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Where, fclimatology(x,y) is the sum of the footprint function computed at point x and y, and 

the N is the number of viable observations used to compute the flux footprint 

climatology. A value of 0% would indicate that the flux footprint climatology represented 

all the information available in flux footprint output. No gas concentrations were applied 

to the PDF curve since the main purpose of this analysis was to determine the sensitivity 

of a flux footprint to changing grid cell sizes. The sensitivity of gas concentration values 

would be the same, because this conversion (from probability to flux concentration) is 

simply a multiplier after the footprint is computed.   

The primary uses of a flux footprint model is to identify the sink/source location of 

measured gases, so the location of this source is a key output. Sensitivity of this location 

to size and raster method was also tested. Movement of the peak source location was 

identified. To do this, the annual 10-meter footprint climatology from each rasterization 

method was used as the reference. The center x,y location of the max cell was found for 

each year and the straight-line distances from this reference value were computed for 

each cell size. The 10 m footprint was chosen because it was the smallest cell size tested 

and is commonly used in the literature (Kim et al., 2006b; Leclerc & Foken, 2014), and 

would represent a typical computation method. 

5.4 RESULTS 

5.4.1 INFORMATION LOSS 

Information loss results are presented in Figure 5.4 and Figure 5.6 for the 1D H2000 

annual climatology and 2D K2015 8-day climatology. The results found larger amounts 

of information loss with increasing grid cell size and sampling intervals when using the 
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1D equal interval sampling, 1D integration at equal intervals, and 2D area integration. 

Information loss was highly dependent on the rasterization methodology used.  

We investigated the percent information loss for upscaling the 1D flux footprint 

point-sampling and equal interval integration methods (Figure 5.4). When using the point 

sampling method, a significant amount of information loss was found even at the smallest 

cell size. Loss increased with cell size becoming coarser. This was somewhat expected, 

as increasingly coarse cell sizes increase the probability of missing small changes in the 

footprint function, in effect “smoothing” it. The results in Figure 5.4a indicate that the 

information loss leveled off around 100 meters when loss reached 98% and the 

differences began changing by <1% with each increase in cell size. The point sampling 

method resulted in 90.5% information loss when grid cell sizes were equal to 10m and 

increased to nearly 100% when grid cell sizes were larger (Figure 5.4a). This follows 

findings of Kim et al. (2006), who also indicated a degradation in model quality, around 

100m.  The use of larger grid cells results in a large amount of footprint function 

information loss when using point sampling methodology.  

The equal interval integration method also resulted in information loss between 

the continuous PDF curve and the modeled output (Figure 5.4b). Again, as with 1D point 

sampling, as the sampling interval increases, the peak source location and small changes 

in footprint values can be missed. Overall loss was between 5 and 85 percent. When grid 

cell size was between 70m and 120m the information loss is negative at the US-ARM 

station. This should not be interpreted as information gain, but rather as an 

overestimation of specific footprints, and thus still an error. This is due to the trapezoidal 

technique used for integrating under the curve. The trapezoidal integration between two 
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sample points is linear and the error between the continuous 1D flux footprint curve and 

the sampled curve can be negative information when the function concaves up and 

positive when the 1D curve concaves down (Chapra, 2008). Thus, this method can 

overestimate the flux footprint contribution causing the negative loss values (or ratios > 

100%) seen in Figure 5.4b (US-ARM, red line). When cell size is between 70m and 

120m, the sampling interval is large enough that curvature of the continuous function is 

no longer representative and the curve can be overestimated. An illustration of how the 

overestimation occurs through the trapezoidal rule can be seen in Figure 5.5. As a result, 

the percent information loss indicates that the 1D flux footprint curve was overestimated 

at US-ARM (Figure 5.4b, red line). The overestimation of the 1D flux footprint curve is 

site specific, this symptom is not seen at US-Ne1 (Figure 5.4b, blue line), but the 

information loss is greater for this station because the fetch is larger. The percent 

information loss shows a sudden increase at cell size of 120m when cell size is greater 

than 120m. At 280m (red, US-ARM), 300m (blue, US-Ne1), and 620 (blue, US-Ne1) 

there are abrupt shifts in the increasing trend, this is because the total fetch distance for 

the 1D flux footprint curve computed during unstable atmospheric conditions is 

approximately 420m at US- ARM and 620m at the US-Ne1. The distance is a function of 

measurement height, which is 4.28m at US-ARM and 6.2m at US-Ne1. At 420m (US-

ARM) and 620m (US-Ne1), the unstable atmospheric PDF curves, which are shorter in 

distance due to atmospheric mixing, could no longer be computed. Therefore, the size of 

the numerator in equation 2 decreases substantially because all unstable atmosphere 

observations will no longer be aggregated to the grid when using equal interval 

integration or point sampling methodologies because the curve sampling will be larger 
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than the fetch. However, the observation itself is still counted as a value of 1 in the 

denominator. These abrupt shifts will change from site to site, as demonstrated in Figure 

5.4 because it is dependent on measurement height. Therefore, it is important when 

computing flux footprints to consider carefully the fetch of the measurement tower and 

the underlying assumptions of the model. Effectively when the desired cell size is greater 

than 100 times the measurement height, the flux footprint is smaller than the cell size. 

Therefore, the validity of the aggregation is independent of cell size. However, this does 

not mean that the observations represent the entire grid cell since coarser grid cells often 

represent multiple land covers.  

Information loss was computed for the aggregate assignment method for 1D flux 

footprint using a consistent sampling interval of 4m. A value of 4m was selected to be in 

line with the fetch to height ratio provided in H2000. In theory, information loss should 

always be constant for this method, since every point is directly accounted for when 

aggregating point to raster, meaning the total sum of footprint values will be constant for 

all cell sizes. However, for all the reasons presented above, there is always potential for 

some information loss due to the initial curve sampling. For the 4-meter sampling 

interval, information loss was 23.6% of the total possible footprint climatology at the US-

ARM station and 24.1% at the US-Ne1 station. The closer the sampling interval is to zero 

the smaller the difference is between the continuous PDF function and equal interval 

sampled PDF curve. Since a 4m sampling interval was used for aggregate assignment 

methodology for 1D flux footprint curves, there was no change in information loss with 

increasing cell size. Therefore, it is important to note that while potentially more 
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computationally expensive, aggregating a 1D footprint to a grid is a better practice for 

upscaling.  

 The base curve’s sampling interval of the 2D flux footprint was predefined by the 

FFP model, and was dependent on stability and measurement height. The information 

loss when conducting 2D sum integration was 39.35% +/- 12%. Just like the 1D 

aggregate assignment method, the information loss did not vary with cell size because the 

underlying sampling interval did not vary within the footprint model. However, the 

information loss when using the 2D area integration method did vary with cell size 

because the methodology computes a mean f(x,y) value for the entire pixel. The larger 

the pixel, the greater the variety in points aggregated into a single grid cell. The 

information loss at each grid cell size tested in the 2D area integration methodology are 

shown in Figure 5.6. One limitation that must be considered when thinking about 

information loss in the 2D flux footprint is that approximately 97-99% of the total flux 

footprint is explained by FFP model (Kljun et al., 2015), meaning 1-3% is not accounted 

for in prior to post-processing of the flux footprint.  

5.4.2 SOURCE IDENTIFICATION ERROR 

The second metric used to assess the quality of each gridding method was computing the 

change in the peak source location. In this analysis, the location of the peak value in each 

flux footprint climatology was compared to the 10m reference climatology for the same 

method. The peak flux footprint source location appears to move further away from the 

station with coarser grid cell size for the 1D point sampling, and 1D equal interval 

integration methodologies. These methodologies sample the continuous 1D flux footprint 

function more infrequently, which causes the true peak source location to be un-sampled.  
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The result is that the peak continually migrates further from the “true” source location as 

cell size becomes coarser as shown in Figure 5.7. In some cases, the maximum value 

migrates up to 1500m away from that computed by the 10m flux footprint. In Figure 5.8b 

(US-ARM) the peak value migrated the furthest from the original 10m grid cell size 

maximum footprint climatology location. Figure 5.8a represents the migration of the 

maximum footprint climatology location for US-Ne1; the peak location migrates 

approximately 500m, which is one third of the migration that occurred at the US-ARM 

station. As cell size becomes coarser the spatial precision of the station location decreases 

(Reithmaier et al., 2006), which could contribute to the migration of the peak flux 

footprint output with increasing cell size. As the peak location migrates further away 

from the station, multiple land covers are crossed and ultimately changes the ecosystem 

and land cover type that is being represented in the flux footprint climatology and 

decreases the maximum value in the flux footprint climatology.  

The 1D aggregate assignment method and 2D sum integration method cause the 

values of a single cell to be substantially higher than finer grid cells. When using these 

methods, coarser grid cells are sampled more frequently than smaller grid cells when 

aggregating to grid. It is assumed that a single pixel is homogeneous and therefore the 

entire area is contributing equally to a much larger source contribution that what is found 

in reality. This is a limitation of rasterizing flux footprint models and upscaling flux 

observations. In Figure 5.9, the flux footprint climatology using the 1D aggregate 

assignment method for US-ARM is depicted in 10m, 30m, 250m, and 500m grid cell 

sizes, Figure 5.9a and Figure 5.9b depict the footprint at a 1:30,000m spatial scale, while 

Figure 5.9c and Figure 5.9d depict the footprint climatology at a 1:60,000m spatial scale. 
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As cell size becomes coarser the percent contribution of the footprint with values greater 

than 0.03% increases. This results in significant over estimation of source location 

contributions.  

5.5 DISCUSSIONS 

Overall site specifics play the biggest role in sensitivity. That is, regardless of the 

rasterization methods, site fetch plays the biggest role in sensitivity. Our results show the 

tower fetch needs to be a minimum of 3 times the grid cell size used. Therefore, at sites 

where the maximum fetch is 500m upscaling should not be performed for final cell sizes 

greater than 166m (500/3m). This limits which flux towers would be available to scale to 

250m grid cell size, as found in several bands in MODIS datasets. This is especially an 

issue for flux towers within the AmeriFlux network that are located on land covers where 

measurement and canopy height are small because their fetch may be smaller than the 

remote sensing pixel. This does not infer that these sites represent the entire pixel.  

The 1D point sampling and 1D equal interval integration methods resulted in the 

migration of the maximum footprint value location away from the flux tower. This is a 

result of the sampling intervals that become more infrequent causing the “true” peak in 

the flux footprint to be un-sampled (Figure 5.7). Additionally, the 2D sum integration and 

1D aggregate assignment methodology caused large footprint values to represent a larger 

area than the true size of the peak source location due coarser cell sizes being aggregated 

more frequently than finer spatial resolution grid cells. Finally, the 1D point sampling, 

1D equal interval integration, and 2D area integration resulted in larger amounts of data 

loss. All of these limitations cause upscaling flux footprints to match spatial resolutions 

of satellite data products to accurately represent regional land-atmosphere dynamics 
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inherently difficult because the flux footprint is station fetch and cell size dependent 

(Mihailovic et al., 2005; Reithmaier et al., 2006). This results in the relationship between 

satellite data products and flux footprints being site specific, making modeling at regional 

and global scales challenging due to the variability in sensitivity. This further supports 

the findings of Kim et al. (2006) that found that the sensitivity of flux footprints to 

differing cell sizes was land cover dependent because fetch is a function of land cover 

type. These findings will indicate that sensitivity analysis of station to pixel size will need 

to conducted for each station because fetch will vary by measurement height and land 

cover type. 

It is in the best interest of the user to use a sampling interval that is less than 

100m, and include integration between points to reduce over estimation of the 1D flux 

footprint curve (Figure 5.5) and reduce information loss for the 1D and 2D flux footprint 

(Figure 5.4and Figure 5.6). In terms of information loss, 1D aggregate assignment to a 

grid or 2D sum integration are the best options. However, it is not without limitations. 

One must still take care to select a cell size that will be representative of the underlying 

surface cover as the maximum value will represent a larger more heterogeneous area as 

cell size increases. This has broader implications for applying flux footprint models in 

heterogeneous environments.  

It is the authors’ recommendation that scientists who are trying to upscale and 

project flux footprints onto a grid should conduct a sensitivity for tower in their study 

area. This is because the sensitivity of an upscaled flux footprint is dependent on the fetch 

of the station, which will change with measurement height and canopy height, which may 

change throughout the growing season. Thus, the authors cannot give specific guidance 
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on an appropriate cell size because this size will change from site to site. Grid cell sizes 

greater than 50m incur larger differences when using the 1D integration method, and the 

1D point sampling method for cell sizes greater than 10m should not be used. This 

analysis will give users assurance when upscaling flux footprints to Landsat (30m) spatial 

resolutions using the recommended methodologies, but little assurance is given when 

upscaling boundary layer footprints to larger spatial resolution datasets such as MODIS 

(250m, 500m, 1km).  

Additionally, the 1D point sampling method, 1D integration methods, and 2D area 

integration are particularly sensitive to information loss with coarser cell size. The 1D 

integration method can both overestimate and underestimate as the sample interval 

increases because the integration method will no longer capture the true curvature of the 

flux footprint curve. It is more appropriate to use cell sizes that are less than 50m when 

using the 1D integration method to avoid overestimating and losing up to 85% of the 

PDF curve as cell sizes approach 1000m. The 1D point sampling method should not be 

used for cell sizes that are 10m or greater to avoid losing more than 90% of the PDF 

curve. The 1D point sampling method and integration methods should not be used to 

upscale boundary layer footprints to grid cell sizes that match satellite products such as 

MODIS (250m, 500m, 1km) because the spatial resolution is too coarse to appropriately 

represent a flux footprint without significant data loss. The 2D area integration method 

should not be used for upscaling 2D flux footprints because there is more than 98% 

information loss.  

This analysis underscores the difficulty of representing land-atmosphere 

interactions, such as carbon dynamics, at a regional scale. It was assumed that the land 
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cover was homogeneous across a single pixel in this analysis, which is not the case in 

reality. Therefore, spatial heterogeneity was not considered. Other subtle changes that 

were not considered were changes in vegetation height, leaf out, leaf area and senescence, 

which will result in intra annual changes in sensitivity because these variables have an 

effect on the roughness and canopy height, which are used when calculating a flux 

footprint (Soegaard et al., 2003). Future work will need to address the sensitivity of 

spatial heterogeneity and changes in surface roughness, which may result in a smaller 

station fetch and therefore require smaller cell sizes.  

5.6 CONCLUSIONS 

In order to test the sensitivity of flux footprint models to increasingly coarse cell size, the 

H2000 1D  and K2015 2D flux footprint models were run for 2004 and 2005 at the US-

ARM and US-Ne1 AmeriFlux stations. The flux footprint output was projected onto 

varying grid cell sizes that are found in commonly used satellite platform datasets using 

five projection methods, which included 1D equal interval sampling, 1D integration 

under the curve at equal intervals, 1D aggregate assignment to a grid, 2D sum integration, 

and 2D area integration. The analysis found that the fetch of the flux station should be at 

least three times the grid cell size, the maximum flux footprint source location migrated 

away from station due to larger sampling intervals, and the flux footprint values increased 

with increasing grid cell size to represent a larger more heterogeneous area. The analysis 

also determined that the 1D equal interval sampling, 1D integration under the curve at 

equal intervals, and 2D area integration methodologies are highly sensitive to information 

loss with coarser cell sizes and should not be used to project flux footprints to grid cells 

larger than 50m. Each of the five methods had their inherent differences in a modeling 
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framework that is already plagued with significant errors and limitations. This analysis 

presented the differences and limitations that can occur when converting 1D or 2D flux 

footprint to a 2D spatial grid. Overall, we conclude that users of flux footprint analysis to 

not use 1D sampling or 1D integration methods when required grid cell sizes are 10m or 

larger. When rasterizing flux footprints to match spatial resolutions found in satellite 

platform datasets such as MODIS (250 -1000m grid) and GOES (1000m), rasterization of 

flux footprint analysis should not be used if the fetch is not at least three times the spatial 

resolution of the grid and should be considered that there will be significant information 

loss and spatial mismatch in source locations. When rasterizing flux footprints to match 

spatial resolutions from satellites such as SPOT (10m) or Landsat (30m), rasterization 

should be conducted with precaution and a sensitivity analysis should be conducted for 

each flux station before upscaling to 10m or 30m grid cell sizes.  

We show here that simply gridding footprint outputs is not sufficient. It is a 

common method to use flux footprint model outputs to scale modeled carbon flux values 

in order increase the number of pixels used to evaluate a model. While, new 

methodologies have emerged for upscaling ground observed flux values (Metzger et al., 

2013; Xu et al., 2017), they do not consider sensitivity on upscaling for model evaluation 

of remote sensing based models, which we show to be important. 

Future work will evaluate the effects of differing numerical integration techniques 

on the rasterization of flux footprints. This analysis evaluated integration techniques with 

trapezoidal techniques, but there are other methodologies such as Simpson’s 1/3 rule and 

Romberg integration that will need to be tested. Additionally, the methodologies will be 

tested against existing flux footprint studies to verify whether rasterization techniques 
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could potentially change the conclusions of existing work that made use of rasterized flux 

footprint models.  

Table 5.1. Metadata of AMERIFLUX stations used for computing footprint function in 
2004.  

Station ID Station Name Vegetation Measurement 
Height [m] 

Canopy 
Height [m] 

Tower 
Height 
[m] 

US-ARM1 OK - ARM 
Southern Great 
Plains main 
site 

Croplands 4.28 0-0.5 60 

US-Ne12 NE - Mead 
irrigated 

Croplands 3 or 6.2 2.9 6 

1Raz-Yaseef et al., 2015, 2Verma et al., 2005 

 

 

Figure 5.1. On the left (a) is the flux footprint at US-Ro1 on 4/19/2008 04:30 (CST). In 
this scenario the atmosphere was considered stable. On the right (b) is the flux footprint at 
US-Ro1 (a) on 3/19/2008 12:30(CST), where the atmosphere was considered unstable. The 
red lines are the flux footprint contribution lines using a computed boundary layer height, 
while the blue lines are the contribution lines using a 1000m boundary layer height.
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Figure 5.2. The methods for projecting a continuous footprint curve onto a grid include: 
(a,b) an equal interval sampling, (c,d) integration at set interval, and (d,e) assigning an 
aggregate value to a grid cell.  Equal interval sampling method, the curve was sampled in 
the center of the pixel and is assumed to represent the entire pixel. Integration at set 
interval used a point at the start and end of the pixel. Assigning an aggregate value to a 
grid cell, more than one point can be assigned to a single grid cell. 
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Figure 5.3. Upscaling of 2D flux footprint from FFP function. The yellow is the 
representative area of the grid cell of the boundary layer footprint output which has been 
integrated to find the area and then up-scaled to the bold lines are the larger grid cells to 
represent a larger grid cell size.
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Figure 5.4. Percent information loss of footprint function for US-ARM (red) and US-NE1 
(blue) AmeriFlux stations when upscaled using (a) equal interval point sampling method 
from 10 to 1000m in increments of 10m, where the continuous PDF function equal to 1 is 
truth. While (b) shows the percent information loss using the integration over equal 
interval method, where the continuous PDF function equal to 1 is truth.  
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Figure 5.5. When integrating between two points using the trapezoidal rule, as the 
distance between sample observations increases the representation of the PDF curve is 
generalized. In this example, when the PDF curve concaves downwardly, the trapezoidal 
rule overestimates the volume under the PDF curve resulting in a positive difference 
between the PDF curve and the sampling line. 
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Figure 5.6. Information loss using the 2D area integration at the intervals of 10m, 30m, 
100m, 250m, 500m, and 1000m. The error bars are the standard deviation of the percent 
error.
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Figure 5.7. The equal interval sampling and integration at equal intervals upscaling 
methods sample the PDF curve at intervals equal to the grid cell size. In this example, as 
the grid cell size becomes coarser, the peak (blue dots) of the continuous PDF curve is no 
longer sampled and the sampled peak migrates further away from the measurement 
tower.
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Figure 5.8. The center point for the maximum footprint climatology value for each grid 
cell size ranging from 10 to 990m at the (a) US-Ne1 and (b) US-ARM AmeriFlux 
stations. The PDF curve was aggregated to the grid. The x and y coordinates are in meters 
for the local UTM Map Projection. The two maps are on different scales. 
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Figure 5.9. Annual footprint climatology for US-ARM AmeriFlux station for 2004 using 
the aggregation of points to a grid method depicted in (a) 10m, (b) 30m, (c) 250m, and 
(d) 500m grid cell sizes. The spatial scale for (c) 250m grid, and (d) 500m grid is a scale 
of 1:60,000 meters, while (a) 10m grid, and (b) 30m are a scale of 1:30,000. The values 
represent the percent contribution of cell to total footprint. This shows the significant 
change in footprint area with increasingly coarse grid cell size.  
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CHAPTER 6 

CONCLUSIONS 

Upscaling carbon flux measurements to represent regional scales has its caveats and 

should be approached with care. This dissertation examined two approaches extending 

ground-based point measurements to a broader spatial scale by using remote sensing. In 

Chapter 3, the appropriate vegetation index for identifying carbon flux phenology metrics 

was identified, and it was found that the appropriate vegetation index varied by crop type 

and the phenology point you are trying estimate. In Chapter 4, an empirical model was 

developed and validated by directly using the satellite observed surface reflectance values 

to explain NEE by crop type and period of the growing season. In this chapter the surface 

reflectance bands that best explained the variance in ground observed NEE were 

identified and used in the model calibration. Results indicated that NEE could be 

estimated with better certainty when modeling by crop type and period of growing 

season. Finally, Chapter 5 presented a sensitivity analysis of various rasterization 

methods commonly used in upscaling point measurements. The sensitivity of 1D and 2D 

flux footprints to rasterization and varying cell sizes was evaluated, and best practices for 

rasterizing these continuous functions were presented.  

 Overall, several common themes run throughout the three manuscripts presented 

here. Most significantly, upscaling flux measurements is extremely sensitive to station 

fetch and time varying fetch must be considered before using such measurements to 
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calibrate or validate regional climate models. In Chapter 3 and Chapter 4, a flux footprint 

was used to determine whether the flux observations represented the crop planted during 

that year. However, there were limited number of datasets (particularly in chapter 4) 

available to evaluate the empirical model for estimating regional carbon dynamics in 

maize and soybean fields. Therefore, an 8-day flux footprint was used to increase the 

number of pixels used for model evaluation. In generating footprints of this nature, the 

question arose of how to represent a continuous flux footprint function to a gridded raster 

that represented a coarser spatial area than the spatial scales of the flux footprint and how 

much information is lost during the conversion (presented in Chapter 5). This is not an 

uncommon scenario in merging data sources disparate in time and space, however, no 

previous flux studies have specifically addressed this mismatch. When rasterizing a flux 

footprint, integrating under the probability density function results in the least amount of 

information loss. However, as long as a pixel is homogeneous and represents the same 

crop type as the flux observation 80-90% of the time, then no flux footprint needs to be 

used. Future work will need to address the influence of heterogeneity of land cover 

within an up-scaled flux footprint.   

A second theme is that in the broader field of climate studies, models are only as 

good as the data used to calibrate them. In the work presented here, new techniques were 

used to leverage various data sources, however, a limited availability of station data did 

not allow for a full exploration of the effects of land management of agricultural fields. 

Future application of these methods to other datasets may allow for such understanding. 

Additionally, significant spatial gaps in flux observations to model NEE exchanges, 

inhibits the ability for this model to be applied across varying climate zones with 



 

109 
 

different land management techniques. Tillage and irrigation can have a considerable 

amount of impact on the amount of carbon cycling, making a land cover more of a sink or 

source of carbon. Future research will need additional field data across varying climatic 

zones and land management techniques to provide more certainty in the modelling of 

maize and soybean. Additionally, the methodologies developed in this dissertation for 

estimating NEE from remote sensing will be expanded to other crop types across the US 

and the world. Which will also require additional field based datasets.  

This collection of manuscripts showed the importance of estimating NEE at 

regional scales in agricultural regions using remotely sensed surface reflectance and 

meteorological datasets. The new methods developed can identify key carbon flux 

phenology metrics and estimate NEE with greater certainty when crop type and period of 

the growing season were considered. Previous ground-based research had found that 

there were differences in carbon uptake of maize and soybean due to their mismatch in 

photosynthetic pathways (C4 vs. C3 pathway), amount of biomass, and differences in the 

vegetative stages of each crop. The new methodology addresses limitations of existing 

regional climate models that model carbon dynamics. These new methodologies will 

allow for better regional estimates of carbon dynamics in agricultural fields. 

Understanding the regional contributions of agriculture to the carbon budget is not well 

understood. These methodologies will give scientists a better understanding of regional 

contributions of agricultural crops to the carbon cycle, which will give a better 

understanding of how agriculture will affect carbon dynamics in future climate change 

projections. Future research will access the influence of maize and soybean on 

atmospheric carbon, by modeling NEE for the entire US Corn Belt. The carbon cycling 
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will be analyzed annually for the US Corn Belt, and then changes will be correlated with 

changes due to meteorological conditions, area of land producing crops, and yield for the 

year. Ultimately the existing Landsat and MODIS satellites will be retired in the future. 

Therefore, newer satellites such as NPP VIIRS and GOES 16 will need to be evaluated 

for estimating NEE in agricultural regions. Therefore, it will be important to continue to 

improve this work and expand it to new crops and satellite platforms. 
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APPENDIX A – MEAN SIGNED DIFFERENCE FOR CFP METRICS 

TABLE A1. Average mean signed difference in days between NEE-based phenology metrics and VI-based phenology metrics across 
(a) all maize, (b) soybean fields, and (c) soybean and maize combined. A positive value indicates that the VI-based phenology metric 
was estimated too early, and negative values indicate the VI-based metric was estimated too late. Significant vegetation indices are 
highlighted in bold italics.  

VEGETATION 

INDEX 

SOS SINK POS SOURCE EOS 
MEAN STDEV MEAN STDEV MEAN STDEV MEAN STDEV MEAN STDEV 

(A)                                                                                     MAIZE 
EVI 4.27 14.14 28.00 18.21 -11.20 20.26 -6.40 14.01 7.20 15.2956 

GNDVI -3.73 24.16 27.33 30.98 -11.84 23.22 -27.43 27.27 -13.71 28.365 
LWSI -23.20 17.87 -3.00 14.77 -13.76 23.72 -3.00 20.92 9.00 20.702 
MSI 10.67 40.42 54.00 56.17 -1.92 61.68 58.67 132.29 72.00 128.7975 
NDI7 -18.67 15.32 6.00 18.41 -13.76 23.72 -21.33 18.76 -8.89 21.3333 

NDSVI -8.53 36.97 10.67 41.12 -1.92 26.46 -2.18 21.79 10.91 19.6848 
NDTI -10.13 39.82 9.33 38.57 -11.20 36.66 -0.89 76.78 11.56 75.8009 
NDVI 3.20 19.78 22.00 20.22 -12.48 24.12 -16.80 21.48 -3.20 24.2065 
SAVI 10.67 14.40 33.33 17.34 -10.24 20.72 -15.20 13.83 -1.60 14.9904 
STI -30.40 9.66 -6.00 17.44 -15.36 26.42 -30.22 19.91 -16.00 23.6643 

(B)                                                                                   SOYBEAN 
EVI 32.00 28.84 57.33 26.97 -1.23 19.55 -34.67 12.04 -21.33 12.04 

GNDVI 5.33 32.33 38.67 23.96 -1.85 16.70 -41.60 8.76 -27.20 7.1554 
LWSI -52.00 5.66 -11.20 9.12 -10.46 18.00 -24.00 9.24 -16.00 9.2376 
MSI 26.67 37.81 45.33 38.75 -0.62 16.80 -6.40 35.51 8.00 30.4631 
NDI7 -13.33 46.88 14.67 41.54 -10.46 18.00 -33.33 12.82 -20.00 14.0855 

NDSVI 29.33 12.22 50.67 15.73 -6.77 17.23 -41.33 35.93 -28.00 30.2523 
NDTI -12.00 50.91 0.00 38.09 29.54 79.09 44.00 121.09 57.33 117.512 
NDVI 32.00 28.84 61.33 29.79 -8.00 16.97 -36.80 13.39 -22.40 11.8659 
SAVI 32.00 28.84 57.33 26.97 -8.00 17.28 -36.00 12.13 -22.67 10.6333 
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STI -8.00 44.54 2.67 37.07 -12.92 19.19 -24.00 7.16 -10.67 10.9301 
(C)                                                                        MAIZE AND SOYBEAN 

EVI 8.89 19.38 37.78 25.12 -7.79 20.33 -17.00 19.13 -3.50 19.81 
GNDVI -2.22 24.82 31.11 28.63 -8.42 21.53 -33.33 22.06 -19.33 22.49 
LWSI -28.00 19.74 -6.15 13.13 -12.63 21.74 -10.00 20.22 0.67 21.15 
MSI 13.33 39.38 51.11 50.01 -1.47 50.59 29.09 102.03 42.91 98.91 
NDI7 -17.78 21.35 8.89 27.29 -12.63 21.74 -26.13 17.23 -13.33 19.04 

NDSVI -2.22 36.79 24.00 39.29 -3.58 23.58 -16.00 32.74 -2.82 29.93 
NDTI -10.35 39.37 7.00 37.40 2.74 57.31 17.07 95.52 29.87 93.56 
NDVI 8.00 23.28 35.11 29.82 -10.95 21.80 -23.47 21.05 -9.60 22.47 
SAVI 14.22 18.32 41.33 23.32 -9.47 19.41 -23.00 16.49 -9.50 16.84 
STI -26.67 19.60 -3.11 24.87 -14.53 23.95 -27.73 15.96 -13.87 19.23 


