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Abstract

This dissertation research has focused on theoretical and practical developments

of semiparametric modeling and statistical inference for high dimensional data and

measurement error data. In causal inference framework, when evaluating the e�ec-

tiveness of medical treatments or social intervention policies, the average treatment

e�ect becomes fundamentally important. We focus on propensity score modelling

in treatment e�ect problems and develop new robust tools to overcome the curse of

dimensionality. Furthermore, estimating and testing the e�ect of covariates of inter-

est while accommodating many other covariates is an important problem in many

scientific practices, including but not limited to empirical economics, public health

and medical research. However when the covariates of interest are measured with

error, to evaluate the e�ect precisely, we must reduce the bias caused by measure-

ment error and adjust for the confounding e�ects simultaneously. We design a general

methodology for a general single index semiparametric measurement error model and

for a class of Poisson models, and introduce a bias-correction approach to construct

a class of locally e�cient estimators. We derive the corresponding estimating pro-

cedures and examine the asymptotic properties. Extensive simulation studies have

been conducted to verify the performance of our semiparametric approaches.
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Chapter 1

Introduction

Semiparametric models became very popular in the last decade because they are

flexible and in the meantime the estimators are e�cient. It is well-known that para-

metric models rely heavily on the correctness of models which reside in a restrictive

set of dimensions. Hence misspecification of the model will lead to severe bias and

inconsistency in estimation. While nonparametric models, flexible in the sense that

it allows infinitely many parameters in the model, often su�er from the curse of di-

mensionality which results in slow convergence rates and the lack of interpretability

due to overly opaque structure of the model. A semiparametric model overcomes

these drawbacks by permitting precise estimation of the (parametric) components of

interest and maintains interpretability of the model while leaving out some features

of the model completely unspecified (nonparametric component). Semiparametric

models date back to Newey (1990) and have been further developed by Bickel et al.

(1993) and Tsiatis (2006).

Consider a class of statistical models

{p
X

(x; ◊), ◊ œ �}

where X1, X2, · · · , X
n

are independent identically distributed random vectors. The

parameter ◊ can be written as (—T, ÷T)T, where — is the parameter of interest while

÷ is the nuisance parameter. Let us denote the true parameters by ◊0 = (—T
0 , ÷T

0 )T.

Under the semiparametric theory framework, in order to construct a consistent, regu-

lar asymptotically linear (RAL) and locally e�cient estimator , we utilize an influence

1



function Ï(X) such that E{Ï(X)} = 0 and

n1/2(‚—
T
n

≠ —0) = n1/2
nÿ

i=1
Ï(X

i

) + o
p

(1),

where Ï(X
i

), i = 1, 2, · · · , n are i.i.d. mean zero random vectors and o
p

(1) denotes a

term that converges to zero in probability. The random vector Ï(X
i

) is referred to the

i-th influence function which satisfies that E(ÏÏT) is finite and nonsingular (Bickel

et al. (1993)). From the geometry point of view, an influence function is orthogonal

to the Hilbert space H which is a complete normed linear vector space equipped with

an inner product. The asymptotic properties of ‚—
n

can be derived from the influence

function Ï(X). See Tsiatis (2006) for further details.

The beauty of semiparametric method prevails over a wide range of applications,

especially when other methods are overwhelmed by the dimensions of the parameter

space. My dissertation work investigates the frequentist semiparametric methods

thoroughly with applications on dimension reduction problem in causal inference and

errors-in-variables (EIV) models.

The problem of estimating average treatment e�ect is of fundamental importance

when evaluating the e�ectiveness of medical treatments or social intervention policies.

Most of the existing methods for estimating average treatment e�ect rely on some

parametric assumptions on the propensity score model or outcome regression model

one way or the other. In reality, both models are prone to misspecification, which can

have undue influence on the estimated average treatment e�ect. In Chapter 2, we

propose a new robust approach to estimating the average treatment e�ect based on

observational data in the challenging situation when neither a plausible parametric

outcome model nor a reliable parametric propensity score model is available. Our

estimator can be considered as a robust extension of the popular class of propensity

score weighted estimators. The new approach has the advantage of being robust,

flexible, data adaptive and it can handle many covariates simultaneously. Adapting

a dimension reduction approach, we estimate the propensity score weights semipara-

2



metrically by using a nonparametric link function to relate the treatment assignment

indicator to a low-dimensional structure of the covariates which are formed typically

by several linear combinations of the covariates. We develop a class of consistent

estimators for the average treatment e�ect and studied their theoretical properties.

We demonstrate the robust performance of the new estimators on simulated data

and a real data example of analyzing the e�ect of maternal smoking on babies’ birth

weight.

In Chapter 3, we introduce a general single index semiparametric measurement

error model for the case that the main covariate of interest is measured with error and

modeled parametrically, and where there are many other variables also important to

the modeling. We propose a semiparametric bias-correction approach to estimate the

e�ect of the covariate of interest. The resultant estimators are shown to be root-n

consistent, asymptotically normal and locally e�cient. Comprehensive simulations

and an analysis of an empirical data set are performed to demonstrate the finite

sample performance and the bias reduction of the locally e�cient estimators.

We extend the work on measurement error problem to a wider range of counting

response models in Chapter 4. We thoroughly examine Poisson models for a counting

response Y where the covariates of interest are measured with normal additive error

and possible confounding e�ect. We propose a class of constructive locally e�cient

semiparametric estimators for a class of Poisson models in the presence of functional

measurement error. The estimators follow from the estimating equations that are

based on the semiparametric e�cient score derived under a possibly incorrect dis-

tributional assumption for the unobserved covariate. Our approach produces locally

e�cient estimator with significant bias reductions among current existing methods.

We verify the asymptotic properties of the bias reductions estimators through exten-

sive simulation studies.

Finally, I conclude with summary remarks in Chapter 5 about the work on semi-

3



parametric estimation and inference in causal inference and measurement error mod-

els.
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Chapter 2

A Alternative Robust Estimator of Average

Treatment Effect in Causal Inference

2.1 Introduction

Estimating average treatment e�ect is important in comparing di�erent medical

treatments, social programs and intervention policies. The problem is challenging

when the data come from an observational study instead of a randomized experi-

ment. Direct di�erencing of the sample average e�ects is susceptible to confounding

bias, which is caused by imbalances in baseline covariate distributions between the

treatment group and the control group.

Under the commonly imposed no unmeasured confounders assumption (Rosen-

baum and Rubin (1983); De Luna et al. (2011)), a variety of methods have been

proposed to consistently estimate the average treatment e�ect. The class of doubly

robust (DR) estimators (Scharfstein et al. (1999); Robins and Rotnitzky (2001); Bang

and Robins (2005); Rubin and van der Laan (2007); Cao et al. (2009); Tan (2010);

Rotnitzky et al. (2012); Van der Laan and Rose (2011); Vansteelandt et al. (2012),

among others) have been particularly popular due to their double protection against

model misspecification. The standard practice in the DR estimation relies on para-

metric specification of the propensity score model and the outcome regression model.

Let M
—

denote the class of joint densities satisfying the parametric assumptions im-

plied by the outcome regression model (indexed by —) and let M
“

denote the class of

joint densities satisfying the parametric assumptions implied by the propensity score

5



model (indexed by —). The DR estimator is consistent under M
—

fi M
“

, that is, as

long as one of these two classes of parametric models is correctly specified.

Despite the appealing theoretical properties of DR estimators, Carpenter et al.

(2006), Kang and Schafer (2007) and Vansteelandt et al. (2012) observed in simula-

tions that their finite-sample bias can be amplified when one of the working models

is misspecified and the bias can be severe if both models are slightly misspecified.

Vermeulen and Vansteelandt (2015) recently proposed a novel generic strategy for

estimating the nuisance parameters of the working models of an arbitrary DR es-

timator by minimizing the squared first-order bias of the DR estimator under the

misspecification of both working models. Their approach aimed at bias reduction

under misspecification of both models. Vermeulen and Vansteelandt (2016) further

explored the use of data-adaptive estimators in constructing bias-reduced doubly ro-

bust estimation. These estimators provide useful improvement over standard DR

estimators, but still need at least one working model to be correctly specified using

a parametric model.

Motivated by the practical concern of bias reduction, we propose an alternative

approach by directly considering estimators of average treatment e�ects that are con-

sistent in a larger class of semiparametric models. The semiparametric class we study

imposes a semiparametric structure for the propensity score model while imposing no

structure for the outcome regression model. It encompasses the commonly assumed

parametric class M
—

fi M
“

. As a direct consequence, our proposed estimator is ex-

pected to be consistent for many distributions outside M
—

fi M
“

, for which most of

the standard doubly robust estimators would become inconsistent. This was demon-

strated by the numerical results in Section 4. Furthermore, we derive the asymptotic

normality of the proposed estimator for the average treatment e�ect, which remains

valid for this general class of semiparametric distributions. This is in contrast to the

theory in the literature for doubly robust estimators, whose asymptotic normality

6



relies on the correct specification of either M
—

or M
“

.

Some alternative methods have been proposed in the literature to relax the para-

metric specification of working models. Wang et al. (2010) proposed a nonparametric

estimator of the outcome regression model in the setting of missing data analysis.

On the other hand, Hirano et al. (2003) showed that if the propensity score func-

tion is estimated nonparametrically, then the propensity score weighted estimator of

the average treatment e�ect achieves the semiparametric e�ciency bounds. How-

ever, the nonparametric approach is not feasible for real data analysis when many

covariates are available due to the curse of dimensionality. Imai and Ratkovic (2014)

introduced covariate balancing propensity score as a method that is robust to mild

misspecification of the parametric propensity score model. Several authors (McCaf-

frey et al. (2004); Ridgeway and McCa�rey (2007); Petersen et al. (2007); Westreich

et al. (2010); Lee et al. (2010)) explored machine learning approaches for modeling the

propensity score. Although numerical examples suggest promising performance, these

works have not studied the asymptotic properties of the resulted average treatment

e�ect estimator. van der Laan Mark and Daniel (2006) proposed targeted maximum

likelihood estimators (TMLE) that incorporates the state-of-art of machine learning

and uses an ensemble of models. Cross-validation was used to select the best weighted

combination of these estimators (Van der Laan et al. (2007)). If the ensemble estima-

tor for the propensity score model or the outcome regression model is consistent for

the underlying true model, the TMLE is consistent hence doubly robust. However, if

the nuisance parameter estimator is not based on the correctly specified parametric

model, but instead on a data-adaptive estimator, the bias of standard TMLE con-

verges to zero at a rate slower than n≠1/2. van der Laan (2014a) further showed

that additional targeting of the estimators of the nuisance parameters can guarantee

that the bias of the estimator of the target parameter is of second order and hence

asymptotically linear. In practice, this would require double targeting and is more
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computationally intensive.

The approach we propose does not rely on parametric specification of the propen-

sity score model or the outcome regression models. It has the advantage of being

more robust and is flexible to handle many covariates. Specifically, we relax the

commonly imposed parametric assumption on the propensity score model by only

assuming the probability of assigning the treatment depends on the p-dimensional

covariate vector X through several linear combinations BTX, where B is a p ◊ d

matrix with d < p. We then estimate this conditional probability by employing a

nonparametric link function. Note that many works exist in studying how to model

the relation between a binary response and many covariates, see for example, Preg-

ibon (1980), Koenker and Yoon (2009), Li et al. (2016). The special case of d = 1

yields the single index model and is especially well studied (Hardle et al., 2004). As

an intermediate model for the propensity score in the treatment e�ect estimation, our

semiparametric approach for estimating the propensity score is most closely related

to the su�cient dimension reduction literature (Cook, 1998) and is of independent in-

terest. Existing methods for estimating the dimension reduction space such as sliced

inverse regression (SIR)(Li, 1991), sliced average variance estimation (SAVE) (Cook

and Weisberg, 1991), directional regression (DR) (Li and Wang, 2007), generalized

DR (Li and Dong, 2009; Dong and Li, 2010) have two limitations to be applied to our

problem. First, they rely mainly on a linearity condition and/or a constant variance

condition, or their generalized form, which may not hold in our problem. Second,

they require a reversal of the relation between X and T to compute expectation of

functions of the covariates X conditional on T , which generates only two di�erent

values because T only has two values. This hampers the direct application of these

methods. On the other hand, other methods based on nonparametric regression (Xia,

2007) and semiparametric regression (Ma and Zhu, 2012, 2013) exist, but they also

need to be adapted instead of directly applied to estimating the propensity score

8



which concerns binary response.

The rest of the chapter is organized as follows. In Section 2.2, we introduce the

multi-index semiparametric estimator of the propensity score function and a robust

estimator of the average treatment e�ect. In Section 2.3, we study the asymptotic

properties of the estimators. Simulation studies are conducted and presented in Sec-

tion 3.4. We illustrate the usefulness of the method in a real data example of analyzing

e�ect of maternal smoking on babies’ birth weight in Section 2.5 and conclude the

chapter with a brief discussion in Section 2.6. The appendix contains the derivation

of the e�cient score function and the proof of Theorem 1. The regularity conditions

and proofs of Lemmas 1-3 are given in the online supplementary document.

2.2 A robust estimator of the average treatment effect

Notation and setup

We consider the popular setting of a binary treatment T (T = 1 for treatment

and 0 for control). To evaluate the treatment e�ect, we adopt the potential or coun-

terfactual outcome framework (Neyman et al., 1990; Rubin, 1974). Let Y ú(1) be the

outcome of the subject if s/he received treatment; and Y ú(0) be the outcome if s/he

received the non-treatment. Our goal is to estimate the average treatment e�ect

· = E{Y ú(1) ≠ Y ú(0)}.

The complexity of the problem arises because for each individual in the sample,

we observe either Y ú(1) or Y ú(0), but not both. The observed outcome is Y =

TY ú(1) + Y ú(0)(1 ≠ T ), that is, the observed outcome is the potential outcome cor-

responding to the treatment the subject actually receives, which is often referred to

as the consistency assumption in causal inference (Rubin, 1986).

Given data from an observational study {Y
i

, T
i

, X
i

}, i = 1, . . . , n, where Y
i

is the

response of the ith subject, T
i

is the binary treatment indicator, X
i

is a vector of

9



covariates, we are interested in estimating the average causal e�ect of the treatment.

Direct di�erencing the sample averages of the treatment and control groups often

leads to a biased estimator of · in observational studies as the two groups often di�er

in some covariates that are associated with both the treatment and outcome. Let

fi(X) = P (T = 1|X) be the propensity score function and assume that the uncon-

foundedness assumption is satisfied, that is {Y ú(1), Y ú(0)} ‹ T |X, or the treatment

assignment is independent of the potential outcomes given the covariates. Rosen-

baum and Rubin (1983) showed that adjusting for the di�erence in propensity score

can completely remove the confounding bias from the di�erence in covariates.

Hahn (1998) derived the semiparametric e�ciency bound for estimating · . The

propensity score can be used in di�erent ways to obtain a consistent estimator for

the average treatment e�ect. Hahn (1998) also proposed an estimator that achieves

the semiparametric e�ciency bound, but his estimator involves estimating E(Y T |X),

E(Y (1≠T )|X) and fi(X). Hirano et al. (2003) further showed that a simpler estima-

tor that only estimates fi(X) nonparametrically can also achieve the semiparametric

e�ciency bound. However, these nonparametric estimators su�er from the curse of

dimensionality in real data analysis even with a moderate amount of covariates such

as four covariates.

In practice, existing work on causal inference usually adopts a parametric ap-

proach to modeling the propensity score function. For example, logistic models are

frequently used to model disease occurrence in case-control studies (Prentice and

Pyke, 1979; Chatterjee and Carroll, 2005; Lin and Zeng, 2009; Ma and Carroll, 2016),

in missing probability problem (Rubin, 1976; Rubin and Little, 2002), and even in

survival models (Efron, 1988). However, the parametric approach is prone to model

misspecification and can result in substantial bias.

The crux of our robust estimator of the average treatment e�ect is to develop a

flexible estimator of the propensity score function. Instead of the parametric logistic

10



regression model for the propensity score function, we assume

pr(T = 1|X = x) = exp{÷(BTx)}
1 + exp{÷(BTx)} , (2.1)

where X œ Rp, B œ p◊d and ÷ is an arbitrary unspecified function. Note that

we use the logit link function here for parameterization purpose to ensure that the

depicted probability function takes values between 0 and 1. As the function ÷ is

completely unspecified, our model allows the probability of being assigned to the

treatment to depend on several linear combinations of X in a nonparametric fashion.

In contrast, the popular logistic regression model assumes this probability to depend

on one particular linear combination of X in a known parametric fashion.

Flexible estimation of the propensity score

To obtain a more concise form, we rewrite (2.1) equivalently as

pr(T = t | X = x) = exp{t÷(BTx)}
1 + exp{÷(BTx)} . (2.2)

The log-likelihood function of B and ÷ is
nÿ

i=1
(t

i

÷(BTx
i

) ≠ log[(1 + exp{÷(BTx
i

)}]).

For identifiability of B, we require B to have the form B = (I
d

, BT
l

)T, where the

upper submatrix I
d

is the d ◊ d identity matrix while the lower submatrix B
l

is

an arbitrary (p ≠ d) ◊ d matrix. To estimate the semiparametric propensity score

function, we need to estimate B
l

and the unknown function ÷, the former of which

contains p
t

= (p ≠ d)d free parameters while the latter can be viewed as an infinite

dimensional parameter. In the sequel, for notational convenience, for any arbitrary

p◊d matrix B, we define the concatenation of the columns contained in the lower p≠d

rows of B as vecl(B) = vec(B
l

) = (—
d+1,1, ...—

p,1, ...—
d+1,d

, ...—
p,d

)T where “vec” stands

for vectorization while “vecl” is the vectorization of the lower part of the original

matrix.
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Our approach of estimation relies on first deriving the influence function using the

geometric technique (Bickel et al., 1993; Tsiatis, 2006). In the Appendix, we derive

the e�cient score function with respect to B:

Se�(t
i

, x
i

, BTx
i

, ÷, ÷Õ) (2.3)

= vecl
A

{x
i

≠ E(X
i

| BTx
i

)}
C

t
i

≠ exp{÷(BTx
i

)}
1 + exp{÷(BTx

i

)}

D

÷Õ(BTx
i

)T
B

.

We use the Nadaraya-Watson kernel estimator to estimate E(X
i

| BTx
i

), that is,

‚E(X | BTx) =
q

n

i=1 x
i

K
h

(BTx
i

≠ BTx)
q

n

i=1 K
h

(BTx
i

≠ BTx)
, (2.4)

where h is a bandwidth and K is a multivariate kernel function, K
h

(·) = K(·/h)/hd.

Neither ÷ nor ÷Õ is known in real data analysis. To deal with this complexity, in the

following we borrow the idea of locally e�cient and adaptively e�cient estimators

in general and especially in Ma and Zhu (2012) and consider two di�erent options,

which lead to two di�erent estimators of B.

First, we consider an estimator of B based on a posited form of ÷, denoted as

÷ú, which may not be identical to ÷. The corresponding derivative is denoted by ÷úÕ.

This yields the locally e�cient score function

Sú
e�(t

i

, x
i

, B, ÷ú, ÷úÕ) (2.5)

= vecl
A

{x
i

≠ E(X
i

| BTx
i

)}
C

t
i

≠ exp{÷ú(BTx
i

)}
1 + exp{÷ú(BTx

i

)}

D

÷úÕ(BTx
i

)T
B

.

Obviously, there are many di�erent choices of ÷, as long as ÷ú is a smooth function

of BTx. For example, when we choose ÷ú(BTx) = 1T
d

BTx where 1
d

is a length d

vector of ones. Then ÷úÕ(BTx) = 1
d

. The locally e�cient estimator of B solves the

estimating equation

nÿ

i=1
vecl

5
{x

i

≠ ‚E(X
i

| BTx
i

)}{t
i

≠ exp(1T
d

BTx
i

)
1 + exp(1T

d

BTx
i

)
}1T

d

6
= 0. (2.6)

We denote this estimator by ‚B1.
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Next, we consider estimating ÷(BTx
i

) and its first derivative nonparametrically

to obtain an adaptively e�cient estimator of B. We adopt the local linear kernel

method to estimate ÷(BTx) and its first derivative, which solves

nÿ

i=1

C

t
i

≠ exp{b0 + bT
1 (BTx

i

≠ BTx0)}
1 + exp{b0 + bT

1 (BTx
i

≠ BTx0)}

D

K
h

(BTx
i

≠ BTx0) = 0

(2.7)
nÿ

i=1

C

t
i

≠ exp{b0 + bT
1 (BTx

i

≠ BTx0)}
1 + exp{b0 + bT

1 (BTx
i

≠ BTx0)}

D

(BTx
i

≠ BTx0)Kh

(BTx
i

≠ BTx0) = 0.

(2.8)

The estimators ‚b0 and ‚b1 are the estimators of ÷ and ÷Õ at BTx0, respectively. We can

vary x0 to obtain estimates of the functions at various values. We write the resulting

estimators as ‚÷(·, B) and ‚÷Õ(·, B), which can be considered as profiled estimators for

÷ and ÷Õ. We subsequently plug ‚÷(·, B), ‚÷Õ(·, B), ‚E(X | BTx) into (2.3) and solve for

B to obtain the e�cient estimator, which we denote by ‚B2.

Robust estimation of the average treatment e�ect

To estimate the average treatment e�ect robustly, we propose to use

‚· = 1
n

nÿ

i=1

I
T

i

Y
i

‚fi(X
i

) ≠ (1 ≠ T
i

)Y
i

1 ≠ ‚fi(X
i

)

J

, (2.9)

where ‚fi(X
i

) is obtained from the semiparametric model (2.1) and estimated using

either of the two options discussed in Section 2.2. Algorithm 1 below depicts the

detailed steps of obtaining the estimator ‚· when the locally e�cient estimator of

fi(X
i

) is used (i.e., based on ‚B1). The algorithm based on ‚B2 is similar. The above

procedure can be considered as an extension of the celebrated Horvitz-Thompson

inverse probability weighted estimator (Horvitz and Thompson, 1952), which was

originally developed for survey sampling.

The proposed estimator enjoys nice robustness properties. It is more flexible than

the parametric propensity score model and hence is less prone to misspecification.
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Algorithm 1 Robust estimator of the average treatment e�ect
Input: {Y

i

, T
i

, X
i

}, i = 1, . . . , n, where Y
i

is the response of the ith subject, T
i

is a
binary treatment indicator (T

i

= 1 for treatment and 0 for control), X
i

is a vector
of covariates.

Output: Estimator ‚· .
1: Use (2.6) to obtain a local e�cient estimator of B, denoted as ÂB via, for example,

choosing ÷ú(BTx) = 1T
d

BTx.
2: Perform nonparametric estimation of ÷(BTx

i

) and its first derivative ÷Õ(BTx
i

) by
implementing (2.7). Write the resulting estimator as ‚÷(BTx

i

, B) and ‚÷Õ(BTx
i

, B).

3: Perform nonparametric estimation of E(X
i

| BTx
i

). Write the resulting estimator
as ‚E(BTx

i

).
4: Plug ‚÷(·, B), ‚÷Õ(·, B) and ‚E(·) in to Se� and solve the estimating equation

nÿ

i=1
Se�(y

i

, x
i

, B, ‚÷, ‚÷Õ, ‚E) = 0,

using ÂB as starting value, to obtain the e�cient estimator ‚B.
5: Repeat Step 2 to obtain the final estimator of ÷(·) and form ‚fi(X

i

) = 1 ≠ 1/[1 +
exp{‚÷( ‚BTx)}].

6: return ‚· = n≠1 q
n

i=1

I
T

i

Y
i

‚fi(X
i

) ≠ (1 ≠ T
i

)Y
i

1 ≠ ‚fi(X
i

)

J

.

Furthermore, it does not rely on the outcome regression models. One can further

pursue a double robust estimator by augmenting the estimator we propose. It could

further improve estimation e�ciency at the price of more complex modeling and/or

computation. The estimator can accommodate a large number of covariates. Note

that although nonparametric smoothing is used to estimate fi(X
i

), the smoothing

is implemented with respect to BTx. Under the dimension reduction assumption,

it is often su�cient to consider a small d in practice; our estimator does not face

the kind of curse of dimensionality that prevents the practical implementation of

the estimators in Hahn (1998) and Hirano et al. (2003). Furthermore, we allow the

covariate X to include both continuous and discrete or categorical variables without

imposing any distributional assumptions on the covariate.

Remark 1. A technical detail involved in the nonparametric step of the above pro-
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cedure is bandwidth selection. Through extensive numerical experimentation, we find

that the B estimation procedure is quite insensitive to the bandwidth, while inference

precision could be a�ected by the bandwidth. Thus, guided by the theoretical prop-

erties, we recommend to simply set the bandwidth to be var(ÎX
i

Î2)n≠1/5 throughout

the estimation of B, and use a leave-one-out cross-validation procedure to obtain the

smoothing parameter h in estimating ÷ after fixing ‚
B. The same bandwidth then can

be used in the inference procedure.

2.3 Asymptotic Properties

In this section, we study the asymptotic properties of the estimators for the

propensity score function for the robust estimator of the average treatment e�ect.

The regularity conditions that are needed for the theoretical development are given

in the Appendix.

First, we study the asymptotic properties of ‚B1, the nonparametric estimators of

÷, ÷Õ and ‚B2 discussed in Section 2.2. The results are summarized in Lemmas 1-2

below. The proofs are relegated to the Appendix.

Lemma 1. Let ‚
B1 be the estimator defined in Section 2.2. Under the regularity

conditions (C1)-(C6), ‚
B1 is locally e�cient. As n æ Œ,

Ô
n{vecl( ‚

B1) ≠ vecl(B)} æ N{0, A

≠1
G(A≠1)T}

in distribution, where

A = E

I
ˆ

ˆ(vecl B)T vecl
A

{X

i

≠ E(X
i

| B

T
X

i

)}
C

T
i

≠ exp{÷ú(BT
X

i

)}
1 + exp{÷ú(BT

X

i

)}

D

÷úÕ(BT
x

i

)T
2Ô

,

G = E

Y
]

[vecl
AÓ

X

i

≠ E(X
i

| B

T
X

i

)
Ô C

T
i

≠ exp{÷(BT
X

i

)}
1 + exp{÷(BT

X

i

)}

D

÷Õ(BT
X

i

)T
B¢2Z

^

\ .

Here and throughout the chapter, a

¢2 © aa

T.
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Lemma 2. Assume the regularity conditions (C1)-(C4) and (C7)-(C8) hold. The

local linear kernel estimators of ‚÷(BT
x) and ‚÷Õ(BT

x) defined in Section 2.2 satisfy

E{‚÷(BT
x)} ≠ ÷(BT

x) = O(hm), E{‚÷Õ(BT
x)} ≠ ÷Õ(BT

x) = O(hm),

var{‚÷(BT
x)} = O

p

{(nhd)≠1}, var{‚÷Õ(BT
x)} = O

p

{(nhd+2)≠1}.

Furthermore, ‚
B2 defined in Section 2.2 is e�cient and satisfies

Ô
n{vecl( ‚

B2) ≠ vecl(B2)} æ N(0, V

≠1)

in distribution as n æ Œ, where

V = E{Se�(T
i

, X

i

, B

T
X

i

, ÷, ÷Õ, E)¢2}

= E

Y
]

[vecl
AÓ

X

i

≠ E(X
i

| B

T
X

i

)
Ô C

T
i

≠ exp{÷(BT
X

i

)}
1 + exp{÷(BT

X

i

)}

D

÷Õ(BT
X

i

)T
B¢2Z

^

\ .

We provide the asymptotic property of the average treatment estimator ‚· defined

in Section 2.2, where the propensity is based on the dimension reduction estima-

tion. We adopt two standard assumptions in causal inference. Assume the treatment

allocation is independent of the potential treatment outcome given the covariates.

Assume further that the probability of treatment is bounded away from 0 and 1.

Theorem 1. Under the regularity conditions (C1)-(C8), when n æ Œ the estimator

‚· from (2.9) based on ‚B2 satisfies

Ô
n(‚· ≠ ·) æ N(0, ‡2)

in distribution, where ‡2 = ‡2
e� + a

T E(Se�S

T
e�)≠1

a, with

‡2
e� = var

CI
T

i

Y
i

fi(X
i

) ≠ (1 ≠ T
i

)Y
i

1 ≠ fi(X
i

) ≠ ·

J

≠
I

Y ú
i

(1)
fi(X

i

) + Y ú
i

(0)
1 ≠ fi(X

i

)

J

{T
i

≠ fi(X
i

)}
D

,

a = E
1

[Y
i1{1 ≠ fi(X

i

)} + Y ú
i

(0)fi(X
i

)] ÷Õ(BT
X

i

) ¢ X

iL

2
.

Remark 2. In the above asymptotic variance expression, ‡2
e� is the optimal estima-

tion variance (Hahn, 1998; Hirano et al., 2003). The additional term is the price
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we pay when we use a dimension reduction procedure to estimate fi instead of doing

it fully nonparametrically. In other words, our estimator is in general not e�cient.

Whether the propensity score is completely known or completely unknown, the e�-

ciency bound in estimating the average treatment e�ect is the same. In our context,

the propensity score is partially known, in that we know it has the dimension reduc-

tion structure. Thus, the e�ciency bound in estimating the treatment e�ect should

be in between the completely known and completely unknown cases, and hence is also

the same as that given in Hahn (1998). Hirano et al. (2003) shows that an inverse

probability weighted estimator using the nonparametrically estimated propensity score

achieves the optimal e�ciency in estimating the treatment e�ect, regardless whether

the true propensity score is known or not. In fact, they show that even if the true

propensity score is known, it should not be used otherwise an e�ciency loss will oc-

cur. However, estimating the propensity score nonparametrically is often infeasible in

practice, especially when there are many covariates. Thus, a natural compromise is to

adopt a dimension reduction assumption to facilitate the propensity score estimation,

which provides a trade-o� between e�ciency and practical applicability.

2.4 Monte Carlo studies

A simulation study on estimating the propensity score

function

We first conduct a simulation study to investigate the performance of the flexible

semiparametric estimators proposed in Section 2.2 for the propensity score.

We generate the vector of covariates X = (X1, X2, X3, X4, X5, X6)T as follows.

The covariates X1 and X2 are generated from independent standard normal distribu-

tions. We let X3 = 0.2X1 +0.2(X2 +2.0)2, X4 = 0.1+0.2(X1 +X2)+0.3(X1 +1)2, and

generate X5 and X6 independently from Bernoulli distribution with success proba-
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bility exp(X3)/{1 + exp(X3)} and exp(X4)/{1 + exp(X4)}, respectively. In (3.1), we

consider the following two di�erent functional forms:

• Setting (1): ÷(BTx) = sin(BTx),

where d = 1 and B = (1.0, ≠1.2, 0.8, ≠1.7, ≠1.5, 0.5)T.

• Setting (2): ÷(BTx) = sin(BT
1 x) + sin(BT

2 x), where d = 2,

B1 = (1.0, 0.0, 1.2, 0.8, ≠1.2, 0.8)T and B2 = (0.0, 1.0, 1.3, 0.7, 1.1, ≠0.7)T.

For comparison purposes, we implement the oracle estimator and compare with our

proposed semiparametric estimators ‚B1 and ‚B2. The oracle estimator assumes the

functional form of ÷ in (3.1) is known, although E(x|BTx) is still estimated through

the kernel regression in (2.4). Even though the oracle estimator is unrealistic, it

provides a benchmark since it is the best performance one could expect to ob-

tain. The local estimator ‚B1 replaces ÷ with a mis-specified function in the esti-

mation procedure and estimates E(x|BTx) nonparametrically. We posit the models

÷ú(BTx) = sin(BTx + 0.8) ≠ 0.3 and ÷ú(BTx) = sin(BT
1 x + 0.5) + cos(BT

2 x ≠ 0.5) for

setting (1) and (2), respectively. The e�cient estimator ‚B2 does not use any posited

model for ÷. Instead, we estimate E(x|BTx), ÷ and ÷Õ through nonparametric regres-

sion, i.e. we followed the algorithm described in Section 2.2. The e�cient estimator
‚B2 is more computationally involved since it solves estimating equations to obtain

the nonparametric components ÷ and ÷Õ at n locations inside the search for B which

does not have a closed form. To alleviate the computational burden, we performed

the nonparametric estimation on a set of grid points and then performed a linear

interpolation for d = 1 and a bilinear interpolation for d = 2 to obtain the values

at each ‚B(k)Tx
i

, where ‚B(k) represents the kth iteration of the estimated ‚B during

solving the estimating equation in Step 4 of the algorithm in Section 2.2.

We repeat each experiment 1000 times with sample size n = 500 and 1000, re-
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Table 2.1: The median and the sample standard errors (std) for various estimates,
and the inference results, respectively, the average of the estimated standard deviation
(‰std) and the coverage of the estimated 95% confidence interval (CI) of the oracle
estimator and the e�cient estimator of B in simulated example 1.

B2 B3 B4 B5 B6
True -1.2 0.8 -1.7 -1.5 0.5

Oracle median -1.2000 0.7760 -1.6932 -1.5000 0.4964
n=500 ‰std 0.3044 0.3885 0.2019 0.3854 0.3117

std 0.3406 0.4116 0.2300 0.3800 0.3670
CI 0.9320 0.9230 0.9220 0.9610 0.9630

Local median -1.0224 0.6503 -1.7137 -1.4016 0.4694
n=500 ‰std 0.2897 0.3431 0.2411 0.5357 0.3581

std 0.3726 0.4450 0.3736 0.5194 0.4415
CI 0.8680 0.8830 0.8660 0.9440 0.9300

E�cient median -1.2155 0.8105 -1.6986 -1.5037 0.5070
n=500 ‰std 0.5674 0.7080 0.3036 0.5353 0.4337

std 0.4735 0.4813 0.4129 0.5211 0.5074
CI 0.9750 0.9860 0.8850 0.9540 0.9440

Oracle median -1.1879 0.8133 -1.6843 -1.5061 0.5000
n=1000 ‰std 0.2106 0.2444 0.1435 0.2684 0.2097

std 0.2405 0.2906 0.1506 0.2924 0.2234
CI 0.9400 0.9310 0.9400 0.9510 0.9640

Local median -1.1802 0.7920 -1.6926 -1.3853 0.4710
n=1000 ‰std 0.2369 0.2463 0.1419 0.2748 0.2196

std 0.2720 0.2755 0.1874 0.2931 0.2698
CI 0.9240 0.9430 0.9430 0.9210 0.9450

E�cient median -1.1936 0.8030 -1.6999 -1.4953 0.4966
n=1000 ‰std 0.3963 0.3656 0.1712 0.3716 0.2364

std 0.2561 0.2337 0.1724 0.3168 0.2165
CI 0.9590 0.9720 0.9400 0.9320 0.9520
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Table 2.2: The median and the sample standard errors (std) for various estimates,
and the inference results, respectively, the median of the estimated standard deviation
(‰std) and the coverage of the estimated 95% confidence interval (CI) of the oracle
estimator and the e�cient estimator, of B in simulated example 2.

B13 B14 B15 B16 B23 B24 B25 B26
True 1.2 0.8 -1.2 0.8 1.3 0.7 1.1 -0.7

Oracle median 1.1874 0.8112 -1.1817 0.8318 1.3251 0.7152 1.0779 -0.7113
n=500 „std 0.2085 0.2057 0.3807 0.3622 0.2215 0.2251 0.3949 0.3704

std 0.2703 0.2861 0.4262 0.4070 0.2873 0.2871 0.4411 0.4085
CI 0.9380 0.9260 0.9570 0.9610 0.9290 0.9230 0.9690 0.9580

Local median 1.1939 0.7960 -1.1061 0.8663 1.3070 0.6214 1.2427 -0.7372
n=500 „std 0.3259 0.3271 0.5747 0.5526 0.4377 0.4376 0.8213 0.7297

std 0.3440 0.3748 0.5479 0.5553 0.5138 0.4981 0.7111 0.6871
CI 0.9270 0.9210 0.9610 0.9700 0.9110 0.9670 0.9490 0.9390

E�cient median 1.2292 0.8759 -1.2214 0.8315 1.3566 0.7002 1.0998 -0.7723
n=500 „std 0.7113 0.6808 0.6997 0.7027 0.6757 0.5555 0.6938 0.6622

std 0.6104 0.4356 0.4836 0.4129 0.5529 0.5078 0.5195 0.4764
CI 0.9200 0.9700 0.9770 0.9930 0.9540 0.9260 0.9630 0.9690

Oracle median 1.1928 0.8154 -1.2070 0.8194 1.3053 0.7098 1.0877 -0.6931
n=1000 „std 0.1460 0.1423 0.2620 0.2458 0.1437 0.1447 0.2629 0.2435

std 0.1742 0.1710 0.2852 0.2700 0.1690 0.1647 0.2778 0.2591
CI 0.9610 0.9480 0.9560 0.9610 0.9420 0.9540 0.9540 0.9650

Local median 1.2028 0.7792 -1.0987 0.8109 1.3363 0.6012 1.3007 -0.7161
n=1000 „std 0.2224 0.1970 0.3610 0.3381 0.2816 0.2865 0.6493 0.5385

std 0.2551 0.2402 0.4031 0.3784 0.2226 0.3547 0.5111 0.4654
CI 0.9450 0.9440 0.9470 0.9550 0.9490 0.9670 0.9620 0.9550

E�cient median 1.2208 0.8606 -1.2053 0.8055 1.3637 0.7079 1.0827 -0.7109
n=1000 „std 0.4734 0.4541 0.3217 0.3032 0.4532 0.3743 0.4572 0.3026

std 0.4529 0.3142 0.3351 0.2927 0.4261 0.2521 0.3789 0.2716
CI 0.9230 0.9730 0.9380 0.9450 0.9310 0.9780 0.9570 0.9660

spectively. The results are summarized in Table 2.1 for setting (1) and Table 2.2

for setting (2). From Table 2.1 we observe that the performance of both ‚B1 and
‚B2 is close to that of the oracle estimator. All estimators have very small bias for

both sample sizes. The results in the table also provide the median of the estimated

standard errors using the results in Lemma 1 and Lemma 2 and the empirical cov-

erage probability of the 95% confidence intervals. These results indicate that the

asymptotic normal approximation is accurate for the sample sizes. We observe simi-

lar performance in Table 2.2. The standard errors of the ‚B1 and ‚B2 become smaller

as the sample size grows and the confidence interval coverage probabilities become

closer to the nominal level.
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A simulation study on estimating the average treatment

e�ect

We generate the potential outcomes as follows: Y ú(1) = |X1X5| + sin
1q6

j=1 X
j

2

and Y ú(0) = 0. We generate the treatment indicator following (3.1) while considering

the two di�erent functional forms for ÷(·) as specified in Section 4.1 .

We compare estimating the average treatment e�ect using formula (2.9) but dif-

ferent methods to estimate the propensity function: “True” (use the true form of the

propensity score function with known parameters), “Oracle” (use the true form of

the propensity score function but estimate the unknown parameters), “Logistic” (use

a logistic regression model to estimate the propensity score function), ·̂1 (proposed

semiparametric estimator with B being estimated by ‚B1), and ·̂2 (proposed semi-

parametric estimator with B being estimated by ‚B2). The boxplots of the estimated

average treatment e�ect (based on 1000 simulation runs) using these five methods

are displayed in Figure 2.1. We observe that the “Logistic” method based on a mis-

specified propensity score function has serious bias; while the performance of the

proposed semiparametric estimators are close to that of “True” and “Oracle”. Note

that while the “Oracle” estimator is the gold standard in terms of B and propensity

score estimation in Section 2.4, it is unclear that it should yield the best treatment

e�ect estimation here. Hence we included it as a “standard result” for completeness.

Additional Simulations

We further compare our semiparametric approach with Tan’s improved meth-

ods (Tan, 2006, 2010), targeted maximum likelihood estimation (TMLE) (van der

Laan Mark and Daniel, 2006) and the biased reduced double robust (BRdr) estima-

tor proposed by Vermeulen and Vansteelandt (2015). Because Tan’s method requires

implementing a regression model on treatment outcome Y ú(1), Y ú(0) separately, we
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Figure 2.1: Average treatment e�ect in example 1 (left) and example 2 (right). The
blue dash line is the true average treatment e�ect.

slightly modified Y ú(0) to follow N(0, 1) in order to implement the method. We

summarize the average treatment e�ect in Figure (2.2) and Figure (2.3).

We then consider the case where the true outcome model is indeed a linear model.

Specifically, we set Y = X1 + X2 + TX3 + X4 + 13.5X5 + X6 + ‘, ‘ ≥ Normal(0, 52)

when d = 1 and let Y = X1 + X2 + X3 + X4 + 3.5X5 + TX6 + ‘, ‘ ≥ Normal(0, 52)

when d = 2. We compare the average treatment e�ect estimates in Figure (2.4) and

Figure (2.5), respectively

Finally, we examine the e�cient and locally e�cient estimator on the data gener-

ated following Kang and Schafer (2007). Specifically, we generated (Z1, Z2, Z3, Z4)T

from Normal(0, I4) and then form x1 = exp(z1/2), x2 = z2/{1 + exp(z1)}, x3 =

(z1z3/25 + 0.6)3, x4 = (z2 + z4 + 20)2/400. The outcome model is generated as

y = 210 + 27.4z1 + 13.7z2 + 13.7z3 + 13.7z4 + ‘, where ‘ ≥ N(0, 1) and the true

propensity function is fi = expit(≠z1 + 0.5z2 ≠ 0.25z3 ≠ 0.1z4). We use the ob-
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Figure 2.2: Average treatment e�ect in example 1. The blue dashed line is the true
average treatment e�ect.
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Figure 2.3: Average treatment e�ect in example 2. The blue dash line is the true
average treatment e�ect.
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Figure 2.4: Average treatment e�ect in example 1, where the outcome is Y = X1 +
X2 + TX3 + X4 + 13.5X5 + X6 + ‘, ‘ ≥ Normal(0, 52). The blue dash line is the true
average treatment e�ect.

servable data (Y
i

, T
i

, X
i

) for i = 1, 2, · · · , n to estimate the propensity score ‚fi
i

for

i = 1, 2, · · · , n, then calculate the average treatment e�ect ‚· . The performance of

the average treatment e�ect can be found in Figure (2.6), where “True” refers to

the average treatment e�ect calculated from an inverse probability weighted method

where the true weight is used. Both the locally e�cient and e�cient estimators yield

reasonable results in comparison with other methods, regardless of whether d = 1 or

d = 2.

2.5 A real data example

We next apply the proposed semiparametric methods to analyze the average e�ect

of maternal smoking on babies’ birth weight. The Low Birth Weight data constitute

observations from mothers in Pennsylvania, USA and contain birth information on
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Figure 2.5: Average treatment e�ect in example 2, where the outcome is Y = X1 +
X2 + X3 + X4 + 3.5X5 + TX6 + ‘, ‘ ≥ Normal(0, 52). The blue dash line is the true
average treatment e�ect.

4642 infants (Cattaneo, 2010). This dataset was originally used by Almond et al.

(2005) and is now available at (http://www.stata-press.com/data/r13/cattaneo2.dta).

The outcome of interest Y is infant birth weight measured in grams. The binary vari-

able T denotes the mother’s smoking status (1 = smoking, 0 = nonsmoking). The

covariates include mother’s age, mother’s marital status, an indicator variable for

alcohol consumption during pregnancy, an indicator for whether there was a previ-

ous birth where the newborn died, mother’s education, father’s education, number of

prenatal care visits, mother’s race, indicator of first born baby and months since last

birth (monthslb).

Based on data from the 4642 infants, the naive average weight di�erence of the

two groups of babies belonging to smoking and non-smoking mothers yields ≠275.25

grams. Considering that this naive result is not necessarily a valid estimator of the
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Figure 2.6: Average treatment e�ect on Kang and Schafer data. Local 1 and E�cient
1 are for d = 1. Local 2 and E�cient 2 are for d = 2. The blue dash line is the true
average treatment e�ect.

causal result of smoking on birth weight, we next studied the proposed estimators.

Specifically, we compare three estimators of average treatment e�ect discussed in the

last section: “Logistic”, ·̂1 and ·̂2. The estimated propensity score functions are

summarized in Table 2.3. The estimated average treatment di�erence corresponding

to “Logistic” , ·̂1 and ·̂2 are ≠352.08, ≠295.77 and ≠306.32 grams, respectively. In

addition, we compare the average causal e�ect with Tan’s improved method, TMLE

and BRdr. The results indicate that maternal smoking has a negative impact on

babies’ birth weight. The estimate average treatment di�erences are summarized in

Table 2.4 along with the mean and standard deviation from 1000 bootstrap samples

for each method. The bootstrap average treatment e�ect from the seven approaches

can be found in Figure (2.7). Note that the estimator using propensity score estimated

by logistic regression is substantially di�erent from ·̂1 and ·̂2. This suggests logistic
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Table 2.3: Low Birth Weight data Example.

Naive Local E�cient

Est Std P-value Est Std P-value Est Std P-value

(Intercept) 0.9848 0.2631 0.0002

age 1.0021 0.3607 0.0055

mmarried -0.9480 0.1030 0.0000 -0.8020 0.2187 0.0002 -1.6922 0.3537 0.0000

alcohol 1.5886 0.1844 0.0000 1.5021 0.4156 0.0003 2.7014 0.4683 0.0000

deadkids 0.3893 0.0909 0.0000 0.4070 0.1232 0.0010 0.4980 0.1554 0.0014

medu -0.0964 0.0190 0.0000 -0.0675 0.0281 0.0164 -0.2066 0.0571 0.0003

fedu -0.0426 0.0118 0.0003 -0.0499 0.0182 0.0061 -0.1067 0.0369 0.0038

nprenatal -0.0299 0.0111 0.0071 -0.0346 0.0141 0.0143 -0.0513 0.0221 0.0204

monthslb 0.0062 0.0015 0.0000 0.0062 0.0019 0.0012 0.0097 0.0028 0.0007

mrace 0.6888 0.1184 0.0000 0.7607 0.2093 0.0003 1.1446 0.2421 0.0000

fbaby -0.2574 0.1059 0.0150 -0.2728 0.1181 0.0209 -0.3799 0.1881 0.0435

Table 2.4: Average treatment di�erence in the Low Birth Weight data. Bootstrap
mean (BS mean) and Bootstrap std (BS std). Bootstrap sample B = 1000.

Naive E�cient Local Logistic TMLE BRdr Tan
Estimate ≠275.25 ≠295.77 ≠306.32 ≠352.08 ≠219.96 ≠228.89 ≠230.57
BS mean ≠275.10 ≠292.85 ≠304.69 ≠352.11 ≠219.69 ≠229.33 ≠231.34
BS std 21.36 38.62 54.50 46.78 29.50 29.34 27.66

regression may not provide an adequate model for the propensity score function.

2.6 Conclusion and discussions

In this chapter, we propose a semiparametric approach to estimating the average

treatment e�ect. The approach is less prone to propensity score model misspecifica-

tion compared to the logistic regression based inverse probability weighted estimators,

which have dominant roles in causal inference. A parametric propensity score model

(e.g., logistic regression model) is certainly a lot more informative than a semipara-

metric model such as the dimension reduction model we propose, but it also bears a

greater risk of being misspecified. If the parametric propensity score model is mis-

specified, then the resulting estimation of the average treatment e�ect is inconsistent.

Furthermore, the semiparametric estimator does not rely on specification of the out-

come regression model, and hence is attractive when a reliable outcome regression

model is hard to obtain and/or compute, such as when studying treatment e�ects

on complex diseases. We note that if suitable outcome models are obtainable, then
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Figure 2.7: Bootstrap Average Treatment E�ect. The blue dash line is the mean of
the average treatment e�ect calculated from the e�cient estimation procedure.

further extending our method to a doubly robust estimator could bring an additional

e�ciency gain.

It is of interest to investigate whether a dimension reduction propensity score

model will always lead to more e�cient treatment e�ect estimation than a parametric

one, in the case that both models are correct. However, we find that is not true in

general. The relation can go either way, and it depends on the specific models. We

summarize the results in Lemma 3 in the supplementary materials.

Not able to find any definitive relation between the dimension reduction model

and a general parametric model, we further investigate the situation of nested models.

For the sake of comparing two models that are both correct, this certainly makes much

sense. To this end, the model will be the same as in (3.1), except that now ÷ is a

known function. Unfortunately, even for this case, as shown in the Appendix, there
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is no definitive relation we can claim. Thus, even when the parametric model is a

submodel of the dimension reduction model, there is no definitive relation between the

two estimators of the average treatment e�ect based on the two models. Our intuition

is that not only the model makes a di�erence, but also the specific estimator used

in the propensity score model has a role to play. The overall picture is unclear and

is potentially very complex; much work is needed to fully understand these relations

and can lead to interesting research results.

Finally, even though our initial intention is to overcome the potential issue of mis-

specification of both the propensity score model and the outcome regression model

through employing a more relaxed modeling strategy of the former and giving up

modeling of the latter, and subsequently proposing inverse property weighting, dou-

ble robust estimator can be used in combination with our method to further gain

e�ciency. As it is well known in the original form of the double robust estimator,

in combination with the semiparametric propensity score model, when the treatment

response is modeled correctly, the method will be more e�cient than our method. If

the treatment response is modeled incorrectly, depending on how “wrong” the model

is, the method could be less e�cient than our method. However, if the method of Tan

(2010) is adopted, in combination with the semiparametric propensity score model,

one can always obtain a more e�cient estimator than our method, regardless whether

the treatment response is modeled correctly or not. Thus, to achieve improved ef-

ficiency, one can strive to propose a “good” model for the treatment response, and

further perform additional computation to obtain the correlation adjustment required

in Tan (2010).
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Chapter 3

Estimation and Inference of Error-Prone

Covariate Effect in the Presence of

Confounding Variables

3.1 Introduction

Estimating and testing the e�ect of a covariate of interest while accommodating

many other covariates is an important problem in statistical practice. The t-test

and the analysis of variance are widely used to evaluate the covariate e�ect when the

covariate of interest is binary or categorical and no confounders are present. When the

covariate of interest is not necessarily binary or categorical, evaluating the covariate

e�ect has been studied extensively in the context of linear model, partially linear

model (Heckman (1986), Hardle et al. (2000), Ma et al. (2006)) and partially linear

single-index model (Carroll et al. (1997), Yu and Ruppert (2002), Li et al. (2011), Ma

and Zhu (2012)), as long as both the covariate of interest and the confounders are

measured precisely. In this work, we intend to generalize the partially linear single-

index model to a larger class where the link function is not restricted to be linear,

and we further consider measurement error issues.

When the covariate of interest is measured with error, to evaluate its e�ect pre-

cisely we must reduce the bias caused by measurement error and adjust for the con-

founding e�ects simultaneously. This is an interesting yet very challenging problem.

To partially address this problem, Carroll et al. (2006) assumed the confounding
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e�ects are linear, and Liang et al. (1999) and Ma and Carroll (2006) assumed the

confounders are in fact univariate. These assumptions restrict the usefulness of their

methods. To the best of our knowledge, how to assess the covariate e�ect subject to

measurement error while taking into account possibly nonlinear confounding e�ects

still remains an open and di�cult problem in the literature.

Estimating and testing the e�ect of a covariate of interest in the presence of

possibly nonlinear confounding e�ects has many applications in a variety of scientific

fields such as econometrics, biology, policy making, etc. Consider the Framingham

Heart Study (http://www.framinghamheartstudy.org/) as a typical example. It is

common knowledge that high systolic blood pressure (SBP) is directly linked to the

occurrence of coronary heart disease (Y ). To quantify the e�ect is however not

necessarily straightforward. One di�culty is that SBP can vary significantly from

time to time, hence a clinically meaningful covariate is the long term average of SBP

(ÊX), which is unfortunately impossible to measure precisely. A widely used practice is

to use the average of several measured SBP values (ÊW ) during a reasonably long time

course as a substitute. Thus, long term average SBP is a variable measured with error.

Another di�culty comes from the presence of possibly nonlinear confounding e�ects

(Z) for heart disease, such as smoking status, family history, ethnicity, BMI, lung

capacity, age and other laboratory variables. Because these e�ects are not of medical

interest while their connection to the heart disease occurrence might be complex,

a suitable modeling strategy is to use an unspecified function to summarize their

possibly nonlinear e�ect. Di�culty with such modeling strategy naturally arises when

the dimension of Z is more than one, since it is well known that nonparametrically

estimating a function of multivariate confounding variables su�ers from the curse of

dimensionality. To tackle this issue, we follow the single index modeling strategy and

assume that the combined e�ect of the covariates in Z is manifested through a linear

combination Â“TZ, where Â“ is a length p vector. For identifiability, we assume that Z
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contains at least one continuous variable, the first component of Â“ is one, and we use

“ to denote the vector of the last p≠1 components. Let H be the logistic distribution

function. In this Framingham data example, we assume that, given ÊX and Z, the

probability of the occurrence of the coronary heart disease (Y ) admits a model of the

form

pr(Y = 1 | ÊX, Z) = H{ÊX— + ◊(Â“TZ)},

log(ÊW ≠ 50) = log(ÊX ≠ 50) + U.

Here we adopt the general assumption that after the transformation from the raw

systolic blood pressure, the relation between W © log(ÊW ≠ 50) and X © log(ÊX ≠ 50)

is additive with a normal measurement error, i.e. U ≥ N(0, ‡2
u

), and we assume the

error is nondi�erential. This relation is verified by Carroll et al. (2006, chapter 6).

The above model can be viewed as a special case of the following general semi-

parametric measurement error model. To be specific, we write the general probability

density/mass function of the response variable Y , for example disease status, condi-

tional on the covariate set (X, ST, ZT)T as

g{y, x, s, ◊(Â“Tz), —}, (3.1)

where X is an error-prone covariate whose e�ect on Y is of central research interest,

Z, S contain additional covariates that may be related to Y and may be confounded

with X. We model part of these confounders (S) parametrically, such as the cat-

egorical variables, and part of these confounders (Z) nonparametrically through an

unspecified smooth function ◊. Both S and Z are measured precisely. In model

(3.1), g is a known conditional probability density/mass function, ◊ is an unspecified

smooth function, Â“ = (1, “T)T, where “ is an unknown length p ≠ 1 vector, and —

is an unknown parameter. In this notation, the example above can be written as

g{y, x, s, ◊(Â“Tz), —} = exp[y{Âx— + ◊(Â“z)}]/[1 + exp{Âx— + ◊(Â“z)}]. In our context, we

assume the covariate X is of our primary interest but is unobservable. Instead, we
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observe its erroneous version W , where the relation between W and X is specified,

i.e. f
W |X(w | x) is a known model. In practice, the specification of f

W |X(w | x)

is usually obtained through validation data, instruments or repeated measurements.

We treat ◊(·) as an infinite dimensional nuisance parameter. We further make the

surrogacy assumption that W and Y are independent given X, S, Z. The primary

interest is in —, which describes the e�ect of X on Y . In many applications, — enters

the model as multiplication coe�cient of a linear function of the covariates, such as

through —1X + —2S.

Model (3.1) is an extension of the generalized single index model proposed by

Cui et al. (2011) in which neither X nor S is present. In addition, Tsiatis and Ma

(2004) studied a simpler version of model (3.1) where Z does not appear, and Ma and

Carroll (2006) considered a simpler version of model (3.1) where Z is univariate. The

generalization to multivariate Z in model (3.1) is important in practice since it acco-

modates more realistic applications; see, for example, the Framingham Heart Study

in Section 3.5. In particular, model (3.1) allows us to handle the possible nonlinearity

of the confounding variables through the unspecified function ◊, while the single index

structure Â“Tz facilitates nonparametric modeling. Nevertherless, the extension also

poses several challenging technical and computational problems. Indeed, when the

index vector appears inside an unknown function, its estimation is more complex and

interaction between the estimation of the indices and the function has to be taken into

account. The variability in estimating these quantities further a�ects the estimation

quality of the parameter of interest. Overall, the three sets of parameters, namely

the parameter of interest, the index vector and the unknown smooth function link

together intrinsically, which complicates the estimation procedure, the computational

treatment and the theoretical development. Compared with the case when the index

vector does not appear, such additional complexity can be viewed as a price paid to

overcome the curse of dimensionality.

33



We design a general methodology for the semiparametric measurement error model

(3.1), and introduce a bias-correction approach to construct a class of locally e�cient

estimators. This bias-correction approach is motivated by the projected score idea

in semiparametrics (Tsiatis and Ma (2004)) and does not have to resort to a de-

convolution method or to correctly specify a distributional model for the error-prone

covariate of interest. We further generalize the bias-correction approach to estimating

Â“ in model (3.1), which is a component that does not appear in the models considered

in Tsiatis and Ma (2004) or Ma and Carroll (2006). In their studies, Z is either ab-

sent or univariate, hence the issue of estimating Â“ does not occur. In the presence of

multivariate Z, the conditional density of X given S and Z, denoted f
X|S,Z

(x, s, z), is

required in implementing the bias-correction approach. However, with a multivariate

Z, regardless whether S is discrete or continuous, estimating f
X|S,Z

(x, s, z) is a thorny

issue even if X were observed due to the curse of dimensionality. To alleviate the

di�culty in estimating f
X|S,Z

(x, s, z), a working model is adopted. If this working

model happens to be the underlying true one, the resultant estimator is semipara-

metrically e�cient, whereas if this working model is unfortunately misspecified, then

the resultant estimator is still root-n consistent and asymptotically normal. In other

words, the resultant estimator is locally e�cient. To put the bias-correction approach

into practice, we suggest a profiling algorithm for estimating —.

The article is organized as the following. In Section 3.2 we introduce the bias-

correction approach for estimating — in the semiparametric measurement error model

(3.1). The asymptotic properties of the resultant estimators are given in Section 3.3.

We report several simulation studies in Section 3.4 and revisit the Framingham data

in Section 3.5. This chapter is concluded with a brief discussion in Section 3.6. All

technical details are given in an Appendix.
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3.2 Estimation

In this section we discuss estimation of the covariate e�ect at the sample level.

Write the observation as (y
i

, w
i

, s
i

, z
i

), i = 1, . . . , n. We propose to estimate the e�ect

of the covariate of interest as well as other nuisance parameters through solving the

estimating equations derived from the semiparametric log-likelihood.

The surrogacy assumption and the model specification in Section 3.1 directly lead

to the semiparametric log-likelihood, subject to an additive term that does not involve

the parameters —, “, ◊,

l(—, “, ◊, f
X|S,Z

) =
nÿ

i=1
log

⁄
g{y

i

, x, s
i

, ◊(Â“Tz
i

), —}f
W |X(w

i

| x)f
X|S,Z

(x | s
i

, z
i

)dx.

Recall that “ is defined in Section 1 as a vector of the free parameters in Â“. Here

f
X|S,Z

and f
W |X represent the probability density function of X conditional on (S, Z)

and the probability density function of W conditional on X respectively. If both ◊

and f
X|S,Z

had been known, the simple maximum likelihood estimator (MLE) would

have provided a most natural estimator for — and “. Let

S
—

(w, s, z, y; —, “, ◊, f
X|S,Z

)

= ˆlog
s

g{y, x, s, ◊(Â“Tz), —}f
W |X(w | x)f

X|S,Z

(x | s, z)dx

ˆ—
,

S
“

(w, s, z, y; —, “, ◊, f
X|S,Z

)

= ˆlog
s

g{y, x, s, ◊(Â“Tz), —}f
W |X(w | x)f

X|S,Z

(x | s, z)dx

ˆ“

be the score functions with respect to — and “, then we could modify the MLE

through localization to handle the issue caused by the unknown functional form of ◊.

Specifically, let us adopt a local parametric model ◊(Â“Tz) = ‹(Â“Tz; –). For example,

the most widely used local polynomial model in Fan and Gijbels (1996) can be used

as ‹(Â“Tz; –). Here – depends on Â“Tz, but we suppress the dependence of – on

Â“Tz for notational clarity. Then we could estimate ◊ together with —, “, through
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iteratively solving

0 =
nÿ

i=1
S

—

{w
i

, s
i

, z
i

, y
i

; —, “, ‚◊(Â“Tz
i

), f
X|S,Z

(x
i

| s
i

, z
i

)}

0 =
nÿ

i=1
S

“

{w
i

, s
i

, z
i

, y
i

; —, “, ‚◊(Â“Tz
i

), f
X|S,Z

(x
i

| s
i

, z
i

)}

to obtain ‚—, ‚“, and

0 =
nÿ

i=1
K

h

(Â“Tz
i

≠ Â“Tz0)S–

(w
i

, s
i

, z
i

, y
i

; ‚—, ‚“, –, f
X|S,Z

)

at z0 to obtain ‚– and ‚◊(Â“Tz0) = ‹(Â“Tz0; ‚–) for z0 = z1, . . . , z
n

. Here, K
h

(Â“Tz ≠
Â“Tz0) = h≠1K{(zT“ ≠ zT

0 “)/h}, K is a kernel function and h is a bandwidth. In

the above display, S
–

is defined analogously as S
—

except that ◊(Â“Tz) is replaced by

‹(Â“Tz; –) and the derivative is with respect to –, i.e.

S
–

(w, s, z, y; —, “, –, f
X|S,Z

)

= ˆlog
s

g{y, x, s, ‹(Â“Tz; –), —}f
W |X(w | x)f

X|S,Z

(x | s, z)dx

ˆ–
.

The above idea would have worked if we knew how to actually calculate the

score functions. However, without an explicit form of f
X|S,Z

, the calculation of the

score vectors is not an easy task. A natural approach is to estimate f
X|S,Z

and

then use the estimated version to obtain the corresponding estimated score func-

tions. This is not entirely out of the question, especially when f
W |X(w, x) hap-

pens to describe an additive independent error model, i.e. when f
W |X(w, x) =

f
U

(w≠x). In this case, from the relation f
W |S,Z

(w, s, z) =
s

f
U

(w≠x)f
X|S,Z

(x, s, z)dx,

we can use the Fourier transform to obtain F
w

(t, s, z) = F
u

(t)F
x

(t, s, z), where

F
w

(t, s, z) =
s

f
W |S,Z

(w, s, z)e≠2fiitwdw, F
u

(t) =
s

f
U

(u)e≠2fiitudu and F
x

(t, s, z) =
s

f
X|S,Z

(x, s, z)e≠2fiitxdx. Thus, if we can estimate f
W |S,Z

(w, s, z) nonparametrically,

then we can obtain an estimated version of F
w

(t, s, z) and an estimated version of

F
x

(t, s, z) = F
w

(t, s, z)/F
u

(t). Performing an inverse Fourier transform on F
x

(t, s, z)

would then yield an estimate of f
X|S,Z

(x, s, z).
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The above analysis reveals some hidden obstacles in estimating f
X|S,Z

(x, s, z).

First of all, the deconvolution procedure is only applicable when the measurement er-

ror is additive and independent of X. When the measurement error model f
W |X(w, x)

goes beyond this structure, it is unclear how to recover f
X|S,Z

(x, s, z). Second, the

procedure requires estimating f
W |S,Z

(w, s, z) nonparametrically. However, when the

dimension of (s, z) is moderate or high, in other words, the confounding variables are

multivariate, this is again a problem su�ering from the curse of dimensionality and is

not practically feasible in finite samples. Finally, even when the dimension of (s, z) is

su�ciently low and the deconvolution procedure can be carried out in practice, the

resulting estimate of f
X|S,Z

(x, s, z) has very slow convergence rate (Carroll and Hall

(1998), Fan (1991)), hence using the estimated ‚f
X|S,Z

(x, s, z) may yield very di�er-

ent results from using the true f
X|S,Z

(x, s, z), which is required in the original score

function calculation.

Due to these inherent di�culties involved with estimating f
X|S,Z

(x, s, z), we decide

not to pursue this route. Instead, we take a somewhat counter-intuitive approach.

Instead of striving to obtain an approximation of f
X|S,Z

(x, s, z), we propose to simply

guess a model f ú
X|S,Z

(x, s, z), which may or may not reflect the true conditional density

function, and calculate the score functions S
—

, S
“

, S
–

under this guessed model. Of

course, this simple replacement of the true score functions with the guessed version is

not guaranteed to yield consistent estimation of —, “ and ◊. To correct the possible
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bias, we form

L
—

(w, s, z, y; —, “, ◊, fú
X|S,Z

)

= S
—

(w, s, z, y; —, “, ◊, f ú
X|S,Z

) ≠ Eú{a
—

(X, s, z; —, “, ◊) | w, s, z, y},

L
“

(w, s, z, y; —, “, ◊, fú
X|S,Z

)

= S
“

(w, s, z, y; —, “, ◊, f ú
X|S,Z

) ≠ Eú{a
“

(X, s, z; —, “, ◊) | w, s, z, y}, (3.2)

L
–

(w, s, z, y; —, “, –, fú
X|S,Z

)

= S
–

(w, s, z, y; —, “, –, fú
X|S,Z

) ≠ Eú{a
–

(X, s, z; —, “, –) | w, s, z, y},

where a
—

, a
“

, a
–

are functions of (X, ST, ZT)T that satisfy

E{S
—

(W, s, z, Y ; —, “, ◊, f ú
X|S,Z

) | x, s, z}

= E[Eú{a
—

(X, s, z; —, “, ◊)|W, s, z, Y } | x, s, z],

E{S
“

(W, s, z, Y ; —, “, ◊, f ú
X|S,Z

) | x, s, z} (3.3)

= E[Eú{a
“

(X, s, z; —, “, ◊)|W, s, z, Y } | x, s, z],

E{S
–

(W, s, z, Y ; —, “, –, fú
X|S,Z

) | x, s, z}

= E[Eú{a
–

(X, s, z; —, “, –)|W, s, z, Y } | x, s, z],

and Eú represents expectation calculated using f ú
X|S,Z

(x, s, z). E(a
—

| w, s, z, y),

E(a
“

| w, s, z, y) and E(a
–

| w, s, z, y) are respectively the projections of the score

vectors S
—

, S
“

and S
–

onto the tangent space � described in Appendix B.1, and has

an no explicit form except in some special cases. We give one such special example

at the end of this section. It is easy to see that the definition of a
—

, a
“

, a
–

in (3.3)

guarantees the consistency of L
—

,L
“

, and L
–

automatically, whether or not f ú
X|S,Z

reflects the truth. We then use L
—

, L
“

and L
–

to replace S
—

, S
“

, S
–

in the iterative

procedure described above to estimate —, “ and ◊. That is, we solve

0 =
nÿ

i=1
L

—

(w
i

, s
i

, z
i

, y
i

; —, “, ◊, f ú
X|S,Z

),

0 =
nÿ

i=1
L

“

(w
i

, s
i

, z
i

, y
i

; —, “, ◊, f ú
X|S,Z

) (3.4)
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to estimate —, “ and solve

0 =
nÿ

i=1
K

h

(Â“Tz
i

≠ Â“Tz0)L–

(w
i

, s
i

, z
i

, y
i

; —, “, –, fú
X|S,Z

) (3.5)

at z0 = z1, . . . , z
n

to obtain ‚◊(Â“Tz0) = ‹(Â“Tz0; ‚–). Because di�erent z0 yields dif-

ferent –, hence we could have used a more precise notation –(z0) in (3.5). We

suppressed the dependence of – on z0 for notational brevity. The estimation proce-

dure can be either iteratively solving (3.4) and (3.5) (backfitting), or using (3.5) to

obtain ‚◊ as a function of —, “, and then using (3.4) to solve for ‚—, ‚“ (profiling). In

the following, we carry out all the procedures using the profiling approach.

The bias correction through forming L
—

etc. is rooted in the projected score idea

in semiparametrics (Bickel et al. (1993), Tsiatis and Ma (2004), Tsiatis (2006)). Given

any function, say S
—

, we can calculate its residual after projecting it onto the nuisance

tangent space associated with the model. The projection of (ST
—

, ST
“

, ST
–

)T indeed

would have been (LT
—

, LT
“

, LT
–

)T, if we had used f
X|S,Z

throughout all the calculations.

We defer the detail of this calculation in Appendix B.1. However, due to the lack of

knowledge on f
X|S,Z

, we are forced to perform all the calculations using a proposed

f ú
X|S,Z

. The fortunate fact is that even using the possibly misspecified conditional

density, (LT
—

, LT
“

, LT
–

)T still has mean zero because this property is enforced by its very

construction reflected on the definitions of a
—

, a
“

, a
–

in (3.3). It is worth mentioning

that if f
X|S,Z

happens to be the truth, then S
—

, S
“

, S
–

are indeed the score functions.

Thus, as the orthogonal projection of the score functions, L
—

,L
“

and L
–

are the

e�cient score functions. Hence the resulting estimator is not only consistent, but

also e�cient.

To further illustrate the estimator, we now investigate the partially linear single

index model with normal measurement error. We will show that in this special case,

many quantities simplify and a set of explicit estimating equations can be obtained.

Consider an alternative form of Model (3.1) in this case, where Y = XT— +

◊(Â“TZ) + ‘, ‘ follows a normal distribution with mean zero, known constant variance
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‡2 and is independent of X. We adopt an additive normal measurement error W =

X + U, where U follows a normal distribution with mean zero and known constant

covariance matrix � and is independent of X. For estimating ◊(·), we adopt the

familiar local linear form ◊(Â“Tz) = –0 + –1 Â“Tz.

Define � = W + Y �—/‡2. Following Stefanski and Carroll (1987), the forms of

L
—

is

L
—

(w, z, y; —, “, ◊, f ú
X|Z) =

I

y ≠ ”T— + ◊(Â“Tz)
1 + —T�—/‡2

J

Eú(X|”),

where Eú is computed under the model f ú
X|Z(x, z). Using similar derivation, we can

further obtain

L
“

(w, z, y; —, “, ◊, f ú
X|Z) =

I

y ≠ ”T— + ◊(Â“Tz)
1 + —T�—/‡2

J

–1z≠1,

L
–

(w, z, y; —, “, ◊, f ú
X|Z) =

I

y ≠ ”T— + ◊(Â“Tz)
1 + —T�—/‡2

J

(1, Â“Tz)T.

Then the estimation can be carried out through jointly solving

0 =
nÿ

i=1

I

y
i

≠ ”T
i

— + ◊(Â“Tz
i

)
1 + —T�—/‡2

J

Eú(X
i

|”
i

),

0 =
nÿ

i=1

I

y
i

≠ ”T
i

— + ◊(Â“Tz
i

)
1 + —T�—/‡2

J

◊Õ(Â“Tz
i

)z≠1,i

to estimate —, “ and

0 =
nÿ

i=1
K

h

(Â“Tz
i

≠ Â“Tz0)
A

y
i

≠ ”T
i

— + –0 + –1 Â“Tz
i

1 + —T�—/‡2

B

(1, Â“Tz
i

)T

at z0 = z1, . . . , z
n

to estimate ‚◊(Â“Tz0) = ‚–0 + ‚–1 Â“Tz0.

Similar calculations can also be made regarding the Poisson model

Y ≥ Poisson[exp{XT— + ◊(Â“TZ)}].

In this case, L
—

takes the form

L
—

(w, z, y; —, “, ◊, fú
X|Z) = a(w, z, y; —, “, ◊)Eú(X|”),
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where

a(w, z, y; —, “, ◊) = y ≠
qŒ

y=0 y exp[{”T— + ◊(Â“Tz)}y ≠ y2—T�—/2 ≠ log(y!)]
qŒ

y=0 exp[{”T— + ◊(Â“Tz)}y ≠ y2—T�—/2 ≠ log(y!)]
,

Eú is computed under the model f ú
X|Z(x, z). Using similar derivation, we can further

obtain

L
“

(w, z, y; —, “, ◊, fú
X|Z) = a(w, z, y; —, “, ◊)–1z≠1,

L
–

(w, z, y; —, “, ◊, fú
X|Z) = a(w, z, y; —, “, ◊)(1, Â“Tz)T.

Then the estimation can be carried out through jointly solving

0 =
nÿ

i=1
a(w

i

, z
i

, y
i

; —, “, ◊)Eú(X
i

|”
i

), (3.6)

0 =
nÿ

i=1
a(w

i

, z
i

, y
i

; —, “, ◊)◊Õ(Â“Tz
i

)z≠1,i

to estimate —, “ and

0 =
nÿ

i=1
a(w

i

, z
i

, y
i

; —, “, ◊)(1, Â“Tz
i

)T

at z0 = z1, . . . , z
n

to estimate ‚◊(Â“Tz0) = ‚–0 + ‚–1 Â“Tz0.

3.3 Asymptotic properties and inference

In this section we show that the estimated covariate e�ect is asymptotically normal

in Theorem 2 and locally e�cient in Theorem 3. A by-product of the asymptotic

normality property is that it facilitates testing if the estimated covariate e�ect is

statistically significant.

Viewing ◊(·) as a one dimensional parameter, we have L
–

= L
◊

◊
–

, where L
◊

is

obtained the same way as L
–

by replacing – with ◊, and ◊
–

is the partial derivative

of ◊(·, –) with respect to –. Let ◊
––

= ˆ◊
–

/ˆ–T. Let L
——

, L
—“

, L
—–

and L
—◊

be

the partial derivative of L
—

with respect to —, “, – and ◊ respectively. Similarly

define L
“—

, L
““

, L
“–

, L
“◊

, L
–—

, L
–“

, L
––

and L
–◊

. Let �(Â“TZ) = E(L
◊◊

| Â“TZ),
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U(Â“TZ) = E{(LT
—◊

LT
“◊

)T | Â“TZ}�(Â“TZ)≠1, and ◊
—

(Â“TZ) = ≠�(Â“TZ)≠1E(L
◊—

|
Â“TZ), ◊

“

(Â“TZ) = ≠�(Â“TZ)≠1E(L
◊“

| Â“TZ). Define

A = E

Q

cca

S

WWU
L

——

{Y, W, S, Z; —, “, ◊(·)} L
—“

{Y, W, S, Z; —, “, ◊(·)}
L

“—

{Y, W, S, Z; —, “, ◊(·)} L
““

{Y, W, S, Z; —, “, ◊(·)}

T

XXV

R

ddb

+E

Q

cca

S

WWU
L

—◊

{Y, W, S, Z; —, “, ◊(·)}
L

“◊

{Y, W, S, Z; —, “, ◊(·)}

T

XXV {◊
—

(Â“TZ) ◊
“

(Â“TZ)}

R

ddb . (3.7)

Theorem 2. Under the regularity conditions listed in Appendix B.4, we have the

expansion

≠An1/2

Q

cca

‚— ≠ —

‚“ ≠ “

R

ddb

= n≠1/2
nÿ

i=1

Q

cca

S

WWU
L

—

{Y
i

, W
i

, S

i

, Z

i

; —, “, ◊(·)}
L

“

{Y
i

, W
i

, S

i

, Z

i

; —, “, ◊(·)}

T

XXV

≠U(Â“T
Z

i

)L
◊

{Y
i

, W
i

, S

i

, Z

i

; —, “, ◊(·)}
2

+ o
p

(1).

Consequently, when n æ Œ,

n1/2(‚— ≠ —) æ N{0, (I
—

0)A≠1
B(AT)≠1(I

—

0)T}

in distribution. Here, I

—

is the identity matrix with dimension being the length of —,

and

B = cov

Q

cca

S

WWU
L

—

{Y, W, S, Z; —, “, ◊(·)}
L

“

{Y, W, S, Z; —, “, ◊(·)}

T

XXV ≠ U(Â“T
Z)L

◊

{Y, W, S, Z; —, “, ◊(·)}

R

ddb (3.8)

Theorem 3. If the conjectured model f ú
X|S,Z

(x | s, z) is correct, the subsequent esti-

mator ‚— has the additional property that it is semiparametric e�cient.

The proofs of Theorems 2 and 3 are given in the Appendix B.3 and B.4.

In practice, the matrices A and B can be estimated through their sample versions,

while �, U, ◊
—

and ◊
“

need to be estimated via their corresponding nonparametric

regression.
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Knowing the asymptotic properties of ‚— allows us to perform various tests. Specif-

ically, we can test the covariate e�ect described as H0 : M— = c, where M and c are

the corresponding matrices or vectors used to describe the particular test of interest.

As an example, we have the following Chi-square test result.

Theorem 4. Under H0, the test statistic

T = n(M‚— ≠ c)T{M(I
—

0)„
A

≠1 ‚
B(„

A

≠1)T(I
—

0)T
M

T}≠1(M‚— ≠ c)

follows a chi-square distribution with degrees of freedom d
M

, where d
M

is the number

of rows in M.

We provide the proof of Theorem 4 in Appendix B.5.

3.4 Simulation

We perform four simulation studies to examine the finite sample performance of

the proposed method.

In the first set of simulation studies, the response variable Y is binary with Y = 0

or 1, with the true g function of the form

g{y, x, ◊(Â“Tz), —} = exp[y{—1x + —2x2 + ◊(Â“Tz)}]
1 + exp{—1x + —2x2 + ◊(Â“Tz)} .

Thus, the parameter of interest — = (—1, —2)T consists of two components. The

function ◊(Â“Tz) = cos(Â“Tz)/2 ≠ 1.

Our first simulation is a relatively simple one, where the covariate vector Z has

dimension p = 2. This yields a total of three parameters in addition to the univariate

nonparametric function ◊ and the unknown distribution of X. In simulations 2 and

3, we increase the dimension of the covariate vector Z to three and four respectively,

which yield four and five parameters in addition to the two unknown functions. In

all the simulations, the covariate X and the measurement errors are generated from
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normal distributions, and the covariate vector Z is generated from uniform distribu-

tions.

To compare the performance of various estimators, we implemented a naive esti-

mator, two versions of the regression calibration estimators and two versions of the

semiparametric estimators. In the naive estimator, the presence of measurement er-

ror is simply ignored and a profile likelihood estimation procedure is implemented to

estimate the parameter —. In the regression calibration procedures, we first calculate

Xú = E(X | W ) and Xú2 = E(X2 | W ) then treat Xú and Xú2 as X and X2, and

perform the profile likelihood estimation under the error-free model. In calculating

E(X | W ) and E(X2 | W ), we experimented with two situations, where we used two

di�erent working distributions of X, respectively normal and uniform. This corre-

sponds to the true and misspecified distributional assumption on X. Finally, we also

implemented the proposed semiparametric estimator, with the same working distri-

butions of X. The estimation and inference results of all five estimators are given

in Tables 3.1-3.3 respectively, corresponding to the three simulation studies. All the

results are based on 1,000 simulated data sets with sample size 500. To see how the

estimation procedure behaves with increasing dimension of Z, we also experimented

with p > 4. In our observation, with all other aspects of the simulation fixed, the

procedure performs well until p = 10, when we started to see significant biases.

Throughout the numerical analysis, we used the bandwidth h = 3sd(w)n≠1/3, where

sd(w) is the sample standard deviation of w. We also experimented with the band-

width h = 1.5sd(w)n≠1/3 and h = 4.5sd(w)n≠1/3, the results appear insensitive to the

bandwidth changes so are omitted.

The common observation across all simulations is that the naive estimator and

the two regression calibration estimators tend to produce larger biases while the

semiparametric estimators, whether performed under the true or misspecified working

model of the distribution of X, have much smaller biases. The relatively large biases
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of the naive and regression calibration estimators directly lead to invalid inference

results, reflected in the terrible empirical coverage of the 95% confidence intervals.

On the contrary, the semiparametric estimators not only yield very small biases,

it also provides a close match between the sample standard deviations and their

corresponding asymptotic versions. This leads to reasonable approximation of the

empirical coverage of the 95% confidence intervals to the nominal level. It is worth

pointing out that although we implemented an e�cient estimator through adopting

the working model for X as normal, and a non-e�cient estimator through using

uniform as the working model for X, the estimation variability of the two estimators

are very close. In other words, the method appears to have certain robustness to

the working model, in that in addition to retaining consistency as our theory has

promised, it also seems to remain e�cient regardless of the working model. The latter

property is not within our expectation and whether this is a universal phenomenon

with theoretical explanation deserves further investigation.

To further illustrate the generality of the results derived in this chapter, we per-

form a fourth set of simulation studies concerning a Poisson model. We generate

the counting response variable Y with mean exp{—x + ◊(Â“Tz)} and generate X from

N(0, 1.12). We set — = 1.1, ◊(Â“Tz) = ≠0.4 cos(2.75Â“Tz ≠ 1.0) and allow substantial

meansurement error ‡
u

= 0.8. Following (3.6), we directly posit Eú(X | ”) = ”2 and

Eú(X | ”) = ” sin(”) for E(X | ”). We experimented with various dimension of z

from 2 to 11 where z contain both continuous and discrete. Simulations results are

summarized in Table 3.4. The consistency of our estimator, regardless if the posited

models are correct or not, as well as the superioty of our method in contrast with the

comparison methods are clear from these results.
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3.5 Framingham heart study

We use our new methodology to analyse data from the Framingham Heart Study

described in Section 1. The data set contains 1,126 male subjects. We use the

occurrence of coronary heart disease as the response variable (Y ), and systolic blood

pressure, after subtracting 50 and taking logarithm transformation, as the covariate

measured with error (W ), see Carroll et al. (2006) who used this transformation,

so that W = X + U , where X is the transformed true systolic blood pressure. We

included age, the logarithm of 1 + the number of cigarettes smoked per day as

reported by the subject and metropolitan relative weight as confounders Z, with age

chosen to be the leading component in Z. Metropolitan relative weight is defined

as the percentage of desirable weight (the ratio of actual weight to desirable weight

times 100). Desirable weight was derived from the 1959 Metropolitan Life Insurance

Company tables (Company (1959)) by taking the midpoint of the weight range for

the medium build at a specified height, see also Hubert et al. (1983).

We fit the model with systolic blood pressure in its original scale. With H(·)
being the logistic distribution function, the final model is

pr(Y = 1 | X, Z) = H
Ë
{exp(X) + 50} — + ◊(Â“TZ)

È
,

W = X + U.

Using the available repeated measurements of W , we obtained the measurement error

standard deviation to be 0.0745, and the Kolmogorov-Smirnov test for the normality

of U yields a p-value of 0.701. We also include the qq-plot of the errors in Figure

3.1, which exhibits a linear pattern. Thus, we assume U has the centered normal

distribution with standard deviation 0.0745.

The semiparametric analysis of the Framingham data, as well as the results from

naive estimator and regression calibration estimators are given in Table 3.5. Not

unexpectedly given the context, all results confirm the significance of the systolic
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blood pressure as a risk factor for heart disease. In addition, the two estimates from

the two semiparametric methods, conducted under a normal and a uniform working

model for the distribution of X respectively, are very close. The naive estimator is

attenuated towards zero by approximately 25%. Neither the e�ects from number of

cigarettes smoked nor metropolitan weight is statistically significant. We also plot

the estimated ◊(‚“Tz) as a function of ‚“Tz, as well as the 95% pointwise confidence

bands in Figure 3.2 from both semiparametric methods, and we can see a general

trend of increasing risk with increasing age.

3.6 Discussion

We have developed both estimation and inference tools to analyse covariate e�ect

when the covariate under study is measured with error and also subject to confounding

e�ects. The method is completely general, reflected in the generality of the main

regression model. Specifically, we allow arbitrary regression relation between the

response variable and the covariate under study, and we do not require a specific

parametric model strategy for the confounding e�ects. Our procedure does not require

any model assumption on the unobservable covariate of interest, and the framework

can allow arbitrary measurement error structure. Under the special situation, when

the regression model has a generalized partially linear form, and the measurement

error is normal additive, great simplification occurs (Ma and Tsiatis (2006)) and the

estimation procedure degenerates to a backfitted or profiled version of the estimator

given in Stefanski and Carroll (1987).

We would like to point out that to solve the estimating equations, one could choose

to use backfitting or profiling procedures. In our construction of the estimator, these

are only two ways of solving the estimating equations jointly. Upon convergence, the

solutions from backfitting and profiling are identical. They are both roots of the esti-

mating equations. This is very di�erent from using backfitting versus profiling before
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estimating equations are derived, where using profiling or backfitting could result in

di�erent sets of estimating equations and hence both the theoretical and empirical

performance can be di�erent. The latter issue is well studied in Van Keilegom and

Carroll (2007). Likewise, the nonparametric estimation of ◊(·) can also be carried out

via splines, wavelets, etc., and research along these lines are certainly needed.
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Table 3.1: Results of Simulation 1 with p = 2. The true parameter values, the
estimates (‚µ), the sample standard errors (“sd”), the mean of the estimated stan-
dard errors („sd) and the 95% confidence interval of five di�erent estimators are re-
ported. The five estimators are the naive estimator (“Naive”), the regression calibra-
tion estimators with two working distributions of X (“RC-nor” and “RC-Uni”) and
the semiparametric estimators with two working distributions of X (“Semi-nor” and
“Semi-Uni”).

Naive RC-nor RC-Uni Semi-nor Semi-Uni

—1 —2 —1 —2 —1 —2 —1 —2 —1 —2
true 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000

mean 0.5180 0.5665 0.6745 0.6725 1.0637 0.8451 0.7055 0.7122 0.7201 0.7190

sd 0.1803 0.0923 0.2115 0.1098 0.2704 0.1337 0.2546 0.1377 0.2429 0.1328

‚
sd 0.1747 0.0888 0.2048 0.1054 0.2615 0.1285 0.2505 0.1346 0.2380 0.1301

95%CI 79.5% 62.2% 93.4% 93.3% 71.2% 79.8% 94.7% 94.4% 94.5% 95.3%

Table 3.2: Results of Simulation 2 with p = 3. The true parameter values, the
estimates (‚µ), the sample standard errors (“sd”), the mean of the estimated standard
errors („sd) and the 95% confidence interval of five di�erent estimators are reported.

Naive RC-nor RC-Uni Semi-nor Semi-Uni

—1 —2 —1 —2 —1 —2 —1 —2 —1 —2
true 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000

mean 0.5075 0.5637 0.6623 0.6694 1.0489 0.8406 0.6915 0.7084 0.7050 0.7151

sd 0.1768 0.0902 0.2072 0.1074 0.2692 0.1317 0.2430 0.1323 0.2328 0.1275

‚
sd 0.1736 0.0882 0.2035 0.1048 0.2613 0.1285 0.2540 0.1370 0.2414 0.1344

95%CI 78.7% 62.8% 94.3% 93.4% 72.4% 81.1% 95.8% 95.6% 96.0% 96.0%

Table 3.3: Results of Simulation 3 with p = 4. The true parameter values, the
estimates (‚µ), the sample standard errors (“sd”), the mean of the estimated standard
errors („sd) and the 95% confidence interval of five di�erent estimators are reported.

Naive RC-nor RC-Uni Semi-nor Semi-Uni

—1 —2 —1 —2 —1 —2 —1 —2 —1 —2
true 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000

mean 0.5029 0.5606 0.6561 0.6658 1.0440 0.8377 0.6856 0.7043 0.6999 0.7111

sd 0.1828 0.0944 0.2150 0.1123 0.2748 0.1361 0.2572 0.1417 0.2481 0.1378

‚
sd 0.1735 0.0885 0.2033 0.1052 0.2615 0.1283 0.2619 0.1390 0.2459 0.1352

95%CI 77.4% 60.9% 92.4% 91.5% 73.6% 80.6% 94.6% 94.0% 94.9% 94.7%
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Figure 3.1: QQ-plot of the measurement errors in Framingham data analysis.
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Figure 3.2: The estimated ◊(‚“Tz) as a function of (‚“Tz) in Framingham data analysis.
Vertical axis stands for ◊(‚“Tz) and horizontal axis stands for (‚“Tz). In the left panels,
‚“ is obtained with a normal working model on X and in the right panels ‚“ is obtained
with uniform working model on X. The plots in the lower panels contain the 95%
confidence bands.
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Table 3.4: Results of simulation 4 with p = 2 to 11. The true parameter is — = 1.1.
The the estimates(“est”), the sample standard errors (“sd”), the mean of the esti-
mated standard errors („sd) and the 95% confidence interval of six di�erent estimators
are reported. The six estimators are the naive estimator (“Naive”), the regression
calibration estimators with two working distributions of X (“RC-Nor” and “RC-Uni”)
, the oracle estimator (“Oracle”), and the local estimators with two posited forms of
E(X | ”) (“Local 1” and “Local 2”).

Naive RC-Nor RC-Uni Oracle Local 1 Local 2
p = 2 est 0.7726 1.1147 1.1982 1.1128 1.0924 1.1074

sd 0.1627 0.1900 0.2255 0.1161 0.1102 0.1063
‚sd 0.0782 0.1204 0.1493 0.1660 0.1739 0.1820
CI 0.2200 0.7620 0.7160 0.9560 0.9400 0.9380

p = 3 est 0.8092 1.1622 1.2482 1.1042 1.1090 1.1019
sd 0.1201 0.1110 0.1506 0.1599 0.1382 0.0929
‚sd 0.0848 0.1225 0.1579 0.1702 0.1683 0.1320
CI 0.3080 0.9280 0.8160 0.9520 0.9560 0.9580

p = 4 est 0.8192 1.1847 1.2730 1.1046 1.1062 1.0907
sd 0.1098 0.1149 0.1420 0.1275 0.0877 0.1138
‚sd 0.0785 0.1122 0.1341 0.1550 0.1397 0.1296
CI 0.2620 0.8920 0.7400 0.9740 0.9740 0.9400

p = 5 est 0.7294 1.1492 1.2206 1.1032 1.1021 1.1042
sd 0.1409 0.1703 0.2023 0.1585 0.0755 0.0978
‚sd 0.0822 0.1421 0.1598 0.1898 0.1432 0.1587
CI 0.1760 0.8460 0.7780 0.9580 0.9600 0.9640

p = 6 est 0.8267 1.1703 1.2609 1.1221 1.0801 1.1021
sd 0.1253 0.1248 0.1579 0.1863 0.1422 0.0975
‚sd 0.0813 0.1272 0.1527 0.1682 0.1682 0.1993
CI 0.3140 0.8760 0.7680 0.9620 0.9120 0.9640

p = 7 est 0.8076 1.1592 1.2426 1.1280 1.0983 1.0999
sd 0.1332 0.1496 0.1821 0.2176 0.1263 0.0892
‚sd 0.0826 0.1258 0.1478 0.1945 0.1962 0.2280
CI 0.2900 0.8340 0.7660 0.9540 0.9360 0.9780

p = 8 est 0.8098 1.1658 1.2534 1.1256 1.0982 1.0989
sd 0.1218 0.1362 0.1742 0.2059 0.1394 0.0886
‚sd 0.0891 0.1292 0.1453 0.1776 0.1934 0.1906
CI 0.2920 0.8400 0.7440 0.9560 0.9420 0.9780

p = 9 est 0.8079 1.1527 1.2310 1.1329 1.0935 1.1023
sd 0.1385 0.1491 0.1804 0.2305 0.1514 0.0729
‚sd 0.0854 0.1246 0.1464 0.1960 0.1913 0.2243
CI 0.3120 0.8260 0.7740 0.9580 0.9220 0.9800

p = 10 est 0.8009 1.1568 1.2425 1.1224 1.1044 1.0988
sd 0.1291 0.1506 0.1777 0.1880 0.1542 0.0812
‚sd 0.0845 0.1262 0.1478 0.1980 0.2065 0.2181
CI 0.2860 0.8560 0.7800 0.9620 0.9420 0.9820

p = 11 est 0.7958 1.1460 1.2314 1.1213 1.0915 1.1019
sd 0.1355 0.1501 0.1779 0.2106 0.1364 0.0919
‚sd 0.0859 0.1306 0.1455 0.2101 0.1975 0.2476
CI 0.2900 0.8680 0.7740 0.9580 0.9160 0.9820
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Table 3.5: Results of Framingham data analysis. The estimates (‚µ) and the associ-
ated standard errors of five di�erent estimators are reported. All values are multiplied
by 100. In the table, ‚—1 is the regression coe�cient for systolic blood pressure, ‚“1
is the coe�cient for transformed number of cigarettes smoked per day and ‚“2 is the
coe�cient for metropolitan weight.

‚—1 sd( ‚—1) ‚“1 sd(‚“1) ‚“2 sd(‚“2)
Naive 3.58 0.49 0.09 6.00 0.31 4.79
RC-Nor 4.22 0.60 0.11 5.99 0.25 4.77
RC-Uni 3.73 0.58 0.29 5.81 0.73 4.85
Semi-Nor 4.39 0.77 0.10 3.90 0.24 2.17
Semi-Uni 4.61 0.80 0.10 4.62 0.25 2.12
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Chapter 4

Locally Efficient Semiparametric Estimator

for Poisson Models with Measurement Error

4.1 Introduction

In regression analysis, it is common that some covariates cannot be measured pre-

cisely or directly, thus resulting in the measurement error models. The presence of

measurement errors causes biased and inconsistent parameter estimates which leads

to erroneous conclusions to various degrees in statistical inferences. As naive methods

ignoring measurement errors results in biased estimation or misleading inferences, a

large amount of papers and several books have been dedicated to correct such bias.

The study on linear measurement error model dates back to Bickel and Ritov (1987)

and a comprehensive study on linear models can be found in Fuller (1987). Car-

roll et al. (1995) extended the measurement error model framework to non-linear

cases. Many further research works were devoted to various general measurement

error models. For example, Tsiatis and Ma (2004) provided a class of locally e�-

cient estimators for arbitrary parametric regression measurement error models. Ma

and Tsiatis (2006) provided a closed form solution for generalized linear models and

used it to handle heteroscedastic measurement errors. Ma and Carroll (2006) further

extended the work to generalized regression model which contains a nonparametric

component. Apanasovich et al. (2009) derived the limiting distribution of SIMEX

in semiparametric problems, when the variable X subject to measurement error is

modeled parametrically, nonparametrically or a combination of both. Stefanski et al.
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(2013) proposed a measurement error model based approach to variable selection with

application in nonparametric classification which results in a new kernel-based classi-

fier with LASSO-like shrinkage and variable-selection properties. Zhang et al. (2014)

investigated the sample property in e�cient variable selection problems and devel-

oped a semiparametric profile least-square based estimation procedure to estimate

the parameters in partial linear single index models. Measurement error problems

have attracted researchers from other scientific research fields as well. For example,

Hsiao (1989), Horowitz and Markatou (1996), Dynan (1996) and Parker and Preston

(2005) discussed methods in measurement error problems that take advantages of

longitudinal data and time series structures. Chesher (1991), Chesher et al. (2002)

and Chesher and Schluter (2002) proposed a small noise approximation to assess the

e�ect of measurement errors. Hu and Schennach (2010) introduced a semiparametric

sieve estimator for nonclassical measurement error models. See Chen et al. (2007) for

a review on recent advances in measurement error models for applied researchers.

Count data analysis has attracted considerable research interest and a large num-

ber of inference methods have been proposed in the literature. One popular approach

is to utilize a Poisson regression model. However, when some of the covariates cannot

be measured directly or correctly, ignoring the measurement error in estimation will

su�er severe bias like in the familiar linear regression models. Huang (2014) pro-

posed a trend-constrained corrected score approach for loglinear model for Poisson

mean which requires the compactness of the parameter space. Such an approach re-

quires almost surely negative definitive in the first derivative of the local trend of the

corrected score as well as almost surely negative derivative in the corrected profile

score. As far as we know, very limited work exists to handle Poisson model where

some covariates are measured with errors. Even though Stefanski and Carroll (1987)

discussed count response models in their applications without actual implementation.

Liu et al. (2017) implemented a special case for the Poisson model with covariate er-
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rors where simplifications occur to generate closed form estimating equations. The

general di�culties lie in both the theoretical challenge and computational complexity

involved with count response data. Following the notation of Carroll et al. (1995),

let us write Z as the predictor variables that can be measured precisely and write

X as those that cannot. Instead of X, we observe its erroneous version W , where

the relations between W and X is specified, i.e. f
W |X(w | x) is a known model. For

example, W = X +U , where U is a random measurement error. Let Y be the observ-

able count response variable. In this chapter, we develop methodology to correct the

bias caused by covariate measurement error in handling the count response variable

Y .

The rest of the chapter is organized as follow. In Section 4.2, we investigate five

interrelated Poisson models and present our local semiparametric e�cient estimation

approach for each model. In Section 4.3, we report numerical experimentation results

for each model discuss in Section 4.2. Real data application can be found in Section

4.4. We conclude with a brief discussion in Section 4.5.

4.2 Models and Methods

In this section, we study five related Poisson models where the main covariate of

interest is measured with error. We start with the simplest case, and then progress

to more general and complex cases.

Linear Poisson Model

We first consider a linear Poisson model with a normal additive measurement

error, where the variance of the error term is �. The relationship between the response

variable Y and the covariate X is

Y | X ≥ Poisson(e–+—T
x), W = X + U, U ≥ Normal(0, �).
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Of course, X cannot be measured correctly. The data we observe is (Y
i

, W
i

) for

i = 1, 2, · · · , n. Parameters of interest is ◊ = (–, —T)T. The specific form of the

model is

p(y | x; ◊) = exp
Ó
(– + —Tx)y ≠ e–+—T

x ≠ log(y!)
Ô

,

p(w | x) = (2fi)≠ r
2

| � | 1
2

exp
;

≠(w ≠ x)T�≠1 w ≠ x
2

<
,

where r is the dimension of —. Following Stefanski and Carroll (1987), a complete

and su�cient “statistic” is given by ”(w, y; ◊) = w+y�—. Using a change of variable

to replace w with ”, the Jacobian is J(”, y; ◊) = 1. In addition, d”

d–

= 0, d”

d— = y�.

Thus, we obtain

p(y | ”; ◊) = exp[›y ≠ 1
2y2—T�— ≠ log(y!) ≠ log{s(›, —)}],

where › = – + ”T— and s(›, —) = qŒ
y=0 exp{›y ≠ 1

2y2—T�— ≠ log(y!)}. Further, the

e�cient score function for – is

Se�,–

(y, w; ◊) = ˆ

ˆ–
log p(y | ”; ◊)

= y ≠ E(Y | ”) (4.1)

where

E(Y | ”) = d

d›
log{s(›, —)}

=
qŒ

y=0 y exp{(– + ”T—)y ≠ 1
2y2—T�— ≠ log(y!)}

qŒ
y=0 exp{(– + ”T—)y ≠ 1

2y2—T�— ≠ log(y!)} .

Similarly, the e�cient score for — up to a scalar is given by

Se�,—(y, w; ◊) = {y ≠ E(Y | ”)}E(X | ”).

Then the e�cient estimator can be obtained through implementing the estimating

equations
nÿ

i=1
Se�,–

(y
i

, w
i

; ◊) = 0 and
nÿ

i=1
Se�,—(y

i

, w
i

; ◊) = 0. (4.2)
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However, in order to compute E(X | ”), we need to know the distribution model

for X. Since we do not know the true form of E(X | ”), we utilize kernel regression to

estimate ‚E(X | ”) when a validation data set with some X observations are available.

The estimator from such nonparametric approach will serve as a benchmark. Other-

wise, when no validation data is available, we directly propose a functional form for

E(X | ”). Regardless of the functional form, the resulting estimator is always consis-

tent. We name the resulting estimator the local e�cient estimator. The algorithm is

given below.

Step 1. Propose a functional model ÷ú(”) for E(X | ”).

Step 2. Apply a standard profiling method and solve the estimating equations

0 =
nÿ

i=1
Se�,–

(y
i

, w
i

; ◊)

=
nÿ

i=1

C

y
i

≠
qŒ

y=0 y exp{(– + ”T
i

—)y ≠ 1
2y2—T�— ≠ log(y!)}

qŒ
y=0 exp{(– + ”T

i

—)y ≠ 1
2y2—T�— ≠ log(y!)}

D

0 =
nÿ

i=1
Se�,—(y

i

, w
i

; ◊, ÷ú)

=
nÿ

i=1

C

y
i

≠
qŒ

y=0 y exp{(– + ”T
i

—)y ≠ 1
2y2—T�— ≠ log(y!)}

qŒ
y=0 exp{(– + ”T

i

—)y ≠ 1
2y2—T�— ≠ log(y!)}

D

÷ú(”
i

),

denote the local e�cient estimator of ◊ as ◊̂ = (–̂, ‚—
T)T.

Linear Poisson Model with a Nonparametric Component

We extend the linear Poisson measurement error model to the following partially

linear Poisson case

Y | (X, Z) ≥ Poisson
1
e—T

x+g(z)
2

, W = X + U, U ≥ Normal(0, �), (4.3)

where g(z) is an unknown smooth function of z. Similarly, X could not be measured

precisely. Instead we observe (Y
i

, W
i

, Z
i

) for i = 1, 2, · · · , n. The parameters are
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◊ = (g(z), —T)T, where g(z) is considered as a nuisance parameter. Our interest lies

on —. Specifically, the model is of the form

p(y | x, z; ◊) = exp
Ë
{—Tx + g(z)}y ≠ e—T

x+g(z) ≠ log(y!)
È

p(w | x) = (2fi)≠ r
2

| � | 1
2

exp
;

≠(w ≠ x)T�≠1 w ≠ x
2

<

where r is the dimension of —. Even though there is a nonparametric component in the

Poisson mean, it is still linear in terms of X and hence the technique in Stefanski and

Carroll (1987) can be employed. To this end, the complete and su�cient “statistic”

for this model is ”(w, y; —) = w + y�—. Similarly the Jacobian is J(”, z, y; —) = 1

and d”

dg(z) = 0, d”

d— = y�. We obtain

p(y | ”, z; —) = exp
5
›y ≠ 1

2y2—T�— ≠ log(y!) ≠ log{s(›, —)}
6

where › = ”T— +g(z) and s(›, —) = qŒ
y=0 exp{›y ≠ 1

2y2—T�— ≠ log(y!)}. The e�cient

score function for g(z) is

Se�,g

(y, w, z; —) = ˆ

ˆg(z) log p(y | ”, z; —)

= y ≠ E{Y | ”, z, g(z)} (4.4)

where

E{Y | ”, z, g(z)} = d

d›
log{s(›, —)}

=
qŒ

y=0 y exp[{”T— + g(z)}y ≠ 1
2y2—T�— ≠ log(y!)]

qŒ
y=0 exp[{”T— + g(z)}y ≠ 1

2y2—T�— ≠ log(y!)]
.

Similarly, the e�cient score for — up to a scalar is given by

Se�,—(y, w, z; —) = {y ≠ E(Y | ”, z)}E(X | ”, z)

Then the e�cient estimator can be obtained through implementing the estimating

equation
nÿ

i=1
Se�,—(y

i

, w
i

, z
i

; —) = 0 (4.5)
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In order to implement the above estimating equations, we need to know the quan-

tity of E(X | ”, z). As in the linear case, we impose some distribution on X or Z

to facilitate the computation, or even simpler, we directly propose a functional form

÷ú(”, z) for E(X | ”, z). In addition, we also perform a kernel regression to estimate

E(X | ”, z), denoted as ‚E(X | ”, z) when validation data is available. Of course, the

estimator from such nonparametric approach serves only as a benchmark.

For implementation, we still need to handle the unknown function g(z). To do

this, we localize part of the estimating equation using kernel weights, and solve

nÿ

i=1

A

y
i

≠
qŒ

y=0 y exp[{”T
i

— + g(z0)}y ≠ 1
2y2—T�— ≠ log(y!)]

qŒ
y=0 exp[{”T

i

— + g(z0)}y ≠ 1
2y2—T�— ≠ log(y!)]

B

K
h

(z
i

≠ z0) = 0 (4.6)

to obtain ‚g(z0, —). Here K
h

(·) = K(·/h)/h is a kernel function with bandwidth h.

Then we adopt a standard profiling method and implement the estimating equation

for —

0 =
nÿ

i=1
Se�,—(y

i

, w
i

, ‚g(z
i

, —); —, ÷ú)

=
nÿ

i=1

A

y
i

≠
qŒ

y=0 y exp[{”T
i

— + ‚g(z
i

, —)}y ≠ 1
2y2—T�— ≠ log(y!)]

qŒ
y=0 exp[{”T

i

— + ‚g(z
i

, —)}y ≠ 1
2y2—T�— ≠ log(y!)]

B

÷ú(”
i

, z
i

),

where ‚g(z
i

, —) is the estimator of g(z0, —) obtained from (4.6) evaluated at z0 = z
i

for i = 1, 2, . . . , n. We denote the resulting local e�cient estimator of —T as ‚—
T.

Nonlinear Poisson Model

To be even more flexible in the modeling, we now consider measurement error

models with a nonlinear component f(x, —) in the Poisson mean. The model is

Y | X ≥ Poisson
1
ef(x,—)

2
, W = X + U, U ≥ Normal(0, �), (4.7)

while the data we observe is (Y
i

, W
i

), i = 1, 2, · · · , n. Here f(x, —) can be any

nonlinear function of x. For example, a polynomial form f(x, —) = —0 + —1x + —2x2,
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where the parameter of interest is — = (—0, —1, —2)T. Specifically, in this case the

model can be written as

p(y | x; —) = exp
Ó
f(x, —)y ≠ ef(x,—) ≠ log(y!)

Ô

p(w | x) = (2fi)≠ r
2

| � | 1
2

exp
;

≠(w ≠ x)T�≠1 w ≠ x
2

<

Assume Y and W are independent conditional on X. The probability density of the

full data is given by

p(y, w, x) = p(y, w, | x)p(x) = p(y | w)p(w | x)÷(x)

Where the form of ÷(x) is unknown. We posit some model ÷ú(x) for ÷(x), then the

observed-data score vector is given by

Sú
—(y, w) =

s SF

— (y, x)p(y | x)p(w | x)÷ú(x)dµ(x)
s

p(y | x)p(w | x)÷ú(x)dµ(x) ,

where SF

— (y, x) = ˆ

ˆ— logp(y | x, —). In the example mentioned above, this leads to

SF

—0(y, x) = y ≠ exp(—0 + —1x + —2x
2),

SF

—1(y, x) = x{y ≠ exp(—0 + —1x + —2x
2)},

SF

—2(y, x) = x2{y ≠ exp(—0 + —1x + —2x
2)},

and the joint distribution of Y and W conditional on x is

p(y | x)p(w | x)

= (2fi‡2
u

)≠ 1
2 exp

I

(—0 + —1x + —2x
2)y ≠ e—0+—1x+—2x

2 ≠ log(y!) ≠ (w ≠ x)2

2

J

.

In order to implement the e�cient score

Sú
e�,—(y, w) = Sú

—(y, w) ≠ Eú{a(X) | y, w},

by Theorem 1 of Tsiatis and Ma (2004), we need to solve for a(X) which satisfies

E{Sú
—(Y, W) | x} = E[Eú{a(X) | Y, W} | x].
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We consider approximating ÷ú(x) as ÷ú(x) ¥ q
m

j=1 ÷ú(x
j

)I(x = x
j

). For example,

when we propose a uniform model, ÷ú(x) ¥ q
m

j=1 I(x = x
j

), when we propose a

standard normal model, ÷ú(x) ¥ q
m

j=1 „(x
j

)I(x = x
j

), where „(x
j

) is the standard

normal pdf. Therefore,

E[Eú{a(X) | Y, W} | X = x
i

]

=
⁄ q

m

j=1 a
j

p(y | x
j

)p(w | x
j

)÷ú(x
j

)
q

m

j=1 p(y | x
j

)p(w | x
j

)÷ú(x
j

) p(y | x
i

)p(w | x
i

)dµ(y)dµ(w)

where a
j

= a(x
j

). Also

E{Sú
—(Y, W ) | X = x

i

} (4.8)

=
⁄ q

m

j=1 SF

— (y, x
j

)p(y | x
j

)p(w | x
j

)÷ú(x
j

)
q

m

j=1 p(y | x
j

)p(w | x
j

)÷ú(x
j

) p(y | x
i

)p(w | x
i

)dµ(y)dµ(w)

Consequently, the solutions to the integral equations reduce to the linear equations

AaT = bT where the solutions a is the q ◊ m matrix {a1, · · · , a
m

}, b is a q ◊ m

matrix whose ith column is E{Sú
—(Y, W) | x = x

i

} defined in (4.8), and A is a m ◊ m

matrix whose (i, j) element is given by

A
ij

=
⁄ p(y | x

j

)p(w | x
j

)÷ú(x
j

)
q

m

j=1 p(y | x
j

)p(w | x
j

)÷ú(x
j

)p(y | x
i

)p(w | x
i

)dµ(y)dµ(w).

Hence the e�cient score is given by

Sú
e�(y, w) =

q
m

j=1{SF

— (y, x
j

) ≠ a
j

}p(y | x
j

)p(w | x
j

)÷ú(x
j

)
q

m

j=1 p(y | x
j

)p(w | x
j

)÷ú(x
j

) . (4.9)

We then solve q
n

i=1 Sú
e�,—(y

i

, w
i

) = 0 to obtain ‚—.

Nonlinear Poisson with a Nonparametric Component Model

In additional to the nonlinear structure discussed in the above section, there could

be some other pertinent factor contributing to the outcome in an unknown fashion.

In this section, we consider this more general situation by including a nonparamet-

ric function g(z), where Z is a variable whose contribution to the response is left
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unspecified. Specifically, we consider the model

Y | (X, Z) ≥ Poisson[ef{x,—,g(z)}]. (4.10)

Similar as before, we let W = X + U, U ≥ Normal(0, �), and the observations are

(Y
i

, W
i

, Z
i

) where i = 1, 2, · · · , n. For example, if f{x, —, g(z)} = g(z) + —1x + —2x2,

then the model can be written as

p(y | x, z) = exp
Ë
{g(z) + —1x + —2x

2}y ≠ eg(z)+—1x+—2x

2 ≠ log(y!)
È

,

p(w | x) = (2fi‡2
u

)≠ 1
2 exp

I

≠(w ≠ x)2

2‡2
u

J

.

Assume Y and W are independent conditional on (X, Z), then the probability density

of the full data becomes p(y, w, x, z; —, g, ÷1, ÷2) = p{y | z, x; —, g(z)}p(w | x, z)÷1(x |
z)÷2(z), where the conditional probability density function of X given Z, denoted

by ÷1(x | z), and the density function of Z, denoted ÷2(z), are both unknown. The

parameters in this model are ◊ = (—, g, ÷1, ÷2) while our interest lies solely in —. Let

us denote the expectations computed under the correct model and the posited model

÷ú
1(x | z) for X given Z by E(·) and Eú(·), respectively. Conceptually, we treat g

as if it is an unknown constant, then following (4.9), we derive the locally e�cient

estimating function for — to be

Sú
e�,—(y, w, z, —, g, ÷1) = Sú

—(y, w, z) ≠ Eú{a—(X, z) | (y, w, z)}, (4.11)

where Sú
—(y, w, z) is the observed data score vector w.r.t —. Note that ÷2 drops out

of the derivation so it does not play a role. a—(X, z) in (4.11) satisfies

E{Sú
—(Y, W, z) | x, z} = E[Eú{a—(X, z) | Y, W, z} | x, z].

Unlike ÷2, the nuisance function g(·) carries all the way through the implementation

for — in (4.11). Therefore, even though g(z) is not of our primary interest, we are

obliged to estimatie it. We propose to estimate g(z) at z = z0 via
nÿ

i=1
Sú

e�,g

(y
i

, w
i

, z
i

, —, g(z0, x, —), ÷ú
1)K

h

(z
i

≠ z0) = 0, (4.12)
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where Sú
e�,g

(y, w, z, —, g, ÷1) = Sú
g

(y, w, z)≠Eú{–
g

(X, z) | (y, w, z)}, Sú
g

(y, w, z) is the

score vector w.r.t. the unknown function g(z), i.e.,

Sú
g

(y, w, z) =
s

SF

g

(y, x, z)p(y | x, z)p(w | x)÷ú
1(x | z)dµ(x)

s
p(y | x, z)p(w | x)÷ú

1(x | z)dµ(x) ,

and –
g

(X, z) in (4.12) satisfies

E{Sú
g

(Y, W, z) | x, z} = E[Eú{–
g

(X, z) | Y, W, z} | x, z].

When the Poisson mean model is f{x, —, g(z)} = g(z)+—1x+—2x2, then SF

g

(y, x, z) =

y ≠ exp{g(z) + —1x + —2x2}. Again, we consider approximating ÷1(x | z) as ÷ú
1(x |

z) ¥ q
m

j=1 c
j

(z)I(x = x
j

) where q
m

j=1 c
j

(z) = 1 for all z over the support of Z. For

example, when we propose a same uniform model for all z, ÷ú
1(x | z) Ã q

m

j=1 I(x = x
j

),

when we propose a normal model with variance ‡2 and independent of Z, ÷ú
1(x | z) Ã

q
m

j=1 „(x
j

)I(x = x
j

), where „(·) is the multivariate standard normal pdf. Then

E[Eú{–
g

(X, z) | Y, W, z} | X = x
i

, z]

=
⁄ q

m

j=1 –
g

(x
j

, z)p(y | x
j

, z)p(w | x
j

)÷ú
1(x

j

| z)
q

m

j=1 p(y | x
j

, z)p(w | x
j

)÷ú
1(x

j

| z) p(y | x
i

, z)p(w | x
i

)dµ(y)dµ(w)

and

E{Sú
g

(Y, W, z) | X = x
i

, z}

=
⁄ q

m

j=1 SF

g

(y, x
j

, z)p(y | x
j

, z)p(w | x
j

)÷ú
1(x

j

| z)
q

m

j=1 p(y | x
j

, z)p(w | x
j

)÷ú
1(x

j

| z) p(y | x
i

, z)p(w | x
i

)dµ(y)dµ(w).

We adopt a standard profile likelihood approaches to solve the estimating equation

(4.12) to obtain ‚g(z0, —) and then solve (4.11) to obtain the locally e�cient estimator,

denoted as ‚—.

Nonlinear Partial Index Poisson Model

Often times, the pertinent factor Z is of high dimension, say p + 1, thus models

in the Nonlinear Poisson with a Nonparametric Component Model Section are not
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feasible to use. The linear model of Z is a popular choice, although somewhat re-

strictive. We summarize the e�ect of Z using an index and consider a data adaptive

model E(Y | x, z) = exp[f{x, —, g(Â“Tz)}], where g(·) is unspecified and can be any

smooth function. Therefore, we arrive at a flexible semiparametric model that over-

comes the curse of dimensionality. We write the association between the outcome Y

and covariate (X, Z) and the measurement error structure as

Y | (X, Z) ≥ Poisson[ef{x,—,g(Â“T
z)}], W = X + U, U ≥ Normal(0, �) (4.13)

where g(·) is an unknown function. For identification purpose, without loss of gener-

ality, assume Â“ = (1, “), where “ is a p-dimensional unknown vector that can be esti-

mated from the data. In this model, we observe data (Y
i

, W
i

, Z
i

) for i = 1, 2, · · · , n.

For example, if f{x, —, g(Â“Tz)} = g(Â“Tz) + —1x + —2x2, then the specific form of the

nonlinear single index model becomes

p(y | x, z) = exp
5
{g(Â“Tz) + —1x + —2x

2}y ≠ eg(Â“T
z)+—1x+—2x

2 ≠ log(y!)
6

p(w | x) = (2fi‡2
u

)≠ 1
2 exp

I

≠(w ≠ x)2

2‡2
u

J

.

We assume Y and W are independent given the covariates (X, Z). Then we write

the probability density of the observed data as p(y, w, z; —, “, g, ÷1, ÷2) =
s

p(y |
z, x; —, “, g)p(w | x, z)÷1(x | z)÷2(z)dµ(x). In addition to the single index structure

function g(Â“Tz), the conditional distribution of X given Z which denoted by ÷1(x | z)

and the marginal density function of Z, denoted ÷2(z) are also unspecified. The pa-

rameter space is ◊ = (—, “, g, ÷1, ÷2) while our interest only lies in — which associates

with the error-prone covariate X. Following the general idea of Liu et al. (2017) and

following the same spirit in the previous sections, we employ a working version of

÷1(x | z), denote as ÷ú
1(x | z), and propose a semiparametric approach to estimate

the e�ect of the covariate of interest as well as the nuisance parameters g, “ through

solving estimating equations. At any nonconstant given function g(·), we estimate —
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and “ through solving the e�cient estimating equations

0 =
nÿ

i=1
Sú

e�,—{y
i

, w
i

, z
i

, —, “, g, ÷ú
1(x

i

| z
i

)}

0 =
nÿ

i=1
Sú

e�,“{y
i

, w
i

, z
i

, —, “, g, ÷ú
1(x

i

| z
i

)}, (4.14)

where Sú
e�,—, Sú

e�,“ are the residuals of the orthogonal projections of the score vectors

Sú
—, Sú

“ onto the nuisance tangent space with respect to ÷1 (Tsiatis (2006)). The

construction of Sú
e�,—, Sú

e�,“ is essentially identical to that in the Nonlinear Poisson with

a Nonparametric Component Model Section by viewing (—T, “T)T as one parameter

of interest, and is detailed later. We denote the estimators as ‚—(g) and ‚“(g). Of

course, the function g is unknown, and the construction of Sú
e�,“ also relies on gÕ, the

derivative of g, so we adopt a local linear kernel estimator of g(Â“Tz0), gÕ(Â“Tz0) by

implementing

0 =
nÿ

i=1
Sú

e�,g

{y
i

, w
i

, z
i

, —, g(Â“Tz0, x, —), ÷ú
1(x

i

| z
i

)}K
h

(Â“Tz
i

≠ Â“Tz0) (4.15)

at z0 = z1, z2, · · · , z
n

to estimate ‚g(Â“Tz0) = c0 and gÕ(Â“Tz0) = c1 where K
h

(·) is

defined as before, c0, c1 are explained below, and Sú
e�,g

is the e�cient score function

derives from the posited model of ÷1, ÷ú
1. Specifically, The e�cient score functions for

—, “ and g, gÕ can be written as

Sú
e�,—(y, w, z, —, “, g, ÷ú

1) = Sú
—(y, w, z; —, “, g, ÷ú

1) ≠ Eú{a—(X, z) | (y, w, z)},

Sú
e�,“(y, w, z, —, “, g, ÷ú

1) = Sú
“(y, w, z; —, “, g, ÷ú

1) ≠ Eú{a“(X, z) | (y, w, z)},

Sú
e�,g

(y, w, z, —, “, g, ÷ú
1) = Sú

g

(y, w, z; —, “, g, ÷ú
1) ≠ Eú{a

g

(X, z) | (y, w, z)}.

where Sú
—(·) and Sú

“(·) and Sú
g

(·) are the score vectors for — and “ respectively, i.e.,

Sú
—(y, w, z) =

s SF

— (y, x, z)p(y | x, z)p(w | x)÷ú
1(x | z)dµ(x)

s
p(y | x, z)p(w | x)÷ú

1(x | z)dµ(x)

Sú
“(y, w, z) =

s SF

“ (y, x, z)p(y | x, z)p(w | x)÷ú
1(x | z)dµ(x)

s
p(y | x, z)p(w | x)÷ú

1(x | z)dµ(x)

Sú
g

(y, w, z) =
s SF

g

(y, x, z)p(y | x, z)p(w | x)÷ú
1(x | z)dµ(x)

s
p(y | x, z)p(w | x)÷ú

1(x | z)dµ(x) .
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In the example f{x, —, g(Â“Tz)} = g(Â“Tz) + —1x + —2x2, we have

SF

— (y, x, z) =

Q

cca
x[y ≠ exp{g(Â“Tz) + —1x + —2x2}]

x2[y ≠ exp{g(Â“Tz) + —1x + —2x2}]

R

ddb

SF

“ (y, x, z) = (0 I
p

)z
Ë
y ≠ exp{g(Â“Tz) + —1x + —2x

2}
È

gÕ(Â“Tz),

where gÕ is the first partial derivative of g. Also, at z0,

SF

g

(y, x, z) =
Ë
y ≠ exp{c0 + c1(Â“Tz ≠ Â“Tz0) + —1x + —2x

2}
È

(1, Â“Tz ≠ Â“Tz0)T.

Eú{a—(X, z) | (y, w, z)}, Eú{a“(X, z) | (y, w, z)} and Eú{a
g

(X, z) | (y, w, z)} are

respectively the projections of the score vectors Sú
—, Sú

“ and Sú
g

onto the tangent space

(Tsiatis, 2006), which satisfy

E{Sú
—(Y, W, z) | x, z} = E[Eú{a—(X, z) | Y, W, z} | x, z]

E{Sú
“(Y, W, z) | x, z} = E[Eú{a“(X, z) | Y, W, z} | x, z]

E{Sú
g

(Y, W, z) | x, z} = E[Eú{a
g

(X, z) | Y, W, z} | x, z].

For f{x, —, g(Â“Tz)} = g(Â“Tz) + —1x + —2x2, we write the conditional expectations as

E{Sú
—(Y, W, z

i

) | x = x
i

, z
i

}

=
⁄ q

m

j=1 SF

— (y, x
j

, z
i

)p(y | x
j

, z
i

)p(w | x
j

)÷ú
1(x

j

| z
i

)
q

m

j=1 p(y | x
j

, z
i

)p(w | x
j

)÷ú
1(x

j

| z
i

) p(y | x
i

, z
i

)p(w | x
i

)dµ(y)dµ(w),

E{Sú
“(Y, W, z

i

) | x = x
i

, z
i

}

=
⁄ q

m

j=1 SF

“ (y, x
j

, z
i

)p(y | x
j

, z
i

)p(w | x
j

)÷ú
1(x

j

| z
i

)
q

m

j=1 p(y | x
j

, z
i

)p(w | x
j

)÷ú
1(x

j

| z
i

) p(y | x
i

, z
i

)p(w | x
i

)dµ(y)dµ(w),

E{Sú
g

(Y, W, z
i

) | x = x
i

, z
i

}

=
⁄ q

m

j=1 SF

g

(y, x
j

, z
i

)p(y | x
j

, z
i

)p(w | x
j

)÷ú
1(x

j

| z
i

)
q

m

j=1 p(y | x
j

, z
i

)p(w | x
j

)÷ú
1(x

j

| z
i

) p(y | x
i

, z
i

)p(w | x
i

)dµ(y)dµ(w).

Similarly, we follow the discretization technique that are described in the Nonlinear

Poisson Model Section and the Nonlinear Poisson with a Nonparametric Component

Model Section to solve for a—, a“ and a
g

. We iteratively solve (4.15) at the z0 = z
i

for i = 1, 2, · · · , n and (4.14) until convergence for ‚g and ‚—, ‚“.
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We want to point out that when the Poisson mean is the exponential of a partially

linear single index model, then a complete and su�cient “statistic” exists. In such

case, we do not have to go through the approximation algorithm or discretization

technique in order to implement the e�cient score functions. Instead, we can borrow

the idea from the Linear Poisson Model with a Nonparametric Component Section

and combine with the method we discuss in this section to solve for —. This simplifies

to a special case discussed in Liu et al. (2017).

4.3 Simulation Studies

In this section, we illustrate five scenarios which are discussed in the previous

section via simulations. For each case, we report the Naive estimator which ignores the

measurement error. Although it is unrealistic, we provide an oracle estimator where

we have the true distribution of X | ” or X | Z to serve as a benchmark. We provide

two locally e�cient estimators along with two regression calibration estimators for

comparison.

Linear Poisson Model

We generated Y which is related to a single covariate X, X ≥ Normal (0, 1),

through a linear Poisson regression model. Specifically, E(Y | x) = exp(– + —x).

We further generated W = X + U where U is independent of Y and X, and has

a standard normal distribution. We set – = ≠0.4, — = 1.1. We conducted 500

simulations, each with sample size n = 150. To conduct the semiparametric estimator,

we posited two di�erent functional forms for E(X | ”), one is ” and the other is

4 sin(”/20). We compared the performance of the semiparametric estimators with

the naive Poisson regression which simply ignores the measurement error, as well as

regression calibration approach in Table 4.1. From these results, we can see clearly

that ignoring the measurement error results in severe bias in both – and — estimation.
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Although regression calibration can correct such bias in the estimation of —, it does

not perform well for the – estimation even when we calculated E(X | W ) under

the correct distribution of X. As can be seen from Table (4.1), the semiparametric

method provides consistent and more e�cient resultin estimating both – and —.

Linear Poisson Model with a Nonparametric Component

We generate Y , X and W as in Section (4.3) and set — = 1.1. In addition, we

generate Z ≥ Uniform (0, 1) and let g(z) = ≠0.4 cos(3.2z). Such data generating

process results in a complete and su�cient “statistic” to be ”(w, y; —) = w + 1.1y

which is free of z. Since the conditional expectation of X given the complete and suf-

ficient “statistic” remains unknown to us, we adopt a nonparametric kernel method

to estimate the quantity E(X | ”) and the concomitant ‚— is served as a benchmark.

We conducted 500 simulations, each with sample size n = 150. For a comparison

purpose, we retain the posited forms of ÷ú(”) for the locally e�cient estimation pro-

cedure. Results are summarized in Table (4.2). It is not surprised to see that the

naive estimator significantly departs from the true value and of course the coverage

is as low as 17%. When the mean model involves a nonparametric component, re-

gression calibration is not e�cient in estimating the parameter in the linear term. It

is not di�culty to observe that, regardless of what model we posited for ÷(”), our

semiparametric estimator is consistent and e�cient.

Nonlinear Poisson Model

In this case, we generate the counting measure Y related to unobservable X

with a polynomial form, E(Y | x) = exp(—0 + —1x + —2x2). We utilize the same

data generating process as stated in the linear Poisson case for X while allowing a

substantial amount of error ‡
‘

= 0.65. This results in observing W ≥ N(X, 0.652).

In the estimating procedure, it is unavoidable to solve a double integration for a in
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Figure 4.1: Nonparametric kernel estimation of g(z) in linear Poisson model with a
nonparametric component. g(z) = ≠0.4 cos(3.2z)

the e�cient score function. We adopt Hermite Gaussian quadrature method due to

the concern of accuracy. The true values of (—0, —1, —2) are set to be (1.0, 0.7, ≠0.2).

In order to implement the estimating equations, we need to know the probability

distribution of X. To examine the robustness of the semiparametrc method, we

consider two extremes where one correctly specified the distribution of X, N(0, 1)

while the other X is uniformly weighted in [0, 1.5]. We also provide a exponential

weight in the range of [≠3, 3]. Results for 500 simulations with each sample size 100

are summarized in Table (4.3). It is straightforward to see that the semiparametrc

approach is much more capable to handle the measurement error in a nonlinear

Poisson model.
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Nonlinear Poisson with a Nonparametric Component Model

For nonlinear Poisson mean model with a nonparametric component, we generate

the counting measure Y related to unobservable X and observable Z with a polyno-

mial form, E(Y | x, z) = exp{g(z)+—1x+—2x2}. We set g(z) = 0.3{sin(3.3z≠0.05)+

1.57} ≠ 1. We utilize the same data generating process as the linear Poisson model

with a Nonparametric component case for X, Z and allow a substantial amount of

error ‡
‘

= 0.65, i.e., W ≥ N(X, 0.652) and Z ≥ Uniform(0, 1). To compare perfor-

mance, we set the true values of (—1, —2) to be (0.7, ≠0.2). To implement (4.11) and

(4.12) for — and g, we need the probability distribution of X | Z. Since X and Z

are independently generated, we plug in the correctly specified distribution of X as

well as two extreme weights, e.g., a Uniform(0, 1.5) and an exponential distribution

over the range of ≠3 to 3. In the estimating procedure, in addition to solve a double

integration for a in the e�cient score functions, we have to deal with the nonparamet-

ric term g(z). To handle the unknown function g(z), we adopt a standard profiling

method in the estimation procedure and then estimate g(z) and (—1, —2) iteratively.

The entire estimating procedure requires high computation demand because we need

to solve double integrations n times at n points and then iteratively estimate (—1, —2)

using the updated g(z). Results for 500 simulations with each sample size 150 are

summarized in Table (4.4).

Nonlinear Partial Index Poisson Model

To mimic real world scenario, we inspect the numerical performance under the sit-

uation that the observable covariate Z contains both continuous and categorical data.

We generate Z1 ≥ Binominal(0.5), Z2 ≥ Uniform(0, 0.5) and Z3 ≥ Normal(0.3, 0.12).

The true parameters inside the single index structure “Tz is (1.0, ≠0.9, ≠0.9). We

set g(“Tz) = ≠0.4 cos(2.75“Tz ≠ 1.0), therefore gÕ(“Tz) = 1.1 sin(2.75“Tz ≠ 1.0).

We generate X ≥ N(0, 1.12), set — = 1.1 and ‡
‘

= 0.8. The Poisson mean becomes
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E(Y | x, z) = 1.1x ≠ 0.4 cos{2.75(1.0z1 ≠ 0.9z2 ≠ 0.9z3) ≠ 1.0}. Similarly, we im-

plement the “Oracle” estimator where the conditional expectation of X given ” is

estimated nonparametrically. The two forms we posited for ÷(”) are ÷ú(”) = ”2 and

÷ú(”) = ” sin(”). Results are summarized in Table (4.5).

4.4 Empirical Applications

Cigarette Consumption and Mortality

The data is obtained from STATLIB-DASL

(http://lib.stat.cmu.edu/DASL/Datafiles/cigcancerdat.html), hosted by Carnegie Mel-

lon University. It contains a measure of the number of cigarettes smoked per capita

along with the death rates per thouusand population from lung and other cancers,

for 43 states and the District of Columbia in 1960. We eliminated two cases where

cigarette consumption are beyond than 40 for this analysis. The cigarette consump-

tion is obviously an estimate quantity rather than an exact value. We fit a Poisson

regression model with log-link relating the lung cancer rate (Y ) to cigarette consump-

tion (W ), by allowing for measurement error in cigarette consumption. We predict

the lung cancer death rate using a bias-correction linear Poisson model propose in this

chapter, regression calibration, SIMEX and the modified estimating equation (MEE)

method Buonaccorsi (2010). Comparison plots are summarize in Figure (4.2). We

compare the mean square predicted error in Table (4.6).

Stroke Recovery in Underserved Populations

The Stroke Recovery in Underserved Populations study was conducted in 2005-

2006 by National Institute on Aging (NIA). The survey fellowed 1216 patients from

11 rehabilitation facilities at the time they were admitted to and discharge from

the rehabilitation facility, 80-189 days and 365-425 days after discharge. The study

71



●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

15 20 25 30

15
20

25

cig

lu
ng

Oracle
Local
MEE
RC
SIMEX

Figure 4.2: Cigeratte comsumption and lung cancer

72



aims to exam how positive emotion such as joy, gratitude, love, and social networks

independently and interactively contribute to recovery of functional status after stroke

within two underserved groups. Data was collected via face-to-face interview or phone

interview. It contains 216 variables which include demographics information, stroke

symptoms, functional recovery, emotional well-being, etc..

We fit a Poisson model with a quadratic term in the mean by taking the measure-

ment error of PAIN level into account. Results are summarized in Table (4.7).

4.5 Discussion

We have explored a class of Poisson models where the major covariate of interest

can not be accessed correctly. The models and methods we study in this chapter cover

almost all possible situations in counting response data analyses. We have constructed

a locally e�cient semiparemetric estimator for a general class of Poisson models with

measurement errors, in which there exists an infinite-dimensional nuisance function.

Rather than taking the route of estimating E(X | ”) or f
X|Z(x | z) nonparatetrically,

we infuse the idea of combining a parametric model estimator and a local kernel

estimator via profiling. Our approaches do not require any model assumption on the

unobservable covariate of interest. The resulting profiling-based estimator retains the

consistence and semiparatric e�ciency locally. Although we implemented through a

profiling technique, backfitting should yield similar results as Liu et al. (2017) pointed

out in their paper.
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Table 4.1: Case 1:“Oracle” estimate E(X | ”) nonparametrically;“Local 1” used a
posited ÷ú(”) = ”; “Local 2” used a posited ÷ú(”) = 4 sin( ”

20). RC Normal is regression
calibration where calculate E(X | W) under a normal distribution. RC Uniform is
regression calibration where calculate E(X | W) under a uniform distribution. The
truth is (–, —) = (≠0.4, 1.1)

Oracle Local 1 Local 2 Naive RC Normal RC Uniform
‚– ≠0.3806 ≠0.3770 ≠0.3763 ≠0.0944 ≠0.1091 ≠0.1140

emp.sd 0.2169 0.2257 0.2294 0.1214 0.1304 0.1265
est.sd 0.1981 0.1992 0.2063 0.1214 0.1204 0.1235

95% CI 0.9420 0.9340 0.9460 0.2920 0.3400 0.3660
‚— 1.0999 1.1012 1.1011 0.5365 1.0730 1.1313

emp.sd 0.0951 0.1011 0.1037 0.0935 0.1871 0.1999
est.sd 0.0817 0.0835 0.0873 0.0758 0.1515 0.1787

95% CI 0.9520 0.9480 0.9660 0.0020 0.8560 0.9320

Table 4.2: Case 2:“Oracle” estimate E(X | ”) nonparametrically;“Local 1” used a
posited ÷ú(”) = ”; “Local 2” used a posited ÷ú(”) = 4 sin( ”

20). The truth is — = 1.1

Oracle Local 1 Local 2 Naive RC Normal RC Uniform
‚— 1.1027 1.1014 1.1016 0.6309 1.2619 1.3313

emp.sd 0.0402 0.0337 0.0343 0.1598 0.0799 0.1727
est.sd 0.0366 0.0363 0.0366 0.1598 0.0717 0.0925

95% CI 0.9400 0.9620 0.9600 0.1680 0.4020 0.3160

Table 4.3: Case 3:“Oracle” used the true normal weight for X;“Local 1” used a
uniform weight of X;“Local 2” used a exponential weight of X

Oracle Local 1 Local 2 Naive RC Normal RC Uniform
‚—0 1.0137 1.0144 1.0131 1.0099 1.0669 1.1052

emp.sd 0.0797 0.0806 0.0812 0.0711 0.0823 0.1174
est.sd 0.0832 0.0838 0.0830 0.0683 0.0787 0.1147

95% CI 0.9600 0.9680 0.9640 0.9320 0.8600 0.8580
‚—1 0.6935 0.6888 0.6936 0.4503 0.6406 0.6051

emp.sd 0.0959 0.0971 0.0974 0.0648 0.0922 0.0833
est.sd 0.1143 0.1131 0.1148 0.0618 0.0879 0.0813

95% CI 0.9740 0.9600 0.9700 0.0540 0.8800 0.7620
‚—2 ≠0.2087 ≠0.2081 ≠0.2087 ≠0.0949 ≠0.1920 ≠0.2253

emp.sd 0.0728 0.0756 0.0747 0.0359 0.0727 0.1122
est.sd 0.0786 0.0791 0.0779 0.0329 0.0665 0.1114

95% CI 0.9540 0.9660 0.9620 0.1680 0.9140 0.9480
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Table 4.4: Case 4:“Oracle” used the true normal weight for X;“Local 1” used a
uniform weight of X;“Local 2” used a exponential weight of X.

Oracle Local 1 Local 2 Naive RC Normal RC Uniform
‚—1 0.7250 0.7166 0.7051 0.6402 0.7775 0.6797

emp.sd 0.3229 0.3124 0.3067 0.2187 0.2540 0.2038
est.sd 0.2736 0.2615 0.2743 0.9751 0.2734 0.2171

95% CI 0.9400 0.9280 0.9560 0.9780 0.9440 0.9480
‚—2 ≠0.2113 ≠0.2036 ≠0.2045 ≠0.1763 ≠0.2192 ≠0.1939

emp.sd 0.1834 0.1937 0.1764 0.0825 0.0767 0.0723
est.sd 0.1689 0.1606 0.1612 0.3198 0.1714 0.1631

95% CI 0.9760 0.9760 0.9840 0.9900 0.9980 0.9940

Table 4.5: Case 5:“Oracle” estimate E(X | ”) nonparametrically;“Local 1” used a
posited ÷ú(”) = ”2; “Local 2” used a posited ÷ú(”) = ” sin(”). The truth is — = 1.1.
Dimensions of Z is 3.

Oracle Local 1 Local 2 Naive RC Normal RC Uniform
‚—0 1.1042 1.1090 1.1019 0.8092 1.1622 1.2482

emp.sd 0.1599 0.1382 0.0929 0.1201 0.1110 0.1506
est.sd 0.1702 0.1683 0.1320 0.0848 0.1225 0.1579

95% CI 0.9520 0.9560 0.9580 0.3080 0.9280 0.8160

Table 4.6: Mean square prediction error on lung cancer death rate.

Oracle Local MEE RC SIMEX
MSPE 27.4413 27.5851 33.8242 33.5601 33.3963

Table 4.7: Stroke data. PAIN F2 is (PAIN F)2. LL is the 95% lower confidence limit,
UL is the 95% upper confidence limit. Naive Poisson ignored the measurement error

Estimate Std. p-value LL UL
Naive Poisson (Intercept) -1.3074 0.0710 0.0000 -1.3118 -1.3031

PAIN F 0.3126 0.0488 0.0000 0.3096 0.3156
PAIN F2 -0.0183 0.0061 0.0028 -0.0187 -0.0180

Exponential weight (Intercept) -1.3069 0.1005 0.0000 -1.3131 -1.3007
PAIN F 0.1318 0.0458 0.0037 0.1290 0.1346
PAIN F2 -0.0068 0.0028 0.0139 -0.0070 -0.0067

Uniform weight (Intercept) -1.3881 0.1124 0.0000 -1.3950 -1.3812
PAIN F 0.1101 0.0421 0.0093 0.1075 0.1126
PAIN F2 -0.0056 0.0027 0.0394 -0.0057 -0.0054
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Chapter 5

Conclusion

In this dissertation, we have been focused on e�cient semiparametric estimation

and inference with applications on high dimension data problem and measurement

error models. We propose flexible semiparametric mothod to model the propensity

score function in the inverse probability weighted approach to evaluate causal e�ect.

In the measurement error data framework, where the main covariate of interest can

not be accessed correctly, we introduce a semiparametric bias-correction approach to

estimate the e�ect of the covariate of interest in the presence of many other confound-

ing covariate. We further extend our work to a class of Poisson measurement error

models and provide bias-reduction solutions which yield locally e�cient estimators.

Prior to this dissertation, numerous works have been done to improve the consis-

tency in estimating the treatment e�ect, for example, Tan (2006), Tan (2010), van der

Laan (2014b), Vermeulen and Vansteelandt (2015),

Vermeulen and Vansteelandt (2016) and among others. However, these methods

either require model specification or intensive computation or a hybrid of both. The

approach we propose does not reply on model specification of the propensity score

or the outcome regression models. In the meanwhile, our method is more robust in

estimation and very flexible to handle high dimensional covariate. We have provide

rigors mathematical proofs and lots of numerical results to compare the performance

with other famous approaches. Future work involves using the augmented inverse

probability weighted (AIPW) estimator in estimating the average treatment e�ect.

Under the causal inference framework, we also are interested in the average treatment
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e�ect for the treated, which is defined as E{Y ú(1) ≠ Y ú(0) | T = 1}.

Motivated by the Framingham Heart Study, we investigate the e�ect of a covariate

of interest in the presence of possibly nonlinear confounding e�ects. In Chapter 3, we

design a general methodology for the semiparametric measurement error model. We

construct a class of locally e�cient estimators which correct potential bias. We show

that the semiparametric bias-correct estimator is root-n consistent, asymptotically

normal and locally e�cient. Through various simulation studies which account for

increasing dimension of variable Z, we demonstrated that our semiparametric meth-

ods result in much smaller biases, comparing to two regression calibration estimators

and a naive estimator which neglect the error in X. The tools we developed for both

estimation and inference is completely general, reflected in the generality of the main

regression model. We illustrate the generality of the results via extensive simulation

studies of a Poisson model for where Z has the dimension from 2 to 11. The locally

semiparametric e�cient estimator we propose is flexible, on the other hand, avoid

the curse of dimensionality.

Finally, stemmed from the studies in general measurement error models, we in-

vestigate five interrelated Poisson models in Chapter 4. We gradually stretch the

model flexibility from a linear Poisson mean model to a model that is nonlinear with

a partial index structure in the mean of a counting measure. We integrate the results

of Stefanski and Carroll (1987), Ma and Tsiatis (2006), Tsiatis and Ma (2004), Ma

and Carroll (2006) and Liu et al. (2017) to provide a class of constructive locally

e�cient semiparametric estimators for a wide range of Poisson mean models with

functional measurement errors. To the best of our knowledge, the estimation proce-

dure developed in Chapter 4 is the first to give a locally e�cient estimator without

the specification in the probability density function ÷(x) or the conditional covariate

distribution ÷(x | z) for a Poisson model.

In conclusion, semiparametric methodology plays an important role in many sta-
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tistical modeling in the real world. It is to our advantage to compare the flexibility

in modeling and the e�ciency in estimation of a class of semiparametric estimator in

order to make a determination as to which model is most preferable for the type of

data being analyzed.
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Appendix A

Supplement to Chapter 2

A.1 Derivation of the efficient score function

Taking derivative with respect to B of the logarithm of the probability density

function function, it is easy to verify that the score function with respect to B is

S
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The e�cient score is the residual after projecting the score vector with respect to

B onto the nuisance tangent space � (Tsiatis, 2006). The nuisance tangent space,

denoted �, is the mean-squared closure of all nuisance tangent spaces of all parametric

submodels. We can verify that
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We can readily verify that
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hence this yields the desired result.

A.2 Proof of Theorem 1
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n1/2(‚· ≠ ·)

= 1Ô
n

nÿ

i=1

CI
Y

i

T
i

fi(X
i

) ≠ Y
i

(1 ≠ T
i

)
1 ≠ fi(X

i

) ≠ ·

J

≠
I

Y ú
i

(1)
fi(X

i

) + Y ú
i

(0)
1 ≠ fi(X

i

)

J

{T
i

≠ fi(X
i

)}
D

≠aT 1Ô
n

nÿ

i=1
E(Se�ST

e�)≠1Se�(X
i

, T
i

) + o
p

(1). (A.1)

Comparing with the results in Hirano et al. (2003), it is now clear that the component

in (A.1) is the e�cient influence function, while the remaining component in the
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expansion of n1/2(‚· ≠ ·) is the di�erence between the influence functions of our

estimator and the e�cient estimator, hence is orthogonal to the e�cient influence

function. In fact the orthogonality is also easily checked by direct calculation. 2

A.3 Statement of Lemma 3
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A.4 Comparing average treatment effect estimators for nested propen-

sity models
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and the e�cient influence function is E(ÂSe� ÂST
e�)≠1 ÂSe�. Using the results in Lemma 3,

we have
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iL

2
E(ÂSe� ÂST

e�)≠1 ÂSe�

=
I

Y ú
i

(1)
fi(X

i

) + Y ú
i

(0)
1 ≠ fi(X

i

)

J

{T
i

≠ fi(X
i

)} ≠ aTE(ÂSe� ÂST
e�)≠1{÷Õ(BTX

i

) ¢ X
iL

}

◊ {T
i

≠ fi(X
i

)} ,

Now let

C
i

© B
i

+ aTE(Se�ST
e�)≠1Se�(X

i

, T
i

)

=
I

Y ú
i

(1)
fi(X

i

) + Y ú
i

(0)
1 ≠ fi(X

i

)

J

{T
i

≠ fi(X
i

)} ≠ aTE(ÂSe� ÂST
e�)≠1{÷Õ(BTX

i

) ¢ X
iL

}

◊ {T
i

≠ fi(X
i

)} + aTE(Se�ST
e�)≠1{÷Õ(BTX

i

) ¢ {X
iL

≠ E(X
iL

| BTX
i

)}

◊ {T
i

≠ fi(X
i

)}

=
CI

Y ú
i

(1)
fi(X

i

) + Y ú
i

(0)
1 ≠ fi(X

i

)

J

≠ aTE(ÂSe� ÂST
e�)≠1{÷Õ(BTX

i

) ¢ X
iL

}

+aTE(Se�ST
e�)≠1{÷Õ(BTX

i

) ¢ {X
iL

≠ E(X
iL

| BTX
i

)}
È

{T
i

≠ fi(X
i

)} .
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Now, following the previous notation to let t
i

= BTX
i

, and H(t
i

) = fi(X
i

),

E{C
i

aTE(Se�ST
e�)≠1Se�(X

i

, T
i

)}

= E

ACI
Y ú

i

(1)
fi(X

i

) + Y ú
i

(0)
1 ≠ fi(X

i

)

J

≠ aTE(ÂSe� ÂST
e�)≠1{÷Õ(BTX

i

) ¢ X
iL

}

+aTE(Se�ST
e�)≠1{÷Õ(BTX

i

) ¢ {X
iL

≠ E(X
iL

| BTX
i

)}
È

{T
i

≠ fi(X
i

)}2

◊aTE(Se�ST
e�)≠1{÷Õ(BTX

i

) ¢ {X
iL

≠ E(X
iL

| BTX
i

)}
2

= E

ACI
Y ú

i

(1)
H(t

i

) + Y ú
i

(0)
1 ≠ H(t

i

)

J

≠ aTE(ÂSe� ÂST
e�)≠1{÷Õ(t

i

) ¢ X
iL

}

+aTE(Se�ST
e�)≠1÷Õ(t

i

) ¢ {X
iL

≠ E(X
iL

| t
i

)}
È

H(t
i

) {1 ≠ H(t
i

)}

◊aTE(Se�ST
e�)≠1÷Õ(t

i

) ¢ {X
iL

≠ E(X
iL

| t
i

)}
2

= E

ACI
Y ú

i

(1)
H(t

i

) + Y ú
i

(0)
1 ≠ H(t

i

)

J

≠ aT{E(ÂSe� ÂST
e�)≠1 ≠T E(Se�ST

e�)≠1}÷Õ(t
i

)

¢{X
iL

≠ E(X
iL

| t
i

)}] ◊ H(t
i

) {1 ≠ H(t
i

)} aTE(Se�ST
e�)≠1÷Õ(t

i

)

¢{X
iL

≠ E(X
iL

| t
i

)}) ,

which is not necessarily zero. Thus, there is no definitive relation we can say even

when the parametric model is a submodel of the dimension reduction model.
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Appendix B

Supplement to Chapter 3

B.1 Calculation of the Projection of (ST

—

, ST

“

, ST

–

)T

Replacing ◊(Â“Tz) with ‹(Â“Tz; –), the conditional model of Y on (X, S, Z) in
(3.1) is a fully parametric model. Following Tsiatis and Ma (2004), we know that the
nuisance tangent space � and its orthogonal complement �‹ are respectively

� = [E{f(X, s, z) | w, s, z, y} : E{f(X, s, z) | s, z} = 0],
�‹ = [f(w, s, z, y) : E{f(W, s, z, Y ) | x, s, z} = 0].

We can then easily verify from the definition of L
—

, L
“

, L
–

that
Q

cccccca

LT
—

(w, s, z, y; —, “, –, f
X|S,Z

)

LT
“

(w, s, z, y; —, “, –, f
X|S,Z

)

LT
–

(w, s, z, y; —, “, –, f
X|S,Z

)

R

ddddddb
is an element of �‹ and

Q

cccccca

E{aT
—

(X, s, z; —, “, –) | w, s, z, y}
E{aT

“

(X, s, z; —, “, –) | w, s, z, y}
E{aT

–

(X, s, z; —, “, –) | w, s, z, y}

R

ddddddb
is an element of �. Equivalently, the projection

of (ST
—

, ST
“

, ST
–

)T is indeed (LT
—

, LT
“

, LT
–

)T.

B.2 List of Regularity Conditions

1. The function ◊(·) is twice di�erentiable and its second derivative is Lipschitz-
continuous.

2. The density function of Z has a compact support and is positive on the support.

3. The matrix A and B defined in (3.7) and (3.8) are non-singular and their
elements are bounded away from infinity.
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4. The kernel function K(·) has compact support, is bounded on its support, and
satisfies

s
K(x)dx = 1,

s
xK(x)dx = 0 and

s
x2K(x)dx > 0.

5. The bandwidth h = O(n≠r) for 1/8 < r < 1/2.

Condition 1 is a standard smoothness requirement on ◊(·) required for general
nonparametric smoothing methods. Condition 2 requires the distribution of Z to have
some properties to avoid technical issues such as dividing by zero. This requirement
can be slightly relaxed at the price of more tedious technical treatment. Condition
3 ensures that the estimators of the parameters do not degenerate. Condition 4
rquires the kernel function to be the usual compactly supported second order kenel.
Condition 5 states the bandwidth reuirement and illustrates that the method does
not require under smoothing.

B.3 Proof of Theorem 2

For notational simplicity, we define ’ = (—T, “T)T, L
’

= (LT
—

, LT
“

)T, L
’’

=
ˆL

’

/ˆ’T, L
’–

= ˆL
’

/ˆ–T. Let ◊
’

(Â“TZ) = {◊
—

(Â“TZ) ◊
“

(Â“TZ)}. When solving
for – in (3.5), we have

0 = n≠1/2
nÿ

i=1
K

h

(Â“Tz
i

≠ Â“Tz0)L–

{y
i

, w
i

, s
i

, z
i

; ’, ‚–(’)}

at any ’, therefore

0 = n≠1
nÿ

i=1
K

h

(Â“Tz
i

≠ Â“Tz0)L–’

{y
i

, w
i

, s
i

, z
i

; ’, ‚–(’)}

+n≠1
nÿ

i=1
K

h

(Â“Tz
i

≠ Â“Tz0)L––

{y
i

, w
i

, s
i

, z
i

; ’, ‚–(’)}ˆ ‚–(’)/ˆ’T

+n≠1
nÿ

i=1
K

h

(Â“Tz
i

≠ Â“Tz0)L–

{y
i

, w
i

, s
i

, z
i

; ’, ‚–(’)}

◊
C

0T
—

K Õ{eT
1 Â“T(z

i

≠ z0)/h}(z
i

≠ z0)T

K{eT
1 Â“T(z

i

≠ z0)/h}h
. . .

K Õ{eT
d

Â“T(z
i

≠ z0)/h}(z
i

≠ z0)T

K{eT
d

Â“T(z
i

≠ z0)/h}h

D

,

where 0
—

is a zero vector with the same length as —. Note also that

L
––

{y
i

, w
i

, s
i

, z
i

; ’, ‚–(’)}
= L

◊◊

{y
i

, w
i

, s
i

, z
i

; ’, ‚–(’)}◊
–

{Â“Tz
i

; ‚–(’)}◊T
–

{Â“Tz
i

; ‚–(’)}
+L

◊

{y
i

, w
i

, s
i

, z
i

; ’, ‚–(’)}◊
––

{Â“Tz
i

; ‚–(’)}.
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Taking into account that E{L
◊

(Y, W, S, Z; ’, –) | z} = 0, this yields

◊
–

{Â“Tz0, ‚–(’)}T ˆ ‚–(’)
ˆ’T

= ≠{◊T
–

(Â“Tz0, –)◊
–

(Â“Tz0, –)}≠1
Ë
E{L

◊◊

(Y
i

, W
i

, S
i

, Z
i

) | Â“TZ
i

= Â“Tz0}
È≠1

◊T
–

(Â“Tz0, –)E{L
–’

(Y
i

, W
i

, S
i

, Z
i

) | Â“TZ
i

= Â“Tz0} + o
p

(1)
= ≠{◊T

–

(Â“Tz0, –)◊
–

(Â“Tz0, –)}≠1�(Â“Tz0)≠1

◊T
–

(Â“Tz0, –)◊
–

(Â“Tz0, –)E{L
◊’

(Y
i

, W
i

, S
i

, Z
i

) | Â“Tz0} + o
p

(1)
= ◊

’

(Â“Tz0) + o
p

(1).

Now we expand (3.4) and obtain

0 = n≠1/2
nÿ

i=1
L

’

{y
i

, w
i

, s
i

, z
i

; ’, ‚–(’)}

+n≠1
nÿ

i=1

Ë
L

’’

{y
i

, w
i

, s
i

, z
i

; ’, ‚–(’)} + L
’◊

{y
i

, w
i

, s
i

, z
i

; ’, ‚–(’)}◊T
–

{Â“Tz
i

; ‚–(’)}

◊ˆ ‚–(’)
ˆ’T

D

n1/2(‚’ ≠ ’) + o
p

(1)

= n≠1/2
nÿ

i=1
L

’

{y
i

, w
i

, s
i

, z
i

; ’, ‚–(’)} + An1/2(‚’ ≠ ’) + o
p

(1)

= An1/2(‚’ ≠ ’) + n≠1/2
nÿ

i=1
L

’

{y
i

, w
i

, s
i

, z
i

; ’, ◊(·)} (A.1)

+n≠1/2
nÿ

i=1
[L

’

{y
i

, w
i

, s
i

, z
i

; ’, ‚–(’)} ≠ L
’

{y
i

, w
i

, s
i

, z
i

; ’, ◊(·)}] + o
p

(1).

From (3.5), we also have

0 = n≠1/2
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i=1
K

h

(Â“Tz
i

≠ Â“Tz0)L–

{y
i

, w
i

, s
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◊{ ‚–(’) ≠ –(’)} + o
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(1)

= n≠1/2
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i=1
K

h

(Â“Tz
i

≠ Â“Tz0) < L
–

{y
i

, w
i

, s
i

, z
i

; ’, –(’)}

+n1/2E
1
L

◊◊

[Y, W, S, Z; ’, ◊{Â“TZ; –(’)}] | Â“Tz0
2

◊◊
–

{Â“Tz0; –(’)}◊T
–

{Â“Tz0; –(’)}fÂ“T
Z

(Â“Tz0){ ‚–(’) ≠ –(’)} + o
p

(1),
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hence

◊T
–

{Â“Tz
i

; –(’)}n1/2{ ‚–(’) ≠ –(’)}
= ≠

Ë
E

1
L

◊◊
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{Â“Tz
i
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–
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i
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fÂ“T

Z
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i

)≠1◊T
–

{Â“Tz
i

; –(’)}K
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(Â“Tz
j

≠ Â“Tz
i

)L
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j

, w
j

, s
j

, z
j

; ’, –(’)}

+o
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(1)
= ≠�≠1(Â“Tz

i

)f≠1
Â“T

Z

(Â“Tz
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–

{Â“Tz
i

; –(’)}◊
–
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i
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i
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–

{y
j

, w
j

, s
j

, z
j

; ’, –(’)} + o
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(1).

Incorporating the above, we have
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–
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i
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◊
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j

≠ Â“Tz
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–

{y
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j
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j
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T

V + o
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(1)

= ≠n≠1/2
nÿ
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K
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’◊
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i

, w
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i

, z
i
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i
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–
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; –(’)}◊
–
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i
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–
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i
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j
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–
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, s
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, w
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, s
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, z
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(1).

Plugging the above into (A.1), we obtain the expansion in Theorem 2. The subsequent
results in Theorem 2 are easy to obtain hence their proofs are omitted.
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B.4 Proof of Theorem 3

The asymptotic expansion in Theorem 2 indicates that A≠1Se�{Y, W, S, Z; ’, ◊(·)}
is an influence function (Newey 1989), where

Se�{Y, W, S, Z; ’, ◊(·)} © L
’

{Y, W, S, Z; ’, ◊(·)} ≠ U(Â“TZ)L
◊

{Y, W, S, Z; ’, ◊(·)}.

To show the e�ciency, we only need to show that when f ú
X|S,Z

(x, s, z) = f
X|S,Z

(x, s, z),
Se� is the residual of the orthogonal projection of S

’

onto the nuisance tangent space,
denoted �. Following Tsiatis and Ma (2004), the nuisance tangent space with respect
to f

X|S,Z

(x, s, z) is

�
f

= [E{a(X, S, Z) | Y, W, S, Z} : E(a) = 0],

and L
’

is the orthogonal projection of S
’

onto �‹
f

, the orthogonal complement of
�

f

. Taking derivative of lú(—, “, –, y, w, s, z) with respect to – and considering all
possible –, we obtain the nuisance tangent space with respect to ◊(·) as

�
◊

= {S
◊

(Y, W, S, Z)a(Â“TZ)}.

Thus, the nuisance tangent space is � = �
f

+ �
◊

. Defining
Â�

◊

= {L
◊

(Y, W, S, Z)a(Â“TZ)} =
1
[S

◊

(Y, W, S, Z) ≠ E{a
◊

(X, S, Z) | Y, W, S, Z}]a(Â“TZ)
2

,

where a
◊

satisfies

E{S
◊

(Y, W, S, Z) | X, S, Z} = E[E{a
◊

(X, S, Z) | Y, W, S, Z} | X, S, Z],

and

L
◊

(Y, W, S, Z) = S
◊

(Y, W, S, Z) ≠ E{a
◊

(X, S, Z) | Y, W, S, Z},

then � = �
f

ü Â�
◊

. Subsequently, the orthogonal complement of � is

�‹ = {b(Y, W, S, Z) : E(b | X, S, Z) = E(bS
◊

| Â“TZ) = 0}.

It is easy to see that U(Â“TZ)L
◊

{Y, W, S, Z; ’, ◊(·)} œ Â�
◊

fl �‹
f

. On the other hand,
we already have Se� œ �‹ = Â�‹

◊

fl �‹
f

. Thus, Se� is the orthogonal projection of L
’

on �‹, hence equivalently, the orthogonal projection of S
’

on �‹. This proves the
e�ciency result.

B.5 Proof of Theorem 4

Following the results in Theorem 2, under H0, n1/2(M‚—≠c) follows a normal distri-
bution with mean zero and variance-covariance matrix M(I

—

, 0)A≠1BA≠1T(I
—

, 0)TMT

asymptotically. Consequently, T given in Theorem 4 has an asymptotic Chi-square
distribution with d

M

degrees of freedom.

101


	Semiparametric Estimation and Inference in Causal Inference and Measurement Error Models
	Recommended Citation

	tmp.1506006233.pdf.JDcqT

