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performance with taxi (assuming no walking and waiting time). Figure 5.2 is an example 

of trips starting at Penn Station during 3 pm. Each point on this scatter plot represents one 

O-D pair. For this O-D pair, the origin is within 500-meter buffer zone around Penn 

Station and the destination is outside this 500-meter buffer zone. Location of the point in 

this coordinate system is determined by the travel time using taxi and public transit. The 

slope of the red line in Figure 5.2 is the RI for the cell containing Penn Station during 3 

pm. 

 

 
 

 

Figure 5.2 Scatter plot of O-D pairs starting at Penn Station 

For each O-D pair, both public transit travel time and taxi travel time (if existing) 

are retrieved. Transit travel time was calculated using Dijkstra shortest path algorithm. 

Because all the subway stations and bus stops are connected in the public transit system 

network, cells in which subway stations or bus stops located, as well as cells can be 

reached by walking, have values for transit travel time. However, not all O-D pairs have 
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Figure 6.1: Travel time ratio for 3 am 

 
Figure 6.2 Travel time ratio for 3 pm 
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different places using public transit compare to using taxi, which is an improvement for 

opportunity-based accessibility measurement. RI for destination is calculated and 

presented in Section 6.2.2. In this Section, 9 hospitals were selected as destinations in this 

research, to indicate how convenient for people to go to hospital when using public 

transit compared to using taxi.   

 

6.2.1. RI for Origins 

Figure 6.3 and Figure 6.4 are two maps of RI in NYC, for two different time 

periods in a day. Figure 6.3 indicates RI for 3am, representing transportation conditions 

during night hour and Figure 6.4 shows RI for 3pm, representing that for day hours. In 

both figures, red color indicates steep slopes for regression lines, which means longer 

travel time public transit needs than taxi, while blue color indicates smaller differences 

between public transit and taxi. These break numbers are quantile division of all possible 

slopes. In other words, the array of slope values (combined 3 am and 3 pm) was divided 

into 9 classes and the amounts of numbers in each class are the same. 

For each origin, we first plotted travel time for all the destinations onto a scatter-

plot, similar to Figure . Valid locations were determined according to criteria stated in 

Section 5.4. With limited number of trips, many cells have no value, which are 

represented in black color. 

In Figure 6.3 and Figure 6.4, the majority of Manhattan areas and some parts of 

Brooklyn have continuous values. In Queens, only areas along major subway lines and 

around some stations have values. Whether one cell has value or not indicates the 

transportation demand for people in this cell. 
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Figure 6.3 Relative Index for 3 AM 

 
Figure 6.4 Relative Index for 3 PM 
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In the map for 3 am, most areas are shown in red color, which means, for every 

one more minute traveling in taxi, public transit riders should expect at least 4 more 

minutes needed when riding public transit. In most areas (shown in dark red), public 

transit riders should expect at least 8 more minutes for public transit. Map for 3 pm is 

quite different from the one for 3 am, where the majority of Manhattan is covered by blue 

or yellow color. This means the majority of Manhattan areas have low RI, indicating high 

public transit accessibility. During day hours, for every one more minute traveling in taxi, 

public transit riders should expect less than one or two more minutes increasing in using 

public transit system.  

6.2.2. RI for Destinations 

This section presents result from RI calculation for selected destinations. Nine 

major hospitals were selected as destinations. This result provided a practical scenario 

about how convenient for people to go to hospitals in 3 am and 3 pm. Similar to 

calculation in Section 6.2.1, for each hospital as a destination, the original cell mush have 

more than 10 trips to be considered as a valid origin for that O-D pair. Since all of the 9 

hospitals have more than 10 O-D pairs, all of the 9 hospitals were included in this 

computation. Table 6.1 and Figure 6.5 showed the results of RI for these 9 hospitals as 

destinations during 3 am and 3 pm.  
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Table 6.1 RI for 9 major hospitals 

Hospital 

ID 

Hospital Name 3am 3pm 

1318 Wyckoff Heights Medical Center 4.135629 2.497573 

1437 New York-Presbyterian/Lower Manhattan 

Hospital 

5.476785 2.898124 

1438 Bellevue Hospital Center 7.54288 2.657518 

1439 Mount Sinai Beth Israel 6.304742 2.718745 

1446 NYU Hospital for Joint Diseases 6.084728 2.668831 

1460 New York Eye and Ear Infirmary of Mount 

Sinai 

5.995072 2.451585 

1463 NYU Hospitals Center 7.841157 2.620224 

1692 Woodhull Medical & Mental Health Center 4.317989 1.798184 

9700 Lenox Health Greenwich Village 5.703344 2.613187 

 

7 of these 9 major hospitals locate in lower Manhattan and 2 locate in Brooklyn. Similar 

to previous analysis, RI for 3 am is much higher than RI for 3 pm, indicating lower 

accessibility of public transit system during night hours. In addition, hospital Woodhull 

Medical & Mental Health Center has the lowest RI at 3 pm (1.798184), which is the only 

hospital has RI smaller than 2. This hospital also has the second lowest RI at 3 am. 

Compared to other hospitals, NYU Hospitals Center and Bellevue Hospital Center locate 

farther away from subway routes. These two hospitals have the highest RI during both 

time periods, which indicates low public transit accessibility to reach these two hospitals. 
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Figure 6.5 RI for 9 hospitals in NYC 
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provided evidences about travel demands for taxis. Since public transit network almost 

covers the whole NYC (see Figure 4.2), whether a location is valid or not was actually 

determined by the number of taxi trips starting from that location. In figure 4 and 5, most 

areas of Manhattan have enough taxi trips to be considered as valid. Outside of 

Manhattan, most valid locations are along subway lines. This distribution pattern 

indicated taxi travel demand. From this visual examination, NYC provided a good public 

transit service to catch people’s travel demands. 

At the same time, one may notice that the pattern of subway lines are better 

represented by travel demand than the patterns of buses. This shows that, people 

preferred to ride subways than buses. Maybe riders preferred to avoid ground traffic 

congestion, or subway riding environment.  

During 3 am, RI results for NYC was mainly in red or orange colors, even in 

Manhattan area, where people would expect the most convenient public transit services. 

In 3 pm, Manhattan area shows results as most people would expect. Blue and yellow 

color in Manhattan represented high accessibility. This difference between 3 am and 3 

pm are resulted from the frequency of subway services during day hours and night hours. 

With reduced number of running subways during night hours and consequent longer 

waiting time, accessibility for public transit during night is much lower than accessibility 

during daytime.  

Similar results can be found in results of RI for selected destinations as well. For 

all the 9 hospitals, RI during day hours for each hospital is much lower than RI during 

night hours. During day hours, RI for these 9 hospitals range from 1.798184 to 2.898124. 

During night hours, RI ranges from 4.135629 to 7.841157. The range of RI and RI 
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CHAPTER 8 

CONCLUSION AND FUTURE RESEARCH 

This research developed a new measurement of accessibility that tried to bridge 

current methodology with the increasing availability of multimodal transportation data. 

Current measurements of accessibility either choose one important location as origin or 

destination and measure accessibility from that origin or to that destination, or 

researchers arbitrarily assign scores to opportunities and measure scores of different 

origins as accessibility.  The major contribution of this research is to develop a new 

measurement of accessibility to integrate multiple transportation modes. This method 

gives equal opportunity for all possible destinations, which reduced subjective bias in 

opportunity weighting. To achieve these objectives, this research used historical taxi trip 

records and public transit timetable to compute taxi and public transit travel time. Then 

all the pairs of origin-destination (O-D) were plotted with taxi travel time on x-axis and 

public transit travel time on y-axis. One location must have no less than 10 O-D pairs to 

be considered as a valid location. For each valid location, total least square regression 

was applied and the slope from regression is defined as RI, representing the measurement 

of accessibility. 

Mapping RI for NYC, especially during daytime, provided visualization of spatial 

accessibility patterns. The east side of Central Park demonstrated the fast corridor created 

by express subway lines. Most areas with lower RI, which means better public transit 
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accessibility, locate along or near subway lines. Public transit, especially subway systems 

in NYC, provided good service to meet people’s travel demands. 

RI for different time periods showed the temporal changes of accessibility 

patterns in NYC. During night hours, limited public transit services were provided and 

less traffic congestion happening on the road. Therefore RI is high during night hours, 

indicating low accessibility level of public transit. During daytime, with more frequent 

subway running in the NYC and express lines, the accessibility of public transit is higher, 

represented as low RI on map. Comparing RI of the same location during different time 

of a day indicates the temporal changes of accessibility. 

On the other hand, RI can measure accessibility of destination. In this research, 9 

major hospitals were chosen as destinations and were compared for how convenient for 

people to reach hospital. This application provided practical usage to RI in urban 

planning and development. 

However, this research shows some limitations and needs further improvement. 

First major limitation is about taxi data. Since taxi travel time was retrieved from 

historical taxi data, errors existing in taxi data would affect this measurement. For 

example, in the map of RI for 3 am (see Error! Reference source not found.), one taxi 

trip record with long travel time affected RI for that area. In addition, a 500-meter buffer 

zone was applied as taxi trip inclusion area. However, this buffer zone created larger 

effects of one incorrect taxi trip records to areas around that point. In future research, 

more efforts are needed in early-stage of data clean and filter out incorrect records in taxi 

trips. Second limitation of this research is about valid locations. With assumption of 500-

meter walking distance, all the subway stations, bus stops, and 500-meter walking 
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accessible areas have public transit time for accessibility measurement. But to calculate 

RI, each of these locations must have enough (10 was the threshold used in this research) 

taxi trips starting from or stopping at that location to be considered as a valid origin or 

destination. Many areas, especially areas other than Manhattan, were not valid in this 

research. In future research, either a smoothing algorithm or a scalable filter could be 

applied to increase the number of valid locations. Another limitation with public transit 

was about possible delays or other unexpected situations. If RI is applied to city 

development or travel planning, how to include real-time information and improve 

computational speed require further research. In addition, the walking distance of local 

people varies in different places. More details about local people’s travel behaviors 

require further analysis. 

This research also provides one applications of RI that measured accessibility for 

people to reach 9 major hospitals in NYC. Similarly, RI can be applied to measure 

accessibility for schools, public libraries, or tourism. Also, given standardized data 

format for taxi trip records and public transit timetable, this research can be applied to 

different cities.
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