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ABSTRACT 

This thesis considers the control of quadrotor using a linear PID control and ℒ1 

adaptive control. In a justifiable concept, PID controller can be used to control a quadrotor, 

but in the presence of uncertainties or disturbance, the quadrotor can’t be automatically 

adjusted to control the changing dynamics of the quadrotor. To solve the problem 

associated with uncertainties, various control methodology can be used for controlling the 

changing dynamic of quadrotor, but in this thesis, ℒ1 adaptive control is used because it 

allows for fast and robust adaptation for desired transient performance in the presence of 

matched and unmatched uncertainties.  

In this thesis, we would derive the quadrotor model which gives us an access on 

how we can track positions, then design a controller to track these desired positions using 

PID control. Same concept used for PID control would be used for ℒ1 adaptive control in 

chapter 5 except this control methodology is used for the cancellation of uncertainty at a 

faster and robust manner. ℒ1 Adaptive control would use state feedback for its position 

control and this position control is then used to design the final controller to cancel 

uncertainties.  
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CHAPTER 1 

INTRODUCTION 

In recent year, research on quadrotors has become popular, but the first quadrotor 

was built in 1907 by Louis Charles Bréguet. Helicopter development was desired over 

quadrotor, but with recent progress in technological development, more funds and time has 

been dedicated to the research of quadrotors. Quadrotor became popular because helicopter 

uses tail rotors to counterbalance the torque or rotating forces generated by the single main 

rotor. Because of the counterbalancing tail rotor, it inefficient in term of control, power 

consumption and cost production. Due to the work of Charles Richet and Dr George de 

Bothezat in 1956, propellers where used to control the quadcopter roll, pitch and yaw angle. 

In addition to those improvements, technological advancement in batteries weight, life and 

density has greatly helped the research of quadrotors. Recent development in processors 

and low cost efficient sensors has greatly impacted quadrotor development as well.  

Common application of quadrotors includes surveillance, inspections, military 

operation and transportation. It is very applicable because of its size; it is easier for it take 

off, to land and occupies less space. Because of its advantages, the demand for accurate 

control is needed for stabilized flight when hovering. The demand for accurate stabilized 

flight has led for the use of sensors and camera to achieve accurate result. Although PID 

controller is commonly used for control of quadrotors, however due to uncertainties and 

disturbance that occur during flight, PID controller is not a good mechanism for control. 
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This thesis focuses on creating an accurate control mechanism to achieve stabilized 

flight control using ℒ1 adaptive control because it mitigates the issues of uncertainties and 

disturbance.  

A quadrotor is a nonlinear system device and control for nonlinear system is 

complex because we desire a system that has fast adaptation and response in real time and 

robust enough to mitigate the issue of disturbance and uncertainties. Adaptive control was 

developed as a technique for automatic adjustment in real time. To achieve and maintain 

desired system performance, the aerospace industries and institution started research on 

adaptive controller and today it is used widely by different industries and for different 

purposed. Model reference adaptive control (MRAC) is a type of adaptive control and ℒ1  

adaptive control is a further use of model reference adaptive control (MRAC). Apart from 

canceling of uncertainties and disturbance, ℒ1 adaptive control theory has architecture in 

place for faster adaptation that is decoupled from robustness. ℒ1 Adaptive control doesn’t 

losses robustness, because it is resolved by conventional classical control and ℒ1 adaptive 

control system guarantees robustness in the presence of fast adaption with high gain 

feedback. This thesis includes the derivation of quadrotor model, and the model is then 

controlled by a PID controller and an ℒ1 adaptive controller in the presence of uncertainty. 
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CHAPTER 2 

QUADROTOR STRUCTURE 

2.1 QUADCOPTER COORDINATE SYSTEM  

A quad employs different control mechanism such as roll, pitch, and yaw which in 

most cases are represented by angle of rotation around the center of the quad craft. These 

angles make up for the control of the altitude of the quadcopter and to track the altitude of 

the quadcopter, a two-coordinate system is required. There is the body frame system which 

is attached to the quad at its center of gravity and the earth frame system which is fixed to 

the earth and it is sometimes refer to as an inertial coordinate system. The angular different 

between the two coordinate helps define the behavior of the quad altitude in space. The 

attitude system can be derived by rotating the body frame around the z axis of the earth 

frame by the yaw angle 𝜑, which is tend followed by rotating around the y-axis by the pitch 

angle 𝜙 and finally by rotating around the x-axis by the roll angle 𝜃. This is shown in figure 

2.1 as well as its rotation matrix that has the body and earth frame parallel to each other 

and their sequence of rotation is known as the Z-Y-X rotation and its rotation matrix is 

shown in equation 2.1. 

 

Figure 2.1: Body and Earth Frame with their Corresponding Angle
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𝑅 = [

cos(𝜃) sin (ψ) sin(ϕ) sin(𝜃) cos(ψ) cos(ϕ) sin(𝜃) cos(ψ) + sin(ϕ) sin (ψ)

cos(𝜃) sin (ψ) sin(ϕ) sin(𝜃) sin(ψ) + cos(𝜃) cos (ψ) cos(ϕ) sin(𝜃) sin(ψ) − sin(𝜃) cos (ψ)

−sin (𝜃) sin(ϕ) cos (𝜃) cos(ϕ) cos (𝜃)

]                            (2.1) 

2.2 STATES OF THE QUADCOPTER  

From the section of coordinate system, the angle of roll, pitch, and yaw are 

represented as 𝜙, 𝜃, 𝜓 in addition to their angle, angular velocity is also required and can 

be represented as 𝜙̇, 𝜃̇, 𝜓̇ these are the first six state of the quadcopter that shows a 

relationship between the quadcopter and the earth coordinate system. The next six states 

show a physical relationship of the physical location within the earth fixed system and it is 

denoted as 𝑋, 𝑌, 𝑍. In addition to their physical position is their quad velocity along these 

axes and it is denoted as 𝑋,̇ 𝑌,̇ 𝑍̇. Together they make up the 12 states of the quadcopter and 

as shown below. 

 

2.3 HOW QUADROTOR WORKS  

A quad as we know it has four motors and it is important to know that the thrust of 

each motor force a change around the pitch, roll, and yaw angle. To understand that, it is 

very important to know that a quadcopter is under actuated which means that the six degree 

of freedom (𝜙, 𝜃, 𝜓, 𝑋, 𝑌, 𝑍) is only controlled by the four inputs. Two of the six DOF are 

couple and they are the x-axis and y-axis on the translational size of the quadcopter. The 

translational part of the quadcopter is dependent on the attitude of the craft with respect to 

the other four degrees of freedom. More would be discussed on how to account and control 

the under actuated part of the quad when designing a control method for the quad. It is also 

important to know that a quadcopter has four motor where two of them spins in the 

clockwise direction while the order two spins in the counter clockwise direction and if the 

thrust generated by the motors is equal, the ability for the quadcopter to roll, hover pitch, 
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and yaw is possible. The diagram in figure 2.2 shows how the force generated by each 

motor affects a change the direction of the quadcopter along the angles on the coordinate 

system 

 

Figure 2.2: Movement around Angles on the Coordinates System because of Force



6 

 

CHAPTER 3 

DYNAMIC MODEL 

The dynamic model of a quadcopter is a subsystem that is divided into two 

subsystems known as the rotational subsystem that represent (roll angle, pitch angle and 

yaw angle) and translational subsystem that represent (Z position, X position, Y position). 

The rotational side of the Quadcopter is completely actuated while the translational side of 

the subsystem is under actuated 

3.1 MOMENT ACTION ON THE QUADROTOR  

An effect of rotation is the force generated called aerodynamic force and moment 

generated called aerodynamic moment. The aerodynamic moment is the combination of 

aerodynamic force multiplied by its distance. It is dependent on the geometry of the 

propeller and by identifying the moment and force generated by the propeller, we can 

understand the moment acting on the quadcopter. From figure 3.1, when F2 is multiplied 

by the moment arm, a negative moment is generated about the y-axis. Using the same 

concept, F4 generates a positive moment and the total moment about the x-axis can be 

expresses as 

𝑀𝑋 = (𝐹4 − 𝐹2)𝑙                                                                        (3.1) 

Same concept is applied for My Where 

𝑀𝑦 = (𝐹1 − 𝐹3)𝑙                                                                        (3.2)



7 

 

For the moment about the Z axis, the thrust of the rotor does not cause a moment, but rather 

the rotor rotation in relation with the rotor speed causes a moment and is represented as 

𝑀𝑧 = (𝐹1 + 𝐹3 − 𝐹2 − 𝐹4)𝑙𝑐                                                 (3.3) 

Where c gives the relationship between the rotor speed and its effect on the quadrotor 

rotation about the body frame and the combination of each body frame axis gives us a 

matrix as shown below. 

𝑀𝑏 = [

(𝐹4 − 𝐹2)𝑙 
(𝐹1 − 𝐹3)𝑙

(𝐹1 + 𝐹3 − 𝐹2 − 𝐹4)𝑙𝑐
]                                                 (3.4)  

 

 

Figure 3.1: Moment acting on the Quadcopter 

3.2 INERTIAL MATRIX  

The inertial matrix for a quadcopter is a diagonal matrix as shown below. The 

structure of the matrix is because quadcopters are built symmetrically with respect to the 

coordinate systems that were explained in section 2.1. 

𝐽 =  [

𝐽𝑥 0 0
0 𝐽𝑦 0

0 0 𝐽𝑧

]                                                                                (3.5) 

From the matrix above 𝐽𝑥, 𝐽𝑦 and 𝐽𝑧 are the area moments of inertia about the principle axes 

on the body frame. 

3.3 CONTROL INPUT VECTOR U  
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The control input is from the controller and the input to a quadcopter is from the force 

generation by the motor, and for simplicity, Control Input Vector (U) can represent Force 

(F) where 

𝑈𝑡𝑧 = (𝐹1 + 𝐹2 + 𝐹3 + 𝐹4)                                                       (3.6) 

𝑈𝑡𝑥 = (𝐹4 − 𝐹2)                                                                            (3.7) 

𝑈𝑡𝑦 = (𝐹1 − 𝐹3)                                                                            (3.8) 

𝑈𝑟𝑧 = (𝐹1 + 𝐹3 − 𝐹2 − 𝐹4)                                                       (3.9) 

From equation 3.4, the moment acting on the quadcopter in its body frame can be 

represented as 

[

𝑈𝑡𝑥𝑙
𝑈𝑡𝑦𝑙

𝑈𝑟𝑧𝑙𝑐
]                                                                                              (3.10) 

3.4 ROTATIONAL SUBSYSTEM  

The rotational part of the quadcopter is derived from the concept of rotational 

equation of motion and by using Newton-Euler method derived from the body frame of the 

quadcopter with a generalized formula as shown below. 

𝑀𝑏 = (𝐽𝑤̇ + 𝑤×𝑗𝑤 + 𝑀𝑔)                                                          (3.11) 

Where: 𝐽 represents quadrotor inertia Matrix, 𝑤 represents angular velocity, 𝑀𝑔represents 

the gyroscopic moment generated due to its rotor inertial and 𝑀𝑏 represents moments 

acting on the quadcopter in its body frame. For simplicity, the gyroscopic moment would 

not be considered because the inertial generated by the quadcopter is much larger that the 

inertial generated by the rotor. So, our final rotor equation would be 

𝑀𝑏 = (𝐽𝑤̇ + 𝑤×𝑗𝑤)                                                                      (3.12) 

From equation 3.12, we would have the expression below 
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[

𝑈𝑡𝑥𝑙
𝑈𝑡𝑦𝑙

𝑈𝑟𝑧𝑙𝑐
]  = [

𝐽𝑥 0 0
0 𝐽𝑦 0

0 0 𝐽𝑧

] [

𝜙̈

𝜃̈
𝜓̈

] + [

𝜙̇

𝜃̇
𝜓̇

] × [

𝐽𝑥 0 0
0 𝐽𝑦 0

0 0 𝐽𝑧

] [

𝜙̇

𝜃̇
𝜓̇

] 

When the matrix is rewritten to have its angular acceleration, we would have 

𝜙 ̈ =  
𝑙

𝐽𝑥
𝑈𝑡𝑥 +

𝐽𝑦

𝐽𝑥
𝜓̇𝜃̇ −

𝐽𝑧
𝐽𝑥

𝜃̇𝜓̇                                                         (3.13) 

𝜃̈ =  
𝑙

𝐽𝑦
𝑈𝑡𝑦 +

𝐽𝑧
𝐽𝑦

𝜓̇𝜙̇ −
𝐽𝑥
𝐽𝑦

𝜙̇𝜓̇                                                          (3.14) 

𝜓̈ =  
𝑙𝑐

𝐽𝑧
𝑈𝑟𝑧 +

𝐽𝑥
𝐽𝑧

𝜃̇𝜙̇ −
𝐽𝑦

𝐽𝑧
𝜙̇𝜃̇                                                            (3.15) 

3.5 TRANSLATION SUBSYSTEM  

The translation subsystem is based on translational equation of motion and it is based on 

newton second law which is derived from the earth inertial frame and it is presented in the 

format below. 

𝑚𝑑̈ =  [
0
0

𝑚𝑔
] + 𝑅×𝐹𝑛𝑔                                                               (3.16) 

Where: m is the mass, g is gravitational acceleration, 𝐹𝑛𝑔 is non-gravitational force which 

is the physical location within the earth fixed system and R is the rotational matrix. 𝐹𝑛𝑔 is 

shown in equation 3.17. It is the addition of all the thrust force produced by the four 

propellers and the negative sign is because the thrust force generated is acting upward while 

the z-axis of the body frame is point down. R is for the rotational matrix that is generated 

to transform the forces generated from the body frame to the earth frame. By substitution 

and simplification, we would derive the acceleration along the X, Y, and Z axis. 

𝐹𝑛𝑔 = [
0
0

−𝑈𝑡𝑧

]                                                                        (3.17) 
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By substitution of these equations into equation 3.16, we would get 

𝑚 [
𝑋̈
𝑌̈
𝑍̈

] =  [
0
0

𝑚𝑔
] + [

cos(𝜃) sin (ψ) sin(ϕ) sin(𝜃) cos𝜓 −cos(ϕ) sin(𝜃) cos(ψ) + sin(ϕ) sin (ψ)

cos(𝜃) sin (ψ) sin(ϕ) sin(𝜃) sin(φ) + cos(𝜃) cos (ψ) cos(ϕ) sin(𝜃) sin(ψ) − sin(𝜃) cos (ψ)

−sin (𝜃) sin(ϕ) cos (𝜃) cos(ϕ) cos (𝜃)

]× [
0
0

−𝑈𝑡𝑧

] 

When the matrix is rewritten to have its acceleration, we would have 

𝑋̈ =  
−𝑈𝑡𝑧

𝑚
(−cos(𝜙) sin(𝜃) cos(𝜓) + sin(𝜙) sin(𝜓))                           (3.18) 

𝑌̈ =  
−𝑈𝑡𝑧

𝑚
(cos(𝜙) sin(𝜃)sin(𝜓) + sin(𝜃) cos(𝜓))                             (3.19) 

𝑍̈ =  
−𝑈𝑡𝑧

𝑚
(cos(𝜙) cos(𝜃)) − 𝑔                                                                 (3.20) 

The quadrotor parameter are defined below and these parameters would be use for 

simulation 

𝑚 = 0.8𝑘𝑔; 𝑙 = 0.25𝑚; 𝑔 = 9.81
𝑁

𝑘𝑔
; 𝑐 = 0.02; 𝐽𝑥 = 𝐽𝑦 = 0.015𝑘𝑔𝑚2 ; 𝐽𝑧 = 0.02𝑘𝑔𝑚2 
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CHAPTER 4 

CONTROL OF THE QUADROTOR 

Building a control system to control how the quadcopter operate is very important. 

The dynamic model of the quadcopter is an open loop and closed loop control is a preferred 

method for any design because the system records the output instead of the input and 

modifies its output per a preferred condition. For successful maneuvering of the 

quadcopter, we need 4 controllers that would be designed to act as in input to the model of 

the quadcopter. These 4 controllers represent the 4-input coming from the transmitter 

assuming this was a physical quadcopter. They are throttle, roll, pitch, and yaw input. The 

throttle coming from the transmitter can be represented and called the altitude controller or 

translational controller in the z axis. The roll, pitch, and yaw input from the transmitter can 

be called rotational controller that is dependent on the angle ϕ, θ, 𝜑. The translational 

subsystem of the model is partially dependent on the rotational subsystem because it is 

under-actuated.  

The dependent axes on the translational controller are the X, Y axis. So, a controller 

must be built that takes in desired X, Y values and produce an angular desired output that 

would be sent to rotational controller. For the control of the quadrotor using PID controller, 

the dynamic model of the system would be linearized using small angle approximation. 

The equation below represents the linear dynamic model of the quadrotor and an in-depth 

concept on how the model is linearized is explained in chapter 5. 
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𝑍̈ =
1

𝑚
(−𝑈𝑡𝑧)                                                                            (4.1) 

𝑋̈ = −
1

𝑚
𝜃(𝑈𝑡𝑧)                                                                         (4.2) 

𝑌̈ =
1

𝑚
𝜙(𝑈𝑡𝑧)                                                                             (4.3) 

𝜓̈ =  
𝑙

𝐽𝑧
𝑈𝑟𝑧                                                                                   (4.4) 

𝜃̈ =  
𝑙

𝐽𝑦
𝑈𝑡𝑥                                                                                    (4.5) 

𝜙̈ =  
𝑙

𝐽𝑋
𝑈𝑡𝑦                                                                                    (4.6) 

4.1 TRANSLATION CONTROL ALONG THE Z AXIS 

The translational controller takes an error signal as an input which is the difference 

between the actual altitude and desired altitude and produces a control signal 𝑈𝑡𝑧. The 

control signal 𝑈𝑡𝑧 is responsible for the altitude of the quadcopter and mathematical 

equation is shown below. The equation below uses the concept of a PID controller and for 

simulation of result, we would multiply the input data by (-1) to compensate for the 

negative sign in equation 4.1 and the controller response to the closed loop simulation is 

shown in figure 4.1. 

𝑈𝑡𝑧 = 𝐾𝑝(𝑧 − 𝑧𝑑) + 𝐾𝑖 ∫(𝑧 − 𝑧𝑑) + 𝐾𝑑
𝑑𝑧

𝑑𝑡
(𝑧 − 𝑧𝑑)                                   (4.7) 
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Figure 4.1: Altitude Position Tracking Using PID Controller [Z-Axis] 

4.2 TRANSLATION CONTROL ALONG THE X AXIS 

The translational controller takes an error signal as an input which is the difference 

between the actual roll angle and the desired roll angle to produce a control signal 𝑈𝑡𝑥. The 

control signal 𝑈𝑡𝑥 is responsible for moving the quadcopter left and right about the X axis. 

The mathematical equation is shown below. The equation below uses the concept of a PID 

controller and because translation along the X axis is dependent on 𝜃, control of its desired 

position is not under a direct control. 

𝑈𝑡𝑥 = 𝐾𝑝(𝑥 − 𝑥𝑑) + 𝐾𝑖 ∫(𝑥 − 𝑥𝑑) + 𝐾𝑑
𝑑𝑧

𝑑𝑡
(𝑥 − 𝑥𝑑)                        (4.8) 

This is because the X positions are under the translational subsystem which is under-

actuated. To compensate for the under actuation of the system, the pitch angle can be used 

to control desired X position. 

We would assume 𝑈𝑡𝑧 = 𝑚𝑔 which would cause loss in precision, but it also simplifies the 

model for easier control. Equation 4.2 is then simplified as  

𝑋̈ = −𝜃𝑔                                                                              (4.9) 

The rotational control provides us 𝜃 which can then be used for translational control. For 

simulation of result, we would multiply the input data by (-1) to compensate for the 
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negative sign in equation 4.2 and the controller response to the closed loop simulation is 

shown in figure 4.5. 

 

Figure 4.2: Block Diagram for Translational Control 

 

Figure 4.3: Roll Position Tracking Using PID Controller [X-Axis] 

4.3 TRANSLATION CONTROL ALONG THE Y AXIS 

𝑌̈ = 𝜙𝑔                                                                              (4.10) 

The design for controller movement along the Y axis is design in similar method for 

translation along the X axis. The only difference is the Y axis is dependent on the roll angle. 

 

Figure 4.4: Pitch Position Tracking Using PID Controller [Y-Axis] 

4.4 ROTATION CONTROL ABOUT Z-AXIS 
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The yaw controller takes an error signal as an input which is the difference between 

the actual yaw angle and the desired yaw angle to produce a control signal 𝑈𝑟𝑦 and the 

mathematical equation is shown below. The equation below uses the concept of a PID 

controller and the block diagram represent how the close loop method of the yaw controller 

would look like. 

𝑈𝑟𝑦 = 𝐾𝑝(𝜓 − 𝜓𝑑) + 𝐾𝑖 ∫(𝜓 − 𝜓𝑑) + 𝐾𝑑
𝑑𝑧

𝑑𝑡
(𝜓 − 𝜓𝑑)                        (4.11) 

 

Figure 4.5: Yaw Angle Tracking Using PID Controller [Z-Axis] 

From the design concept above, 6 PID controllers were designed with Kp, Ki, and Kd gain 

derived. Where the controller design for translational control on the X and Y axis would 

have two PID controller and their gain constants are shown in figure 4.6. 

 Kp (gain) Ki (gain) Kd (gain) 

Translation Control along the Z Axis 0.4001 0.01019 3.491 

Translation Control along the Y Axis 0.0366 0.0008775 0.3392 

Translation Control along the X Axis 0.0366 0.0008775 0.3392 

Rotation Control along the Z Axis 0.21 0.01225 0.7997 

Rotation Control along the Y Axis 1.553 0.8375 0.5677 

Rotation Control along the X Axis 1.553 0.8375 0.5677 

Figure 4.6: Controller Gain Constant 
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Figure 4.7: Altitude Response to Step Input Disturbance
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CHAPTER 5 

ℒ1 ADAPTIVE CONTROL 

As you can see from section 4, using a conventional linear controller work fine 

when there is no disturbance or uncertainty, but when disturbance is added to the system 

as shown in figure 4.10, the controller is not able to adapt fast enough to compensate for 

the additional error. The process of creating an adaptation mechanism leads to further 

insight to the concept of adaptive controller.  

Adaptive controller is a control mechanisms used by a controller to control a system 

with varying parameters or uncertainties. It is a technique used for the automatic 

adjustment of the controller in real time. Various controllers can be used to cancel 

uncertainties; the most common one is the robust controller. The concept of adaptive 

controller to robust controller is the control law for adaptive controller change while the 

control law for robust controller doesn’t change. Adaptive controllers are the combination 

of online parameter estimators and automatic control design which has two architecture 

designs. There is direct method which only estimates the controller parameters and there is 

indirect method which only estimates the state parameter of system. The structure of this 

architecture is shown below. From the structures, the estimate is calculated using adaptive 

law where Γ is the adaptive gain.  
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5.1 DIRECT & INDIRECT ADAPTIVE CONTROLLER 

The architecture is shown in figure 5.1 and the differential equation of the real plant is 

𝑥̇(𝑡) = 𝐴𝑚𝑥(𝑡) + 𝑏(𝑢(𝑡) + 𝑘𝑥
𝑇𝑥(𝑡),    𝑥(0) =  𝑥0                                  (5.1) 

𝑦(𝑡) = 𝑐𝑇𝑥(𝑡)                                                                                                  (5.2) 

 Where 𝐴𝑚 defines matrix of the closed loop system, x(t) is the state of the system, b and 

c are known constant; 𝑘𝑥 is the vector of the unknown constant.  

𝑢𝑛𝑜𝑟𝑚(𝑡) =  −𝑘𝑥
𝑇𝑥(𝑡) + 𝑘𝑔𝑟(𝑡)                                                             (5.3) 

𝑘𝑔 ≜
1

𝑐𝑇𝐴𝑚
−1𝑏

                                                                                              (5.4) 

Ideal system  

𝑥̇𝑚(𝑡) = 𝐴𝑚𝑥(𝑡) + 𝑏𝑘𝑔𝑟(𝑡),  𝑥𝑚(0) =  𝑥0                                         (5.5) 

𝑦𝑚(𝑡) = 𝑐𝑇𝑥(𝑡)                                                                                          (5.6) 

𝑒(𝑡) ≜ 𝑥𝑚(𝑡) −  𝑥                                                                                      (5.7) 

Adaptation Law becomes 

k̇̂x = −Γ𝑥(𝑡)𝑒̃𝑇(𝑡)𝑃𝑏, 𝑘̂𝑥(0) =  𝑘𝑥0                                              (5.8) 

And P solves Lyapunov equation 

𝐴𝑚
𝑇 𝑃 + 𝑃𝐴𝑚 = −𝑄                                                                                    (5.9) 

 

Figure 5.1: Closed Loop Architecture for Direct MRAC 
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For stability test and analysis, Lyapunov function is used to test Lyapunov stability. By 

taking the first derivative of Lyapunov function, the signal stays bounded and the second 

derivative proves that the error converges when 𝑒(𝑡) ⟶ 0 𝑎𝑠 𝑡 ⟶ ∞ which in turns 

proves the application of Barbalat’s lemma equation on stability of time varying system. 

The theoretical approach used for direct MRAC is used as well for Indirect MRAC. The 

main difference is that the indirect method estimates the system parameters and the 

derivation of the adaptive law is independent of the control signal with its system 

architecture as shown in figure 5.2. The asymptotical convergence of its tracking error is 

also concluded using Barbalat’s lemma equation from Lyapunov stability and its adaptive 

law becomes 

𝑘̂𝑥 = Γ𝑥(𝑡)𝑥̃𝑇(𝑡)𝑃𝑏,          𝑘̂𝑥(0) =  𝑘𝑥0                                            (5.10) 

 

Figure 5.2: Closed Loop Architecture for Indirect MRAC 

5.2  ℒ1 ADAPTIVE CONTROLLER ARCHITECTURE 

 The architecture of both control method works, but with an increase in Γ, estimate 

is reduced as t ≥ 0, but high adaptation gain leads to a high frequency oscillation. So, 

increasing Γ, does allow a faster adaptation, but hurt robustness and stability because of the 

frequency oscillation. To have a faster adaptation and maintain robustness, a controller 
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known as the ℒ1 adaptive controller is used. With ℒ1 adaptive controller, adaptation can be 

separated from robustness. The architecture in figure 5.3 shows how ℒ1 adaptive controller 

is designed. The design approach is a combination of the MRAC state predictor and a low 

pass filter from the control input to the estimated model and the real plant. The controller 

compared to indirect MRAC is giving as  

𝑢(𝑠) = 𝐶(𝑠)𝑛(𝑠)                                                                             (5.11) 

C(s) transfer function is bounded input-bounded output stable which is subjected to C(s)=1 

with zero initialization. This is achievable with a first order low pass filter where 

𝐶(𝑠) =
ωc  

𝑠+𝜔𝑐
                                                                                  (5.12)  

and 𝜔𝑐 is the filter bandwidth, the filter should be chosen to maintain equation 5.13. 

‖𝐺(𝑠)‖ℒ1 <
1

𝐿
                                                                               (5.13) 

Where 

𝐺(𝑠) = 𝐻(𝑠)[1 − 𝐶(𝑠)], 𝐻(𝑠) =  
𝑏

𝑠 + 𝑎𝑚

[1 − 𝐶(𝑠)]                             (5.14) 

𝐿 ≜ 𝑚𝑎𝑥‖𝜃‖1, 𝜃 ∈ Θ ⊂ ℝ𝑛                                              (5.15) 

With low pass filter added to the system, robustness can be maintained with increased 

adaptation gain. The adaptation law for ℒ1 adaptive controller is giving by 

ΓProj(𝜃(𝑡), −𝑥̃𝑇(𝑡)𝑃𝐵𝑥(𝑡)) where the Proj operator ensures that the unknown parameter 

𝜃 stays bounded. 𝜃 would be replaced by 𝜎 for the quadrotor controller and the adaptive 

for ℒ1 adaptive controller is giving by ΓProj(𝜎̂(𝑡), −𝑥̃𝑇(𝑡)𝑃𝐵𝑥(𝑡)). 

For projection operator with a given compact set{𝜎 ∈ ℝ | ‖𝜎‖ ≤ 𝑐}, 

Proj(𝜎̂, 𝜎̂′) = {
𝜎̂′(1 − ℎ(𝜎̂)) 𝑖𝑓 (ℎ(𝜎̂) > 0     &      𝜎̂′ℎ(𝜎̂) > 0  

𝜎̂′ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
           (5.16) 
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Where  

ℎ(𝜎̂) =
𝜎̂2 − 𝜎̂𝑚𝑎𝑥

2

𝜀𝑎𝜎̂𝑚𝑎𝑥
2

                                                   (5.17) 

𝜎̂𝑚𝑎𝑥 =
𝑐

√1+𝜀𝑎
,               𝜀𝑎 ∈ (0,1),         0 ≤ 𝑐 ≤ 1                            (5.18) 

 

Figure 5.3: Closed Loop Architecture for ℒ1 Adaptive controller 

5.3 CONTROLLER DESIGN WITH ℒ1 ADAPTIVE CONTROLLER 

Just like is session 4, we would design four controllers to control the movement of 

the quadrotor using a state feedback approach. The information derived from the feedback 

approach would then be used to design an ℒ1 adaptive controller to cancel out uncertainties. 

5.4 TRANSLATION CONTROL ALONG THE Z-AXIS 

From translation about the z axis, 

𝑧̈ =
1

𝑚
(cos(𝜙) cos(𝜃))(−𝑈𝑡𝑧) + 𝑔                                                    (5.19) 

𝑧̈ − 𝑔 =
1

𝑚
(cos(𝜙) cos(𝜃))(−𝑈𝑡𝑧)                                                    (5.20) 

𝑈𝑡𝑧 is the addition of the position control output and the control output for the cancelation 

of gravity? 

𝑈𝑡𝑧 =  𝑈𝑧𝑝 + 𝑈𝑧𝑔                                                                            (5.21) 
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Since the quadrotor is moving about the z axis, 𝜃 and 𝜙 would be equal to zero. So 

cos(𝜙) cos(𝜃) would be equal to 1. Therefore  

𝑧̈ − 𝑔 =
1

𝑚
(1) (−(𝑈𝑧𝑝 + 𝑈𝑧𝑔))                                                     (5.22) 

From equation 5.13, gravity would be ignored and later compensated where 𝑈𝑧𝑔 is equal 

to mg. when it is ignored,  

𝑧̈ =
1

𝑚
(𝑈𝑧𝑝)                                                                                        (5.23) 

State space equation 

𝑥̇ = 𝐴𝑧𝑝𝑥 + 𝐵𝑧𝑝𝑈𝑧𝑝 

𝑦 = 𝐶𝑧𝑝
𝑇 𝑥 

[
𝑧̇
𝑧̈
] = [

0 1
0 0

] [
𝑧
𝑧̇
] + [

0
1/𝑚

] 𝑢;                𝑦 = [1 0] [
𝑧
𝑧̇
]                    (5.24) 

With state feedback controller 

𝑥̇ = 𝐴𝑧𝑝𝑥 + 𝐵𝑧𝑝𝑈𝑧𝑝 

𝑥̇ = 𝐴𝑧𝑝𝑥 + 𝐵𝑧𝑝(𝑘𝑔𝑟 − 𝑘𝑚𝑧𝑝
𝑇 𝑥)                                                         (5.25) 

where kgr is the reference gain and kmz
T = [k1tz k2tz]

T which is the feedback gain. 

Therefore  

𝑥̇ = (𝐴𝑧𝑝 − 𝐵𝑧𝑝𝑘𝑚𝑧𝑝
𝑇 )𝑥 + 𝐵𝑝𝑘𝑔𝑟                                                     (5.26) 

 Where   𝐴𝑚𝑧𝑝
= (𝐴𝑃 − 𝐵𝑝𝑘𝑚𝑧𝑝

𝑇 ) So, the state spaces become 

𝑥̇ = 𝐴𝑚,𝑧𝑝
𝑥 + 𝐵𝑝𝑘𝑔𝑟 

This changes the state space model to 

[
𝑧̇
𝑧̈
] = [

0 1

−𝑘1𝑧(
1

𝑚
) −𝑘2𝑧(

1

𝑚
)
] [

𝑧
𝑧̇
] + [

0
1

𝑚

]𝑘𝑔𝑟                                (5.27) 
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Transfer function of the state space model becomes 

𝐺𝑝(𝑠) =  

1
𝑚

𝑠2 + 𝑘2𝑧 (
1
𝑚) 𝑠 + 𝑘1𝑧 (

1
𝑚)

                                             (5.28) 

Compare to a reference transfer function  

𝐺𝑟𝑒𝑓(𝑠) =  
𝜔𝑛

2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2
                                                          (5.29) 

From equation 5.23, 𝜔𝑛
2 = 1/𝑚 and for critical damping, 𝜁 = 1. 𝑘1𝑡𝑧 = 1 and 𝑘2𝑡𝑧 = 2𝜁𝜔𝑛 

𝑘2𝑡𝑧 = 2√𝑚                                                                                            (5.30) 

Therefore 𝑘2𝑡𝑧 = 1.79, where 𝑚=0.8. 𝑈𝑡𝑧 the controller output would be determined as 

𝑈𝑡𝑧 = (𝑘𝑔𝑟 + 𝑘1𝑧𝑧 + 𝑘2𝑧𝑧̇ + 𝑚𝑔)                           (5.31) 

Figure 5.5 is the simulation result tracking desired reference position and figure 5.6 is the 

Simulink design for control using state feedback. 

 

Figure 5.5: Altitude Position Using State Feedback Control [Z-Axis] 
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Figure 5.6: State feedback for Altitude Control 

With the feedback controller designed to ensure stable flight, we would then design a 

controller to cancel out uncertainties which is dependent on the adaptation law for 

uncertainty prediction. From equation 5.27, the state space model of the closed loop system 

is defined below.  

𝐴𝑚,𝑧𝑝
= [

0 1

−𝑘1𝑧(
1

𝑚
) −𝑘2𝑧(

1

𝑚
)
] =  [

0 1
−1.25 −2.24

]                           (5.32) 

𝐵𝑝 = [
0
1

𝑚

]                                                                         (5.33)  

For the adaptive law, we first need to determine the P matrix that will satisfy Lyapunov 

equation 𝐴𝑚
𝑇 𝑃 + 𝑃𝐴𝑚 = −𝑄. In order to achieve that, we would set Q as an identity matrix 

as shown below. 

𝑄 =  [
1 0
0 1

]                                                                  (5.34) 

 

𝑃 =  [
1.30 0.50
0.50 0.50

]                                                                  (5.35) 

Adaptation control law 

θ̇̂ = ΓProj(𝜎̂(𝑡), −𝑥̃𝑇(𝑡)𝑃𝐵𝑥(𝑡))                                                       (5.36) 

θ̇̂ = ΓProj(𝜎̂(𝑡), − [
𝑧̃
𝑧̇̃
] [

1.30 0.50
0.50 0.50

] [
0
1

𝑚

])                                       (5.37) 

θ̇̂ = ΓProj(𝜎̂(𝑡), −(0.63𝑧̃  + 0.63𝑧̇̃))                                               (5.38) 

𝐺ℒ1,𝑡𝑧 = [[𝑠𝐼 − 𝐴𝑚,𝑝]
−1

𝐵𝑝] [1 − 𝐶𝑡,𝑧(𝑠)]                                         (5.39) 

Using matlab, the transfer function is where 𝜔𝑐=100 
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 𝐺ℒ1,𝑡𝑧 =

[
 
 
 

1.25𝑠

𝑠3 + 102.24𝑠2 + 225.25𝑠 + 125
1.25𝑠2

𝑠3 + 102.24𝑠2 + 225.25𝑠 + 125]
 
 
 
                                   (5.40) 

‖𝐺ℒ1,𝑡𝑧‖ℒ1
= 0.003 which give us an uncertainty limit of 333.33N. with that, the 

adaptation gain can be big enough for faster adaptation. Also from equation 5.38,  𝑧̃ =  𝑧̂ −

𝑧 and 𝑧̇̃ =  𝑧̇̂ −  𝑧̇. For simulation, a varying uncertainty of -10N to 10N would be used with 

an adaptation gain of 10000. Figure 5.7 is the simulation result tracking desired reference 

position using ℒ1 adaptive controller. Figure 5.8 shows the structural design of the altitude 

controller in Simulink and figure 5.9 shows the simulation of the estimated uncertainty vs 

the real uncertainty.  

Another external force that could affect quadrotor movement in the Z axis is the 

input of extra mass. Theoretically, there is no limit on the amount of extra mass that a 

quadrotor can lift, but with a physical system, the amount of thrust and rotor speeds are 

limited. Most physical quadrotor are designed so that the sum of all four motors can lift at 

least twice its original mass. Assuming our simulation is designed for that purpose, 

𝑚𝑒𝑥𝑡𝑟𝑎 ≤ 0.8. Therefore equation (5.23) can be rewritten as 𝑧̈ =
1

𝑚+𝑚𝑒𝑥𝑡𝑟𝑎
(𝑈𝑧𝑝).  Same 

position controller input can be used to control the new rewritten model because 𝑚𝑒𝑥𝑡𝑟𝑎 is 

constant and the controller output is well bounded. Extra mass can also affect movement 

in the X and Y axis and same concept would be applied to compensate with the input of 

extra mass. 
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Figure 5.7: Altitude position [Z-Axis] with response to Varying Uncertainties and Extra 

Mass 

 

5.8: Structural Design of the Altitude Controller 

 

5.9: Estimate Uncertainty vs Real Uncertainty for Altitude Control 

5.5  ROTATION CONTROL ABOUT THE Z-AXIS 

This is the yaw controller. The aim of the controller is to design a stable yaw rotation 

controller to cancel uncertainties. From equation 5.4, using small angle approximation 
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𝜓̈ =  
𝑙

𝐼𝑧𝑧
𝑈𝑟𝑧                                                                      (5.41) 

State space feedback is  

[
𝜓̇

𝜓̈
] = [

0 1

−𝑘1𝑟𝑧(
𝑙𝑐

𝐽𝑧
) −𝑘2𝑟𝑧(

𝑙𝑐

𝐽𝑧
)
] [

𝜓

𝜓̇
] + [

0
𝑙𝑐/𝐽𝑧

] 𝑟𝑟𝑧                                       (5.42) 

𝑦 = [1  0] [
𝜓

𝜓̇
]                                                                          (5.43) 

Transfer function is  

𝐺𝑟,𝑧(𝑠) =  

𝑙𝑐
𝐽𝑧

𝑠2 + 𝑘2𝑟,𝑧 (
𝑙𝑐
𝐽𝑧

) 𝑠 + 𝑘1𝑟,𝑧 (
𝑙𝑐
𝐽𝑧

)
                                             (5.44) 

From equation 5.23, 𝜔𝑛
2 =

𝑙𝑐

𝐽𝑧
 and for critical damping, 𝜁 = 1. 𝑘1𝑟,𝑧 = 1 and 𝑘2𝑟,𝑧 = 2𝜁𝜔𝑛 

𝑘2𝑡,𝑥 = 2√
𝑙𝑐

𝐽𝑧
                                                                               (5.45) 

𝑘2𝑟,𝑧 = 4 𝑤ℎ𝑒𝑟𝑒 𝑙 = 0.25𝑚, 𝑐 = 0.02, 𝐽𝑧 = 0.02𝑘𝑔𝑚2 

𝑈𝑟𝑧 = 𝑟𝑟𝑧 − 𝑘1𝑟,𝑧𝜓 − 𝑘2𝑟,𝑧𝜓̇                                                   (5.46) 

 

Figure 5.10: Yaw Angle Tracking Using State Feedback Control 

Where  

𝐴𝑚 =  [
0 1

−𝑘1𝑧(
1

𝑚
) −𝑘2𝑧(

1

𝑚
)
] =  [

0 1
−0.25 −1

]                                (5.47) 



28 

 

𝐵𝑚 = [

0
𝑙𝑐

𝐽𝑧

]                                                                            (5.48) 

For the adaptive law, we first need to determine the P matrix that will satisfy Lyapunov 

equation 𝐴𝑚
𝑇 𝑃 + 𝑃𝐴𝑚 = −𝑄.  

The P matrix to satisfy Lyapunov equation is 

𝑃 =  [
4.50 0.50
0.50 0.625

]                                                                  (5.49) 

Adaptation control law 

θ̇̂ = ΓProj(𝜎̂(𝑡), −𝑥̃𝑇(𝑡)𝑃𝐵𝑥(𝑡))                                                         (5.50) 

θ̇̂ = ΓProj(𝜎̂(𝑡), − [
𝜓̃

𝜓̇̃
] [

4.50 0.50
0.50 0.625

] [
0
𝑙𝑐

𝐽𝑧

])                                     (5.51) 

θ̇̂ = ΓProj(𝜎̂(𝑡), − (0.125𝜓̃  + 0.156𝜓̇̃))                                        (5.52) 

𝐺ℒ1,𝑟𝑧 = [[𝑠𝐼 − 𝐴𝑚]−1𝐵𝑚][1 − 𝐶𝑟,𝑧(𝑠)]                                           (5.53) 

Using matlab, the transfer function is where wc =100 for the low pass filter 

𝐺ℒ1,𝑟𝑧 =  

[
 
 
 

0.25𝑠

𝑠3 + 101𝑠2 + 100.25𝑠 + 25
0.25𝑠2

𝑠3 + 101𝑠2 + 100.25𝑠 + 25]
 
 
 
                                                 (5.54) 

‖𝐺ℒ1,𝑡𝑧‖ℒ1
= 0.001 which give us an uncertainty limit of 1000N. With that, the adaptation 

gain can be big enough for faster adaptation. Also from equation 5.52,  𝜓̃ =  𝜓̂ − 𝜓 and 

𝜓̇̃ =  𝜓̇̂ −  𝜓̇. For simulation, a varying uncertainty of -10N to 10N would be used with an 

adaptation gain of 10000. Figure 5.11 provides result tracking desired reference angle using 

ℒ1 adaptive controller with varying uncertainties while figure 5.12 provides simulation of 

the estimated uncertainty vs the real uncertainty. 
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Figure 5.11: Tracking of Desired Reference Yaw Angle with Varying Input  

         Uncertainties 

 

Figure 5.12: Estimated Uncertainty vs Real Uncertainty for Yaw Control 

5.6   TRANSLATION CONTROL ALONG THE X-AXIS 

For movement along the X or Y axis, the quadrotor needs to rotate because it is 

dependent on the rotation angle. From equation 5.56, you can notice that the translation 

movement is dependent on 𝜙, 𝜃, 𝜑 and by using small angle approximation, we can move 

in the X direction without the quadrotor getting unstable. For stability to be maintained, 

the pitch and roll angle would be limited to maintain small angle approximation. For 

movement along the X axis, the quadrotor rotates about the Y axis which provides us the 

pitch angle. The yaw angle can then be set equal to zero because the yaw angle is relatively 
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small and does not have a huge effect on movement in the X and Y direction. Also, equation 

5.55 can be linearized around hovering mode were 𝜙̇, 𝜃̇, 𝜑̇ is equal to zero. 

𝜃̈ =  
𝑙

𝐽𝑦
𝑈𝑡𝑥                                                                    (5.55)

̈
 

𝑋̈ =
1

𝑚
(cos(𝜙) sin(𝜃) sin(𝜑) + sin(𝜃) 𝑠𝑖𝑛(𝜑)(−𝑈𝑡𝑧)                             (5.56) 

Like the translational controller using small angle approximation, 

𝑋̈ = −
1

𝑚
𝜃(𝑈𝑡𝑧)                                                             (5.57) 

It is also important to note that when small angle approximation is used,  

sin 𝜃  ≈ 𝜃 

cos 𝜃  ≈ 1 

tan 𝜃  ≈ 𝜃 

We would assume that the control input is positive and we would compensate for it on the 

controller output for movement along the x axis. We would also set 𝑈𝑡𝑧 = 𝑚𝑔 so that our 

model can be simplified for easy calculation of the gain constant.  

For our state feedback, we would four states and our state space feedback would be 

modelled as  

[

𝑥1̇

𝑥2̇

𝜃̇
𝜃̈

] =

[
 
 
 
 

0                         1                            0                           0
0                         0                            𝑔                           0
0                         0                            0                           1

− (
𝑙

𝐽𝑦
) 𝑘1𝑡𝑥 −(

𝑙

𝐽𝑦
) 𝑘2𝑡𝑥 −(

𝑙

𝐽𝑦
) 𝑘3𝑡𝑥 −(

𝑙

𝐽𝑦
) 𝑘4𝑡𝑥]

 
 
 
 

[

𝑥1

𝑥1̇

𝜃
𝜃̇

] +

[
 
 
 
 
0
0
0
𝑙

𝐽𝑦]
 
 
 
 

𝑈𝑡𝑥        (5.58) 

The Simulink model is shown below and the transfer function becomes 

𝐺𝑡𝑥(𝑠) =  

𝑙
𝐽𝑦

𝑔

𝑠4 + 𝑘4𝑟,𝑦 (
𝑙
𝐽𝑦

)𝑔𝑠3 + 𝑘3𝑟,𝑦 (
𝑙
𝐽𝑦

)𝑔𝑠2 + 𝑘2𝑟,𝑦 (
𝑙
𝐽𝑦

)𝑔𝑠 + 𝑘1𝑟,𝑦 (
𝑙
𝐽𝑦

)𝑔
           (5.59) 
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Figure 5.13: State Feedback Design in Simulink 

𝑠4 + 𝑘4𝑟,𝑦 (
𝑙

𝐽𝑦
)𝑔𝑠3 + 𝑘3𝑟,𝑦 (

𝑙

𝐽𝑦
)𝑔𝑠2 + 𝑘2𝑟,𝑦 (

𝑙

𝐽𝑦
)𝑔𝑠 + 𝑘1𝑟,𝑦 (

𝑙

𝐽𝑦
)𝑔 = (𝑠 + √

𝑙

𝐽𝑦
𝑔

4
)

4

 

The result using pole placement for the feedback gain constants becomes 

(𝑘1𝑡𝑥 = 1; )     (𝑘2𝑡𝑥 = 4√
𝐽𝑦
3

𝑙3
𝑔

4

) ;     (𝑘3𝑡𝑥 = 6√
𝐽𝑦

𝑙
𝑔

2

) ;     (𝑘4𝑡𝑥 = 4√
𝐽𝑦

𝑙𝑔

4

) 

k1tx = 1; k2tx = 1.12; k3tx =  4.60;  k4tx = .86; 

Where 𝐽𝑦 =  0.015𝑘𝑔𝑚2; 𝑙 = 0.25𝑚; 𝑎𝑛𝑑 𝑔 = 9.81𝑁/𝑘𝑔 

 

Figure 5.14: Roll Position Tracking without Varying Input Uncertainties 

Because we are designing a controller for movement around the x axis, we would focus on 

the pitch angle 𝜃. It is also important to know that figure 5.14 did not consider the limitation 
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of the pitch angle, but to maintain small angle approximation, 𝜃 should not exceed 14𝑜 or 

0.244rad. However, when position is greater than 1.4m as shown in figure 5.16, the pitch 

angle is greater than 0.244rad and if our desired position is as high as 25m, 𝜃 would be 

higher than 360𝑜 or 3.14rad which makes no sense for the quadrotor to completely rotate 

and possibly leads to more difficulty for the control of the quad.  

 

Figure 5.15: Pitch Angle at a Desired Position of 1.4m 

 

Figure 5:16 Pitch angle at a desired position of 25m 

The problem with limitation is that it could affect state feedback control law and to avoid 

that, we would have to first limit tracking error. Where 

𝑒𝑡𝑥 = 𝑥𝑡𝑥 + 𝑒𝑡𝑥𝑙𝑖𝑚𝑖𝑡
                                                             

𝑒𝑡𝑥𝑙𝑖𝑚𝑖𝑡
= −3𝑚 < 𝑒𝑡𝑥 < 3𝑚                                                     

𝑒𝑡𝑥 = 𝑟𝑡𝑥 − 𝑥𝑡𝑥                                                    (5.60) 
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From equation 5.60, if the error between the reference input and the actual position is 

greater than 3m, then 𝑒𝑡𝑥𝑙𝑖𝑚𝑖𝑡
 is equal to 3m and if less than -3m then 𝑒𝑡𝑥𝑙𝑖𝑚𝑖𝑡

 is equal to -

3m. By using this technique, the tracking error cannot exceed 3m even if the actual 

reference is greater than 3m. With the limitation in place, it takes a longer time for the 

quadrotor to reach desired position. Also 3m was the best limitation that would result in a 

faster response and still maintain small angle approximation at a degree higher than 

14𝑜 . Figure 5.17 and figure 5.18 shows the pitch angle remains same even if the distance 

is greater than 1.4m. Figure 5.19 and 5.20 shows the response of the quadrotor at 1.4m and 

at 25m. 

 

Figure 5.17: Pitch Angle with Desired Position of 25m 

 

Figure 5.18: Pitch Angle with Desired Position of 1.4m 
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Figure 5.19: Tracking of Desired Position of 1.4m with Pitch Angle Limitation  

 

Figure 5.20: Tracking of Desired Position of 25m with Pitch Angle Limitation  

 Unlike the altitude controller we cannot directly affect translation without affecting 

rotation. Therefore, we have matched and unmatched uncertainty. Figure 5.21 provides a 

simulation where unmatched uncertainties were not compensated for and in other to 

compensate for these uncertainties, the model of the system is redefined as  

𝑥̇(𝑡) = 𝐴𝑚𝑥(𝑡) + 𝐵𝑚((𝑢(𝑡) + 𝜎𝑚(𝑡)) + 𝐵𝑢𝑚𝜎𝑢𝑚                          (5.61) 

Where  

𝐵𝑢𝑚 ∈ ℝ𝑛×𝑛(−𝑚) Is a matrix such that 𝐵𝑢𝑚
𝑇 = 0 and rank([𝐵𝑚𝐵𝑢𝑚]) = 𝑛 

 There for 

𝐵𝑚 =

[
 
 
 
 
0
0
0
𝑙

𝐽𝑦]
 
 
 
 

𝑈𝑡𝑥     𝑎𝑛𝑑 𝐵𝑢𝑚 = [

0
𝑔
0
0

] 𝜃                                               (5.62) 
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The control law for the controller to compensate for unmatched uncertainty would be defined as  

𝑈 = −𝐶1(𝑆)𝜎̂𝑚 − 𝐶2𝐻𝑚
−1𝐻𝑢𝑚𝜎̂𝑢𝑚 + 𝐾𝑔𝑟                                             (5.63) 

Where  

𝐶1& 𝐶2 are the low pass filter; 𝐻𝑚 = 𝐶[𝑠𝐼 − 𝐴𝑚]−1𝐵𝑚 and 𝐻𝑢𝑚 = 𝐶[𝑠𝐼 − 𝐴𝑚]−1𝐵𝑢𝑚. 

𝐶2𝐻𝑚
−1𝐻𝑢𝑚𝜎̂𝑢𝑚 is needed to cancel the effect of unmatched uncertainty. In this paper, 𝐶2 

filter would be a third order low pass filter. It is needed because it makes the transfer 

function of 𝐶2𝐻𝑚
−1𝐻𝑢𝑚𝜎̂𝑢𝑚 a proper transfer function. At a filter bandwidth of 100,  

𝐶2𝐻𝑚
−1Hum =

60s2 + 860s + 4600

s3 + 24.14s2 + 241.4s + 1000
                    (5.64)  

P matrix to satisfy Lyapunov equation 

P =     [

1.36          0.50             0.21            0.05
0.50          2.08             0.05           2.20
0.21          0.05             2.22            0.50

0.05           2.20           0.50             5.51

]                            (5.65) 

Adaptation control law 

θ̇̂m = ΓProj(σ̂(t), − (0.834x̃  + 36.674ẋ̃ +  8.335θ̃  + 91.852θ̇̃))                  (5.66) 

θ̇̂um = ΓProj(σ̂(t),− (4.905x̃  + 20.405ẋ̃ +  0.491θ̃  + 21.582θ̇̃))                 (5.67) 

The adaptation law for matched uncertainties does not include does not include movement 

on the translational axis and therefore adaptation law for unmatched uncertainties does not 

include movement on the rotational axis and can be shown in the equation below. 

θ̇̂𝑚 = ΓProj(𝜎̂(𝑡), − (0𝑥̃  + 0𝑥̇̃ +  8.335𝜃̃  + 91.852𝜃̇̃))                                      (5.68) 

θ̇̂𝑢𝑚 = ΓProj(𝜎̂(𝑡), − (4.905𝑥̃  + 20.405𝑥̇̃ +  0𝜃̃  + 0𝜃̇̃))                                    (5.69) 

𝐺ℒ1,𝑡𝑥(𝑚𝑎𝑡𝑐ℎ𝑒𝑑) = [[𝑠𝐼 − 𝐴𝑚]−1𝐵𝑚][1 − 𝐶𝑟,𝑧(𝑠)]                                           (5.70) 
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= 

[
 
 
 
 
 
 
 
 

1.635𝑒06𝑠3  + 3.925𝑒08𝑠2  +  3.925𝑒10𝑠

10000𝑠7  +  2.543𝑒06𝑠6 + 2.752𝑒08𝑠5  +  1.363𝑒10𝑠4  +  1.621𝑒11𝑠3  +  8.11𝑒11𝑠2  +  1.871𝑒12𝑠 +  1.635𝑒12
1.635𝑒06𝑠4  +  3.925𝑒08𝑠3 + 3.925𝑒10𝑠2

10000𝑠7  +  2.543𝑒06𝑠6 + 2.752𝑒08𝑠5  +  1.363𝑒10𝑠4  +  1.621𝑒11𝑠3  +  8.11𝑒11𝑠2  +  1.871𝑒12𝑠 +  1.635𝑒12
1.635𝑒06𝑠5  + 3.925𝑒08𝑠4  + 3.925𝑒10𝑠3

10000𝑠7  +  2.543𝑒06𝑠6 + 2.752𝑒08𝑠5  +  1.363𝑒10𝑠4  +  1.621𝑒11𝑠3  +  8.11𝑒11𝑠2  +  1.871𝑒12𝑠 +  1.635𝑒12
1.635𝑒06𝑠6  + 3.925𝑒08𝑠5  + 3.925𝑒10𝑠4

10000𝑠7  +  2.543𝑒06𝑠6 + 2.752𝑒08𝑠5  +  1.363𝑒10𝑠4  +  1.621𝑒11𝑠3  +  8.11𝑒11𝑠2  +  1.871𝑒12𝑠 +  1.635𝑒12]
 
 
 
 
 
 
 
 

   (5.71)  

𝐺ℒ1,𝑡𝑥(𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑) = [[𝑠𝐼 − 𝐴𝑚]−1𝐵𝑢𝑚][1 − 𝐶𝑟,𝑧(𝑠)]                                           (5.72) 

= 

[
 
 
 
 
 
 
 
 

1.635𝑒06 𝑠^5 +  3.939𝑒08 𝑠^4 +  3.959𝑒10 𝑠^3 +  3.554𝑒10 𝑠^2 +  1.805𝑒11 𝑠

10000𝑠7  +  2.543𝑒06𝑠6 + 2.752𝑒08𝑠5  +  1.363𝑒10𝑠4  +  1.621𝑒11𝑠3  +  8.11𝑒11𝑠2  +  1.871𝑒12𝑠 +  1.635𝑒12
1.635𝑒06 𝑠^6 +  3.939𝑒08 𝑠^5 +  3.959𝑒10 𝑠^4 +  3.554𝑒10 𝑠^3 +  1.805𝑒11 𝑠^2

10000𝑠7  +  2.543𝑒06𝑠6 + 2.752𝑒08𝑠5  +  1.363𝑒10𝑠4  +  1.621𝑒11𝑠3  +  8.11𝑒11𝑠2  +  1.871𝑒12𝑠 +  1.635𝑒12
−1.832𝑒06 𝑠^4 −  4.412𝑒08 𝑠^3 −  4.435𝑒10 𝑠^2 −  3.925𝑒10 𝑠

10000𝑠7  +  2.543𝑒06𝑠6 + 2.752𝑒08𝑠5  +  1.363𝑒10𝑠4  +  1.621𝑒11𝑠3  +  8.11𝑒11𝑠2  +  1.871𝑒12𝑠 +  1.635𝑒12
−1.832𝑒06 𝑠^5 −  4.412𝑒08 𝑠^4 −  4.435𝑒10 𝑠^3 −  3.925𝑒10 𝑠^2

10000𝑠7  +  2.543𝑒06𝑠6 + 2.752𝑒08𝑠5  +  1.363𝑒10𝑠4  +  1.621𝑒11𝑠3  +  8.11𝑒11𝑠2  +  1.871𝑒12𝑠 +  1.635𝑒12]
 
 
 
 
 
 
 
 

   (5.73)  

‖𝐺ℒ1,𝑡𝑥(𝑚𝑎𝑡𝑐ℎ𝑒𝑑)‖ℒ1
= 0.008 which give us an uncertainty limit of 125N. With that, the 

adaptation gain can be big enough for faster adaptation. From equation 5.68,  𝜃̃ =  𝜃 − 𝜃 

and 𝜃̇̃ =  𝜃̇ −  𝜃̇. For simulation, a varying uncertainty of -10N to 10N would be used with 

an adaptation gain of 10000. 

 ‖𝐺ℒ1,𝑡𝑥(𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑)‖ℒ1
= 0.056 which give us an uncertainty limit of 17.54N. From 

equation 5.69,  𝑥̃ =  𝑥̂ − 𝑥 and 𝑥̇̃ =  𝑥̇ −  𝑥. For simulation, a varying uncertainty of -10N 

to 10N would be used with an adaptation gain of 10000.  

 

Figure 5.21: Tracking of Desired Reference Position with Varying Matched and 

Unmatched Uncertainties without compensation for the Unmatched Uncertainties 
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Figure 5.22: Roll Position Tracking with Varying Matched Uncertainties 

 

Figure 5.23: Structural Design for Roll Controller 

 

Figure 5.24: Estimate Uncertainty vs Real Uncertainty for Roll Controller 
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Figure 5.25: Estimate Uncertainty vs Real Uncertainty for Unmatched Uncertainties Roll 

Control 

 

Figure 5.26: Roll Position Tracking with Varying Matched and  

         Unmatched Uncertainties 

5.7 TRANSLATION CONTROL ALONG THE Y AXIS 

This controller design is similar for the controller design for translation about the x 

axis, so controller output for movement is  

𝑢𝑡𝑦 = (𝑒𝑡𝑦 − 𝑘1𝑡𝑥x − 𝑘2𝑡𝑥𝑥̇ −  𝑘3𝑡𝑥(𝜙) − 𝑘4𝑡𝑥(𝜙̇))  

You notice there is no multiplication of (-1) at the dynamic model which is the only 

difference between both design.  Therefore  

k1ty = 1; k2ty = 1.12; k3ty =  4.60;  k4ty = .86; 
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Figure 5.27: Feedback Response without Disturbance 

 

Figure 5.28: Pitch Position Tracking with Varying Matched  

         and Unmatched [Y-Axis] 

 

Figure 5.29: Estimate Uncertainty vs Real Uncertainty for Matched Uncertainties Pitch 

Control 
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Figure 5.30: Estimate Uncertainty vs Real Uncertainty for Unmatched Uncertainties Pitch 

Control
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CHAPTER 6 

CONTROLLER SIMULATION WITH NON-LINEAR MODEL 

In Chapter 5, controllers were designed based on a linearized model of the 

quadrotor, but in this chapter 6, the nonlinear model is used. The non-linear model is based 

on what was discussed in chapter 3 and in addition to the model we would calculate the 

thrust generated by each motor as shown below. These thrusts are mathematical relations 

that were discussed in chapter 3 from equation 3.6-3.9. 

[

𝐹1

𝐹2

𝐹3

𝐹4

] = [

1                1                1               1
0           − 1                0               1
1                0            − 1              0
1           − 1                1         − 1

]

−1

[

𝑈𝑡𝑧

𝑈𝑡𝑥

𝑈𝑡𝑦

𝑈𝑟𝑧

] 

For the simulation, the table below shows the disturbances that were used on the quadrotor 

model.  

Tz Disturbance -10< 𝑇𝑧 < 10 

Ty Disturbance -0.4< 𝑇𝑦 < 0.4 

Tx Disturbance -0.4< 𝑇𝑥 < 0.4 

Rz disturbance -10< 𝑇𝑧 < 10 

Ry disturbance -12< 𝑅𝑦 < 12 

Rx disturbance -12< 𝑅𝑥 < 12 

Tz Extra mass -5< 𝑇𝑧 < 5 

Figure 6.1: Disturbance Limit
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Figure 6.1-6.4 shows the quadrotor response to desired position or location. It is exactly 

same as most of the result shown in chapter 5. To avoid repetition of results such as tracking 

of uncertainties, pitch and roll limitation would be avoided. Figure 6.5 and 6.6 provides the 

overall Simulink design and each detail in each subsystem have been discussed from 

chapter 3 to chapter 5. 

 

Figure 6.2: Altitude Position Tracking Using ℒ1 Adaptive Controller [Z-Axis] 

 

Figure 6.3: Yaw Position Yaw Position Tracking Using ℒ1 Adaptive Controller [Z-Axis] 

 

Figure 6.4: Roll Position Tracking Using ℒ1 Adaptive Controller [X-Axis] 
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Figure 6.5: Pitch Position Tracking Using ℒ1 Adaptive Controller [Y-Axis] 

 

Figure 6.6: Simulink Design with Uncertainties Input 
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Figure 6.7: Expanded Simulink Design
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CHAPTER 7 

SUMMARY AND CONCLUSION 

The main goal of this thesis is to design a controller that can control a quadrotor in 

the presence of disturbance or uncertainties. Although they are different control method 

used such as PID controller, this paper focused on the application of ℒ1 adaptive controller 

in simulation. This paper includes the linear and non-linear dynamic model of the 

quadrotor, application using PID controller, ℒ1 adaptive controller, and resistance to 

uncertainties. As figure 4.10 shows, when a step disturbance is added to the input of the 

altitude controller, it took about 160 seconds for the quadrotor to adapt so the main 

advantage of ℒ1 adaptive controller over PID controller is its fast adaptation to 

uncertainties or disturbance because of its high adaptation gain. 

In the process of designing ℒ1 adaptive controller for the quadrotor, various 

limitations and problems are taking into consideration such as the under actuation of the 

quadrotor, presentation of matched and unmatched uncertainties, addition of extra mass 

and failure of rotating motor. All these limitations were taking care of in this paper, except 

for failure of the rotating motor. Theoretically when there is a motor failure, it is difficult 

to have a stable flight. To avoid these problems, a different technique would be used for 

future work. Future work would also focus on the implementation of ℒ1 adaptive controller 

on a physical quadrotor. Various limitation from the micro controller, body 
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frame battery, IMU and cost of design are expected to affect performance, but with ongoing 

research in the field of quadrotors, most of these limitations can be subdued.
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