface-initiated RAFT polymerization (SI-

RAFT) of polychloroprene was studied. The SI-RAFT polymerization rate of chloroprene 

was found to be slower than free solution RAFT polymerization, and further regulated by 

graft density of the grafted polymers. The resulting polychloroprene-grafted silica 

nanoparticles were directly crosslinked to get matrix-free polychloroprene nanocomposites 

that showed good nanoparticles dispersion and superior mechanical properties compared 

with unfilled polychloroprene rubber.  
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CHAPTER 2 

SURFACE-INITIATED POLYMERIZATION-INDUCED SELF-ASSEMBLY  
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2.1 Abstract 

     The self-assembly behavior of amphiphilic polymer grafted nanoparticles are 

systematically studied in this chapter. A new self-assembly technique, namely surface-

initiated polymerization-induced self-assembly (SI-PISA) was developed that enabled the 

one-pot synthesis of hybrid nano-objects with different shapes including 1D strings, 2D 

disks, 3D vesicles and solid spheres. This SI-PISA was established based on a bimodal 

polymer-grafted NPs structure. A solvent-miscible brush was first grafted onto 15 nm silica 

NPs, and self-assembly was subsequently induced by the polymerization of a second brush 

that was solvent-immiscible. Self-assembly occurred in situ with the SI-polymerization of 

the second brush. The shape of the nano-objects was found to be controlled by the chemical 

structure of grafted polymers, chain length of grafted polymers, and reaction media.  

2.2 Introduction 

Polymerization-induced self-assembly of block copolymers (PISA) has drawn 

considerable attention over the past ten years since the seminal reports by Pan et al. 1-2 

Compared with the traditional method of preparing block copolymer assemblies, PISA has 

the advantages of a one-step reaction and relatively high solids content (20-50% w/w).3-4 

Typically, a soluble homopolymer is synthesized and chain-extended with a second 

monomer that when polymerized, becomes insoluble and drives in situ self-assembly to 

form stable nano-objects. A wide range of nanostructures have been observed, including 

spherical micelles, worms, octopi structures, jellyfish structures and vesicles.5 A variety of 

controlled radical polymerization methods (NMP6, ATRP7, RAFT8-10) have been used for 

PISA with RAFT being the most widely studied. Despite great versatility of PISA in terms 

of polymerization techniques, reaction solvent and monomer selection, as far as we know, 
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very few attempts have been made to prepare hybrid assemblies that are composed of 

polymers and inorganic nanoparticles.11 Recently, Tan et al. and Armes et al. successfully 

encapsulated silica nanoparticles within vesicles during PISA synthesis.12-13 However, 

there was no control over the assembly of the encapsulated nanoparticles. Currently, 

polymer-directed self-assembly of inorganic nanoparticles remains a challenging task. 

Typically, it has been achieved via a solvent switching method that is relatively tedious 

and limited by low nanoparticle concentration.14-16 These observations suggest an 

intriguing question: can we utilize PISA to direct the self-assembly of inorganic 

nanoparticles in situ during the polymerization process and form well-defined nano-

objects? To address this question, we designed a system based on bimodal polymer grafted 

nanoparticles. The procedure to synthesize such mixed brushes has been established using 

a sequential surface-initiated RAFT (SI-RAFT) polymerization strategy.17 After the first 

SI-RAFT polymerization, active chain-end groups were removed by reacting with an 

excess of AIBN. Then, a second population of RAFT agent was grafted onto the particles 

surface and a second monomer was polymerized. The polymerizations were well-

controlled, showing the common characteristics of living polymerization.  

In this work, the first case of surface-initiated polymerization-induced self-

assembly by polymerizing benzyl methacrylate(BzMA) from SiO2-g-(PHEMA, CPDB) 

nanoparticles which served as both chain transfer agent and stabilizer is demonstrated. 

Hybrid nano-objects with string-shaped morphologies were obtained in one step. 18 

However, we did not observe higher ordered assemblies before macroscopic phase 

separation occurred, probably due to the poor stabilizing effect of PHEMA in methanol. 19 
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  An improved(SI-PISA) was designed then employed that leads to stable 3D 

assemblies at high NP concentration (~10mg/ml). Self-assembly occurred spontaneously 

during polymerization, which is analogous to PISA of block copolymers. 3D nanovesicles 

were obtained in one pot. Nanovesicles are of particular interest because of their hollow 

structures that enable applications in drug delivery,20 catalysis,21 bioimaging,22 and cancer 

therapy.23-24 In recent literature, such vesicles were prepared by coating inorganic NPs with 

amphiphilic ligands25 or polymers. 14-15 As for polymer-directed self-assembly, both mixed 

brush grafted NPs15, 20 and block copolymer tethered NPs14, 21, 23 have been prepared that 

successfully assembled into thin-layer vesicles. Typically, the polymer-grafted NPs were 

first prepared in a good solvent for each component followed by purification steps to 

remove free polymers. Then, self-assembly was triggered by addition of a selective 

solvent23, 25 or film rehydration14-15, which required multiple steps of sample preparation 

and was limited by low NP concentration. For example, NP concentration was kept below 

260 µg/ml for the film rehydration method3, 8;  Nie et al. studied the concentration effect 

on self-assembly of PEG-b-PCL tethered gold NPs by solvent switching and found that 

nanoscale vesicle formation was limited to particle concentrations less than 250 μg/ml, 

otherwise huge submicron-sized assemblies were formed.26 Thus, gram-scale production 

of such hybrid vesicular assemblies still remains a challenging task.  

This approach establishes a method to prepare nanovesicles at relatively high NP 

concentration, and does not require any post-polymerization processing. Moreover, this 

strategy provided an opportunity to observe the evolution of nanovesicle formation from 

well-dispersed NPs, that aided our understanding of how surface-grafted polymers direct 

the vesicular assembly of NPs. 
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2.3 Experimental Section 

Materials: 2-Hydroxyethyl methacrylate (Acros, 99%) and benzyl methacrylate 

(Acros, 96%) were passed through basic aluminum column to remove inhibitors before 

use. 2.2’-Azobisisobutyronitrile (AIBN) was purified by recrystallization from methanol 

and dissolved in methanol to make a 10mM solution. All other reagents were used as 

received. 

 

Synthesis of PHEMA grafted silica nanoparticles. 4-Cyanopentanoic acid 

dithiobenzoate (CPDB) anchored 15nm silica nanoparticles were prepared according to the 

literature. Graft density was determined by measuring the UV-vis peak at 304 nm, and 

calculated from CPDB calibration curve. A solution of 2-hydroxyethyl methacrylate (2.27 

g), AIBN (263µl of 10mM solution in methanol), CPDB-anchored silica nanoparticles 

(0.76g, 23µmol/g) and DMF (5ml) was prepared in a Schlenk tube. The mixture was 

degassed by three freeze-pump-thaw cycles, backfilled with nitrogen, and then placed in 

an oil bath at 65°C for 5 hours. The polymerization solution was quenched in an ice bath 

and poured into diethyl ether to precipitate the SiO2-g-PHEMA nanoparticles. The SiO2-g-

PHEMA nanoparticles were redispersed in DMF and precipitated in diethyl ether two more 

times to remove excess monomers and initiators. 

 

Chain End Deactivation of SiO2-g-PHEMA.  Solid AIBN [58mg (20 eq)]  was 

added to a solution of SiO2-g-PHEMA in DMF and heated at 65°C for 1 hour. The resulting 

solution was poured into a large amount of diethyl ether and centrifuged at 5000rpm for 5 
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min. The recovered SiO2-g-PHEMA completely lost its original pink color and appeared 

to be white in color. 

 

Second RAFT Agent attachment to SiO2-g-PHEMA. SiO2-g-PHEMA 

nanoparticles from the previous step were dispersed in ~15ml DMF, to which 17µl of 3-

aminopropyl(dimethyl)ethoxysilane (APTES) was added to react with the remaining 

surface hydroxyl groups under N2 for 1.5 hours. Excess AIBN was washed out by ether 

precipitation and activated CPDB (50 mg) was added to anchor a second population of 

RAFT agent to give SiO2-g-(PHEMA, CPDB) nanoparticles. Graft density was determined 

by measuring the UV-vis peak at 304 nm, and calculated from the CPDB calibration curve. 

TGA results were used to adjust the calculation (55% weight percent silica in PHEMA 

grafted NPs)17. (It is worth noting that the added APTES will not react with hydroxyl 

groups on the PHEMA chains. In a control experiment, free PHEMA was synthesized, 

followed by RAFT agent cleavage, reaction with APTES and then activated CPDB using 

the same procedure. As a result, no RAFT agent was attached as detected by UV-vis 

absorption.) 

Surface-initiated RAFT polymerization of BzMA using SiO2-g-(PHEMA, 

CPDB)  as a macro chain transfer agent and stabilizer. SiO2-g-(PHEMA, CPDB) 

nanoparticles (0.22g, 45wt% silica), BzMA (0.76 g), AIBN (56µl of 10mM solution in 

methanol) and methanol (8ml) were mixed together and added to a Schlenk flask with 

rubber stopper. The mixture was degassed by three freeze-pump-thaw cycles, backfilled 

with nitrogen and then placed in an oil bath of 80°C. In a sealed tube environment, the tube 
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is under slight pressure and the internal measured temperature was consistent with the bath 

temperature. Aliquots of the reaction solution were withdrawn from the flask at 1h, 1.5h, 

2h, 2.5h, 3.5h, 4.5h respectively.  

Synthesis of PHPMA grafted silica nanoparticles. 4-Cyanopentanoic acid 

dithiobenzoate (CPDB) anchored 15nm silica nanoparticles were prepared according to 

literature. A solution of 2-hydroxypropyl methacrylate (3.8 g), AIBN (266µl of 10mM 

solution in methanol), CPDB-anchored silica nanoparticles (1g, 23µmol/g) and DMF (8ml) 

was prepared in a Schlenk tube. The mixture was degassed by three freeze-pump-thaw 

cycles, backfilled with nitrogen, and then placed in an oil bath at 65°C for 3 hours. The 

polymerization solution was quenched in an ice bath and poured into 1:1 mixture of diethyl 

ether and petroleum ether to precipitate the SiO2-g-PHPMA nanoparticles. The SiO2-g-

PHPMA nanoparticles were redispersed in DMF and precipitated two more times to 

remove excess monomers and initiators. 

 

Chain End Deactivation of SiO2-g-PHPMA. 80mg (20 eq) solid AIBN was added 

to a solution of SiO2-g-PHPMA in DMF and heated at 65°C for 1 hour. The resulting 

solution was poured into large amount of 1:1 mixture of diethyl ether and petroleum ether 

and centrifuged at 5000rpm for 5 min. The recovered SiO2-g-PHPMA completely lost its 

original pink color and appeared to be white in color. 

 

Second RAFT Agent attachment to SiO2-g-PHPMA. SiO2-g-PHPMA 

nanoparticles from the previous step were dispersed in ~15ml DMF, to which 20 µl of 3-
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aminopropyl(dimethyl)ethoxysilane was added to react with the remaining surface 

hydroxyl groups under N2 for 1.5 hours. Excess AIBN was washed out by ether 

precipitation and activated CPDB (50 mg) was added to anchor a second population of 

RAFT agent to give SiO2-g-(PHPMA, CPDB) nanoparticles, which regained the 

characteristic pink color of the RAFT agent. Graft density was determined by measuring 

the UV-vis peak at 304 nm, and calculated from CPDB calibration curve. The TGA result 

was used to adjust calculation (60% weight percent silica in PHPMA grafted NPs). (It is 

worth noting that the added APTES will not react with hydroxyl groups on PHPMA chains. 

In a control experiment, free PHPMA was synthesized, followed by RAFT agent cleavage, 

reaction with APTES and then activated CPDB using the same procedure. As a result, no 

RAFT agent was attached as detected by UV-vis absorption.) 

 

Surface-initiated RAFT polymerization of BzMA using SiO2-g-(PHPMA, 

CPDB)  as macro chain transfer agent and stabilizer. SiO2-g-(PHPMA, CPDB) 

nanoparticles (0.143g, 70wt% silica), BzMA (0.42 g), ACVA (36µl of 10mM solution in 

ethanol) and ethanol (8ml) were mixed together and added to a Schlenk flask with rubber 

stopper. The mixture was degassed by three freeze-pump-thaw cycles, backfilled with 

nitrogen and then placed in an oil bath of 70°C. Aliquots of the reaction solution were 

withdrawn from the flask periodically since the beginning of polymerization. Grafted 

polymer chains were cleaved from silica nanoparticles by reacting with an excess amount 

of HF. Toluene was then used to selectively dissolve PBzMA for GPC analysis. 
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Synthesis of PHPMA grafted silica nanoparticles. A solution of methacrylic acid 

(2.6 g), AIBN (300µl of 10mM solution in methanol), CPDB-anchored silica nanoparticles 

(1g, 23µmol/g) and DMF (6ml) was prepared in a Schlenk tube. The mixture was degassed 

by three freeze-pump-thaw cycles, backfilled with nitrogen, and then placed in an oil bath 

at 65°C for 2.5 hours. The polymerization solution was quenched in an ice bath and poured 

into diethyl ether to precipitate the SiO2-g-PMAA nanoparticles. The SiO2-g-PHPMA 

nanoparticles were redispersed in DMF and precipitated two more times to remove excess 

monomers and initiators. 

 

Surface-initiated RAFT polymerization of BzMA using SiO2-g-(PMAA, 

CPDB)  as macro chain transfer agent and stabilizer. SiO2-g-(PMAA, CPDB) 

nanoparticles (0.16g), BzMA (1.5 g), ACVA (86µl of 10mM solution in ethanol) and 

ethanol (20ml) were mixed together and added to a Schlenk flask equipped with a rubber 

stopper. The mixture was degassed by three freeze-pump-thaw cycles, backfilled with 

nitrogen and then placed in an oil bath of 70°C. Aliquots of the reaction solution were 

withdrawn from the flask periodically since the beginning of polymerization. Grafted 

polymer chains were cleaved from the silica nanoparticles by reacting with an excess 

amount of HF. Toluene was then used to selectively dissolve PBzMA for GPC analysis. 

Characterization. 

1H NMR (Bruker ARX 300/ARX 400) was conducted using CD3OD as the solvent. 

Molecular weights and dispersity were determined using a gel permeation chromatography 

(GPC) equipped with a 515 HPLC pump, a 2410 refractive index detector, and three 
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Styragel columns. The columns consisted of HR1, HR3 and HR4 in the effective molecular 

weight ranges of 100-5000, 500-30000, and 5000-500000, respectively.  THF was used as 

eluent at 30°C and flow rate was adjusted to 1.0mL/min. Molecular weights were calibrated 

with poly(methyl methacrylate) standards obtained from Polymer Laboratories. Dynamic 

Light Scattering characterizations were conducted using Zetasizer Nano ZS90 from 

Malvern. Each sample was diluted with methanol to ~1mg/ml prior to DLS analysis. The 

transmission electron microscopy (TEM) was performed on a Hitachi H8000 TEM at an 

accelerating voltage of 200 KV. The samples were prepared by depositing a drop of the 

diluted nanoparticle solution in methanol on copper grids.  

2.4 Results and Discussion 

2.4.1 Self-assembly of SiO2-g-(PHEMA, CPDB) nanoparticles into 1D strings. 

Scheme 2.1 shows the synthetic route toward SiO2-g-(PHEMA, CPDB) from bare 

15nm silica nanoparticles. Poly(2-hydroxyethyl methacrylate) (PHEMA) was selected as 

the first polymer brush since it is miscible with methanol, and has been previously reported 

as a stabilizing block for PISA.19  The graft density of PHEMA was 0.1 ch/nm2, as 

calculated from the characteristic RAFT UV-vis peak at 304nm. The medium graft density 

secured enough polymer content to solubilize the silica nanoparticles, and yet left enough 

surface space for the growth of the second polymer population.  Surface-initiated 

polymerization of HEMA was carried out in DMF at 65 °C, with molar ratio between 

species [RAFT]:[HEMA]:[AIBN]= 1:1000:0.15. After 5 hours, 19% conversion was 

achieved, corresponding to 190 repeat units and 24.7 KDa molecular weight (assuming 

100% CTA efficiency). RAFT end groups were subsequently removed by reacting with 

20eq AIBN.17, 27 The resulting PHEMA grafted nanoparticles were then treated with 
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aminopropyldimethylethoxysilane and activated CPDB to immobilize a second RAFT 

agent. The second graft density was determined to be 0.15 ch/nm2 based on UV analysis 

and TGA result (Figure 2.1).  

 

 

 Figure 2.1. TGA and UV-vis analysis of SiO2-g-[PHEMA, CPDB]. 

Scheme 2.1. (A) Synthesis of SiO2-g-(PHEMA, CPDB) nanoparticles. (B) Surface-

initiated RAFT dispersion polymerization of BzMA from SiO2-g-(PHEMA, CPDB) 

nanoparticles in methanol. 
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  The SiO2-g-(PHEMA, CPDB) nanoparticles prepared in the previous steps were 

used to perform surface-initiated dispersion RAFT polymerization of BzMA in methanol 

(Scheme 2.1B). The SiO2-g-(PHEMA, CPDB) nanoparticles were well-dispersed in 

methanol to form a homogenous solution, to which BzMA, AIBN, and trioxane were 

added. The molar ratio between RAFT: BzMA: AIBN was set at 1:1200:0.15, with solid 

content 12% (w/w%). BzMA was selected since it has been widely used as core forming 

material in alcoholic PISA systems and showed fast polymerization rate and high 

conversion.28-29 The experimental design allows the surface PHEMA chains to solubilize 

each individual silica nanoparticle in methanol at the beginning of the polymerization. As 

the polymerization was initiated, PBzMA chains grew from the silica surface, forming 

(PHEMA,  PBzMA) bimodal polymer-grafted nanoparticles. These bimodal nanoparticles 

were individually stable at the early stages when PBzMA chains were relatively short. 

However, with the continuous increase of insoluble PBzMA chain lengths, each particle 

became more and more solvophobic and beyond a certain point, self-assembly occurred to 

minimize the contact between PBzMA chains and the solvent. 

  Visual observation during polymerization indicated formation of assemblies 

(Figure 2.2A). The polymerization solution was pink and transparent at 0h, and gradually 

faded in color to become almost colorless, but still transparent at 1h. Significant visual 

turbidity change began at 1.5 h, when a slightly turbid solution was formed. The turbidity 

increased with time and eventually formed a milky-white solution at 4.5h. All the turbid 

solutions formed in the first 4.5 hours were homogenous and stable, with no macroscopic 

precipitation. However, samples after 5 hours were less stable with white precipitates 

forming on the walls of the reaction flask.  
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Figure 2.2. (A) Optical digital photo of the surface-initiated RAFT polymerization 

at different times (B) DLS of polymerization solution at different times. 

Figure 2.3. (A) Ln(M0/Mt) vs time plot for surface-initiated BzMA polymerization 

in methanol.  (B) Mn and Đ vs monomer conversion plots for surface-initiated 

BzMA polymerization in methanol. 
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The initial pink color loss was quite interesting and worth noting, as it has not been 

observed in normal surface-initiated polymerization of methacrylates.  We reason that the 

disappearance of pink color occurred at the onset of self-assembly, when the insoluble 

PBzMA chains collapsed and became wrapped into the core part of the assemblies. The 

surface-initiated RAFT polymerization was followed by 1H NMR and gel permeation 

Entry 
No. 

Reaction 
Time (h) 

Conve
rsion 
(%)[a] 

Bimodal 
polymer 
composition[b] 

Mn of 
PBzMA 
(g/mol)[

c] 

Mw/M
n[d] 

Number 
Average 
Size 
(nm)[e] 

Visual 
appearanc
e 

153-0 0 - PHEMA190 
 

  28 Pink 
transparent 
solution 

153-1 1 1.2 PHEMA190 
PBzMA12 

N/A N/A 55 Very light 
pink 
transparent 
solution 

153-2 1.5 4.9      PHEMA190 
     PBzMA49 

13000    1.12      71   Slightly 
turbid 
solution 

153-3 2 5.8 PHEMA190 
PBzMA58 

14500 1.16 100 Slightly 
turbid 
solution 

153-4 2.5 7.0 PHEMA190 
PBzMA70 

16000 1.16 142 Turbid 
solution 

153-5 3.5 10.0 PHEMA190 
PBzMA100 

18800 1.15 169 Turbid 
solution 

153-6 4.5 12.1 PHEMA190 
PBzMA121 

21500 1.13 225 Milky-
white 
solution 

Table 2.1. Summary of reaction time, monomer conversions, GPC data, DLS 

data, and visual appearance obtained for a series of SiO2-g-(PHEMA, PBzMA) 

nanoparticles.  

 

[a] Determined by 1H NMR spectroscopy. [b] Determined by 1H NMR spectroscopy, 

assuming 100% RAFT agent efficiency. [c] Determined by size exclusion 

chromatography using PMMA as standard. [d] Determined by size exclusion 

chromatography. [e] Determined by dynamic light scattering. Number average size 

reported for all samples. 
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chromatography (GPC). Monomer conversion was calculated based on the ratio between 

the monomer vinyl peak at 5.6 ppm and the internal standard peak at 5.1 ppm (trioxane). 

GPC analysis was conducted by reacting polymer grafted nanoparticles with HF to cleave 

the chains from the silica surfaces, and then THF was used to selectively dissolve PBzMA. 

Details of reaction time, monomer conversions, GPC data, DLS data, and visual 

appearance are summarized in Table 2.1. Polymerization kinetics showed a linear 

relationship between ln([M]0/[M]t) and time (Figure 2.3A). The onset of turbidity at ca. 

1.5h corresponded to 49 repeat units of PBzMA, which is the critical degree of 

polymerization for phase separation in this case. The molecular weight of PBzMA 

increased linearly with conversion, with dispersity remaining below 1.2 (Figure 2.3B). 

GPC traces showed a gradual shift toward higher molecular weights as the polymerization 

proceeded (Figure 2.4). All the results suggested that the surface-initiated RAFT dispersion 

polymerization of PBzMA was well controlled with PHEMA grafted nanoparticles as 

stabilizer.  

DLS studies indicated an increase in the hydrodynamic size of nanoparticles with 

reaction time, which is consistent with the turbidity change observed during 

polymerization. Number average sizes were reported to offer comparison with the size of 

aggregates observed with TEM.11 The solution before reaction (0 h) had a number-average 

diameter of 28 nm, which corresponds to individually dispersed PHEMA grafted 

nanoparticles. At 1.5h, when the initial turbidity change could be visually observed, the 

average particle size increased to 71 nm, indicating a slight degree of agglomeration 

between nanoparticles. The mean particle diameter grew progressively with 
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polymerization time, and reached 225nm at 4.5hour, when a milky-white solution was 

formed. 

               In order to investigate the morphology of nanoparticle assemblies, TEM was used 

to follow the polymerization and representative images are shown in Figure 2.5. Figure 

2.5A showed that particles were individually dispersed in methanol before reaction. At 

1.5h, particles began to connect with each other and formed mostly one-dimensional short 

strings composed of several nanoparticles (Figure 2.5B). As the polymerization continued, 

the strings became longer and formed branched structures (Figure 2.5C). At 4.5h, highly 

branched string structures were formed, accompanied with higher degree of aggregation at  

 

Figure 2.4. GPC traces of BzMA chains cleaved from silica nanoparticle 

surfaces. 
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Figure 2.5. TEM images of the morphologies formed at 0 h (A), 1.5 h (B), 2 h(C), 

and 4.5 h (D). All scale bars: 200nm. 

Figure 2.6. TEM of polymerization sample after 5h. Scale bar 500nm.  
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junction points.  Samples after 5h formed cross-linked nanoparticle networks (Figure 2.6) 

that eventually precipitated from solution. 

The basis for the self-assembly process is explained in Scheme 2.2. When the 

PBzMA chains became sufficiently long, the mixed polymer brushes will first phase 

separate (due to polymer- 

polymer immiscibility) by chain-stretching and rearranging to form surface 

PHEMA domains and surface PBzMA domains. Then, the PBzMA domains between 

nanoparticles will aggregate (due to polymer-solvent immiscibility) with each other to form 

nanoparticle pairs. The closely associated nanoparticle pairs lead to a higher PHEMA 

polymer density around the centre than the poles of nanoparticle pairs. As a result, the 

following nanoparticles could only approach from the ends, forming nanoparticle strings. 

This self-assembly mechanism is supported by TEM images at high magnification (Figure 

2.7). It is clear that the nanoparticles were not in direct contact with each other. Instead, 



38 
 

there was a 5-8 nm gap between each nanoparticle pair, which represents the collapsed 

PBzMA domain. 

It is worth noting that the self-assembly mechanism of these bimodal polymer 

grafted  nanoparticles is different from most of the polymer-directed 1D colloidal 

assemblies reported previously, where sparsely grafted homopolymers30 or block 

copolymers31-32 were used to direct the anisotropic assembly. The anisotropy, in this case, 

originated from the phase separation of immiscible polymer brushes and guided the in situ 

formation of 1D assemblies without the need of any post-polymerization process.  

2.4.2 Self-assembly of SiO2-g-(PHPMA, CPDB) nanoparticles into 3D vesicles. 

To further explore SI-PISA for higher-order self-assemblies, an improved design 

of surface-initiated polymerization-induced self-assembly (SI-PISA) that leads to stable 

3D assemblies at high NP concentration (~10mg/ml) was designed by replacing PHEMA 

brushes with PHPMA brushes and using ethanol as solvent instead of methanol. Self-

Figure 2.7. High magnificatio TEM nanoparticle strings. Scale 

bar 100nm.  
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assembly occurred spontaneously during polymerization, which is analogous to PISA of 

block copolymers. However, in contrast to block copolymer PISA, the polymer chains were 

anchored onto inorganic NP surfaces, forming mixed brush grafted NPs which directed the 

self-assembly of NPs into hybrid assemblies. In the current approach homopolymer 

brushes were first grafted onto inorganic NPs that were compatible with the target solvent 

(ethanol) to disperse NPs, and then a second population of brushes was polymerized that 

were immiscible in the solvent. As the growth of the second brush population proceeded, 

the increased "solvophobicity" of the immiscible chains induced interparticle collapse, and 

directed the self-assembly of inorganic cores. Hybrid vesicles with sizes on the nanometer 

scale were produced in situ with polymerization, without the need for any post-

polymerization steps. Moreover, by taking samples periodically after the polymerization 

started, we observed the entire evolution process from well-dispersed NPs to short 

nanostrings, to nanorings, to nanovesicles and eventually, micron-sized aggregates, that 

provided interesting mechanistic insights about the birth and death of NP vesicles. 

  The mixed brush grafted NPs were synthesized using a sequential surface-initiated 

RAFT polymerization strategy that provided precise control over the composition of both 

brushes. In the first step, SiO2-g-(PHPMA, CPDB) NPs were prepared as shown in Scheme 

2.3A. Poly(hydroxypropyl methacrylate) (PHPMA), which has been used to successfully 

stabilize 3D assemblies of block copolymer PISA was grafted onto 15 nm silica NPs using 

surface-initiated RAFT polymerization in DMF at 65 °C. PHPMA with a molecular weight 

of 16 kDa and 0.1 ch/nm2 graft density was achieved, which was confirmed by NMR and 

TGA characterization. Chain-end RAFT groups were removed by reacting with excess 

AIBN, to deactivate the first polymer brush.17, 33 
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   Then, a second RAFT agent was attached onto the unreacted surface with 0.1 

ch/nm2 graft density, which was calculated from the characteristic UV absorption at 304 

nm and TGA data. The resulting NPs, SiO2-g-(PHPMA, CPDB) appeared as viscous pink 

solids after solvent removal, and could be easily re-dispersed in ethanol and used as 

precursors to vesicular assemblies. 

 

 

Surface-initiated polymerization of a second monomer benzyl methacrylate 

(BzMA) from SiO2-g-(PHPMA, CPDB) was conducted at 70 °C with the molar ratio of 

RAFT: BzMA: ACVA: = 1:1000:0.15. Ethanol was added as solvent to achieve ~10mg/ml 

Scheme 2.3. (A) Synthesis of SiO2-g-(PHPMA, CPDB). (B) One-pot surface-

initiated RAFT polymerization-induced self-assembly of grafted NPs into vesicles. 
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NP concentration. Both reaction solvent and monomer were carefully selected as ethanol 

is a good solvent for PHPMA grafted NPs and BzMA monomer, but a poor solvent for 

PBzMA. As the polymerization proceeded, the growing PBzMA chains promoted self-

assembly by interparticle collapse, while PHPMA chains served as stabilizers to prevent 

uncontrolled agglomeration. (Scheme 2.3B) 

Figure 2.8. (A) Visual appearance of each sample withdrawn during 

polymerization. (B) DLS of each sample withdrawn during polymerization. (C) 

Polymerization kinetics of surface-initiated RAFT polymerization of BzMA from 

SiO2-g-(PHPMA, CPDB) in ethanol at 70°C. 
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   The formation of assemblies during polymerization could be observed from the 

turbidity changes of the reaction solution. A small sample was withdrawn from the reaction 

flask periodically throughout polymerization and the visual appearance of each sample is 

shown in Figure 2.8A. The polymerization system started as a clear, light-pink, 

homogenous solution, which remained unchanged during the first 1.5 hours. The onset of 

turbidity changes occurred at 120min, when a slightly turbid solution was observed. At this 

time, the solution was still homogenous with no macroscopic precipitate. The turbidity 

increased with time and macroscopic precipitates were observed after 180 min. White 

precipitates formed and adhered onto the wall of glass vials (Figure 2.8, right 3 vials in C), 

indicating formation of unstable assemblies. 

  To better understand the self-assembly mechanism, each sample displayed in 

Figure 2.8A was analysed by dynamic light scattering (DLS) to obtain NP size distributions 

(Figure 2.8B). The trend in nanoparticle diameter measured by DLS agreed with visual 

observations, and clearly indicated the formation of assemblies. At 0 min, only one peak 

at 45 nm was observed, which corresponded to individually dispersed SiO2-g-(PHPMA, 

CPDB) NPs. A second peak centred at ca. 200nm appeared soon after the reaction started, 

indicating initial formation of aggregates. As the polymerization proceeded, the individual 

NP peak gradually disappeared, while the aggregates peak increased as well as shifted 

towards larger size. As the polymerization proceeded even further, a new peak at micron-

scale size appeared, and quickly became the dominant size in the distribution. These data 

indicated that there were two stages of self-assembly where well-dispersed nanoparticles 

first self-assembled into nanoscale assemblies, which then further evolved into microscale 

assemblies. 
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Figure 2.9. Molecular weight versus conversion and polydispersity for surface-

initiated polymerization of BzMA from SiO2-g-(PHPMA, CPDB) NPs at 70°C in 

ethanol 

Figure 2.10. THF gel permeation chromatograms (vs poly (methyl 

methacrylate) standards) obtained from PBzMA chains cleaved-off from 

SiO2-g-(PHPMA, PBzMA) NPs. 
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  The polymerization of BzMA was also monitored by 1H NMR to obtain monomer 

conversion. Interestingly, the polymerization kinetics curve, Ln(M0/Mt) vs time, displayed 

three different stages (Figure 2.8C), even though the reaction temperature remained 

constant at 70°C. Additionally, the three stages were separated by specific points correlated 

with the onset of initial cloudiness and the onset precipitate formation, which provides 

some interesting mechanistic insights. The kinetics of the first stage at 0 to 120 min 

corresponded to normal solution based surface-initiated controlled radical polymerization, 

when short PBzMA chains grew from well-dispersed NPs.  The rate of polymerization 

increased in the second stage from 120 to 180 min, which corresponded to the onset of 

aggregation as observed both visually and by DLS. At this stage, PBzMA chains reached 

a critical length and nascent assemblies formed with insoluble PBzMA chains collapsing 

with each other, and the unreacted BzMA monomers preferentially remaining within the 

PBzMA regime, thus increasing the local monomer concentration. Similar behaviour has 

been reported in block copolymer PISA in both alcoholic medium and aqueous solution. 5 

The third stage, from 180 to 280 min, was marked by the onset of precipitation. At this 

stage, micron-sized assemblies. were formed that tended to precipitate from the reaction 

medium. As a result, chain-transfer agents and monomers were no longer in the same 

phase, chain end mobility was restricted, and the reaction kinetics decreased. Overall the 

Mn of the BzMA chains showed a linear increase with conversion during the entire 

polymerization period and polydispersity of PBzMA remained below 1.1 (Figure 2.9). The 

corresponding GPC traces of PBzMA chains shifted to higher molecular weights during 

the polymerization, with unimodal distributions, (Figure 2.10) indicating that the 

polymerization of BzMA proceeded with good control, and resulted in a well-defined 
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mixed brush polymer structure. The details of the reaction time, monomer conversions, 

GPC data, DLS data, and visual appearance obtained for a series of SiO2-g-(PHPMA, 

PBzMA) NPs are summarized in Table 2.2. 

Table 2.2 Summary of reaction time, monomer conversions, GPC data, DLS data, and 

visual appearance obtained for a series of SiO2-g-(PHPMA, PBzMA) nanoparticles. 

[a] Determined by 1H NMR spectroscopy. [b] Determined by 1H NMR spectroscopy. 

Assuming 100% RAFT agent efficiency. [c] Determined by size exclusion chromatography 

using PMMA as standard. [d] Determined by size exclusion chromatography. [e] Determined 

by dynamic light scattering. Z-average size reported for all samples. 

Entry 
No. 

Reac
tion 
Time 
(min) 

BzMA 
Conversi
on (%)[a] 

Bimodal 
polymer 
compositio
n[b] 

Mn of 
PBzMA 
(g/mol) 
[c] 

Mw/M
n 
[d] 

Hydrodyna
mic radius 
(nm)[e] 

Visual 
appearance 

180-0 0 0 PHPMA111 N/A N/A 45.12 Clear  

180-1 60 0.3 PHPMA111 
PBzMA3 

N/A N/A 51.46 Clear  

180-2 90 1.1 PHPMA111 
PBzMA11 

6500 1.07 54.15 Clear  

180-3 120 2.2 PHPMA111 
PBzMA22 

9100 1.09 171.3 Slight 
Cloudy 

180-4 150 5.0 PHPMA111 
PBzMA50 

11900 1.09 343.6 Cloudy 

180-5 180 7.8 PHPMA111 
PBzMA78 

14600 1.06 1740 Cloudy 

180-6 210 9.2 PHPMA111 
PBzMA92 

16900 1.09 2952 Milky/Phase 
Separate 

180-7 280 10.6 PHPMA111 
PBzMA106 

19500 1.13 2960 Milky/Phase 
separate 
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The morphologies of the self-assembled structures during polymerization were 

investigated by transmission electron microscopy (TEM) and revealed the early formation 

and growth of nano-sized assemblies into thin-layer vesicles. Initially, PHPMA grafted 

NPs were well-dispersed in ethanol (0 min, Figure 2.11A). When the polymerization was 

initiated, NPs first organized into short strings of a small number of NPs (60 min Figure 

2.11B). With continued growth of the PBzMA, the connectivity of the short strings 

increased and formed ring-like structures which then served as templates for fully enclosed 

vesicles. (Figure 2.11C, D, 90 min). Samples at 120 min contained highly mixed 

morphologies of nascent vesicles, half-vesicles, disks and dispersed NPs (Figure 2.11E, F), 

which was consistent with DLS data that showed a fairly large polydispersity of sizes. The 

filling and wrapping of the nanorings into vesicles progressed with time and was mostly 

complete at 150 min (Figure 2.11G), when most of the observed structures were complete 

vesicles. DLS data also showed that most components in solution at this time were self-

assembled structures with ~340nm diameter. The duration of the pure vesicle phase was 

fairly short, probably due to the increased polymerization rate at this stage. By 180 min, 

most of the vesicle structures had disappeared and were replaced by collapsed structures. 

Figure 2.11H shows the progression involving wall thickening, followed by intervesicle 

collapse. Eventually (280 min Figure 2.11I), all the vesicles had evolved into micron-sized 

clusters with irregular shapes.  
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Figure 2.11. Representative TEM images of the assemblies at different polymerization 

times: 0 min (A), 60 min (B), 90 min (C, D), 120 min (E,F), 150 min (G), 180 min 

(H), 280 min (I). 

 

Figure 2.12. (A) Close-up TEM view of an individual self-assembled 

vesicle with broken shell (left image). (B) SEM image of self-assembled 

vesicles showing inner cavities and single-layer walls (right image). 
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  The hollow nature of self-assembled structures at 150min after reaction started 

was further revealed by both TEM and scanning electron microscopy (SEM) studies. 

Figure 2.12A shows a close-up view of one vesicle structure with a broken fraction of its 

shell. The peripheral region has the darkest contrast, representing a thin layer of vesicle 

walls collapsed on a flat TEM grid. The left part of inner region represents the double layer 

of NPs which is a typical projection of a 3D thin-layer hollow sphere onto a 2D image. The 

right-hand section of the inner space showed the lightest contrast and was apparently 

composed of a single-layer of 15 nm NPs, which is the result of a partially enclosed shell. 

SEM images (Figure 2.12B) further confirmed that the vesicles have hollow cavities 

enclosed by walls made from the grafted nanoparticles. 

Scheme 2.4. Proposed mechanism of surface-initiated polymerization-

induced self-assembly of NPs into nanovesicles. 
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Based on the step-by-step assembly process from dispersed NPs to nanovesicles 

presented in Figure 2.12, we propose a detailed mechanism for the formation of vesicles 

from the SI-PISA of NPs (Scheme 2.4).  When the insoluble PBzMA chains reached a 

critical length, the mixed brush grafted NPs underwent a localized phase separation of the 

soluble PHPMA chains from the insoluble PBzMA chains. Initial self-assembly occurred 

by interparticle collapse between PBzMA domains, forming short strings and nanorings. 

The nanorings directed the orientation and addition of further NPs to grow inward, forming 

nanodisks composed of NPs embedded in the collapsed PBzMA domain that were 

stabilized by PHPMA chains extending into the solvent. The round-shaped disks then 

formed wedge shaped defects around their perimeter, which facilitated folding of the 

nanoparticle disks into single-walled vesicles.  

Figure 2.13. Representative TEM images of assembled structures from SiO2-g-

(PMAA, PBzMA) NPs with 23 kDa PMAA. All scale bars: 200nm.  
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  In order to demonstrate SI-PISA as a general one-step strategy towards well-

defined nanovesicles, we further explored another system using SiO2-g-(PMAA, PBzMA) 

NPs as building blocks. The synthetic route is the same as the SiO2-g-(PHPMA, PBzMA) 

case described above, but poly(methacrylic acid) (PMAA) (23kDa) was used as stabilizing 

brush instead of PHPMA (Scheme 2.5). As a result, similar self-assembly behaviour was 

observed from surface-initiated polymerization of BzMA using SiO2-g-(PMAA, CPDB) as 

stabilizer. Vesicles were formed during polymerization at 10mg/ml. Additionally, we also 

observed the intermediate stages as rings, disks, half enclosed vesicles, and fully enclosed 

vesicles (Figure 2.13). It is also worth mentioning that an early attempt to perform SI-PISA 

using shorter PMAA (5.8K) as stabilizing brushes failed to result in any well-organized 

Scheme 2.5. (A) Synthesis of SiO2-g-(PMAA, CPDB). (B) One-pot surface-

initiated RAFT polymerization-induced self-assembly of grafted NPs into 

vesicles 
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structures. Instead, NP clusters in random shapes were observed. These observations 

indicated that the length of the stabilizing brushes plays an important role in the self-

assembly process. Understanding the critical molecular length of the stabilizing block 

would be an interesting topic to further define this SI-PISA strategy.  

 

2.5 Conclusions 

  In conclusion, we demonstrated a facile and efficient way using surface-initiated 

polymerization to induce self-assembly of inorganic NPs into strings, disks and single-

layer nanovesicles. This SI-PISA strategy represents a new aspect of PISA, that utilizes the 

growth of polymer chains from NP surfaces to direct the self-assembly of inorganic 

nanoparticles. Compared with the traditional way of preparing hybrid nanovesicles by 

solvent switching and film rehydration, this newly developed self-assembly method 

requires no post-polymerization process and can be operated at high NP 

concentration(~10mg/ml), which is important for large production of such hybrid 

assemblies. This approach also offered insights into the evolution of nanovesicles, 

including their birth from well-dispersed NPs and nanorings, and their death into micron-

sized aggregates. We believe that this strategy could be further extended to prepare 

nanovesicles in other media (i.e. non-polar solvents and water) with different polymer 

brush selection. Moreover, we could expect the self-assembly of NPs with various shapes 

like nanotubes and solid spheres, by fine-tuning the chain length and graft density of the 

first brush and the graft density of the second brush. We believe that the SI-PISA strategy 

described in this work could open up many possibilities of preparing functional hybrid 

materials from polymer-grafted NPs. 
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CHAPTER 3 

A USEFUL METHOD FOR PREPARING MIXED BRUSH POLYMER GRAFTED 

NANOPARTICLES BY POLYMERIZING BLOCK COPOLYMERS FROM SURFACES 

WITH REVERSED MONOMER ADDITION SEQUENCE 
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3.1 Abstract 

The preparation of well-defined block copolymers using controlled radical 

polymerization depends on the proper order of monomer addition. The reversed order of 

monomer addition results in a mixture of block copolymer and homopolymer and thus has 

typically been avoided. In this chapter, we utilized the low blocking efficiency of reversed 

monomer addition order in combination with surface initiated RAFT polymerization to 

establish a facile procedure towards mixed polymer brush grafted nanoparticles SiO2-g-

(PS1, PS1-b-PMAA). The SiO2-g-(PS, PS-b-PMAA) nanoparticles were analyzed by GPC 

deconvolution, and the fraction of each polymer component was calculated. Additionally, 

the SiO2-g-(PS, PS-b-PMAA) were amphiphilic in nature, and showed unique self-

assembly behavior in water. 

 

3.2 Introduction 

It is now well accepted that the order of monomer addition is pivotal in the 

preparation of well-cdefined block copolymers using controlled radical polymerization.1-2  

Because of the better leaving group ability, monomers that produce tertiary propagating 

radicals (e.g., methacrylates) should be polymerized prior to those that produce secondary 

propagating radicals (e.g., acrylates and styrene). For example, the chain extension of 

styrene from PMMA macroinitiator is considered the “right sequence” towards well-

defined PMMA-b-PS. In contrast, the reversed monomer addition sequence leads to mixed 

products of homopolymer and block copolymer because of the slow initiation of the macro-

initiators. Thus, only some of the macro-initiators can be successfully chain extended 

which leads to the mixture of homopolymers and block copolymers.3 This reversed 
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monomer addition order, sometimes called the “wrong sequence” has always been avoided 

when making block copolymers using controlled radical polymerization methods. Indeed, 

the product as a copolymer/homopolymer mixture is not of interest for most research and 

applications. However, we envision that this scenario could be synthetically and practically 

attractive when the macro-initiators are anchored onto the surface of a substrate or 

nanoparticles. When the polymer chains are grafted on a substrate or particle surfaces and 

surface-initiated polymerizations are performed, it is possible that we could 

advantageously utilize the outcome of this “wrong sequence” to prepare mixed brush 

polymer grafted nanoparticles in a simplified process. 

Nanoparticles with two different populations of polymer brushes have been a topic 

of increasing importance in ligand engineering of polymer nanocomposites.4-8 Recent 

advances in SI-polymerization creates the possibility to fabricate such composite materials 

with good interfacial properties via control of the graft density, molecular weight, and 

chemistry of the grafted polymers. However, the preparation procedures are typically time 

consuming and involve multiple steps. For example, the preparation of bimodal polymer 

grafted nanoparticles using SI-RAFT polymerization include at least five steps:  1) 

polymerization of first brush, 2) chain end RAFT agent cleavage 3) aminosilane attachment, 

4) second RAFT attachment, and 5) polymerization of second brush. Each step is 

accompanied by at least two washings and precipitations, making the whole process 

relatively time-consuming.6, 9-10 Similarly, the preparation of such materials using SI-

ATRP includes multiple steps to partially deactivate the chain end of the first population 

of polymer brushes.8  
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In this work, we explored surface initiated RAFT polymerization using reversed 

monomer addition sequence as a simple two step method of preparing mixed brush grafted 

nanoparticles consisting of a shorter polystyrene homopolymer brush and a longer 

polystyrene-b-polymetharcylic acid brush. Moreover, these amphiphilic nanoparticles 

showed unique self-assembly behavior in water, forming nanoparticle clusters with 

controlled aggregation number.  

 

3.3 Experimental Section 

Materials: Styrene (TCI, 97%) and methacrylic acid (Acros, 96%) were passed 

through a basic aluminum column to remove inhibitors before use. 2.2’-

Azobisisobutyronitrile (AIBN) was purified by recrystallization from methanol and 

dissolved in ethanol to make 10mM solution. All other reagents were used as received. 

Synthesis of PS grafted silica nanoparticles. 4-Cyanopentanoic acid 

dithiobenzoate (CPDB) anchored 15nm silica nanoparticles were prepared according to the 

literature.1 A solution of styrene (7.96g), AIBN (255µl of 10mM solution in methanol), 

CPDB-anchored silica nanoparticles (0.4, 63.8µmol/g) and THF (8ml) was prepared in a 

Schlenk tube. The mixture was degassed by three freeze-pump-thaw cycles, backfilled with 

nitrogen, and then placed in an oil bath at 65°C for 11 hours. The polymerization solution 

was quenched in an ice bath and poured into 1:1 mixture of hexane to precipitate the SiO2-

g-PS nanoparticles. The SiO2-g-PS nanoparticles were redispersed in THF and precipitated 

two more times to remove excess monomers and initiators. The purified SiO2-g-PS 

nanoparticles were dispersed in DMF for the next reaction step.  
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Synthesis of SiO2-g-(PS1, PS1-b-PMAA) nanoparticles. SiO2-g-PS nanoparticles 

(0.2 g), methacrylic acid (0.975 g), AIBN (134 µl of 10 mM solution in ethanol) and DMF 

(10ml) were mixed together and added to a Schlenk flask equipped with a rubber stopper. 

The mixture was degassed by three freeze-pump-thaw cycles, backfilled with nitrogen and 

then placed in an oil bath of 80 °C. Aliquots of the reaction solution were withdrawn from 

the flask periodically after the start of the polymerization. Grafted polymer chains were 

cleaved from silica nanoparticles by reacting with excess amount of HF.  

Methylation of SiO2-g-(PS1, PS1-b-PMAA) nanoparticles 

SiO2-g-PS-b-PMAA nanoparticles (~ 20 mg) were dissolved in 10 mL DMF. An 

excess of the yellow solution of trimethylsilyldiazomethane was added dropwise into the 

nanoparticle solution at room temperature (rt). After complete addition, the solution was 

stirred for 3h at rt. Approximately 10% by volume of methanol was added to enhance the 

conversion of the methylation. The excess trimethylsilyldiazomethane was quenched by 

acetic acid. This process was used to improve the compatibility between polymer and THF 

phase GPC. The PS-b-PMAA block copolymers were converted to PS-b-PMMA to prevent 

self-assembly of PS-b-PMAA in THF due to the incompatibly between PMAA and THF 

solvent. 

Characterization. 

1H NMR (Bruker ARX 300/ARX 400) was conducted using CD3OD as the solvent. 

Molecular weights and dispersity were determined using a gel permeation chromatography 

(GPC) with a 515 HPLC pump, a 2410 refractive index detector, and three Styragel 

columns. The columns consist of HR1, HR3 and HR4 in the effective molecular weight 
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ranges of 100-5000, 500-30000, and 5000-500000, respectively.  THF was used as eluent 

at 30°C and flow rate was adjusted to 1.0mL/min. Molecular weights were calibrated with 

poly(methyl methacrylate) standards obtained from Polymer Laboratories. Dynamic Light 

Scattering characterizations were conducted using Zetasizer Nano ZS90 from Malvern. 

Infrared spectra were obtained using a BioRad Excalibur FTS3000 spectrometer. The 

transmission electron microscopy (TEM) was performed on a Hitachi H8000 TEM at an 

accelerating voltage of 200 KV. The samples were prepared by depositing a drop of the 

diluted nanoparticle solution in methanol on copper grids. Scanning electron microscopy 

(SEM) was performed by drop-casting 10 µl of diluted nanoparticle solution on copper 

grids with carbon film. 

GPC Deconvolution Analysis. 

The GPC deconvolution analysis was used to quantify blocking efficiency. GPC 

traces were split into three peaks: the block copolymer, the “unreacted” homopolymer PS 

and PS homopolyer by coupling. The different dn/dc values for each component were taken 

into account when integrating the area of each peak. Since the PMAA block was converted 

to PMMA prior to GPC analysis, the dn/dc value of 0.086 for PMMA and 0.186 for PSt in 

THF was used for calculation of the dn/dc values of the block copolymer together with 

weight fraction of the two blocks (wp1, wp2) calculated from 1HNMR. 

 

(𝑑𝑛
𝑑𝑐⁄ )

𝐵𝐶𝑃
= 𝑤𝑝1(𝑑𝑛

𝑑𝑐⁄ )
𝑝1

+ 𝑤𝑝2(𝑑𝑛
𝑑𝑐⁄ )

𝑝2
 

 

  



61 

 

To estimate the mole fraction of each peak, the areas of the peaks were obtained 

via Origin Peak Analyzer and normalized with respect to molecular weight and dn/nc. 
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Reproducibility was ensured with five deconvolutions to obtain an average and 

standard deviation within 2%. This method follows the procedure established by Bartels et 

al. and Jennings et al.11-12 
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3.4 Results and Discussion 

3.4.1. Synthesis of SiO2-g-(PS, PS-b-PMAA) using reversed monomer addition 

sequence.  

 

Figure 3.1. Synthetic scheme of SiO2-g-(PS, PS-b-PMAA) using reversed monomer 

addition sequence.  

 

A 4-cyanopentanoic acid dithiobenzoate (CPDB) RAFT agent was initially 

attached to 15 nm silica nanoparticles, as reported previously.6 The graft density was 

determined by UV-vis analysis to be 0.27 ch/nm2. To perform the polymerization in 

reversed sequence, we graft polymerized styrene first, followed by the chain extension of 

the macroinitiator with methacrylic acid (Figure 3.1).  The initial SI-RAFT of PS was 

performed in THF for 11 hours at 65 °C. From a small sample, the grafted polymers were 

cleaved from the silica particle surface and characterized using GPC (21 kDa, Đ = 1.1). 

The PS grafted nanoparticles were purified, redispersed in DMF, and chain extended with 

methacrylic acid. The polymerization of MAA was conducted at 80°C at various times.  
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The resulting polymer grafted particles were treated with HF to etch the silica, and the 

polymers were subjected to GPC analysis. 

 

Figure 3.2. (A) An example of a typical GPC curve and fitted peaks for cleaved PS-b-

PMAA copolymer. (B) Stacked GPC traces of PS-b-PMAA copolymers synthesized by 

polymerization of MAA from surface anchored PS macro-initiator. 

 

Figure 3.2 shows a typical GPC curve of PS-b-PMAA copolymer cleaved from the 

nanoparticle surfaces. It should be noted that the PS-b-PMAA was treated with 

trimethylsilyldiazomethane to convert the carboxylic groups of the PS-b-PMMA to methyl 

esters before GPC injection to improve the compatibility between the polymer and the THF 

phase GPC (experimental section). The curves were analyzed using a deconvolution 

method with an Origin peak analyzer. Further calculations based on mathematical 

deconvolution of the GPC peaks provided a multipeak fitting for all polymer peaks. The 

weight fraction and mole fraction of each component was then calculated based on Mn 

values from GPC and adjusted by the dn/dc values of each component (see experimental 
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section for details). This GPC deconvolution method has been used by Wooley et al. and 

Howdle et al. as a reliable method for calculating block efficiency.11-12  

Table 3.1. Characteristics of PS-b-PMAA synthesized at different conversions. 

 

 The results show that the block copolymer GPC curves could be separated into 

three peaks. The first peak (~21 kDa) appeared at the exact position as the PS 

macroinitiator, and thus was ascribed to the PS homopolymer which did not participate in 

the chain extension reaction. This inactive polymer was the major component of the grafted 

polymers. The second peak (~43 kDa) had twice the molecular weight of the PS 

homopolymer and its position did not change during the subsequent polymerizations. This 

indicated the presence of dead PS chains likely formed by radical recombination during the 

addition of AIBN at the start of the chain extension or second polymerization step. The 

third peak had the largest molecular weight. Furthermore, the molecular weight as well as 

its mole fraction increased during polymerization, indicating the formation of block 

copolymer. At 20% monomer conversion, ~80% of the PS macro-initiators remained 
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“unreacted” and 8.5% of the PS chains underwent coupling thus forming PS homopolymer 

with double the molecular weight as the unreacted chains. Finally, 10.9% of the PS chains 

successfully chain extended with MAA forming block copolymers.  Compared with 

literature data of block copolymerizations crossing from secondary radicals to tertiary 

radicals, 3 the block efficiency was relatively low. However, the peak ascribed to 

homopolymer coupling was not observed in the free solution polymerization. Here, we 

consider the differences between grafting-from polymerization and free solution 

polymerization. In the case of grafting-from polymerization, the PS macro-initiators were 

in close proximity as their motion was restricted by tethering onto the nanoparticle surface. 

Therefore, due to the slow initiation process and inefficient chain extension, the radicals 

on the particle surface had greater possibility to undergo termination by combination prior 

to polymerization. In order to demonstrate that this radical coupling occurred within each 

nanoparticle instead of inter-particle crosslinking, another polymerization was conducted 

under diluted conditions. The radical coupling peak was observed without a change in mole 

fraction. 

 

3.4.2. Self-assembly behavior of SiO2-g-(PS, PS-b-PMAA). 

The self-assembly of grafted nanoparticles has been a topic of recent interest to us, 

thus we studied the self-assembly behavior of these (PS, PS-b-PMAA) grafted 

nanoparticles in aqueous solution.  

Self-assembly was induced by the solvent switching method. Typically, PS-b-

PMAA grafted nanoparticles were purified and dispersed in DMF, a good solvent for all 

components, and then water was introduced dropwise to induce the self-assembly. The 
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solution changed from transparent to translucent, indicating the formation of nano-

assemblies. The morphology of the assemblies was characterized with TEM to be solid 

sphere aggregates. As discussed earlier, the SiO2-g-(PS, PS-b-PMAA) nanoparticles have 

bimodal structures that not only change in chain length of PMAA during the 

polymerization but also change slightly in the  portion of block copolymer. To facilitate 

comparisons between samples, in this section, we prepared a series of SiO2-g-(PS396, PS396-

b-PMAAx) nanoparticles with the same PS homo-brush chain length but different PS396-b-

PMAAx lengths. The subscripts denote the number of repeating units calculated from 1 

HNMR and assumes 10% block copolymer fraction in all cases. 

Figure 3.3. A-D. TEM, DLS and visual appearance of assemblies prepared from SiO2-g-

(PS396, PS396-b-PMAA1660) nanoparticles. E-H. Comparison of assembled nanospheres 

with different PS/PMAA ratios. Scale bars :200nm. E. SiO2-g-(PS396, PS396-b-PMAA350), 

F. SiO2-g-(PS396, PS396-b-PMAA500), G. SiO2-g-(PS396, PS396-b-PMAA1000), H, SiO2-g-

(PS396, PS396-b-PMAA1660)  

 

For the experiment using SiO2-g-(PS396, PS396-b-PMAA1660) the average size of the 

spheres was ~100 nm, which agreed with the value measured by DLS (Figure 3.3A-D). 
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Each sphere aggregate was composed of tens of smaller spherical silica nanoparticles that 

showed as darker contrast under TEM. We use the number ratio between PS and PMAA 

calculated form NMR to represent the difference of hydrophobic/hydrophilic ratio between 

each sample.   

The size of aggregates as well as the aggregation number could be controlled by 

manipulating the hydrophilic/hydrophobic ratio of the nanoparticles. We studied the 

assembled structures of a series of samples with the same chain length of the PS block but 

different lengths of the PMAA block. It was clear that decreasing of size of the PMAA 

block produced an increase of the aggregation number. The spherical aggregates from 

SiO2-g-(PS396, PS396-b-PMAA350) nanoparticles consisted of tens-to-hundreds of primary 

silica nanoparticles, while the aggregates from SiO2-g-(PS396, PS396-b-PMAA1660) 

consisted of only a few (<10) primary silica nanoparticles. 

 

The size of the aggregates as well as the aggregation number could also be 

controlled by adjusting the initial concentration of the solution using the identical sample. 

We prepared a series of solutions with different initial concentrations using the same SiO2-

g-(PS396, PS396-b-PMAA1660) nanoparticle sample. As shown in Figure 3.4, the size of the 

aggregates increased with increasing concentration of the initial solution. At higher 

concentration (50mg/ml), the aggregate size increased to ~150nm while at low 

concentration (1mg/ml), the degree of aggregation was very low, and the particles were 

mostly singly dispersed.  
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Figure 3.4. Change in aggregate size with decreasing particle solution concentration for 

SiO2-g-(PS396, PS396-b-PMAA1660)  sample: A. 50mg/mL, B. 25 mg/mL, C. 10 mg/mL, D. 

1mg/mL. 

3.5 Conclusions  

A reversed monomer addition sequence was successfully utilized to prepare 

bimodal polymer grafted nanoparticles and resulted in a significantly condensed synthetic 

procedure. The composition of the grafted polymers was analyzed by GPC deconvolution. 

Approximately 10% of the grafted PS macro-initiators were chain extended while the 

majority remained “unreacted” or were terminated by radical coupling. It was shown that 

this procedure of grafting block polymers with reversed monomer addition sequence could 

be employed as a “quick and dirty” method of preparing mixed brush polymer grafted 

nanoparticles. The SiO2-g-(PS396, PS396-b-PMAAx) nanoparticles showed unique self-

assembly behavior and formed solid spherical aggregates. The degree of aggregation could 

be controlled in the range between 1 to several hundred by adjusting the PS/PMAA ratio 
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and initial nanoparticle concentration. It is expected that these assemblies will find wide 

application in the nanotechnology field. 
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CHAPTER 4 

 

PH AND THERMAL DUAL-RESPONSIVE NANOPARTICLES FOR CONTROLLED 

DRUG DELIVERY WITH HIGH LOADING CONTENT
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4.1 Abstract 

A pH and thermal dual-responsive nanocarrier with silica as the core and block 

copolymer composed of poly(methacrylic acid) (PMAA) and poly(N-

isopropylacrylamide) (PNIPAM) as the shell was prepared by surface initiated RAFT 

polymerization. The resulting SiO2-PMAA-b-PNIPAM particles dispersed individually in 

aqueous solution at high pH and low temperature but reversibly agglomerated at acidic 

conditions or at elevated temperature. These dual-responsive nanoparticles were used as 

carriers to deliver the model drug doxorubicin (DOX) with unusually high entrapment 

efficiency and loading content which is due to the small size (15 nm), light weight of the 

cores and high graft density (0.619 chains/nm2) achieved by surface initiated RAFT 

polymerization. The release rate was controlled by both pH and temperature of the 

surrounding medium. Moreover, these particles selectively precipitated at acidic conditions 

with increased temperature, which may enhance their ability to accumulate at tumor sites. 

Cytotoxicity studies demonstrated that DOX-loaded nanoparticles are highly active against 

Hela cells, and more effective than free DOX of equivalent dose. A cellular uptake study 

revealed that SiO2-PMAA-b-PNIPAM nanoparticles could successfully deliver DOX 

molecules into the nuclei of Hela cells. All these features indicated that SiO2-PMAA-b-

PNIPAM nanoparticles are a promising candidate for therapeutic applications. 

4.2 Introduction 

Polymer-grafted nanoparticles have gained significant attention because of their 

wide application in materials science, bioimaging and drug delivery.1-5 The surface 

initiated reversible addition-fragmentation chain-transfer polymerization (SI-RAFT) 
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technique has been developed as a robust method to graft polymers from silica surfaces 

with predetermined density and controlled molecular weights.6-8 A variety of polymers 

with well-defined architectures (homopolymer, block copolymer, bimodal brushes) have 

been successfully grafted to demonstrate the effectiveness of this method.9-12  Stimuli-

responsive polymers are materials that can adapt to environmental changes like pH, 

temperature, ionic strength and light.13-17 Poly(methacrylic acid) (PMAA) and poly(N-

isopropylacrylamide) (PNIPAM) are typical stimuli-responsive polymers that have been 

widely studied. PMAA chains change conformation in water in response to pH changes. In 

basic conditions, the carboxylic groups along the polymer chains are deprotonated, creating 

charges that make the polymer swell in water. At low pH (<5), carboxylic groups are 

protonated, making the chains hydrophobic and adapt a collapsed conformation.18-19 

Comparatively, PNIPAM chains can perform similar conformational transformations in 

response to temperature. Below the Lower Critical Solution Temperature (LCST), 

PNIPAM chains stretch out and swell in aqueous solution. A phase transition occurs with 

temperature above LCST, when the chains become hydrophobic and collapse into a 

condensed conformation.20  

  Grafting stimuli-responsive polymers onto inorganic nanoparticles is an 

interesting topic since the combined assembly could exhibit properties inherent from both 

the inorganic cores and grafted polymers. A common application of these core-shell 

structures is the controlled delivery of active species into biological targets. For example, 

Ma et al. prepared magnetic colloid nanocrystal clusters covered with cross-linked 

poly(acrylic acid) that conjugated Doxorubicin (DOX) and released them upon reduction 

in pH,21 Xu et al. synthesized multifunctional carriers with silicon as the core and a 
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biocompatible block copolymer as the shell. The release rate was found to be regulated by 

both pH and chain length of the outer block.22 However, drug loading contents and 

entrapment efficiency were relatively low compared with pure polymer systems 

presumably because of the high weight content of the cores and low graft density of 

polymers achieved by the “grafting to” process.  

  Our group has reported surface-initiated RAFT polymerization of methacrylic 

acid from 15nm silica nanoparticles.18, 23 This direct “grafting from” strategy offers a 

convenient way to achieve high graft densities and subsequently, high polymer content. 

Based on this work, a rationally designed core-shell drug delivery system is described using 

15nm silica nanoparticles as cores and poly(methacrylic acid)-b-poly(PNIPAM) block 

copolymer as shells. Poly(methacylic acid), as the inner block, was used to conjugate with 

drug molecules through electrostatic attraction forces. The PNIPAM outer block not only 

introduced temperature responsiveness, but also helped to prevent premature drug leaking. 

These nano-carriers exhibited unusually high entrapment efficiency and loading content 

when using doxorubicin as a model drug. The drug release rate was found to be affected 

by both pH and temperature. Specifically, the release rate was enhanced at acidic pH and 

high temperature, which is the typical environment of tumor cells.20 It is also worth noting 

that these nanoparticles are well dispersed at low temperature, but self-assembled into 

clusters and eventually precipitated at elevated temperature which may enhance their 

ability to accumulate around tumor cells.  
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4.3 Experimental Section 

 

Materials：All chemicals were obtained from Acros or Fisher and used as received 

unless otherwise specified. N-isopropylacrylamide (PNIPAM) was obtained from TCI, and 

recrystallized twice from hexane to remove inhibitor. Methacrylic acid (MAA) was 

purified by passing through an activated neutral alumina column. AIBN was recrystallized 

from methanol and dissolved in DMF solution at a concentration of 10mmol/L.  

 

Instrumentation. 

1H NMR (Bruker ARX 300/ARX 400) was conducted using CD3OD as the solvent. 

Molecular weights and PDI were determined using a gel permeation chromatography (GPC) 

with a 515 HPLC pump, a 2410 refractive index detector, and three Styragel columns. The 

columns consists of HR1, HR3 and HR4 in the effective molecular weight ranges of 100-

5000, 500-30000, and 5000-500000, respectively.  THF was used as eluent at 30°C and 

flow rate was adjusted to 1.0mL/min. Molecular weights were calibrated with poly (methyl 

methacrylate) standards obtained from Polymer Laboratories. Dynamic Light Scattering 

characterizations were conducted using Zetasizer Nano ZS90 from Malvern. Infrared 

spectra were obtained using a BioRad Excalibur FTS3000 spectrometer. Optical 

spectroscopy was conducted by measuring the transmittance at 300nm using a Perkin-

Elmer Lambda 4C UV-Vis spectrometer.  
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Surface-Initiated RAFT Polymerization of Methacrylic acid from CPDB 

Anchored Silica Nanoparticles.  

4-Cyanopentanoic acid dithiobenzoate (CPDB) anchored 15nm silica nanoparticles 

were prepared according to the literature.6 For a typical reaction, 400mg CPDB anchored 

silica nanoparticles (0.619chs/nm2, 146.7 µmol/g), 5.05g methacrylic acid (58.7mmol), 

400mg trioxane were mixed in 12ml DMF and subject to sonication for 2 minutes. AIBN 

solution in DMF (1.17ml 10mmol/L) was then added. The above mixture was transferred 

to a Schlenk Tube and degassed by three freeze-pump-thaw cycles, backfilled with nitrogen, 

and placed in an oil bath of 65 °C for 2.5 hours. The polymerization was stopped by 

quenching in an ice bath. The resulting solution was washed twice with diethyl ether to 

remove monomers and initiator and the PMAA grafted particles were redispersed in 20ml 

DMF for subsequent reaction. 

 

Surface-Initiated RAFT Polymerization of poly(N-isopropylacrylamide)-b-

poly(methacrylic acid) from surface anchored Macro-Initiator.  

A 10mL solution of PMAA grafted silica nanoparticles with active RAFT agent 

chain end was mixed with 3.22g N-isopropylacrylamide monomer, 0.58ml of a 1mmol/L 

AIBN solution, and 500mg trioxane. The above mixture was degassed by three freeze-

pump-thaw cycles and placed in an oil bath of 80°C for 12 hours. The polymerization was 

stopped by quenching in an ice bath. 
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Preparation of Doxorubicin (DOX) Loaded SiO2-PMAA-b-PNIPAM particles.  

A typical process to load DOX onto SiO2-PMAA-b-PNIPAM particles is described 

as follows: 12ml of a 1mg/mL DOX solution was added into a solution of 40 mg particles 

and the mixture was stirred overnight in dark conditions. The DOX loaded particles were 

recovered by ultracentrifugation at 20,000 rpm, 40°C, for 1h and washed twice by DI water 

to remove free DOX. All supernatant was collected and subject to UV-vis analysis to 

determine drug encapsulation efficiency (EE) and drug loading contents (DL). A 

calibration curve of DOX in water was made as reference. EE and DL were determined 

using the equations: 

 

𝑫𝒓𝒖𝒈 𝒍𝒐𝒂𝒅𝒊𝒏𝒈 𝒄𝒐𝒏𝒕𝒆𝒏𝒕𝒔(%) =
𝒘𝒆𝒊𝒈𝒉𝒕 𝒐𝒇 𝒅𝒓𝒖𝒈 𝒍𝒐𝒂𝒅𝒆𝒅

𝒘𝒆𝒊𝒈𝒉𝒕 𝒐𝒇 𝒏𝒂𝒏𝒐𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆𝒔
∗ 𝟏𝟎𝟎 

 

 

𝑫𝒓𝒖𝒈 𝒆𝒏𝒕𝒓𝒂𝒑𝒎𝒆𝒏𝒕 𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚(%) =
𝒘𝒆𝒊𝒈𝒉𝒕 𝒐𝒇 𝒅𝒓𝒖𝒈 𝒍𝒐𝒂𝒅𝒆𝒅

𝒘𝒆𝒊𝒈𝒉𝒕 𝒐𝒇 𝒅𝒓𝒖𝒈 𝒊𝒏𝒋𝒆𝒄𝒕𝒆𝒅
∗ 𝟏𝟎𝟎 

 

In vitro drug release from DOX @ SiO2-PMAA-b-PNIPAM 

Nanoparticles loaded with doxorubicin were redispersed in 16ml of DI water. The 

dispersion was then transferred into dialysis bags. The bags were subsequently placed in 

beakers of different solutions (pH5.0 sodium acetic acid buffer or pH7.0 PBS buffer) at 

different temperatures (25 °C or 40 °C). 2ml of each solution was sampled with a certain 
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period of time and analysis using UV-vis spectrometer to determine the amount of released 

DOX. All drug release data were averaged with three measurements. 

 

Cell culture 

Hela cells were obtained from ATCC. They were grown on standard tissue culture 

plastic in a 5% CO2 humidified incubator at 37 °C. The cell culture medium was DMEM 

with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin antibiotics. 

Cell viability assay 

Biocompatibility of SiO2-PMAA-b-PNIPAM nanoparticles, free DOX and DOX 

loaded nanoparticles were tested on Hela cells, and cell viability was determined by 

CellTiter-Blue assay. Briefly, cells were seeded on 96-well plate at a density of 1.0 × 104 

cell/well and incubated at 37 °C with 5% CO2 for 24 hr. Then, cell culture medium was 

replaced with 100 µL of fresh medium containing various concentrations of testing samples. 

After 24 hr of incubation, testing samples were removed and 10% CellTiter-Blue Reagent 

was added to each well and incubated for 4 hr. The fluorescence was recorded on a 

Spectramax Gemini EM spectrophotometer with excitation wavelength of 560 nm and 

emission wavelength of 590 nm. 

Cellular uptake study 

Cells were seeded on 12-well plate with a glass cover slip at the bottom of each 

well (5 × 104 cells/well) and incubated at 37 °C with 5% CO2 for 24 hr. The medium was 

replaced respectively with free DOX and DOX loaded nanoparticles (2 µg/mL of DOX) 

for another 4 hr incubation. Cells were washed 3 times with PBS and fixed by 4% 



79 

 

paraformaldehyde (PFA) for 20 min at room temperature. After washing 3 times with PBS, 

cells were stained by 4', 6-Diamidino-2-Phenylindole (DAPI) for 10 min and kept in PBS. 

Confocal microscope was used to visualize and take images. 

4.4 Results and Discussion 

The strategy for the preparation of PNIPAM-b-PMAA grafted silica nanoparticles 

is shown in Scheme 4.1. Two separate surface-initiated RAFT polymerizations were 

conducted sequentially to build well-defined diblock copolymers onto 15 nm silica 

nanoparticle surfaces. The polymerization of the first block was conducted employing a 

ratio among species of [MAA]/[RAFT]/[AIBN] = 1000:1:0.1 at 65°C. The monomer 

conversion, followed by 1H NMR, was found to be 18.5% after 2.5 hours, indicating 185 

repeat units of each PMAA chain on average. Thermogravimetric analysis (TGA) showed 

that the grafted polymer accounted for about 70wt% of the nanoparticles. The PMAA 

grafted nanoparticles were washed several times by diethyl ether to remove excess 

Scheme 4.1. Synthetic scheme for the preparation of PNIPAM-b-PMAA grafted silica 

nanoparticles. 
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monomer and initiator. The polymerization of the second block was conducted using N-

isopropylacrylamide (NIPAM) as monomer with a ratio among species 

[NIPAM]/[RAFT]/[AIBN] = 1000:1:0.1 in DMF at 65˚C. The reaction was followed by 

1H NMR to calculate conversion. The final product was characterized to be SiO2-

PMAA185-b-PNIPAM573, where subscripts represent the number of repeat units. TGA 

showed that the total polymer content was ~ 90% (Figure 4.3A). Fourier transform infrared 

spectroscopy (FTIR) (Figure 4.3B) of the nanoparticles confirmed the existence of block 

copolymer. The presence of a broad peak at ~3400 cm-1 ascribed to hydroxyl groups and 

the strong absorption at ~1700 cm-1 corresponding to C=O double bonds confirmed the 

successful attachment of PMAA chains. An additional peak at ~1546 cm-1 appeared after 

the second polymerization which is reported to be characteristic of N-H stretching,24 

confirmed the attachment of the PNIPAM block. 

Figure 4.1. 1H NMR characterization of surface-initiated polymerization of methacrylic 

acid. 
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Figure 4.2. 1H NMR characterization of surface initiated polymerization of n-

isopropylacyamide 

Figure 4.3. Characterization of SiO2-PMAA and SiO2-PMAA-b-PNIPAM 

nanoparticles. (A) Thermogravimetric analysis. (B) Infrared spectra. (C) TEM of 

aqueous solution of SiO2-PMAA-b-PNIPAM particles. (D) Hydrodynamic size 

determined by DLS. 
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  TEM and DLS studies. Both of the PMAA grafted and PMAA-b-PNIAPM 

grafted silica nanoparticles could be readily dispersed in water at neutral pH and room 

temperature. The individual nature of the nanoparticles was confirmed using transmission 

electron microscopy (TEM) as shown in Figure 4.3C. The hydrodynamic diameter of the 

particles was measured by dynamic light scattering (DLS) (Figure 4.3D). PMAA-SiO2 

particles had a Z-average diameter of 79.99nm with a narrow PDI of 0.168 indicating that 

particles were uniform in size. The SiO2-PMAA-b-PNIPAM particles were found to have 

a Z-average diameter of 122.9nm, ~43nm larger than SiO2-PMAA particles, which further 

confirmed the successful attachment of the second block. 

 

Figure 4.4. Transmittance curves with base (A) and acid (B) additions to aqueous 

SiO2-PMAA-b-PNIPAM solution. (C) Transmittance change @300nm with 

increasing temperature of a SiO2-PMAA-b-PNIPAM solution at pH 7. 
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  Double Stimuli-Responsive Properties of SiO2-PMAA-b-PNIPAM. The as-

prepared SiO2-PMAA-b-PNIPAM nanoparticles in aqueous solution responded to both pH 

and temperature as expected. Initial mixing between dried nanoparticles and DI water 

resulted in a slightly turbid solution, which cleared up immediately after addition of a small 

amount of base to break  interpolymer hydrogen bonding.25-26 Acid (1 equivalent) was then  

added to adjust the pH back to neutral and no aggregation occurred during the process. The 

turbidity change during the process was measured by UV-vis at 300 nm as shown in Figure 

4.4.  

  The thermal responsive behavior of SiO2-PMAA-b-PNIPAM particles was 

investigated using both optical spectroscopy and DLS. A transparent solution of particles 

dispersed in water at pH 7 was heated from room temperature to 57°C. As shown in Figure 

4.4C, the transmittance decreased dramatically at 32°C, corresponding to the LCST of 

PNIPAM, indicating formation of aggregates due to decreased solubility of the PNIPAM 

corona. The aggregation of particles with increasing temperature was also monitored using 

DOX/particles weight ratio Loading Content (%) Entrapment Efficiency (%) 

3:10 21.2 ± 0.2 89.8 ± 2.6 

5:10 31.4 ± 0.4 91.6 ± 2.4 

7.5:10 40.3 ± 0.2 90.2 ± 0.8 

10:10 49.4 ± 0.3 97.5 ± 1.2 

Table 4.1. Loading content and entrapment efficiency with different feed ratios 
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DLS. At room temperature, only one sharp peak was found corresponding to 

monodispersed particles. When temperature was raised above 32°C, a second peak 

centered at approximately 600nm appeared which represented the formation of aggregates.  

  In Vitro Drug Release of Doxorubicin. Doxorubicin (DOX) is a widely studied 

model drug that conjugates well with negatively charged polymers via electrostatic 

interactions.21 At neutral pH, DOX molecules, with pKa 8.6, are positively charged, which 

leads to a strong interaction with negatively charged PMAA polymer chains. The loading 

content (LC) and entrapment efficiency (EE) of DOX in SiO2-PMAA-b-PNIPAM were 

calculated to be 21.2% and 89.8% respectively when the weight percent of initial DOX 

feeding was 30%.27 Compared with other core-shell type drug carriers28-31, the ones 

prepared in this work showed significantly higher EE and LC. At least two factors 

contributed to this unusually high amount of DOX loading. First, high polymer content 

was achieved because of the small size of the cores and high graft density. TGA results 

showed that 90 wt% of the nanoparticles were polymer while the silica cores accounted for 

only 10 wt%. Second, once DOX was loaded onto PMAA chains, the outer PNIPAM layer 

will act as a shield to prevent loaded drug from escaping. Even higher loading content 

could be achieved with 50%, 75% and 100% feed ratio (Table 1).  The in vitro DOX release 

profile from SiO2-PMAA-b-PNIPAM particles (3:10 feed ratio) under different conditions 

is shown in Figure 4.5. The release performance was studied at both physiological pH (7.4) 

and lysosomal pH (5.0) conditions at temperatures of 25°C and 40 °C. The release profiles 

revealed that release rates depended on both pH and temperature. Only limited amounts of 

loaded DOX were released at pH 7, regardless of temperature; while under acidic 

condition, significant amounts of DOX could be released during the same period of time. 
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Approximately 50% of the loaded drugs were released at pH 5, 25°C, while more than 80% 

were released at pH 5, 40°C. The best release result was obtained at conditions of acidic 

pH and elevated temperature, which is the typical environment for cancer cells. The 

mechanism behind differences in release rates is depicted in Scheme 4.2. Electrostatic 

attraction between negatively charged polymer and positively charge DOX prevented 

significant release at neutral pH. However, at acidic conditions, protonation of the 

carboxylic acid groups of PMAA weakened the electrostatic interaction, enhanced DOX 

release. The release rate was further boosted by increasing temperature above LCST which 

collapsed the PNIPAM chains and caused the nanoparticles to agglomerate. The 

agglomeration process greatly reduced inter-particle spacing and squeezed out DOX at a 

higher rate. This temperature-controlled agglomeration behavior also allowed particles to  

                      Figure 4.5. Calibration curve of Doxorubicin in water. 
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circulate without significant drug loss but precipitate and concentrate at places with 

elevated temperature. It is worth noting that the slight decrease of DOX after 30 hour for 

pH 7 and 40°C was because of thermal degradation of DOX at elevated temperature.32 
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Figure 4.7 Relative cell viabilities of HeLa cells incubated with difference 

concentrations of (A) SiO2-PMAA-b-PNIPAM nanoparticles and (B) DOX and 

DOX loaded SiO2-PMAA-b-PNIPAM nanoparticles 

Figure 4.8. Cellular uptake analysis by confocal microscope 
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Cell Uptake. Hela cells were incubated with free DOX and DOX loaded 

nanoparticles at 37°C. Figure 4.8 shows that after 4 hours, red fluorescence was observed 

around the nuclei of Hela cells in both cases, indicating that SiO2-PMAA-b-PNIPAM 

nanoparticles are capable of internalizing into the nuclei of cancer cells. 

4.5 Conclusions.  

In this study, we demonstrated successful attachment of PMAA-b-PNIPAM block 

copolymers onto silica nanoparticles with high grafting density using surface-initiated 

RAFT polymerization. The resulting nanoparticles exhibited responses to both pH and 

temperature in aqueous solution as they dispersed individually at high pH and low 

temperature but agglomerated and precipitated out at acidic conditions or at elevated 

temperature. DOX was loaded onto these nanoparticles with very high loading content and 

entrapment efficiency and the release rate was found to be controlled by environmental pH 

and temperature. Cytotoxicity studies showed that DOX-loaded SiO2-PMAA-b-PNIPAM 

nanoparticles are highly active against Hela cells, and more effective than free DOX of 

equivalent dose. The integration of these functionalities may result in SiO2-PMAA-b-

PNIPAM nanoparticles becoming ideal drug carriers for anti-cancer drug delivery and 

biomedical applications. 
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CHAPTER 5 

PREPARATION OF POLYISOPRENE-GRAFTED SILICA NANOPARTICLES AND 

THEIR COMPOSITES 
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5.1 Abstract. 

The grafting of polyisoprene (PIP) to different types of silica has been studied and 

developed by the RAFT polymerization processes.  This has been shown to be applicable 

for preparing grafted nanoparticles that are useful for exploring new surface interactions 

between silica fillers and rubber materials. Scale up approaches have been successful and 

detailed mechanical property studies have been conducted to assess the potential of these 

new graft architectures on improving rubbery composite properties. 

 

5.2 Introduction 

Polymer-grafted nanoparticles are of great interest due to their applications in 

sensors, coatings, optoelectronics, and nanocomposites.1-4 RAFT polymerization has 

proven to be a powerful controlled radical polymerization technique for the preparation of 

polymer-grafted particles due to the easy attachment and precise control over the grafting 

densities of RAFT agents. Since the first report on the application of surface-initiated 

RAFT polymerization in the modification of silica particles using a surface-anchored 

RAFT agent by Tsujii et al.5 to date, surface-initiated RAFT technique has been utilized in 

the surface modification of various nanoparticles with a wide range of polymers.6-14 

Polyisoprene has been recognized as an important class of rubber materials and has 

been used in the automotive industry and medical applications.15-17  Polyisoprene contains 

many double bonds in the polymer backbone which allows for further functionalization or 

chemical modifications. Isoprene polymers have been prepared by anionic,15,18,19 

cationic,20,21 and radical polymerizations,22,23 among which anionic polymerization has 

been the major method for the synthesis of such polymers. Anionic polymerization gives 

well-controlled polymerization with narrow polydispersity, however, it is expensive and is 
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not compatible with electrophilic and acidic functional groups and is challenging in the 

presence of contaminants.  

Surface polymerization of isoprene has been reported by free radical 

photopolymerization and living anionic polymerization from the surface of silica particles. 

Binder et al.24 applied anionic polymerization on the surface of silica nano- and glass 

particles. They modified the surface of particles with a diphenylethylene silane agent from 

which anionic addition of isoprene monomer was initiated. Derouet et al.25 used free radical 

photopolymerization to graft polyisoprene onto the surface of micro-size silica particles. 

Particles were functionalized with N, N-diethyldithiocarbamate iniferter groups following 

with polymerization of isoprene under UV light.  

There has been some work on controlled radical polymerization (CRP) of isoprene 

by RAFT and nitroxide-mediated polymerization (NMP). Perrier et al.26 and also Wooly et 

al.27 have independently reported RAFT polymerization of isoprene in bulk using a high 

temperature stable trithiocarbonate RAFT agent. However, to the best of our knowledge, 

surface polymerization of isoprene has not been performed by any of these CRP 

techniques. In this work, we propose an in-depth investigation of the surface-initiated 

RAFT polymerization of isoprene on silica nanoparticle surfaces and their dispersion and 

properties in polyisoprene matrices. 

 

5.3 Experimental Section 

Materials. Isoprene was obtained from TCI America and was purified by passage 

over a neutral alumina prior to use. The RAFT agent 4-cyano-4-

(dodecylsulfanylthiocarbonyl) sulfanylpentanoic acid (DOPAT) (97%) and 2-methyl-2-
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[(dodecylsulfanylthiocarbonyl) sulfanyl]propanoic acid (MDSS) (97%) were purchased 

from Strem Chemicals and used as received. Spherical SiO2 nanoparticles with a diameter 

of 14 ± 4 nm were purchased from Nissan Chemical Co. Tetrahydrofuran (THF) (HPLC 

grade, Fisher), dicumyl peroxide (Acros, 99%), and aminopropyldimethylethoxysilane 

(Gelest, 95%) were used as received. ZEOSIL 1165mp silica powders were acquired from 

Solvay. 

Bulk polymerization of isoprene. Isoprene (5 g, 73 mmol), DOPAT (30 mg, 74 

µmol) and dicumyl peroxide initiator (4 mg, 14.3 µmol) with a ratio between species of 

[monomer]:[CTA]:[initiator] = 1000:1:0.2 were added to a Schlenk tube. The mixture was 

degassed by three freeze-pump-thaw cycles, filled with nitrogen, and then the Schlenk tube 

was placed in an oil bath set at 120 °C. The polymerization was stopped by quenching in 

ice water. Molecular weights were measured using gel permeation chromatography (GPC) 

in THF which was calibrated with poly(methyl methacrylate) standards.  

Synthesis of DOPAT-g-SiO2. A solution (20 mL) of colloidal silica particles (30 

wt % in methyl isobutyl ketone) was added to a two-necked round bottom flask and diluted 

with 110 mL of THF. Dimethylmethoxy-n-octylsilane (0.1 mL) was added to improve 

dispersibility along with 3-aminopropyldimethylethoxysilane (0.32 mL, 2 mmol) and the 

mixture was refluxed in a 75 °C oil bath for 5 hours under nitrogen protection. The reaction 

was then cooled to room temperature and precipitated in a large amount of hexanes (500 

mL). The particles were then recovered by centrifugation and dispersed in THF using 

sonication and precipitated in hexanes again. The amine-functionalized particles were then 

dispersed in 40 mL of THF for further reaction. Then 0.2 g, (0.4 mmol) of activated 

DOPAT was prepared and added dropwise to a THF solution of the amine functionalized 
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silica nanoparticles (40 mL, 6 g) at room temperature. After complete addition, the solution 

was stirred overnight. The reaction mixture was then precipitated into a large amount of 

hexanes (400 mL). The particles were recovered by centrifugation at 3000 rpm for 8 min. 

The particles were then redispersed in 30 mL THF and precipitated in hexanes. This 

dissolution−precipitation procedure was repeated 2 more times until the supernatant layer 

after centrifugation was colorless. The yellow DOPAT-anchored silica nanoparticles were 

dried at room temperature and analyzed using UV analysis to determine the chain density 

using a calibration curve constructed from standard solutions of free DOPAT. 

Surface-initiated RAFT polymerization of isoprene. Isoprene (1.22 g, 17.8 

mmol), DOPAT-g-silica NPs with surface density of 41.9 µmol/g (0.17 chs/nm2) (80 mg, 

3.27 µmol), THF (2 ml) and dicumyl peroxide initiator (0.67 mmol) with a ratio between 

species of [monomer]:[CTA]:[initiator] = 5000:1:0.2 were added to a Schlenk tube. The 

particles were dispersed into the solution via sonication for 1 min and subsequently the 

mixture was degassed by three freeze-pump-thaw cycles, filled with nitrogen, and then the 

Schlenk tube was placed in an oil bath set at 120 °C for various intervals. The 

polymerization was stopped by quenching in ice water. The resultant polymer grafted 

particles were then precipitated into a large amount of isopropanol and centrifuged at 8,000 

rpm for 12 min and the particles were dispersed back into THF.  

5.4 Results and Discussion 

5.4.1 General RAFT polymerization of isoprene from DoPAT-functionalized silica 

nanoparticles 

The general procedure of attaching RAFT agent onto NP surfaces and the 

subsequent surface initiated RAFT polymerization is illustrated in Scheme 5.1. The 
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attachment of DoPAT onto silica nanoparticles was confirmed by UV-vis spectrometry. 

The amount of RAFT agent anchored onto the modified silica nanoparticles was 

determined quantitatively by comparing the absorption at ca. 300 nm for the DoPAT 

anchored silica nanoparticles to a standard absorption curve made from known amounts of 

the free DoPAT. NPs with a wide range of graft densities were used throughout the study 

(0.005 chs/nm2 to 0.42 chs/nm2). It should be noted that graft density higher than 0.42 

chs/nm2 could also be achieved, but was not explored because higher graft density will lead 

to lower silica weight percent in composites, which does not meet the interest of this study.    

Kinetic studies of the SI-RAFT polymerization of PIP were conducted at two 

different graft densities as well as using free RAFT agent. The results (Figure 5.1) showed 

that there is a good linear relationship between ln(M0/Mt) vs time and Mn versus 

conversion, which indicates a constant radical concentration throughout the reaction and 

the living character of the polymerizations.  

 

 

Scheme 5.1. Synthetic scheme of PIP grafted silica NPs. 
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Figure 5.1. (a) First-order kinetic plots and (b) dependence of molecular weight (solid line, 

Mn, theory) on the conversion for the SI-RAFT polymerization of isoprene on silica 

nanoparticles; high surface density (triangle, 100 µmol/g, 0.42 ch/nm2); low surface density 

(diamond, 32 µmol/g, 0.14 ch/nm2); free DoPAT, (circle). All polymerizations were 

conducted under identical conditions with the ratio of [monomer]:[CTA]:[initiator] = 

300:1:0.1.

5.4.2 Targeting high molecular weight (100K) of grafted PIP. 

Although the polymerization kinetics at low monomer feed ratio was elucidated, 

the preparation of high molecular weight PIP grafted NPs (>50K) remained problematic 

mainly caused by gelation of the reaction system. However, high molecular weight of PIP 

is desired in some cases to achieve good dispersion of NPs in polymer matrices especially 

when low graft densities might be desired. We speculate there were two potential reasons 
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behind gelation. One, the poor solubility of high molecular weight PIP in the current THF 

solvent system. Two, the inter-particle radical recombination that occurred when monomer 

conversion was high and chain extension became ineffective. To explore this gelation 

behavior, we performed studies to optimize the various reaction conditions.  

Table 5.1 Polymerization details for attempts to achieve high molecular weight grafted PIP. 

Sample 

No. 

RAFT: 

Isoprene: 

Initiator 

Temp

eratur

e (°C) 

Solvent Solvent/

monome

r ratio 

Gelation 

Time (h) 

Mn of 

PIP 

PDI 

1 1:2000:0.15 120 THF 1.5:1 3.5 18K 1.32 

2 1:5000:0.2 120 THF 1:10 3.5 N/A N/A 

3 1:5000:0.2 120 4:1 

Toluene/THF 

1.5:1 5 54K 1.76 

4 1:10000:0.2 120 15:1 

Toluene/THF 

2:1 9.5 41.4K 1.92 

5 1:10000:0.1 115 15:1 

Toluene/TH

F 

2:1 No 

gelation 

until 32.5h 

97K 1.83 

 

As listed in the table, at high monomer feed ratio, gelation occurred soon after 

polymerization started. (sample 1) This gelation time was found to be delayed to 9.5 h by 

switching the solvent system from pure THF to a toluene/THF co-solvent system 

presumably due to better solubility of high Mw PIP in toluene. Gelation was totally avoided 

by lowering the reaction time as well as lowering the initiator feed ratio with the aim of 

lowering the total radical concentration in the system. As shown in sample 5, 97K PIP 
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grafted NPs were prepared without gelation. Thus, we expanded our synthesis capability 

to a very broad range for future studies.  

5.4.3 Breakdown, functionalization, and SI-Polymerization of Commercial (ZEOSIL 

1165MP) silica nanoparticles. 

We obtained commercially available silica powders (ZEOSIL 1165MP) and 

performed a series of tests to breakdown these micrometer sized particles into the 

nanometer range and successfully functionalized them with RAFT agent followed by 

coverage with PIP.  As shown in Figure 5.2, we dispersed the ZEOSIL silica nanoparticles 

in DMF and applied sonication using a high power sonicator probe for 2 hours. 

 

 

                 Figure 5.2. Breakdown of ZEOSIL silica particles with sonicator. 

 

200nm 
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It could be seen from the DLS and TEM results that the micron-sized silica particles 

were broken down into nanometer range clusters. The diameters of the clusters from DLS 

were between 200 to 300 nm, which agreed with that observed with TEM. However, it was 

found that not all of the ZEOSIL 1165MP particles could be broken down even with 

prolonged sonication. Thus, the solution after sonication was centrifuged. The supernatant 

and precipitates were separated and quantified via silica content. As shown in the Figure 

5.2, a typical case starting from 8g silica powder resulted in 2.24g in the form of nano-

clusters in solution, and 5g undissolved precipitates, corresponsing to ~31% yield.  The 

particles were then treated with aminosilane, and activated RAFT agent. The particles 

acquired the yellow color after reaction, suggesting successful attachment, which was then 

confirmed by UV-vis analysis. SI-polymerizations from the RAFT attached particles were 

performed at Monomer: RAFT: Initiator=5000:1:0.2 at 120°C for 12hrs. Polymers with 

MW of 43.K and PDI 2.25 were obtained. With prolonged reaction times, 103K polymers 

with 2.27 PDI could be prepared in 24 hours. It is worth noting that the SI-polymerization 

from these ZEOSIL silica nanoparaticles tended to result in higher PDI than the 

polymerizations performed with spherical nanoparticles. We assume that the irregular 

shape of the cluster contributed to this PDI broadening effect. The clusters, which consist 

of fused primary silica nanoparticles possess silica surfaces with different accessibility. 

Thus, the better exposed surfaces would experience higher polymerization rates, while the 

less exposed surfaces would experience lower polymerization rates. As a result, PIP with 

higher PDI's were obtained. Thus, the complete procedure from commercially available 

silica micron-particles to well-defined PIP grafted silica nanocomposites was well 

established. Although the current research is focused on the mechanical properties of 
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spherical silica nanocomposites, the study of nanocomposites from these nano-clusters 

would be of great interest for future study. 

 

 

 

Figure 5.3. Grafting PIP from ZEOSIL silica clusters. 

 

5.4.4 Scale-up synthesis of PIP grafted NPs. 

In order to perform various mechanical testing for the PIP composites, it was 

necessary to scale up the current synthesis procedure to the kilogram scale. However, the 

simple extension of the small scale procedure to larger glassware was not appropriate with 

the conditions needed for the SI-Polymerization of PIP. The reaction system needs to be 

air-free, and capable of holding the pressure built up at reaction temperatures. Based on 

these needs, we converted an oven into a polymerization reactor by equipping it with a 

rotating arm through the center of the oven. Stainless steel tubes could be attached to this 
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rotating arm, thus supplying a method to continuously agitate the reaction mixture. The 

polymerizations could be conducted in stainless steels tubes with various sizes as shown in 

Figure 5.4. An air-free environment was realized by N2 sparging, and the tubes were then 

sealed with stainless steel screws covered with double layer Teflon tape. This scale-up 

process was used routinely to prepare PIP grafted NPs at the 20g silica scale. 

 

 

 

 

Figure 5.4. Experimental set-up for kilogram scale synthesis of PIP grafted NPs. 

For our intended studies, we prepared the scale up samples shown in Table 5.2 

using Nissan silica nanoparticles. We selected three grafting densities and targeted three 

different molecular weights for each sample to gain insights into the influence of each 

factor on mechanical behavior of the composites.  
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Table 5.2 Scale-up samples for PIP grafted NPs. 

No. Scale Graft density Molecular weight 

1 ~20g silica  0.08 chs/nm2 51k 

2 ~20g silica 0.08 chs/nm2 39k 

3 ~20g silica 0.08 chs/nm2 15k 

4 ~15g silica 0.12 chs/nm2 13k 

5 ~15g silica 0.12 chs/nm2 22k 

6 ~15g silica 0.12 chs/nm2 35k 

 

5.4.5 Tensile testing of PIP silica composites. 

SKI-3 polyisoprene (Mw=300 kDa, 100% cis) was used in this study as the polymer 

matrix. For all silica/PIP composites, 36 wt% silica loading was targeted (20 wt% silica) 

which is a typical loading in commercial tire applications. The PIP silica nanocomposites 

were prepared as follows: 

20 g SKI-3 PIP matrix were dissolved in 300ml toluene. 1.6 phr VulCup® R 

crosslinking peroxide (Arkema) was added as a curing agent. Predetermined amounts of 

about solution were taken, which was then mixed with PIP grafted NP solution to achieve 

the target silica loading. The mixture was allowed to stir overnight and then poured into a 
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Teflon mold to form a thin film (0.1 to 1.0 mm thickness) under vacuum. The dried film 

was then hot pressed at 165 °C for 45 min (4 metric tons).  

We first used 50K PIP grafted NPs with 0.015ch/nm2 to investigate the stress-strain 

behavior of the PIP silica nanocomposites. The stress-strain cures are shown in Figure 5.5. 

It was clear that the added silica improved the stress at break compared with pure PIP 

matrix. The sample with bare ZEOSIL silica resulted in low tensile strain, which was due 

to severe agglomeration of the silica particles without surface coating. The sample with 

bare Nissan silica showed higher tensile stress with a decrease in tensile strain compared 

to the unfilled matrix. The composite with 50K PIP grafted Nissan silica showed 18% 

increase in elongation and 187% increase in tensile stress at break compared with pure 

matrix, indicating a strong reinforcement effect.  

 

 

Figure 5.5. Tensile-stress curve of SKI-3 nanocomposites and unfilled matrix. 
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5.4.6 Effect of molecular weight on tensile-stress behavior of PIP/silica composites. 

We prepared additional samples at two different graft densities and varied the 

molecular weight of grafted PIP for each density to investigate the effect of molecular 

weight and graft density on the tensile stress-strain behavior of PIP/silica composites using 

Nissan silica NPs. The tensile-stress curves shown in Figure 5.6 showed improved tensile 

stress at break for silica filled samples. One interesting finding is the appearance of a new 

feature in the 0.1 to 10 strain region, particularly for 39k and 51k PIP grafted NPs samples. 

This increase in modulus at low strain region is of particular interest in tire rubber. The 15 

kDa PIP grafted NPs sample showed increased modulus in 0.1 to 1 strain region but showed 

no real difference with free matrix in the 1 to 10 strain regions. Comparitively 39K and 

51k PIP grafted NPs samples showed significant improvement in modulus from 1 to 10 

strain region, with no big difference between the two samples. Considering that the 

reported critical entanglement molecular weight of polyisoprene is 13300 ± 1400 g/mol 

determined from rheology tests by Fetters et al. and 14000-15000 from concentrated 

solutions,28 both of which are close to 15 kDa, we can presume that the difference in 

properties between the 15k composite sample and the 39k & 50k composite samples is the 

because of different states of polymer chain entanglement. In 15k composite samples, the 

entanglement between surface grafted chains and the matrix is relatively weak, while in 

39k and 50k composite samples such entanglement interaction is much stronger that 

resulted in improved mechanical properties. 
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Figure 5.6. Tensile-stress curves of SKI-3 nanocomposites. 

The DMA results of the 0.08 graft density NPs with different molecular weights 

are presented in Figure 5.7. It was clear that compared with free matrix, all three silica 

filled PIP samples showed significant improvements in the storage modulus in the rubbery 

state (top graph). There was also a slight improvement of E’ with increasing molecular 

weight from the 15K to 39K and 51K PIP grafted NP samples which were nearly identical. 

In a strain-sweep test (Figure 5.7, bottom graph), all three silica filled PIP samples showed 

decreased E’ with increasing strain.  These result shows that while the added fillers did 

improve the storage modulus significantly, the dispersion state is not optimized. In the case 

of rubber composites with perfectly dispersed fillers, filler-filler interactions were 

minimized so that storage modulus should remain almost unchanged with an increase in 

strain.29  
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Figure 5.7. DMA analysis of SKI-3 nanocomposites. Top graph, temperature dependence 

of E’ at 10Hz; bottom graph, strain sweep at 25°C. 
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5.4.7 Dispersion studies in polyisoprene matrices. 

The dispersion state of PIP grafted NPs in polyisoprene matrix was studied by TEM 

and SAXS. 

An example of 39K PIP grafted NPs in SKI-3 matrix is presented in Figure 5.8. We 

found that TEM may not be as good in determining particle dispersion state at these high 

nanoparticle loadings as at low particle loading. At 20 volume percent loading, particles 

may appear to be agglomerated even when they are well-distributed because of high 

particle density in the matrix. However, by looking at certain regions, (see arrow in the 

figure), we could see regions without particle fillers and regions with particle fillers. When 

interpreted with previous DMA data, we can presume that good dispersion was not 

achieved at this graft density. 

Figure 5.8. TEM of SKI-3 nanocomposites. Scale bar 500 nm. 
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Figure 5.9. SAXS analysis of SKI-3 nanocomposites. 

 

SAXS data (Figure 5.9) also indicate particle agglomeration at 0.08 chs/nm2 graft 

density, for all three molecular weights. The q value (0.035) of the scattering peak 

corresponds to 18 nm particle spacing, which is very close to the diameter of the silica 

nanoparticles and clearly suggests that particles are together instead of separately dispersed 

in the matrix. However, the intensity of the peak had a decreasing trend from low m.w to 

high m.w, indicating some improvement in the dispersion state. 
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We think that there are two possible reasons for poor particle dispersion at this 

stage. One is the incompatibility between the SKI-matrix (pure cis PIP) and the grafted 

polymer (1:2 cis to trans ratio PIP). The second likely effect is the strong particle-particle 

interaction caused by insufficient particle surface coverage. However, if we pursue high 

graft density and high molecular weight of grafted polymer at the same time, it would be 

hard to achieve the desired silica loading (33 wt%). If fact, the silica weight percent of the 

PIP grafted particles has to be at least 50 wt% considering the diluting effect in the 

following mixing steps. As shown in Table 5.4, if we increase graft density to 0.2 

chains/nm2, then molecular weight of grafted polymer has to be limited to 20k. At 0.4 

chains/nm2 graft density, molecular weight cannot exceed 10k. On the other hand, current 

data suggests that both high graft density and high molecular weight is desired for better 

dispersion. To solve this problem, we believe that a bimodal approach should be adopted 

in the next step. In the bimodal approach, a high molecular weight population PIP at low 

graft density will be grafted in the first step. Then the uncovered surfaces remained will be 

grafted with a dense, low molecular weight population PIP or even small organic ligands. 

We would expect a much better dispersion state and even better improved mechanical 

properties from these rubber composites. 

                             Table 5.4 Design of experiments of graft densities and chain MW. 

 

Chain MW

Graft Density 10000 20000 40000 100000

0.8 0.33 0.20 0.11 0.05

0.4 0.50 0.33 0.20 0.09

0.2 0.67 0.50 0.33 0.17

0.1 0.80 0.67 0.50 0.29

0.05 0.89 0.80 0.67 0.45

0.025 0.94 0.89 0.80 0.62

0.01 0.98 0.95 0.91 0.80
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5.5 Conclusion 

In this chapter, we studied the surface-initiated RAFT polymerization of 

polyisoprene from two types of silica particles. The polymerization kinetics on spherical 

particles were studied at different graft density and polymerization formulation was further 

optimized to target over 100k molecular weight grafted polymers. ZEOSIL 1165mp silica 

powders were used as an alternative silica source, which were broken down into ~200 nm 

silica clusters by sonication, which were then successfully grafted with polyisoprene as 

well. The synthetic procedure of PIP grafted Nissan silica nanoparticles were successfully 

scaled up from gram scale to kilogram scale by employing stainless steel tubes as reaction 

vessels in a heated oven. The PIP grafted Nissan silica nanoparticles were used as 

reinforcing fillers to improve the mechanical properties of SKI-3 polyisoprene matrix. 

Tensile testing showed that composites with 50K PIP grafted Nissan silica showed 

significant (187%) increase in tensile stress at break compared with pure matrix, indicating 

a strong reinforcement effect. Dynamic mechanical analysis showed significant 

improvements in the storage modulus in the rubbery state for the silica filled samples 

compared with unfilled matrix. Although the mechanical testing results were encouraging, 

TEM, SAXS and strain-sweep DMA results suggested that optimized nanoparticle 

dispersion has not yet been achieved. Partial nanoparticle aggregation existed probably due 

to insufficient particle surface coverage, which could be potentially improved by using a 

bimodal polymer grafting architecture.  
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CHAPTER 6 

SURFACE-INITIATED REVERSIBLE ADDITION-FRAGMENTATION CHAIN 

TRANSFER POLYMERIZATION OF CHLOROPRENE AND MECHANICAL 

PROPERTIES OF MATRIX-FREE POLYCHLOROPRENE NANOCOMPOSITES. 
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6.1 Abstract 

RAFT polymerization and surface-initiated RAFT polymerization (SI-RAFT) of 

polychloroprene was studied. The SI-RAFT polymerization rate of chloroprene was found 

to be slower than free solution RAFT polymerization, and further regulated by the graft 

density of grafted polymers. The resulting polychloroprene-grafted silica nanoparticles 

were directly crosslinked to get matrix-free polychloroprene nanocomposites that showed 

good nanoparticle dispersion and superior mechanical properties compared with unfilled 

polychloroprene rubber.  

6.2 Introduction 

Polychloroprene has been widely used in the rubber industry since its discovery by 

Dupont in 1931.1  Compared with other elastomers, polychloroprene exhibits excellent 

resistance to oil, grease and wax, wide operating temperature range, and is resistant to 

ozone and harsh weather conditions. The application of polychloroprene ranges from 

adhesives and sealants, to hoses and automotive parts. To synthesize PCPs, uncontrolled 

free radical emulsion polymerization is commonly used with thio-based chain transfer 

agent to limit molecular weight.2 The polymers synthesized in this way generally have very 

high molecular weight and broad molecular weight distribution. To obtain better control 

over the polymerization of chloroprene, in recent years, controlled radical polymerization 

has been used to synthesize polychloroprene with predetermined molecular weight and low 

PDI. Topham et al. demonstrated the first controlled polymerization of chloroprene using 

reversible addition-fragmentation chain transfer polymerization (RAFT).3 Four different 

RAFT agents were examined in two different reaction medium (xylene and THF). The 

results showed that the dithioester 2-cyano-2-prepylbenzodithioate exhibited the highest 
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degree of control in xylene while 2-cyano-2-prepylbenzodithioate and trithiocarbonate 

with carboxylic acid end were most promising in THF. Yang et al. reported RAFT 

polymerization of chloroprene with more RAFT agents tested, and successfully 

synthesized polychloroprene-block-polystyrene and poly(methyl methacrylate)-block-

polychloroprene copolymer.4 Later, Fu et al. performed reverse iodine transfer 

polymerization of chloroprene and studied the influence of solvent, initiator and 

temperature. 

However, to the best of our knowledge, there is no report on the surface initiated 

controlled polymerization of chloroprene up to date. In fact, a broader literature search 

indicates that while methacrylic/acrylic and styrene type of monomers have been grafted 

onto various of substrates using surface initiated anionic polymerization5, surface initiated 

atom transfer radical polymerization6, surface initiated nitroxide mediated polymerization,7 

and reversible fragmentation chain transfer polymerization, 8 butadiene-derivative 

monomers such as chloroprene, have rarely been polymerized from surfaces using any of 

the existing controlled polymerization techniques.  

It is now well accepted that the addition of nanoparticles into a polymer matrix 

could result in materials with improved thermomechanical properties. To achieve optimal 

improvement, it requires that nanoparticles are well dispersed in the matrix instead of 

forming clusters to maximize the nanoparticle-matrix surface area. Grafting filler 

nanoparticles with the same polymer chains as the matrix has been demonstrated to be an 

effective way to improve nanoparticle dispersion. In this chapter, we report the surface-

initiated RAFT polymerization of chloroprene from silica nanoparticles and carefully 

studied polymerization kinetics at different graft densities. The resulting PCP grafted silica 
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nanoparticles were directly crosslinked to create matrix-free nanocomposites that showed 

improved mechanical properties as compared to free PCP.  

 

6.3 Experimental Section 

Materials. Chloroprene monomer was synthesized according to the literature. 3 The 

RAFT agent 2-methyl-2-[(dodecylsulfanylthiocarbonyl) sulfanyl]propanoic acid (MDSS) 

(97%) was purchased from Strem Chemicals and used as received. Spherical SiO2 

nanoparticles with a diameter of 14 ± 4 nm were purchased from Nissan Chemical Co. 

Tetrahydrofuran (THF) (HPLC grade, Fisher), dicumyl peroxide (Acros, 99%), and 

aminopropyldimethylethoxysilane (Gelest, 95%) were used as received. 2.2’-

Azobisisobutyronitrile (AIBN) was purified by recrystallization from methanol and 

dissolved in THF to make 10mM solution. All other reagents were used as received. 

 

Characterization. 

1H NMR (Bruker ARX 300/ARX 400) was conducted using CD3OD as the solvent. 

Molecular weights and dispersity were determined using a gel permeation chromatography 

(GPC) with a 515 HPLC pump, a 2410 refractive index detector, and three Styragel 

columns. The columns consist of HR1, HR3 and HR4 in the effective molecular weight 

ranges of 100-5000, 500-30000, and 5000-500000, respectively.  THF was used as eluent 

at 30°C and flow rate was adjusted to 1.0mL/min. Molecular weights were calibrated with 

poly(methyl methacrylate) standards obtained from Polymer Laboratories. Dynamic Light 

Scattering (DLS) characterizations were conducted using Zetasizer Nano ZS90 from 

Malvern. Infrared spectra were obtained using a BioRad Excalibur FTS3000 spectrometer. 
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The transmission electron microscopy (TEM) was performed on a Hitachi H8000 TEM at 

an accelerating voltage of 200 KV. The samples were prepared by depositing a drop of the 

diluted nanoparticle solution in methanol on copper grids. Scanning electron microscopy 

(SEM) was performed by drop-casting 10 µl of diluted nanoparticle solution on copper 

grids with carbon film. Small angel X-ray scattering experiments were conducted using a 

SAXSLab Ganesha at the South Carolina SAXS Collaborative. A Xenocs GeniX3D 

microfocus source was used with a Cu target to generate a monochromic beam with a 0.154 

nm wavelength. The instrument was calibrated using a silver behenate reference with the 

first order scattering vector q* = 1.076 nm-1, where q = 4πλ-1 sin θ with a total scattering 

angle of 2θ. Thermogravimetric analysis (TGA) measurements were carried out on a TA 

Q5000 thermogravimetric analyzer (TA Instruments). All the samples were preheated to 

150°C and kept at this temperature for 10 min to remove residual solvents. After cooling 

to 40°C, the samples were heated to 800 °C with a heating rate of 10 °C/min in nitrogen 

atmosphere. An Instron 5500 tensile tester was used to measure the stress-strain curve with 

a 100 N load cell and test speed of 20 mm/min at room temperature. The dog-bone shaped 

samples for tensile testing were cut from hot press samples with 22 mm length and 5 mm 

width. Each sample was tested at least three times for tensile test. Dynamic mechanical 

analysis (DMA) was measured by a RAS3 DMA (TA Instruments) in a tensile mode. The 

DMA data was collected by testing with a frequency of 1.0 Hz, 0.1% strain and a heating 

rate of 3 °C /min from -100 °C to 150 °C. 
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Free RAFT polymerization of chloroprene. In a typical polymerization, 

chloroprene (0.5g), MDSS (5.16mg), AIBN (141ul from 10mM stock solution) and THF 

(1ml) were added and mixed well in a Schlenk flask. The mixture was degassed by three 

freeze-pump-thaw cycles, filled with nitrogen, and the Schlenk flask was placed in an oil 

bath at 60°C. Aliquots of the reaction solution were withdrawn from the flask periodically 

since the beginning of polymerization. 

 

Synthesis of MDSS-g-SiO2. A solution (20 mL) of colloidal silica particles (30 wt 

% in methyl isobutyl ketone) was added to a two-necked round bottom flask and diluted 

with 110 mL of THF. 3-Aminopropyldimethylethoxysilane (0.32 mL, 2 mmol) and the 

mixture were refluxed in a 65 °C oil bath for 5 hours under nitrogen protection. The 

reaction was then cooled to room temperature and precipitated in a large amount of hexanes 

(500 mL). The particles were then recovered by centrifugation and dispersed in THF using 

sonication and precipitated in hexanes again. The amine-functionalized particles were 

redispersed in 40 mL of THF for further reaction. Then 0.2 g, (0.4 mmol) of activated 

MDSS was prepared as described previously and added dropwise to a THF solution of the 

amine functionalized silica nanoparticles (40 mL, 6 g) at room temperature. After complete 

addition, the solution was stirred overnight. The reaction mixture was then precipitated into 

a large amount of hexanes (400 mL). The particles were recovered by centrifugation at 

3000 rpm for 8 min. The particles were then redispersed in 30 mL THF and precipitated in 

hexanes. This dissolution−precipitation procedure was repeated 2 more times until the 

supernatant layer after centrifugation was colorless. The yellow MDSS-anchored silica 

nanoparticles were dried at room temperature and analyzed using UV analysis to determine 
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the chain density using a calibration curve constructed from standard solutions of free 

MDSS. 

Surface-initiated RAFT polymerization of chloroprene. In a typical 

polymerization, chloroprene (2g), MDSS-g-SiO2 (0.74g 0.32ch/nm2), AIBN (567ul from 

10mM stock solution) and THF (4ml) were added and mixed well in a Schlenk flask. The 

mixture was degassed by three freeze-pump-thaw cycles, filled with nitrogen, and the 

Schlenk flask was placed in an oil bath at 60°C. Aliquots of the reaction solution were 

withdrawn from the flask periodically following the start of the polymerization. The 

resulting polychloroprene grafted particles were precipitated into a large amount of 

methanol and centrifuged at 8,000 rpm for 10 min and redispersed in THF. 

General Procedures for cleaving Grafted Polymer from Particles. In a typical 

experiment, 20 mg of polychloroprene grafted silica particles was dissolved in 2mL of 

THF. Aqueous HF (49%, 0.2 mL) was added, and the solution was allowed to stir at room 

temperature overnight. The solution was poured into a PTFE Petri dish and allowed to 

stand in a fume hood overnight to evaporate the volatiles. The recovered polychloroprene 

was then subjected to SEC analyses. 

Curing process of polychloroprene grafted particles. 

Solvent mixing technique was used for curing. Chloroprene polymer (100eq), zinc 

oxide (5eq), magnesium oxide (2eq), phenyl-a-naphthylamine (2eq), stearic acid(0.5eq), 2-

mercaptothiozoline(0.5eq) were mixed well in THF (15 ml for each gram of polymer). The 

mixtures wer then poured into Teflon petri dishes for solvent evaporation. The dried 

samples were hot pressed at 160o for 25 minutes to obtain vulcanized rubber sheet of 0.2 

to 0.4 mm thickness. 
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6.4 Results and Discussion 

2-Methyl-2-[(dodecylsulfanylthiocarbonyl) sulfanyl]propanoic acid (MDSS) was 

selected as the RAFT agent because it has been reported to have excellent control over a 

selection of common monomers,3 and the end carboxylic acid group provided a convenient 

site for grafting onto the particle surface.  

We initially examined the free RAFT polymerization of CP. The ratio between 

species was kept at [CP]/[RAFT]/[AIBN] = 400: 1: 0.1. The reaction was carried out in 

THF at 60°C, and monitored over time. As shown in Figure 6.1, Ln(M0/Mt) had a linear 

relationship versus time and the molecular weight increased with monomer conversion 

although it did show a type of hybrid behavior. This hybrid behavior, resulting in an initial 

high molecular weight which approaches the calculated molecular weight as conversion 

increases, is usually ascribed to a low chain transfer constant at initial stages of the 

polymerization.9 PDI was below 1.5 during the process and the molecular distribution by 

GPC shows well-shaped unimodal peaks. We further studied the microstructure of PCP by 

NMR, which has not been reported previously. It was found that the ratio between 

microstructures was 71% 1,4 trans, 23% cis, 1.3% 1,2 additions and 4.7% 3,4 additions. 

The ratio did not change across samples at different molecular weights.  
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Figure 6.1. (A) Reaction scheme, (B) First-order kinetic plot and (C) Molecular weight 

versus conversion and polydispersity for RAFT polymerization of chloroprene in solution. 

 

To perform surface-initiated polymerization of CP from nanoparticles, we modified 

particle surfaces with RAFT agents, which was realized in three steps. First, the 

nanoparticles were treated aminosilane agent to obtain amine functionalized NPs. Then 

MDSS was activated by reacting with 2-mercaptothiazoline followed by silica gel column 

for purification. Last, amine functionalized NPs were reacted with activated MDSS to 

obtain MDSS attached nanoparticles. Successfully functionalized NPs showed the light 

yellow color of MDSS, and graft density was calculated based on characteristic UV-vis 

absorbance of MDSS at 300nm. 
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                           Scheme 6.1. Preparation of PCP grafted SiO2 NPs 

 

Surface-initiated RAFT polymerization of chloroprene was performed from MDSS 

grafted silica nanoparticles with 0.33chs/nm2 graft density with ratio between 

[Monomer]/[CTA]/[initiator] = 400: 1: 0.1. Reaction conditions were kept exactly the same 

as free solution polymerization including the ratio between monomers and solvent.  

The polymerization kinetics are shown in Figure 6.2. Molecular weight increased 

with monomer conversion with slight hybrid behavior and PDIs were typically less than 

1.6.  The linearity of the pseudo first order kinetic plot implies a constant radical 

concentration during the 26h polymerization period. These results indicated that surface 

anchored MDSS as well as free MDSS could be employed to control the polymerization 

of CP. 
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Figure 6.2. (A) First-order kinetic plot and (b) molecular weight and polydispersity versus 

conversion of the surfaced initiated RAFT polymerization of CP with 0.32chs/nm2 graft 

density, [monomer]/[CTA]/[initiator] = 400: 1: 0.1. 

 

It is interesting to compare the reaction kinetics between free RAFT polymerization 

in solution, and the surface-initiated RAFT polymerization on particles. By comparing the 

kinetics of SI-RAFT in Figure 6.2 and the one for free RAFT mediated polymerization in 

Figure 6.1, it is obvious that the free RAFT agent mediated polymerization was much faster 

than SI-RAFT polymerization. Approximately 25% conversion was achieved in 4 hours 

for free RAFT mediated polymerization and the same conversion was not achieved until 

20 hours for SI-RAFT with 0.32chs/nm2 graft density. This observation implied a 

retardation effect with SI-RAFT polymerization of CP. Similar observations have been 

reported for SI-RAFT polymerization of methyl methacrylate (MMA) using 4-

cyanopentanoic acid dithiobenzoate (CPDB) as RAFT agent. We reason that such 
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observation could be ascribed to the “localized high RAFT agent concentration” effect.8 In 

the case of SI-RAFT polymerization, the local concentration of RAFT agent was much 

higher than free RAFT agent mediated polymerization due to the immobilization onto 

particle surfaces. Therefore, surface radicals could transfer between adjacent RAFT agents 

instead of propagation via monomer addition, which resulted in retardation of 

polymerization observed here and reported in the literature.  

To provide further evidence for the hypothesis, we studied the SI-RAFT 

polymerization of CP with a different graft density (0.15ch/nm2), and plotted the reaction 

kinetics along with the two prior cases. (Figure 6.3) 
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Figure 6.3. Pseudo first-order kinetic plots for the polymerization of chloroprene with ratio 

between species [monomer]/[CTA]/[initiator] = 400: 1: 0.1 with free MDSS (black square); 

MDSS grafted particles with 0.15 ch/nm2 density (red triangle); MDSS grafted particles 

with 0.32 chs/nm2 density (blue diamond).  
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We find that the kinetic curve of SI-RAFT polymerization at 0.15ch/nm2 graft 

density is intermediate between the curves of free RAFT polymerization and SI-RAFT 

polymerization at 0.32ch/nm2 density, which agrees with our hypothesis. For SI-RAFT 

polymerization of CP, at low-to -medium graft density, the “localized high RAFT agent 

concentration” effect is not as pronounced as the case for high graft density, and the 

polymerization kinetics was similar to the free RAFT polymerization of CP. 

 

Mechanical properties of matrix-free PCP grafted silica nanoparticle composites. 

To investigate the mechanical properties of matrix-free PCP grafted silica 

nanoparticle composites, we prepared a series of composites from NPs with the same graft 

density (0.1 chs/nm2), but different molecular weights of grafted polymer. The details of 

the samples are listed in Table 6.1.  

Table 6.1. Sample details of matrix-free PCP grafted silica nanoparticle composites. 

Sample name Graft 

density 

(chs/nm2) 

Mn Silica 

content% 

Tensile 

strength(MPa) 

Elongation 

at break 

PCP unfilled N/A 50 kDa 0 1.8 10.3 

MF-47K 0.1 47 kDa 50 12.9 3.9 

MF-55K 0.1 55 kDa 45 11.0 5.3 

MF-70K 0.1 70 kDa 40 11.0 7.7 

MF-100K 0.1 100 kDa 30 6.1 10.9 
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Figure 6.4. TEM image of 100 kDa PCP grafted silica nanocomposites at 30 silica wt%. 

Scale bar 500nm (bottom middle) and 200nm (bottom left). 

 

The PCP grafted silica nanoparticles were directly crosslinked as matrix-free 

composites. MgO and ZnO were used as crosslinking agents. PCP grafted silica 

nanoparticles were mixed with curing agents in solution and then solvents were allowed to 

evaporate under vacuum. Then dried samples were hot pressed at 160 °C for 25 minutes to 

obtain vulcanized rubber sheet of 0.2 to 0.4 mm thickness. The advantage of matrix-free 

nanocomposites over conventional composite materials is to achieve better nanoparticle 

dispersion. Conventional composite synthesis procedures require the mixing of particles 

with polymer matrix, which introduces additional complexity into the system, and often 

results in agglomeration of particles especially at high nanoparticle loading due to 

unsatisfactory interface compatibility. In matrix-free systems, the particles are inherently 
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separated from each other by the grafted polymers. Thus, good dispersion could be easily 

achieved.10-12  

As shown in Figure 6.4, good particle dispersion was achieved with 100 kDa PCP 

grafted silica nanocomposites at 30 wt% silica. There was no significant clustering of 

particles even at high silica loading. However, a closer view revealed there is no well-

defined pattern of particle distribution and interparticle spacing was not uniform, which is 

most likely due to the large size disparity of the core silica particles. 
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Figure 6.5. Representative small-angle X-ray scattering (SAXS) intensity for matrix-free 

PCP grafted silica nanocomposites. 

 

Small-angle X-ray scattering (SAXS) was used to obtain more information on the 

particle dispersion state of the crosslinked samples. No agglomeration was detected from 

the X-ray scattering pattern at low q. The intensity of all the peaks was relatively weak, 

indicating a broad distribution of interparticle spacing. The location of the peak did not 
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change much between the samples, which corresponded to a d spacing ~23nm, and seems 

reasonable considering the size of silica core (15nm) plus the grafted polymers. 

The matrix-free nanocomposites were crosslinked as films and cut into dog-bones 

for tensile testing. It was found that the properties of the composites were directly related 

to the molecular weight of the grafted polymers. 
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         Figure 6.6. Stress-strain curves of crosslinked unfilled and filled composites. 

 

Tensile stress-stain curves of matrix-free PCP silica nanocomposites are shown in 

Figure 6.6. All the matrix-free composites have significantly improved tensile strength 

compared with unfilled PCP. Furthermore, the tensile stress at break increased with silica 

loading with a corresponding decrease in elongation at break. This general trend is 
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consistent with literature that the crosslink density increase continuously with increasing 

silica loading.13-14 15 For matrix-free nanocomposite systems, the increase in molecular 

weight of the grafted polymers causes a decrease in silica loading at a fixed graft density. 

Thus, as molecular weight increased, the elongation at break increased due to better 

entanglement between polymer chains while the tensile strength decreased due to lower 

silica loading.  

 

Figure 6.7. Temperature dependence of storage modulus of crosslinked unfilled PCP and 

matrix-free PCP silica nanocomposites. 

 

The dynamic mechanical behavior was measured at constant strain and frequency 

for the PCP crosslinked silica nanocomposites and the crosslinked unfilled PCP. Figure 6.7 

shows that matrix-free PCP silica composites showed higher storage modulus in the 

rubbery plateau region relative to the unfilled PCP corresponding to the increase in silica 

content. The glass transition temperature of the matrix-free composites was not altered 

compared with unfilled PCP as observed in Figure 7B, however, the reduction of tan delta 
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peak height increased with silica loading, which also suggests better reinforcing effect and 

stronger rubber-filler interaction at high silica loading. 16 

 

6.5 Conclusion 

A facile method was demonstrated for the synthesis of polychloroprene grafted 

silica NPs using surface-initiated RAFT polymerization. A trithioester RAFT agent was 

anchored onto the surface of silica NPs with controlled graft density, and controlled radical 

polymerizations were conducted to produce surface grafted PCP of predetermined 

molecular weight and relatively narrow PDI. The polymerization kinetics was studied and 

it was found that the grafting-from polymerization rate was dependent on the graft density 

and generally slower than chloroprene polymerization mediated by free RAFT agent. The 

PCP grafted silica NPs were directly crosslinked to form matrix-free nanocomposites that 

showed uniform particle dispersion and improved mechanical properties than unfilled PCP. 

These strong, tough composite materials could be useful in many applications that also 

require the improved solvent and environmental resistance inherent in polychloroprene 

rubbers. 
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CHAPTER 7 

CONCLUSIONS AND OUTLOOK 
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7.1 Conclusions 

Multifunctional polymer grafted nanoparticles were synthesized, characterized and 

investigated for various applications. The composition, structure, molecular weight, graft 

density and architecture of the grafted polymers were carefully selected to meet the specific 

requirements for each application. For drug delivery applications, water-soluble, stimuli 

responsive block copolymers were selected to provide biocompatibility and enhanced drug 

release at a tumor environment. For self-assembly applications, amphiphilic polymers with 

mixed brush architecture were selected to provide the delicate balance of overall 

hydrophilicity to induce the self-assembly. For tire reinforcement applications, low Tg 

polymers with exact composition as target matrices were selected to provide the optimum 

compatibility between nanofillers and polymer matrices.  

The self-assembly behavior of amphiphilic polymer grafted nanoparticles were 

systematically studied. A new self-assembly technique, namely surface-initiated 

polymerization-induced self-assembly (SI-PISA) was developed that enabled the one-pot 

synthesis of hybrid nano-objects with different shapes including 1D strings, 2D disks, 3D 

vesicles and solid spheres. The SI-PISA was established based on a bimodal polymer-

grafted NP structure. A solvent-miscible brush was first grafted onto 15 nm silica NPs, and 

self-assembly was subsequently induced by the polymerization of a second brush that was 

solvent-immiscible. Self-assembly occurred in situ with the SI-polymerization of the 

second brush. The shape of the nano-objects was found to be controlled by the chemical 

structure of grafted polymers, chain length of grafted polymers, and reaction media.  
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A reversed monomer addition sequence was successfully utilized to prepare 

bimodal polymer grafted nanoparticles and resulted in a significantly condensed synthetic 

procedure. The procedure started from surface-initiated RAFT polymerization of styrene 

from silica nanoparticles and then the polystyrene macro RAFT agents were chain 

extended with poly(methacrylic acid), which was in the reversed monomer addition 

sequence for building well-defined block copolymers. The composition of the grafted 

polymers was analyzed by GPC deconvolution. Approximately 10% of the grafted PS 

macro-initiators were chain extended while the majority remained “unreacted” or were 

terminated by radical coupling. It was shown that this procedure of grafting block polymers 

with reversed monomer addition sequence could be employed as a “quick and dirty” 

method of preparing mixed brush polymer grafted nanoparticles. The SiO2-g-(PS396, PS396-

b-PMAAx) nanoparticles showed unique self-assembly behavior and formed solid 

spherical aggregates. The degree of aggregation could be controlled in the range between 

1 to several hundred by adjusting the PS/PMAA ratio and initial nanoparticle concentration. 

It is expected that these assemblies will find wide application in the nanotechnology field. 

A pH and thermal dual-responsive nanocarrier with silica as the core and block 

copolymer composed of poly(methacrylic acid) (PMAA) and poly(N-

isopropylacrylamide) (PNIPAM) as the shell was prepared by surface initiated RAFT 

polymerization. The resulting SiO2-PMAA-b-PNIPAM particles dispersed individually in 

aqueous solution at high pH and low temperature but reversibly agglomerated at acidic 

conditions or at elevated temperature. These dual-responsive nanoparticles were used as 

carriers to deliver the model drug doxorubicin (DOX) with unusually high entrapment 

efficiency and loading content. The release rate was controlled by both pH and temperature 



 

137 

 

of the surrounding medium. Moreover, these particles selectively precipitated at acidic 

conditions with increased temperature, which may enhance their ability to accumulate at 

tumor sites. Cytotoxicity studies demonstrated that DOX-loaded nanoparticles are highly 

active against Hela cells, and more effective than free DOX of equivalent dose. A cellular 

uptake study revealed that SiO2-PMAA-b-PNIPAM nanoparticles could successfully 

deliver DOX molecules into the nuclei of Hela cells. All these features indicated that SiO2-

PMAA-b-PNIPAM nanoparticles are a promising candidate for therapeutic applications. 

We studied the surface-initiated RAFT polymerization of polyisoprene from two 

types of silica particles. The polymerization kinetics on spherical particles were studied at 

different graft densities and the polymerization formulation was further optimized to target 

over 100 kDa molecular weight grafted polymers. ZEOSIL 1165mp silica powders were 

used as an alternative silica source, which were broken down into ~200 nm silica clusters 

by sonication, which were then successfully grafted with polyisoprene as well. The 

synthetic procedure of PIP grafted Nissan silica nanoparticles were successfully scaled up 

from gram scale to kilogram scale by employing stainless steel tubes as a reaction vessel 

in a heated oven. The PIP grafted Nissan silica nanoparticles were used as reinforcing 

fillers to improve the mechanical properties of SKI-3 polyisoprene matrix. Tensile testing 

showed that composites with 50 kDa PIP grafted Nissan silica showed significant (187%) 

increase in tensile stress at break compared with pure matrix, indicating a strong 

reinforcement effect. Dynamic mechanical analysis showed significant improvements in 

the storage modulus in the rubbery state for the silica filled samples compared with unfilled 

matrix. Although the mechanical testing results were encouraging, TEM, SAXS and strain-

sweep DMA results suggested that perfect nanoparticle dispersion has not yet been 
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achieved. Partial nanoparticle aggregation existed probably due to insufficient particle 

surface coverage, which could be potentially improved by using a bimodal polymer 

grafting architecture.  

A facile method was demonstrated for the synthesis of polychloroprene grafted 

silica NPs using surface-initiated RAFT polymerization. A trithioester RAFT agent was 

anchored onto the surface of silica NPs with controlled graft density, and controlled radical 

polymerizations were conducted to produce surface grafted PCP of predetermined 

molecular weight and relatively narrow PDI. The polymerization kinetic was studied and 

it was found that the grafting-from polymerization rate was dependent on the graft density 

and generally slower than chloroprene polymerization mediated by free RAFT agent. The 

PCP grafted silica NPs were directly crosslinked to form matrix-free nanocomposites that 

showed uniform particle dispersion and improved mechanical properties than unfilled PCP. 

These strong, tough composite materials could be useful in many applications that also 

require the reported solvent and environmental resistance inherent in polychloroprene 

rubbers. 

 

7.2 Future work 

The SI-PISA method developed in this work is a new self-assembly technique with 

huge potential in terms of versatility, efficiency and cost-effectiveness to produce hybrid 

nano-assemblies.  One important extension of the current state-of-the-art would be to try 

this formula on other types of nanoparticles, for example magnetic nanoparticles and gold 

nanoparticles. In this context, robust synthesis methods for surface-initiated RAFT 

polymerization from magnetic or gold nanoparticles need to be developed. It would be very 

useful to expand the current SI-PISA to other solvent systems like water and non-polar 
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solvents. The key to success would be to find the right combination of polymer brushes 

where the first brush provides sufficient solubility and the second brush becomes insoluble 

when polymerized to induce the self-assembly. In this context, we could utilize the large 

body of literature of pure polymer PISA recipes. Block copolymer based PISA systems 

have been successfully expanded into various solvent systems including water, ionic 

liquids, and non-polar solvents. Testing the polymer combinations from PISA would be a 

good starting point to explore future SI-PISA. However, there are also some factors that 

should be considered because the SI-PISA system is based on mixed brush grafted 

nanoparticles which is far more complicated than block copolymers. For example, the 

compatibility between the first polymer brush and the agents used to introduce second 

surface grafted RAFT agents should be considered. Our preliminary results show that acid 

containing polymer may not be suitable for stabilization brushes because they could 

potentially absorb the aminosilane agents which then subsequently decompose the surface 

RAFT agents. 

In this thesis, we successfully synthesized and scaled up polyisoprene grafted silica 

nanoparticles that significantly improved mechanical properties of polyisoprene tire 

rubber. However, characterizations including TEM, SAXS and DMA indicated that perfect 

nanoparticle dispersions were not achieved. More work should be done to tackle this 

problem. Current data suggests that at low to medium graft densities, the dispersion state 

of the nanoparticles is not ideal. The uncovered silica surface could be contributing to 

particle agglomeration due to the particle-particle interaction. As a future direction, high 

graft density regime with short brushes should be explored, eliminating particle-particle 

interaction to achieve a better dispersion state. A second factor that may affect particle 
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dispersion is the lack of compatibility between the largely trans configuration polyisoprene 

and the pure cis configuration matrix.  Experiments with different matrices should be 

carried out to help elucidate and address the incompatibility. For example, free 

polyisoprene matrix synthesized by RAFT could be used to guarantee the exact same 

polymer configuration between matrix polymer and grafted polymers. In addition to 

exploring high graft density regimen, we also propose the bimodal polymer architecture to 

address the issue. One potential problem with monomodal, high graft density polymer 

grafted nanoparticles is that polymer content tends to be relatively high especially when 

targeting high molecular weight at the same time. This trend is unfavorable in terms of tire 

rubber reinforcement application because high silica loading (~33 wt%) is desired for 

practical applications. Bimodal polymer architecture could solve this problem by using two 

populations of grafted polyisoprene chains. The first population should be high in 

molecular weight (>80 kDa), but very low in graft destiny(<0.05 chs/nm2). They provide 

the entanglement between fillers and the matrix while not accounting for too much weight 

percent. The second population should be very low in molecular weight (< 5 kDa), but with 

high graft density. They would saturate the silica surface, eliminating particle-particle 

interaction. These bimodal polymer-grafted nanoparticles would be ideal candidates to 

achieve perfect particle dispersion and optimal mechanical properties. 
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