Representing the Relationships Between Field Collected Carbon Exchanges and Surface Reflectance Using Geospatial and Satellite-Based Techniques

Alexandria G. McCombs
University of South Carolina

Follow this and additional works at: http://scholarcommons.sc.edu/etd
Part of the Arts and Humanities Commons, and the Geography Commons

Recommended Citation

This Open Access Dissertation is brought to you for free and open access by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact SCHOLARC@mailbox.sc.edu.
REPRESENTING THE RELATIONSHIPS BETWEEN FIELD COLLECTED CARBON EXCHANGES AND SURFACE REFLECTANCE USING GEOSPATIAL AND SATELLITE-BASED TECHNIQUES

by

Alexandria G. McCombs

Bachelor of Science
University of Oklahoma, 2008

Master of Science
University of Oklahoma, 2013

Submitted in Partial Fulfillment of the Requirements
For the Degree of Doctor of Philosophy in
Geography
College of Arts and Sciences
University of South Carolina
2017

Accepted by:
April Hiscox, Major Professor
Cuizhen Wang, Committee Member
Gregory Carbone, Committee Member
Ankur Desai, Committee Member
Cheryl L. Addy, Vice Provost and Dean of the Graduate School
DEDICATION

This dissertation is dedicated to my husband, Devin, who’s unfaltering support, and unconditional love were always what gave me motivation and drive to succeed during my doctoral studies. Thank you for the sacrifices you have made over the last four years, and for always believing in me.
ACKNOWLEDGEMENTS

I would like to thank the undergraduate research assistants, Benjamin Marosites and Jenna Lew for their assistance preparing and processing remote sensing data.

This work was partially supported by a SPARC Graduate Research Grant from the Office of the Vice President for Research at the University of South Carolina.

This work used data acquired and shared by the FLUXNET community. The FLUXNET eddy covariance data processing and harmonization was carried out by the ICOS Ecosystem Thematic Center, AmeriFlux Management Project and Fluxdata project of FLUXNET, with the support of CDIAC, and the OzFlux, ChinaFlux and AsiaFlux offices.

Landsat Surface Reflectance products courtesy of the U.S. Geological Survey Earth Resources Observation and Science Center. The Terra/MODIS Surface Reflectance 8-Day L3 Global 500m and Terra/MODIS Land Surface Temperature and Emissivity 8-Day L3 Global 1km CMG datasets were acquired from the Level-1 & Atmosphere Archive and Distribution System (LAADS) Distributed Active Archive Center (DAAC), located in the Goddard Space Flight Center in Greenbelt, Maryland (http://ladsweb.nascom.nasa.gov).
ABSTRACT

Carbon exchanges between the atmosphere and the land surface vary in space and time, and are highly dependent on land cover type. It is important to quantify these exchanges to understand how landscapes affect the carbon budget, which will have a significant impact on future climate change and will inform climate change projections. However, how do you represent regional carbon exchanges from a single meteorological station? A single observing station will represent a limited area around the station, but each individual observation will sample a different physical land area in time due to varying wind speeds, wind direction, and atmospheric stability. The methods and techniques presented address the challenges, limitations, and future work that is needed to properly scale and model carbon exchanges in four dimensions for varying agricultural and transitioning ecotones. Seasonal variability of carbon exchanges can be modeled in agricultural land covers using satellite-based techniques, but due to physiological differences in crop types the values must be modeled by crop species. The spatially varying atmospheric conditions must also be considered when modeling carbon exchanges from a single point in the spatial realm because of the dependency of carbon exchange on temperature and humidity conditions. In summary, field-based carbon exchange observations are used to quantify whether a specific land cover in a region is a carbon source to carbon sink to the atmosphere, however, it is important to consider the spatially varying variables that limit the ability of a single point measurement to represent carbon exchanges of an entire region.
TABLE OF CONTENTS

DEDICATION .. iii
ACKNOWLEDGEMENTS ... iv
ABSTRACT ... v
LIST OF TABLES ... viii
LIST OF FIGURES .. ix
LIST OF ABBREVIATIONS ... xi

CHAPTER 1: INTRODUCTION ... 1

CHAPTER 2: LITERATURE REVIEW ... 2

CHAPTER 3: CARBON FLUX PHENOLOGY FROM THE SKY: EVALUATION FOR MAIZE AND SOYBEAN .. 7
 3.1 INTRODUCTION ... 8
 3.2 DATASETS AND PREPROCESSING ... 11
 3.3 METHODS ... 15
 3.4 RESULTS ... 18
 3.5 DISCUSSION ... 24
 3.6 CONCLUSIONS .. 29

CHAPTER 4: AN EMPIRICAL MODELING APPROACH TO ESTIMATING REGIONAL SCALE NET ECOSYSTEM EXCHANGE IN MAIZE AND SOYBEAN FIELDS IN THE US CORN BELT .. 37
 4.1 INTRODUCTION .. 38
 4.2 DATA SOURCES ... 41
 4.3 MODEL DEVELOPMENT AND CALIBRATION .. 45
4.4 MODEL EVALUATION ... 50
4.5 RESULTS ... 52
4.6 DISCUSSION ... 56
4.7 CONCLUSIONS ... 61

CHAPTER 5: POINT TO GRID CONVERSION IN FLUX FOOTPRINTS: IMPLICATIONS OF METHOD CHOICE AND SPATIAL RESOLUTION FOR REGIONAL SCALE STUDIES .. 74

5.1 INTRODUCTION ... 75
5.2 EDDY COVARIANCE DATA INPUTS ... 79
5.3 MATERIALS AND METHODS ... 79
5.4 RESULTS .. 87
5.5 DISCUSSIONS ... 93
5.6 CONCLUSIONS ... 96

CHAPTER 6: CONCLUSIONS ... 107
REFERENCES ... 111
APPENDIX A – MEAN SIGNED DIFFERENCE FOR CFP METRICS 131
LIST OF TABLES

Table 3.1. Chapter 3 station datasets. ... 31

Table 3.2. Vegetation indices evaluated. ... 34

Table 4.1. Station datasets used. ... 63

Table 4.2. Best spectral bands ... 64

Table 4.3. Significant surface reflectance bands .. 69

Table 4.4. Empirical model statistics for each period within the growing season........ 70

Table 5.1. Station data used ... 98
LIST OF FIGURES

Figure 3.1. Processing methodology ... 32
Figure 3.2. Daytime footprint climatology .. 33
Figure 3.3. Carbon flux phenology metrics ... 35
Figure 3.4. Scatter plot of carbon flux phenology metrics 36
Figure 3.5. Total NEE during the carbon uptake period 36
Figure 4.1. Footprint climatology for 2005 .. 65
Figure 4.2. Transitions points in carbon flux phenology 66
Figure 4.3. Scatterplot of surface reflectance vs. ground observed NEE 67
Figure 4.4. Flow chart of the methodology .. 68
Figure 4.5. Grid plot of significant surface reflectance bands and climate variables 71
Figure 4.6. Comparison of footprint scaled NEE. .. 72
Figure 4.7. Estimated NEE compared to gap-filled NEE values 73
Figure 5.1. Boundary layer sensitivity flux footprint 98
Figure 5.2. Methods for projecting a continuous footprint 99
Figure 5.3. Upscaling methodology of 2D flux footprint 100
Figure 5.4. Percent information loss of 1D footprint function .. 101

Figure 5.5. Integration overestimation .. 102

Figure 5.6. Information loss using the 2D area integration .. 103

Figure 5.7. Equal interval sampling peak mismatch ... 104

Figure 5.8. Peak flux footprint migration ... 105

Figure 5.9. Annual footprint climatology total area increase .. 106
LIST OF ABBREVIATIONS

1D .. 1-Dimensional

2D .. 2-Dimensional

EOS .. End of Season

FFP .. Flux Footprint Parameterization

GPP .. Gross Primary Production

H2000 .. 1D Flux Footprint model by Hsieh et al. (2000)

K2015 .. 2D Flux Footprint Model by Kljun et al. (2015)

NEE .. Net Ecosystem Exchange

NIR .. Near-Infrared

POS .. Peak of Season

SOS .. Start of Season

SWIR .. Shortwave Infrared
CHAPTER 1

INTRODUCTION

Ground-based flux measurements are routinely measured over varying land covers, land management, vegetation types, and climate regimes. To understand carbon dynamics at the regional scale ground-based carbon flux measurements must be up-scaled to represent a broader spatial scale. In agricultural regions this is particularly challenging because they are human managed landscapes that can occur in small patches. Therefore, the dissertation presented here is a collection of three manuscripts that discuss the challenges of upscaling carbon flux measurements to represent regional scales in agricultural fields using geospatial and satellite-based remote sensing techniques. The first of the three manuscripts (Chapter 3) discusses how to remotely identify the key transition points, called carbon flux phenology metrics, where crops transition between vegetative stages and reproductive stages using vegetation indices. In the second manuscript (Chapter 4) an empirical model was developed to estimate carbon exchange values at 8-day temporal resolution for specific agricultural crops (maize and soybean) using satellite-based reflectance values. The final manuscript (Chapter 5) discusses the methodologies for upscaling a continuous flux footprint function to a gridded dataset and the sensitivity of this process to the cell size. Finally, this document will make some concluding remarks on the findings of all three manuscripts.
CHAPTER 2

LITERATURE REVIEW

A growing global population will cause urbanization and additional lands to be used for agricultural purposes. These land covers and land cover changes will have significant influences on atmospheric variables. Many studies have evaluated the effect of land cover changes, such as urbanization and agricultural practices, on air temperature and precipitation (e.g., Hale et al., 2008; Jones et al., 1990; Mahmood et al., 2010, 2006; Pitman, 2004; Vose et al., 2004). In many locations urbanization has been linked to the warming of local air temperature (Basara, Hall, Schroeder, Illston, & Nemunaitis, 2008; Chow, Brennan, & Brazel, 2011; Jones et al., 1990). In contrast, there has been little research on the changes of atmospheric variables due to less drastic land cover and land management changes in rural areas. Several studies have found that air temperature is cooled due to irrigation on warm days (Bonfils and Lobell, 2007). Wind patterns have been found to change over time with changes in land cover, and minimum air temperatures are highly sensitive to changes in climatic forcing (Fiebrich, Morgan, McCombs, Hall, & McPherson, 2010; Rezaul Mahmood et al., 2010). Still, the effects of specific agricultural land management techniques and crops are not well represented in climate and meteorological models (Rezaul Mahmood et al., 2010).

While changes in temperature and precipitation are important meteorologically, at the climate timescale the sources and sinks of greenhouse gases such as carbon dioxide
are equally important. One way to quantify these changes is by measuring carbon flux. Carbon flux is the movement of carbon through an ecosystem and atmosphere, and can be measured using the eddy covariance technique (Aubinet, Vesala, & Papale, 2012). Carbon fluxes can have significant spatial and temporal variation at the local scale because they are land cover dependent and a function of temperature and moisture availability which also varies in space and time (Bonan, 2008; Leclerc & Foken, 2014). Land cover type can also play a significant role in the carbon budget because variables such as soil moisture, solar radiation, precipitation, air temperature, plant functional type, and land management drive the release of CO₂ into the atmosphere (e.g., Gebremedhin et al., 2012; Raich and Schlesinger, 1992).

A major source of error in climate change projections is agricultural land management; currently it is not considered in models (Le Quéré et al., 2015). It is difficult to understand the contribution of agricultural land management at a global scale if there is not a good understanding at a regional scale. Agricultural land management practices often include crop rotation, surface manipulation (i.e., tilling), and crop irrigation. When a land cover is tilled annually the carbon that is sequestered during the growing season is released into the atmosphere (Kort, Collins, & Ditsch, 1998). Irrigation will result in higher gross primary production (GPP), and in turn increases net ecosystem exchange of carbon (Verma et al., 2005). There are also known differences in carbon flux between different crop types based on the plant physiology. In the case of maize and soybean crops, maize is a C₄ photosynthetic pathway, while soybeans have a C₃ photosynthetic pathway. C₃ and C₄ are two different processes that plants use to conduct photosynthesis. These processes make use of different enzymes and have different leaf
physiology. C₄ photosynthetic process is very productive in hot, dry climates and are more photosynthetically productive than plants making use of the C₃ photosynthetic pathway (Bonan, 2008; Monson & Baldocchi, 2014). Maize has a larger amount of biomass and a higher leaf area index compared to soybean, which has been correlated with larger carbon uptake (Suyker, Verma, Burba, & Arkebauer, 2005).

Despite these known differences in carbon flux between varying crops and agricultural land management techniques, many regional carbon flux models represent agriculture as one subgroup within the modeling framework. One of the reasons for this is the complexity of representing a human managed landscape in a model (Cai et al., 2014; Dong et al., 2015; Fu et al., 2014; Wylie et al., 2007a). There is also a spatial and temporal mismatch between the carbon flux models and ground-based flux measurements, which makes the direct comparison of ground-based measurements to gridded datasets complicated. The ground-based flux measurements in agricultural fields provide ecosystem-atmosphere gas exchanges and meteorological and climatic variables for a finer spatial scale (less than 500m), with significant changes occurring on time-scales as short as one hour. However, the spatial resolution of many carbon flux models can be too coarse (e.g., 500m, 1km) to accurately represent the spatial scales that can occur in agricultural environments (Chen et al., 2011; Kim et al., 2006a; Nicolini et al., 2015; Schmid & Lloyd, 1999). While finer scale remote sensing datasets are available, the coarse temporal resolution makes this impractical (i.e., Landsat which has a 30m spatial resolution and 16-day revisit time), this easily misses changes which can occur at a daily or hourly time scale.
The dissertation research presented here addresses the limitations in the literature when modeling and spatially representing carbon flux values in agricultural regions, where observations tend to be fetch limited (Nicolini et al., 2015). These methodologies will provide better understanding of varying carbon flux values at the regional scale, which have not been well quantified, and are a limitation in many climate change projections (Le Quéré et al., 2015). These regional estimates will become more important in the future as global population increases. Population growth will result in a greater amount of land converted to agriculture, while the intensity of cultivation will increase to keep up with the increasing food demand. This increase in cultivation could result in an initial release of carbon to the atmosphere, but it will also be important to understand how the carbon cycle will change over time (West & Marland, 2003).

There are increasing efforts to understand the contributions of agricultural crops at regional scales to carbon sequestration because of emission trading programs, which are currently operational in Europe, New Zealand, California (USA), and select provinces in Canada. These programs put a monetary value on carbon sequestration which could financially benefit farmers in these regions. As the program becomes more popular globally, it will be important to quantify agricultural sequestration more precisely. There are some efforts to integrate agroforestry into the program in California (Daniels, 2010). Generally these programs do not consider varying yield or climate conditions, which will change carbon sequestration values annually. These efforts are important as our changing climate will affect the growing season length, water availability, and temperature extremes, which could increase carbon sequestration that will occur over a single
growing season (Bonan, 2008; Garrity et al., 2011; Gebremedhin et al., 2012; Verma et al., 2005).
CHAPTER 3
CARBON FLUX PHENOLOGY FROM THE SKY: EVALUATION
FOR MAIZE AND SOYBEAN

3.1 INTRODUCTION

Human managed landscapes have a significant impact on the carbon flux dynamics between terrestrial ecosystems and the atmosphere, and therefore are a major factor in climate change. Responses of the global carbon cycle to agricultural landscapes are a significant source of uncertainty in future climate projections (Le Quéré et al., 2015). Limited ground-based carbon flux observations make it difficult to scale the total contribution of agricultural land management to the carbon budget. For example, land surfaces are often tilled thus releasing some of the carbon that is sequestered in soils and affecting the long-term carbon storage in soil (Kort et al., 1998). The vegetation phenology in agricultural systems will not always follow the same time-resolved signatures even within the same climatic conditions because of human management (Walker, de Beurs, Wynne, & Gao, 2012). This makes the regional prediction of ecosystem-atmosphere energy and gas exchange particularly challenging in agricultural lands. Here, we investigate alternative formulations of crop-based carbon flux phenology from satellite remote sensing to improve these models of energy and gas exchange.

Multiple methods exist to remotely estimate carbon flux phenology, but they have rarely been compared. Trends in phenological metrics are key to identifying changes in growing season and their climatic consequences (Zhang et al., 2003). Seasonal changes in crops are linked to the cycle of carbon dioxide (CO₂) exchange between an ecosystem and the atmosphere. The leaf emergence, development, and senescence of the canopy are highly correlated to carbon flux phenology (CFP), where CFP identifies five recurring transition periods that occur annually in net ecosystem exchange (NEE) measurements (Balzarolo et al., 2016; Garrity et al., 2011; Viña, Gitelson, Nguy-Robertson, & Peng,
2011). Wu et al. (2012) demonstrated the importance of identifying the true length of the carbon uptake period by showing the strong correlation between carbon uptake period and net ecosystem production. When the carbon uptake period is delayed by one day, there can be a reduction of 16.1 gCm$^{-2}$ in non-forested land covers (Wu et al. 2012).

One challenge is that most of these remote sensing models group all agricultural lands into a single land cover category, ignoring the phenology variations of different crop types and management practices (e.g., Fu et al. 2014; Dong et al. 2015; Xiao et al. 2011, and others). This is known to be inaccurate, as field based studies have found that gas exchange between different crop types and land management procedures are not uniform (e.g., Gebremedhin et al. 2012; Frank and Dugas 2001; Cicuéndez et al. 2015, and others).

Phenology metrics from Landsat and the MODIS observations have been previously used for identifying vegetation type. More recently, work by Wang et al. (2011) made use of satellite remote sensing for differentiating between grass types (i.e., C$_3$ or C$_4$ grasses) and row crops. Their work uses the 500m 8-day MODIS Normalized Difference Vegetation Index (NDVI) time series to examine the crop and grassland phenology and gives several statistics that can successfully delineate a variety of grass types as well as major row crops grown. Wang et al. (2011) showed there are differences in the phenological signals of different crop types and grass types, emphasizing that these metrics are useful for CO$_2$ exchanges.

Though CFP can be directly derived from field based measurements of NEE (e.g., Noormets et al. 2009), remote sensing is required for spatial scaling. Ground-based measurements provide ecosystem-atmosphere gas exchanges and meteorological
variables for a small spatial scale (typically < 10 km2) and show significant changes occurring on time-scales as short as 30 minutes. While it is desirable to have a remote measure, the two most accessible datasets, MODIS and Landsat, do not provide comparable spatial and temporal coverage. The daily and weekly 500m spatial resolution of MODIS is too coarse over a heterogeneous landscape to accurately represent small scale flux environments, while the 16-day return period of the finer spatial resolution Landsat is spaced too far in time to capture the daily changes that can occur in agricultural environments. Zhu et al. (2010) developed methods to address this by fusing the datasets to create a time series of Landsat and MODIS using the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (daily) (ESTARFM). This methodology can be used to maintain the temporal resolution of MODIS and the spatial resolution of Landsat (30m pixels) to create a Landsat-like spatial time series of vegetation indices for aiding in the identification of carbon flux phenology metrics and discrimination of vegetation type (Guo, Price, & Stiles, 2003; Price, Guo, & Stiles, 2002; Wang et al., 2011a).

The work presented here evaluates the ability of various vegetation indices to identify CFP metrics derived from downscaled MODIS and Landsat observations. Comparison with ground-observed CFP transition periods from eddy covariance flux tower observations of NEE is used to determine quantity of the satellite derived metrics. We hypothesize that the most effective remotely sensed vegetation indices for determining CFP metrics will vary based on crop types due to the variation in biomass that can be observed in the field of view, life cycle of the crop, and the variation in leaf area index from crop to crop. We present here an evaluation of the effectiveness of 10
vegetation indices in maize (C₄ Photosynthetic pathway) and soybean (C₃ Photosynthetic pathway) agricultural fields, as well as present a method for comparison of these spatially disparate measures.

3.2 DATASETS AND PREPROCESSING

3.2.1 NET ECOSYSTEM EXCHANGE

Tower-based carbon flux observations are used as the ground-truth control data points for vegetation indices discussed below. These observations come from FluxNet, a confederation of regional networks of flux towers (Running et al., 1999; Wylie et al., 2007a). One data provider to FluxNet is AmeriFlux, which is a network of PI-managed sites measuring carbon, water and energy fluxes within the Americas. These sites include the most continuous and reliable observations of carbon flux data available in the United States. We focus here on five sites located in the US Great Plains with multi-year data availability from 2002 to 2011. The five stations selected are located on fields growing maize, maize/soybean rotation, or maize/soybean/wheat rotation. There were 15 site years for soybean and 27 site years of maize. Table 3.1 provides a summary of the stations and their data availability.

Since CFP is a direct function of net carbon exchange, NEE was the primary variable used in this analysis. The goal of this analysis was to estimate the five phenology metrics (start of season (SOS), end of season (EOS), peak of season (POS), SINK, and SOURCE) for soybean and maize fields. NEE is directly measured using the eddy covariance technique and averaged at 30-minute or 60-minute intervals. The eddy covariance system makes use of a 3D sonic anemometer as well as an open or closed-path CO₂ and H₂O gas analyzer that is co-located with the sonic anemometer. Since each
station is individually managed, the specific instrumentation (manufacturer, model, etc.) varies. However, all data are collected and quality controlled by following best practices for flux observations (Baldocchi et al., 2001).

To use NEE as a basis for comparison a time series matching the remote sensing data was constructed. To do this, it was desirable to find a total NEE value occurring at the times coincident with remote sensing products. The tier1 FLUXNET2015 dataset was used. All FLUXNET2015 datasets have gone through extensive quality control measures and gap filling has been conducted on the datasets. All gap-filled datasets use the gap filling method described in Vuichard and Papale (2015). One exception to the processing method was the Rosemount G21 Conventional Management Corn Soybean Rotation station (US-Ro1) located in Minnesota. For this site the FLUXNET2015 dataset was not available. The gap-filled level 2 AmeriFlux dataset was used instead. All level 2 gap-filled datasets are gap-filled data by individual PIs and may not use the same methodology as the FLUXNET2015 dataset.

Gap-filled NEE values were converted from hourly or half-hourly NEE values in $[\mu\text{molCO}_2\text{m}^{-2}\text{s}^{-1}]$ to $[\text{gCm}^{-2}\text{hr}^{-1}]$ and then summed for the 8-day period that was identical to the time stamp of the remote sensing images. This provides NEE values in units of $[\text{gCm}^{-2}\text{8days}^{-1}]$. The process of matching NEE measurements to the remote sensing data is shown in Figure 3.1. Steps 1-4 are the ESTARFM technique discussed below and step 5 shows the computation of an 8-day NEE value.

One concern when working with carbon flux measurements is whether the NEE values represent the land cover that is being evaluated. To determine whether the
predominant source locations of NEE fell within the represented agricultural field, a surface-layer footprint climatology analysis was conducted on all the sites (Figure 3.2). The footprint climatology was computed using the model developed by Kljun et al. (2015) for non-gap filled daytime observations when photosynthesis occurs and the atmosphere is well-mixed. With the exception of US-Ro1 station, where 70% contribution footprint contour fell outside the agricultural field, all footprint climatologies had an 80% source contribution during the daytime that fell within the agricultural field represented by the flux tower. This provides an independent confirmation that NEE values represent the agricultural crop. Therefore, data were not scaled to a flux footprint because the samples represent the crop field a majority of the time. Since it was more important to capture the carbon cycle and the NEE dataset had been already reduced to 8-day temporal resolution, the nighttime observations were not removed from the 8-day NEE totals and the use of nighttime NEE data with source locations potentially outside the agricultural field is a source of uncertainty in this analysis.

3.2.2 REMOTE SENSING DATASETS

During the period of interest, numerous satellite observations have been archived for the US Great Plains region. Here, we utilized land surface reflectance datasets from MODIS (500m resolution) and Landsat (30m resolution). The 8-day 500m MODIS surface reflectance product (MOD09A1) was obtained for 2002 to 2011 for the three tiles that covered the five AmeriFlux sites of interest (Vermote, 2015; Wan, Hook, & Hulley, 2015). The data was downloaded from the Level 1 and Atmosphere Archive and Distribution System managed by NASA.
The MOD09A1 data product provides the spectral surface reflectance using MODIS bands 1-7. Each pixel contains the highest quality higher-order gridded level-2 (L2G) observation over an 8-day period (Figure 3.1, steps 2-3). The use of this dataset minimizes the influences of clouds that will occur in the daily MODIS files. The state flags provided with the dataset were applied to each image to mask cloudy pixels, snow or ice, and cloud shadowed pixels. Each image was subset to a 10km × 10km area around the station to ensure the entirety of the station fetch was included within the subset image (Horst & Weil, 1994; Leclerc & Foken, 2014).

Landsat datasets have a 16-day revisit cycle and 30m spatial resolution (Figure 3.1, step 1). Images from Landsat-5 Thematic Mapper and Landsat-7 Enhanced Thematic Mapper Plus were used. All Landsat data were acquired from the United States Geological Survey’s Earth Resources Observation and Science Center Science Processing Architecture. This product has been atmospherically corrected and geometrically corrected using the same subroutines conducted on MODIS surface reflectance datasets, making these two datasets comparable (Masek et al., 2006). Files downloaded contained surface reflectance, cloud mask and quality assurance flags. The 10km x 10km subsets of all Landsat surface reflectance products were created to match the subset of the MODIS datasets. Using the quality control and cloud flags provided by USGS, all pixels labeled as cloud, adjacent to cloud, snow/ice, or poor quality were removed.

3.2.3 ESTARFM DOWNSCALING MODEL

The subset images were processed in the ESTARFM image fusion algorithm (Zhu et al. 2010). The MODIS bands 1-7 were reordered and resampled from 500m to 30m to match
Landsat. The image fusion resulted in up to 46 points per year, which made use of the benefits of the finer spatial resolution and higher temporal resolution of both satellites (Walker et al., 2012; Wang, Hunt Jr., Zhang, & Guo, 2013).

To downscale a MODIS image to 30m pixel size, ESTARFM requires two Landsat/MODIS pairs to run, one pair before and one pair after the MODIS image to be downscaled (Figure 3.1, step 4). All Landsat/MODIS pairs were manually inspected since the model requires surface reflectance that is as cloud and snow/ice free as possible. Figure 3.1 illustrates this process in steps 2-4. More information about the algorithms used can be found in Gao et al. (2006) and Zhu et al. (2010). The ESTARFM methodology creates a spatial time series of Landsat-like surface reflectance products, which are later used to calculate vegetation indices for aiding in the identification of carbon flux phenology metrics (Fang et al., 2013; Garrity et al., 2011; Guo et al., 2003; Price et al., 2002; Wang et al., 2011a).

3.3 METHODS

3.3.1 VEGETATION INDICES

The Landsat-like time series were used to determine a number of crop-related vegetation indices. The most familiar of these are NDVI (Rouse, Haas, Schell, & Deering, 1974) and Enhanced Vegetation Index (EVI) (Huete, 1997; Huete et al., 2002), but we extend our analysis to eight additional indices that have been used throughout the literature for their sensitivity in agricultural regions. Each of the vegetation indices were selected for the specific information they provide about the land surface. Table 3.2 provides a summary of all the vegetation indices evaluated.
3.3.2 EXTRACTION OF FIELD-SCALE MEASUREMENTS

Crop types grown in each agricultural field where the AmeriFlux site was located was provided by the station PI. To obtain statistics on surface attributes for the representative agricultural field, a polygon shapefile was created to extract pixel values for each downscaled Landsat-like VI values for all years from 2002-2011. The mean and standard deviation of the extracted values from each image were computed to create an 8-day time series of the ten vegetation indices at field-scale. Figure 3.2 provides the polygons in gray-blue that were used for extracting pixel values. If any pixel value was previously removed due to poor quality, or the value fell outside the upper and lower bounds of the vegetation index, it was also removed from the computation of the field-scale statistics.

3.3.3 COMPARISON OF VI-BASED AND NEE-BASED PHENOLOGY METRICS

The variables of interest include SOS, SINK, POS, SOURCE and EOS from both the NEE measurements and the vegetation indices. From this point forward subscripts NEE and VI will be used to denote which data source was used to find the phenological metric. All NEE-based metrics were estimated using the ground-based, direct measurement of carbon dynamics between the atmosphere and the ecosystem, and therefore were considered “truth.” The VI-based metrics were estimated using vegetation indices that were calculated from satellite remote sensing, and were assessed in this study against the NEE-based metrics. The units for each phenological metric are day of the year (DOY) when it occurs.

At field-scale all NEE and VI data were divided by year and station based on the crop type grown each site year. There was a total of 27 site years of maize and 15 site years of soybean. Soybean and maize were the main focus of this analysis, therefore
years that US-ARM grew wheat or canola were not included (Raz-Yaseef et al., 2015). Specific land management activities of the agricultural fields were not considered.

Using the tower measurements, SINK\textsubscript{NEE}, SOURCE\textsubscript{NEE}, SOS\textsubscript{NEE}, EOS\textsubscript{NEE}, and POS\textsubscript{NEE} metrics were determined using the methodology defined in Garrity et al. (2011). SOS\textsubscript{NEE} was determined as the time stamp following the peak of ecosystem respiration in the spring and EOS\textsubscript{NEE} was determined as the peak of ecosystem respiration in the fall. SINK\textsubscript{NEE} was the day of year in the spring that NEE became negative, and SOURCE\textsubscript{NEE} was the day of year in the fall that NEE became positive again. The top panel of Figure 3.3 shows the points where these metrics would occur on an annual time series of NEE.

Using the methods discussed in Wang et al. (2011), SOS\textsubscript{VI} was calculated for the vegetation indices by determining the day of year where the VI increased by 20% of the total amplitude for the entire season. POS\textsubscript{VI} was the day of year when the maximum VI occurred and EOS\textsubscript{VI} was the day of year when the VI decreased to 20% of the total amplitude for the season. These points are shown in the lower panel of Figure 3.3.

The VI-based phenological metrics were compared on a scatter plot to the NEE-based metrics for each crop type. An example of the comparison for EVI is shown in Figure 3.4. SOS\textsubscript{VI} and EOS\textsubscript{VI} were compared to SOS\textsubscript{NEE} and EOS\textsubscript{NEE} to determine whether SOS\textsubscript{VI} and EOS\textsubscript{VI} better represented the onset and ceasing of photosynthetic acclimation (SOS\textsubscript{NEE}, EOS\textsubscript{NEE}). SOS\textsubscript{VI} and EOS\textsubscript{VI} were also compared to SINK\textsubscript{NEE} and SOURCE\textsubscript{NEE} to determine how well they represent the day of year when NEE becomes a source or sink (SINK\textsubscript{NEE}, SOURCE\textsubscript{NEE}). The phenological metrics are compared along
the gray dashed line in Figure 3.4. The mean signed difference (MSD) in days was determined for each phenology point as:

\[
(1) \quad MSD = \left(\frac{\Sigma (DOY_{\text{NEE,}i} - DOY_{\text{VI,}i})}{n} \right)
\]

where \(i\) is the corresponding value for the same year and station, and \(n\) is the number of values being averaged. Equation 1 was used to calculate the MSD between NEE-based and VI-based metrics, where \(\text{SINK}_{\text{NEE}}\) and \(\text{SOS}_{\text{NEE}}\) were compared to \(\text{SOS}_{\text{VI}}\) and \(\text{SOURCE}_{\text{NEE}}\) and \(\text{EOS}_{\text{NEE}}\) were compared to \(\text{EOS}_{\text{VI}}\), as shown in Figure 3.

The total NEE value was calculated annually from growing season by summing NEE from the NEE-based SINK to SOURCE dates. This total carbon uptake value was then compared to the sum of NEE from SOS and EOS dates as estimated by VI-based phenology. The total growing season carbon uptake as estimated from VI-based SOS to EOS for each vegetation index was compared to the total carbon uptake value from NEE-based SINK to SOURCE.

3.4 RESULTS

When considering the performance of each VI as presented here, it is important to understand about the underlying data sources that any difference less than eight days is considered to be a good measure because the images used to compute the VI can fall anywhere in the 8-day time stamp of MODIS (Figure 1 step 4).

In Figure 3.4, the scatterplot shows that in general for maize (Figure 3.4a) that the VI-based vs. NEE-based phenological metrics were clustered near the 1:1 line for EVI, where several site years the VI-based metrics fall before and after the NEE-based metrics. There is a different pattern that occurs in soybean (Figure 3.4b) for the same vegetation
index, where VI-based SOS were estimated before NEE-based SOS and SINK phenology metrics, and VI-based EOS was estimated after NEE-based SOURCE and EOS dates. A scatterplot for each vegetation index was visually inspected to visualize the closeness of the VI-based phenology metrics to the NEE-based phenology metrics. These results are included in the text of the following sections. A table of relevant values for all VIs and phenology points is included in Appendix A.

3.4.1 METRIC COMPARISON IN MAIZE FIELDS

In maize fields the vegetation index that best captured start of season, in terms of both absolute difference and variability, was the EVI with a mean signed difference of 4.27 days and a standard deviation of 14.14 days. This means that, on average EVI estimated the start of season in maize fields four days before the true start of season. EVI was able to estimate start of season most consistently from VI-based phenology metrics with a low standard deviation and an absolute difference less than eight days, which is the number of days between time stamps. Other indices (GNDVI and NDVI) also had good absolute performances with predictions within four days, but the higher standard deviations for these two indices indicate that for some years results were less accurate. The Simple Tillage Index (STI) also had low standard deviation of 9.66 days. Thus, although STI estimated the start of season 30 days after the true start of season, it was consistent in this bias. The vegetation index that best captured day of carbon SINK in a maize field was the Land Surface Water Index (LWSI) with a mean standard difference of -3.00 days and a standard deviation of 14.77 days. This indicates that the VI-based phenology using LWSI estimated the day of year when the field became a carbon sink 3 days later, which is less than the 8-day time stamp between data points. STI also estimated day of carbon sink
well with a mean signed difference of -6.00 days and a standard deviation of 17.44 days. Normalized Different Index (NDI7) performed similarly predicting the sink point six days early with a standard deviation of 18.41 days.

NEE measurements had an average of 24 days difference between start of season and day of carbon sink. This means there are three 8-day data points between start of season and day of carbon sink in maize fields. This underscores how few data passages are available between these two metrics, and missing observations that occur in remote sensing due to clouds may miss these transition points in CFP. The average 24-day bias was reflected in the differences from VI-based metrics because the same start of season metric obtained from VI-based metrics were used to compare against NEE-based start of season and sink dates.

When estimating the time of peak productivity in maize, the best vegetation index was the Normalized Difference Senescent Vegetation Index (NDSVI) which had a mean signed difference of -1.92 days and a standard deviation of 26.46 days. The Moisture Stress Index (MSI) also had a mean signed difference of -1.92 days, but the standard deviation (61.68 days) was nearly three times that for the NDSVI and was therefore not considered a good metric for peak of season. The other eight vegetation indices mean signed difference was between ~10 and 16 days late, which would indicate that the peak of season as determined from VI-based metrics was between eight and 16 days late. The vegetation indices with the most consist performance were EVI with a standard deviation of 20.26 days and the Soil Adjusted Vegetation Index (SAVI) with a standard deviation of 20.72 days.
Estimating the time when the maize field became a carbon source had similar challenges as those found when estimating SOS and SINK. The mean signed differences were large across most vegetation indices tested (see Appendix A), however they were the most consistent with a smaller standard deviation. The vegetation index that best captured day of carbon source was EVI with a mean signed difference of -6.40 days with a standard deviation of 14.01 days. SAVI was able to estimate NEE-based metrics from VI-based metrics consistently with a larger mean signed difference. The vegetation indices that performed best in estimating day of carbon source were consistently 8-16 days late. There was a small mean signed difference (-0.89 days) for the Normalized Difference Tillage Index, but this index was not selected as a good metric for source date because of the large standard deviation (76.89 days).

The best vegetation indices for estimating end of season dynamics in maize fields were EVI and SAVI. The mean signed difference for EVI was 7.20 days with a standard deviation of 15.29 days, and SAVI had a mean signed difference of -1.60 days with a standard deviation of 14.99 days. This means that EVI and SAVI could accurately estimate NEE-based end of season within 0 to 8 days.

3.4.2 METRIC COMPARISON IN SOYBEAN FIELDS

In soybean fields, Normalized Difference Senescent Vegetation Index (NDSVI) could estimate start of season with a lower standard deviation (12.22 days), but had a larger mean signed difference (29.33 days). This indicates that NDSVI estimated the start of season 29 days too early. Meanwhile, the Green Normalize Difference Vegetation Index (GNDVI) estimated the start of season from VI-based data with a bias of 5.33 days, but had a larger standard deviation of 32.33 days. The standard deviations of the signed
differences were larger in soybean fields than in maize, partially due to the limited number of time series available.

The vegetation indices that best captured the day of carbon sink in soybean fields were Land Surface Water Index (LWSI) and Normalized Difference Tillage Index (NDTI) with respective mean signed differences of -11.20 days with a standard deviation of 9.12 days and 0.00 days and a large standard deviation of 38.09 days. LWSI was also the best vegetation index for identifying the day of carbon sink in maize fields. Therefore, there was no difference in vegetation index selection between soybean and maize for identifying day of carbon sink.

The vegetation indices that identified peak of season in carbon uptake in soybean fields from VI-based phenology metrics with a small mean signed difference and small standard deviation were Moisture Stress Index (MSI), GNDVI, and EVI with a mean signed difference of -0.62, -1.85, and -1.23 days, and a standard deviation of 16.80, 16.70, and 19.55 days. All of these vegetation indices had very good agreement across sites with a standard deviation in the signed differences between 16 and 20 days. This was a significantly tighter spread in the signed differences for soybean than maize. The best metric for identifying peak of season in soybean fields was MSI because it had the smallest mean signed difference and smaller standard deviation.

The estimation of source date from VI-based phenological metrics for soybean fields had a similar delay pattern to what was found in maize. The vegetation indices that most effectively estimated the day of carbon source were MSI, LWSI, and Simple Tillage Index (STI). MSI had a small mean signed difference of -6.40 days, but had a large
standard deviation of 35.51 days. Meanwhile, LWSI and STI had a larger mean signed difference of -24.00 days, but had a standard deviation less than 10 days, which is within one 8-day time stamp. MSI was selected as the best vegetation index for estimating day of carbon source from VI-based phenology metrics.

When estimating the end of season in carbon flux phenology in soybean fields, all vegetation indices had a higher value in mean signed difference. On average the mean signed difference ranged from 16-28 days between NEE-based and VI-based phenology metrics. The vegetation index that had the smallest mean signed difference and standard deviation was the STI with a mean signed difference of -10.67 days and a standard deviation of 10.93 days. Other alternatives for estimating the end of season from VI-based phenology in preference order were LWSI, MSI, GNDVI, and EVI. The statistics for these additional four vegetation indices can be found in Appendix A.

3.4.3 METRIC COMPARISON FOR SOYBEAN AND MAIZE FIELDS COMBINED
The mean signed differences were computed for all phenology metrics where crop type was not considered. When crop type was not considered when estimating carbon flux phenology metrics, there were higher standard deviations of the signed differences. As expected, the mean signed difference was approximately the mean of the two mean signed differences of soybean and maize separately. Differences remained low when estimating sink date using LWSI, which had a mean signed difference of -6.15 days and a standard deviation 13.13 days; this vegetation index was the best fit for maize and soybean. All other indices had higher biases when crop type was not considered. A summary of these statistics are found in Appendix A.
3.4.4 TOTAL NET ECOSYSTEM EXCHANGE DURING CARBON UPTAKE PERIOD

Accurately capturing the carbon flux phenology is important for estimating the total carbon uptake that occurs from day of carbon sink to day of carbon source. The total NEE was summed using SINK and SOURCE NEE-based phenology metrics and then compared to the total NEE when using VI-based estimated SOS and EOS phenology metrics. The phenology metrics were used as start and end of growing season proxies when summing NEE annually. The results for US-Ne2 (Maize/Soybean Rotation) can be seen in Figure 3.5. In 2007 there were significant gaps due to cloud cover, so the SOS and EOS could not be calculated for this year for this station. In this example the VI-based phenology metrics were not able to capture the true sum of NEE during the carbon uptake period and typically underestimated the total carbon uptake for the year. The same pattern was observed in the other four sites in this analysis. The lifecycle and structure of maize and soybean are starkly different, which results in different reflectance between each crop type, greater carbon uptake in maize compared to soybean, and affirms the need for crop type dependent models.

3.5 DISCUSSION

3.5.1 START OF SEASON AND SINK DATE

The vegetation indices that best capture maize and soybean start of season dates were different. Balzarolo et al. (2016) assessed six indices, where we assessed four of the six in our analysis. We identified that EVI performed better than NDVI in croplands when identifying phenological metrics. Our results support that EVI and NDVI can accurately estimate start of season with biases of approximately eight days when crop type is not considered. More specifically, our results also show the mean signed differences are
larger than 30 days when using EVI for soybean for start of season, but it performs with acceptable biases of less than eight days for maize fields for start of season.

Contrary to Balzarolo et al. (2016) we found that GNDVI and NDSVI are better metrics for estimating start of season for soybean or all crops. As a result, while Balzarolo et al. (2016) is correct in stating that EVI performs best in croplands for identifying carbon flux phenology metrics, estimates using EVI are more accurate in maize fields (C₄ photosynthetic pathway) than soybean fields (C₃ photosynthetic pathway). The biases tended to be larger for soybean crops than maize because of differences in early developmental stages and in the timing of the point of photosynthetic acclimation. Soybean typically has a 5-21 day plant to emergence period, depending on temperature and moisture availability, while maize has a 7-10 day plant to emergence time. The period from vegetation emergence to peak photosynthetic uptake (which typically occurs in reproductive phase 1-2 (R1-R2)), is 39-71 days in soybeans and 69-75 days in maize. Soybean goes through six growing stages while maize goes through 18 growing phases before beginning the reproductive phase (Abendroth, Elmore, Boyer, & Marlay, 2011; Fehr, Caviness, Burmood, & Pennington, 1971; Licht, 2014). This apparent temporal mismatch is the main reason why different vegetation indices perform better for soybean than maize.

When estimating the day of year when the crop field became a carbon sink, both crops indicate the same vegetation index would be best: the land water surface index (LWSI). This index relies on the use of the NIR and SWIR2 reflectance bands, which are sensitive to the amount of water (SWIR2) and there is a higher amount of reflectance of NIR from chloroplasts which contain chlorophyll (Jensen, 2005). Both maize and
soybean are highly sensitive to water availability and temperature in stages of growth (Fehr et al. 1971; Abendroth et al. 2011), making it logical that a water sensitive index would best capture this transition.

3.5.2 PEAK OF SEASON

We found peak of season the easiest transition point to identify remotely. The metrics for soybean had a smaller standard deviation and smaller mean signed differences than maize metrics, indicating that soybean peak of season can be estimated with better certainty than maize POS. Maize has a peak in carbon uptake approximately 8-16 days after the peak greenness, while the peak in greenness is approximately the same as the peak in carbon uptake in soybean fields. This may be due to the larger amount of biomass that is visible when viewing maize fields, meaning there is a greater leaf area index (LAI) and greater chlorophyll concentration. High LAI can saturate the reflectance in a pixel and there may be points in the time series where the satellite is unable to detect changes in greenness.

Reflectance saturation is the cause of the 10-day bias in several of the vegetation indices. This bias can be seen in maize fields when using SAVI or EVI. Maize transitions to a new vegetation stage every two days, and so the 8-day temporal resolution may be too coarse to capture changes in maize greenness. This may result in the sensor missing the appropriate scan time for maximum carbon uptake, which occurs in reproductive phases 1-2 (Abendroth et al. 2011). It is vitally important to capture the peak LAI in maize because the maximum LAI is linked to maximum daytime NEE and gross primary production (Suyker et al., 2004). Meanwhile, soybean has a smaller LAI and therefore
will not saturate the remote sensing pixel; as a result the peak of season is easier to capture.

While POS is easiest to identify, two metrics are most effective: NDSVI for maize fields and MSI for soybean fields. Both of these vegetation indices make use of the SWIR1 reflectance band and the secondary bands are Red and NIR respectively. The results agree well with findings in Viña et al. (2011), which found that soybean had an increasing reflectance with increasing wavelength while maize had a lower reflectance in longer wavelengths, indicating that soybean and maize needed different remote sensing algorithms for estimating LAI.

3.5.3 END OF SEASON AND SOURCE DATE
End of season and source dates were very difficult to estimate. This is not exclusive to agricultural crops. Garrity et al. (2011) determined that the relationship between senescence and carbon fluxes were complicated by foliar pigments, meteorological conditions, and environmental stresses, which will affect all plants. The differences in structural leaf orientation and chlorophyll content in soybean and maize will appear differently during senescence (Viña et al. 2011). In maize fields end of season and source dates had higher standard deviation than those found in soybean fields. In both cases the mean signed differences were high, but consistent. For instance, there was a three 8-day time stamp bias (24 days) between the end of season estimated by VI-based phenology and the NEE-based day of carbon source; this bias will be used to estimate day of source in future work.
3.5.4 IMPLICATIONS AND FUTURE WORK

One limitation of the method demonstrated here was in maize and soybean fields that had two crop rotations within the same year. This resulted in two growing seasons, making the differentiation programmatically challenging. The years where maize and soybean were grown at US-ARM also had wheat grown earlier in the year. As a result of this challenge, the US-ARM station was omitted from the mean signed differences. Crop fields where there are two crop rotations per year will not perform well in this methodology, unless the dates are known when each crop occurred during the year.

Viña et al. (2011) determined differences in the reflectance of soybean and maize leaves at different wavelengths during peak LAI were due to differences in leaf structure and leaf chlorophyll content of each crop. Despite soybean having a smaller LAI, soybean had higher reflectance than maize in longer wavelengths due to higher chlorophyll content in the adaxial side of soybean leaves and lower water content. However, the results of this analysis show that the differences between reflectance and physiological composition between maize and soybean means each crop will appear different in remote sensing datasets. The downscaling process amplifies these differences. One limitation of using downscaled MODIS imagery is if a clear sky and snow free remote sensing pair of Landsat and MODIS cannot be identified before the true start of season and/or after end of season, then the full growing season cannot be observed. In this case VI-based phenology metrics will be missing or incorrect. This is especially true in humid environments where cloud cover is more frequent and northern latitudes where snow is prevalent for long periods of time, making Landsat’s 16-day revisit time insufficient. If missing pairs occur within the growing season incorrect VI-based
phenology metrics will result regardless of the vegetation index used. A different
downsampling algorithm that does not require Landsat imagery would be required to
address this limitation.

As discussed above, it is common to model NEE, gross primary production, or net
ecosystem production with one agricultural subgroup. However, making use of land
cover analysis techniques to identify crop type, requires the use of VI-based phenology
metrics in modeling efforts (Wang et al. 2011, 2013). This work shows that using the
correct vegetation index for an individual field could improve model results. Future work
will need to make use of land cover datasets, such as USDA’s Cropland data layer, so
that this analysis can be expanded outside of pre-identified cropland fields and the
impacts of maize and soybean agriculture on carbon exchanges in the United States can
be identified.

This approach, however does have a limitation. When using 8-day temporal
resolution datasets a single missing remote sensing image can cause a true phenology
metric to be missed. This will cause total NEE values to be too high, as demonstrated in
Figure 3.5. Future work may have to consider using daily MODIS imagery to limit the
number of holes that may occur due to clouds and snow cover, and capture changes in the
vegetation that are occurring at time scales smaller than 8-days (especially during the
vegetative stage).

3.6 CONCLUSIONS

Modeling and mapping carbon flux phenology in agricultural systems require different
strategies based on crop type when using VI-based products. Here we show that:
A single vegetation index cannot accurately capture the full carbon flux phenology for all crops because of the differences in crop lifecycle and chlorophyll content between crop types.

LWSI best captured SINK date for both soybean and maize.

In maize fields: EVI best captured SOS and SOURCE, NDSVI best captured peak of season, and SAVI best captured EOS.

In soybean fields: NDSVI best captured SOS, MSI best captured peak of season and SOURCE, and STI best captured EOS.

The chosen vegetation indices better reflect the physiology of the individual crops because they use vegetation indices that use reflectance bands to which each crop is more sensitive.

This method cannot be used if cover crops or spring crops are grown during or between crop rotations.

When total carbon uptake is computed for the growing season, if the SOS, EOS, SINK, and SOURCE are not properly represented, then the total NEE summed using VI-based metrics will be overestimated compared to the total NEE using NEE-based CFP metrics.

Future work will develop and test an empirical model to estimate carbon uptake period from VI-based indices that is crop type dependent, beginning with maize and soybean crops. A better estimation of carbon flux dynamics will help to provide better information about the regional impact of growing maize and soybean in the US Great Plains on carbon flux dynamics, which will inform future climate models as the cultivation of maize and soybean expands across the United States.
Table 3.1. AmeriFlux/FluxNet stations for NEE-based carbon flux phenology metrics.

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Station Name</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Land Cover</th>
<th>Data Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>US-ARM(^1)</td>
<td>OK - ARM Southern Great Plains site</td>
<td>36.6058</td>
<td>-97.4888</td>
<td>Croplands</td>
<td>2003-2011</td>
</tr>
<tr>
<td>US-Ne1(^2)</td>
<td>NE - Mead irrigated</td>
<td>41.165</td>
<td>-96.4766</td>
<td>Croplands</td>
<td>2002-2011</td>
</tr>
<tr>
<td>US-Ne2(^2)</td>
<td>NE - Mead Irrigated Rotation</td>
<td>41.1649</td>
<td>-96.4701</td>
<td>Croplands</td>
<td>2002-2011</td>
</tr>
<tr>
<td>US-Ne3(^2)</td>
<td>NE - Mead Rainfed</td>
<td>41.1797</td>
<td>-96.4396</td>
<td>Croplands</td>
<td>2002-2011</td>
</tr>
<tr>
<td>US-Ro1(^3)</td>
<td>MN - Rosemount G21 Conventional Management Corn Soybean Rotation</td>
<td>44.7143</td>
<td>-93.0898</td>
<td>Croplands</td>
<td>2004-2011</td>
</tr>
</tbody>
</table>

\(^1\)Raz-Yaseef et al. 2015, \(^2\)Verma et al. 2005, \(^3\)Griffis et al. 2011
Figure 3.1. The process taken to scale all data to the same temporal resolution. In step (1) Landsat reflectance data represents a 16 day re-visit time. In step (2) MODIS datasets are collected at a daily time scale. In step (3) NASA selects the best pixels from the previous 8 days to represent the entire 8-day period. Step (4) shows how the Landsat, which occurs before the 8-day period or after the 8-day period, but not during the 8-day period, is used to downscale the MODIS observations to have a 30m spatial resolution 8-day time series of Landsat/MODIS fused imagery. Lastly, step (5) represents the hourly NEE values that are summed to an 8-day total that matches the time stamp the satellite remote sensing product.
Figure 3.2. Daytime footprint climatology for US-Ne2 (upper left), US-Ne3 (upper center), US-Ne1 (lower left), US-ARM (lower center), and US-Ro1 (lower right) for 2005 using Kljun et al. (2015) footprint model. The climatology indicates that 80% (orange line) of the footprint falls within the represented agricultural field. The blue-gray line is the polygon used for extracting VI-based values.
Table 3.2. Vegetation indices evaluated for determining the SOS, EOS, SINK, SOURCE, and POS in carbon flux phenology.

<table>
<thead>
<tr>
<th>Vegetation Index</th>
<th>Abbreviation</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalized Difference Vegetation Index (Rouse et al. 1974)</td>
<td>NDVI</td>
<td>((\text{NIR} - \text{RED}) / (\text{NIR} + \text{RED}))</td>
</tr>
<tr>
<td>Enhanced Vegetation Index (Huete 1997; Huete et al. 2002)</td>
<td>EVI</td>
<td>(2.5 \times ((\text{NIR} - \text{RED}) / (\text{NIR} + 6\times\text{RED} - 7.5\times\text{BLUE} + 1)))</td>
</tr>
<tr>
<td>Normalized Difference Tillage Index (Shen and Tanner 1990)</td>
<td>NDTI</td>
<td>((\text{SWIR1} - \text{SWIR2}) / (\text{SWIR1} + \text{SWIR2}))</td>
</tr>
<tr>
<td>Normalized Difference Senescent Vegetation Index (Qi et al. 2002)</td>
<td>NDSVI</td>
<td>((\text{SWIR1} - \text{RED}) / (\text{SWIR1} + \text{RED}))</td>
</tr>
<tr>
<td>Simple Tillage Index (van Deventeer et al. 1997)</td>
<td>STI</td>
<td>(\text{SWIR1/SWIR2})</td>
</tr>
<tr>
<td>Soil Adjusted Vegetation Index (Huete 1988; Huete et al. 1994)</td>
<td>SAVI</td>
<td>([((\text{NIR} - \text{RED})/(\text{NIR} + \text{RED} + L))][1+L],) (L = 0.5)</td>
</tr>
<tr>
<td>Green Normalized Difference Vegetation Index (Gitelson and Merzlyak 1998)</td>
<td>GNDVI</td>
<td>((\text{NIR} - \text{GREEN})/(\text{NIR} + \text{GREEN}))</td>
</tr>
<tr>
<td>Normalized Different Index (McNairn and Protz 1993)</td>
<td>NDI7</td>
<td>((\text{NIR-SWIR2})/(\text{NIR+SWIR2}))</td>
</tr>
<tr>
<td>Moisture Stress Index (Rock et al. 1986)</td>
<td>MSI</td>
<td>(\text{SWIR1/NIR})</td>
</tr>
<tr>
<td>Land Surface Water Index (Xiao et al. 2005, 2004)</td>
<td>LSWI</td>
<td>((\text{NIR-SWIR2})/(\text{NIR+SWIR2}))</td>
</tr>
</tbody>
</table>
Figure 3.3. A time series of (a) NEE and the (b) EVI for 2003 at the US-Ne1 station. The red (NEE) and blue (EVI) dots represent 8-day values. The black dots indicate transition points for VI-based and NEE-based phenology metrics. The gray dashed lines illustrate how the phenology metrics were compared. In (a) start of season is the point where photosynthetic acclimation begins, carbon sink (SINK) is the point in time when NEE becomes negative, peak of season is the peak carbon uptake, carbon source (SOURCE) is the point in time when NEE becomes positive again, and end of season is the date when photosynthesis ceases. The values will not necessarily fall on a value of zero for SINK and SOURCE, so the first value after the zero line is crossed was selected. In (b) start of season is the point when EVI is greater than 20% of the total amplitude for the year, peak of season is the peak greenness, and end of season is the day when EVI is less than 20% of the total amplitude for the year.
Figure 3.4. Scatter plot of carbon flux phenology metrics as determined by the Enhanced Vegetation Index (VI-based) (x-axis) and the NEE-based data(y-axis) for maize (a) and soybeans (b). The black dashed line is the 1:1 line.

Figure 3.5. The total NEE during the carbon uptake period, from day of carbon sink to day of carbon source, as computed from NEE-based phenology metrics is plotted in large yellow bars for soybean and maize at US-Ne2 AmeriFlux site. The colored bars are the sum of NEE using the day of start of season and end of season as computed by the VI-based phenology metrics. Some VI-based phenology metrics do not appear on the plot as a result of low sums in NEE. VI-based phenology metrics were not able to be computed or resulted in values very close in days due to missing observations due to cloud cover.
CHAPTER 4

AN EMPIRICAL MODELING APPROACH TO ESTIMATING
REGIONAL SCALE NET ECOSYSTEM EXCHANGE IN MAIZE AND
SOYBEAN FIELDS IN THE US CORN BELT¹

¹McCombs, A.G., A.L. Hiscox, A. Desai, C. Wang, and A. Suyker. To be submitted to
Agricultural and Forest Meteorology.
4.1 INTRODUCTION

The estimation of agricultural impacts on the carbon dynamics is not well represented in climate models, limiting the robustness of future climate projections (Le Quéré et al., 2015). Satellite remote sensing has been commonly used to model carbon dynamics at regional scales. Prior modeling efforts have primarily relied on the use of vegetation indices, which describe the greenness of the surface from a derived combination of surface reflectance bands, to model NEE, or net primary production in generalized ecosystem categories at a regional to global scale (i.e., Dong et al., 2015; Fu et al., 2014; Gu and Wylie, 2015; Kim et al., 2006; Sims et al., 2014; Tang et al., 2012; Wylie et al., 2007; Xiao et al., 2011). While this is useful globally it is a less accurate approach at the regional scale, where specific climate impacts need to be better understood for planning and management purposes. Gitelson et al. (2012) determined that the most significant bands for modeling carbon exchanges were vegetation indices that included the green and near-infrared bands for generalized ecotones. However, there has been little work developing carbon exchange models using satellite remote sensing for agricultural regions due to the complexity of these systems (Wylie et al., 2007b; Xiao et al., 2011; Xiao et al., 2004). The reasons for this are both practical and technical. Practically, as human-managed systems, the “natural” cycles are modified year to year and field to field. Technically, modelling carbon dynamics at coarser spatial resolutions is challenging due to varying climatic conditions and heterogeneous land covers within a pixel (Wu et al., 2012). However, the development of downscaling algorithms such as the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), which allow finer temporal resolution MODIS datasets to be fused with finer spatial resolution
Landsat (Zhu et al., 2010), removes many of the technical challenges of model development in agricultural systems because the downscaled pixels are significantly finer than the agricultural field.

Fu et al. (2014) used downscaled MODIS and Landsat observations to estimate carbon dynamics. An empirical modeling approach was evaluated using vegetation indices, reflectance, and land surface temperature to develop a regression tree for varying land covers. This used predetermined thresholds from vegetation indices and surface reflectance to account for changes in carbon fluxes and surface reflectance for different stages of the growing season. However, a limitation of their work was that it was developed for broad land cover classification, and for the case of agriculture there was only one subgroup. Here, we demonstrate the ability to model carbon dynamics from remotely sensed surface reflectance using an empirical approach for particular agricultural crops.

Kalfas et al. (2011) developed a model to estimate gross primary production in maize fields using several MODIS computed vegetation indices, as well as photosynthetically active radiation and air temperature. This model had errors that ranged from -15% to +20%, but was more successful capturing the timing of carbon uptake and peak in carbon uptake than previous models where crop type was not considered. Although it has been shown that there are spectral variations between maize and soybean (Viña et al., 2011). Maize have lower reflectance in longer wavelength, compared to soybean which has higher reflectance in longer wavelengths. This is due to the water content of the leaves, and water absorbs longer wavelengths (Viña et al., 2011). These differences coupled with the higher carbon uptake that occurs in maize fields compared
to soybean fields due to higher biomass, higher leaf area index, and varying photosynthetic pathways (i.e., C$_4$ vs. C$_3$ photosynthetic pathways), would indicate that carbon dynamics in agricultural fields need to be modeled by crop type rather than a combined subgroup.

The models developed by Fu et al. (2014) and Kalfas et al. (2011) make use of the empirical modelling approach from downscaled remote sensing datasets and modeling the physics of carbon dynamics in maize fields. Built on this precedence, the work presented here combines the benefits of these two models to improve our understanding of the regional scale carbon dynamics in agricultural regions. The use of an empirical modeling approach is a simplified version of reality, that is much easier to implement and makes the model more accessible to scientists who do not necessarily have an expertise in remote sensing or modeling.

The empirical model developed in this work estimates net ecosystem exchange (NEE) from the surface reflectance deemed significant to explaining the variance in ground-observed NEE. It was the author’s hypothesis that NEE could be estimated more precisely using downscaled MODIS and Landsat surface reflectance, and meteorological observations (i.e., air temperature and vapor pressure deficit) when crop type and time period in the growing season are considered. The empirical model was calibrated using gap-filled ground-based NEE values on maize/soybean rotation fields, and was then evaluated using gap-filled ground-based NEE values from flux towers that were not used in the calibration stage.
4.2 DATA SOURCES

4.2.1 NET ECOSYSTEM EXCHANGE AND METEOROLOGICAL DATASETS

Ground-based datasets collected at FluxNet and AmeriFlux eddy covariance towers were used for model calibration and evaluation. Gap-filled NEE datasets were obtained from a total of 6 AmeriFlux/FluxNet stations that were located on maize-soybean rotation, or maize only agricultural fields within the US Corn Belt. Table 4.1 lists the 6 stations used in model development, where the station data crosses multiple latitudinal and longitudinal directions. Non-gap filled variables obtained for calibration of the model included air temperature, and vapor pressure deficit (VPD). Additional meteorological variables are collected at these sites and are available through the AmeriFlux/FluxNet network, although they were not used in this work.

There was a total of 4 stations used for model development and calibration, which included US-Ne2, US-Ne3, US-Ro1, and US-Bo1 (See Table 4.1). These stations were selected because they were maize/soybean rotation and provided the greatest amount of site years. Between 2002 and 2011 there were 17 site years of maize, and 16 site years of soybean. Additionally, there were 2 stations used for model evaluation, which include US-IB1 and US-Ne1 (See Table 4.1) for a total of 12 site years of maize, and 2 site years of soybean.

In all cases, datasets have gone through extensive quality control and gap-filling prior to download. Net ecosystem exchange (NEE) and meteorological values obtained from one of three types of gap-filled dataset, which were FluxNet2015, FluxNet LaThuile 2007, Level 2 gap-filled AmeriFlux, or Level 4 gap-filled AmeriFlux datasets. FluxNet2015 are downloaded from the FluxNet website.
In addition to NEE flux data, meteorological datasets used for calibrating the empirical model were maximum air temperature (TMAX), minimum temperature (TMIN), maximum vapor pressure deficit (VPDmax), and minimum vapor pressure deficit (VPDmin). These datasets were selected to be a dependent variables for estimating NEE because photosynthetic activity is known to be a function of air temperature and VPD, which will affect carbon exchanges between the ecosystem and the atmosphere (Bonan, 2008).

All datasets were obtained as hourly or half hourly values. However, to compare ground-based NEE and meteorological values to satellite remote sensing reflectance, the temporal resolution of these datasets had to be reduced to match the 8-day time stamp of the remote sensing dataset. The NEE dataset units were converted from [μmolCO$_2$ m$^{-2}$s$^{-1}$] to [gC m$^{-2}$ hr$^{-1}$] and then summed for the 8-day time stamp identical to the time stamp of...
the remote sensing images. To compute 8-day TMAX, TMIN, VPDmax, and VPDmin, the daily respective maximum and minimum air temperatures and VPD were calculated, then averaged for the 8-day period that matched the time stamp of the remote sensing images. Additional information regarding data conditioning can be found in Chapter 3.

4.2.2 PRISM CLIMATE DATASET

Meteorological conditions play a significant role in photosynthetic uptake and respiration of carbon dioxide. If the air temperature is too warm or too cold, then carbon uptake will decrease. The same is true for atmospheric humidity, if the atmosphere is too dry, the stomata on the leaves will close causing carbon uptake to decrease (Bonan, 2008). As a result, it is important to represent these conditions when modeling carbon exchanges.

Additional meteorological data was needed for the evaluation of the empirical model because there were only 2 stations with gap-filled flux data on soybean or maize fields to be used for model evaluation. The parameter-elevation relationships on independent slopes model (PRISM) is an interpolation methodology developed at Oregon State University to statistically downscale the 30-arcsec (~800m) gridded climate dataset previously provided by the United States Department of Agriculture. These datasets are interpolated to consider factors on climate variables from elevation, location, proximity to the coast, and topographic orientation to a 4km grid cell size. More information on the PRISM interpolation methodology can be found in Daly et al. (2008). Daily maximum temperature, minimum temperature, maximum VPD, and minimum VPD were downloaded from the PRISM website (http://prism.oregonstate.edu). An eight-day average of the daily values were calculated to match the time stamp found in the remote sensing datasets.
4.2.3 REMOTE SENSING DATASETS

Satellite remote sensing data products are a common input for modeling carbon exchanges between the atmosphere and biosphere (e.g., Fu et al., 2014; Gu and Wylie, 2016, 2015; Wylie et al., 2007b; Xiao et al., 2008). These datasets passively observe the reflectance of light to the satellite to tell us something about the conditions of the earth’s surface. These products are used because they have global coverage and can enhance our understanding of carbon dynamics in space and time. We use here two common and publicly available products: MODIS and Landsat.

Imagery from MODIS, aboard the Aqua and Terra satellites, and the Landsat TM/ETM+ from 2002 to 2011 was used for land surface reflectance datasets. The 8-day surface reflectance product (MOD09A1), which has a spatial resolution of 500m, was obtained for the 3 tiles in the US Corn Belt (Vermote, 2015; Wan et al., 2015). MODIS datasets were downloaded from the Level 1 and Atmosphere Archive and Distribution System (LAADS, http://ladsweb.nascom.nasa.gov) managed by NASA.

The 8-day MOD09A1 data product minimizes the influence of clouds, snow/ice, and shadowed pixels by selecting the highest quality pixels that were observed over an 8-day period. All MODIS datasets are downloaded as HDF files in a sinusoidal projection, and include state flags and quality flags that were applied prior to analysis. A subset of the MODIS surface reflectance was created for each of the AmeriFlux/FluxNet stations for a 10km x 10km area to ensure that the entirety of the station fetch was included in the subset image (Horst & Weil, 1994).
The Landsat-5 Thematic Mapper (TM) and Landsat-7 Enhance Thematic Mapper (ETM+) missions were also used in this analysis. All Landsat satellites have a 16-day revisit time and a 30m spatial resolution. An atmospherically corrected surface reflectance product was obtained from the United States Geological Survey’s Earth Resources Observation and Science Center Science Processing Architecture (ESPA, http://espa.cr.usgs.gov). The surface reflectance product is atmospherically corrected and converted from radiance to surface reflectance using the same procedures used for the MOD09A1 dataset, which makes these two datasets comparable (Masek, Schwaller, & Hall, 2006).

There were 6 surface reflectance bands used in this analysis, which included the following on the electromagnetic spectrum: blue, green, red, near-infrared (NIR), and two bands falling in the shortwave-infrared spectrum (SWIR1, SWIR2). Table 4.2 provides the spectral bands from each satellite. All bands are referenced by their 3-5 letter identifier in the remainder of the text.

4.3 MODEL DEVELOPMENT AND CALIBRATION

4.3.1 REPRESENTATIVENESS OF NET ECOSYSTEM EXCHANGE VALUES

For model calibration, the surface reflectance was not scaled by the flux footprint climatology over the course of the 8-day period. The flux footprint model developed by Kljun et al. (2015) was run for the 4 sites used for calibration, in all cases the 90% flux footprint contribution fell within the agricultural field represented. As an example, Figure 4.1 shows the flux footprint climatology for 2005 for the 4 stations used for calibration. This gives confidence that the ground-based flux observations are representative of the agricultural field.
4.3.2 ESTARFM DOWNSCALING METHODOLOGY

The spatial resolution of MODIS datasets is too coarse to capture field scale carbon dynamics in agricultural fields, while the temporal resolution of Landsat is too infrequent to capture the rapidly growing row crops. In order to maintain the spatial resolution of Landsat and the temporal resolution of MODIS, subset images from each satellite were fused together to create an 8-day time series using the ESTARFM, which was developed by Zhu et al. (2010). The model statistically downscales MODIS imagery that occurs between Landsat scans by using two clear-sky pairs of MODIS and Landsat imagery that occur before and after the image to be downscaled. The only surface reflectance bands used in this analysis were bands that overlapped between the two satellites, see Table 4.2.

All 8-day MODIS surface reflectance datasets that occurred between clear sky Landsat surface reflectance images were downscaled using the ESTARFM fusion algorithm. Pairs for downsampling were determined through manual inspection. The appropriate pair was determined for each image with a look up table while data was stepping through each image. Pairs did not span to the next year because there were cases during the processing that the last clear sky was during senescence and the next image did not occur until green-up the following year, this caused winter conditions to be unrepresented by Landsat datasets. This resulted in a Landsat-like spatial time series of surface reflectance with a temporal resolution of 8 days and a spatial resolution of 30m for each AmeriFlux/FluxNet station used in this analysis.

4.3.3 SURFACE REFLECTANCE DATA EXTRACTION

After a Landsat-like time series of 8-day surface reflectance had been created, the surface reflectance of each time stamp were extracted for homogeneous pixels of the agricultural
field. This was done by creating a polygon for each of the agricultural fields, where the edge of the polygon was 1 pixel inside the edge of the field to remove any mixed pixels from the computations, see Figure 4.1 for polygons. The median surface reflectance for the represented agricultural field for each time stamp was used to compare to each NEE value.

All surface reflectance and NEE values were partitioned by crop type grown each year. This resulted in 17 site years of maize and 16 site years of soybean data. This was done to evaluate each relationship of surface reflectance to NEE by crop type. The datasets were further divided by period of the growing season. These phenology metrics are defined as three growing season time periods included start of season (SOS) to end of season (EOS), SOS to peak of season (POS), and POS to EOS. From this point forward these periods will be called total growing season (SOS to EOS), increasing NEE (SOS to POS), and decreasing NEE (POS to EOS). SOS was defined as the day of peak soil respiration before photosynthetic acclimation begins. EOS is defined as the day of peak respiration after growing season and where photosynthetic acclimation has ceased. POS is the day of peak carbon uptake. Figure 4.2 shows the different transition points that occur during the growing season for a time series of NEE over the course of 1 year. All observations that fell between the two-carbon flux phenology metric points were placed into the subgroups listed above.

4.3.4 IDENTIFICATION OF SIGNIFICANT SURFACE REFLECTANCE BANDS

There are 6 overlapping surface reflectance bands between MODIS and Landsat, but the use of all bands may cause the model to be over fit. Therefore, the optimal bands that would explain the greatest amount of variance of NEE were identified for each part of the
growing season. The surface reflectance bands that explained the greatest amount of variance in ground-based NEE observations were determined by comparing the individual surface reflectance bands to the ground-based NEE values on a scatterplot. An example can be seen in Figure 4.3. A quadratic and linear regression analysis was conducted for each reflectance band to inform the relative fit of the surface reflectance to NEE. Figure 4.4 outlines the methodology used for selecting the most significant surface reflectance bands.

The reflectance bands explaining the most amount of variance in NEE were identified as significant. The F-statistic, p-values, and the coefficient of determination were used to identify which regression fit (linear or quadratic), and bands were most significant. To identify the significant bands, the p-value for the regression equation had to be less than 0.05 and the F-statistic had to be large to have statistical significance. The p-values for each variable within the regression equation was also evaluated to make sure they were less than 0.05. This translated to a single reflectance band explaining at least 10% of the variance in NEE. Therefore, if coefficient of determination was greater than 0.10 or 10%, then the band was included in the empirical model explained in the following section. All criteria had to be met for the band to be selected as significant. However, if all 6 bands were significant, then only the top 5 most significant bands were included in the empirical model to keep the model fit and reduce the possibility of overfitting the model. This analysis was done for each crop type individually, and the combination of maize and soybeans for each stage of the growing season and the total growing season. All ground-based stations were combined for this analysis. The observations were compared for various parts of the growing season by using data points
that fell between key transition points in the carbon flux phenology (Figure 4.2). Thus, for each period of the growing season and crop type, there was 1 to 5 reflectance bands to be included in the model.

4.3.5 MODEL CALIBRATION
After the most significant reflectance bands were determined for maize, soybean, and combined crops, a stepwise regression analysis was conducted to determine the best combination of variables for an empirical model. The stepwise regression tool, ‘stepwiselm’, in MATLAB© R2016b was used. The stepwise regression analysis is a systematic method of adding and removing variables from a multiple regression model based on their statistical significance. The method starts with an initial regression model and then removes variables in the multiple regression model that have a p-value that exceed a predetermined threshold, for this analysis a p-value greater than 0.06 for a single term was removed from the regression analysis because this was the minimum p-value the tool would allow. The starting model type could be specified within the MATLAB© tool; there were four model types tested: quadratic, linear, interactions, and pure quadratic. Where interactions are when two variables are multiplied by each other (e.g., Red * Blue bands). The result with the best fit from the four choices was selected for use.

The 1-5 most significant surface reflectance bands, and the flux station observed TMAX, TMIN, VPDmax, and VPDmin were used as inputs in the stepwise regression analysis. There was a total of 9 models evaluated, where resulting multiple regression coefficients and model statistics were output for maize, soybean, combined maize and soybean, the four different model types tested, and each growing season subgroup (e.g., increasing NEE, decreasing NEE, etc.). The best empirical model was identified using the
coefficient of determination (R^2) and the p-value for each crop grouping and growing season subgroup. The 9 final models were selected from the 4 scenarios and written as a Python and MATLAB© function and is available by request from the author.

4.4 MODEL EVALUATION

It is good practice in modelling to conduct a model evaluation using datasets not used during calibration to verify that the model is operating properly. At this point in the modeling process NEE can be predicted for total growing season, increasing NEE, and decreasing NEE by crop type using remotely sensed surface reflectance and meteorological datasets. However, NEE data was only available for 2 ground based stations for evaluation. In order to increase the total number of pixels evaluated with the model, a flux footprint climatology for each 8-day time stamp was conducted using the flux footprint parameterization (FFP) discussed in Kljun et al. (2015). FFP is a simple parameterization of the Lagrangian stochastic particle dispersion footprint model (LPDM-B) developed in Kljun et al. (2004). The assumption is that the FFP is a “true” spatial representation of NEE, and so for our purpose it is considered “ground truth.” The FFP was run for each 1 hour or 30 minute observation, and upscaled from a continuous function to a 30m grid cells to match the spatial resolution of the remote sensing datasets. The upscaled probability density function from FFP was then multiplied by the NEE observation for the corresponding time stamp, and then summed to give an 8-day spatial climatology of NEE using Equation 1.

\[
F_{\text{NEE}}(x,y) = \sum (f_{p,i}(x,y) * \text{NEE}_i)
\]
Where, $F_{NEE}(x,y)$ is the 8-day total of NEE from pixel x,y in space, $f_{p,i}$ is the probability density function value of the flux footprint at observation number i for pixel x,y in space, and NEE_i is the NEE value for observation i. To scale the modeled NEE values estimated from remote sensing observations, the total contribution of each pixel to the total NEE value was calculated using Equation 2. This was done by dividing the 8-day footprint of NEE by the 8-day total NEE observed by the tower, giving a ratio of the contribution of each pixel for each 8-day timestamp. To scale the modeled NEE values to the flux footprint output, the estimated NEE value for each pixel within the agricultural field was multiplied by the 8-day percent contribution of the pixel to obtain a total NEE using Equation 3.

\[
(2) \quad F_{Cont}(x,y) = \frac{F_{NEE}(x,y)}{NEE_{total}}
\]

\[
(3) \quad NEE_{scaled}(x,y) = F_{Cont}(x,y) \times NEE_{RS}(x,y)
\]

Where, $F_{Cont}(x,y)$ is the 8-day percent contribution of a pixel to the total NEE observed at the station over 8 days, and NEE_{total} is the total 8-day NEE observed at the station. In equation 3, $NEE_{scaled}(x,y)$ is the total NEE for an 8-day period scaled to the 8-day percent contribution of a pixel to total NEE observed at the flux tower, and $NEE_{RS}(x,y)$ is the modeled NEE value for an 8-day period at pixel x,y using satellite observed surface reflectance and PRISM climate variables.

The $NEE_{scaled}(x,y)$ were compared to $F_{NEE}(x,y)$ values on a scatter plot using a one to one line to determine the overall fit of the estimated NEE values to the “true” NEE values.
4.5 RESULTS

4.5.1 SIGNIFICANT REFLECTANCE BANDS

Overall model calibration results are shown in Table 4.3. The surface reflectance bands that explained the most amount of variance of ground-based NEE values were determined for each period of the growing season for each crop type. The bands that had a R^2 value greater than or equal to 0.10 are listed in Table 4.3 and the regression model type that was most significant was selected. Table 4.3 lists all the surface reflectance bands that met this threshold for period of the growing season and crop type.

For the total growing season, the NIR band was most important for maize, where the RED band was most important for soybean. The relationships between NEE and the surface reflectance when soybean and maize were combined were weaker, with lower R^2 values. However, the regression model type did not vary between crop type, and were consistent between maize and soybean, and maize/soybean. When the relationship between NEE and the surface reflectance was determined based on total period of the growing season, the fit was significantly better for each individual crop, but not for the combined soybean/maize fit.

During the increasing NEE portion of the growing season, the significant bands for maize had a linear relationship with NEE, while soybean had a quadratic relationship. Also, the most important bands for soybeans were the RED and NIR bands, while only NIR was the most significant band for maize. Soybean also required the use of BLUE, GREEN, and SWIR2 bands to explain the full variance in NEE during this time, while maize required the SWIR1 and SWIR2. The combined soybean/maize comparison used a
combination of the bands that were significant for each crop, but with a lower explained variance, as seen in R^2 values in Table 4.3.

The decreasing NEE portion of the growing season had lower R^2 values on average. In all cases the NIR band was the only significant surface reflectance band, with the exception of decreasing NEE for combined maize/soybean where GREEN also explained at least 10% of variance. The individual maize relationships used a quadratic model for NIR, but a linear relationship explained 34% of the variance in NEE for soybean compared to NIR. However, for the combined maize/soybean comparison, a linear model for NIR was used and the maximum explained variance of NEE was 16%. This is significantly lower than relationships between soybean or maize.

4.5.2 MODEL SELECTION

Table 4.4 is a summary of the best empirical model of the 4 models developed for each crop type and period of growing season that best explained the variance in ground observed NEE. The period of the growing season represents the values that fell between the carbon flux phenology metrics discussed in Figure 4.2.

Model fit was typically quadratic because the relationship between several of the surface reflectance bands and NEE was quadratic (Figure 4.3), and the relationship between NEE and air temperature is quadratic (Bonan, 2008). Table 4.4 shows that there is better model fit when modeling by crop type rather than combining maize and soybean as one model. This is especially true when modeling for the total growing season, where the R^2 values for soybean was 0.674, for maize was 0.630, and combined maize/soybean was 0.478. All p-value were near 0.0.
When modeling by sub period of growing season, there was better fit than modeling for total season. When modeling maize for the total growing season there were 18 variables required and an R^2 value of 0.630; the NIR, Red, SWIR1, SWIR2, and all climate variables were needed. However, when NEE was estimated for maize increasing NEE only 11 variables were required and there was an R^2 value 0.643, and for decreasing NEE required 9 variables and had an R^2 value of 0.691. When modeling by portion of the growing season only, the NIR, Red, and all climate variables were needed to model more than 60% of the variance in NEE.

A stepwise regression model determined the best combination of variables to empirically model NEE for each crop and period of the growing season using VPDmax, VPDmin, TMAX, TMIN, and the most significant surface reflectance bands. In many cases, not all the variables that were individually significant in explaining the variance in NEE were significant as a variable in the multiple regression model, and therefore were removed. Figure 4.5 is a summary that shows which surface reflectance bands that were used as inputs into the stepwise regression analysis and retained in the multiple regression model, and which variables were removed. The solid colors indicate that the variable was retained and significant to model performance. Shaded checkered variables were input into the stepwise regression model, but the variable was deemed insignificant to the multiple regression model and was removed. As seen in Figure 4.5, the NIR and TMAX variables were deemed significant to the empirical model for all crops. During the total growing season or increasing NEE, combinations of Red, Blue, Green, SWIR1, and SWIR2 were required as inputs. The only instance a significant surface reflectance was removed from the empirical model was for maize increasing NEE model, where SWIR2
was removed from the model. TMIN was removed only one time from the multiple regression model, this was for the decreasing NEE model for soybean. VPD was found to be insignificant to the multiple regression model for maize for increasing NEE, but was significant during decreasing NEE. However, for soybean both VPDmax and VPDmin were significant for increasing NEE, but VPDmin was insignificant for decreasing NEE.

4.5.3 MODEL PERFORMANCE AND EVALUATION

The estimated NEE for increasing NEE and decreasing NEE were compared to ground-based NEE on a 1:1 line on a scatter plot, see Figure 4.6. When the footprint scaled estimated NEE was compared to the footprint scaled ground observed NEE, increasing and decreasing NEE when modeled by maize or soybean followed the 1:1 line. However, when the combined soybean maize observations were compared along a 1:1 line the estimated NEE was underestimated compared to ground-based NEE. The evaluation results confirm the hypothesis that NEE can be estimated with more certainty when modeling by crop type.

When estimating NEE, the crop type based model can capture the carbon uptake, peak carbon uptake and senescence with more certainty than the combined maize and soybean model. In Figure 4.7, the maize (Figure 4.7a,b) and soybean models(Figure 4.7c,d) are able to capture the timing of increasing/decreasing carbon uptake and peak carbon uptake better than when compared to the ground-observed data. However, in Figure 4.7e,f the soybean years overestimate carbon uptake and in the maize years the carbon uptake is underestimated. There is also a lag in the uptake of maize when modeling NEE from maize fields using the maize/soybean model.
4.6 DISCUSSION

It was determined that there were variations in the precision of fit and the most explanatory satellite surface reflectance bands that best explained the variance of ground-observed NEE. The variations depended on crop type, and period of growing season. Previous modeling efforts have primarily relied heavily on the use of vegetation indices such as normalized difference vegetation index (NDVI), and the enhanced vegetation index (EVI), which use the red, NIR, and blue bands to explain variables such as gross primary production (GPP), net primary production (NPP), NEE, crop yield, leaf area index (LAI), and evapotranspiration (ET) (e.g., Dong et al., 2015; Kalfas et al., 2011; Nagler et al., 2005; Sims et al., 2014; Wylie et al., 2007). Our results indicate that while NIR is always important, red and blue varies with crop type and time of year.

The reflectance bands found in the vegetation indices used for estimating vegetation dynamics were the same reflectance bands that best explained NEE. NDVI and EVI make use of the NIR, and were considered significant for all crops and periods of growing season. However, the degree of variance of NEE explained by NIR, as well as the other surface reflectance bands that were significant varied by crop type. Viña et al. (2011) found that soybean and maize reflect light differently. For instance, soybean has an increasing reflectance with longer wavelengths, while maize has a decreasing reflectance with longer wavelengths. This is due to differences in the chlorophyll content, structural leaf orientation, and water content of the plant of each crop. Soybeans have a higher reflectance in longer wavelengths due to higher chlorophyll content in the adaxial side of their leaves compared to maize. While higher biomass, which results in higher amounts of water results in more absorption of longer wavelengths in maize.
These physiological differences could cause equal carbon uptake at a set point in time with very different observed surface reflectance. Thus, the most significant reflectance bands for explaining NEE for soybean tended be in the visible range where the reflectance will not saturate the remote sensing pixel, and maize tended to have a better fit with longer wavelengths.

The NIR band was always a significant band for explaining the variance in NEE for maize, soybean, combined soybean/maize, and for each portion of the growing season. This was especially true in post-peak of season for maize and soybean because the crop is not increasing in biomass, but the chlorophyll content of the leaves will decrease during senescence. NIR is sensitive to changes in the chlorophyll content (Jensen, 2005). The surface reflectance bands most significant to explaining the variance in NEE for increasing NEE for maize were NIR and Red, followed by SWIR1 and SWIR2 which are most sensitive to water content. This would indicate that water availability is most important for explaining ground-based NEE. Soybean had a better fit with the NIR, red, blue and green bands for increasing NEE rather than SWIR1 and SWIR2. The finding that NIR was the most important surface reflectance for explaining variance in NEE is in line with findings from Gitelson et al. (2012) that vegetation indices using the NIR and green bands best explained GPP. The work presented here does not support the claim that the green band is important to explaining carbon dynamics with remote sensing for maize, but it is important for soybean.

The use of significant surface reflectance to estimate NEE had been previously demonstrated in the literature to be a practical method for estimating carbon exchange, although these other models estimated NEE for much broader land covers (Fu et al.,
2014). However, in many cases the coarser pixels from MODIS were too coarse to properly represent carbon exchanges for a single crop type (Chen et al., 2007). Wu et al. (2017) found it challenging to model carbon dynamics at coarser scales using vegetation indices due to varying climatic conditions and heterogeneous land covers within a pixel. Our results show that downscaled MODIS and Landsat surface reflectance is a good proxy for estimating carbon exchanges. The use of finer scale surface reflectance observations allowed the surface to have fewer heterogeneous pixels in monoculture agricultural fields to capture the true conditions of the crop in the field. This resulted in better modeling of NEE in soybean and maize fields compared to modeling the two crops together. Most of the final models used a quadratic regression fit, which is different than other models that generally use a linear fit (e.g., Fu et al., 2014; Kalfas et al., 2011). However, the quadratic nature of this model matches what is typically observed in the field, i.e., air temperature vs. NEE (Bonan, 2008). The same is true for several surface reflectance bands when compared to NEE, as shown in Figure 4.3.

The use of air temperature and VPD as an explanatory variable was highly important because it provided information on the spatially varying variable that play a large role on the photosynthetic capacity of the crop at a single point in time. The available remotely sensed surface reflectance is not sensitive to changes in air temperature, and data has been atmospherically corrected to remove the influence of water vapor and clouds. Thus, it was imperative to account for spatial variations in meteorological conditions using air temperature and VPD from the PRISM dataset. The use of temperature and humidity estimates allows the empirical model to estimate the meteorological impacts on NEE in addition to vegetative stress, biomass, and health that
are provided by the surface reflectance data. All of these play a major role in NEE dynamics (Ciais et al., 2005; Goldstein et al., 2000; Le Quéré et al., 2015; Reichstein et al., 2002). For this reason, TMAX was always a significant model variable, with a p-value of 0.00.

There was a significantly better fit when modeling NEE by portion of the growing season, see Table 4.4. As established in previous work, vegetation indices can be used to obtain the carbon flux phenology (CFP) metrics (Balzarolo et al., 2016; Garrity et al., 2011; Wu et al., 2012), but can be obtained with better certainty using the vegetation index specified for maize and soybean using the methodology discussed in Chapter 3. Using the CFP metrics obtained from the vegetation phenology, the surface reflectance can be categorized as increasing NEE or decreasing NEE. This allows the model to consider changes in biomass in the vegetative period of the growing season. Wu et al. (2017) determined that it was difficult to detect smaller changes in the vegetative canopy during the beginning growing season, but modeling by season and finer spatial resolutions allows better identification of subtle changes in vegetative greenness and modeling of phenological patterns of carbon dynamics.

NEE was more precisely estimated by crop type, see Table 4.4 and Figure 4.6. The error was smaller and the fit of the empirical model was higher when modeling by crop type compared to a combined soybean and maize model. Previous models have typically modeled all agriculture as one subgroup, but were unable to capture the peak in carbon uptake (Fu et al., 2014). This occurs for several reasons: (1) some crops have a higher LAI, which results in higher carbon uptake (Suyker et al., 2004), (2) the leaves reflect light differently (Viña et al., 2011), (3) crops have varying photosynthetic
pathways (C₃ or C₄ photosynthetic pathways), which causes varying rates of photosynthetic uptake (Bonan, 2008).

The crop based modeling of carbon exchanges proposed in this study requires a predetermined crop type. Fortunately, methodologies and datasets are available for determining crop type (Han, Yang, Di, & Mueller, 2012; Wang, Fritschi, Stacey, & Yang, 2011b), including the US Department of Agriculture’s Cropland Data Layer. However, one major limitation of this methodology is the model is unable to account for changes in carbon exchanges due to land management techniques (i.e., cover crops, tillage, irrigation), or intercropping. Identification of impacts of these practices is an open area for future research. Another limitation is this methodology is unable to predict carbon flux dynamics prior to growing season. Surface reflectance values were often unavailable during the winter months when agricultural fields were snow covered.

Other error sources that are not accounted for in the current empirical model include the following. (1) Gap-filled NEE observations were used to calibrate and validate the empirical model, where 20-60% of observations must be gap-filled due to quality filters applied to the data (Papale, 2012). (2) When downscaling the MODIS to Landsat spatial resolutions, the predicted surface reflectance have an average error in predicted reflectance less than 0.01 (Zhu et al., 2010). (3) The flux footprint is not a perfect parameterization of source locations, but can capture 96-99% of the source location. (4) Finally, when upscaling a continuous flux footprint probability density function to a 30m grid there can be significant information loss. The limitations and specific amount of information loss when upscaling a flux footprint are discussed in Chapter 5.
4.7 CONCLUSIONS

When modeling NEE from downscaled MODIS and Landsat surface reflectance, there is a more precise fit when the model considers crop type, period of growing season, and meteorological conditions in the modeling methodology. Here we show the following:

- Modeling NEE using surface reflectance gives good results
- NEE is estimated with greater certainty by crop type
- Modeling by period of growing season allows the model to vary throughout the year, by selecting optimal spectral bands that are most important to crop structure during that period of the year.
- Use of climate observations in the empirical modeling approach accounts for variations in NEE due to temperature and atmospheric humidity.

Future work will test other statistical fitting techniques to be ensure that the quadratic and linear regression techniques is the best approach. Other statistical techniques that may be considered are partial least squares regression, and fit may be tested by statistical tests such as Akaike information criterion (AIC) metric.

The empirical model developed here will be used to evaluate the spatial variations in carbon dynamics from maize and soybean fields. Additional ground based flux tower datasets will be needed to evaluate the application of the empirical model outside of the US Corn Belt, where the model was calibrated and evaluated.

Additionally, a regional map of total carbon exchanges for the US corn belt will be created. This will give regional estimates of carbon uptake from maize and soybean during growing seasons at a regional scale at spatial resolutions finer than ever before.
The total growing season NEE from maize and soybean may show the differences in management, irrigation, and local droughts that occur at regional scales. This will also provide better understanding of the implications of the increasing production of soybean and maize on atmospheric carbon in the United States. Model outputs will also be compared to existing NEE model outputs, such as Xiao et al. (2004, 2008), to identify if this modeling approach significantly improves total NEE values compared to work that has already been done.
Table 4.1. AmeriFlux/FluxNet station for NEE-based carbon flux phenology metrics.

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Station Name</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Land Cover</th>
<th>Koeppen Climate Classification</th>
<th>Data Availability</th>
<th>Calibration or Evaluation Station</th>
<th>Dataset Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>US-Ne2(^1)</td>
<td>NE - Mead Irrigated Rotation</td>
<td>41.1649</td>
<td>-96.4701</td>
<td>Soybean/Maize Rotation</td>
<td>Dfa: Humid Continental</td>
<td>2002-2011</td>
<td>Calibration</td>
<td>FluxNet2015</td>
</tr>
<tr>
<td>US-Ne3(^1)</td>
<td>NE - Mead Rainfed</td>
<td>41.1797</td>
<td>-96.4396</td>
<td>Soybean/Maize Rotation</td>
<td>Dfa: Humid Continental</td>
<td>2002-2011</td>
<td>Calibration</td>
<td>FluxNet2015</td>
</tr>
<tr>
<td>US-IB1(^4)</td>
<td>IL - Fermi National Accelerator Laboratory – Batavia (Agricultural Site)</td>
<td>41.8593</td>
<td>-88.2227</td>
<td>Soybean/Maize Rotation</td>
<td>Dfa: Humid Continental</td>
<td>2005-2007</td>
<td>Evaluation</td>
<td>Level 4 Gap-Filled AmeriFlux</td>
</tr>
</tbody>
</table>

\(^1\) Verma et al. 2005, \(^2\) Griffis et al. 2011, \(^3\) Meyers and Hollinger 2004, \(^4\) Allison et al. 2005
Table 4.2. Matching spectral bands from LandSAT and MODIS observations used for explaining variance in ground-observed NEE.

<table>
<thead>
<tr>
<th>Band (Identifier)</th>
<th>MOD09A1 Spectral Band</th>
<th>LandSAT Spectral Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Band 1: 620-670nm</td>
<td>Band 3: 630-690nm</td>
</tr>
<tr>
<td>Near-Infrared (NIR)</td>
<td>Band 2: 841-876nm</td>
<td>Band 4: 760-900nm</td>
</tr>
<tr>
<td>Blue</td>
<td>Band 3: 459-479nm</td>
<td>Band 1: 450-520nm</td>
</tr>
<tr>
<td>Green</td>
<td>Band 4: 545-565nm</td>
<td>Band 2: 520-600nm</td>
</tr>
<tr>
<td>Mid-Infrared 1 (SWIR1)</td>
<td>Band 6: 1628-1652nm</td>
<td>Band 5: 1550-1750 nm</td>
</tr>
<tr>
<td>Mid-Infrared 2 (SWIR2)</td>
<td>Band 7: 2105-2155nm</td>
<td>Band 7: 2080-2350nm</td>
</tr>
</tbody>
</table>
Figure 4.1. Footprint climatology for 2005 at the four stations used for calibration. In all instances the 90% contribution line fell within the agricultural field.
Figure 4.2. Transitions points in carbon flux phenology for 1 year at US-Ne1 Mead Irrigated Maize station. Model calibration split the carbon observations by part of growing season using the periods between the 3 carbon flux phenology metrics shown.
Figure 4.3. Scatterplot of surface reflectance as observed from remote sensing vs. ground observed NEE values for Maize during increasing NEE for each of the 6 reflectance bands used in this analysis. The red lines are the quadratic regression model. In this case NIR, RED, BLUE, and SWIR2 were considered significant because their R^2 values were greater than 0.10, F-statistic was large, and p-values for regression and model variables were less than 0.05.
Figure 4.4. Flow chart of the methodology for selecting significant surface reflectance bands to explain variance in NEE values. This was done for each crop and period of the growing season.
Table 4.3. Significant surface reflectance bands listed in order of significance that explained at least 10% of variance of NEE and had p-values less than 0.05 for maize, soybean, and combined maize and soybean. All bands that had an R^2 value of at least 0.10 are listed, however, only the bands that are italicized were used in the empirical model. Up to 5 reflectance bands were used for empirical model development.

<table>
<thead>
<tr>
<th>Total Growing Season</th>
<th>MAIZE</th>
<th>SOYBEAN</th>
<th>MAIZE+SOYBEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band</td>
<td>R2</td>
<td>Regression Model</td>
<td>Band</td>
</tr>
<tr>
<td>------</td>
<td>----</td>
<td>------------------</td>
<td>------</td>
</tr>
<tr>
<td>NIR</td>
<td>0.340</td>
<td>Linear</td>
<td>RED</td>
</tr>
<tr>
<td>RED</td>
<td>0.266</td>
<td>Quadratic</td>
<td>BLUE</td>
</tr>
<tr>
<td>SWIR2</td>
<td>0.180</td>
<td>Quadratic</td>
<td>NIR</td>
</tr>
<tr>
<td>SWIR1</td>
<td>0.106</td>
<td>Linear</td>
<td>SWIR2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Increasing NEE</th>
<th>MAIZE</th>
<th>SOYBEAN</th>
<th>MAIZE+SOYBEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band</td>
<td>R2</td>
<td>Regression Model</td>
<td>Band</td>
</tr>
<tr>
<td>------</td>
<td>----</td>
<td>------------------</td>
<td>------</td>
</tr>
<tr>
<td>NIR</td>
<td>0.420</td>
<td>Linear</td>
<td>RED</td>
</tr>
<tr>
<td>RED</td>
<td>0.249</td>
<td>Quadratic</td>
<td>NIR</td>
</tr>
<tr>
<td>SWIR2</td>
<td>0.200</td>
<td>Quadratic</td>
<td>BLUE</td>
</tr>
<tr>
<td>SWIR1</td>
<td>0.135</td>
<td>Linear</td>
<td>GREEN</td>
</tr>
<tr>
<td>SWIR2</td>
<td>0.240</td>
<td>Quadratic</td>
<td>SWIR2</td>
</tr>
<tr>
<td>SWIR1</td>
<td>0.190</td>
<td>Linear</td>
<td>SWIR1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decreasing NEE</th>
<th>MAIZE</th>
<th>SOYBEAN</th>
<th>MAIZE+SOYBEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band</td>
<td>R2</td>
<td>Regression Model</td>
<td>Band</td>
</tr>
<tr>
<td>------</td>
<td>----</td>
<td>------------------</td>
<td>------</td>
</tr>
<tr>
<td>NIR</td>
<td>0.294</td>
<td>Quadratic</td>
<td>NIR</td>
</tr>
<tr>
<td>GREEN</td>
<td>0.120</td>
<td>Linear</td>
<td>GREEN</td>
</tr>
</tbody>
</table>
Table 4.4. Empirical model statistics for each period within the growing season for soybean, maize, and combined maize/soybean. Model inputs include surface reflectance and climatic variables.

<table>
<thead>
<tr>
<th>Part of Growing Season</th>
<th>Crop Type</th>
<th>Regression Model</th>
<th>R^2 Value</th>
<th>p-value</th>
<th>Number of Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Growing Season</td>
<td>Soybean</td>
<td>Quadratic</td>
<td>0.674</td>
<td>0.0000</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Maize</td>
<td>Quadratic</td>
<td>0.630</td>
<td>0.0000</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Maize and Soybean</td>
<td>Quadratic</td>
<td>0.478</td>
<td>0.0000</td>
<td>16</td>
</tr>
<tr>
<td>Increasing NEE</td>
<td>Soybean</td>
<td>Interactions</td>
<td>0.768</td>
<td>0.0000</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Maize</td>
<td>Linear</td>
<td>0.643</td>
<td>0.0000</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Maize and Soybean</td>
<td>Interactions</td>
<td>0.618</td>
<td>0.0000</td>
<td>24</td>
</tr>
<tr>
<td>Decreasing NEE</td>
<td>Soybean</td>
<td>Quadratic</td>
<td>0.575</td>
<td>0.0000</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Maize</td>
<td>Quadratic</td>
<td>0.691</td>
<td>0.0000</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Maize and Soybean</td>
<td>Quadratic</td>
<td>0.556</td>
<td>0.0000</td>
<td>10</td>
</tr>
</tbody>
</table>
Figure 4.5. Grid plot of the significant surface reflectance bands and climate variables used as inputs into the stepwise regression model. The variables are listed on the left and the crop and model are listed on top, where “Total Grow” is total growing season, “Incr. NEE” is increasing NEE, and “Decr. NEE” is decreasing NEE. Variables that are white were not used in that column’s model. If the variables are shaded in a solid color, then the variable was input into the stepwise regression and was retained in the empirical model. If the model is colored and checkered, then the variable was input into the stepwise regression model, but was not considered significant in the empirical model and was therefore removed.
Figure 4.6. Comparison of footprint scaled observed NEE (ground truth) on the x-axis vs. the footprint scaled estimated NEE on the y-axis. The left column is observations estimated using the increasing NEE model, while the right column are observations estimated during decreasing NEE. The first row is soybean modeled NEE, second row is the maize modeled NEE, and the third row is the combined (soybean and maize) NEE.
Figure 4.7. Estimated NEE (black line) compared to gap-filled NEE values from US-IB1 (left column) and US-Ne1 (right column). NEE estimated using the Maize model can be found in (a) and (b); NEE estimated with soybean model can be found in (c) and (d), and NEE estimated for maize and soybean can be found in (e) and (f).
CHAPTER 5

POINT TO GRID CONVERSION IN FLUX FOOTPRINTS:
IMPLICATIONS OF METHOD CHOICE AND SPATIAL RESOLUTION
FOR REGIONAL SCALE STUDIES

5.1 INTRODUCTION

Flux footprint modeling is a common approach to determining source areas of atmospheric tracers and gases. Flux footprint models are widely used in land-atmosphere exchanges studies for both practical and theoretical investigations (Schmid, 2002). Increasingly, flux footprints are being used to upscale ground-based flux tower measurements (e.g., Desai et al., 2008; Schmid, 2002; Xu et al., 2017), and to calibrate and validate satellite-based gas exchange models (e.g., Xiao et al., 2004) for regional understanding of climate dynamics. There are five types of footprint models: Analytical, Lagrangian, Higher-Order Closure, Large-Eddy Simulation and Hybrid models. Each type of footprint model has varying degrees of complexity, with some being more computationally expensive than others. Leclerc and Foken (2014) provides a good explanation of the various models, uses, and limitations of each.

Micrometeorological measurement techniques (e.g., eddy covariance) are used to quantify the exchange of energy and mass between ecosystems and the atmosphere and provide the necessary inputs to compute flux footprint models. These techniques employ multiple assumptions so that only relatively simple measurements (e.g., rapid vertical velocity measurement at one height) are required to measure fluxes with some accuracy (e.g., Richardson et al., 2006). One major assumption of eddy covariance is that the instrument fetch is homogeneous, but this is often not reality (Horst & Weil, 1994). Despite this assumption, the physical characteristics of the area contributing to the flux measurements are regularly quantified through flux footprint modeling and provide the basis for much of our understanding of land-air gas exchanges. The measured flux for a given period is a spatially averaged ecosystem-atmosphere exchange across the footprint,
which is aligned with the mean wind direction. By nature of the surface layer turbulence, some areas contribute more to the measured flux than others. This makes the use of the flux footprint important, especially when land cover varies significantly with wind direction.

In an effort to understand regional and continental ecosystem dynamics of carbon and water cycling, there has been an increasing interest in upscaling flux measurements by employing remote sensing datasets (Frank & Karn, 2003; Heinsch et al., 2006; Kim et al., 2006b; Lafont et al., 2002; Metzger et al., 2013; Wohlfahrt et al., 2008; Wylie et al., 2007b; J. Xiao et al., 2011, 2014). Unfortunately, a significant limitation of all single point measurements is that they are not easily upscaled from finer field scale to coarser spatial resolutions. However, remotely sensed data have been shown to possess information related to fluxes measured at the surface (e.g., Gitelson, 2003). One drawback is the pixel information from remotely sensed datasets are too coarse in spatial resolution to represent flux footprint dynamics, and may represent heterogeneous surfaces that fall outside of the fetch of the flux tower.

In modeling regional fluxes, footprints are often used for scaling model estimates to tower estimated fluxes to increase the number of samples during the validation of gas exchange models (B. Chen et al., 2009; Dong et al., 2015; Fu et al., 2014; Gu & Wylie, 2015, 2016; Kim et al., 2006b; Lafont et al., 2002; Wylie et al., 2007b; J. Xiao et al., 2011). This requires flux footprint outputs to be upscaled to a raster that has a cell size equal to remote sensing (or other gridded) datasets used in the modeling process. While the flux footprint models themselves focus on the underlying physics of representing the atmosphere, correct scaling of modeled fluxes is required. However, little information is
available on the sensitivity of footprint modeling results to varying cell sizes (Chen et al., 2009). Kim et al. (2006) conducted an analysis on the influence of cell size within the modeling framework, and found the sensitivity of grid size may be dependent on the heterogeneity of the land surfaces surrounding the site. More specifically, Kim et al. (2006) found that the spatial representation was different for forests versus grasslands, where grasslands and croplands could have larger cell sizes than forested land covers because grasslands and cropland surfaces have lower roughness lengths than forests. The reasoning for this is that roughness length is a function of canopy height.

In many studies, the flux footprint function is exported to a raster or other grid format to visually display and compare the results against gridded datasets. However, it is often unknown if the grid cell size of a given satellite observation is appropriate for correctly analyzing flux footprint outputs. With the proliferation of satellites being launched by government and private industry at varying spatial and temporal resolutions, a re-evaluation of rasterization of flux footprint methodologies is warranted. The spatial resolution found in publically available, longer-term moderate resolution satellite imagery, such as GOES or MODIS, are too coarse to represent turbulent motions in the boundary layer, which occur on the sub-meter scale. While there are remote sensing datasets, such as GeoEye, that area collected a fine spatial resolution, these datasets do not cover climate time scales and are often not publically available. Some analyses have scaled fluxes in the boundary layer to match that of the land cover grid cell, but this assumes the surface roughness is homogeneous across the pixel, which is often not the case (Mihailovic et al., 2005). Despite these limitations, properly gridded flux footprint models will aid in the data fusion process between satellite datasets and point based flux
measurements. This is especially true in places or land covers where ground-based data is limited. Recent work developed by Xu et al. (2017) made use of methods developed by Metzger et al. (2013) to create gridded predictions from a temporally varying flux footprint, and showed promise in providing carbon dioxide fluxes at a regional scale from tower based measurements. These methods consider heterogeneous land covers that are typically found, but do not address the sensitivity to cell size.

A large body of literature in GIScience has shown continuous spatial functions can be difficult to model in a grid format (DeMers, 2002). Incorrect gridding leads to loss of information and differences in spatial resolution as cell sizes become coarser (Kim et al., 2006b). Reithmaier et al. (2006) found that the spatial resolution of a grid could cause significant uncertainty in the specified tower location. A comprehensive sensitivity analysis is needed for determining spatial scales that are most appropriate for depicting flux tower information at spatial scales found in land models and remote sensing datasets (Kim et al., 2006b).

Our goal in this study are to determine the sensitivity of commonly used 1D and 2D flux footprint outputs to the desired spatial resolution. We projected both 1D and 2D flux footprint functions at spatial resolutions found in commonly available satellite remote sensing products, which range from 10m (SPOT) to 1km (MODIS). Five vector-to-raster conversion methods were tested and the results give guidance on how to upscale flux footprints to represent larger spatial scales. Additionally, the pros and cons of each of the five methods will be discussed. The sensitivity of changing surface roughness due to canopy height or spatial heterogeneity were not addressed in this analysis. It is the assumption in this analysis that each pixel is homogeneous in land cover because the flux
footprint models selected assume a homogeneous land cover. While this is not what occurs in reality, heterogeneity of the land cover will be addressed in future research.

5.2 EDDY COVARIANCE DATA INPUTS

Data from the AmeriFlux network were used as test data in this analysis. AmeriFlux is a surface network that monitors carbon flux dynamics using the eddy covariance method. The variables of interest in this analysis are the horizontal wind speed [m/s], vertical wind speed [m/s], air temperature [degrees Celsius], atmospheric pressure [kPa], sensible heat flux [W/m²] and wind direction [degrees]. For this analysis, two stations from the AmeriFlux Network were used: ARM Southern Great Plains main site (US-ARM), and Mead Irrigated station (US-Ne1). These stations were selected for their relatively flat topography and homogeneous land cover, thus eliminating potential effects of changing surface roughness as much as possible. Metadata regarding these stations can be found in Table 5.1. Data were downloaded from the AmeriFlux website for the entire year of 2004 and 2005 because data was available for both stations. The primary focus is on flux footprint climatologies for uses in climate sciences rather than short term fluxes.

5.3 MATERIALS AND METHODS

5.3.1 MODELING APPROACHES

The 1D analytical footprint model developed by Hsieh et al. (2000) (H2000), and the 2D Langrangian stochastic particle dispersion model (LPDM) developed by Kljun et al. (2015) (K2015) were used in this analysis. While there are a number of more robust footprint models available (Leclere & Foken, 2014), the focus of this analysis was to address the spatial sensitivity of scaling footprint estimates to a landscape, and as a result these models are overly complex for use in this analysis.
The 1D flux footprint model by H2000 is developed using parameters from Calder's (1952) analytical solution and is fitted to solutions from numerical Lagrangian stochastic (LS) simulations (Schmid, 2002). The H2000 footprint model compares well with other widely accepted analytical solutions such as Horst and Weil (1994, 1992) and Schmid (2002). Due to this model’s simplicity, it is more suitable for long term averaging of flux footprints because uncertainty in the model are reduced as averaging time increases (Baldocchi, 2003), thus it is appropriate for climatological applications where it is desirable to look at inter-annual variability.

The 2D flux footprint model developed by K2015 is a LPDM that parameterizes turbulence based on the stability of the atmosphere. The parameterization of turbulence is a major drawback of the simplified footprint models (Horst & Weil, 1992, 1994; Hsieh et al., 2000; Kljun et al., 2004). K2015 addresses this limitation by providing more detailed stability parameterizations. The parameterization, called flux footprint parameterization (FFP), improved upon the Kljun et al. (2004) LPDM footprint model by altering the scaling of the along wind and crosswind footprint components. Surface roughness has been implemented into the scaling approach to address the limitation of the cross wind component to near surface eddy covariance measurements (Kljun et al., 2015; Schmid, 2002). For a comprehensive description of the FFP model, see K2015. This model was selected because a validated function is available for download in Python, R, and Matlab (http://footprint.kljun.net/), meaning it is widely accessible to researchers.

Parameters needed to run either flux footprint model included measurement height, Obukhov length, standard deviation of lateral velocity fluctuations, friction velocity, planetary boundary layer height, roughness length, mean wind velocity, and
mean wind direction. Lateral velocity fluctuations (σ) and Obukhov length (L) are not directly reported by the AmeriFlux network and had to be calculated prior to running either flux footprint model.

The σ and L were calculated prior to running the model using Equations 1 to 2 (Kljun et al., 2015; Leclerc & Foken, 2014).

\begin{equation}
L = -u_*^3 \bar{\theta} / k g H, \text{ where } \bar{\theta} = T (P_o / P)^{R/c_p}
\end{equation}

\begin{equation}
\sigma = (3.0 u^*)^{(1/2)}
\end{equation}

Where $\bar{\theta}$ is the mean potential temperature, T is air temperature in degrees Kelvin, k is the von Karvon constant, H is the sensible heat flux in Wm$^{-2}$, d is the zero-plane displacement height in meters, h_c is the canopy height in meters, g is gravity, $z_{receptor}$ is the measurement height above the surface in meters, P_o is the average sea level pressure of 1000mb, P is the atmospheric pressure at the station in millibars, R is the gas constant for dry air, and c_p is the specific heat of dry air. These were computed for each 1 hour observation used to compute the flux footprint climatology. There was 2 annual flux footprint climatologies using H2000, and 6 8-day flux footprint climatologies using the K2015.

When computing the boundary layer height to compute the flux footprint model, the question arose on whether the boundary layer height affected the output of the flux footprint for short flux towers. This was tested for flux towers with measurement heights that were less than or equal to 6.2m. It was determined that the variation in the boundary layer height will not affect short tower flux footprint computations compared to tall tower flux footprints because scalars will not be carried hundreds to thousands of kilometers
Thus, a standard 1000m boundary layer height (h) was selected for this analysis. To test the effects of this assumption on results a constant h value of 1000m for 4 time stamps where atmosphere was stable and 3 time stamps where atmospheric stability was unstable. The FFP model by K2015 was used to compute the flux footprint. The h value was computed using the equations in Appendix A of K2015 for each flux footprint. It was determined that during unstable conditions the change in the spatial location in the 10-90% contribution lines were near 0m between a constant h value of 1000m and the computed h value (Figure 5.1a). However, during stable conditions there was change in the location of the flux footprint contribution lines that ranged from 0 to 150m (Figure 5.1b). Therefore, it is important to compute h during stable conditions, but a constant h value of 1000m is appropriate during unstable conditions when the measurement height is less than or equal to 6.2m.

The H2000 1D flux footprint model was used to calculate an annual climatology for 2004 using 1 hour mean observations. Meanwhile, an 8-day flux footprint climatology was calculated for three time stamps during 2005 at the 2 stations. This resulted in 2 annual 1D flux footprint climatologies, and 6 8-day 2D flux footprint climatologies. The mean wind direction was used to determine the vector direction of each model outputs. If the wind direction was not available or the footprint function could not be computed, then the observations were not included in the annual 1D or 8-day 2D flux footprint climatology. Reasons for missing wind direction datasets include sensor malfunction, frozen precipitation or an object (e.g., bird) blocking the transducer signal on the 3D sonic anemometer. The flux footprint probability density function (PDF) was computed for each 60-minute period and then projected onto a grid via one of the five methods.
described below and summed to an annual or 8-day flux footprint by grid cell. The variation of canopy height is important when analyzing footprints, but the sensitivity of a footprint from varying canopy height was not tested in this analysis because the goal was to access the sensitivity of upscaling flux footprints to a grid.

5.3.2 RASTER GENERATION

Flux footprint curves were projected on a gridded file format using five different methods: 1D point sampling, 1D equal interval integration, 1D aggregate assignment, 2D area integration, and 2D sum integration. These five methods are discussed in more detail below. Each 1D flux footprint climatology was output to a grid of varying cell sizes ranging from 10m to 1000m in 10m increments. Because of its increased computational needs, the 2D flux footprint climatology was output to cell sizes of 10, 30, 250, 500, and 1000m to match the range of grid cell sizes commonly found in multi-or hyper-spectral satellite remote sensing (i.e., MODIS, Landsat, AVHRR, SPOT).

The three different methods of sampling the continuous 1D flux footprint function explored were a) point sampling at equal intervals along the PDF, b) integration under the PDF over equal intervals along the curve, and c) assigning an aggregate value to each grid cell. The three methods are explained visually in Figure 5.2. In the 1D point sampling method (Figure 5.2a,b) each PDF curve was sampled at a set interval that was equal to the raster cell size (10 to 1000 m), and the sampled value was assumed to represent the entire grid cell. It is understood that spatial imprecision will occur with increasing cell size when sampling in this manor because the larger the grid cell, the higher probability of in-cell heterogeneity (DeMers, 2002). The value was found for the center of the grid cell (Figure 5.2b). To conduct 1D integration over equal intervals
(Figure 5.2c,d), each PDF curve was sampled at the start and end point of each grid cell through which the 1D flux footprint line crossed and then integrated under the curve between the two points using the trapezoidal rule (Burden & Faires, 1997; Chapra, 2008; Quarteroni, Sacco, & Saleri, 2000). The sum between the two points (i.e., relative area under the curve) was assigned to the appropriate grid cell (Figure 5.2d). To assign an aggregate value to each grid cell (Figure 5.2e,f), the PDF curve was sampled every 4 meters regardless of cell size, and then each point was assigned to the grid cell where the point was closest to the center of the grid cell as is standard practice converting point to a raster in raster modeling (DeMers, 2002). The final value for the grid cell is the sum of all points that fall within it. A value of 4 meters was selected to be in line with the fetch to height ratio provided in H2000; the interval was computed using equation 3, where µ varies with stability and \(z_m \) is the measurement height.

\[
(3) \quad \text{Interval} = (\mu * z_m)/1000, \quad \text{where} \quad \mu_{\text{stable}} = 2000, \quad \mu_{\text{neutral}} = 500, \quad \mu_{\text{unstable}} = 100
\]

A sensitivity analysis was performed for each method, to identify under which conditions the least amount of information is lost due to differences in spatial resolution when projecting a 1D flux footprint function to 2D surface realm. Results are presented in section 5.4.

To access the cell size sensitivity of the 2D flux footprint function, two methods were accessed for aggregating the 2D flux footprint function as output by the FFP function developed in K2015. In both methods the output of the FFP was an array of \(x, y \) and \(f \) (footprint function probability) points that sampled the 2D footprint at a frequency that was dependent on \(z_m, h, \) mean wind speed, friction velocity, and Obukhov length (L).
The sampling interval is calculated using equations 5, 21, and 22 in K2015. The K2015 model has a varying sampling interval from observation to observation, and changes with atmospheric stability, the upscaling method from the x, y, f array to a grid needed to be adaptable. This occurs because there is a fixed number of points in the flux footprint output array. During stable conditions the fetch is further away from the site than during unstable conditions causing the sampling interval to vary. The 2D flux footprint was upscaled by integrating using the Trapezoidal rule for each of the points in the x, y and f (footprint value) arrays using equation 4, where f(x,y) is the footprint function value at location x and y in m$^{-2}$. The Trapezoidal rule assumes a linear increase or decrease from point a to point b, and finds the area of the footprint in the 2D realm using equation 5 (Chapra, 2008).

\[
(4) \quad f_{\text{total}}(x,y) = \int \int f(x,y) \, dx \, dy
\]

\[
(5) \quad I_{\text{area}} = \frac{(c-d)}{2} \left(I(y_c) + I(y_d) \right), \text{ where } I(y) = \frac{(b-a)}{2} \left(f(x_a) + f(x_b) \right)
\]

Where I(y) is the area under the curve at a constant y value in the x direction from point a to point b, f(x) is the footprint function value at x,y, I$_{\text{area}}$ is the 2D area under the curve where the integration occurs in the y direction using the integrated values in the x direction as inputs. The latitude and longitude of the gridded center represented I$_{\text{area}}$ value was determined and then aggregated to the grid cell array, where the footprint area is rasterized by assigning the value to the grid cell that the I$_{\text{area}}$ center point has the shortest distance to the center of the grid cell (DeMers, 2002), see Figure 5.3.

In method 1, referred to here as 2D sum integration, we tested for information loss by assuming each 2D flux footprint was equal to 1, therefore the total of the upscaled raster should equal the number of observations.
For method 2, referred here as the 2D area integration, the physical area on the earth’s surface of each of the points, in square meters, were determined. The total area represented within a single grid cell in the 2D flux footprint point was aggregated to a grid. To spatially represent the grid cell, the sum of the integrated functions was divided by the total area represented by the 2D flux footprint in each grid cell to obtain an average \(f \) value across the pixel in square meters, see equation 6. This assumes that the grid cell is homogenous for the flux footprint representation and the ecosystem that is represented.

\[
(6) \quad f_{\text{area}}(x,y) = f_{\text{total}}(x,y) \times \left(\frac{1}{A_{\text{Footprint}}} \right)
\]

Where \(f_{\text{area}}(x,y) \) is the average probability value for a single time stamp at location \(x,y \), \(A_{\text{Footprint}} \) is the area of the flux footprint that was aggregated to the grid cell, and \(f_{\text{total}}(x,y) \) is the value total footprint contribution.

5.3.3 SENSITIVITY ANALYSIS

We test sensitivity of 2 key model features: total information loss and source location. To assess the sensitivity of each of the 5 methods presented above. It was assumed that total integration of each 30minute/1hour flux footprint output was equal to 1.0, and therefore summing all the grid values in a flux footprint climatology should equal the number of observations used to compute the climatology. In this way, the reference truth for the subsequent analysis is assumed equal to the number of 30-minute observations. Thus, a percent information loss can be computed using equation 7.

\[
(7) \quad \text{Information Loss} = 100\% - \left(\frac{\sum f_{\text{climatology}}(x,y)}{N} \right) \times 100\%
\]
Where, f_{climatology}(x,y) is the sum of the footprint function computed at point x and y, and the N is the number of viable observations used to compute the flux footprint climatology. A value of 0% would indicate that the flux footprint climatology represented all the information available in flux footprint output. No gas concentrations were applied to the PDF curve since the main purpose of this analysis was to determine the sensitivity of a flux footprint to changing grid cell sizes. The sensitivity of gas concentration values would be the same, because this conversion (from probability to flux concentration) is simply a multiplier after the footprint is computed.

The primary uses of a flux footprint model is to identify the sink/source location of measured gases, so the location of this source is a key output. Sensitivity of this location to size and raster method was also tested. Movement of the peak source location was identified. To do this, the annual 10-meter footprint climatology from each rasterization method was used as the reference. The center x,y location of the max cell was found for each year and the straight-line distances from this reference value were computed for each cell size. The 10 m footprint was chosen because it was the smallest cell size tested and is commonly used in the literature (Kim et al., 2006b; Leclerc & Foken, 2014), and would represent a typical computation method.

5.4 RESULTS

5.4.1 INFORMATION LOSS

Information loss results are presented in Figure 5.4 and Figure 5.6 for the 1D H2000 annual climatology and 2D K2015 8-day climatology. The results found larger amounts of information loss with increasing grid cell size and sampling intervals when using the
1D equal interval sampling, 1D integration at equal intervals, and 2D area integration. Information loss was highly dependent on the rasterization methodology used.

We investigated the percent information loss for upscaling the 1D flux footprint point-sampling and equal interval integration methods (Figure 5.4). When using the point sampling method, a significant amount of information loss was found even at the smallest cell size. Loss increased with cell size becoming coarser. This was somewhat expected, as increasingly coarse cell sizes increase the probability of missing small changes in the footprint function, in effect “smoothing” it. The results in Figure 5.4a indicate that the information loss leveled off around 100 meters when loss reached 98% and the differences began changing by <1% with each increase in cell size. The point sampling method resulted in 90.5% information loss when grid cell sizes were equal to 10m and increased to nearly 100% when grid cell sizes were larger (Figure 5.4a). This follows findings of Kim et al. (2006), who also indicated a degradation in model quality, around 100m. The use of larger grid cells results in a large amount of footprint function information loss when using point sampling methodology.

The equal interval integration method also resulted in information loss between the continuous PDF curve and the modeled output (Figure 5.4b). Again, as with 1D point sampling, as the sampling interval increases, the peak source location and small changes in footprint values can be missed. Overall loss was between 5 and 85 percent. When grid cell size was between 70m and 120m the information loss is negative at the US-ARM station. This should not be interpreted as information gain, but rather as an overestimation of specific footprints, and thus still an error. This is due to the trapezoidal technique used for integrating under the curve. The trapezoidal integration between two
sample points is linear and the error between the continuous 1D flux footprint curve and the sampled curve can be negative information when the function concaves up and positive when the 1D curve concaves down (Chapra, 2008). Thus, this method can overestimate the flux footprint contribution causing the negative loss values (or ratios > 100%) seen in Figure 5.4b (US-ARM, red line). When cell size is between 70m and 120m, the sampling interval is large enough that curvature of the continuous function is no longer representative and the curve can be overestimated. An illustration of how the overestimation occurs through the trapezoidal rule can be seen in Figure 5.5. As a result, the percent information loss indicates that the 1D flux footprint curve was overestimated at US-ARM (Figure 5.4b, red line). The overestimation of the 1D flux footprint curve is site specific, this symptom is not seen at US-Ne1 (Figure 5.4b, blue line), but the information loss is greater for this station because the fetch is larger. The percent information loss shows a sudden increase at cell size of 120m when cell size is greater than 120m. At 280m (red, US-ARM), 300m (blue, US-Ne1), and 620 (blue, US-Ne1) there are abrupt shifts in the increasing trend, this is because the total fetch distance for the 1D flux footprint curve computed during unstable atmospheric conditions is approximately 420m at US-ARM and 620m at the US-Ne1. The distance is a function of measurement height, which is 4.28m at US-ARM and 6.2m at US-Ne1. At 420m (US-ARM) and 620m (US-Ne1), the unstable atmospheric PDF curves, which are shorter in distance due to atmospheric mixing, could no longer be computed. Therefore, the size of the numerator in equation 2 decreases substantially because all unstable atmosphere observations will no longer be aggregated to the grid when using equal interval integration or point sampling methodologies because the curve sampling will be larger.
than the fetch. However, the observation itself is still counted as a value of 1 in the
denominator. These abrupt shifts will change from site to site, as demonstrated in Figure
5.4 because it is dependent on measurement height. Therefore, it is important when
computing flux footprints to consider carefully the fetch of the measurement tower and
the underlying assumptions of the model. Effectively when the desired cell size is greater
than 100 times the measurement height, the flux footprint is smaller than the cell size.
Therefore, the validity of the aggregation is independent of cell size. However, this does
not mean that the observations represent the entire grid cell since coarser grid cells often
represent multiple land covers.

Information loss was computed for the aggregate assignment method for 1D flux
footprint using a consistent sampling interval of 4m. A value of 4m was selected to be in
line with the fetch to height ratio provided in H2000. In theory, information loss should
always be constant for this method, since every point is directly accounted for when
aggregating point to raster, meaning the total sum of footprint values will be constant for
all cell sizes. However, for all the reasons presented above, there is always potential for
some information loss due to the initial curve sampling. For the 4-meter sampling
interval, information loss was 23.6% of the total possible footprint climatology at the US-
ARM station and 24.1% at the US-Ne1 station. The closer the sampling interval is to zero
the smaller the difference is between the continuous PDF function and equal interval
sampled PDF curve. Since a 4m sampling interval was used for aggregate assignment
methodology for 1D flux footprint curves, there was no change in information loss with
increasing cell size. Therefore, it is important to note that while potentially more
computationally expensive, aggregating a 1D footprint to a grid is a better practice for upscaling.

The base curve’s sampling interval of the 2D flux footprint was predefined by the FFP model, and was dependent on stability and measurement height. The information loss when conducting 2D sum integration was 39.35% +/- 12%. Just like the 1D aggregate assignment method, the information loss did not vary with cell size because the underlying sampling interval did not vary within the footprint model. However, the information loss when using the 2D area integration method did vary with cell size because the methodology computes a mean f(x,y) value for the entire pixel. The larger the pixel, the greater the variety in points aggregated into a single grid cell. The information loss at each grid cell size tested in the 2D area integration methodology are shown in Figure 5.6. One limitation that must be considered when thinking about information loss in the 2D flux footprint is that approximately 97-99% of the total flux footprint is explained by FFP model (Kljun et al., 2015), meaning 1-3% is not accounted for in prior to post-processing of the flux footprint.

5.4.2 SOURCE IDENTIFICATION ERROR

The second metric used to assess the quality of each gridding method was computing the change in the peak source location. In this analysis, the location of the peak value in each flux footprint climatology was compared to the 10m reference climatology for the same method. The peak flux footprint source location appears to move further away from the station with coarser grid cell size for the 1D point sampling, and 1D equal interval integration methodologies. These methodologies sample the continuous 1D flux footprint function more infrequently, which causes the true peak source location to be un-sampled.
The result is that the peak continually migrates further from the “true” source location as cell size becomes coarser as shown in Figure 5.7. In some cases, the maximum value migrates up to 1500m away from that computed by the 10m flux footprint. In Figure 5.8b (US-ARM) the peak value migrated the furthest from the original 10m grid cell size maximum footprint climatology location. Figure 5.8a represents the migration of the maximum footprint climatology location for US-Ne1; the peak location migrates approximately 500m, which is one third of the migration that occurred at the US-ARM station. As cell size becomes coarser the spatial precision of the station location decreases (Reithmaier et al., 2006), which could contribute to the migration of the peak flux footprint output with increasing cell size. As the peak location migrates further away from the station, multiple land covers are crossed and ultimately changes the ecosystem and land cover type that is being represented in the flux footprint climatology and decreases the maximum value in the flux footprint climatology.

The 1D aggregate assignment method and 2D sum integration method cause the values of a single cell to be substantially higher than finer grid cells. When using these methods, coarser grid cells are sampled more frequently than smaller grid cells when aggregating to grid. It is assumed that a single pixel is homogeneous and therefore the entire area is contributing equally to a much larger source contribution that what is found in reality. This is a limitation of rasterizing flux footprint models and upscaling flux observations. In Figure 5.9, the flux footprint climatology using the 1D aggregate assignment method for US-ARM is depicted in 10m, 30m, 250m, and 500m grid cell sizes, Figure 5.9a and Figure 5.9b depict the footprint at a 1:30,000m spatial scale, while Figure 5.9c and Figure 5.9d depict the footprint climatology at a 1:60,000m spatial scale.
As cell size becomes coarser the percent contribution of the footprint with values greater than 0.03% increases. This results in significant over estimation of source location contributions.

5.5 DISCUSSIONS

Overall site specifics play the biggest role in sensitivity. That is, regardless of the rasterization methods, site fetch plays the biggest role in sensitivity. Our results show the tower fetch needs to be a minimum of 3 times the grid cell size used. Therefore, at sites where the maximum fetch is 500m upscaling should not be performed for final cell sizes greater than 166m (500/3m). This limits which flux towers would be available to scale to 250m grid cell size, as found in several bands in MODIS datasets. This is especially an issue for flux towers within the AmeriFlux network that are located on land covers where measurement and canopy height are small because their fetch may be smaller than the remote sensing pixel. This does not infer that these sites represent the entire pixel.

The 1D point sampling and 1D equal interval integration methods resulted in the migration of the maximum footprint value location away from the flux tower. This is a result of the sampling intervals that become more infrequent causing the “true” peak in the flux footprint to be un-sampled (Figure 5.7). Additionally, the 2D sum integration and 1D aggregate assignment methodology caused large footprint values to represent a larger area than the true size of the peak source location due coarser cell sizes being aggregated more frequently than finer spatial resolution grid cells. Finally, the 1D point sampling, 1D equal interval integration, and 2D area integration resulted in larger amounts of data loss. All of these limitations cause upscaling flux footprints to match spatial resolutions of satellite data products to accurately represent regional land-atmosphere dynamics.
inherently difficult because the flux footprint is station fetch and cell size dependent (Mihailovic et al., 2005; Reithmaier et al., 2006). This results in the relationship between satellite data products and flux footprints being site specific, making modeling at regional and global scales challenging due to the variability in sensitivity. This further supports the findings of Kim et al. (2006) that found that the sensitivity of flux footprints to differing cell sizes was land cover dependent because fetch is a function of land cover type. These findings will indicate that sensitivity analysis of station to pixel size will need to conducted for each station because fetch will vary by measurement height and land cover type.

It is in the best interest of the user to use a sampling interval that is less than 100m, and include integration between points to reduce over estimation of the 1D flux footprint curve (Figure 5.5) and reduce information loss for the 1D and 2D flux footprint (Figure 5.4 and Figure 5.6). In terms of information loss, 1D aggregate assignment to a grid or 2D sum integration are the best options. However, it is not without limitations. One must still take care to select a cell size that will be representative of the underlying surface cover as the maximum value will represent a larger more heterogeneous area as cell size increases. This has broader implications for applying flux footprint models in heterogeneous environments.

It is the authors’ recommendation that scientists who are trying to upscale and project flux footprints onto a grid should conduct a sensitivity for tower in their study area. This is because the sensitivity of an upscaled flux footprint is dependent on the fetch of the station, which will change with measurement height and canopy height, which may change throughout the growing season. Thus, the authors cannot give specific guidance
on an appropriate cell size because this size will change from site to site. Grid cell sizes greater than 50m incur larger differences when using the 1D integration method, and the 1D point sampling method for cell sizes greater than 10m should not be used. This analysis will give users assurance when upscaling flux footprints to Landsat (30m) spatial resolutions using the recommended methodologies, but little assurance is given when upscaling boundary layer footprints to larger spatial resolution datasets such as MODIS (250m, 500m, 1km).

Additionally, the 1D point sampling method, 1D integration methods, and 2D area integration are particularly sensitive to information loss with coarser cell size. The 1D integration method can both overestimate and underestimate as the sample interval increases because the integration method will no longer capture the true curvature of the flux footprint curve. It is more appropriate to use cell sizes that are less than 50m when using the 1D integration method to avoid overestimating and losing up to 85% of the PDF curve as cell sizes approach 1000m. The 1D point sampling method should not be used for cell sizes that are 10m or greater to avoid losing more than 90% of the PDF curve. The 1D point sampling method and integration methods should not be used to upscale boundary layer footprints to grid cell sizes that match satellite products such as MODIS (250m, 500m, 1km) because the spatial resolution is too coarse to appropriately represent a flux footprint without significant data loss. The 2D area integration method should not be used for upscaling 2D flux footprints because there is more than 98% information loss.

This analysis underscores the difficulty of representing land-atmosphere interactions, such as carbon dynamics, at a regional scale. It was assumed that the land
cover was homogeneous across a single pixel in this analysis, which is not the case in reality. Therefore, spatial heterogeneity was not considered. Other subtle changes that were not considered were changes in vegetation height, leaf out, leaf area and senescence, which will result in intra annual changes in sensitivity because these variables have an effect on the roughness and canopy height, which are used when calculating a flux footprint (Soegaard et al., 2003). Future work will need to address the sensitivity of spatial heterogeneity and changes in surface roughness, which may result in a smaller station fetch and therefore require smaller cell sizes.

5.6 CONCLUSIONS

In order to test the sensitivity of flux footprint models to increasingly coarse cell size, the H2000 1D and K2015 2D flux footprint models were run for 2004 and 2005 at the US-ARM and US-Ne1 AmeriFlux stations. The flux footprint output was projected onto varying grid cell sizes that are found in commonly used satellite platform datasets using five projection methods, which included 1D equal interval sampling, 1D integration under the curve at equal intervals, 1D aggregate assignment to a grid, 2D sum integration, and 2D area integration. The analysis found that the fetch of the flux station should be at least three times the grid cell size, the maximum flux footprint source location migrated away from station due to larger sampling intervals, and the flux footprint values increased with increasing grid cell size to represent a larger more heterogeneous area. The analysis also determined that the 1D equal interval sampling, 1D integration under the curve at equal intervals, and 2D area integration methodologies are highly sensitive to information loss with coarser cell sizes and should not be used to project flux footprints to grid cells larger than 50m. Each of the five methods had their inherent differences in a modeling
framework that is already plagued with significant errors and limitations. This analysis presented the differences and limitations that can occur when converting 1D or 2D flux footprint to a 2D spatial grid. Overall, we conclude that users of flux footprint analysis to not use 1D sampling or 1D integration methods when required grid cell sizes are 10m or larger. When rasterizing flux footprints to match spatial resolutions found in satellite platform datasets such as MODIS (250 -1000m grid) and GOES (1000m), rasterization of flux footprint analysis should not be used if the fetch is not at least three times the spatial resolution of the grid and should be considered that there will be significant information loss and spatial mismatch in source locations. When rasterizing flux footprints to match spatial resolutions from satellites such as SPOT (10m) or Landsat (30m), rasterization should be conducted with precaution and a sensitivity analysis should be conducted for each flux station before upsampling to 10m or 30m grid cell sizes.

We show here that simply gridding footprint outputs is not sufficient. It is a common method to use flux footprint model outputs to scale modeled carbon flux values in order increase the number of pixels used to evaluate a model. While, new methodologies have emerged for upscaling ground observed flux values (Metzger et al., 2013; Xu et al., 2017), they do not consider sensitivity on upscaling for model evaluation of remote sensing based models, which we show to be important.

Future work will evaluate the effects of differing numerical integration techniques on the rasterization of flux footprints. This analysis evaluated integration techniques with trapezoidal techniques, but there are other methodologies such as Simpson’s 1/3 rule and Romberg integration that will need to be tested. Additionally, the methodologies will be tested against existing flux footprint studies to verify whether rasterization techniques
could potentially change the conclusions of existing work that made use of rasterized flux footprint models.

Table 5.1. Metadata of AMERIFLUX stations used for computing footprint function in 2004.

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Station Name</th>
<th>Vegetation</th>
<th>Measurement Height [m]</th>
<th>Canopy Height [m]</th>
<th>Tower Height [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>US-ARM¹</td>
<td>OK - ARM Southern Great Plains main site</td>
<td>Croplands</td>
<td>4.28</td>
<td>0-0.5</td>
<td>60</td>
</tr>
<tr>
<td>US-Ne1²</td>
<td>NE - Mead irrigated</td>
<td>Croplands</td>
<td>3 or 6.2</td>
<td>2.9</td>
<td>6</td>
</tr>
</tbody>
</table>

¹Raz-Yaseef et al., 2015, ²Verma et al., 2005

Figure 5.1. On the left (a) is the flux footprint at US-Ro1 on 4/19/2008 04:30 (CST). In this scenario the atmosphere was considered stable. On the right (b) is the flux footprint at US-Ro1 (a) on 3/19/2008 12:30(CST), where the atmosphere was considered unstable. The red lines are the flux footprint contribution lines using a computed boundary layer height, while the blue lines are the contribution lines using a 1000m boundary layer height.
Figure 5.2. The methods for projecting a continuous footprint curve onto a grid include: (a,b) an equal interval sampling, (c,d) integration at set interval, and (d,e) assigning an aggregate value to a grid cell. Equal interval sampling method, the curve was sampled in the center of the pixel and is assumed to represent the entire pixel. Integration at set interval used a point at the start and end of the pixel. Assigning an aggregate value to a grid cell, more than one point can be assigned to a single grid cell.
Figure 5.3. Upscaling of 2D flux footprint from FFP function. The yellow is the representative area of the grid cell of the boundary layer footprint output which has been integrated to find the area and then up-scaled to the bold lines are the larger grid cells to represent a larger grid cell size.
Figure 5.4. Percent information loss of footprint function for US-ARM (red) and US-NE1 (blue) AmeriFlux stations when upscaled using (a) equal interval point sampling method from 10 to 1000m in increments of 10m, where the continuous PDF function equal to 1 is truth. While (b) shows the percent information loss using the integration over equal interval method, where the continuous PDF function equal to 1 is truth.
When integrating between two points using the trapezoidal rule, as the distance between sample observations increases the representation of the PDF curve is generalized. In this example, when the PDF curve concaves downwardly, the trapezoidal rule overestimates the volume under the PDF curve resulting in a positive difference between the PDF curve and the sampling line.

Figure 5.5. When integrating between two points using the trapezoidal rule, as the distance between sample observations increases the representation of the PDF curve is generalized. In this example, when the PDF curve concaves downwardly, the trapezoidal rule overestimates the volume under the PDF curve resulting in a positive difference between the PDF curve and the sampling line.
Figure 5.6. Information loss using the 2D area integration at the intervals of 10m, 30m, 100m, 250m, 500m, and 1000m. The error bars are the standard deviation of the percent error.
Figure 5.7. The equal interval sampling and integration at equal intervals upscaling methods sample the PDF curve at intervals equal to the grid cell size. In this example, as the grid cell size becomes coarser, the peak (blue dots) of the continuous PDF curve is no longer sampled and the sampled peak migrates further away from the measurement tower.
Figure 5.8. The center point for the maximum footprint climatology value for each grid cell size ranging from 10 to 990m at the (a) US-Ne1 and (b) US-ARM AmeriFlux stations. The PDF curve was aggregated to the grid. The x and y coordinates are in meters for the local UTM Map Projection. The two maps are on different scales.
Figure 5.9. Annual footprint climatology for US-ARM AmeriFlux station for 2004 using the aggregation of points to a grid method depicted in (a) 10m, (b) 30m, (c) 250m, and (d) 500m grid cell sizes. The spatial scale for (c) 250m grid, and (d) 500m grid is a scale of 1:60,000 meters, while (a) 10m grid, and (b) 30m are a scale of 1:30,000. The values represent the percent contribution of cell to total footprint. This shows the significant change in footprint area with increasingly coarse grid cell size.
CHAPTER 6
CONCLUSIONS

Upscaling carbon flux measurements to represent regional scales has its caveats and should be approached with care. This dissertation examined two approaches extending ground-based point measurements to a broader spatial scale by using remote sensing. In Chapter 3, the appropriate vegetation index for identifying carbon flux phenology metrics was identified, and it was found that the appropriate vegetation index varied by crop type and the phenology point you are trying estimate. In Chapter 4, an empirical model was developed and validated by directly using the satellite observed surface reflectance values to explain NEE by crop type and period of the growing season. In this chapter the surface reflectance bands that best explained the variance in ground observed NEE were identified and used in the model calibration. Results indicated that NEE could be estimated with better certainty when modeling by crop type and period of growing season. Finally, Chapter 5 presented a sensitivity analysis of various rasterization methods commonly used in upscaling point measurements. The sensitivity of 1D and 2D flux footprints to rasterization and varying cell sizes was evaluated, and best practices for rasterizing these continuous functions were presented.

Overall, several common themes run throughout the three manuscripts presented here. Most significantly, upscaling flux measurements is extremely sensitive to station fetch and time varying fetch must be considered before using such measurements to
calibrate or validate regional climate models. In Chapter 3 and Chapter 4, a flux footprint was used to determine whether the flux observations represented the crop planted during that year. However, there were limited number of datasets (particularly in chapter 4) available to evaluate the empirical model for estimating regional carbon dynamics in maize and soybean fields. Therefore, an 8-day flux footprint was used to increase the number of pixels used for model evaluation. In generating footprints of this nature, the question arose of how to represent a continuous flux footprint function to a gridded raster that represented a coarser spatial area than the spatial scales of the flux footprint and how much information is lost during the conversion (presented in Chapter 5). This is not an uncommon scenario in merging data sources disparate in time and space, however, no previous flux studies have specifically addressed this mismatch. When rasterizing a flux footprint, integrating under the probability density function results in the least amount of information loss. However, as long as a pixel is homogeneous and represents the same crop type as the flux observation 80-90% of the time, then no flux footprint needs to be used. Future work will need to address the influence of heterogeneity of land cover within an up-scaled flux footprint.

A second theme is that in the broader field of climate studies, models are only as good as the data used to calibrate them. In the work presented here, new techniques were used to leverage various data sources, however, a limited availability of station data did not allow for a full exploration of the effects of land management of agricultural fields. Future application of these methods to other datasets may allow for such understanding. Additionally, significant spatial gaps in flux observations to model NEE exchanges, inhibits the ability for this model to be applied across varying climate zones with
different land management techniques. Tillage and irrigation can have a considerable amount of impact on the amount of carbon cycling, making a land cover more of a sink or source of carbon. Future research will need additional field data across varying climatic zones and land management techniques to provide more certainty in the modelling of maize and soybean. Additionally, the methodologies developed in this dissertation for estimating NEE from remote sensing will be expanded to other crop types across the US and the world. Which will also require additional field based datasets.

This collection of manuscripts showed the importance of estimating NEE at regional scales in agricultural regions using remotely sensed surface reflectance and meteorological datasets. The new methods developed can identify key carbon flux phenology metrics and estimate NEE with greater certainty when crop type and period of the growing season were considered. Previous ground-based research had found that there were differences in carbon uptake of maize and soybean due to their mismatch in photosynthetic pathways (C_4 vs. C_3 pathway), amount of biomass, and differences in the vegetative stages of each crop. The new methodology addresses limitations of existing regional climate models that model carbon dynamics. These new methodologies will allow for better regional estimates of carbon dynamics in agricultural fields. Understanding the regional contributions of agriculture to the carbon budget is not well understood. These methodologies will give scientists a better understanding of regional contributions of agricultural crops to the carbon cycle, which will give a better understanding of how agriculture will affect carbon dynamics in future climate change projections. Future research will access the influence of maize and soybean on atmospheric carbon, by modeling NEE for the entire US Corn Belt. The carbon cycling
will be analyzed annually for the US Corn Belt, and then changes will be correlated with changes due to meteorological conditions, area of land producing crops, and yield for the year. Ultimately, the existing Landsat and MODIS satellites will be retired in the future. Therefore, newer satellites such as NPP VIIRS and GOES 16 will need to be evaluated for estimating NEE in agricultural regions. Therefore, it will be important to continue to improve this work and expand it to new crops and satellite platforms.
REFERENCES

Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., … Valentini, R.

http://doi.org/10.1016/S0034-4257(02)00096-2

http://doi.org/10.1080/10106048709354084

http://doi.org/10.1016/j.agrformet.2011.06.007

Soegaard, H., Jensen, N. O., Boegh, E., Hasager, C. B., Schelde, K., & Thomsen, A.

http://doi.org/10.1080/00045608.2011.567934

http://doi.org/10.1029/2007JD009286

http://doi.org/10.1016/j.gloplacha.2012.05.021

APPENDIX A – MEAN SIGNED DIFFERENCE FOR CFP METRICS

TABLE A1. Average mean signed difference in days between NEE-based phenology metrics and VI-based phenology metrics across (a) all maize, (b) soybean fields, and (c) soybean and maize combined. A positive value indicates that the VI-based phenology metric was estimated too early, and negative values indicate the VI-based metric was estimated too late. Significant vegetation indices are highlighted in bold italics.

<table>
<thead>
<tr>
<th>VEGETATION</th>
<th>SOS</th>
<th>SINK</th>
<th>POS</th>
<th>SOURCE</th>
<th>EOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MEAN STDEV</td>
<td>MEAN STDEV</td>
<td>MEAN STDEV</td>
<td>MEAN STDEV</td>
<td>MEAN STDEV</td>
</tr>
<tr>
<td>(A) MAIZE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GNDVI</td>
<td>-3.73 24.16</td>
<td>27.33 30.98</td>
<td>-11.84 23.22</td>
<td>-27.43 27.27</td>
<td>-13.71 28.365</td>
</tr>
<tr>
<td>LWSI</td>
<td>-23.20 17.87</td>
<td>-3.00 14.77</td>
<td>-13.76 23.72</td>
<td>-3.00 20.92</td>
<td>9.00 20.702</td>
</tr>
<tr>
<td>MSI</td>
<td>10.67 40.42</td>
<td>54.00 56.17</td>
<td>-1.92 61.68</td>
<td>58.67 132.29</td>
<td>72.00 128.7975</td>
</tr>
<tr>
<td>NDTI</td>
<td>-10.13 39.82</td>
<td>9.33 38.57</td>
<td>-11.20 36.66</td>
<td>-0.89 76.78</td>
<td>11.56 75.8009</td>
</tr>
<tr>
<td>NDVI</td>
<td>3.20 19.78</td>
<td>22.00 20.22</td>
<td>-12.48 24.12</td>
<td>-16.80 21.48</td>
<td>-3.20 24.2065</td>
</tr>
<tr>
<td>(B) SOYBEAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EVI</td>
<td>32.00 28.84</td>
<td>57.33 26.97</td>
<td>-1.23 19.55</td>
<td>-34.67 12.04</td>
<td>-21.33 12.04</td>
</tr>
<tr>
<td>GNDVI</td>
<td>5.33 32.33</td>
<td>38.67 23.96</td>
<td>-1.85 16.70</td>
<td>-41.60 8.76</td>
<td>-27.20 7.1554</td>
</tr>
<tr>
<td>LWSI</td>
<td>-52.00 5.66</td>
<td>-11.20 9.12</td>
<td>-10.46 18.00</td>
<td>-24.00 9.24</td>
<td>-16.00 9.2376</td>
</tr>
<tr>
<td>MSI</td>
<td>26.67 37.81</td>
<td>45.33 38.75</td>
<td>-0.62 16.80</td>
<td>-6.40 35.51</td>
<td>8.00 30.4631</td>
</tr>
<tr>
<td>NDI7</td>
<td>-13.33 46.88</td>
<td>14.67 41.54</td>
<td>-10.46 18.00</td>
<td>-33.33 12.82</td>
<td>-20.00 14.0855</td>
</tr>
<tr>
<td>NDSVI</td>
<td>29.33 12.22</td>
<td>50.67 15.73</td>
<td>-6.77 17.23</td>
<td>-41.33 35.93</td>
<td>-28.00 30.2523</td>
</tr>
<tr>
<td>NDTI</td>
<td>-12.00 50.91</td>
<td>0.00 38.09</td>
<td>29.54 79.09</td>
<td>44.00 121.09</td>
<td>57.33 117.512</td>
</tr>
<tr>
<td>NDVI</td>
<td>32.00 28.84</td>
<td>61.33 29.79</td>
<td>-8.00 16.97</td>
<td>-36.80 13.39</td>
<td>-22.40 11.8659</td>
</tr>
<tr>
<td>SAVI</td>
<td>32.00 28.84</td>
<td>57.33 26.97</td>
<td>-8.00 17.28</td>
<td>-36.00 12.13</td>
<td>-22.67 10.6333</td>
</tr>
<tr>
<td>STI</td>
<td>4.00</td>
<td>2.67</td>
<td>3.07</td>
<td>12.92</td>
<td>19.19</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>EVI</td>
<td>8.89</td>
<td>19.38</td>
<td>37.78</td>
<td>21.52</td>
<td>20.03</td>
</tr>
<tr>
<td>GNDVI</td>
<td>-2.22</td>
<td>24.82</td>
<td>31.11</td>
<td>28.63</td>
<td>21.53</td>
</tr>
<tr>
<td>LWSI</td>
<td>-28.00</td>
<td>19.74</td>
<td>6.15</td>
<td>13.13</td>
<td>21.74</td>
</tr>
<tr>
<td>MSI</td>
<td>13.33</td>
<td>39.38</td>
<td>51.11</td>
<td>50.01</td>
<td>29.09</td>
</tr>
<tr>
<td>NDVI</td>
<td>-17.78</td>
<td>21.35</td>
<td>8.89</td>
<td>27.29</td>
<td>21.74</td>
</tr>
<tr>
<td>NDSVI</td>
<td>-2.22</td>
<td>36.79</td>
<td>24.00</td>
<td>39.29</td>
<td>23.58</td>
</tr>
<tr>
<td>NDI7</td>
<td>-10.35</td>
<td>39.37</td>
<td>7.00</td>
<td>37.40</td>
<td>57.31</td>
</tr>
<tr>
<td>NDOVI</td>
<td>8.00</td>
<td>23.28</td>
<td>35.11</td>
<td>29.82</td>
<td>21.80</td>
</tr>
<tr>
<td>SAVI</td>
<td>14.22</td>
<td>18.32</td>
<td>41.33</td>
<td>23.32</td>
<td>19.41</td>
</tr>
<tr>
<td>STI</td>
<td>-26.67</td>
<td>19.60</td>
<td>-3.11</td>
<td>24.87</td>
<td>23.95</td>
</tr>
</tbody>
</table>

MAIZE AND SOYBEAN

EVI	8.89	19.38	37.78	21.52	20.03
GNDVI	-2.22	24.82	31.11	28.63	21.53
LWSI	-28.00	19.74	6.15	13.13	21.74
MSI	13.33	39.38	51.11	50.01	29.09
NDVI	-17.78	21.35	8.89	27.29	21.74
NDSVI	-2.22	36.79	24.00	39.29	23.58
NDI7	-10.35	39.37	7.00	37.40	57.31
NDOVI	8.00	23.28	35.11	29.82	21.80
SAVI	14.22	18.32	41.33	23.32	19.41
STI	-26.67	19.60	-3.11	24.87	23.95

C