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ABSTRACT 

 Aging cables are a critical reliability concern for many electrical systems. Cables 

run over long distances, are often exposed to harsh environments and are intended to 

work for several decades. Cable faults can be a serious problem because cables are 

usually hard to repair or replace. Condition based maintenance is a popular approach that 

provides high reliability and low maintenance cost at the same time. This is a non-

destructive method that collects information about the health condition of the cable under 

test without causing any potential damage. 

Nowadays, in several applications power cables are connected to power 

converters and it would be desirable to be able to implement condition based 

maintenance by using the existing converter for cable health monitoring during normal 

system operation. In this thesis, we investigate the feasibility of using existing power 

converters to perform online cable health monitoring and propose an add-on circuit which 

can be added to an existing power converter so that it can perform the health monitoring 

function. We use the time domain reflectometry method to characterize and locate faults 

in the cable connecting the output of a power converter to its load. 
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CHAPTER 1 

INTRODUCTION 

Nowadays, systems designed to manage equipment maintenance are considered 

analogous to health care systems intended to manage human health. A maintenance 

engineer, just like a physician, monitors the equipment condition and performs any 

procedure required to ensure that the system runs without problems. There are various 

factors that define the importance of certain equipment for system operation. For 

example, a certain piece of equipment may have the largest role in production; another 

one may have the highest risk of failure. Some equipment, in spite of its high reliability, 

may cause a long downtime in case of failure, and therefore requires special reliability 

considerations. 

There are different departments in every plant such as production, maintenance, 

R&D and energy departments. To get the best result, these departments must integrate. In 

this case, maybe certain equipment is not important from production or maintenance 

points of view, but because of energy or environmental concerns, its maintenance has the 

highest priority. A maintenance plan can be developed based on different approaches. 

The first approach can be called the corrective approach, or the run-to-failure approach. It 

satisfied the early industrial needs. As industries developed, the preventive approach was 

introduced which was based on overhaul or replacement of a part or the entire device 

after a specified time interval related to the mean time to failure. This plan may reduce 

the frequency of emergency breakdowns, however it has drawbacks, because a failure
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 may happen either sooner or later than the scheduled replacement time. In the first case 

the emergency breakdown is not prevented with associated downtime costs. In the second 

case, incurred replacement costs are larger than necessary. To cope with this issue, the 

predictive approach was proposed. It is based on some kind of continuous monitoring of 

the equipment condition. In this method, not only the current condition but also the trend 

change of condition and the baseline are considered to evaluate the equipment health. To 

implement this method, several maintenance devices are required which measure 

different parameters for different types of equipment [1]. 

Cables are important parts of electrical systems. Since they often are less 

accessible, in case of failure it takes more time and cost to get them fixed. Moreover, 

unlike other electrical equipment which is installed in clean, sealed and air-conditioned 

rooms, they frequently are deployed in harsh condition, and during operation are exposed 

to mechanical and thermal stress, corrosion, water and even radiation. As mentioned 

earlier, they are often inaccessible, and since in some cases they are buried underground 

or placed inside a tight tunnel, this makes visual inspection impossible. This is the reason 

why cable condition based monitoring is so important. 

Modern loads require controllable voltage and current to work well and 

efficiently. To satisfy this requirement the use power converters is increasing. Frequently 

the power is transferred to the loads through power converters and cables. 

In this thesis, we are going to introduce a method which uses time domain 

reflectometry, and can be applied to an existing power converter to give it the ability to 

perform online cable health monitoring. 
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This thesis is organized as follows: in Chapter 2, we describe the most important 

reflectometry methods which have been used for cable fault detection. In Chapter 3, we 

focus on time domain reflectometry and explain its principles of operation. In Chapter 4, 

we introduce the proposed method to implement the time domain reflectometry using an 

existing power converter, then in Chapter 5, we demonstrate the feasibility of the method 

by discussing the experimental result and finally in Chapter 6 we summarize the work 

and make suggestions for future work. 
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CHAPTER 2 

A BRIEF REVIEW OF REFLECTOMETRY METHODS 

2.1 ABSTRACT 

Cables like veins in the human body distribute the power throughout the electrical 

system. Indeed, they are the backbone of the transmission and distribution systems. The 

more important a part is, the more monitoring is required to make sure it is in the safe 

zone of operation. There are different types of cable fault detection methods. They can be 

categorized into several classes; online and offline, destructive and non-destructive and 

so on. Addressing all methods is outside the scope of this thesis. In this Chapter, we are 

going to focus on describing and comparing several reflectometry methods such as Time 

Domain Reflectometry (TDR), Frequency Domain Reflectometry (FDR), Spectral Time-

Domain Reflectometry (STDR) and Joint Time-Frequency Domain Reflectometry 

(JTFDR). 

 

2.2 INTRODUCTION 

The reflectometry method is often said to be a radar method because it is based on 

sending a signal to a transmission line and analyzing the reflected signal [2]. The sending 

signal, called incident waveform, has a reflection once it encounters a discontinuity. 

Discontinuity could be any deviation from the normal condition of the cable. Different 

reflectometry methods use different incident waveforms: time domain reflectometry uses 
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a fast step stimulus waveform; frequency domain reflectometry uses a swept frequency 

signal; sequence TDR uses pseudo noise: and joint time-frequency domain reflectometry 

uses a linearly modulated chirp signal with a Gaussian envelope. 

 

2.3 TIME DOMAIN REFLECTOMETRY 

Time domain reflectometry (TDR) uses an incident waveform with a fast rise 

time. A simple TDR setup consists of a step generator producing the incident waveform, 

which typically is a square wave, and sending it into the line.  The incident waveform 

travels through the line with a propagation velocity related to cable physical 

characteristics and has a reflection if it encounters any impedance discontinuity. The 

reflection coefficient is defined as the ratio of reflected wave to incident wave and it can 

be seen as an index of discontinuity impedance. The location of the discontinuity can be 

determined if the round-trip delay and propagation velocity are known [3]. 

Since the TDR method is the main method we are going to apply in our proposed 

system, we describe it here briefly, and we will describe it in detail in the next Chapter. 

 

2.4 SPECTRAL TIME DOMAIN REFLECTOMETRY 

Spectral time domain reflectometry (STDR) uses a low-amplitude pseudo noise 

(PN) signal as incident wave. The signal amplitude is very small. It needs to be large 

enough to ensure a good signal-to-noise ratio, but it can be much smaller than other 

system signals. Therefore, it enables the online monitoring of the cable without 

interfering with the normal operation of the system. Location and type of the fault can be 

determined from the correlation between the incident and reflected wave [4]. In [5] a 
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CMOS sensor which is a novel architecture was developed to implement the STDR 

method on a 0.5- μm integrated circuit. The sensor locates short or open circuits on active 

wires with an accuracy of +/-1 ft when running at a clock speed of 100 MHz. Shown in 

Fig. 2.1 is the spectral time domain reflectometry structure. 

 

 

Fig. 2.1 Spectral time domain reflectometry structure 

 

2.5 FREQUENCY DOMAIN REFLECTOMETRY 

As mentioned before, all reflectometry methods share the same principle of 

operation. In the frequency domain reflectometry (FDR) method, a linearly swept 

frequency signal is used as incident wave. A linearly swept frequency signal is a 

sinusoidal signal with frequency that increases linearly with time. The incident wave is 

transmitted into the line and has a reflection after it sees any discontinuity. After a time 

equal to the round-trip time, the reflected wave arrives at the transmitting point. At that 

time the incident generator is injecting a new sine wave with a higher frequency, as it is 

expected based on the definition of swept frequency signal above. Similar to TDR, where 

round trip time is used to find the discontinuity location, in FDR, the round-trip time can 

be calculated using the frequency difference between the incident and the reflected wave, 



 

7 

knowing that the frequency increases linearly versus time [4]. The Fig. 2.2 shows the 

frequency domain reflectometry structure. 

 

Fig. 2.2 Frequency domain reflectometry structure 

 

Note that the propagation velocity is the key factor for locating the fault. Since we 

are working in the frequency domain, it is easy to compensate for variable propagation 

velocity with frequency. This holds true also for attenuation, which also varies with 

frequency. 

With FDR, it is possible to locate different faults at the same time on a cable. 

Each fault produces a specific reflected wave which has a specific frequency. By using 

Fourier transform, all the frequency components can be measured. Each component 

corresponds to a specific fault at a specific distance along the cable. The distance can be 

calculated from the frequency value. 
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2.6 JOINT TIME-FREQUENCY DOMAIN REFLECTOMETRY  

So far, the time domain and frequency domain reflectometry methods have been 

described. Joint Time-Frequency Domain Reflectometry (JTFDR) operates in both time 

and frequency domains because of the type of incident wave used. In JTFDR, the incident 

wave is a linearly modulated chirp signal with a Gaussian envelope which is defined in 

time and frequency domains jointly: 

                         𝑠(𝑡) = (
𝛼

𝜋
)

1

4
𝑒−

𝛼(𝑡−𝑡0)2

2
+

𝑗𝛽(𝑡−𝑡0)2

2
+𝑗𝜔0(𝑡−𝑡0)

                                  (2-1) 

where α, β, t0 and ω0 determine the time duration, frequency sweep rate, time 

center and frequency center, respectively. To have the best results, these parameters can 

be customized for each specific case based on the cable type and length and available 

instruments. JTFDR takes advantages of both time and frequency characteristic of its 

incident wave [6]. Shown in Fig. 2.3 is the diagram that describes the configuration and 

function of the experimental devices of the JTFDR. A computer (PC) instructs the 

arbitrary waveform generator to produce the Gaussian-chirp incident signal. This incident 

signal propagates into the cable under test, is reflected at the fault location, and travels 

back to the source. A circulator is used as the signal launcher/receiver. The reflected 

signal is redirected to the digital oscilloscope [7]. 

 

Fig. 2.3 Time-frequency domain reflectometry structure [8] 
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To detect and locate the fault, the cross correlation of the time-frequency 

distribution of the incident and reflected waves needs to be calculated. 
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CHAPTER 3 

PRINCIPLES OF TIME DOMAIN REFLECTOMETRY 

3.1 INTRODUCION 

As mentioned before, the reflectometry method is often said to be a radar method 

because it is based on sending a signal into a transmission line and analyzing the reflected 

signal. To understand in detail how time domain reflectometry works, an effective 

understanding of transmission lines is needed beforehand.  

 

3.2 TRANSMISSION LINE 

A transmission line is used to transfer electrical power from a generation or 

distribution side to a consumption side or load. Based on the surrounding environment, 

voltage and current rating and other application criteria, different types of transmission 

line may be used for different applications. 

The simplest transmission line in electrical power system consists of two 

conductors. It can be a coaxial cable, twisted pair cable and so on. If we consider the 

transmission line as a system, we can find a model which describes it based on certain 

electrical parameters. These parameters are resistance, conductance, capacitance, and 

inductance. We expect a transmission line to be lossless or at least low loss because, if it 

is not, it cannot be considered for the purpose of transferring power. So, in most cases, 

the line losses are neglected, which means that resistance and conductance can be 

neglected in transmission line modelling.  
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As mentioned before, the transmission line consists of two conductors with some 

dielectric insulator between them. Notice that this is the definition of a capacitor. The 

time-varying current flowing in a conductor produces a time-varying magnetic field, 

which induces an electric and magnetic field in the conductors. Therefore, there is flux 

linkage between the two conductors. The inductance is the ratio of this flux linkage 

divided by the conductor current.  

A lossless transmission line is practically impossible to realize. However, if 

R≪ωL and G≪ωC, ignoring resistance and conductance still gives a good 

approximation. So, the transmission line can be modeled by only L and C. A balanced 

transmission line (two wire cable) is shown in Fig. 3.1.A while Fig. 3.1.B shows the 

model for a coaxial cable which is an unbalanced line. 

 

Fig. 3.1 Transmission line model. A) balanced, B) unbalanced
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Characteristic impedance is defined as the ratio of the amplitude of voltage and 

current propagating through the line. The characteristic impedance, Z0 in ohm is: 

                                                      𝑍0 = √
𝐿

𝐶
                                                       (3-1) 

The characteristic impedance can also be calculated using the geometry 

parameters of the coaxial cable, 

                                                     𝑍0 =
138.2

√𝜖𝑟
log10

𝐷

𝑑
                                          (3-2) 

where 𝜀𝑟 is dielectric constant and D and d are the dielectric and central conductor 

diameters, respectively. In this formula, the dielectric material is assumed to be non-

magnetic and therefore the relative permeability is unity.  As these formulas obviously 

show, the characteristic impedance is constant unless the line characteristics change. The 

change can be any increase or decrease in wire size or distance between them (or a 

change in dielectric constant). In a matched transmission line, any change in 

characteristic impedance causes a reflection. 

Propagation velocity is another important parameter. It is related to the time it 

takes for an electromagnetic wave to propagate through a transmission line. The 

propagation velocity in free space is given by the speed of light 𝑣𝐶 = 3 × 108𝑚/𝑠. The 

propagation velocity of a wave in a coaxial cable is: 

                                                        𝑣𝑃 =
1

√𝐿∙𝐶
                                                    (3-3) 

In this formula, L and C are per unit length values.  

The dielectric material between two conductors determines the velocity of 

propagation in a transmission line. Using above formula, propagation velocity in free 

space and propagation velocity in the dielectric material are related by this this formula: 
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                                                         𝑣𝑃 =
𝑣𝐶

√𝜀𝑟
                                                    (3-4) 

As a matter of fact, the lossless transmission line is impossible in practice, so in 

reality there is always power loss, which causes attenuation. Attenuation is defined in 

terms of decibels per unit length or nepers per unit length at a given frequency and 

consists of resistive loss and dielectric loss. Attenuation is frequency dependent, and their 

relation is nonlinear [9]. 

 

3.3 TIME DOMAIN REFLECTOMETRY 

The time domain reflectometry setup consists of a step generator producing the 

incident waveform, which typically is a square wave, and sending it into the line.  The 

incident waveform travels through the line with propagation velocity 𝑣𝑝 and a reflection 

occurs if it encounters any impedance discontinuity. A high-speed oscilloscope displays 

both incident and reflected waveform. A simple diagram of a time domain reflectometry 

setup is shown in Fig. 3.2 [10]. 

 

Fig. 3.2 Block diagram of a simple time domain reflectometry setup 

 

Due to the finite propagation velocity, there is a time delay between the incident 

and reflected waveform. This time delay is the time needed for the wave to return to the 
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source after seeing a discontinuity. The location of the mismatch can be determined by 

knowing this round-trip delay and propagation velocity. The distance 𝐷 between the 

discontinuity and the step generating point is 

                                                    𝐷 = 𝑣𝑃 ∙
𝑇

2
                                                      (3-5) 

where T is the round-trip delay. 

If the incident wave encounters a discontinuity, a reflected and a transmitted 

waveforms are generated. The transmitted waveform continues in the forward direction 

and the reflected waveform goes back to the source. To derive a formula for reflection 

coefficient in a transmission line, let us assume a lossless transmission line with 

characteristic impedance Z0 terminated in a load impedance ZL which depicted in Fig. 3.3 

[11]. 

 

 

Fig. 3.3 An unmatched transmission line 

 

Suppose an incident waveform of the form 𝑉0
+𝑒−𝑗𝛽𝑧 is generated at generating 

point and travelling toward the load which β is the propagation constant and is defined as 

β≈ω√(L.C). By definition of characteristic impedance, the ratio of voltage to current is 
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Z0. However, at the load, this ratio must be ZL.  To satisfy this equation, a reflected 

waveform must be excited. The total voltage and current on the line are given by 

                                     𝑉(𝑧) = 𝑉0
+𝑒−𝑗𝛽𝑧 + 𝑉0

−𝑒𝑗𝛽𝑧                                          (3-6) 

                                     𝐼(𝑧) =
𝑉0

+

𝑍0
𝑒−𝑗𝛽𝑧 −

𝑉0
−

𝑍0
𝑒𝑗𝛽𝑧                                            (3-7) 

where 𝑉0
− is the amplitude of the reflected waveform. 

The ratio of voltage to current at the load (z=0) is 

                                           𝑍𝐿 =
𝑉(0)

𝐼(0)
=

𝑉0
++𝑉0

−

𝑉0
+−𝑉0

− 𝑍0                                              (3-8) 

Solving for 𝑉0
− gives 

                                              𝑉0
− =

𝑍𝐿−𝑍0

𝑍𝐿+𝑍0
𝑉0

+                                                     (3-9) 

The reflection coefficient is the ratio of the amplitude of the reflected wave to the 

incident wave, i.e., 

                                               𝛤 =
𝑉0

−

𝑉0
+ =

𝑍𝐿−𝑍0

𝑍𝐿+𝑍0
                                                 (3-10) 

In theory, knowing the reflection coefficient and the line impedance it is possible 

to calculate load impedance 𝑍𝐿, which represents the fault. As mentioned, the lossless 

transmission line is impossible in practice. So, the pulses get distorted as they travel 

through the line, and it can be difficult to classify faults just by calculating the value of 

the reflection coefficient. On the other hand, notice that locating the fault is relatively 

easy. 

Though we always consider impedance Z0 as a real number (lossless line), load 

impedance or, in other words, discontinuity impedance could be a complex number. 

Magnitude, sign, and the shape of the reflected signal, define the nature of the fault. All 

of this information is summarized in the reflection coefficient [10]. 
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3.4. BEHAVIOR OF DIFFERENT FAULTS 

To give a better understanding of how the fault characteristic can be recognized 

by knowing the reflection coefficient, the Fig. 3.4 illustrates typical fault types. In all 

cases, the fault impedance is assumed to be a real number. Since the characteristic 

impedance of the line is also a real number for a losslessline, the reflection coefficient is 

a real number as well. 

 

Fig. 3.4 Reflection coefficient for different discontinuities 

In Fig. 3.5 we consider some more realistic cases. In reality, the fault impedance 

is a complex number. In the following cases, the fault is modeled as the combination of 

Rs, Ls, and Cs. Two approaches can be taken to find out the behavior of the reflected 

signal regarding the fault: a mathematical approach and a simplified approach based on 

the frequency domain characteristics of impedances. 
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Following the mathematical approach, the reflection coefficient and the incident 

signal are calculated in the Laplace domain and the reflected signal is obtained by 

multiplying them together. Now, to find an expression for the reflected signal, the 

Laplace inverse transformation of the calculated reflected signal must be taken. This 

approach is rather mathematical and abstract. 

 

Fig. 3.5 TDR with non-real discontinuity impedance 

The second approach is somehow more intuitive. It utilizes the frequency-

dependent behavior of capacitors and inductors. Let us consider the case of a capacitive 

discontinuity. The capacitive reactance is inversely proportional to frequency. This means 

that at higher frequency its reactance goes to zero and at low frequency it goes to infinity. 

If it is translated in the time domain for the case of a step response, the capacitor behaves 

as a short circuit at t=0 (high frequency signal components) and behaves as an open 



 

18 

circuit at t = ∞ (zero frequency). The reflected waveform behaves exponentially between 

t=0 and t = ∞. The inductor behavior is also frequency-dependent similar to a capacitor, 

with the only difference that an inductor behaves as an open circuit at t=0 and as a short 

circuit at t = ∞. 

The intuitive approach gives the ability to simply analyze the behavior of 

reflected signal in response to a discontinuity and reciprocally to interpret the nature of a 

discontinuity just by observing the reflected signal characteristics [10]. 

 

3.5 INTERMEDIATE DISCONTINUITY 

So far we have studied different mismatched terminations. However, the 

discontinuity can occur anywhere along the cable. The harsh environment affects the 

cable more in the region far away from the two ends of the cable, so having a fault in 

these regions is more frequent. Dealing with a discontinuity at an intermediate position 

along the cable is not different from analyzing a mismatched termination. The Fig. 3.6 

shows an intermediate discontinuity which is a change in characteristic impedance of the 

cable and Fig. 3.7 demonstrates the TDR trace for a special case which is an inductive 

discontinuity. 

 

Fig. 3.6 Intermediate discontinuity  
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Fig. 3.7 Non-real intermediate discontinuity impedance 

 

In the Fig. 3.8, two resistive intermediate discontinuities with their corrsponding 

TDR traces have been shown [9]. 

 

 

Fig. 3.8 Single-resistor discontinuity and reflection 

 A)single series resistor B)single shunt resistor 
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3.6 MULTIPLE DISCONTINUITIES 

The time domain reflectometry method is not only capable of detecting a single 

discontinuity located at the end or along the cable but also can detect multiple 

discontinuities along the cable. Assuming the faults are located at different positions as it 

depicted in Fig. 3.9, it takes a different time for the reflected signal to get back to the 

source, so the reflected signals are separated in time and can be individually measured as 

it has been shown in Fig. 3.10 [9]. 

 

 

𝑍0 ≠ 𝑍0
′ ≠ 𝑍𝐿 

𝛤1 =
𝑍0

′ − 𝑍0

𝑍0
′ + 𝑍0

= −𝛤1
′              𝛤2 =

𝑍𝐿 − 𝑍0
′

𝑍𝐿 + 𝑍0
′        

Fig. 3.9 Cable with multiple discontinuities 

 

Fig. 3.10 TDR representation of multiple discontinuities 
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3.7 TIME AND AMPLITUDE RESOLUTION 

Resolution refers to the ability of a TDR system to detect and locate very small 

and closely spaced discontinuities. Amplitude resolution refers to the ability of the TDR 

system to detect a very small reflected signal which is caused by a very small 

discontinuity. Time resolution refers to the ability of the TDR system to locate and 

distinguish two separate discontinuities which are closely located. 

Time and amplitude resolution impose limitations on fault detection. If a TDR 

system does not have sufficient resolution, small or closely-spaced discontinuities cannot 

be detected and located accurately. Time resolution is limited by incident signal rise time 

and amplitude resolution is limited by aberration and noise. 

Rise time: in order to have a TDR system with a good spatial resolution, the 

incident wave needs to have a fast rise time. The rising time of the reflected signal at least 

is equal to the rising time of the incident signal. There are several factors which can make 

it even longer. So, in the best condition, the time resolution is the half of the system rising 

time which relates to incident signal rising time. 

Aberration: aberration means any departure from what is expected from incident 

signal. Aberrations have an effect on spatial resolution. Aberrations can occur before or 

after the main incident signal and will cause some other reflections which can reduce 

resolution.  

Noise: in order to have a TDR system with a good amplitude resolution, the 

measurement noise should be smaller than the reflected signal amplitude caused by the 

discontinuity that we are trying to detect. So displayed noise is a good reference to 

compare different TDR systems regarding amplitude resolution [9], [10]. 
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3.8 TDR CONFIGURATION 

From the prior discussion, the goal in every TDR system should be to decrease 

rise time and measurement noise at the same time. Sometimes this is not possible. In 

some cases, increasing rise time causes an increase in noise. It all depends on the 

configuration we choose to implement the TDR system. Fig. 3.11 shows the four 

different possible configurations for a TDR system [9]. 

 

Fig. 3.11 TDR system configuration 

 

Sometimes there are other constraints. In some cases, the situation dictates the 

measurement and injection points. For example, in some applications, one cable end may 

be inaccessible, so the injection and measurement must be taken at other side and we may 

lose some degrees of freedom in selecting the desired configuration. 
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CHAPTER 4 

BUILT-IN TDR FOR POWER CONVERTER  

4.1. INTRODUCTION 

Nowadays, in several applications, power converters are connected to power 

cables, so it would very desirable to use power converters to monitor the condition of 

cables to which they are connected. The objective of this thesis is to investigate how to 

enable an existing power converter to operate as a TDR system. 

In order to achieve this goal, the main parts of a TDR system need to get 

implemented. Note that the main function of a DC-DC power converter is transferring a 

pure DC power to the load, so our method should not interfere with this power processing 

function. 

 

4.2 POWER CONVERTER STRUCTURE 

An infinite number of converter structures are possible [12]. Here, we only 

introduce a simple buck converter which consists of a half bridge circuit and an LC filter.
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Fig. 4.1 A simple buck converter structure 

The input of the half bridge circuit is a DC voltage, and the converter output is 

DC as well. The upper and lower switches turn on and off in a complementary fashion. 

The lower switch voltage is shown in Fig. 4.2. 

 

Fig. 4.2 The lower switch voltage waveform 

It is a square wave voltage which is the same as a conventional incident signal for 

a TDR system. However, this signal cannot be directly used for our application, since the 

L-C low pass filter attenuates the high frequency components applied to the cable. 

Removing the LC filter is not an option, because it would interfere with the normal 

operation of the system. 
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4.3. MODIFICATION TO POWER CONVERTER 

The proposed modification is an RC circuit which takes the lower switch voltage 

as the input and gives a fast rise pulse as the output which can be used as an incident 

signal for the TDR purposes.  

 

Fig. 4.3 Fast rise signal produced by the RC circuit 

The incident wave should be sent to the cable under test. A pulse transformer can 

properly transfer the incident voltage to the converter output. For proper operation, the 

pulse transformer should be able to transmit the high-frequency components of the pulse 

signal.  Low transformer leakage inductance is required to make sure that the signal sent 

along the cable properly tracks the incident signal produced by the injection circuit. 

 

Fig. 4.4 Required modification built into an existing power converter 

Modification to power converter 
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In the following examples, we show the feasibility of using this incident 

waveform for TDR purposes. We examine the short circuit and open circuit cases (hard 

faults) and a soft intermediate fault modeled by a parallel fault. Pspice has a transmission 

line model which let us simulate different types of discontinuity [13]. The simulation 

setup is shown in Fig. 5.5. 

 

 Fig. 4.5 Simulation model for TDR measurement 

To simulate the hard faults, two transmission lines, T1 and T2 should be the same 

and their characteristic impedances should be equal to the source resistance, Rs that is 

50Ω. Rf is the parallel fault and is considered as infinity. The load resistance, RL is set 0 

and then a large number respectively to simulate the short and open terminations. 

 

Fig. 4.6 TDR signal for open circuit case (simulation result) 
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Fig. 4.7 TDR signal for short circuit case (simulation result) 

As can be seen from the Fig. 4.6 and Fig. 4.7, the reflection coefficients for the 

open and short circuits are 1 and -1 respectively which are consistent with results using 

formulas in Chapter 3. The round-trip time is twice the time the incident signal needs to 

reach the discontinuity.  

To simulate the soft fault, the model is the same as before except for the following 

two changes. First, the load resistance, RL is equal to 50Ω and second, the parallel load 

should have a finite value to model the insulation deterioration. 

 

Fig. 4.8 Signal for intermediate fault (simulation result) 
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In Fig. 4.8 the discontinuity is located somewhere between the two ends of the 

cable. The round-trip time between two ends of the cable is 1 microsecond. The round-

trip time between incident and reflected signals defines the fault location, and the 

reflection coefficient is a number between -1 and +1. 

 

4.4 COMPONENTS OF MODIFICATION CIRCUIT 

In order to investigate the feasibility of the proposed approach, the experimental 

setup should be prepared. The setup consists of a half bridge circuit, an injection circuit, 

and a pulse transformer.  

4.4.1 HALF-BRIDGE CIRCUIT 

A Half-Bridge DC-DC Converter is a type of DC-DC converter that can supply 

an output voltage either higher or lower than the input voltage. It consists of two 

switches, an upper and a lower switch [14]. The lower switch of a half bridge circuit can 

give a square wave form. The rise time of the square wave depends on the type of 

switches used. 

Let us put the power converter application aside for a moment and focus on the 

square wave signal produced by the half bridge circuit and see if it is suitable for TDR 

purposes. 

Below is a comparison between the square wave signals produced by an IGBT 

and a GaN device. Th Fig. 4.9 shows the drain-source voltage rise time of an IGBT 

device with its gate driver which are Microsemi-APTGF50X60T3G [15] and On 

Semiconductor-FAN3122TT [16] respectively. 
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Fig. 4.9 IGBT drain-source voltage rise time 

Similarly, the Fig. 4.10 shows the drain-source voltage rise time of a GaN 

MOSFET with its gate driver which are EPC-EPC2001[17] and TI-LM5113[18] 

respectively. 

 

Fig. 4.10 GaN MOSFET drain-source voltage rise time 
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The switching time of the IGBT is about 80ns while it is 10ns for the GaN switch 

device. So, the GaN switch is clearly significantly faster. The faster rise time gives a 

much better spatial resolution. In Fig. 4.11, we use a square wave signal produced by a 

GaN switch device as an incident signal to detect the open and short terminations on a 

10-meter cable. The velocity of propagation of an RG-58 coaxial cable is 2 × 108𝑚/𝑠, so 

the round-trip time for a discontinuity at cable end is 100ns which matches with the 

experimental setup.  

 

Fig. 4.11 TDR incident and reflected signal for open and short circuit cases 

 

To summarize, GaN-based switches are fast enough to provide a good spatial 

resolution, so we are going to use a half bridge circuit with GaN switch implementation. 

The schematic diagram of the half bridge circuit is showed in Appendix A. 

 



 

31 

4.4.2 INJECTION CIRCUIT 

The main function of the injection circuit is to empower an existing power 

converter to be a part of a monitoring system. As mentioned before, it is an RC circuit. In 

order to have a matched source and line, the value of R should be equal to the 

characteristic impedance of the cable i.e. 50Ω. 

The capacitor determines the shape of the edge of the pulse: the smaller the 

capacitor value, the faster the rise time. The Fig. 4.12 shows incident signals 

corresponding to different capacitor values. Although the fastest incident waveform is 

desirable, it may cause resonance problem which can affect resolution. The origin of 

resonance is that the injection circuit is an RLC circuit and if the magnitude of capacitor 

and inductor are equal, the resonance occurs.  So, instead of achieving the fastest rise 

time which may coincide with having resonance, the optimum fast rising time should be 

attained for each specific system. The initial value which is obtained by simulation was 

3nF. We tried different capacitor values to find the smallest rising time and also the least 

resonance. 
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Fig. 4.12 Incident waveform for different capacitor values 

As mentioned before, by decreasing the capacitor value, we can obtain an incident signal 

with faster rise time. Fig. 4.13 shows the effect of capacitor value on the TDR response 

of the cable. 
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Fig. 

4.13 TDR response based on capacitor value 

The capacitor value of 2nF gives the best result, the fastest rise time, and the least 

resonance.  

 

4.4.3 PULSE TRANSFORMER 

The incident voltage is produced at the half bridge lower switch point; 

however, it should be transferred to the converter output. A pulse transformer is used for 

transmitting a fast rise signal when maintaining the fidelity of its shape is important. The 

pulse transformer is nothing more than a conventional transformer with a specific leakage 

and magnetizing inductance and a special magnetic core. Considering the pulse 
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transformer equivalent circuit and using MATLAB, Fig. 4.14 shows frequency response 

of a pulse transformer. 

 

 

Fig. 4.14 Frequency response of a pulse transformer 

 

The frequency response of desired pulse transformer and consequently its 

design parameters should be customized based on its input and the tracking performance 

that we have targeted. 

The incident signal has a rise time of 10ns, In order to transfer the pulse with a 

minimum pulse distortion, especially during the rise time; a minimum bandwidth must be 

achieved [19].  

     𝐵𝑊𝐺𝐻𝑧 =
0.35

𝑅𝑇𝑛𝑠𝑒𝑐
    𝑜𝑟  𝑅𝑇𝑛𝑠𝑒𝑐 =

0.35

𝐵𝑊𝐺𝐻𝑧
       {

𝑅𝑇: 𝑅𝑖𝑠𝑒 𝑇𝑖𝑚𝑒
𝐵𝑊: 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

              (4-1) 

𝐵𝑊𝐺𝐻𝑧 =
0.35

10𝑛𝑠𝑒𝑐
= 35𝑀𝐻𝑧 

We need to choose a core material which can work in the desired frequency 

range. A perminvar NiZn ferrite is designed for high-frequency applications (up to 50 
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MHz) including pulse transformers, antennas and high frequency, high quality factor 

inductors.  

In the next step, we need to focus on the frequency response of the pulse 

transformer to find the number of turns needed to achieve the required high bandwidth. 

There are no exact values for transformer inductances. We need to tradeoff between 

magnetizing and leakage inductances. Using simulation model in PLECS which is 

depicted in Fig. 4.15, we can play with the magnetizing inductance value until it gives the 

best result. 

 

Fig. 4.15 Simulation model in PLECS 

Knowing the desirable bandwidth and having the pulse transformer frequency 

response, the required leakage inductance can be found, so it is set to 100nH in the 

PLECS simulation. As it can be seen in Fig. 4.16, a pulse transformer with a large 

magnetizing inductance e.g. 1mH transfers the incident signal at its primary side to its 

secondary side without any changes. 
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Fig. 4.16 Pulse transformer response with a large magnetizing inductance  

We decrease the magnetizing inductance until the secondary side of 

the transformer still tracks its primary side properly (Fig. 4.17). The magnetizing 

inductance final value is 5µH. 

 

Fig. 4.17 Pulse transformer response with magnetizing inductance of 5µH  
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The transformer is designed based on the selected core shape and size and 

magnetizing inductance value we just determined. Characterizing the transformer is the 

next step after it has been built. It gives the real leakage and magnetizing inductances of 

the transformer. In order to characterize the pulse transformer, two sets of measurement 

need to be done. The measurements were taken by a 10Hz-500MHz network analyzer, 

Agilent 4395A. Magnetizing and leakage inductances are measured by open and short 

circuits test respectively [20]. Fig. 4.18 shows the impedance of the primary by shorting 

the secondary side. The leakage inductance is equal to primary inductance at the phase 

degree of 90. It is two times of each winding leakage inductance. 

𝐿𝑒𝑎𝑘𝑎𝑔𝑒 𝑖𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒 =
10

12.69
20

2𝜋 × 2 × 4.263𝑒6
= 80𝑛𝐻 

 

Fig. 4.18 Transformer primary inductance with short circuit at secondary side 
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Similarly, Fig. 4.19 shows the impedance of the primary by opening the secondary side. 

The magnetizing inductance is equal to primary inductance at the phase of 90 degree. 

𝑀𝑎𝑔𝑛𝑒𝑡𝑖𝑧𝑖𝑛𝑔 𝑖𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒 =
10

21.34
20

2 × 𝜋 × 344.8𝑒3
= 5.3𝜇𝐻 

 

 

Fig. 4.19 Transformer primary inductance with open circuit at secondary side 

 

Now, we have the pulse transformer inductances. Fig. 4.20 shows the pulse 

transformer frequency response. 
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Fig. 4.20 The frequency response of the designed pulse transformer 

 

In Appendix B, we describe the frequency behavior of the pulse transformer and 

go through transformer design procedure by obtaining the design parameters of the 

transformer we use for experimental setup. According to Appendix B, the 

transformer should be wound with 12 turns of 24 AWG. 

Once the half bridge and injection circuit and pulse transformer are built, we can 

start the final experimental measurements. 
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CHAPTER 5 

EXPERIMENTAL RESULTS 

5.1 INTRODUCTION 

As described in Chapter 4, the setup consists of a half bridge circuit, an injection 

circuit, and a pulse transformer. A picture of the experimental setup is shown in Fig. 5.1. 

Measurement were taken using a 10 GS/s digital oscilloscope. 

 

Fig. 5.1 Experimental setup 

In Appendix A, we describe the design and operation of this circuit and provide the 

circuit schematic. Referring to Fig. 4.4, the RC circuit produces the incident waveform; 

this is transferred to the cable through the pulse transformer. In a real application, the 

configuration is a bit different. Here, we only send the incident signal along the cable 

while there is no DC power being transmitted, however in the real application, as shown 
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in Fig. 4.4, the incident signal is injected into the converter output. Notice that the 

converter output does not have any effect on the primary side of the pulse transformer 

since the converter load current is DC and it produces a constant flux in the pulse 

transformer, so no induced voltage is produced. The pulse transformer should be able to 

carry the converter current at its secondary without saturating. 

This Chapter consists of two parts. In the first part, the experimental data is 

presented and in the second part signal processing is performed on this data to calculate 

the fault distance and type. 

 

5.2. ACQUIRING EXPERIMENTAL DATA 

There are two main kinds of cable faults: hard faults and soft faults. The hard 

faults are open or short circuits, which lead to a large change in cable characteristics at 

the fault location. This causes a large incident signal reflection, which is relatively easy to 

detect. Conversely, soft faults are caused by discontinuities of the impedance in the cable, 

for example due to damaged insulation. In this case the reflection is smaller in amplitude 

and can be difficult to detect. 

 

5.2.1 HARD FAULTS 

As mentioned above, hard faults are open or short circuit faults. Two sets of 

measurement are made for each case to investigate the method capability for different 

lengths of the cable. 

Before considering the hard faults, it is a good idea to get familiar with the actual 

incident waveform which is used in the measurement. The incident waveform has a fast-
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rising time and a relatively long-lasting trailing end region which is indicated in Fig. 5.2. 

The trailing end region is caused by magnetizing inductance of the pulse transformer. As 

magnetizing inductance increases, the trailing end region decreases. A larger magnetizing 

inductance, obtained using a larger number of turns in the pulse transformer, also causes 

a larger leakage inductance, which decreases the pulse transformer bandwidth, as 

explained in Appendix B. The design choice is to select a smaller magnetizing 

inductance, trading off a longer trailing end region for a larger pulse transformer 

bandwidth, which gives a steeper rising edge and therefore better space resolution. 

 

 

Fig. 5.2 Incident signal used for measurement 

 

 

Trailing end region 

 

90% 

 

 

 

 

 

 

 

10% 

Rise time: time needed to rise from 10% to 

90% 0f signal maximum value 
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Fig. 5.3 Open circuit case, incident and reflected signal, 10-meter cable 

 

Fig. 5.4 Open circuit case, incident and reflected signal, 80-meter cable 
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Fig. 5.5 Short circuit case, incident and reflected signal, 10-meter cable 

Fig. 5.3 and 5.4 show the incident and reflected signal for two cable lengths, 10m 

and 80m, respectively. Comparing Fig. 5.3 and Fig. 5.4, the reflected signal overlaps with 

the incident signal in the 10-meter cable. This effect causes some deterioration in the 

spatial resolution for faults located near the source. We address this issue in detail later. 

 

5.2.2 SOFT FAULTS 

Soft faults are caused by small variations in characteristic impedance of the cable. 

Unlike hard faults which interrupt the normal operation of the cable, they do not interrupt 

energy transmission but cause a long-term deterioration of the cable which can result in 

hard faults. The soft faults have different causes such as sheath damage, conductor 
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degradation, and insulation deterioration. They usually have a very small effect on TDR 

curve, so it is very challenging to detect them. 

In order to verify the feasibility of the proposed approach for detecting soft faults, 

several experiments are conducted.  

 

5.2.2.1 INSULATION DETERIORATION 

Since even the best insulation does not provide perfect insulation, there is always a 

leakage current between a phase conductor and ground. As insulation deteriorates with 

age, the leakage current increases, so monitoring the leakage current is a tool for 

assessing the insulation health level. The leakage current can be modeled by a parallel 

resistor between the phase conductor and ground. We simulate the parallel fault to model 

insulation deterioration. 

 

Fig. 5.6 Insulation deterioration model 

In the model of Fig. 5.6, different resistor values represent different levels of 

insulation deterioration. In theory, for a healthy cable case, the resistor value is infinity, 

but in the real world, even a healthy cable has a small amount of leakage current in the 

order of microamperes, which is equivalent to a resistor value in the order of mega ohms 

in the insulation deterioration model. 

Parallel fault 
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Fig. 5.7 Incident and reflected signal in the time domain for different levels of insulation 

deterioration 

 

Unlike hard faults, Fig. 5.7 shows that the time domain TDR waveform for soft 

faults is very similar to the healthy cable case. Therefore, signal processing is necessary 

to extract the cable fault information.  

 

5.3. SIGNAL PROCESSING 

In the experiment the incident signal is injected into the cable, travels down the 

cable with propagation velocity 𝑣𝑝 and is reflected when it encounters the impedance 

discontinuity. A high-speed oscilloscope captures both incident and reflected waveforms.  

We need to process the reflected signal in order to extract the effect of the 

discontinuity. For this purpose, cross-correlation tool is a good candidate. Cross-
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correlation computes the correlation between the incident and reflected signal and 

measures how similar they are.  

 

Cross-correlation is very similar to convolution. To calculate the convolution of 

two signals, one of the signals is mirrored about the y-axis and it is shifted by a certain 

amount. A third signal is obtained by multiplying element-wise these two signals. . By 

summing all values of the third signal, we obtain the convolution for that specific shift. 

Cross-correlation can be calculated in the same way except that mirroring is not applied 

to the signal. 

Suppose we have x(n) and y(n) as sequence signals, the cross-correlation is: 

                                       𝑟𝑥𝑦(𝑙) = ∑ 𝑥(𝑛)𝑦(𝑛 − 𝑙)+∞
𝑛=−∞                                    (5-1) 

                                       𝑟𝑥𝑦(𝑙) = ∑ 𝑥(𝑛 + 𝑙)𝑦(𝑛)+∞
𝑛=−∞                                    (5-2) 

The index l is the shift or lag. It provides a measure of how much the two signals 

are similar based on a specific shift in time. 

 

Cross-correlation of a signal with itself is called auto-correlation. Obviously, the 

autocorrelation of a signal is maximum at l=0. 

                                         𝑟𝑥𝑥(𝑙) = ∑ 𝑥(𝑛 + 𝑙)𝑥(𝑛)+∞
𝑛=−∞                                   (5-3) 

If the signals which are cross-correlated are scaled, while the shape of cross-

correlation does not change, the amplitude changes due to the scaling. 

To compensate for the scaling effect, the normalized cross-correlation should be 

used. The normalized auto and cross correlation are defined as: [21] 

                                                   𝜌𝑥𝑥 =
𝑟𝑥𝑥(𝑙)

𝑟𝑥𝑥(0)
                                                     (5-4) 
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                                                 𝜌𝑥𝑦 =
𝑟𝑥𝑦(𝑙)

√𝑟𝑥𝑥(0)𝑟𝑦𝑦(0)
                                             (5-5) 

Considering the open and short circuit case, the reflection coefficients are 1 and -1 

respectively. So, there is a positive/negative maximum of cross correlation between the 

incident and reflected signal at a lag equal to the round-trip time for open/short circuit 

cases. The maximum normalized cross correlation value is 1.  

Two considerations are of order; first, in the real world, the reflected signal 

amplitude is smaller than the incident signal due to attenuation and dispersion and 

filtering behavior of the cable. Second, it is hard to extract the incident and reflected 

signal off the measuring signal which includes both incident and reflected signals at least 

in case of an extremely soft fault condition. 

In Fig. 5.3 the discontinuity location is near the source, so the reflected signal 

overlaps with the incident signal. The incident signal is independent of the cable 

condition and we characterized that before, so by subtracting the incident signal from the 

acquired signal, the reflected waveform can be obtained.  

Having separated the incident and reflected signal, we can calculate the cross 

correlation between them to find out how much they are similar and what is the 

characteristic and location of the fault. 

At first, we consider hard faults in the 10-meter cable. 
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Fig. 5.8 Normalized cross correlation between the incident and reflected signal 

10-meter cable, open circuit at the end 

 

Fig. 5.9 Normalized cross correlation between the incident and reflected signal 

 10-meter cable, shorted at the end 
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Analyzing the cross-correlation results, the hard faults are detectable and locatable. 

The first peak (with either positive or negative sign) provides some information regarding 

the fault. Theoretically, we expect a normalized cross correlation of 1 for open circuit and 

-1 for short circuit, but, as mentioned before, due to attenuation and dispersion and 

filtering behavior of the cable, the cross-correlation value gets smaller.  

Fig. 5.8 shows the case of an open-ended cable. The sample number associated 

with the first cross correlation peak gives the location of the fault which is 980. The 

sampling period is 0.1nS, so the fault location would be 9.8 meters away from the source. 

Using Fig. 5.3, the correct value should be 1020 or equivalently 10.2 meters away from 

the source. This means that the process of separating the incident and reflected signal and 

the signal processing performed cause an error of 4% in this case. 

Likewise, for shorted cable, comparing Fig. 5.9 and Fig. 5.4 gives an error of 5%. 

Sample number can be related to the time using the scope sampling period. The 

time difference gives the round-trip time which can be translated to the fault location if 

the propagation velocity is known, as described before. 

The next case we consider is the 80-meter open ended cable. At first, the incident 

and reflected signals are extracted from the acquired signal. Fig. 5.10 shows the cross 

correlation between the incident and reflected signal. Same as before, the sample number 

associated with the first cross correlation peak gives the location of the fault which is 

3910. The sampling period is 0.2nS, so the fault location would be 78.2 meters away 

from the source. Using Fig. 5.4, the correct value should be 3915 or equivalently 78.3 

meters away from the source 
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Fig. 5.10 Normalized cross correlation between the incident and reflected signal,  

open ended, 80-meter cable 

In comparison to the 10-meter cable case, the error is much smaller, less than 1%. 

The reason is that the incident and reflected signals are separated in time and they do not 

interfere with each other. If the fault is located near to the source, the method faces some 

problems in locating the fault. That is why the distance between rise and trailing end of 

the incident signal is called dead zone; faults in this area are not located accurately. Some 

commercial time domain reflectometers use an attachment lead longer than the width of 

the incident signal to deal with this issue [22]. It moves the fault to a location beyond the 

dead zone. By adding the attachment lead, it takes more time for incident signal to 

encounter a discontinuity and return to the source again, so incident and reflected signals 

do not overlap anymore. 
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Considering soft faults, the fault detection is more challenging and extracting the 

incident and reflected waveform from the acquired signal is not as easy as before, so a 

different approach will be taken.  

Considering the matched load, the acquired signal gives the incident signal alone 

because there is no reflection. This is the baseline for the healthy case. In case of fault, 

the acquired waveform consists of both the incident and reflected signals. If we calculate 

the cross correlation between the waveforms of these two cases, we will have two peaks, 

one at the time zero which is caused by incident signal and another at a time equal to 

round trip time which is caused by reflected signal. Obviously, we are interested in the 

second one. 

The signal acquired from matched loaded cable is considered as the baseline 

record. The autocorrelation of the baseline is considered as signature of the healthy cable. 

For cases other than healthy cable, the acquired signal consists of the incident and 

reflected signals, even if the reflected signal may not be detectable in the time domain 

waveform. This signal is cross correlated with the baseline. By comparing the 

autocorrelation and cross correlation results, the condition of the cable can be 

investigated. Any deviation from the healthy condition indicates a fault. 

In the insulation deterioration model, the largest parallel resistor that is detectable 

using this approach is 7kΩ which is equal to a reflection coefficient of -0.03. The leakage 

current would be 14mA in a 100-volt system.  
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Fig. 5.11 Normalized cross correlation, comparing the baseline and faulty cable 

 

 

Fig 5.12 Zooming in at deviation area of Fig. 5.11  



 

54 

Theoretically, even a very small soft fault should be detectable using this approach 

or other signal processing methods. For example, in [23] the statistical cross correlation is 

used, which is a powerful tool and more sensitive in comparison to conventional cross 

correlation. We applied that method on the acquired signals, however because of noise 

level, it does not provide good results in compare to conventional method. What is the 

origin of measurement noise? The problem comes when we try to detect an extreme soft 

fault that causes a tiny reflected signal, so there is a small signal in the presence of a 

relatively large signal. We acquire signals using an oscilloscope. Digital oscilloscopes 

include a high-speed analog to digital converter which has 8-bit resolution. It means that 

there are 256 distinct voltage levels to full scale. In this case, we have a small reflected 

signal in the presence of a large incident signal, so the LSB becomes relatively large and 

can become larger than reflected signal amplitude. So, inherent sampling noise of scope 

can overwhelm the reflected signal [24]. Different oscilloscopes have different tools to 

decrease the measuring noise such as averaging and high-resolution acquiring which are 

addressed in [25]. We already used these tools when we are acquiring the signals. 

In order to detect soft faults that have subtle effects on reflection waveforms, it is 

necessary to deal with and reduce measurement noise. 
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CHAPTER 6 

CONCLUSION 

The following conclusions can be drawn from the investigation. 

The feasibility of proposed embedded cable health monitoring system within power 

converter has verified by several experiments. 

Time domain reflectometry method is able to detect and locate different types of 

fault, including hard faults and soft faults. 

An existing power converter can be modified so that it can be used for time domain 

reflectometry to monitor the condition of the cable which is connected to it. 

Several experiments have been conducted in this project to verify the feasibility of 

this approach. As a result of this investigation, it has been shown that GaN based 

switches are fast enough to provide good spatial resolution for fault detection for the 

cases considered. 

The signal produced by injection circuit can be used for TDR purposes and 

experimental results have shown the feasibility of the proposed setup.  

Overlapping the incident and reflected signal can reduce the accuracy of fault 

locating. The measurements show that this method has the smallest error for the faults 

with separately incident and reflected signals. The incident and reflected signals would be 

separate if the round-trip time was greater than incident pulse width which means faults 

located at least 50 meters away from the source.   
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The method works well with relatively large reflections which reduce the effect of 

noise. In order to detect soft faults that have subtle effects on reflection waveforms, it is 

necessary to deal with and reduce measurement noise. 

This method can be used for cable age estimation as a future work. A new cable has 

a well-known propagation velocity. Since the propagation velocity is inversely 

proportional to the square root of the dielectric constant which decreases as cable gets 

older, the aging of the cable can be tracked by measuring how the propagation velocity 

changes over time. Several works [26], [27] have done to simulate accelerated aging. The 

same method can be used to do aging simulation for a specific cable and find out the 

relation between the propagation velocity and its aging level. 
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APPENDIX A – HALF-BRIDGE CIRCUIT 

The half-bridge configuration is one of the most common switch circuit topologies used 

in power electronics applications such as synchronous buck converters and voltage 

source converter. 

The half-bridge circuit consists of an upper and lower switch. As discussed in Chapter 4, 

in order to have sufficient spatial resolution, we select a Gallium Nitride based switch 

which has a fast switching time.  

 

Fig. A.1 Half bridge circuit and RLC load 

The circuit includes a DC voltage bus input, a midpoint i.e. the common point between 

the upper and lower switch, a ground return and the gate drivers for switches (Fig. A.1)
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The switches are turned on and off in a complementary fashion by a Half-Bridge Gate 

Driver (TI, LM5113) as it is showed in Fig. A.2. It drives both the high and low side 

enhancement mode GaN MOSFET in a synchronous buck or a half-bridge circuit. 

 

Fig. A.2 The low switch voltage waveform 

We are using a previously designed GaN HEMT double pulse tester designed by Dr. K. 

Peng (previous member of the PEG at USC) in this thesis.  

The Fig. A.3 shows the gate driver circuit for high-side and low-side switches. It consists 

of three main components: 

1. Quad 2-Input NOR Gate (ON Semiconducor, MC74AC02) 

2. Low Quiescent Current LDO Regulator (Microchip, MCP1703) 

3. Half-bridge gate driver for Enhancement Mode GaN FETs 

The purpose of the NOR Gate is to generate high-side and low-side driver control inputs 

for gate driver with a small dead time to prevent shoot-through. The 5 V supply of the 

circuit is provided by the MCP1703 LDO regulator. The outputs of half-bridge gate 

driver go to the gates of the GaN-based switches. 
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The Fig. A.4 shows the power diagram. The input voltage is hooked up to the connector 

on the right side of the layout. There are two switches which are driven by the gate driver 

described above. 

The input of the injection circuit is connected to the half-bridge midpoint. 
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Fig. A.3 Gate driver circuit for high-side and low-side switches 
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Fig. A.4 Half-bridge power diagram
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APPENDIX B – PULSE TRANSFORMER DESIGN 

 
A Pulse transformer transfers a current or voltage pulse with minimum distortion in the 

signal shape from the primary side of the transformer to the secondary side. The 

equivalent circuit of a pulse transformer has been shown in Fig. B.1. The signal applied 

to the primary side of a pulse transformer may have different shapes, such as rectangular, 

trapezoidal or even a spike. Design criteria is different for each shape in some sense, 

however the principle is the same. 

 

Fig. B.1 Equivalent circuit of a pulse transformer 

To get familiar with frequency behavior of a pulse transformer, we select a rectangular 

signal.  

An ideal rectangular signal has a zero rising and falling time. In the real world, the 

voltage cannot change instantaneously so there is a finite rise and fall time. (Fig. B.2) 
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Fig. B.2 A real pulse waveform 

Besides having the rising and falling region (high frequency region), there is a flat region 

(low frequency region) which is the main part of signal and its length depends on signal 

duty cycle [28]. 

Considering the low frequency region, the leakage inductance can be neglected. So, the 

circuit is simplified to diagram of Fig. B.3. 

 

Fig. B.3 Low frequency equivalent circuit diagram 
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Obviously, it is a high pass filter, so the pulse transformer attenuates low frequency 

signals, i.e., it has a lower bandwidth. The cross-over frequency is 𝑓𝑐 =
𝑅

2𝜋𝐿𝑚
. Fig. B.4 

shows the simplified low frequency circuit of pulse transformer and it bode plot. 

 

Fig. B.4 A high pas RL filter with a cross-over frequency at fc 

As frequency increases, magnetizing reactance increases until 𝜔𝐿𝑚 ≫ 𝑅𝐿. Now we can 

neglect the magnetizing inductance too. So the pulse transformer equivalent circuit 

changes to Fig. B.5. In this region, we have a frequency-independent gain; the gain is 

limited by winding resistances.  

 

Fig. B.5 Middle frequency range equivalent circuit 

fc 

-3dB 
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Fig. B.6 Middle frequency response of pulse transformer 

The leakage inductance value is small and is in the order of nH. Therefore, we could 

neglect it at low frequencies. However, at higher frequencies, the leakage reactance is not 

negligible anymore and must be considered at higher frequencies. Also, the magnetizing 

inductance can be neglected because of its high impedance at high frequencies. The 

equivalent circuit at higher frequencies is shown in Fig. B.7. 

 

Fig. B.7 High frequency equivalent circuit diagram 
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Fig. B.8 A low pas RL filter with a cross over frequency at fc 

In conclusion, we can say that the frequency response of a pulse transformer depends on 

its magnetizing and leakage inductance. The magnetizing inductance defines the low 

frequency behavior and the leakage inductance defines the high frequency behavior. 

The incident signal we are using is a pulse signal. So, it mostly has high frequency 

components. So, having a leakage inductance as small as possible is the first design 

priority. Large magnetizing inductance is desired but it leads to a higher leakage 

inductance. So, the goal is optimizing the magnetizing inductance and minimizing the 

leakage inductance. 

Our goal is to transfer the incident signal to the converter output. The rise time 

of the incident signal is 10ns so the its bandwidth is 𝐵𝑊𝐺𝐻𝑧 =
0.35

10𝑛𝑠𝑒𝑐
= 35𝑀𝐻𝑧. 

Based on bandwidth of the signal, the core is selected. The selected core should be able to 

work in the desired frequency range. The core material is Ferrite: NiZn. 

property 
initial 
perm- 
eability 

satur- 
ation flux 
density 

loss factor 
[@frequency] 

curie 
temp. 

volume 
resistivity 

recommended  
freq. 

common 
shapes 

unit 
 

gauss 10-6 °C Ω-cm MHz 
 

M2 40 2300 <150[50MHz] 450 107 0.1-50 
toroid, rod,  

balun 

fc 

-3dB 
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Table B.1 The core material specifications [29] 

In this step, the core geometry is chosen. A Ferrite toroid provides a convenient and 

effective shape for winding the pulse transformers. The winding must fit through the 

window. It is necessary to define the core dimensions. We picked the core with ID=0.5 

inch, OD=1 inch, H=0.25 inch.  

Table B.2 The toroid core geometry [29] 

In a toroidal core, the magnetizing inductance is [30] 

                                              𝐿 = 2𝜇𝑁22.5𝐻 ln
𝑂𝐷

𝐼𝐷
× 10−9𝐻𝑒𝑛𝑟𝑖𝑒𝑠                            (B-1) 

If the formula is rewritten for the number of turns, 

                                                            𝑁 = 2218.391√
𝐿

𝐻.ln
𝑂𝐷

𝐼𝐷

                                      (B-2) 

By using simulation model and trial and error, the L is defined as 5 µH. Knowing the 

inner and outer diameter and core thickness, N=12 turns. 

We use the same number of turns for both primary and secondary windings, so 𝛼 = 0.5. 

The fill factor Ku is the fraction of the core window area which is occupied by copper. It 

should be selected between zero and one, so we take 0.5. 

 
core 

constant 

effective 
path 

length 

effective 
cross 

sectional 
area 

Toroids outside diameter inside diameter thickness mass  l/A le Ae 

p/n in. (mm) in. (mm) in. (mm) grams cm-1 cm cm2 

 
1015-

1 
1.000 25.40 0.500 12.70 0.250 6.35 12 14.3 5.5 0.39 
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The cross-sectional area of the conductor, Aw is expressed as 

                                                          𝐴𝑤 ≤
𝐾𝑢𝛼𝑊𝑎

𝑁
                                                         (B-3) 

where Wa is core window area.  

From the above inequality, Aw=0.026cm
2
 is an acceptable value, which corresponds to a 

14 AWG wire. 

Since we defined the secondary current of pulse transformer 1 Amp, we can reduce the 

wire size; it gives not only a smaller leakage inductance, but convenience in winding 

process. Finally, we have a pulse transformer with specifications as Table B.3.  

Pulse transformer spec 

Core shape toroid Magnetizing inductance 5µH 

Core material Ferrite Leakage inductance 80nH 

Number of turns 12   

Table B.3 Pulse transformer specifications 

 

 

 

 

 

Fig. B.9 Designed pulse transformer 

 

A photo of built pulse transformer can be seen in Fig. B.9. 
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