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Abstract

In this Ph.D thesis, I will present results concerning to my doctoral research project

submitted to the Department of Physics and Astronomy at the University of South

Carolina. The thesis belongs to the area of Theoretical Physics, particularly, in the

framework of Einstein’s Theory of General Relativity.

The project is the study of integral and surface properties of slowly rotating

homogeneous masses in the gravastar limit R → Rs, where Rs is the Schwarzschild

radius. For this purpose we followed the perturbative method proposed by Hartle

in 1967. In this model, the relativistic equations of structure for a slowly rotating

star were derived at second order in the angular velocity Ω. An interesting, and

educational, application of this model was investigated by Chandrasekhar and Miller.

In their approach, they solved numerically the structure equations of a homogeneous

star (constant energy density) up to the Buchdahl bound (9/8)Rs. Based on this

work, our objective was to investigate the interesting region below the Buchdahl

bound Rs < R < (9/8)Rs, which has not been studied previously in the literature.

Our results were astonishing. We found that the surface properties and quadrupole

mass moment approach the values corresponding to those of the Kerr metric when

expanded at second order in angular momentum. This remarkable result provides a

long sought solution to the problem of the source of rotation in the Kerr spacetime.
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introduction

In classical General Relativity it is commonly accepted that the final state of complete

gravitational collapse is a singular state called a ‘black hole’ [41, 66, 102]. This object

is characterized by a central space-time singularity at r = 0 surrounded by an event

horizon, a null hypersurface located at the Schwarzschild radius rS = 2M which

separates points connected to infinity by a timelike curve from those that are not.

These features are a consequence of the exact solution to Einstein’s field equations

in the vacuum found a century ago by Karl Schwarzschild [91] which describes the

exterior space-time geometry of a spherically symmetric mass.

Despite the vast amount of literature (see e.g. [73, 103] and references therein),

the physical reality of black holes has not only generated some skepticism [5, 29, 40],

but also has raised some paradoxical issues which have not been consistently solved.

A pivotal one is the non-conservation of information by quantum matter falling into

a black hole [39]. Additionally in the original Hawking [38] radiation derivation,

the backward-in-time propagated mode seems to experience a large blueshift with

energies larger than the Planck energy. It is expected that these highly ‘blue-shifted’

photons would leave a non-negligible ‘imprint’ on the spacetime geometry, making the

approximation of fixed classical geometry background untenable [60, 67]. Moreover,

the arbitrarily large values of entropy at TH → 0 associated with the black hole as

predicted by the Bekenstein [9] formula in the classical limit ~→ 0 produces serious

challenges to the foundations of quantum mechanics. It is believed that the resolution

of these issues will be achieved in the framework of a consistent theory of quantum

gravity. We still do not posses such a theory, therefore it is valuable to investigate
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alternative solutions to the aforementioned problems.

Alternatives have been introduced to alleviate some of the black hole paradoxes

[10, 22, 96]. In particular, we concentrate in the gravastar (vacuum condensate

gravitational star) model proposed by Mazur and Mottola [60, 61, 62]. A gravastar

is basically the aftermath of the gravitational collapse of a star to the Schwarzschild

radius Rs, leaving a final state characterized by a modified de Sitter interior region

with negative pressure and a finite surface tension. The exterior spacetime remains

the standard spherically symmetric Schwarzschild exterior solution.

In connection with the gravastar, Mazur and Mottola [63] considered the constant

density Schwarzschild interior solution, or ‘Schwarzschild star’. It is well known that

this interior solution shows a divergence in pressure when the radius of the star

contracts to R = (9/4)M , known as the Schwarzschild-Buchdahl bound [13, 92]. The

existence of this limit in addition to the homogeneous mass approximation, considered

‘unrealistic’, have been assumed to be sufficient reasons to exclude the Schwarzschild

star from further investigation [102]. This complete disregard of the interior solution

has left the interesting region Rs < R < (9/8)Rs unexplored.

In a bold approach Mazur and Mottola [63] analyzed this ‘forbidden’ region and

found that the divergence in the central pressure is integrable through the Komar for-

mula [50], producing a δ-function of transverse stresses implying a relaxation of the

isotropic fluid condition on a surface of some radius R0. In the limit when R → R+
s

from above and R0 → R−s from below, the interior region suffers a phase transition

(starting at the centre) becoming one of negative pressure evoking a de Sitter space-

time. This non-singular ‘bubble’ of dark energy which is matched to an external

vacuum Schwarzschild spacetime, has zero entropy and temperature, so providing a

consistent picture of a gravitational Einstein-Bose condensate, or gravastar, as the

final state of complete gravitational collapse.

The relevance of gravastars follows from the fact that their physical properties
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and behaviour are governed by classical general relativity. Gravastars are being rec-

ognized as a very challenging alternative to black holes. Moreover, calculations of

observational consequences of a merger of either two black holes or two gravastars

in the context of gravitational waves, e.g. ringdowns [23] and afterglows [4], may

provide methods to discriminate between black holes and gravastars.

Some authors [54] have investigated possible sources for the interior of the gravas-

tar, and the electrically charged case was considered by [44]. The issue of stability

against axial perturbations was studied by [24]. They found that gravastars are stable

under axial perturbations, moreover, the quasi-normal modes of rotating gravastars

deviate from those associated with a black hole. They concluded that this might help

to distinguish observationally between a gravastar and a black hole. Radial and axial

gravitational perturbations on thin-shell gravastars were studied by [75, 76].

Perturbation theory can also be applied to the study of equilibrium configurations

of slowly rotating compact objects. In a seminal paper Hartle [33] provided the

relativistic structure equations to determine the equilibrium configurations of slowly

rotating stars to second order in the angular velocity. In Hartle’s model the interior

of the star is composed of a fluid characterized by a general one-parameter equation

of state (EOS). This configuration is matched to a stationary and axially symmetric

exterior region across a timelike hypersurface.

Chandrasekhar and Miller [21] studied slowly rotating homogeneous masses char-

acterized by a constant energy density, using Hartle’s framework. For this configura-

tion they solved numerically the structure equations for several values of the parame-

ter R/Rs where R is the radius of the star and Rs is the Schwarzschild radius. Using

these solutions Chandrasekhar & Miller calculated integral and surface equilibrium

properties such as moment of inertia and mass quadrupole moment up to the Buch-

dahl bound. They found that the ellipticity of the star, considering constant mass

and angular momentum, manifests a prominent maximum at the radius R/Rs ∼ 2.4.

3



One result of particular interest is that for a star with the ‘minimum possible’ radius

R = (9/8)Rs, the quadrupole mass moment is very close to the value associated with

the Kerr metric to second order in the angular velocity.

Motivated by the aforementioned works, in this paper we report results of sur-

face and integral properties of a slowly rotating Schwarzschild star in the unstudied

region Rs < R < (9/8)Rs. These results extend those presented by Chandrasekhar

and Miller [21] which where considered up to the Buchdahl radius. We show that

for a Schwarzschild star in the gravastar limit when R → Rs, surface properties

like moment of inertia, angular velocity and mass quadrupole moment approach the

corresponding Kerr metric values. These remarkable results provide a long sought

solution to the problem of the source of rotation of a slowly rotating Kerr black hole.

This Introduction has been taken from the author’s paper [82]
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Chapter 1

Black Holes: A brief review

This can’t possibly be true...

There ought to be a law of nature to prevent stars

from behaving in this foolish manner.

Sir Arthur Eddington

Introduction

In 1905 Albert Einstein published the Special Theory of Relativity (SR) [28] which is

founded on the special principle of relativity. If we choose a reference system O where

the laws of Physics takes their simplest form, the same laws will hold too in a second

system O′ which is in rectilinear and uniform motion relative to O. This statement is

in harmony with the laws of classical mechanics. On the other hand, the constancy

of the speed of light and its character as a natural limit clearly deviates from the

precepts of Newtonian physics where there is no limit of velocities. Therefore, it is

the unification of the principle of relativity with the finiteness of the speed of light

which consolidates the principle of relativity of Einstein [52].

The transition from SR to the General Theory of Relativity (GR) was inspired

by the ideas of Mach [55] on the inertial properties of bodies in classical mechanics.

Moreover, the problem that Einstein faced was to extend the principle of relativity

to systems of reference in any motion [28]. The path for this achievement was elu-

cidated by the particular property of the gravitational field which imparts the same
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acceleration to all bodies, independent of their constituents.

Somehow this resembles the properties of inertial systems where free bodies will

move uniformly following straight lines, assuming that they were given the same initial

conditions. If this reference frame is now accelerated (non-inertial), these bodies will

move in the same way relative to it. This reasoning led Einstein to establish the

equivalence principle, namely, a uniformly accelerated reference system is equivalent

to a constant uniform gravitational field [52].

A statement which is usually ignored in the literature [14, 90, 95, 102] and only

remarked in [52] is that this equivalence between gravitational fields and non-inertial

frames is not complete. The difference settles on the behavior at infinity of these

fields. In correspondence with the Newtonian limit, the gravitational field vanishes

at infinity in contrast with the non-inertial ‘fields’ which increase or remain finite at

this limit. One example of this is the centrifugal force in a rotating reference frame

which increases with no limit as we move out from the axis of rotation.

It is clear that, in contrast to the case of non-inertial frames which can be ‘elimi-

nated’ by simple transformations to an inertial frame, gravitational fields cannot be

removed by any choice of reference frame. In other words, there is no way to ‘screen

out’ the effects of a gravitational field. Thus we have an impossibility to construct

inertial frames (background observers) as we did for SR. The way how Einstein sorted

out the solution to this puzzle was to assume that the spacetime metric is not flat.

Free observers in a gravitational field will follow the geodesic of the curved spacetime.

Gravity becomes an effect of the spacetime geometry. Nevertheless, if we choose a

small region1 where the gravitational field can be considered to be uniform, then this

field will vanish there.

Considering that GR extends the postulate of relativity, how should we write the

laws of Physics, such that, they apply to systems of reference in any kind of motion?.

1Small compared to the radii of curvature of the source of gravitational field.
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The answer is provided by the covariance principle as formulated by Einstein [28]

The general laws of nature are to be expressed by equations which hold

good for all systems of co-ordinates, that is, are co-variant with respect to

any substitution whatever (generally co-variant).

In other words, the equations of physics must be written covariantly in tensorial

form. Therefore, the only spacetime quantities that must appear in the laws of

physics are the metric gµν and quantities derivable from it [102]. Additionally, we

require that in the Lorentz spacetime ηµν (flat space) the equations must reduce to

their corresponding forms in special relativity.

The chapter is organized as follows. In the next section, we summarize the essen-

tial formalism of general relativity. The Schwarzschild exterior solution is introduced

in section 1.2 where we also discuss its main geometrical properties, including the

coordinate singularity at the Schwarzschild radius rS = 2M and the Kruskal exten-

sion. In section 1.3 we discuss, in a heuristic manner, the gravitational collapse of

stars. The gravitational field due to a spinning mass is presented in section 1.4. In

section 1.5 we discuss some general properties of black holes, including the Laws of

Black Hole Mechanics and Hawking effect. We close the section, summarizing the

powerful Black Hole Uniqueness Theorems. Finally, in section 1.6, we discuss some

paradoxical issues which plague the classical theory of black holes.

1.1 General Relativity in a Nutshell

Notation and conventions. We follow the conventions of [66]. That is, Greek

indices (µ, ν, α, ...) refer to spacetime coordinates running from 0 to 3, with 0 indi-

cating the time coordinate. Latin indices (i, j, k, ...) refer to three-dimensional space

coordinates running from 1 to 3. The metric signature is taken to be (−,+,+,+)

and we follow the Einstein summation convention. Additionally, we use the so-called
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geometric units, where the speed of light c and the Newtonian gravitational constant

G are equal to 1.

1.1.1 The spacetime manifold

In general relativity, the generalization of the interval (measurement of local dis-

tances) is given by the quadratic form

ds2 = gµνdx
µdxν (1.1)

where the function gµν is called the spacetime metric which, in general, is a function of

the coordinates xµ. Thus GR permits the metric gµν to be curved as a generalization

of the flat spacetime of SR determined by the Lorentz metric ηµν . According to GR,

the space-time must be curved where, physically, there is a gravitational field. The

relation between the source of the gravitational field (energy) and the geometry of the

spacetime will be determined by the Einstein equation which will be discussed later.

Thus the mathematical model we will follow for spacetime, which is the collection

of all physical events, is a differentiable manifold M on which a metric gµν can be

defined.

On a manifold M we define the derivative operator or covariant derivative of a

vector V µ by

∇αV
β = ∂αV

β + ΓαβγV γ, (1.2)

where ∂µ ≡ ∂
∂xµ

and Γαβγ denotes the Christoffel symbols which, in terms of the partial

derivative operator, satisfies

Γγαβ = 1
2g

γρ [∂αgβρ + ∂βgαρ − ∂ρgαβ] . (1.3)
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Given the derivative operator ∇α we can introduce the concept of parallel transport.

Given a curve C with a tangent vector uα, we say that a vector vµ is parallelly

transported along the curve C if the equation

uα∇αv
β = 0 (1.4)

is satisfied. Notice that due to its tensorial nature, this relation is a frame-invariant

definition [90]. In the general relativity spacetime, particles follow geodesics which

intuitively corresponds to the ‘straightest trajectory’ on a curved geometry. More for-

mally, a geodesic is a curve that transports parallelly its tangent vector V α satisfying

the condition

V α∇αV
β = 0. (1.5)

Let us parametrize the curve by some affine parameter τ . The tangent vector is then

V α = dxα/dτ and (1.5) takes the final form

d2xµ

dτ 2 + Γµσν
dxσ

dτ

dxν

dτ
= 0. (1.6)

This is the geodesic equation, so given initial values for xµ and dxµ/dτ , we can always

find a unique solution to (1.6). More formally, given a point p onM and a tangent

vector V α on the tangent space V p, there is a unique geodesic through p with tangent

V α.

The notion of parallel transport also provides a mechanism to define curvature

intrinsically. In the free-torsion case, the action of the commutator of ∇ on a vector

field V µ corresponds to

[∇µ,∇ν ]V ρ = Rρ
µνβV

β (1.7)

where Rρ
µνβ is the Riemann tensor, or curvature tensor, which in components can be

written as
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Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ. (1.8)

As usual, we can use the metric tensor to raise and low indices

Rρσµν = gρλR
λ
σµν . (1.9)

From the definition (1.8), it can be verified that the Riemann tensor is antisymmetric

in its first two indices

Rρσµν = −Rσρµν . (1.10)

It is also antisymmetric in its last two indices

Rρσµν = −Rρσνµ, (1.11)

and it is symmetric under exchange of the first pair of indices with the second

Rµνρσ = Rρσµν . (1.12)

The curvature tensor also has the symmetry

Rρσµν +Rρµνσ +Rρνσµ = 0. (1.13)

Similarly, the covariant derivative of the curvature tensor satisfies the Bianchi identity

∇λRρσµν +∇ρRσλµν +∇σRλρµν = 0. (1.14)

From the contraction of the Riemann tensor we obtain the Ricci tensor

Rµν ≡ Rλ
µλν , (1.15)

which is totally symmetric Rµν = Rνµ by the symmetries of the Riemann tensor. By

contraction of the Ricci tensor, we obtain the Ricci scalar or curvature scalar
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R ≡ gµνRµν = Rµ
µ, (1.16)

which corresponds to the trace of the Ricci tensor. From its symmetries, the Rie-

mann tensor has 1
12n

2(n2 − 1) algebraically independent components, where n is the

dimension of the space. Finally we can define the Einstein tensor as

Gµν ≡ Rµν −
1
2Rgµν , (1.17)

which is symmetric by virtue of the symmetry of the metric and the Ricci tensor.

One important property of this tensor is that its covariant derivative vanishes

∇µGµν = 0. (1.18)

This divergenceless condition of the Einstein tensor is essential for the consistency of

the Einstein equations with the energy-momentum conservation.

1.1.2 Matter fields

In Einstein’s theory of gravitation, the central idea is that the spacetime metric

represents the gravitational field. Moreover, the metric will be determined by the

matter fields, such as the electromagnetic field, neutrino field, etc., which describe the

matter content in the spacetime [41]. Therefore, urges to make the distinction between

gravitational fields and matter fields. In this context, matter includes everything

(baryons, leptons, electromagnetic fields, etc.) except gravitational fields [28].

By the general covariance principle, the matter fields obey tensorial equations

defined on the manifold M, where spatial derivatives become covariant derivatives

whose connection depends on the metric tensor gµν . In other words, the matter fields

will be determined by tensor equations which involve the metric. Besides local causal-

ity (events must be connected by non-spacelike curves onM), the matter fields obey

equations such that we can define the energy-momentum tensor T µν , which depends
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on the matter fields, the metric gµν and derivatives. The energy-momentum tensor

is symmetric and vanishes if there are no matter fields onM. By local conservation

of energy and momentum we have

∇µT
µν = 0. (1.19)

So far we have postulated some general properties of the energy-momentum ten-

sor. However, we have not discussed a general formalism which would allow us to

construct T µν given some matter fields. There exists the Lagrangian formulation,

which provides a method to derive the form of T µν given some Lagrangian (see e.g.

[41] § 3.3). This formalism is beyond the scope of this section, and we will not discuss

it here.

For our immediate purpose, we use the following definition of the energy-momentum

tensor, in components in some arbitrary frame O [90]

T µν ≡ {flux of µ momentum across a surface of constant ν}. (1.20)

Here µ-momentum indicates the µ component of the four-momentum pµ ≡ (E, ~p ),

where p0 = E is the energy of the particle in O, and ~p is the spatial momentum. For

example, for a perfect fluid 2 the energy-momentum tensor takes the form

T µν = (ε+ p)uµuν + pgµν , (1.21)

where ε is the energy density, p is the pressure and uµ is the four-velocity. Notice

that for a pressureless perfect fluid, which can be considered as composed of grains

of “dust” which do not interact with each other, equation (1.21) together with the

local conservation of energy (1.19) result into the geodesic equation (1.5). Thus,

2A perfect fluid is characterized for having no viscous effects and heat fluxes, and its pressure
tensor which is diagonal [86].
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Einstein’s equations imply that free test particles follow geodesics in the spacetime.

This remarkable result shows the self-consistency and beauty of Einstein’s theory.

1.1.3 The Einstein field equations

Following a plausible approach, Einstein proposed the field equations based on the

following arguments:

• The equations must be written in tensorial form (covariance principle)

• In the limit of weak fields and low velocities (v << c), the field equations must

reduce to the Newtonian field equation

∇2φ = 4πGρ. (1.22)

where φ and ρ denotes the gravitational field and mass density, respectively.

• The energy-momentum tensor Tµν corresponds to the source of the gravitational

field.

In November 25th of 1915, after 10 years of intensive research, Einstein gave final

form to the field equations which relates the geometry of the spacetime with the

mass-energy distribution. The Einstein equations reads

Rµν −
1
2(R− 2Λ)gµν = 8πG

c4 Tµν , (1.23)

where Λ is the cosmological constant (we show the proportionality constant with its

correct G and c dependence). Given fixed initial conditions, the Einstein equations

are a system of 10 coupled partial differential equations in the metric gµν and its

derivatives. However the covariant divergence of both sides of (1.23) is identically

zero, thus we only have six independent differential equations for the metric gµν .

At first glance, one might think that given the form of Tµν one simply solves

for gµν from (1.23). However Tµν also depends on the metric function gµν , thus in
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general relativity spacetime and matter form a dynamical structure which must be

solved simultaneously. Following Wheeler’s aphorism: Space acts on matter, telling

it how to move. In turn, matter reacts back on space, telling it how to curve.[66]

Even though Einstein introduced the Λ-term in his paper on cosmological con-

siderations of 1917 [28], he was already aware of the possibility of adding a term in

his equations before discussing any ideas on cosmology. In a footnote in his paper of

1916 [28], after he wrote the divergenceless condition of (1.17), Einstein wrote:

Properly speaking, this can be affirmed only of the tensor Gµν+λgµνgαβGαβ,

where λ is a constant. If, however, we set this tensor = 0, we come back

again to the equations Gµν = 0.

Why did Einstein decide to ignore this term at that time?. According to him, it

“removed” the beauty of the theory. However, this argument was not considered

anymore when he put it back again in 1917 in his discussion on cosmology. Beyond

the controversy around this “cosmological constant” (see e.g. [11]), the Λ-term turned

out to be relevant in the last decade after the discovery of the accelerated expansion of

the universe [78, 87]. In the accepted picture this term is associated with the “dark

energy”, an elusive ‘substance’ which is credited for the accelerated cosmological

expansion.

To summarize, in general relativity, spacetime is a Riemannian space on which we

define a metric tensor gµν . The curvature of gµν is related to the mass-energy content

Tµν through Einstein’s equations.

1.2 Schwarzschild Spacetime

Few months after Einstein published his field equations, Karl Schwarzschild [91] found

the first exact solution in vacuum (T µν = 0), which represents the geometry of the
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empty spacetime outside a static and spherically symmetric mass3. In coordinates

(t, r, θ, φ) the Schwarzschild metric is given by

ds2 = −
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2

(
dθ2 + sin2 θdφ2

)
, (1.24)

where the parameter M is associated with the mass of the object, as measured at

infinity. Note that in the limit when r → ∞, (1.24) takes the Minkowskian form of

the Special Relativity spacetime. This property is called asymptotic flatness. The

relevance of the Schwarzschild space-time, besides the three experimental tests sug-

gested by Einstein [14, 66], follows from the fact that it corresponds to the unique

solution to Einstein’s equations in the vacuum with spherical symmetry, as stated by

Birkhoff’s theorem [41].

A quick glance of (1.24) shows that near the point r = rS ≡ 2M , commonly

known as the Schwarzschild radius, the temporal component gtt vanishes and the

radial component grr blows up. In principle, this anomalous behavior might be due

to a pathology of the spacetime geometry itself, or it might be due to an inconvenience

in the Schwarzschild coordinates. It is important to recall that the metric elements are

coordinate-dependent; therefore, a change in coordinates might alleviate the singular

behavior. To analyze the nature of the singularity at the gravitational radius, we

compute the Kretschmann curvature scalar from (1.16), which in the case of the

metric (1.24), takes the form

R = RµνρσRµνρσ = 48M2

r6 , (1.25)

which is regular at r = 2M , indicating that the geometry is well behaved there. The

implications of this result are far reaching. For instance, an observer who is radially-

3In general, not only the mass distribution, but also the motion of the mass must be centrally
symmetric, i.e., the velocity at each point must be directed along the radial direction [52].
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falling towards the Schwarzschild radius will not feel infinite tidal forces. Once she

crosses r = 2M , she would not notice anything special at that point4.

The fact that the Schwarzschild metric components are not well behaved at the

Schwarzschild radius _ although nothing dramatic happens there with the spacetime

geometry_ implies that there is a pathology in the Schwarzschild coordinates. More-

over notice that in the region r > 2M , the Killing vector ∂t is timelike (gtt < 0) and

∂r (grr > 0) is spacelike 5. However in the region r < 2M there is a reversal in this

behavior, namely, ∂t becomes spacelike and ∂r becomes timelike. The volume of the

surface at r = 2M , where gtt = 0 and grr →∞, is found to be

∫
r=2M

|gttgθθgφφ|1/2 dtdθdφ = 0, (1.26)

which implies that r = 2M is a null surface. Therefore, r = 2M is a two-dimensional

hypersurface with area

∫
r=2M,t=const.

|gθθgφφ|1/2 dθdφ = 4π(2M)2. (1.27)

An extraordinary situation occurs when one analyzes the trajectory of a zero angular

momentum observer (ZAMO) in free-fall. The radial coordinate r, as a function of

the coordinate time, is given by [66]

t

2M = −2
3

(
r

2M

)3/2
− 2

(
r

2M

)1/2
+ ln

∣∣∣∣∣(r/2M)1/2 + 1
(r/2M)1/2 − 1

∣∣∣∣∣+ const. (1.28)

Similarly once can find the r-coordinate of the free-falling observer as a function of

her proper time τ . The function r(τ) give

4The tidal forces felt by an observer are determined by the components of the Riemann tensor
in his orthonormal frame [66]

5A vectorKµ which satisfies the Killing equation∇µKν+∇νKµ = 0, is called a Killing vector. In
general the existence of Killing vectors imply conserved quantities associated with geodesic motion.
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τ

2M = −2
3

(
r

2M

)3/2
+ const. (1.29)

Figure 1.1 shows the coordinate and proper time (in units of M) as a function of r

(in units of M). Notice the bizarre behavior of the free-falling observer’s trajectory.

According to a distant observer (coordinate time), she takes an infinite amount of

time to reach the surface r = 2M . However, according to her clock, she takes a

finite time to arrive at the gravitational radius, cross it, and eventually end up at the

central singularity in r = 0.
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Figure 1.1: Plot of coordinate and proper time (in units of M), as a function of the radial
distance r (in units of M), for the Schwarzschild geometry.

The paradoxical behavior of the Schwarzschild geometry can also be studied through

its causal structure, as determined by the light cones. Considering radial null geodesics

(dθ = dφ = 0), from (1.24) we have

ds2 = −
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1
dr2 = 0, (1.30)

which gives
dt

dr
= ±

(
1− 2M

r

)−1
. (1.31)

Equation (1.31) corresponds to the slope of the light cones on a spacetime diagram.

In the Minkowski spacetime dr/dt = ±1 indicating a flat geometry. Notice that
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(1.31) approaches 1 when r →∞, as expected from its asymptotically flat behavior.

However, in the limit r → 2M , dt/dr →∞ indicating a closing up of light cones near

the Schwarzschild radius.

According to this, a distant observer will find that the light signals sent by the

ZAMO in free-fall towards r = 2M are redshifted. Moreover, she will find that her

partner, who went on that perilous journey, will move slower as time goes. According

to (1.28), she will see that her partner never gets to the surface r = 2M . However,

after a while, she will find that the frequency of the light signals is incredibly low,

that she cannot detect them anymore. For the distant observer, her partner just

vanished into oblivion.

It is worthwhile to recall that the Schwarzschild solution (1.24) can be applied

only outside the configuration r > R. In most practical cases the Schwarzschild radius

is very small compared to the dimensions of the object. For example, for the Sun

rS = 2.96Km and for the Earth it is rS = 8.8mm [95]. Nevertheless in extreme cases,

for example when a star suffers gravitational collapse, the full exterior solution must

be considered. In this extreme case, it turns out that the surface r = 2M becomes a

one-way membrane where particles and radiation can get in but nothing can escape

from it. The surface r = 2M is called an event horizon. In more technical terms, en

event horizon is a hypersurface which separates points connected to future infinity

by timelike curves, from those that are not [41]. Considering that nothing can escape

from the event horizon, not even light, it is not possible to detect any signal coming

from it. This is the reason why J. A. Wheeler coined the term black hole [104].

1.2.1 Analytical Extension

Despite the paradoxical behavior of the Schwarzschild coordinates near the gravita-

tional radius r = 2M , the scalar of curvature (1.25) shows that the geometry behaves

well there. This fact suggests that a different coordinate system might alleviate the
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issues at the Schwarzschild radius.

One of the simpler coordinate systems that extend the Schwarzschild spacetime

was proposed by Kruskal[51] and independently by Szekeres[98]. They introduced

coordinates (u, v) which are related to the Schwarzschild coordinates (r, t) through

the transformation

r > 2M


u =

(
r

2M − 1
)1/2

er/4M cosh(t/4M)

v =
(

r
2M − 1

)1/2
er/4M sinh(t/4M)

(1.32)

r < 2M


u =

(
1− r

2M

)1/2
er/4M sinh(t/4M)

v =
(
1− r

2M

)1/2
er/4M cosh(t/4M)

(1.33)

where u corresponds to the radial coordinate and v to the time coordinate. In terms

of the coordinates (u, v), the Schwarzschild metric (1.24) takes the form [66]

ds2 =
(

32M3

r

)
e−r/2M(−dv2 + du2) + r2(dθ2 + sin2 dφ2) (1.34)

where r and t are functions of the coordinates (u, v) and are given by the inverse

transformations

(
r

2M − 1
)
er/2M = u2 − v2. (1.35)

t =


4M tanh−1(v/u), in regions I and III

4M tanh−1(u/v), in regions II and IV.
(1.36)

In Figure 1.2 the transformations (1.35) and (1.36) are plotted for various values

of r = const. and t = const. Notice that in Kruskal coordinates, curves of constant r

correspond to hyperbolae and surfaces of constant t are straight lines. An important

feature of this analytical extension is that null radial geodesics in Kruskal coordinates,

such that ds = 0, correspond to 45-degree lines (red lines). This behavior resembles

the causal structure of the Minkowski spacetime of Special Relativity.
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Figure 1.2: Kruskal extension of the Schwarzschild spacetime. Notice the full covering
of the spacetime manifold (regions I, II, III, IV) using the Kruskal coordinates. Regions
(I) and (III) represent two asymptotically flat spacetimes for r > 2M , which are identical.
Regions II and IV, where IV is the time-reversal “version” of II, corresponds to the regions
r < 2M where a central singularity r = 0 evolves. Notice that lines with constant r are
hyperbolae and lines of constant t are straight lines going through the origin in the Kruskal
geometry. The colors correspond to different parameters as follows, straight lines: t = M

(cyan), t = 2.5M (blue), t = 1010M (green). Hyperbolae: r = 3M (blue), r = 2.5M (cyan)
and r = 2.1M (green).

Notice that the central singularity r = 0 gives the roots u2 − v2 = 0. Thus

in Kruskal coordinates there are two singularities, namely, v = +(1 + u2)1/2 and

v = −(1 + u2)1/2. Moreover, notice that the asymptotically flat region r >> 2M

corresponds to u2 >> v2. Then it can be seen that there are two asymptotically

flat regions which corresponds to u >> +|v| and u << −|v|. Thus the Kruskal

coordinates cover the whole spacetime, in contrast to the Schwarzschild coordinates

which cover only the region (I) r > 2M . Furthermore, from (1.34) it can be seen that

there is no singular behavior at r = 2M .

In figure 1.2 we can see that the region I correspond to the exterior Schwarzschild

solution with a null hypersurface at r = 2M . Although the surface r = 2M is not

singular in the Kruskal geometry, a particle which crosses it will end up inevitably

in the central singularity r = 0. Thus region II corresponds to the ‘black hole’. An

interesting feature of the Kruskal coordinates is the existence of regions III and IV. For
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example, region IV is just the reverse-time version of region II. Therefore, in region

IV anything goes out but nothing comes in!. This region has been denominated as a

white hole [14, 66], a purely mathematical entity with no correspondence in reality.

1.3 Gravitational Collapse

As we discussed in the last section, the gravitational field in the empty exterior region

r > R corresponds to a patch of the Schwarzschild exterior solution. The interior of

the star will be described by some energy-momentum tensor which depends on the

energy density and pressure. For a homogeneous star, for example, the situation is

described by the Schwarzschild interior solution [92] 6. As it is expected, this interior

solution must match to the exterior metric at the boundary r = R. The Schwarzschild

radius r = 2M sets the static limit for a spherically symmetric star. If the radius of

the star is smaller then the Schwarzschild radius, the solution is no longer static.

In the widely accepted picture, a star supports its own weight by burning nuclear

fuel which releases vast amounts of thermal and radiation pressure. Once the nuclear

fuel is completely spent, the interior pressure and temperature decrease and the star

contracts. For cold matter at low densities (low compared to nuclear densities which

are of the order of 1014g/cm3), the pressure will be provided by quantum mechanical

effects (exclusion principle). In the non-relativistic case, the pressure is estimated to

be [102]

pnr = ~2(3π2)2/3

5me

n5/3, n << (me/~)3 (1.37)

where n is the number density of electrons and me, is the mass of the electron. Notice

that for non-relativistic matter, the degeneracy pressure is provided mainly by the

electrons (baryons have bigger masses). At higher densities (n >> (me/~)3) the

situation becomes relativistic and the pressure will be given by

6We will discuss the Schwarzschild interior solution in Chapter 2.
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pr = ~(3π2)1/3

4 n4/3, (1.38)

which is independent of the mass of the fermions [32, 102]. Stars which are supported

by electron degeneracy pressure are called white dwarfs. These stars have radii of

about 5 × 106m, densities of 106g/cm3 and masses of around M� [93]. As it was

first shown by Stoner [97], for the case of a homogeneous mass, and generalized by

Chandrasekhar [19] using a polytropic equation, the mass limit for a white dwarf is

given by

ML = 1.4
(

2
µN

)2

M�, (1.39)

where µN is the number of nucleons per electron and M� ≈ 2 × 1033g is the mass

of the Sun. If the density of the star is higher, the electrons become relativistic.

Thus they combine with protons to produce neutrons and neutrinos (inverse beta

decay). Neutrinos are radiated away, and the cold matter will be composed mainly

of free neutrons. Once the star reaches a new state of equilibrium, its self-gravity

will be compensated by the neutrons degeneracy pressure. This configuration is

called a neutron star. Oppenheimer and Volkoff [72] studied relativistic models of

neutron stars, assuming an ideal gas of free neutrons. The discovery of pulsars [43],

astronomical objects which emit periodic signals, led some authors [31] to propose

that these objects correspond to rotating neutron stars.

Thus, for relatively small masses, stars can be found in equilibrium states as white

dwarfs or neutron stars. However, for objects with M > ML there are no possible

nuclear or thermal reactions which can produce sufficient pressure to support the

self-gravity of the star. In this “extreme” case the surface of the object will collapse

behind its gravitational radius thus producing a Schwarzschild black hole.

For all practical purposes, a black hole is an invisible object. However, it has a

Schwarzschild mass M and its gravitational field in the region r > 2M is determined
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by the Schwarzschild solution. Then, how can we detect an object which neither

emits nor reflects any signal?. The strong gravitational field of the black hole will

affect the dynamics of test particles in orbit dramatically. Also, accreting matter

falling into the black hole will emit X-rays and radio waves which could be detected

here on Earth [41].

One of the strongest candidates to contain a black hole is the system Cygnus X-1.

This source was identified as a binary system with a high-mass star HDE 226868

and its unknown companion [17]. X-rays analysis, revealed that its companion is a

super-compact object with a mass in the range of 9−15M�. The accepted mass-limit

for static neutron stars7 falls in the range 1.4M� − 2.5M� thus leaving behind the

hypothesis that it was a neutron star. Therefore, it is strongly believed that Cygnus

X-1 does contain a black hole.

More recently the study of Active Galactic Nuclei (AGNs), sources of powerful

radiation in the center of some galaxies, has motivated some authors to suggest the

existence of supermassive black holes as the originators of this phenomena. Analysis

of X-rays of AGNs put black holes masses in the range 106 − 1010M�. On the other

hand, stellar dynamics in the central region of our galaxy (0.01 parsecs) has provided

evidence of a central mass of about 2 × 106M�, which is firmly believed to be a

black hole. Recently [1] the LIGO interferometer has detected the first transient

gravitational-wave signal which matches the waveform of an inspiral and merger of a

pair of black holes with a final mass of around 62M�.

1.4 Rotating black holes

In section 1.2 we reviewed the Schwarzschild metric which describes the exterior grav-

itational field of a static spherical mass. However, it is well known that astrophysical

objects (stars, planets, etc.) are rotating. Then, how is the exterior spacetime geom-

7For rapidly rotating neutron stars this limit could go up to 3.2M�.
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etry of a rotating axisymmetric object?. Let’s recall that a spacetime is considered

axisymmetric if it has a Killing vector which is timelike at infinity. A particular case

of this class is a static spacetime, which is characterized by being invariant under

time reversal t→ −t.

Several authors addressed the problem of finding the metric for a rotating object

(see [26, 99] for a historical review and references); however the analytical solution

for the gravitational field of an axisymmetric source remained elusive for many years.

In 1963 Roy Kerr [48] presented the long-sought metric for a stationary spacetime.

The eminent astrophysicist S. Chandrasekhar [20] has elucidated the importance of

this solution

It represents, the unique solution which the general theory of relativity

provides for the description of all black holes that can occur in the astro-

nomical universe by the gravitational collapse of stellar masses; and it is

the only instance of a physical theory providing an exact description of a

macroscopic object.

In Boyer-Lindquist coordinates the Kerr metric has the form [71]

ds2 = −
(

1− 2Mr

Σ

)
dt2 − 2Mar sin2 θ

Σ (dtdφ+ dφdt) + Σ
∆dr2 (1.40)

+ Σdθ2 +
(
r2 + a2 + 2Ma2r sin2 θ

Σ

)
sin2 θdφ2,

where

Σ(r, θ) ≡ r2 + a2 cos2 θ, ∆(r) ≡ r2 − 2Mr + a2. (1.41)

The Kerr solution is asymptotically flat and it is characterized by two constant pa-

rameters, the mass M and the angular momentum J ≡ Ma, as measured by dis-

tant observers [41]. In the non-rotating case a = 0, the Kerr metric reduces to the
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Schwarzschild metric (1.24). Notice that the coordinates t and φ does not appear

explicitly in the metric elements in (1.40), thus K = ∂t and Φ = ∂φ are Killing vec-

tors. This is characteristic of stationary and axisymmetric space-times [102]. The

simultaneous changes in the signs, t→ −t, and φ→ −φ give an isometry8. However,

inversion of t alone does not leave the metric invariant, except in the static case a = 0.

A time inversion produces a change in the direction of rotation.

Notice that the Kerr geometry, in contrast to the Schwarzschild metric, is well

behaved at r = 0. However, a singular behavior occurs when r2 + a2 cos2 θ = 0, that

is, r = 0 and θ = π/2. The nature of this singularity can be better understood in the

Kerr-Schild coordinates (x, y, z, t̄) [41]

x+ iy = (r + ia) sin θ exp
[
i
∫ (

dφ+ a

∆dr
)]
,

z = r cos θ, t̄+ r =
∫ (

dt+ r2 + a2

∆ dr

)
. (1.42)

In terms of (x, y, z, t̄), the r-coordinate is implicitly defined by

x2 + y2

r2 + a2 + z2

r2 = 1. (1.43)

Thus, the singularity at r = 0 is the ring x2 + y2 = a2, z = 0. Furthermore, this is

a real curvature singularity as it can be shown from the invariant curvature which is

given by [105]

RαβγδR
αβγδ = 48M2(r2 − a2 cos2 θ) [(r2 + a2 cos2 θ)2 − 16r2a2 cos2 θ]

(r2 + a2 cos2 θ)6 , (1.44)

which is clearly singular when Σ = 0, for M 6= 0. On the other hand, considering a

surface r = constant with normal vector

8Isometries are symmetries of the metric.
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nαnβg
αβ = grr = ∆

Σ , (1.45)

we observe that the normal vector is null where ∆ = 0 and divergent where Σ = 0.

Therefore ∆ = 0 is a null hypersurface which produces the horizons

r± = M ±
√
M2 − a2, (1.46)

where r+ is called the outer horizon and r− is the inner horizon9. The inner horizon,

most likely, does not have any physical meaning, therefore, I will refer to r+ as the

horizon of the Kerr black hole.

1.4.1 The ergosphere

An interesting feature of the Kerr spacetime is the manifestation of stationary limit

surfaces. As we discussed in the last section, for a stationary axisymmetric spacetime

there are two Killing vectors, K = ∂t and Φ = ∂φ. Thus the momenta pt and pφ,

associated with K and Φ, are conserved quantities. The norm of Kµ which reads

g(K,K) = gµνK
µKν = gtt = −

(
1− 2Mr

r2 + a2 cos2 θ

)
, (1.47)

must be negative for a standing timelike observer. However, if the right-hand side of

(1.47) becomes positive then g(K,K) becomes spacelike, where

r2 − 2Mr + a2 cos2 θ < 0. (1.48)

Thus, if we define

r±e (M,a, θ) = M ±
√
M2 − a2 cos2 θ, (1.49)

9I will restrict only to the case a < M . The case a > M implies a naked singularity and the
extremal case a = M is unstable.
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then we have the condition

r−e (M,a, θ) < r < r+
e (M,a, θ). (1.50)

Therefore, any observer between the surfaces r±e cannot be at rest with respect to

infinity. Moreover, this observer will be dragged and will rotate in the same direction

in which the central object rotates. The surfaces r±e are called the stationary limit

surfaces. Notice that r−e lies inside the inner horizon r− (1.46), so we will refer only

to r+
e = re. The region enclosed between the event horizon r+ and the stationary

limit surface re is called the ergoregion or ergosphere [20, 41]. The stationary limit

surface re is a timelike surface with exception of the poles where it becomes null. At

these two points the surfaces re = r+ coincide (see figure 1.3).

Figure 1.3: In the Kerr geometry with 0 < a2 < m2 (in this plot a = 0.8M) the ergoregion
lies between the ergosurface re (cyan) and the outer event horizon r+ (red). A particle
inside the ergoregion cannot be at rest with respect to infinity, but it can escape toward
the region r > re. Particles inside the region between the horizons r± can not escape to the
region r > r+. The ring singularity x2 + y2 = a2 lies inside the inner event horizon (black
surface).

An interesting feature of the ergosurface is that timelike observers moving inside

the ergoregion can escape to infinity. On the other hand, an observer moving along

a timelike curve upon or inside the outer horizon r = r+, cannot escape to the region
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r > r+. This situation resembles the behavior of the Schwarzchild radius as a one-

way surface, where anything can go in, but no signal can escape. Furthermore, notice

that in the static case a = 0, the event horizon r+ (1.46) reduces to the Schwarzschild

radius rs = 2M .

1.4.2 What is the source of the Kerr field?

From the physical point of view, it is crucial to remark that there is no Birkhoff’s

theorem for a rotating spacetime [105]. In contrast to a spherically symmetric and

static spacetime, which Birkhoff’s theorem guarantees that any solution of the vacuum

field equations will be a part of the Schwarzschild spacetime, it is not true that the

exterior spacetime geometry of a rotating mass is a part of the Kerr metric. The

only thing that one can say is that the empty exterior spacetime geometry of a

rotating object approaches asymptotically the Kerr metric. In a physical rotating

object (star, planet, etc.) there are mass multipole moments (mountains, valleys,

etc.) which not necessarily correspond to the multipole moments of the Kerr metric.

However, multipole moments fall as 1/r2+n, where n is the nth-pole, therefore far

from the source only the lowest multipole dominate. Thus, only asymptotically the

Kerr geometry is relevant for a rotating body. On the other hand when a rotating

mass collapses to a ‘black hole,’ with |a| < M , Robinson [88] showed that the unique

stationary solution to the vacuum field equations is the family of Kerr solutions. We

will review the powerful Black Hole Uniqueness Theorems in the next section.

Since its appearance in 1963 the Kerr metric has generated not only great excite-

ment but also the question: what is the possible source for the Kerr space-time?. In

contrast to the Schwarzschild space-time _ which possesses an interior solution (see

section 2.3) which is matched with the exterior solution at the surface of the star

_, there is no such interior (stable or unstable) solution for the Kerr field. Some

authors think that this solution might not even exist [95]. Some others [99] suggest
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that the problem is irrelevant from the physical point of view, due to the fact that

there is no Birkhoff’s theorem for the Kerr space-time. Nevertheless, some authors

have proposed models for a possible Kerr source [42, 47, 79] however; the problem

remains open. We will see in chapter 4 that our results provide a long-sought solution

to this problem [82].

1.5 More about Black Holes

In 1971 Penrose and Floyd [77] showed a possible mechanism to extract energy from

a rotating black hole. To understand this process let us recall that for a test particle

with 4-momentum pµ, the conserved energy is

E = −Kµp
µ, (1.51)

where K = ∂t and pµ are timelike vectors at infinity, therefore their dot product is

negative thus giving a positive energy. However one of the properties of the Kerr

metric is that the Killing vector Kµ becomes spacelike inside the ergoregion. Conse-

quently for a particle inside the ergosphere we have

E = −Kµp
µ < 0. (1.52)

In the Penrose process a particle is thrown inside the ergosphere, where it is split into

two pieces m1 and m2. By local 4-momentum conservation we have

p µ0 = p µ1 + p µ2 . (1.53)

where p µi correspond to the 4-momentum of the pieces. After contraction with Kµ

and using (1.52) we have E0 = E1 + E2. Let’s arrange the situation such that m1

falls into the black hole, therefore with negative energy E1 < 0 (1.52), meanwhile m2

escapes to infinity with energy E2. By energy conservation we find that m2 will come
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out with more energy than the original E0. This extra energy is being obtained from

the rotational energy of the black hole, thus reducing the mass of the black hole to

M − |E1|. Besides the energy extraction process, Penrose and Floyd observed that

the surface area of the Kerr black hole

A = 8πMr+, (1.54)

increases, even though its mass decreases. On the other hand, Christodoulou [25]

showed that the irreducible mass defined as

M2
irr = 1

2
[
M2 + (M4 − J2)1/2

]
, (1.55)

cannot decrease in the Penrose process, in other words, M2 ≥ M2
irr. From (1.55) it

follows that the rotational energy of the black hole is

M −Mirr = M − 1√
2
(
M2 +

√
M4 − J2

)1/2
. (1.56)

For the extremal black hole a = M , M −Mirr = 0.292, which represent around 29%

extracted energy of the original black hole mass-energy. Substituting J = aM in

(1.54) and differentiating, we obtain the first law of black hole mechanics

δM = 1
8πκδA+ ΩHδJ (1.57)

with

κ = r+ −M
2Mr+

, Ω = a

2Mr+
. (1.58)

Here Ω corresponds to the angular velocity of the ‘horizon’, and κ is the surface

gravity which is defined as

κ2 = −1
2(∇µξν)(∇µξν), (1.59)
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where ξν is a null Killing vector normal to some null hypersurface Σ (Killing surface).

Inspired by the particular form of (1.57), Bekenstein [8] and Smarr [94] proposed an

analogy with the first law of thermodynamics

dE = TdS − pdV. (1.60)

According to Bekenstein the term ΩHδJ , “represent the work done on the black hole

by an external agent who increases the black hole’s angular momentum. Thus ΩHδJ

is the analog of −pdV , the work done on a thermodynamic system” [8]. On the other

hand, the surface gravity κ would be associated with the temperature of the system.

Later on, Bardeen, Carter and Hawking [7] proved the first law in the stationary

case. Consequently, they also proved the analog of the “zeroth law”, namely that the

surface gravity κ is a constant on the horizon.

Once the analogy between black holes mechanics and thermodynamics was worked

out, the next step was the study of Quantum Field Theory in curved spacetime. In

1976 Hawking [38] found that black holes are not black at all, they emit thermal

radiation with a temperature

TH = ~κ
2πkBc

(1.61)

where ~ is the reduced Planck constant and kB is Boltzmann’s constant. For a

Schwarzschild’s black hole, where κ = 1/4GM , TH gives

Tsch = ~c3

8πGkBM
∼ 10−7K

(
M�
M

)
. (1.62)

Notice that for an astrophysical black hole of 3M�, the Hawking temperature is lower

than the CMB (Cosmic Microwave background) temperature of 3K. Comparing

(1.62) with the first law (1.57) the relation for entropy reads

S = 1
4
A

~
, (1.63)
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which gave definitive support to Bekenstein’s idea of the proportionality between

entropy and the horizon area. Moreover the area theorem for classical black holes,

which states that the area of the horizon never decreases in any process [37], was found

sharply similar to the second law of thermodynamics. Thus the analogy between black

hole mechanics and thermodynamics was finally established.

1.5.1 Black Holes Uniqueness Theorems

Parallel to the development of the Black Hole mechanics, some authors were interested

in the geometrical properties of black holes. This development led to a series of

theorems which proved that black hole spacetimes are determined uniquely by three

independent parameters; mass M , charge Q and angular momentum J .

Israel [45, 46] was the first one who showed that for any static and spherically

symmetric black hole, the external gravitational field is determined uniquely by two

parameters; its mass M and charge Q. Furthermore, these fields are described by the

Schwarzschild solution, when Q = 0, and the Reissner-Nordstrom family of solutions

with M ≥ G1/2|e|/c.

As an extension of Israel’s results, Carter [15] showed that black hole exterior solu-

tions, which are axisymmetric, are determined uniquely, at least, by two independent

parameters; the mass M and angular momentum J . Moreover, he showed that the

Kerr metric is the only one admitting zero angular momentum. Robinson [88] gave

the definitive proof that the Kerr metric, with |a| < M , is the unique stationary black

hole solution to the Einstein vacuum field equations.

Finally, the uniqueness theorem for the Kerr-Newmann [69] rotating charged black

hole, was nailed down by Mazur [58] who showed that general black holes are char-

acterized uniquely by three parameters; mass M , charge Q and angular momentum

J . Moreover, the gravitational field of a stationary and charged black hole is deter-

mined only by the Kerr-Newman solution to the Einstein-Maxwell system, under the
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constraint M2 − a2 −Q2 > 0.

The implications of these theorems are dramatic. For instance, an asymmetric

object which suffers gravitational collapse, would radiate away all its multipole mo-

ments leaving only its mass M , charge Q and angular momentum J . Following the

aphorism introduced by Ruffini and Wheeler [89], “a black hole has no hair”.

1.6 Paradoxes and unsolved issues

Despite the developments discussed in the previous sections, in addition to the vast

amount of literature on the subject (see e.g. [73, 103] and references therein), the

physical reality of black holes has not only generated some skepticism [5, 29, 40]

but also has raised some paradoxical issues which have not been consistently solved.

Below I will discuss some of these issues.

• Although the analytic continuation (see section 1.2) is commonly accepted as a

valid mathematical procedure to extend the Schwarzschild spacetime through

the null hypersurface rS = 2M , it involves the assumption that the energy-

momentum tensor Tµν vanishes there. However, the hyperbolic character of

Einstein’s equations allows for sources which do not satisfy this assumption

[67, 60].

• Besides the non-conservation of information by quantum matter falling into a

black hole [39], in the original Hawking radiation derivation [38] the backward-

in-time propagated mode

~ω ∼ kBTH(
1− 2M

r

)1/2 (1.64)

seems to experience an arbitrary large blueshift near the horizon rS = 2M

with energies greater than the Planck energy. It is expected that these highly
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‘blue-shifted’ photons would leave a non-negligible ‘imprint’ on the spacetime

geometry, making the approximation of fixed classical geometry background

untenable [60, 67].

• The fact that the temperature of a black hole is inversely proportional to its

mass (1.62), implies that its heat capacity

dE

dTH
= −8πGkBM2

~c
, (1.65)

is negative. However, it is well known from statistical mechanics that the heat

capacity, for a system in equilibrium, is proportional to the energy fluctuations

[59]

cV =
(
d〈E〉
dT

)
V

= 1
kBT 2 〈(E − 〈E〉)

2〉, (1.66)

which is clearly positive.

• The differential form of the first law of black hole mechanics (1.57) might suggest

that

(
∂M

∂A

)
J

= κ

8π , (1.67)

could be associated to the surface tension of the event horizon [25]. However,

if we analytically extend the black hole solution through the surface rS = 2M

(see section 1.2) it is assumed that the energy-momentum tensor vanishes there.

Thus it is a mystery to what kind of surface energy it is possible to associate

the surface gravity (1.67).

• Is well known from thermodynamics that a cold system has associated a low

entropy. The Bekenstein-Hawking formula (1.62), predicts that in the limit
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when ~ → 0 (or M → ∞) the black hole temperature goes to zero. However

the entropy of a black hole, according to Bekenstein [8], is given by

SBH = γ
16πGkB

~c
M2

irr (1.68)

which goes to infinity when ~ → 0. Thus, in principle, a black hole has an

infinitely large entropy at zero temperature! [67].

It is believed that the resolution of these paradoxes will be achieved in the framework

of a quantum theory of gravity. Despite considerable efforts in the last decades (see

[106] for a review and references therein), we still do not possess such a theory.

Therefore it is imperative to investigate alternative solutions to the inconsistencies

of black holes. Some models have been introduced to alleviate some of the black

hole paradoxes [10, 22, 96]. In particular, we concentrate in the gravastar (vacuum

condensate gravitational star) model proposed by Mazur and Mottola [60, 61, 62].

We will review this model in the next chapter.

35



Chapter 2

Gravitational Vacuum Condensate Stars

You tremble, carcass? You would

tremble even more if you knew

where I am going to take you

Vicomte de Turenne

Introduction

As we discussed in section 1.3, it is commonly accepted that the final state of complete

gravitational collapse is a singular state called a black hole [41, 66, 102]. However,

in section 1.6, we discussed certain paradoxical behaviors associated with black holes

which have not been consistently solved. This situation, in addition to the lack of

definitive observational proof of the existence of the event horizon [5], has originated

some skepticism in the community regarding the physical reality of black holes [29, 40].

Some alternatives to black holes have been proposed [22, 27, 30, 53]. In particular,

we concentrate on Gravastars (Gravitational Vacuum Condensate Stars) proposed by

Mazur and Mottola [60, 61, 62, 63]. A gravastar is the outcome of the gravitational

collapse of a star, to the Schwarzschild radius Rs. Essentially a gravastar consists of

an interior region of negative pressure p = −ε, composed of low-temperature weakly

interacting bosons. This interior region is described by a modified de Sitter spacetime,

with a boundary consisting of a thin shell of ultrarelativistic fluid with equation of

state p = ε. The latter is matched to the spherically symmetric Schwarzschild exterior
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solution in the vacuum.

In the gravastar model, the spacetime suffers a quantum phase transition, which

leads to p = −ε, starting at the center of the star and moving outwards thus releasing

huge amounts of energy and entropy [63]. As suggested by Gliner [30] the idea of

an interior vacuumlike state (dark energy), jointly with a quantum phase transition

which transforms matter into that state, is probably the only conceivable alternative

to avoid the manifestation of a singularity.1

As it is well known the source of gravitational fields, in the Einstein equations,

is the trace of the energy-momentum tensor, 3p + ε. In the vacuumlike energy case,

p = −ε, gravity becomes repulsive thus originating divergence of geodesics. Moreover,

the EOS for vacuum energy violates the strong energy condition ε + 3p ≥ 0. As it

was first suggested by Gliner [30], during gravitational collapse a phase transition

will occur such that the collapsing object becomes a vacuumlike state. Therefore its

gravitational repulsion would avoid the formation of a singular state.

This chapter is organized as follows: in section 2.1 we review the original gravastar

model proposed by Mazur & Mottola [60, 61, 62]. In connection with gravastars, in

section 2.2 we discuss the interior solution found by Schwarzschild [92] for a homo-

geneous spherical mass of constant energy density. This solution is characterized by

the appearance of a divergence in pressure when the radius of the star R = (9/8)RS,

known as the Schwarzschild-Buchdahl bound. In section 2.3 we analyze the manifes-

tation of a negative pressure in the Schwarzschild interior solution when R < (9/8)RS.

Using the Komar formula [50], we show that the divergence in pressure is integrable

producing a transverse pressure and a surface tension on a surface of discontinu-

ous pressure. One result of particular importance is that, in the ultracompact limit

R = RS, the Schwarzschild interior solution becomes a gravitational condensate with

1The equation of state p = −ε is associated with the vacuum energy or cosmological constant
Λ, which is believed to be the cause of the accelerated cosmological expansion [78, 87].
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a modified de Sitter interior with negative pressure p = −ε and a finite surface ten-

sion [63]. Thus, essentially in the ultra compact limit R = RS the Schwarzschild star

becomes the gravastar.

2.1 Gravitational vacuumlike condensate model

The starting point is a spherically symmetric spacetime in Schwarzschild coordinates

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (2.1)

The stress-energy tensor for a spherically symmetric perfect fluid is given by (see

section 1.1)

T µν =



−ε 0 0 0

0 p 0 0

0 0 p⊥ 0

0 0 0 p⊥


(2.2)

where ε, p and p⊥ correspond to the energy density, radial pressure, and tangential

pressure respectively, which are functions of r only. In general the radial pressure

p = T r
r is different from the tangential pressure p⊥ = T θ

θ = T φ
φ . However, to discuss

the simplest case, we assume p = p⊥. The energy density ε and the pressure p are

related through a given one-parameter EOS. The relevant components of the Einstein

equation Gµ
ν = 8πT µν are

e−2λ
(

2rdλ
dr
− 1 + e2λ

)
= 8πεr2, (2.3)

e−2λ
(

2rdν
dr

+ 1− e2λ
)

= 8πpr2, (2.4)

jointly with the energy-momentum conservation relation
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∇µT
µ
r = dp

dr
+ (ε+ p)dν

dr
+ 2
r

(p− p⊥) = 0, (2.5)

which corresponds to the relativistic generalization of the hydrostatic equilibrium

equation or Tolman-Oppenheimer-Volkoff (TOV) equation. In its original version

[60, 62] the gravastar model is presented as a patch of de Sitter spacetime, with an

EOS p = −ε, which fills the interior of the compact object. The exterior region

consists of a thin-shell of ultra-stiff fluid with EOS p = ε which is matched to a

spherically symmetric Schwarzschild vacuum spacetime (p = ε = 0). Additionally,

this thin shell gravastar requires two infinitesimal thin shells, with surface densities

σ± and surface tensions %±, which stabilize the construction. In summary



I. p = −ε, 0 ≤ r < Ri, (interior)

II. p = +ε, Ri < r < R, (thin shell)

III. p = ε = 0, R < r, (exterior)

(2.6)

where Ri and R denote the interior and exterior interfaces of region II. Following this

description, the non-singular interior region is described by a section of a de Sitter

spacetime [41], given by the metric function

f(r) ≡ e2ν(r) = C(1−H2r2), O ≤ r ≤ Ri (2.7)

where C is a constant which will be determined later, and H is defined by

ε ≡ 3H2

8π . (2.8)

The exterior, asymptotically flat, region corresponds to the spherically symmetric

and empty Schwarzschild space-time (1.24) with metric function

f(r) = h(r) = 1− 2M
r
, R < r (2.9)
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where we have introduced the notation h(r) ≡ e−2λ(r). In order to discuss the in-

finitesimal shell region, let’s define the parameter w ≡ 8πr2p. Thus the equation

(2.3) with EOS p = ε gives

d

dr
[r(1− h)] = w, (2.10)

which reduces to

dr

r
= dh

1− w − h. (2.11)

In terms of w, the TOV equation (2.5) reads

1
r2
dw

dr
− 2w

r3 = − w

fr2
df

dr
. (2.12)

Combining (2.12) with (2.4), and after some algebra, we find

dh

h
= −

(
1− w − h
1 + w − 3h

)
dw

w
. (2.13)

In general, equations (2.11) and (2.12) must be integrated numerically. However in

the approximation of a very thin shell, Ri ≈ R and 0 < h << 1, equation (2.13) can

be integrated analytically (at leading order in h) to give

h ≈ ς
(1 + w)2

w
<< 1, ς = const. (2.14)

From (2.11) and (2.12) we have

dr

r
= − h

1 + w − 3h
dw

w
. (2.15)

Substituting (2.14) into (2.17) we have

dr

r
= −ς (1 + w)

w2 dw. (2.16)

40



Inside the thin shell dr is of the order of ς dw, thus the change in the r coordinate is

very small. In the same region the metric function f(r), which satisfies the condition

ε r2f = wf = const., is found to be

f(r) ≈ wi
w
f(Ri). (2.17)

By continuity the induced three-metric functions f, h must be continuous at the inter-

faces r = Ri and r = R. However, the first derivatives of f, h, p will be discontinuous

by consequence of the Einstein equations components (2.3), (2.4) and (2.5).

We can take advantage of the continuity of the metric functions at the interfaces,

in order to find explicit expressions for the constants C,H,M . At the interface Ri;

f I(Ri) = f II(Ri), hI(Ri) = hII(Ri), gives the relations

C(1−H2
0R

2
i ) = f(Ri), (2.18)

1−H2R2
i = ς

(1 + w2
i )

wi
. (2.19)

Solving for H from (2.19) we have

H2 = 1
R2
i

[
1− ς (1 + w2

i )
wi

]
. (2.20)

Similarly, at the interface r = R, hII(R) = hIII(R) gives

ς
(1 + w2

R)
wR

= 1− 2M
R
. (2.21)

Solving for M, (2.21) gives

M ≡ m(R) = R

2

[
1− ς (1 + w2

R)
wR

]
. (2.22)

The constant C can be found as follows: at the interface r = R we have
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f III(R)
hIII(R) = f II(R)

hII(R) = 1. (2.23)

Using the relations (2.14) and (2.17) for the region II, we have

f II(R)
hII(R) = wif(Ri)

ς(1 + w2
R) = 1. (2.24)

Substituting (2.18) and (2.18) into (2.24) we obtain finally

C =
(1 + wR

1 + wi

)2
. (2.25)

One caveat that one might rise, is that the energy density ε(r) and the pressure p(r)

are discontinuous by virtue of the Einstein equations (2.3), (2.4). From the TOV

equation (2.5), it can be shown that these discontinuities can be avoided if there is an

infinitesimal thin-shell with anisotropic pressures p⊥ 6= p [16]. One of the advantages

of these anisotropic pressures, is their continuity, although we still need to specify

an EOS. An example of this will be given in the next section where we discuss the

Schwarzschild interior solution and its connection with gravastars.

2.2 Schwarzschild interior solution

In this section we review the Schwarzschild interior solution [92] which describes the

interior geometry of a spherical configuration of uniform energy density2

ε = ε0 = constant, for all p. (2.26)

Although a realistic star might be described by a more complicated equation of state,

nevertheless the Schwarzschild interior solution provides an interesting and instructive

limiting model. The uniform density approximation might lead to the misconception

2The Schwarzschild interior solution is discussed in standard general relativity textbooks (see
e.g. [14, 80, 95, 102])
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of “incompressible fluid” which would imply a limitless speed of sound v = (dp/dρ)1/2

in contradiction with one of the pillars of special relativity, the principle of causality.

One can imagine a fluid having a composition which varies point to point, such that

the density in the region of high pressure is the same as the density in the low-pressure

region [66].

We follow the discussion given by the author [82]. The relevant equations for the

situation have been written above (2.1)-(2.5). In addition to those, it is conventional

to introduce

h(r) = 1− 2m(r)
r

, (2.27)

where the function m(r) is associated with the mass within a radius r and is given

by the Misner-Sharp relation [66]

m(r) =
∫ r

0
dr4πr2ε. (2.28)

In terms of (2.28), (2.4) becomes

dν

dr
= m(r) + 4πpr3

r [r − 2m(r)] , (2.29)

which in the non-relativistic limit reduces to Poisson’s equation dν/dr = m(r)/r2,

where ν(r) is associated to the Newtonian gravitational potential. The interior solu-

tion, or Schwarzschild star, is matched at the boundary r = R to the asymptotically

flat vacuum exterior Schwarzschild solution

e2ν(r)ext = hext(r) = 1− 2M
r
, r ≥ R (2.30)

where M is the total mass and R is the radius of the star. The functions p(r),

determined by the TOV equation (2.5), andm(r) given by (2.28), satisfy the boundary

conditions p(R) = 0 and m(R) = M . The interior of the star is modeled as an

incompressible and isotropic fluid p = p⊥ with
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ε = ε̄ = 3M
4πR3 = const. (2.31)

It is useful to define [63]

H2 = Rs

R3 , (2.32)

where RS = 2M is the Schwarzschild radius. In terms of (2.32), equations (2.27) and

(2.28) can be solved to obtain

m(r) = 4π
3 ε̄r3 = M

(
r

R

)3
, h(r) = 1−H2r2, 0 ≤ r ≤ R. (2.33)

From (2.5) the pressure takes the form

p(r) = ε̄

[ √
1−H2r2 −

√
1−H2R2

3
√

1−H2R2 −
√

1−H2r2

]
. (2.34)

In figure 2.1 is plotted the pressure p (in units of the density ε) as a function of the

radial distance r (in units of the radius of the star R) for the Schwarzschild interior

solution, for several values of the compactness parameter R/RS. The metric function

e2ν(r) for r < R can be computed to give

f(r) ≡ e2ν(r) = 1
4
[
3
√

1−H2R2 −
√

1−H2r2
]2
≥ 0. (2.35)

Across the boundary of the configuration r = R, this function must match the exte-

rior metric (1.24). The continuity of f(r) guarantees that an observer crossing the

boundary will not notice any discontinuity of time measurements. In figure 2.2 the

redshift factor
√
f is plotted against r/R for several values of R > (9/8)RS. Notice

that (2.35) is regular except at some radius R0 where the denominator in (2.34)

D ≡ 3
√

1−H2R2 −
√

1−H2r2, (2.36)
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Figure 2.1: Pressure (in units of ε) as a function of r (in units of the radius R) for
the Schwarzschild star for several values of the compactness parameter R/RS above the
Schwarzschild-Buchdahl bound. Notice how the pressure rapidly increases when the radius
of the star approaches the Schwarzschild-Buchdahl bound RB = (9/8)RS .

vanishes in the range 0 < r < R. Remarkably, it can be seen from (2.34) and (2.35)

that the pressure goes to infinity at the same point where f(r) = 0. This singular

radius can be found directly from (2.36) to be

R0 = 3R
√

1− 8
9
R

Rs

, (2.37)

which is imaginary for R/RS > 9/8. In this regime, p(r) and f(r) are positive. More-

over, when R→ (9/8)R+
S from above, (2.37) shows that R0 approaches the real axis

at R0 = 0 and a divergence of the pressure appears jointly with f(r)→ 0. This limit

value RB = (9/8)RS, or Schwarzschild-Buchdahl bound [13, 92], fixes the maximum

possible mass for a star with given radius R. At this radius RB general relativity

predicts that the star cannot remain in static equilibrium. Furthermore, once the

star reaches this critical point, its gravitational collapse is inevitable.
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Figure 2.2: Redshift factor
√
f as a function of r (in units of R) for the Schwarzschild star

for several values of the compactness parameter R/RS above the Schwarzschild-Buchdahl
bound. Notice how

√
f approaches zero when the radius of the star approaches the

Schwarzschild-Buchdahl bound RB = (9/8)RS .

2.3 Schwarzschild star in the ‘black hole’ limit

Due to the manifestation of a divergence in pressure at the Schwarzschild-Buchdahl

bound, in addition to the incompressible fluid approximation being considered ar-

tificial [68], the Schwarzschild star solution for R < (9/8)RS has been long-time

ignored in the literature [14, 68, 80, 102]. Recently Mazur & Mottola [63] analyzed

the Schwarzschild star in the region Rs < R < (9/8)Rs and they found that the zero

of D given by (2.37) moves outwards from the origin to finite values 0 < R0 < R

(see figure 1.2). Then there emerges a region where p(r) < 0, f(r) > 0 and D < 0,

covering the range 0 ≤ r < R0. As the radius of the star keeps approaching the

Schwarzschild radius from above R → R+
s , R0 → R−s from below, where R0 is given

by (2.37) which corresponds to the radius of the sphere where the pressure is diver-

gent and f(R0) = 0. Analysis of (2.34) shows that the new interior region becomes

one of constant negative pressure p = −ε for r < R = R0 = Rs (see figure 2.4). In

this limit, the interior metric function (2.35) becomes
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Figure 2.3: R0 as a function of R (in units of Rs).

f(r) = 1
4
(
1−H2r2

)
= 1

4h(r) = 1
4

(
1− r2

R2
s

)
, H = 1

Rs

(2.38)

which is a patch of de Sitter spacetime [41], but modified by a factor of (1/4) in the

gtt component. This factor, which was undetermined in [62] (see section 2.1), is key

for the correct matching of the interior de Sitter to the exterior region r > Rs which

remains the vacuum spherically symmetric Schwarzschild geometry (1.24). Instead

of an ‘event horizon’, there is an infinitesimal thin shell discontinuity at Rs = 2M

where there is a jump in pressure and the zeroes f = h = 0 of the interior modified

de Sitter and exterior vacuum Schwarzschild spacetimes match.

Although a gravastar does not have event horizon, R = Rs is a null hypersurface.

However, in contrast to the black hole, the gravastar does not require the interior

region r < Rs to be trapped 3. Moreover, the gravastar solution with interior p = −ε,

has no entropy and zero temperature, thus validating its condensate state nature.

Mazur & Mottola [63] showed that the divergence in pressure at R0 can be studied

through the Komar integral [50, 81]. The motivation to introduce this formalism4, is

to construct covariant conservation laws in general relativity.

3For a definition of trapped surface see [102].

4See Appendix A for a brief review of the Komar integral.
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Figure 2.4: Pressure (in units of ε) as a function of r (in units of the radius of the star
R) of the interior Schwarzschild solution for various values of the ratio R/Rs below the
Buchdahl bound. Notice the approach of the negative interior pressure p→ −ε as R→ R+

s

from above and R0 → R−s from below.
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Figure 2.5: Redshift factor as a function of r (in units of the radius R) of the interior
Schwarzschild solution for various values of R < 1.125Rs. Note how R0 (the zero of

√
f)

starts moving from inside approaching the radius of the star R. Meanwhile the radius of
the star R approaches the Schwarzschild radius from above.

2.3.1 Conserved mass and surface gravity

Using equations (A.6) and (A.9) we have the following relation

∫
∂Σ
dΣµν∇µKν = 4π

∫
Σ

(2T µ
ν − Tδµν)KνdΣµ, (2.39)

where dΣµ = e 0
µ d

3x
√
γ, with dV = d3x

√
γ the volume element of the induced metric
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Figure 2.6: Metric function h(r) as a function of r/R of the interior and exterior
Schwarzschild solution (gravastar spacetime). Note how the minimum of h(r) approaches
zero when the radius of the star R approaches the Schwarzschild radius from above.

(a) R/Rs = 1.124 (b) R/Rs = 1.10 (c) R/Rs = 1.0125

Figure 2.7: Pictorial diagram of the Schwarzschild star in the regime Rs < R < (9/8)Rs,
showing the approach of the surface of the star R (cyan) to the Schwarzschild surface Rs
(red). The radius of the star is measured in units of the Schwarzschild radius Rs. The
surface R0 (black) where the pressure diverges (and f = h = 0) is shown at different stages.
Figure 2.7a, shows that R0 emerges at the center of the star where the fluid suffers a phase
transition. The region 0 ≤ r < R0 with negative pressure starts approaching Rs from
below, meanwhile the radius of the star R approaches Rs from above (see figure. 2.7b).
In the gravastar limit when R → R+

s and R0 → R−s , the whole interior region is one of
constant negative pressure given by a static patch of modified de Sitter spacetime with a
finite surface tension (see figure 2.7c). The exterior spacetime is described by the standard
vacuum Schwarzschild metric. Instead of an event horizon, an infinitely thin shell forms at
the Schwarzschild radius Rs where there is a jump in pressure and the zeroes f = h = 0 of
the interior modified de Sitter and exterior Schwarzschild solutions match (Figure adapted
from the author’s paper [82]).
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Figure 2.8: Metric function h(r) as a function of r (in units of the radius R) for a gravastar
where R = RS . Note in particular the non-analytic cusp behavior at r = R = RS .

γij and e 0
µ the vierbein which satisfies [14]

gµνe
µ
ae
ν
b = ηab, (2.40)

where ηab is the Lorentzian metric. If we consider a three-volume encompassed by an

outer two-surface ∂V+ and an inner two-surface ∂V−, equation (2.39) gives (see [63]

for details)

1
4π

∫
∂V+

κfdA−
1

4π

∫
∂V−

κfdA =
∫
V

(2T µα − Tδµα )KαuµdV (2.41)

where uµ is the 4-velocity of a particle at rest, respect to t, κf = 1
2e

1
νf
−1/2∇νf is the

surface gravity which is written as a function of f = −gtt = −KµK
µ. Comparing

(2.41) with (A.9) (with E = M) we have

M =
∫
V

(2T µα − Tδµα )KαuµdV + 1
4π

∫
∂V−

κfdA (2.42)

Thus, the total energy of the system corresponds to a term associated with the

volume integral of T µν and a possible contribution from the inner surface ∂V−. As

we discussed in chapter 1 the association of a surface gravity to the classical black

hole horizon is problematic (see section 1.6). We will see that the meaning of a
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surface gravity only makes sense when we consider a regular interior solution, as

the Schwarzschild star. It is the difference in surface gravities which provides a

physical surface tension, in complete contrast with the standard analytic continuation

in classical black holes where it is not clear to what source the surface tension is

associated to.

Using the Einstein equations (2.3) and (2.4) with a source given by (2.2), and

applying (2.42) we obtain

d

dr
[r2κ(r)] = 4π

√
f

h
r2(ε+ p+ 2p⊥). (2.43)

If we substitute the Schwarzschild interior solution, with p⊥ = p, and the metric

function
√
f(r) = 1

2D, where D is given by (2.36), into the RHS of (2.43) we have

4π
√
f

h
r2(ε+ 3p) = 4πr2ε̄

√
f

h

[√
1−H2r2

D

]
= 4πr2ε̄ sgn(D), r 6= R0 (2.44)

where the signum function satisfies

sgn(D) = sgn(r −R0)


= −1, r < R0

= +1, r > R0.

(2.45)

Thus the divergence at r = R0 cancels in (2.44), which implies that the singularity

in pressure is integrable. Substituting the interior solution (2.33) and (2.35) into the

RHS of (2.43) we have

r2κ(r) = r2

2

√
h

f

df

dr
= 4π

3 ε̄r3sgn(D) (2.46)

Taking derivative of (2.46), a straightforward calculation shows that

d

dr
[r2κ(r)] = 4πε̄r2sgn(D) + 8π

3 ε̄R3
0δ(r −R0) (2.47)

which, comparing with the general solution (2.43) and (2.46), reads
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4π
√
f

h
r2(ε+ p+ 2p⊥) = 4π

√
f

h
r2(ε+ 3p) + 8π

3 ε̄R3
0δ(r −R0). (2.48)

Thus the delta function can be attributed to the difference

8π
√
f

h
r2(p⊥ − p) = 8πε

3 R3
0δ(r −R0) (2.49)

which indicates an anisotropy in pressure at the singular surface r = R0 (see also

[16]). It is this δ-function integrable through the Komar formula, together with the

relaxation of the isotropic perfect fluid condition at r = R0 that provide a physical

interpretation of the Schwarzschild star in the regime R ≤ (9/8)RS. From (2.49) the

surface energy is found to be

Es = 8π
3 εR3

0 = 2M
(
R0

R

)3
, (2.50)

together with the discontinuity on the surface gravities

∆κ ≡ κ+ − κ− = 2MR0

R3 = RsR0

R3 (2.51)

where

κ± = ±MR0

R3 , (2.52)

are equal in magnitude but different in sign. Thus the difference in surface gravities

(2.51), between the inner and outer surfaces, provides a surface tension at r = R0

which is given by

τs = MR0

4πR3 = ∆κ
8πG. (2.53)

In contrast to a black hole, (2.53) corresponds to a physical surface tension (localized

in an infinitesimal thin shell at r = Rs) provided by a surface energy and positive

transverse pressure as determined by the Komar formula.
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2.3.2 Discussion

• The Schwarzschild interior solution, or Schwarzschild star, provides an instruc-

tive limiting case of a stellar model in general relativity. Furthermore, in the

limit when R → R+
s and R0 → R−s , the Schwarzschild star turns out to be the

non-singular gravitational condensate star or gravastar with a negative pressure

interior and a surface tension at Rs, proposed by Mazur and Mottola [60, 61, 62]

as an alternative to black holes as the final state of gravitational collapse.

• The surface energy (2.50) is the result of a transverse anisotropic pressure T θθ =

T φφ = p⊥. There is no energy-momentum tensor Ttt at the surface.

• The gravastar solution, or Schwarzschild-de Sitter interior solution, with p = −ε

has zero entropy density s = 0. Thus a gravastar is a zero temperature system,

corresponding to a condensate state.

• The non-analytic cusp behavior of the metric functions f(r) and h(r) (see figures

2.5, 2.6 and 2.8), invalidates the analytic continuation in the Schwarzschild black

hole vacuum; therefore it does not require any periodicity in imaginary time.

• The Killing vector Kµ remains timelike for a gravastar, therefore t is a global

time. This property is essential to develop the correct time unitary evolution

in quantum mechanics.
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Chapter 3

Slowly rotating relativistic compact objects

The general theory of relativity is a theory of gravitation;

and like the Newtonian theory of gravitation,

which it refines and broadens,

its natural home is astronomy

S. Chandrasekhar

Introduction

In this chapter, we review the equations of structure, first derived by Hartle [33],

which govern the properties of equilibrium configurations of slowly rotating compact

objects1 in general relativity. Hartle & Thorne [36] integrated Hartle’s equations

numerically for the case of particular equations of state of white dwarfs and neutron

stars. Chandrasekhar & Miller [21] investigated, numerically, surface and integral

properties for a slowly rotating homogeneous star of constant energy density. The

formalism introduced in this chapter is essential to understand the results which will

be discussed in the last chapter.

The Hartle perturbative model is constructed under the following assumptions:

• The matter of the configuration satisfies a one-parameter equation of state

(EOS) p = p(ε), where p is the pressure and ε is the mass-energy density.

1For compact object we follow the definition given in [93]; white dwarfs, neutron stars, gravastars,
which are the remaining of a star when it consumes its nuclear fuel (see also section 1.3).
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• Given an EOS the relativistic hydrostatic equilibrium equations are solved for

a non-rotating spherically symmetric configuration.

• The configuration is set in slow and uniform rotation. Hartle & Sharp [35]

showed that configurations rotating uniformly minimize the total mass-energy.

On the other hand, in slow rotation, fractional changes in energy density and

pressure are less than unity. This condition implies

RΩ << 1 (3.1)

where R is the radius of the configuration and Ω is its angular velocity.

• We restrict to axially symmetric objects, with mass quadrupole moments in-

dependent of time. Deviation from this condition would imply emission of

gravitational waves and a non-equilibrium situation.

• The small fractional changes are considered as perturbations on the non-rotating

configuration. The Einstein equations are expanded to second order in the

angular velocity Ω.

The chapter is organized as follows. In the next section, we discuss the dragging of

inertial frames manifested in axisymmetric space-times. In sections 3.2, 3.3 and 3.4

we assemble the general-relativistic equations of structure for slowly rotating masses.

The application of the Hartle structure equations for a slowly rotating Schwarzschild

star will be discussed in section 3.5.

3.1 Rotational ‘dragging’ of inertial frames

The appropriate line element, and the one used in [33, 36], for this situation is2

2The subscript (0) in the metric functions denotes quantities in the static configuration, except
for the functions h0 and m0 which correspond to the l = 0 term in the harmonic expansion.
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ds2 = −e2ν0 [1 + 2h0(r) + 2h2(r)P2(cos θ)] dt2

+ e2λ0

{
1 + e2λ0

r
[2m0(r) + 2m2(r)P2(cos θ)]

}
dr2

+ r2 [1 + 2k2(r)P2(cos θ)]
{
dθ2 + [dφ− ω(r)dt]2 sin2 θ

}
, (3.2)

where h0, h2,m0,m2, k2 are quantities of order Ω2, and P2(cos θ) = (3 cos2 θ − 1)/2

is the Legendre polynomial of order 2. The quantity ω, which is of the order of the

angular velocity of the star Ω, is a function of r that describes the dragging of the

inertial frames. In the non-rotating case the metric (3.2) reduces to the static form

ds2 = −e2ν0dt2 + e2λ0dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (3.3)

The ‘dragging’ effect is a purely relativistic effect, which in general can be described by

two ways_ effects on gyroscopes and the cumulative effect on the motion of particles.

We concentrate on the cumulative dragging which it is worthwhile to discuss. We

follow the discussion given by Thorne [100].

Let us imagine a distant observer, far from a rotating star. Let the observer throw

a test particle with zero angular momentum, or Zero Angular Momentum Observer

(ZAMO), relative to the axis of rotation of the star. When the test particle approaches

the star, its angular momentum is still zero, but due to the dragging of the inertial

frames, it will have a non-zero angular velocity. The magnitude of the dragging is

found to be

ω = dφ

dt
= pφ

pt
= gφtpt
gttpt

= gφt

gtt
= − gφt

gφφ
. (3.4)

Thus the function ω(r) depends only on the local geometry. Some authors [33, 36]

call this ω(r), the angular velocity of the local ZAMO relative to a distant observer.
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Let the star rotate uniformly with angular velocity Ω. Moreover, we assume that

there are no convective motions such that uθ = ur = 0. Let us find the four-velocity

components uµ which satisfy the normalization condition

uµuµ = −1. (3.5)

Equation (3.5) reduces to

gtt(ut)2 + 2gtφutuφ + Ω2gφφ(ut)2 = −1, (3.6)

where we used uφ = Ωut. Simplifying (3.6) we obtain

ut = (−gtt − 2Ωgtφ − gφφΩ2)−1/2

= e−ν0

[
1 + 1

2r
2 sin2 θ(Ω− ω)2e−ν0/2 − h0 − h2P2(cos θ)

]
.

(3.7)

It is customary to define the quantity

$ ≡ Ω− ω, (3.8)

to be the angular velocity of the fluid as measured by the local ZAMO. In general,

centrifugal effects will be determined by this quantity. The equation which governs

$ can be obtained from the (t, φ) component of the Einstein equations

R t
φ = 8πT t

φ . (3.9)

Considering the 4-velocity components (3.7) the energy-momentum tensor reads

T t
φ = (ε+ p)(ut)2(gtφ + Ωgφφ). (3.10)
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Due to the axial symmetry of the problem, quantities like the mass-energy density

and the metric coefficients are preserved under a reversal in the direction of rotation

φ → −φ as a reversal in time t → −t (see section 1.4). Thus, only even powers will

appear in an expansion in terms of Ω. On the other hand, the dragging function ω(r)

will have only odd powers in the same expansion. Therefore, to study effects at order

Ω2, for the function ω it is sufficient to consider only terms at order Ω.

Using the relevant components of the Einstein tensor (see Appendix B), we calcu-

late at first order in Ω the Einstein equation components (3.9) and (3.10) to obtain

d

dr

(
r4j

d$

dr

)
+ 4r3 dj

dr
$ = 0, (3.11)

where

j(r) ≡ e−(λ0+ν0). (3.12)

Thus $ can be found by integrating (3.11) from the origin, where the solution is

regular, up to the boundary of the configuration. In the exterior empty region r > R,

j(r) = 1 and (3.11) can be easily integrated to give

$(r) = Ω− 2J
r3 , (3.13)

where the constant J corresponds to the angular momentum of the star [33, 100].

Equation (3.11) will be integrated outward from the origin with the boundary con-

ditions $(0) = $c = const., and d$/dr = 0. The value of $c is chosen arbitrarily.

Once the solution on the surface is found, one can determine the angular momentum

J and the angular velocity Ω using the equations

J = 1
6R

4
(
d$

dr

)
r=R

, Ω = $(R) + 2J
R3 . (3.14)

The angular momentum is related linearly to Ω through the relation
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J = IΩ. (3.15)

where I is the relativistic moment of inertia for slowly rotating objects. In contrast

to the Newtonian case, the relativistic moment of inertia depends not only on the

rest mass of the star but also of the mass-energy associated to the compression of the

matter to certain density and the effective energy of the gravitational interaction of

different parts of the star.

Hartle [33] showed that the rate of change of $(r) always has the same sign of Ω.

Moreover, |$(r)| is a decreasing function of r; therefore the dragging effects are the

largest near to the center of the star.

3.2 Rotational perturbations in mass-energy and pressure

Due to the rotation, the star will deform carrying with it changes in pressure and

energy density. For a given EOS ε = ε(p) the hydrodynamic equilibrium equation

(2.5) can be recast in the form

p,j = (ε+ p)
[
log e−ν

(1− V 2)1/2

]
,j

(j = r, θ), (3.16)

here the comma indicates partial derivative p,ν = ∂p/∂ν and

V = eψ−ν$, (3.17)

where we have introduced the identifications

eψ = r sin θ [1 + k2(r)P2(cos θ)]

eν = eν0 [1 + h0(r) + h2(r)P2(cos θ)]. (3.18)

Integrating equation (3.17) we obtain
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ν + 1
2 log(1− V 2) + P = const., (3.19)

where

P = log(ε+ p)−
∫ ε

εc

dε

ε+ p
, (3.20)

which satisfies the expansion3

P = P0(r) + δP0(r) + δP2(r)P2(cos θ). (3.21)

Expanding (3.17) at first order in Ω we have

V (r, θ) = e−ν0$r sin θ +O(Ω2). (3.22)

Thus, using expansion (3.22) into (3.19) we have the set of equations

δP0 = −h0 + 1
3r

2e−2ν0$2 + C(Ω2), (l = 0) (3.23)

δP2 = −h2(r)− 1
3r

2e−2ν0$2, (l = 2) (3.24)

where C is a constant of order Ω2. Thus equations (3.23) and (3.24) determine the

perturbations in pressure and mass-energy density. We will return to these equations

when we perform the numerical integrations.

3.3 l = 0 equations - Spherical deformations of the star

In general relativity it is expected that, due to the rotation, the mass of a spinning

star will be different from its corresponding value in the static case. To determine

such change, the l = 0 equations in the harmonic expansion are used. Let us recall

3I hope not to confuse the reader with the notation used for P2. Here δP2 indicates the second
order in the harmonic expansion, and P2(cos θ) corresponds to the Legendre polynomial.
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that for a spherically symmetric configuration, the massM , as measured by a distant

observer, is given by the gtt component of the metric

gtt → −
(

1− 2M
r

)
, r →∞. (3.25)

For this specific problem, it is sufficient to calculate the rotational perturbations m0

and δP0. Note that equation (3.23) already provides a first integral for the l = 0

field equations. Additionally the field equations components G ν
µ = 8πT ν

µ to be

calculated, and chosen in [33], are (see Appendix B)

Rt
t −

1
2Rδ

t
t = 8πT tt , (3.26)

Rr
r −

1
2Rδ

r
r = 8πT rr . (3.27)

Using the second order contributions to G ν
µ found in [33], the Einstein equations

reduces to

dm0

dr
= 4πr2(ε+ p)dε

dp
δP0 + 1

12r
4j2

(
d$

dr

)2

− 1
3r

3$2dj
2

dr
, (3.28)

dh0

dr
= − d

dr
δP0 + 1

3
d

dr

(
r2e−2ν0$2

)
= m0e

4λ0

( 1
r2 + 8πp

)
− 1

12e
2λ0r3j2

(
d$

dr

)2

+ 4πre2λ0(ε+ p)δP0. (3.29)

These equations will be integrated outward from the origin, where the boundary

conditions h0(0) = m0(0) = 0 must be satisfied. In this approximation, the slowly

rotating configuration will have the same central pressure as in the static case. In

the exterior region

ε = p = 0, r > R, (3.30)
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thus (3.28) and (3.29) can be integrated explicitly to give

m0 = δM − J2

r3 , (3.31)

h0 = − δM

r − 2M0
+ J2

r3(r − 2M0) , (3.32)

whereM0 corresponds to the total mass of the star and δM is an integration constant

which is associated to the change in mass due to the rotation. The constant δM will

be found by matching the interior and exterior solutions for h0 at the boundary r = R

δM = m0(R) + J2

R3 . (3.33)

3.3.1 Amended change of mass

Recently Reina & Vera [84, 85] revisited Hartle’s framework within the context of

the modern theory of perturbed matchings [56]. They found that the perturbative

functions at first and second order are continuous across the boundary of the configu-

ration except when the energy density is discontinuous there. In this particular case,

the discontinuity in the radial function m0 at the boundary is proportional to the

energy density there. Furthermore, Reina and Vera showed that the manifestation

of this jump in the perturbative function m0 induces a modification to the original

change of mass (3.33), which is given by [84]

δM = δMH + δMC

=
[
m0(R) + J2

R3

]
+ 4π R

3

M0
(R− 2M0)ε(R)δp0(R). (3.34)

where δMH corresponds to the original change of mass (3.33) and δMC is the correc-

tion term. Reina and Vera point out that this correction is relevant in configurations

where the energy density does not vanish at the boundary, for instance, strange
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quark stars [64] and constant density (homogeneous) masses. We shall consider the

corrected expression (3.34) in our computations.

3.4 l = 2 equations - Quadrupole deformations of the star

Due to the rotation, the surface of the Schwarzschild star will be deformed from the

spherical shape it has in the static case, preserving the same central density. The

modified radius of the slowly rotating isobaric surface is given by

r(θ) = r0 + ξ0(r0) + ξ2(r0)P2(cos θ), (3.35)

where r0 corresponds to the radius of the spherical surface in the non-rotating case,

and the deformations ξ0 and ξ2 satisfy

δp0 = −
(

1
ε+ p

dp

dr

)
0
ξ0(r0), δp2 = −

(
1

ε+ p

dp

dr

)
0
ξ2(r0). (3.36)

To determine completely the l = 2 solution, we must find the solutions for the func-

tions ξ2(r), h2(r), k2(r) and m2(r). The quadrupole deformations of the star, as given

by the l = 2 field equations, were calculated in [21, 33]. Here we just summarize the

main results

dv2

dr
= −2dν0

dr
h2 +

(
1
r

+ dν0

dr

)1
6r

4j2
(
d$

dr

)2

− 1
3r

3$2dj
2

dr

 . (3.37)

dh2

dr
= − 2v2

r [r − 2m(r)] (dν0/dr)

+
{
−2dν0

dr
+ r

2 [r − 2m(r)] (dν0/dr)

[
8π(ε+ p)− 4m(r)

r3

]}
h2

+ 1
6

[
r
dν0

dr
− 1

2 [r − 2m(r)] (dν0/dr)

]
r3j2

(
d$

dr

)2

− 1
3

[
r
dν0

dr
+ 1

2 [r − 2m(r)] (dν0/dr)

]
r2$2dj

2

dr
, (3.38)

63



where v2 = h2 + k2. These equations will be integrated outward from the center,

where h2 = v2 = 0. Outside the star, (3.37) and (3.38) are integrated analytically

h2(r) = J2
( 1
M0r3 + 1

r4

)
+KQ 2

2

(
r

M0
− 1

)
, (3.39)

v2(r) = −J
2

r4 +K
2M0

[r(r − 2M0)]1/2
Q 1

2

(
r

M0
− 1

)
, (3.40)

where K is an integration constant and Q m
n are the associated Legendre functions of

the second kind with argument ξ = (r/M0)− 1, which are given by

Q 1
2 (ξ) =

(
ξ2 − 1

)1/2
[

3ξ2 − 2
ξ2 − 1 −

3
2ξ log

(
ξ + 1
ξ − 1

)]
, (3.41)

Q 2
2 (ξ) = 3

2
(
ξ2 − 1

)
log

(
ξ + 1
ξ − 1

)
− 3ξ3 − 5ξ

ξ2 − 1 . (3.42)

The integration constant K in (3.39) and (3.40) will be found by the matching, at the

boundary of the star r = R, with the numerical solutions of (3.37) and (3.38). Once

the functions h2 and v2 have been found from (3.37) and (3.38), the perturbations

factors m2 and δp2 are determined from the relations

m2 = [r − 2m(r)]
−h2(r)− 1

3r
3
(
dj2

dr

)
$2 + 1

6r
4j2

(
d$

dr

)2
 , (3.43)

δp2 = −h2(r)− 1
3r

2$2e−2ν0 . (3.44)

Thus the rotational deformation of the star (3.35) is completely determined. Note that

equation (3.35) determines the level surfaces in some particular coordinate system.

However, an invariant definition of the isobaric surfaces can be given by doing an

embedding (see e.g. [14]) in a flat three-dimensional flat space. We look for the three

dimensions surface in flat space, with spherical coordinates (r∗, θ∗, φ∗), which has the

same intrinsic geometry as the level surface we are considering. The 3-surface in flat
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space, at order Ω2, which satisfy the conditions above corresponds to the Mclaurin

spheroid [6, 33, 100]

r∗(θ∗) = r + ξ0(r) + [ξ2(r) + r(v2 − h2)]P2(cos θ∗). (3.45)

We introduce the ellipticity of the spheroid [21, 65]

ε = equatorial radius− polar radius
mean radius = − 3

2r [ξ2 + r(v2 − h2)], (3.46)

which is valid to order Ω2.

3.4.1 External gravitational field

The metric perturbations (h2, v2,m2) determine the deformations of the external grav-

itational field of a slowly rotating star. In the asymptotically flat region, the star’s

mass quadrupole moment is given by [36]

Q = J2

M0
+ 8

5KM
3
0 . (3.47)

Here the constant K is the same constant that appears in equations (3.39) and (3.40).

Once the numerical solutions for (3.38) and (3.37) have been matched to the exterior

solutions at the boundary r = R, the numerical value of the constant K can be found

and the quadrupole moment can be completely determined.

With the metric perturbations determined we can write the exterior metric of a

slowly rotating star (3.2), to second order in Ω. Using equations (3.31), (3.32), (3.39),

(3.40) and (3.47) we find the following
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ds2 = −
(

1− 2µ
r

+ 2J2

r4

)1 + 2
 J2

µr3

(
1 + µ

r

)

+ 5
8
Q− J2/µ

µ3 Q 2
2

(
r

µ
− 1

)P2(cos θ)

dt2
+
(

1− 2µ
r

+ 2J2

r4

)−1
1− 2

 J2

µr3

(
1− 5µ

r

)

+ 5
8
Q− J2/µ

µ3 Q 2
2

(
r

µ
− 1

)P2(cos θ)

dr2

+ r2

1 + 2
− J2

µr3

(
1 + 2µ

r

)
+ 5

8
Q− J2/µ

µ3

 2µ
[r(r − 2µ)]1/2Q

1
2

(
r

µ
− 1

)

−Q 2
2

(
r

µ
− 1

)
P2(cos θ)


dθ2 + sin2 θ

(
dφ− 2J

r3 dt
)2
, (3.48)

where µ ≡M0 + δM . It is instructive to compare this metric with the solution for a

stationary and axisymmetric space-time, as given by the Kerr metric (1.40). However,

we must express it in the coordinates of (3.48) through the transformation [36]

r → r

{
1− a2

2r2

[(
1 + 2µ

r

)(
1− µ

r

)
+ cos2 θ

(
1− 2µ

r

)(
1 + 3µ

r

)]}
, (3.49)

θ → θ − a2

2r2

(
1 + 2µ

r

)
sin θ cos θ. (3.50)

Thus it can be seen that the Kerr metric satisfies the condition

J = µa, Q = J2

µ
, where K = 0 (3.51)

These parameters are essential to identify the Kerr space-time, at order Ω2. Moreover,

we will use the result (3.51) to compare with the exterior space-time of a slowly

rotating Schwarzschild star. This relation for the quadrupole moment can also be

observed from the following behaviors of (3.41) and (3.42)

Q 1
2

(
r

µ
− 1

)
≈
[
2
(
r

µ
− 2

)]−1/2

, Q 2
2

(
r

µ
− 1

)
≈
(
r

µ
− 2

)−1/2

, (3.52)
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which are divergent when r approaches the Schwarzschild radius rS = 2µ. Therefore

at this limit, the rotational and quadrupole deformations are infinite. Thus in order

to have regular solutions at this limit the Kerr condition K = 0, which leads to (3.51),

must be satisfied.

3.5 Structure equations for the Schwarzschild star

In a seminal paper, Chandrasekhar & Miller [21] applied the Hartle’s structure equa-

tions to study slowly and uniformly rotating masses characterized by a constant

energy density ε. In that article, surface and integral properties were calculated nu-

merically for several values of the compactness parameter R/Rs, where R is the radius

of the star and Rs is the Schwarzschild radius. This procedure might be interpreted

as a quasi-stationary contraction of the star [65]. In a quasi-stationary collapse, some

of the gravitational potential energy is converted into internal energy, with the rest

being radiated away. Thus the total gravitational mass M decreases, but the rest

mass M0 is kept constant.

The geometry of the Schwarzschild interior solution, or Schwarzschild star, was

discussed in section 2.3. To facilitate the numerical integrations, it is useful to intro-

duce the variables [21]

r = (1− y2)1/2, y2
1 = 1− R2

α2 = 1−H2R2. (3.53)

Here r is being measured in the unit α = 1/H, where H2 ≡ 8πε
3 was defined in (2.8).

In terms of (3.53) the Schwarzschild star solution (2.27), (2.33), (2.34) and (2.35)

takes the form

eλ0 = 1
y
, eν0 = 1

2(3y1 − y), (3.54)
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p

ε
= y − y1

3y1 − y
, (3.55)

j = 2y
3y1 − y

, y2 = 1− 2m(r)
r

. (3.56)

For future purposes we introduce the parameter

k ≡ 3y1 − 1. (3.57)

As we discussed in section 2.3, the Schwarzschild interior solution shows a divergence

in pressure at the radius RB = (9/8)RS or Schwarzschild-Buchdahl bound. In terms

of the parameter k, defined above, this limit is equivalent to the condition

y1 >
1
3 , (3.58)

for the solution to be regular. We will go back to this point in the next chapter.

Following [21], it is convenient to introduce the coordinate

x ≡ 1− y = 1−
[
1−

(
r

α

)2
]1/2

, (3.59)

where x covers the range (0, 2/3]. From (3.59) we obtain the transformation

d

dr
= 1
α

√
x(2− x)
1− x

d

dx
. (3.60)

In terms of (3.59), and using (3.60), the equation for $ (3.11) takes the form

x
[
2k + (2− k)x− x2

] d2$

dx2 +
[
5k + (3− 5k)x− 4x2

] d$
dx
− 4(k + 1)$ = 0. (3.61)

The behavior near the origin can be seen as follows: where x ≈ 0, from (3.61) we

have
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5kd$
dx
− 4(k + 1)$ = 0, (3.62)

which gives the integral

∫ $

$c

d$

$
=
∫ x

0

4(k + 1)
5k dx. (3.63)

Evaluating the integral, keeping lower order terms in x, we have finally

$ =
[
1 + 4(k + 1)

5k x

]
$c, (3.64)

where $ is measured in the unit $c, its value at the center, which is arbitrary.

Similarly the field equation for the function m0 (3.28) take the form

dm0

dx
= α3 (1− x) [x(2− x)]3/2

(k + x)2

1
3x(2− x)

(
d$

dx

)2

+ 8(k + 1)
3(k + x)$

2

 . (3.65)

To analyze the near origin behavior (x ≈ 0) for (3.65), from (3.64) we use the following

results

$2 ≈
[
1 + 8(k + 1)

5k x

]
$2
c +O(x2), d$

dx
= 4(k + 1)

5k $c. (3.66)

Substituting (3.66) into (3.65) and simplifying we have

1
α3
dm0

dx
= 2
√

2x3/2

(k + x)2

{
8(k + 1)
3(k + x)

[
1 + 8(k + 1)

5k x

]}
$2
c , (3.67)

where we have used the expansion

x3/2(1− x)(2− x)3/2 ≈ 2
√

2x3/2 +O(x5/2). (3.68)

After some algebra (3.67) is reduced to

1
α3
dm0

dx
=
[

16
√

2
3k3 (k + 1)x3/2

]
$2
c , (3.69)
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which can be easily integrated to obtain

m0 =
[

32
√

2(k + 1)
15k3 x5/2

]
α3$2

c +O(x7/2). (3.70)

The equation for the perturbation pressure factor δP0, as a function of x, can be

obtained from (3.29)

d

dx
δP0 = − (k + 1)

(1− x)(k + x)δP0 −
[

2 + (k + 1)(1− x)− 3(1− x)2

(k + x)(1− x)2[x(2− x)]3/2

]
α−1m0

+ 8x(2− x)
3(k + x)2$

(
d$

dx

)
+ [x(2− x)]2

3(1− x)(k + x)2

(
d$

dx

)2

− 8
3

[
1− (k + 1)(1− x)

(k + x)3

]
$2.

(3.71)

Near the origin (x ≈ 0), (3.71) reduces to

1
α2

d

dx
δP0 = −8

3

[
1− (k + 1)

k3

]
$2, (3.72)

which, after using (3.66), can be integrated to give

δP0 =
( 8x

3k2

)
α2$2

c . (3.73)

The equations (3.38) and (3.37) for h2 and v2, as function of x, take the form

dv2

dx
= − 2h2

k + x
+ 2 [x(2− x)]2

3(k + x)3 [k(1− x) + x(3− 2x)]×(d$
dx

)2

+ 4(k + 1)
x(2− x)(k + x)$

2

α2, (3.74)

dh2

dx
= (1− x)2 + (k + 1)(1− x)− 2

x(2− x)(k + x) h2 −
2(k + x)

[x(2− x)]2v2

+ α2

3
{

2[x(2− x)]2 − (k + x)2
} x(2− x)

(k + x)3

(
d$

dx

)2

+ 4α2

3 (k + 1)
[
2x2(2− x)2 + (k + x)2

] $2

(k + x)4 . (3.75)
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The behavior near the origin for (3.74) gives

dv2

dx
= −2h2

k

(
1− x

k

)
+O(x2). (3.76)

Similarly for (3.75), after some algebra, we obtain

h2 = (k + x)(x+ 1)
x

v2. (3.77)

Substituting (3.77) into (3.76) and integrating we have

h2 = 4(k + 1)
3k2 x = ax. (3.78)

Now that we have obtained (3.78), we can substitute back into (3.76) so after inte-

gration we obtain

v2 = −4(k + 1)
3k3 x2 = bx2, (3.79)

Thus, the constants a and b are related through the relation

k2a− k3b = 8
3(k + 1). (3.80)

Additionally we have the equations (3.23) and (3.24) for the pressure perturbation

factors δP0 and δP2, which in this context take the forms

h0 −
4x(2− x)
3(k + x)2$

2 + δP0 = const. (3.81)

h2 + 4x(2− x)
3(k + x)2$

2 + δP2 = 0 (3.82)

The functions δP0, δP2, h2, k2 and v2 are measured in the unit α2ω2
c and m0 is mea-

sured in the unit α3ω2
c . Solutions to (3.74) and (3.75) can be expressed as the super-

position of a particular and a complementary solution
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h2 = h
(p)
2 + Ah

(c)
2 , v2 = v

(p)
2 + Av

(c)
2 , (3.83)

with β being an integration constant. The complementary functions here satisfy the

homogeneous forms of equations (3.74) and (3.75)

dv
(c)
2
dx

= − 2h(c)
2

k + x
, (3.84)

dh
(c)
2
dx

= (1− x)2 + (k + 1)(1− x)− 2
x(2− x)(k + x) h

(c)
2 −

2(k + x)
[x(2− x)]2v

(c)
2 , (3.85)

which have the following behaviors near the origin

h
(c)
2 = −kBx, v

(c)
2 = Bx2 (3.86)

where B is an arbitrary constant. Finally the exterior solutions (3.13), (3.31), (3.32),

(3.39) and (3.40), as a function of the variable y1, take the following forms 4

$ = Ω− 2J
r3 , (3.87)

m0(R) = δM − J2

r3 , (3.88)

h0 = − m0

r − (1− y2
1)3/2 , (3.89)

h2 =
[

2
(1− y2

1)3/2 + 1
r

]
J2

r3 +KQ 2
2 , (3.90)

v2 = −J
2

r4 +K
(1− y2

1)3/2

{r [r − (1− y2
1)3/2]}1/2Q

1
2 . (3.91)

4There is a misprint in equation (53) in [21], equation (3.96) here. The numerator of the second
term to the right should be (1− y2

1)3/2.
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At the boundary of the configuration r = R, which is equivalent to xR = 1− y1, the

numerical solutions of the interior equations (3.61), (3.65), (3.71), (3.38) and (3.37),

must match with the exterior solutions (3.92)-(3.96). Thus we have

$(R) = Ω− 2J
(1− y2

1)3/2 , (3.92)

m0(R) = δM − J2

(1− y2
1)3/2 , (3.93)

h0(R) = − m0(R)
y2

1(1− y2
1)1/2 , (3.94)

h2(R) = 3− y2
1

(1− y2
1)3J

2 +KQ 2
2

(
1 + y2

1
1− y2

1

)
, (3.95)

v2(R) = − J2

(1− y2
1)2 +K

(1− y2
1)

y1
Q 1

2

(
1 + y2

1
1− y2

1

)
. (3.96)

In summary:

• The particular solutions h(p)
2 and v(p)

2 will be found by integration of (3.74) and

(3.75) with the origin behaviors given by (3.78) and (3.79), with the constant

a being assigned arbitrarily.

• The complementary functions h(c)
2 and v

(c)
2 will be found by integrating equa-

tions (3.84) and (3.85) with the near origin behaviors given given by (3.86).

The constant B is designated arbitrarily.

• The constant A in (3.83) and the constant K in the exterior solutions (3.95)

and (3.96), will be found by matching the interior and exterior solutions at the

boundary of the star r = R.
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3.5.1 Isobaric surfaces

Finally we consider the equation (3.35) for the isobaric surfaces. In terms of the

variable x, the deformations ξ0 and ξ2, given by (3.36), take the forms

ξ0 = (1− x)(k + x)
[x(2− x)]1/2 δP0, ξ2 = (1− x)(k + x)

[x(2− x)]1/2 δP2. (3.97)

Here we are measuring ξ0 and ξ2 in the unit α3$2
c . Using (3.44) the equation for the

deformation ξ2 can be recast in the form

ξ2 = (1− x)(k + x)
[x(2− x)]1/2

[
h2 + 4x(2− x)

3(k + x)2$
2
]

(3.98)

Using (3.98), the ellipticity of the spheroid (3.46) as a function of x reads

ε = 3(1− x)(k + x)
2x(2− x)

[
h2 + 4x(2− x)

3(k + x)2$(R)2
]
− 3

2(v2 − h2), (3.99)

where ε is being measured in the unit α2$2
c .

3.5.2 Discussion

We have assembled the equations to calculate the equilibrium structures of slowly

rotating relativistic compact objects. In particular, we have discussed equations that

relate mass and central density, and changes in the shape of the surface. These

equations can be used to calculate surface and integral properties like moment of

inertia, mass quadrupole moment and ellipticity. In the next chapter, we discuss the

results of computations of equilibrium configurations of slowly rotating Schwarzschild

stars, in particular in the ultracompact limit when the radius of the star approaches

the Schwarzschild radius.
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Chapter 4

Results

What is now proved

was only once imagined

William Blake

Introduction

In chapter 2 we discussed the gravitational vacuum condensate stars, or gravastars,

proposed by Mazur & Mottola as an alternative to black holes for the final state

of complete gravitational collapse. In connection with gravastars, we discussed the

Schwarzschild interior solution, or Schwarzschild star, corresponding to the solution

to Einstein’s equations for a spherical perfect fluid with constant energy density ε.

We found that this solution shows a divergence in pressure when the radius of the star

RB = (9/8)RS, known as the Schwarzschild-Buchdahl bound. The existence of this

limit has been a motive of disregard of the interior solution as a ‘realistic’ physical

description of a star.

In a bold approach, Mazur & Mottola showed that the divergence in pressure is

integrable through the Komar formula and a solution with negative pressure appears

when R < (9/8)RS. Moreover, in the ultracompact limit R = RS, the Schwarzschild

star becomes the gravitational condensate star with an interior governed by a modified

patch of de Sitter spacetime with negative pressure p = −ε, and a finite surface

tension. The exterior remains the vacuum Schwarzschild spacetime.
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In chapter 3 we reviewed the method presented by Hartle to calculate equilibrium

configurations of slowly rotating relativistic stars within the framework of perturba-

tion theory. Chandrasekhar & Miller used these equations of structure, to calculate

surface and integral properties of a slowly rotating homogeneous mass with a constant

energy density (Schwarzschild star). These computations were carried out numeri-

cally up to the Schwarzschild-Buchdahl bound.

Motivated by these developments, in this final chapter we present results of surface

and integral properties for a slowly rotating Schwarzschild star, above the Buchdahl

bound, and in the unstudied regime RS < R < (9/8)RS. An important result of this

investigation is that in the gravastar limit R → RS, the surface properties approach

to the corresponding Kerr values. These results, which have been accepted for publi-

cation [82], provide a long-sought model of a slowly rotating gravastar. Furthermore,

these results have important implications for the old problem in general relativity

and relativistic astrophysics, which is finding the source of a rotating Kerr black hole.

The chapter is organized as follows. In the next section, we present integral and

surface properties for the Schwarzschild star with R > RB. In section 4.2 we extend

the analysis for models with RS < R < (9/8)RS. The integrations are listed in

Tables C.1 and C.2 (see Appendix C). In section 4.3 we close the chapter with a final

discussion.

4.1 Surface and integral properties of Schwarzschild stars for

R > (9/8)RS

In this section we present the integrations of the equations of structure for a homo-

geneous star with constant energy density ε, when its radius is above the Buchdahl

bound R ≥ (9/8)RS. The high complexity of the set of equations demanded the

use of numerical and computational methods. In particular, we chose the adaptive

Runge-Kutta-Fehlberg method [83]. It is well known that adaptive methods offer many
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advantages over the standard Runge-Kutta methods. In many situations a convenient

choice of the integration step size h can be a challenge. If h is too large, we might

obtain huge truncation errors; if h is too small we might be misusing computational

resources. The problem gets worse when the solutions presents stiff behavior near

some value. In those cases, setting a constant step size might not be appropriate for

the whole integration region.

In our particular case, the equations of structure blow up at the Buchdahl bound

R = (9/8)RS. Thus, when we approach this limit during the integrations, we might

need to reduce the value of the step size. The adaptive methods provide a powerful

technique to estimate and adjust the step size h to maintain the truncation error

within prescribed limits. In Appendix D we provide more details on these methods

and some general formulae.

We used the programming language called Python1, in particular we used the

version 3.4 for Ubuntu 14.04. Python is a powerful and versatile language which

is being used widely in many applications in Physics. Additionally, Python is free

and easy to learn, which makes it a very convenient choice in computational physics.

We worked with the development environment called IDLE (Integrated Development

Environment) in its version 3.4. The routines that we incorporated in our code have

been, for the most part, adapted from the ones found in the standard textbooks on

numerical and computational methods (see e.g. [49, 70, 83]).

The results of the integrations are listed in Table C.1 (see Appendix C). We

followed the conventions found in [21] where dimensionless variables are being used

and the corresponding units of the surface properties are specified in the caption. We

simulated several models by varying the compactness parameter R/RS, where R is

the radius of the star and RS is the Schwarzschild radius. The results are presented in

a way which resembles an adiabatic and quasi-stationary contraction of the star [65].

1http://python.org
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Figure 4.1: The angular velocity $ = (Ω− ω)|r=R (in units of J/R3
s) relative to the

local ZAMO, plotted as a function of the compactness parameter R/Rs above the
Schwarzschild-Buchdahl bound R > 1.125Rs.

We reproduced the results published by Chandrasekhar & Miller [21] for stellar

models with R > (9/8)RS with agreement up to the fourth decimal place. However

we corrected the value of the mass quadrupole moment Q at the Buchdahl bound

R = 1.125RS, where we found Q = 2.02311 (in units of J2/RS), in contrast to the

value Q = 2.002 published in [21]. The difference in this value might be associated

to the old methods used in that paper, which dates back to 1974. Moreover, as it

was mentioned above, the stiff behavior of the structure equations at the Buchdahl

radius demands the use of adaptive methods, which is not clear if it was done in [21].

In the following we provide some illustrations of the main results of the integrations

and further analysis.

In Fig. 4.1 we plotted the surface value of the fluid angular velocity $(R) relative

to the local ZAMO, versus the compactness parameterR/Rs, above the Schwarzschild-

Buchdahl bound. Notice that $(R) reaches a maximum near to R = 1.4Rs and then

approaches zero in the Newtonian limit R → ∞. These results are in very good

agreement with [21].

In Fig. 4.2 the angular velocity Ω relative to a distant observer is plotted as a

function of the compactness parameter. Note that Ω approaches the value 2 (in units
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Figure 4.2: The angular velocity Ω (in units of J/R3
s) relative to an observer at infinity,

plotted as a function of the compactness parameter R/Rs above the Buchdahl bound.
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Figure 4.3: The normalized moment of inertia IN plotted as a function of the com-
pactness parameter R/Rs above the Buchdahl bound.

of J/R3
s) when R→ 1.125RS, and tends to zero in the Newtonian limit. These results

makes sense considering that, an increase in the size of the star increases its moment

of inertia. Therefore, given that the angular momentum is conserved, the angular

velocity must decrease.

The ‘normalized’ moment of inertia IN = I/M0R
2 as a function of R/RS is illus-

trated in figure 4.3. Note the approach of IN to the value 0.8 when R approaches

the Schwarzschild-Buchdahl bound. On the other hand, in the limit where R → ∞

the moment of inertia approaches the value 0.4, which corresponds to the moment of
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Figure 4.4: The original δMH/M0 and amended δM/M0 fractional change of mass
against the compactness parameter R/Rs above the Buchdahl bound.

inertia of a sphere in the Newtonian regime. Let’s recall that the first-order pertur-

bations do not change the shape of the star, thus it is valid to compare with a sphere

in this limit. Our results are in excellent agreement with [21].

In figure 4.4 are illustrated the, original and amended, fractional change in mass

given by (3.33) and (3.34), as a function of R/RS. Note that δM/M reaches a

maximum at R ≈ 2.8RS and then decreases when R → ∞. Note also that the

original Hartle’s change of mass δMH/M decreases faster than the amended change

of mass of Reina and Vera [84, 85]. It is noteworthy to remark that the amended

change of mass is not negligible for Schwarzschild stars with R > (9/8)RS, moreover

it’s dominant. Our results are in very good agreement with [84].

Figures 4.5 and 4.6 show the behavior of the surface deformation functions ξ0 and

ξ2 for a slowly rotating Schwarzschild star. In figures 4.7 and 4.8 we have plotted

the ellipticity, as given by (3.99), as a function of the compactness parameter, for

a Schwarzschild star with fixed total mass and angular momentum. Note that the

ellipticity shows a non-monotonic behavior, reaching a maximum at R/RS ∼ 2.4.

In principle, under adiabatic contraction, the star would become flatter due to the

rotation. However, note that for R < 2.4RS, there is a startling decrease in the
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Figure 4.5: The deformation of the star l = 0: plot of ξ0/R (measured in units of
J2/R4

S) as a function of the compactness R/RS, for R > (9/8)RS.
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Figure 4.6: The deformation of the star l = 2: plot of −ξ2/R (measured in units of
J2/R4

S) as a function of the compactness R/RS, for R > (9/8)RS.

ellipticity indicating that the star becomes more spherical. This behavior is contrary

to what is expected for a Newtonian Maclaurin spheroid which, in the limit of small

radius, takes the shape of an infinitesimal thin disc given by [18]

ε̄ = 125
32

1
R

(4.1)

where R is measured in units of RS. This reversal in behavior of the ellipticity, as

the object contracts keeping its mass and angular momentum, has been the subject

of lively discussion in the literature. Chandrasekhar & Miller [21] argued that the
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Figure 4.7: The ellipticity of the bounding surface (in units of J2/M4) as a function
of the compactness parameter R/Rs above the Buchdahl bound.

0 1 2 3 4 5
R/Rs

0.0

0.2

0.4

0.6

0.8

1.0

ε/
(J
/M

2
)2

Figure 4.8: The ellipticity of the bounding surface (in units of J2/M4) as a function
of the compactness parameter R/Rs above the Buchdahl limit. The horizontal axis
has been plotted with higher resolution to show more detail.
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centrifugal effects are due, not to the angular velocity Ω relative to a distant observer,

but to the angular velocity$ relative to the local ZAMO. Note that$ decreases when

R/RS < 1.4 (see Fig. 4.1) thus the second order terms in (3.99) are negligible. The

fact that the maximum of the ellipticity does not occur at R/RS ∼ 1.4, in contrast

to $, can be explained by the dependence of ε of the second order functions h2 and

v2.

On the other hand, Miller [65] argued that during contraction the increase in Ω is

slower, compared to Newtonian theory, on account of an increase in the normalized

moment of inertia. In all parts of the star $ decreases monotonically, thus the cen-

trifugal effects are weakened compared to what is expected in the Newtonian regime.

In contrast to this explanation, Abramowicz & Miller [6] suggested that the rever-

sal in behavior of the ellipticity can be due to the peculiar effect of the reversal of

the centrifugal force in strong gravitational fields [2, 3]. Using a Newtonian approx-

imation, Chakrabarti and Khanna [18] suggested that the reversal of the ellipticity,

which according to them occurs at later stages compared to R/RS ∼ 2.4, is due to

the self-coupling of the angular momentum of the star.

Here we agree with the explanation given in [21]. Equation (3.99) shows clearly

that the ellipticity depends not only on the centrifugal effects as described by $, but

also of the second-order functions h2 and v2 which might have complicated behaviors.

Finally, it is important to remark that the relativistic expression for the ellipticity

is much more complicated than the Newtonian relation (4.1), therefore a different

behavior from what is expected in the Newtonian case is not that surprising at all.

Finally in figure 4.9 we plot the ‘Kerr’ factor QM0/J
2 against the compactness

R/RS. Notice the linear behavior of the Kerr factor and its subsequent approach to

the value 1 in the limit R/RS → 1.125. These results agrees with those in [65] and

[101]. In their original paper Chandrasekhar & Miller [21] found that the quadrupole

moment, in units of J2/Rs, is Q = 2.002 at the Buchdahl radius R = (9/8)RS.
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Figure 4.9: Plot of the ‘Kerr’ factor QM0/J
2 as a function of the compactness pa-

rameter R/Rs, for R above the Schwarzschild-Buchdahl limit.

Motivated by this result they concluded the following

“Consequently, the metric external to a slowly rotating configuration of

minimum radius agrees with the Kerr metric to a requisite order to one

part in a thousand.”

We revisited this value and we found Q = 2.0231 (see table C.2), which chal-

lenges their conclusion. Moreover we will see in the next section, when we study

Schwarzschild stars with RS < R < (9/8)RS, that the challenge is deeper considering

that the gravastar is the limit configuration of an ultra-compact Schwarzschild star

with minimum radius R = RS.

4.2 Surface and integral properties of Schwarzschild stars in the

regime RS < R < (9/8)RS

In this section we present results of surface and integral properties for a slowly rotating

Schwarzschild star, in the regime RS < R < (9/8)RS. We used the same methods

which were described in the last section. The results of the numerical integrations

are listed in Table C.2.
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Although the equations of structure for a Schwarzschild star, discussed in section

3.5, preserve the same form for models with R < (9/8)RS, there is an important

change which now we discuss. Notice that the quantity (3y1 − y), which appears in

the interior solution (3.54)-(3.56), becomes negative when R < (9/8)RS. However

the metric element e2ν0 in (2.35) is a perfect square, therefore it is always a positive

quantity. Thus, in order to investigate the region Rs < R < (9/8)Rs, it is crucial to

specify the modulus condition |3y1−y|. With these considerations, the Schwarzschild

interior solution takes the form

eλ0 = 1
y
, eν0 = 1

2 |3y1 − y|, (4.2)

p

ε
= y − y1

3y1 − y
, (4.3)

j = 2y
|3y1 − y|

, y2 = 1− 2m(r)
r

. (4.4)

These changes were taken into account in our routine to compute the numerical

solutions. Additionally we considered the modulus of the parameter k (3.57)

k = |3y1 − 1|, (4.5)

which must also be positive in the regime RS < R < (9/8)RS. We will find convenient

to introduce the ‘Schwarzschild deviation parameter’

ζ ≡ R−RS

RS

, (4.6)

together with the quantity [12]

∆Q
Q
≡ Q−QKerr

QKerr

(4.7)
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Figure 4.10: The angular velocity $ = (Ω− ω)|r=R (in units of J/R3
s) relative to the

local ZAMO, plotted as a function of the compactness parameter R/Rs in the regime
RS < R < (9/8)RS
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Figure 4.11: The angular velocity Ω(R) (in units of J/R3
s) relative to a distant

observer, plotted as a function of the compactness parameter R/Rs in the regime
RS < R < (9/8)RS

which denotes relative deviations of the mass quadrupole moment from the Kerr value

QKerr = J2/M0. In the following we discuss our results.

In figure 4.10 we plot the angular velocity $(R), relative to the local ZAMO, as

a function of the compactness parameter R/RS, for models with RS < R < (9/8)RS.

Note that in the gravastar limit, when R → RS, $(R) goes to zero. In connection

with this result, in figure 4.11 we show the behavior of the angular velocity Ω(R), as

measured at infinity, as a function of R/RS for radii below the Buchdahl limit. Note
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the increase in Ω(R) up to a maximum value near R/RS ≈ 1.03, and the subsequent

decrease towards the value 2 (in units of J/R3
S) when R → R+

S . Furthermore, as

figure 4.10 shows, in this limit $ → 0 thus the angular velocity Ω = ω is a constant

indicating a rigidly rotating compact object with no differential surface rotation [57].

We now show that the value ω = Ω = 2 (in units of J/R3
s) for the angular

velocity of the ultra-compact Schwarzschild star in the gravastar limit (ζ ∼ 10−14) is

consistent with that of the Kerr black hole limit. It is well known that in the Kerr

spacetime, a radially falling test particle with zero angular momentum acquires an

angular velocity when it approaches the spinning black hole (see section 1.4). The

angular velocity as measured by a distant ZAMO is given by

ω = dφ

dt
= 2aM0r

(r2 + a2)2 −∆(r)a2 sin2 θ
, (4.8)

where a ≡ J/M0 and ∆(r) ≡ r2 − 2M0r + a2. Notice that positive a implies positive

ω, therefore the particle will rotate in the spinning direction of the black hole. This

is the so-called dragging effect in Kerr geometry which was discussed in section 1.4.

At the ‘event horizon’ the following conditions are satisfied

∆ = 0, r = r+ = M0 + (M2
0 − a2)1/2, (4.9)

where r+ was defined in (1.46). Using the condition (4.9) into (4.8) we have

ωbh = a

2M0r+
, (4.10)

which corresponds to the angular velocity of the Kerr black hole. In the slowly

rotating approximation (ξ ≡ a/M0 << 1) a straightforward calculation from (4.10)

shows that

Ω = ωbh ≈
a

4M2
0

+O(ξ2) = 2
(
J

Rs3

)
+O(ξ2) (4.11)
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Figure 4.12: The normalized moment of inertia IN ≡ I/M0R
2 plotted as a function of

the compactness R/Rs, for the Schwarzschild star in the regime RS < R < (9/8)RS.
Notice the approach of IN to 1 in the gravastar limit R→ R+

S .

which is consistent with our numerical results for Ω in the gravastar limit ζ ∼ 10−14

(see Table C.1).

In figure 4.12 we plot the normalized moment of inertia IN ≡ I/M0R
2 against

the compactness R/RS. We notice that, during contraction R+ → RS, IN decreases

slowly reaching a minimum value at R/RS ∼ 1.08. Afterwards IN increases ap-

proaching the value 1 in the gravastar limit R → RS. This result is in remarkable

consistency with the Kerr black hole value, in the slowly rotating approximation,

which corresponds to [74]

I = J

ωbh
≈ 4M3

0 +O(ξ2). (4.12)

Figure 4.13 shows the original δMH/M and amended δM/M fractional change in

mass as a function of the parameter R/Rs, in the regime Rs < R < (9/8)Rs. Notice

that δMH decreases more rapidly than the amended δM , however both of them

approach to the value 2 (in units of J2/R4
S) in the gravastar limit R+ → Rs. The

fact that the correction term is negligible at the gravastar limit, can be understood

by inspection of the relation for the amended change of mass (3.34). Even though a
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Figure 4.13: The original and amended δM change of mass as a function of the
compactness R/Rs, for Schwarzschild stars in the regime RS < R < (9/8)RS.
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Figure 4.14: The deformation of the star l = 0: plot of ξ0/R (measured in units of
J2/R4

S) as a function of the compactness R/RS, for RS < R < (9/8)RS.

gravastar has a finite surface energy (associated to the surface tension) at R = 2M0,

the factor (R− 2M0) vanishes there.

Figures 4.14, 4.15 and 4.16 illustrate the deformations of the bounding surface,

as described by the functions ξ0(R), −ξ2(R) and ε(R), for a Schwarzschild star with

constant mass and angular momentum. Notice the monotonic behavior of the l = 0

and l = 2 deformations. Regarding the ellipticity ε(R), notice how it decreases

monotonically as the star contracts and subsequently approaches to the value 0.375

(in units of J2/M4) in the gravastar limit R+ → RS (see Table C.2).

89



1.00 1.02 1.04 1.06 1.08 1.10 1.12
R/Rs

0.0

0.2

0.4

0.6

0.8

1.0

−
ξ 2
/
R

Figure 4.15: The deformation of the star l = 2: plot of −ξ2/R (measured in units of
J2/R4

S) as a function of the compactness R/RS, for RS < R < (9/8)RS.
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Figure 4.16: The ellipticity of the bounding surface (in units of J2/M4) as a function
of the compactness parameter R/Rs, in the regime RS < R < (9/8)RS.

Finally, in figure 4.17 the Kerr factor q̄ = QM0/J
2 [65, 100, 101], is plotted against

the compactness R/RS. Notice that in the gravastar limit R+ → RS the Kerr factor

approaches to 1, which corresponds to the Kerr metric value. A remarkable result

is that relative deviations of the mass quadrupole moment, as given by (4.7), are

of the order of 10−15 in the gravastar limit R+ → RS with deviations of the order

ζ ∼ 10−14. Thus, we conclude that the exterior metric to a slowly rotating ultra-

compact Schwarzschild star in the gravastar limit, with interior negative pressure,

agrees to an accuracy of 1 part in 1015 with the Kerr metric in the slowly rotating

90



1.00 1.02 1.04 1.06 1.08 1.10 1.12
R/Rs

0.95

0.96

0.97

0.98

0.99

1.00

1.01

1.02

Q
M

0/
J

2

Figure 4.17: Plot of the ‘Kerr’ factor QM0/J
2 as a function of the compactness

parameter R/Rs, for RS < R < (9/8)RS. Notice the approach to the value 1, when
R+ → RS

approximation.

4.3 Discussion

Motivated by recent investigations of [63] and the methods introduced by [33] and

[21] in the study of slowly rotating relativistic masses, we have presented in this

paper results for integral and surface properties of a slowly rotating super-compact

Schwarzschild star in the unstudied regime Rs < R < (9/8)Rs. We found that the

angular velocity $ relative to the local ZAMO tends to zero in the gravastar limit

R → R+
s . This result indicates that the super-compact Schwarzschild star rotates

rigidly with no differential surface rotation. Furthermore the angular velocity Ω of the

super-compact Schwarzschild star, in the gravastar limit, is constant and approaches

the corresponding Kerr value in the slowly rotating approximation. Additionally,

we found that the normalized moment of inertia I/M0R
2 approaches 1 systematically

when R→ R+
s . This result is in agreement with the value corresponding to the slowly

rotating Kerr metric. The most remarkable result concerns the mass quadrupole mo-

ment Q. We found that for a slowly rotating super-compact Schwarzschild star, in
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the gravastar limit, the relative deviation factor is ∆Q/Q ∼ 10−15. These aforemen-

tioned results indicate that the external metric of a slowly rotating super-compact

Schwarzschild star in the gravastar limit, agrees with the Kerr metric to the requi-

site order to one part in 1015. These results provide the long-sought solution to the

problem of the source of rotation of the slowly rotating Kerr metric.
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Appendix A

Komar integral

For our immediate purpose, we concentrate on the concept of total energy (mass)

for an asymptotically flat spacetime. We follow the discussions given in [14, 81].

A stationary spacetime is characterized for having a timelike Killing vector Kµ at

infinity. For this scenario, we can construct the current

Jµ = KνR
µν , (A.1)

where Rµν is the Ricci tensor. Using Einstein’s equations, (A.1) can be written as

Jµ = Kν(8πT µν + 1
2Rg

µν)

= 8πKν(T µν −
1
2Tg

µν),
(A.2)

where we used T ≡ T µ
µ . Taking the divergence of this current we have

∇µJ
µ = (∇µKν)Rµν +Kν(∇µR

µν). (A.3)

Note that Rµν is symmetric but ∇µKν is antisymmetric, by virtue of the Killing equa-

tion ∇(µKν) = 0, thus the first term to the right of (A.3) vanishes. The divergence

of the Ricci tensor can be found to be

∇µR
µν = 1

2∇
νR. (A.4)

Using (A.4) into (A.3)
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∇µJ
µ = 1

2Kν∇νR = 0, (A.5)

where we used the fact that the directional derivative of the Ricci scalar, along a

Killing vector, is zero. Thus the current (A.1) is a conserved quantity. In analogy to

the electromagnetic case, one can associate a conserved energy to the current Jµ

E = 1
4π

∫
Σ
d3x
√
γnµJ

µ, (A.6)

where γ is the determinant of the induced metric γij and nµ is the normal vector to

the spacelike hypersurface Σ. Note that the value of energy does not depend on the

surface Σ, thus it can be considered a conserved quantity. Moreover, we can express

(A.6) as a surface integral via the generalized Stokes’s theorem

∫
Σ
dnx

√
|g|∇µV

µ =
∫
∂Σ
dn−1y

√
|γ|nµV µ. (A.7)

where γij is the induced metric on the boundary in coordinates yi. Let’s recall that a

Killing vector satisfies ∇µ∇νK
µ = KµRµν , therefore we can write the current (A.1)

as

Jµ = ∇ν(∇µKν). (A.8)

Using (A.7) and (A.8) into (A.6) we can write the total energy as

E = 1
4π

∫
∂Σ
d2x

√
γ(2)nµσν∇µKν , (A.9)

where the integral is evaluated on the induced hypersurface ∂Σ, a two-sphere at

infinity, with metric γ(2)
ij and normal vector σµ. Equation (A.9) corresponds to the

Komar integral and it’s associated to the total energy in a stationary spacetime.
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Appendix B

Einstein tensor for axisymmetric spacetimes

The relevant Einstein tensor components G ν
µ = R ν

µ − 1
2Rδ

ν
µ for a general axisym-

metric spacetime are listed below. We use the general form of the metric

ds2 = −e2F (dt)2 + e2H(dr)2 + e2Q(dθ)2 + e2G[dφ− ω(r)dt]2 (B.1)

where F,H,Q are functions of r and θ. The calculations were carried out using the

mathematica notebook available in Hartle’s book [34].

4e2[F (r,θ)+Q(r,θ)]G 1
1 = 4e2F (r,θ)

[
F (0,1)(r, θ)e2H(r,θ)

(
G(0,1)(r, θ)−Q(0,1)(r, θ)

)
+ F (1,0)(r, θ)G(1,0)(r, θ)e2Q(r,θ) + F (0,1)(r, θ)2e2H(r,θ) + F (0,2)(r, θ)e2H(r,θ)

+ F (1,0)(r, θ)e2Q(r,θ)Q(1,0)(r, θ)−G(0,1)(r, θ)e2H(r,θ)Q(0,1)(r, θ) +G(0,1)(r, θ)2e2H(r,θ)

+G(0,2)(r, θ)e2H(r,θ) +G(1,0)(r, θ)e2Q(r,θ)Q(1,0)(r, θ)
]

+ ω′(r)2e2[G(r,θ)+Q(r,θ)]) (B.2)

G 1
2 = F (0,1)(r, θ)

[
Q(1,0)(r, θ)− F (1,0)(r, θ)

]
−G(0,1)(r, θ)G(1,0)(r, θ)

+H(0,1)(r, θ)
[
F (1,0)(r, θ) +G(1,0)(r, θ)

]
+G(0,1)(r, θ)Q(1,0)(r, θ)−F (1,1)(r, θ)−G(1,1)(r, θ)

(B.3)

4e2[F (r,θ)+H(r,θ)]G 2
2 = 4e2F (r,θ)

{
e2H(r,θ)G(0,1)(r, θ)H(0,1)(r, θ)

+ e2H(r,θ)F (0,1)(r, θ)
(
G(0,1)(r, θ) +H(0,1)(r, θ)

)
+ e2Q(r,θ)

[
F (1,0)(r, θ)2

+
(
G(1,0)(r, θ)−H(1,0)(r, θ)

)
F (1,0)(r, θ) +G(1,0)(r, θ)2 −G(1,0)(r, θ)H(1,0)(r, θ)

+ F (2,0)(r, θ) +G(2,0)(r, θ)
]}
− (ω′)2e2[G(r,θ)+Q(r,θ)] (B.4)
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4e2[F (r,θ)−G(r,θ)+H(r,θ)+Q(r,θ)]G 3
3 = 4e2F (r,θ)

{
e2H(r,θ)F (0,1)(r, θ)2

+ e2H(r,θ)
(
H(0,1)(r, θ)−Q(0,1)(r, θ)

)
F (0,1)(r, θ)− F (1,0)(r, θ)H(1,0)(r, θ)e2Q(r,θ)

+ e2H(r,θ)[H(0,1)(r, θ)]2 + e2Q(r,θ)F (1,0)(r, θ)2 + e2Q(r,θ)Q(1,0)(r, θ)2

− e2H(r,θ)H(0,1)(r, θ)Q(0,1)(r, θ) + e2H(r,θ)F (0,2)(r, θ) + e2H(r,θ)H(0,2)(r, θ)

−H(1,0)(r, θ)e2Q(r,θ)Q(1,0)(r, θ) + e2Q(r,θ)F (1,0)(r, θ)Q(1,0)(r, θ) + e2Q(r,θ)F (2,0)(r, θ)

+ e2Q(r,θ)Q(2,0)(r, θ)
}
− 3(ω′2)e2[G(r,θ)+Q(r,θ)] (B.5)

4e2[F (r,θ)−G(r,θ)+H(r,θ)+Q(r,θ)]G 3
4 = 2e2(F (r,θ)+Q(r,θ))

[
ω′′(r)

− ω′(r)
(
F (1,0)(r, θ)− 3G(1,0)(r, θ) +H(1,0)(r, θ)−Q(1,0)(r, θ)

)]
+ ω(r)

[
3(ω′)2e2[G(r,θ)+Q(r,θ)] − 4e2F (r,θ)

[
e2H(r,θ)F (0,1)(r, θ)2

+ e2H(r,θ)
(
H(0,1)(r, θ)−Q(0,1)(r, θ)

)
F (0,1)(r, θ)− F (1,0)(r, θ)H(1,0)(r, θ)e2Q(r,θ)

+ e2H(r,θ)[H(0,1)(r, θ)]2 + e2Q(r,θ)[F (1,0)(r, θ)]2 + e2Q(r,θ)[Q(1,0)(r, θ)]2

− e2H(r,θ)H(0,1)(r, θ)Q(0,1)(r, θ) + e2H(r,θ)F (0,2)(r, θ) + e2H(r,θ)H(0,2)(r, θ)

−H(1,0)(r, θ)e2Q(r,θ)Q(1,0)(r, θ) + e2Q(r,θ)F (1,0)(r, θ)Q(1,0)(r, θ)

+ e2Q(r,θ)F (2,0)(r, θ) + e2Q(r,θ)Q(2,0)(r, θ)
]]

(B.6)
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4e2(F (r,θ)+H(r,θ)+Q(r,θ))G 4
4 = −e2(G(r,θ)+Q(r,θ))

(
3e2G(r,θ)(ω)2 + e2F (r,θ)

)
(ω′)2

+ 4e2(F (r,θ)+G(r,θ)+Q(r,θ))ω
(
F (1,0)(r, θ)− 3G(1,0)(r, θ) +H(1,0)(r, θ)−Q(1,0)(r, θ)

)
ω′

−4e2F (r,θ)
(
−e2G(r,θ)

(
e2H(r,θ)[F (0,1)(r, θ)]2+e2H(r,θ)

(
H(0,1)(r, θ)−Q(0,1)(r, θ)

)
F (0,1)(r, θ)

− F (1,0)(r, θ)H(1,0)(r, θ)e2Q(r,θ) + e2H(r,θ)[H(0,1)(r, θ)]2 + e2Q(r,θ)F (1,0)(r, θ)2

+ e2Q(r,θ)[Q(1,0)(r, θ)]2 − e2H(r,θ)H(0,1)(r, θ)Q(0,1)(r, θ) + e2H(r,θ)F (0,2)(r, θ)

+ e2H(r,θ)H(0,2)(r, θ)−H(1,0)(r, θ)e2Q(r,θ)Q(1,0)(r, θ) + e2Q(r,θ)F (1,0)(r, θ)Q(1,0)(r, θ)

+ e2Q(r,θ)F (2,0)(r, θ) + e2Q(r,θ)Q(2,0)(r, θ)
)
(ω)2 + e2(G(r,θ)+Q(r,θ))ω′′(r)ω(r)

+ e2F (r,θ)
(
e2H(r,θ)[G(0,1)(r, θ)]2 + e2H(r,θ)

(
H(0,1)(r, θ)−Q(0,1)(r, θ)

)
G(0,1)(r, θ)

−G(1,0)(r, θ)H(1,0)(r, θ)e2Q(r,θ) + e2H(r,θ)[H(0,1)(r, θ)]2 + e2Q(r,θ)[G(1,0)(r, θ)]2

+ e2Q(r,θ)[Q(1,0)(r, θ)]2 − e2H(r,θ)H(0,1)(r, θ)Q(0,1)(r, θ) + e2H(r,θ)G(0,2)(r, θ)

+ e2H(r,θ)H(0,2)(r, θ)−H(1,0)(r, θ)e2Q(r,θ)Q(1,0)(r, θ) + e2Q(r,θ)G(1,0)(r, θ)Q(1,0)(r, θ)

+ e2Q(r,θ)G(2,0)(r, θ) + e2Q(r,θ)Q(2,0)(r, θ)
))

(B.7)
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Appendix C

Integral and surface properties of a slowly

rotating ‘Schwarzschild star’ in general

relativity
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Table C.1: Integral and surface properties of a slowly rotating ‘Schwarzschild star’ for several values of the compactness parameter R/RS , where R
is the radius of the star and Rs = 2M0 is the Schwarzschild radius, in the regime R/RS ≥ 9/8. We use geometrized units (c = G = 1). The angular
velocity relative to the local ZAMO $(R) = (Ω − ω)|r=R is given in units of J/R3

s. The moment of inertia I is in the unit R3
s. The ratio δMH/M

denotes the original Hartle’s fractional change in mass, as given by (3.33), measured in units of J2/R4
s. The ratio δM/M corresponds to the amended

fractional change of mass as given by (3.34). The quadrupole moment Q is measured in units of J2/RS . The ellipticity ε is measured in units of
J2/R4

S . All the quantities are computed at the surface of the configuration. The digit in parenthesis following each entry corresponds to the power
of ten by which the entry is multiplied.

R/RS $(R) Ω I IN = I/M0R
2 δMH/M δM/M Q ε

100.0 4.958538 (-4) 4.978538 (-4) 2.008621 (3) 4.017243 (-1) 9.950087 (-4) 4.901465 (-1) 1.220773 (3) 6.157998 (-1)
50.0 1.966802 (-3) 1.982802 (-3) 5.043366 (2) 4.034693 (-1) 3.960078 (-3) 9.608127 (-1) 5.960749 (2) 1.213351 (0)
35.0 3.984776 (-3) 4.031423 (-3) 2.480513 (2) 4.049817 (-1) 8.046649 (-3) 1.348994 (0) 4.087341 (2) 1.710989 (0)
20.0 1.197994 (-2) 1.222994 (-2) 8.176653 (1) 4.088326 (-1) 2.437122 (-2) 2.259332 (0) 2.216473 (2) 2.896803 (0)
10.0 4.582047 (-2) 4.782047 (-2) 2.091154 (1) 4.182308 (-1) 9.493460 (-2) 4.065297 (0) 9.789224 (1) 5.352755 (0)
5.00 1.662453 (-1) 1.822453 (-1) 5.487109 (0) 4.389687 (-1) 3.588505 (-1) 6.482244 (0) 3.772876 (1) 9.030235 (0)
4.00 2.462305 (-1) 2.774805 (-1) 3.603856 (0) 4.504820 (-1) 5.439746 (-1) 7.172851 (0) 2.635975 (1) 1.030041 (1)
3.00 3.969855 (-1) 4.710595 (-1) 2.122873 (0) 4.717497 (-1) 9.162101 (-1) 7.688984 (0) 1.567424 (1) 1.165938 (1)
2.50 5.237493 (-1) 6.517493 (-1) 1.534332 (0) 4.909863 (-1) 1.258944 (0) 7.630176 (0) 1.080788 (1) 1.213041 (1)
2.00 7.029353 (-1) 9.529353 (-1) 1.049389 (0) 5.246945 (-1) 1.819485 (0) 6.951236 (0) 6.526268 (0) 1.195797 (1)
1.90 7.443988 (-1) 1.035986 (0) 9.652634 (-1) 5.347720 (-1) 1.971410 (0) 6.684018 (0) 5.772930 (0) 1.176106 (1)
1.80 7.862084 (-1) 1.129143 (0) 8.856266 (-1) 5.466831 (-1) 2.140268 (0) 6.354842 (0) 5.064371 (0) 1.147805 (1)
1.70 8.265015 (-1) 1.233584 (0) 8.106455 (-1) 5.610003 (-1) 2.327408 (0) 5.954579 (0) 4.406646 (0) 1.108923 (1)
1.60 8.620448 (-1) 1.350326 (0) 7.405618 (-1) 5.785639 (-1) 2.533403 (0) 5.473614 (0) 3.806134 (0) 1.056948 (1)
1.50 8.871430 (-1) 1.479735 (0) 6.757963 (-1) 6.007078 (-1) 2.756967 (0) 4.905143 (0) 3.271745 (0) 9.893372 (0)
1.40 8.917486 (-1) 1.620611 (0) 6.170509 (-1) 6.296438 (-1) 2.992654 (0) 4.246032 (0) 2.813085 (0) 9.034087 (0)
1.30 8.574163 (-1) 1.767748 (0) 5.656913 (-1) 6.694571 (-1) 3.224895 (0) 3.506898 (0) 2.440935 (0) 7.971065 (0)
1.20 7.481799 (-1) 1.905587 (0) 5.247725 (-1) 7.288508 (-1) 3.412176 (0) 2.725004 (0) 2.169032 (0) 6.728235 (0)
1.15 6.439067 (-1) 1.958939 (0) 5.104803 (-1) 7.719929 (-1) 3.454114 (0) 2.347975 (0) 2.076202 (0) 6.090137 (0)
1.125 5.727118 (-1) 1.977375 (0) 5.057207 (-1) 7.991636 (-1) 3.442297 (0) 2.176744 (0) 2.023119 (0) 5.531918 (0)
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Table C.2: Integral and surface properties of a slowly rotating ‘Schwarzschild star’ for several values of the deviation parameter ζ ≡ R−Rs

Rs
, where

R is the radius of the star and Rs = 2M0 is the Schwarzschild radius, in the regime 1 < R/RS < 9/8. We use geometrized units (c = G = 1). The
angular velocity relative to the local ZAMO $(R) = (Ω − ω)|r=R is given in units of J/R3

s. The moment of inertia I is in the unit R3
s. The ratio

δMH/M denotes the original Hartle’s fractional change in mass, as given by (3.31), measured in units of J2/R4
s. The ratio δM/M corresponds to the

amended fractional change of mass as given by (3.34). The ratio ∆Q/Q defined in (4.7) corresponds to the relative deviation of the mass quadrupole
moment from that of the Kerr metric. We measure the quadrupole moment Q in units of J2/M0 so the Kerr factor q̄ = QM0/J

2 corresponds to the
unity. The ellipticity ε is measured in units of J2/M4

0 . All the quantities are computed at the surface of the configuration. The digit in parenthesis
following each entry corresponds to the power of ten by which the entry is multiplied.

ζ $(R) Ω I IN = I/M0R
2 δMH/M δM/M ∆Q/Q ε

0.124 5.747365 (-1) 1.983152 (0) 0.504247 (0) 7.982541 (-1) 3.410787 (0) 2.182713 (0) 1.972540 (-2) 5.780040 (0)
0.120 5.796710 (-1) 2.003231 (0) 4.991934 (-1) 7.959078 (-1) 3.318006 (0) 2.239330 (0) 1.498300 (-2) 3.570681 (-1)
0.115 5.912024 (-1) 2.034000 (0) 4.916420 (-1) 7.909140 (-1) 3.146362 (0) 2.206228 (0) 8.225660 (-3) 3.498988 (-1)
0.114 5.928188 (-1) 2.039505 (0) 4.903149 (-1) 7.901959 (-1) 3.118945 (0) 2.207108 (0) 7.163111 (-3) 3.488226 (-1)
0.113 5.943907 (-1) 2.044980 (0) 4.890023 (-1) 7.894971 (-1) 3.091923 (0) 2.207689 (0) 6.139552 (-3) 3.477814 (-1)
0.112 5.959175 (-1) 2.050423 (0) 4.877040 (-1) 7.888179 (-1) 3.065294 (0) 2.207959 (0) 5.153962 (-3) 3.467748 (-1)
0.111 5.973989 (-1) 2.055836 (0) 4.864200 (-1) 7.881580 (-1) 3.039057 (0) 2.207950 (0) 4.205431 (-3) 3.458024 (-1)
0.110 5.988341 (-1) 2.061216 (0) 4.851503 (-1) 7.875177 (-1) 3.013208 (0) 2.207648 (0) 3.292989 (-3) 3.448637 (-1)
0.10 6.105343 (-1) 2.113163 (0) 4.732240 (-1) 7.821885 (-1) 2.775629 (0) 2.191611 (0) 4.029515 (-3) 3.372674 (-1)

5.0 (-2) 5.749893 (-1) 2.302664 (0) 4.342794 (-1) 7.878086 (-1) 2.153885 (0) 2.105008 (0) 8.882128 (-3) 3.476065 (-1)
1.0 (-2) 3.175043 (-1) 2.258684 (0) 4.427355 (-1) 8.680238 (-1) 1.984771 (0) 1.983793 (0) 1.475649 (-3) 3.873924 (-1)
5.0 (-3) 2.331664 (-1) 2.203463 (0) 4.538308 (-1) 8.986527 (-1) 1.990785 (0) 1.990653 (0) 6.363087 (-4) 3.904995 (-1)
1.0 (-3) 1.091218 (-1) 2.103133 (0) 4.754809 (-1) 9.490627 (-1) 1.997866 (0) 1.997866 (0) 1.001120 (-4) 3.863623 (-1)
5.0 (-4) 7.045530 (-2) 2.067458 (0) 4.836856 (-1) 9.664047 (-1) 1.997955 (0) 1.997943 (0) 5.726721 (-5) 3.832646 (-1)
1.0 (-4) 3.109358 (-2) 2.030493 (0) 4.924910 (-1) 9.847851 (-1) 1.999557 (0) 1.999555 (0) 1.096807 (-6) 3.791711 (-1)
5.0 (-6) 6.929922 (-3) 2.006899 (0) 4.982809 (-1) 9.965519 (-1) 1.999977 (0) 1.999977 (0) 5.326670 (-7) 3.760089 (-1)
1.0 (-6) 3.097805 (-3) 2.003091 (0) 4.992282 (-1) 9.984544 (-1) 1.999995 (0) 1.999995 (0) 1.060549 (-7) 3.754575 (-1)
5.0 (-8) 6.925427 (-4) 2.000692 (0) 4.998269 (-1) 9.996538 (-1) 1.999999 (0) 1.999999 (0) 5.287854 (-9) 3.751032 (-1)
1.0 (-12) 3.097091 (-6) 2.000003 (0) 4.999992 (-1) 9.999984 (-1) 2.0 (0) 2.0 (0) 1.056932 (-13) 3.750004 (-1)
1.0 (-14) 3.095714 (-7) 2.0 (0) 4.999999 (-1) 9.999998 (-1) 2.0 (0) 2.0 (0) 1.110223 (-15) 3.750000 (-1)
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Appendix D

Runge-Kutta methods

D.1 Fourth-order Runge-Kutta method

In general, ordinary differential equations (ODE) of order n

dy(n)

dx
= f(x, y, y′, ..., y(n−1)), (D.1)

can be reduced to a set of n coupled first-order differential equations for the functions

yi, in the form

dyi
dx

= fi(x, y1, ..., yn), i = 0, ..., n (D.2)

where the fi are known. This property is very useful when we need to apply numerical

methods to solve a set of ODE’s. Besides the equations, we also need to specify

the boundary conditions according to the specific problem we are solving. In our

particular case, we are dealing with an initial value problem where the auxiliary

conditions, or initial conditions, are specified at some starting point of x (e.g. the

center of the configuration).

A method which is conceptually simple and gives approximate solutions is the

Euler method. However, due to the fact that it keeps only first order terms in the

Taylor expansion, it’s very limited, inaccurate and rarely used. A better method is

the so-called Runge-Kutta method. In reality this is a set of methods, depending

of the order of the expansion, which gives results with various degrees of accuracy.

Technically the Euler method is a Runge-Kutta method at first-order. The second

109



order method is the so-called midpoint method. In most cases, practitioners rely

on the fourth-order Runge-Kutta method (RK4), which provides high accuracy and

is easy to implement in the computer. The basic equations of this method are the

following [49, 83]

k0 = hf(x, y),

k1 = hf
(
x+ h

2 ,y + k0

2

)
,

k2 = hf
(
x+ h

2 ,y + k1

2

)
, (D.3)

k3 = hf (x+ h,y + k2) ,

y(x+ h) = y(x) + 1
6 (k0 + 2k1 + 2k2 + k3)

where h is the step size, which is kept constant. Note that we are using vector notation

(bold letters), thus we can consider a set of n first-order equations1. In each step the

routine evaluates the derivative four times; one at the starting point, two evaluations

at the midpoints x + h/2, and a final one at the ending point. It’s worthwhile to

remark that the RK4 method is accurate to terms of order h4 with an error of order

h5.

D.2 Adaptive Methods

The main disadvantage of the standard RK4 method, is that it does not estimate

automatically the truncation error 2. Thus, when we implement the routine, we must

guess a reasonable step size h or find it by trial and error. This becomes an issue

when the solutions vary drastically in different regions. For example, in intervals

1In our particular case, Hartle’s equations, we had to solve a set of eight coupled first-order
differential equations.

2The truncation error is due to the terms omitted in the Taylor series expansion and is given
by E = 1

(m+1)!y
(m+1)(ξ)h(m+1), where x < ξ < x+ h.
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where the function is smooth we might choose a big step size so we can calculate the

solution faster. On the other hand, in regions where the function varies rapidly, we

might need to consider points which are closer (smaller h).

The adaptive step size methods provide a technique that estimate the truncation

error in each step, and adjust the step size to maintain the error within some predeter-

mined limit. The adaptive method uses the so-called embededd integration formulas,

or Runge-Kutta-Fehlberg formulas, which are given by [49, 83]

k0 = hf(x, y),

ki = hf

x+ aih,y +
i−1∑
j=0

bijkj

 , i = 1, 2, ..., 5

y5(x+ h) = y(x) +
5∑
i=0

ciki (fifth-order formula) (D.4)

y4(x+ h) = y(x) +
5∑
i=0

diki (fourth-order formula).

The coefficients in (D.4) are chosen conventionally to be those proposed by Cash and

Karp (see, e.g., [83], p. 717). We used these coefficients in our code. The truncation

error is estimated by the relation

E(h) = y5(x+ h)− y4(x+ h) =
5∑
i=0

(ci − di)ki, (D.5)

where E(h) scales as h5. Note that E(h) is defined as a “vector”3, where each com-

ponent corresponds to the errors in the functions yi. In order to control the error

measure e(h), it is conventional to choose the root-mean-square value given by [49]

Ē(h) =

√√√√ 1
n

n−1∑
i=0

E2
1(h), (D.6)

where n is the number of differential equations. In our code we used e(h) = Ē(h)

as the error measure. As we discussed above, the idea of the adaptive method is to

3This definition of vector must be understood, only, from the computational point of view.
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adjust the step h such that the error e(h) lies within some predetermined tolerance

τ . In order to relate e(h) with the tolerance τ , let’s suppose that a step h1 produced

an error e1; considering that the truncation error is of the order h5, the step h2 which

we should have used to obtain an error e2 is

h2 ≈ h1

(
e2

e1

)1/5
= h1

(
τ

e1

)1/5
. (D.7)

where we have chosen e2 = τ as the predetermined tolerance. Equation (D.7) works in

the following way: if e1 < τ , or equivalently h2 > h1, the error is below the tolerance

therefore the step is good and we use it in the next computation. On the other hand,

if h2 < h1 the error is above the tolerance and the equation tells us how much we

should decrease the step-size in the next computation. Note that the estimation of

the error is only approximate. Thus it is prudent to introduce a small safety factor,

a little less than the unity, in (D.7)

h2 = 0.9h1

(
τ

e1

)1/5
. (D.8)

We implemented this equation in our code to adjust the step-size, with a tolerance

value of τ = 1.0× 10−6.

The interested reader can find the routines of the Runge-Kutta-Fehlberg method

for Python in the book of Kiusalaas [49]. For the reader familiar with the language

C, the classical book by Press et al., [83] provides several routines of the method with

error control.
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