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ABSTRACT 

Time-series analysis is used heavily in modeling and forecasting weather, 

economics, medical data as well as in various other fields. Change point detection (CPD) 

means finding abrupt changes in the time-series when the statistical property of a certain 

part of it starts to differ. CPD has attracted a lot of attention in the artificial intelligence, 

machine learning and data mining communities. In this thesis, a novel CPD algorithm is 

introduced for segmenting multivariate time-series data. The proposed algorithm is a 

general pipeline to process any high dimensional multivariate time-series data using non-

linear non-parametric dynamic system. It consists of manifold learning technique for 

dimensionality reduction, Gaussian process regression to model the non-linear dynamics 

of the data and predict the next possible time-step, as well as outlier detection based on 

Mahalanobis distance to determine the change points. The performance of the new CPD 

algorithm is assessed on synthetic as well as real-world data for validation. The pipeline is 

used on federal reserve economic data (FRED) to detect recession. Finally, functional 

magnetic resonance imaging (fMRI) data of larval zebrafish is used to segment regions of 

homogeneous brain activity. 
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CHAPTER 1 

INTRODUCTION 

Everything in this universe is a dynamic system and changes with time. Starting 

from expansion of galaxies to our brain activity, from evolution to finance – everything is 

a time-series and only scale of the time step varies. Time-series are sequences of data over 

time describing the behavior of systems. This behavior changes over time due to external 

factors or change in internal dynamics of the systems. Thus time-series analysis has 

become increasing important in the fields of healthcare, economy, energy, finance and 

meteorology. As every system is dynamic with respect to time, we need to detect when an 

abrupt change is occurring that deviates the property of the time-series. Detecting this 

abrupt change is known as change point detection. Segmentation is a way of implementing 

change point detection, i.e. the process of segmenting a data-series into different segments 

or regimes by identifying the points where statistical properties start to differ. These points 

are known as change points. Thus, the data can be divided into separate homogeneous 

segments but heterogeneous with respect to each other. Change point detection or 

segmentation can also be applied prior to using machine learning algorithms in order to 

increase the prediction accuracy as the data sequence would be segmented into 

homogenous regions. It can be used as clustering through time.
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Change point detection (CPD) or segmentation of time-series has been studied for 

decades in the fields of statistics, computer science, data mining and bioinformatics. It 

covers a wide range of real world problems. Here are some examples of its applications: 

 Health and disease monitoring: In medical condition monitoring of patients, CPD 

algorithms have been used to detect abrupt changes in patients’ electrocardiogram 

(ECG) [1] and electroencephalogram (EEG) [2] signals in real-time. CPD is also 

used in detection and monitoring of disease outbreaks such as influenza-like illness 

[3]. 

 Climate change monitoring: Climate change detection and prediction has been of 

increasing importance in the recent years due to the effect of global warming and 

increasing emission of greenhouse gases [4], [5]. 

 Economic and financial monitoring: It is important to both government and 

industry to have systems that predict the future state of economy. CPD is used in 

economic analysis for prediction of expansion and recession as well as capturing 

business cycle dynamics [6], [7], [8]. 

 Human activity monitoring: With the increase of internet-of -things devices like 

sensors from smart homes and smartphones, human activity is monitored in order 

to reduce human interaction as well as to monitor health. CPD is used to analyze 

the transitions of activities from the sensor data [9]. 

Segmentation of time-series can be broadly classified into categories [10] as discussed 

in the following paragraphs: 
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Parametric versus non-parametric: Parametric models assume that the data is sampled 

from a certain distribution, which generally is a normal distribution and thus the estimated 

parameters also have a mean and standard deviation. These models tend to be accurate if 

and only if the underlying assumption about the data is true, otherwise leads to inaccurate 

results. Thus, these models are not considered robust even though they are simple and 

computationally fast. On the contrary, non-parametric models do not have any underlying 

assumption about the data. They are robust but are computationally expensive and they 

need more data samples to perform the same task than their parametric counterpart. 

Univariate versus multivariate: Univariate models use only one dimension of data in 

each time step, whereas multivariate models use multiple dimensions of data in the same 

time step. A lot of research has been conducted on univariate models as it is easier to 

generate univariate synthetic time-series, though multivariate models tend to be more 

accurate as they have more information to segment upon. 

Offline versus online: Offline segmentation refers to handling the data in batch mode. 

The entire data is used to partition it into homogenous regimes. While online segmentation 

refers to handling the data in incremental mode. Streaming data is used to partition it when 

it arrives in real time. The major drawbacks of offline method are – large computation and 

storage complexity as well as inability to scale linearly. 

Aided versus blind: Aided segmentation methods use prior information about the data 

sequence, mostly related to the target quantity on which the sequence is segmented upon. 

While blind segmentation methods have no prior information about the data. 
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1.1 LITERATURE REVIEW 

Change point detection or segmentation has been researched for decades and several 

methods exist in the literature. Some of them are specially designed for detecting change 

points, while some of them are designed to obtain a compact representation of the data. In 

the latter case, individual model is used to describe individual segment of the time-series. 

Some of these algorithms take user input to find the number of segments to be formed, thus 

reducing the reconstruction error in the lower dimension space. 

In the following paragraph, we will assume the length of time-series as 𝑛 and the 

number of segments as 𝑘. Whether these algorithms are used for finding change points or 

for dimensionality reduction, segmentation algorithms are based on these high level 

methods as discussed in the following paragraphs: 

Dynamic programming based: This category of segmentation algorithms is used to 

compress each segment into a lower dimension space. Given the maximum number to 

segments to be found and the maximum allowable cost permitted for segmentation (or with 

respect to some loss function), these algorithms try to find the optimum segments such that 

the overall cost is minimum. A pruned dynamic programming based segmentation 

algorithm has been proposed [11], where pruning leads to efficient results even if there are 

no change points in the data but its worst case complexity is 𝑂(𝑘𝑛2). The drawbacks of 

this type of algorithms are – the maximum number of segments has to be provided and they 

are computationally expensive. This means that they cannot be used in real world 

applications as the number of segments cannot be predicted in prior and they cannot be 

applied to large datasets as they are computationally very demanding. 
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Heuristics based: The expensive computational cost of running dynamic programming 

based segmentation algorithms lead to the development of heuristics based algorithms [12]. 

These algorithms cannot find optimum segments as their dynamic programming 

counterparts but they are computationally efficient and produce good results on most cases. 

Heuristics based algorithms can again be categorized into three methods: 

I. Sliding window based: A window of fixed length slides over the data and each 

segment is grown until a user specified threshold or error criteria is met. It works 

by anchoring the left most data point of a segment and sequentially extending the 

right most data point until the error criteria is within a certain permissible threshold. 

This process repeats until the entire time-series is segmented. The error criteria for 

compression is a specified threshold of reconstruction error, while in the case of 

change detection is if an outlier is found i.e. the current data point is statistically 

different from the past other data points in the segment. Sliding window is 

appealing as it is quite simple, intuitive, online and has little computational 

requirements. It only requires a restricted history of past data points to work. The 

stride in the sliding window algorithm is a hyperparameter, which is not limited to 

1 only and if optimized can greatly speed up the algorithm. The drawbacks of this 

algorithm is that it over segments the time-series that has noisy data. 

II. Top-down based: Top-down based segmentation works by considering the entire 

time-series as one segment and tries to recursively partition each segment such that 

their statistical difference is maximum. The stopping criteria for compression is 

when the reconstruction error goes above a certain specified threshold, while in the 

case of change detection it is the specified number of maximum change points. The 
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major drawbacks of this algorithm are – the whole dataset has to be used and the 

maximum number of segments has to be provided in prior. 

III. Bottom-up based: Bottom-up based segmentation is the compliment of top-down. 

It segments the entire time-series in n/2 segments. Next it iteratively combines 

adjacent segment pairs as long as the cost of merging or error criteria is within a 

user-specified threshold in the case of compression. In the case of change detection, 

it seeks out the smallest possible segments and tries to combine it with the adjacent 

segments on the basis of a similarity score. This algorithm scales linearly with data 

and can produce optimum segments but cannot work in real-time. 

Hybrid based: Because of the noted shortcomings of the various segmentation 

algorithms, a hybrid algorithm has been proposed [13], which combines online sliding 

window and offline bottom-up approaches known as SWAB (Sliding Window And Bottom 

up). It combines the pros and cons of both techniques to obtain optimum results. The 

intuition behind this algorithm is that the sliding window approach over-segments the data 

series, the bottom up approach combines the possible similar adjacent segments to create 

a larger segment. SWAB algorithm keeps a buffer of chosen initial size. This buffer 

behaves like a queue. Bottom up is applied in the buffer and the leftmost segment is 

reported and the corresponding data points are removed from the buffer. More data points 

are read in into the buffer depending on the results of the sliding window algorithm. This 

process continues as long as there is incoming data. SWAB can be applied in both data 

compression as well as in change detection. It scales linearly with data, but the initial size 

of the buffer is a hyperparameter which needs to be optimized. The trade-off of this 
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algorithm is that small size of buffer will convert it to a sliding window approach and a 

large size of buffer will convert it to a bottom up approach. 

Probabilistic based: Hidden Markov Models and Bayesian algorithms generally fall in 

this category of segmentation algorithms. They are discussed in the following. 

I. Hidden Markov Model (HMM): HMM is used in diverse research areas like 

bioinformatics, brain imaging, financial time-series, climate monitoring and 

network security. It is a commonly used tool for inference in change point analysis. 

In the context of change point detection, HMM can be applied where the data are 

the observations and the unknown segments are the hidden states. Change points 

occur when there is a switch in the hidden states of the system. Change detection 

problem using HMM can be defined as finding posterior probabilities of the hidden 

states of the model [14]. This is generally done using Expectation-Maximization 

algorithm to find the posterior estimates of the model parameters and the state 

probabilities, given the data and prior distribution of state changes. The major 

drawback of this algorithm is that it is expensive both in terms of memory and 

computation. 

II. Bayesian: Bayesian based segmentation assume that the entire time-series is 

divided into non-overlapping regions. The data points within each of these regions 

are independent and identically distributed from some probability distribution as 

well as the parameters of the model are independent and identically distributed [15]. 

Given the data observed and a change point has occurred, the Bayesian approach 

estimates the posterior distribution over the current run length i.e. the time since 

the occurrence of last change point. To generate the posterior distribution, a 
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conditional prior on the change point is generated which gives this algorithm its 

efficiency. The prior is based on a hazard function, which describes how likely a 

change point will occur given the current run length. 

Clustering based: Segmentation of time-series can be interpreted as clustering of 

homogeneous data points in time. Principal component analysis (PCA) is widely used in 

various applications like dimensionality reduction, feature extraction and signal estimation. 

PCA is an analytic method for estimating generalized eigenvalues and eigenvectors. 

Generalized eigenvectors work as filters in the joint space of two signals, minimizing the 

energy of one signal while maximizing the energy of the other. Due to this property they 

act like filters that can perform signal separation. This property can be used to quantify 

change points in time-series using a two-step PCA as proposed in [16]. 

1.2 MOTIVATION 

The focus of this thesis is change point detection and regime segmentation on high 

dimensional multivariate time-series data. I intend to create a non-linear non-parametric 

dynamic system that can segment the entire time-series into regions with different dynamic 

activities. Here, a homogeneous region will refer to a sequence of data points that follow 

the same dynamics. This dynamic system should be flexible enough to work on different 

types of datasets in various fields. I have used multiple synthetic data as well as multiple 

real-world data to demonstrate this flexibility. 

The curse of dimensionality: Some time-series, such as videos can be very high 

dimensional depending on their resolution. A high number of features can deteriorate the 

running time of a computational model, thus making it computationally expensive for 
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online purposes. A dimensional reduction algorithm must be used to reduce this curse of 

dimensionality. The dimension of the reduced space should be low enough that the model 

can perform online segmentation as well as high enough not to lose important information 

from the data sequence. From the plethora of work on dimensionality reduction, I must 

choose such an algorithm that generalizes from image data to economic time-series, 

without inducing too much of a bias depending on the method it uses. 

Non-parametric model: In the previous discussion on the pros and cons of parametric 

versus non-parametric models, I showed that parametric models can be inaccurate in case 

the assumptions on the data do not hold true. Thus, I choose to use non-parametric models 

with no initial assumption on the data, or only with the assumption that the noise associated 

with the data follows a normal distribution. This helps us to create a non-linear dynamic 

system that models the time-series without too much of a discrepancy. A dynamic system 

is a function that describes the evolution of data points or their states over time. 

Example of a linear parametric regression model: 

𝑥𝑡+1 = 𝑊𝑥𝑡 + 𝜀𝑡 ,     (1) 

Example of non-linear non-parametric regression model: 

𝑥𝑡+1 = 𝑓(𝑥𝑡) + 𝜀𝑡  ,    (2) 

𝑓(. ) ~ 𝐺𝑃(0, 𝑘(. , . )) ,    (3) 

Here, 𝑊 is the weight matrix for the parametric model, 𝑓 is the non-linear function 

of the non-parametric model and 𝜀 is the normal noise associated with the data. In 
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the proposed pipeline a prior distribution is assumed over 𝑓, i.e. a Gaussian process 

prior with a zero mean and some covariance function 𝑘. 

Uncertainty of prediction: While classical regression algorithms attempt to identify the 

best fit model of the data, Bayesian regression algorithms compute a posterior distribution 

over models or over new test data. This posterior distribution helps to quantify the 

uncertainty in model estimates. This uncertainty can be thus used to make more robust 

predictions on new test data [17]. Thus I am interested not only on the mean prediction 

from the non-linear non-parametric model, but also on the uncertainty associated with that 

prediction. This is obtained by also predicting the covariance for each mean prediction 

from the training data. 

We work on functional magnetic resonance imaging (fMRI) data of larval zebrafish. 

The details on how this data is obtained is proposed in [18]. We use this data to perform 

change point detection and segment different regions of similar brain activity. As there are 

no definite change point labels in this data, I validate the working of the proposed pipeline 

by using synthetic as well as real-world labeled data. This also shows that the pipeline can 

generalize on different types of datasets in various fields, when performing blind 

segmentation. 

The following Chapter 2 describes the methodology used in this thesis. Chapter 3 

presents the experimental results obtained from the proposed pipeline. The conclusion is 

proposed in Chapter 4. 
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CHAPTER 2 

METHODOLOGY 

2.1 PROPOSED PIPELINE 

The proposed pipeline is divided into four major stages – data preprocessing, 

dimensionality reduction, prediction of the next time-step and time-series segmentation. In 

this thesis, I am working with different types of data – univariate time-series data and 

multivariate time-series data which includes images as well as economic data. Each stage 

of the pipeline works as a plug and play mechanism. Thus, components of this pipeline can 

be replaced with other algorithms if so desired. The pipeline works as a general framework 

to segment high dimensional multivariate time-series data using non-linear non-parametric 

dynamic system. The following figure sheds some information on the stages of the 

proposed pipeline. Finally, the pipeline is described in details in the remaining of this 

section. 



12 

 

Figure 2.1: The proposed pipeline 

 

2.1.1 Data preprocessing 

For synthetic data, I use zero mean and unit standard deviation normalization 

technique for feature scaling to standardize the range of independent variables or features 

of the data. 

For image data, I use bilateral filter to de-noise the frames obtained from the video 

used in this work as it is a non-linear, edge-preserving smoothing filter. These frames are 

noisy and quite limited in number. I use static background subtraction using thresholding 

and masking to focus only on the dynamic activity within these images. Using histogram 

equalization after this step results in more range of intensities, but also introduces some 

noise in the images. Thus, I finally apply Gaussian filter to reduce the effects of the 

Data preprocessing

• For image data, zero mean and unit standard deviation is applied

• For economic data,  hundred times log of first difference is applied

Dimensionality reduction

• For all multivariate data, locally linear embedding (LLE) is applied

• LLE reduces the high dimensional data to only 3 dimensions

Prediction of the next time-step

• Each data point in the dataset is a 4-order Markov chain

• The next time-step is predicted using Gaussian process regression

Time-series segmentation

• Window based techniques are used to check for outliers in the data

• Data points between two outliers form a segment
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introduced noise. These images are resized and stored in disk for the next stage of 

processing. Finally, I use zero mean and unit standard deviation normalization technique 

for feature scaling to standardize the range of independent variables or features of the data. 

For economic data, I take the first difference of all the data i.e. the next time-step 

is subtracted from the current time-step. I apply natural logarithm on the first difference 

and scale the results one hundred times. Natural logarithm is used as it has important 

properties with respect to business analysis. Its greatest advantage is that small changes in 

natural log of a variable can be directly approximated as percentage changes. Another great 

advantage is that it linearizes exponential growth and inflation. Since, the logarithm of a 

product is equal to the sum of the logarithms, it converts multiplicative relationships to 

additive relationships. By the same principle, it converts exponential trends with 

proportional variance into linear trends with constant variance.  

2.1.2 Dimensionality reduction 

Dimensionality reduction is a crucial step whether it is an object recognition 

problem or a statistical analysis of a multivariate population. It not only gives computation 

and storage benefits but also can be viewed as a feature extraction technique or in general 

to provide a compact representation in a different coordinate system. For example, if the 

given data is high dimensional, fitting a model on it generally would result in overfitting 

the data. This would require a lot of training data to overcome this problem. Thus whenever 

the intrinsic dimensionality of a dataset is smaller than the original one, dimensionality 

reduction can give a better understanding of the data. 
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For all multivariate data, I use dimensionality reduction to reduce the number of 

features. Initially the popular principal component analysis (PCA) [19] is used for 

experimentation. It is an eigenvector method designed to capture linear variabilities in high 

dimensional data. PCA computes the linear projections of highest variance from the top 

eigenvectors of the data covariance matrix. Since it only computes linear projections of 

highest variance, this method is not enough to capture the dynamics of the data in low 

dimensions. In this work, the local neighborhood structure of the data is very crucial as I 

want to capture the dynamics present within the data, in order to build a non-linear dynamic 

system. Thus, I use locally linear embedding (LLE) [19] to reduce the number of features. 

This manifold learning algorithm finds the lower dimension representation of the data 

which preserves distances within local neighborhoods. It can be interpreted as a series of 

localized PCAs which are globally combined in a non-linear fashion to get the least 

reconstruction error in the lower dimension space. 

2.1.3 Prediction of the next time-step 

In this stage, I am assuming that the next data point or time-step to predict is 

dependent on some of the previous time-steps. The number of dependencies is a 

hyperparameter which is kept constant at 4 throughout this work. Thus, I am creating a 

dataset where each row of the data is a 4-order Markov chain [20]. I am incorporating the 

data at the beginning of the time-series into a starting window of fixed length, which 

depends on the data and the application of the pipeline, to predict the next time-step. If the 

predicted data point is consistent with the current segment, the data point is incorporated 

into the segment. Otherwise, an entirely new segment is formed. The formation of new 

segments is based on two approaches – jumping window and sliding window. These 
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window based approaches help us to model the data in a fast online way and is explained 

in details in the ‘time-series segmentation’ section. 

The data points present in the initial window are modeled using Gaussian process 

regression (GPR) [21]. GPR does not make any assumptions about the underlying 

distribution of the data, i.e. it can be either linear, quadratic or even non-polynomial. GPR 

is a form of non-parametric supervised learning that models data by letting data speak for 

themselves. In this work, the input is a window or matrix of 4-order Markov chains and the 

target is a vector of next time-steps with respect to those Markov chains. The relationship 

among data points is given by a covariance function, also known as the kernel function. 

Here, I am using the product of squared exponential kernel and periodic kernel. This 

product is also known as locally periodic kernel; it helps us to generalize the pipeline on 

various datasets. I optimize the hyperparameters of the resulting GPR model using 

truncated Newton methods. It is a Hessian-free optimization technique designed for 

optimizing non-linear functions and converges to global minima. This model is used to 

predict the next time-step. Finally, Mahalanobis distance is calculated between the 

predicted data point and the true data point in low dimensional space. This is done to 

determine outliers with respect to the current segment. Ultimately this results in 

determining the change-points in the time-series. 

2.1.4 Time-series segmentation 

In this stage, Mahalanobis distance plays the most important role in determining 

segments of homogeneous data points as well as creating new segments when 

heterogeneous data points are encountered. This metric is used to determine outliers in the 

data with respect to the current segment. Outliers are identified by computing Mahalanobis 
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distance between the predicted next time-step and the true next time-step in low 

dimensional space. If this metric is less than a given threshold, then that data point is 

incorporated sequentially within the current segment. Otherwise, I identify that data point 

as an outlier. If I encounter an outlier, I partition the data and a new segment is created. 

The question of interest is how quickly I should partition the data and create a new segment 

or in general determine it as a change point. The more quickly I declare this as a change 

point, the more is the possibility of occurrence of a false positive. In order to reduce false 

positives, I perform Mahalanobis distance on three data points sequentially. If at least two 

of the them are outliers, I determine that location as a change point. 

The creation of new segments also depends on how the data sequence is traversed 

by the moving window. Here, I use two different traversal mechanisms – jumping window 

and sliding window. The jumping window approach initially starts with a window of fixed 

length, and when a change point is detected the window jumps from its current location to 

the next sequence of new data with its beginning placed at one more than the end of the 

previous segment. The trade-off here is that, not only the length of the jumping window 

should be less than the distance between any two change points in the entire time-series, 

but also it should not be too small so that it ends up over segmenting the data. On the 

contrary, the sliding window approach starts with a window of fixed length and slides over 

the data with a stride of one, irrespective of the presence of change points. In both the cases, 

GPR models are trained only when a new change point is detected or a new segment is 

formed and not when new data points are incorporated into the current segment. 

The usefulness of Mahalanobis distance is that its squared value for multi-variate 

normal data is intimately related to chi-squared distribution. Thus I can use the chi-squared 
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distribution table to find out the threshold for detecting outliers, where the degrees of 

freedom of the distribution is equal to the dimensionality of the latent space. In this work, 

the level of significance of the chi-squared distribution is kept constant at 0.05. 

2.2 BACKGROUND 

2.2.1 Locally Linear Embedding (LLE) 

The LLE algorithm [22] retains the local geometry of a region in the data by 

computing linear coefficients that reconstruct each data point from its neighbors. The 

algorithm uses K nearest neighbors for each data point to find out the coefficients or 

contributions of the neighbors to that data point. These local coefficients of a particular 

region are used to reconstruct each data point in the low dimension space. The goal of this 

algorithm is to minimize the reconstruction error of the low dimension space compared to 

the high dimension space. The reconstruction errors are measured by the following cost 

function: 

𝜀(𝑊) =  ∑ |�⃗�𝑖 − ∑ 𝑊𝑖𝑗�⃗�𝑗𝑗 |
2

𝑖 ,     (4) 

The weights 𝑊𝑖𝑗 are computed by minimizing the above cost function, subject to 

two constraints. Firstly, each data point 𝑋𝑖 in a local region is reconstructed from its fixed 

number of neighbors and thus setting 𝑊𝑖𝑗 = 0 if 𝑋𝑗 does not belong in this neighborhood. 

Secondly, sum of the elements in each row of the weight matrix is equal to one, ∑ 𝑊𝑖𝑗𝑗 =

1. This second constraint results in invariance to translation for any particular data point 

and due to this symmetry, the reconstruction weights preserve the intrinsic geometric 

characteristics of each neighborhood. The above equation (4) determines invariance to 
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rotation, rescaling and translation for any given data point. Since the local geometry of a 

neighborhood is preserved both in the original data space and in the manifold space, the 

same weights 𝑊𝑖𝑗 that reconstruct 𝑖th data point in original data space should also 

reconstruct its embedded manifold coordinates in the latent space. 

Finally, LLE maps each high dimensional observation �⃗�𝑖 into a low dimensional 

vector �⃗⃗�𝑖 which represents global embedding coordinates in the manifold. These internal 

coordinates are d-dimensional where d is an input to the algorithm, and the coordinates are 

calculated by minimizing the embedding cost function: 

𝜑(𝑌) =  ∑ |�⃗⃗�𝑖 − ∑ 𝑊𝑖𝑗 �⃗⃗�𝑗𝑗 |
2

𝑖 ,     (5) 

This cost function, like equation (4), is based on locally linear reconstruction of 

errors but here the weight matrix 𝑊𝑖𝑗 is fixed while the low dimensional coordinates 𝑌𝑖 are 

optimized. These coordinated are obtained by solving a sparse 𝑁 ×𝑁 eigenvector problem 

subjected to constraints. 

LLE Algorithm [23]: 

1. Compute a fixed set of neighbors for each data point �⃗�𝑖 in the original space. 

2. Compute the weight matrix 𝑊𝑖𝑗 that optimally reconstructs each data point �⃗�𝑖 from 

its set of neighbors, while minimizing the cost function in equation (4). 

3. Compute the low dimensional vector �⃗⃗�𝑖 which is optimally reconstructed by the 

weight matrix 𝑊𝑖𝑗, while minimizing the cost function in equation (5). 
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2.2.2 Gaussian Process (GP) 

A Gaussian process [24] by definition is a collection of random variables, any finite 

number of which have a joint Gaussian distribution. It is a generalization of multivariate 

Gaussian probability distribution. While a probability distribution describes random 

variables, GP is a stochastic process that describes probability distributions over functions. 

The basic assumption is that for any finite subset of data, the marginal distribution of that 

set follows a multivariate Gaussian distribution and thus data can be sampled from that 

distribution. GPs are characterized by a mean function 𝜇(𝑥) and a covariance function 

𝑘(𝑥, 𝑥′) of a real process 𝑓(𝑥), where x and x’ are random variables in the real space. 

𝜇(𝑥)  = 𝐸[𝑓(𝑥)] ,       (6) 

𝑘(𝑥, 𝑥′)  = 𝐸[(𝑓(𝑥) −  𝜇(𝑥))(𝑓(𝑥′) −  𝜇(𝑥′))] ,  (7) 

The covariance function of a multivariate GP [25] leads to a covariance matrix 

which must be positive semi-definite. This is a requirement for GP as the covariance 

matrices computed based on any arbitrary set of input data is identical to kernels computed 

using Mercer’s theorem. Thus in GP any valid kernel function can be used as a covariance 

function. This is a very powerful feature in Gaussian processes as they give a lot of 

flexibility depending on the type of data to be modeled. 

2.2.2.1 Kernel function 

The very popular choice of kernel is the squared exponential, which is also known 

as the Gaussian kernel or the radial basis function (RBF) kernel. 

𝑘(𝑥, 𝑥′)  =  𝜎𝑓
2 𝑒𝑥𝑝 [−

(𝑥−𝑥′)2

2𝑙2
] ,     (8) 
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When 𝑥 ≈ 𝑥′, the kernel function 𝑘(𝑥, 𝑥′) reaches the maximum amplitude of 

covariance 𝜎𝑓
2 meaning that 𝑓(𝑥) and 𝑓(𝑥′) are highly correlated. When x and x’ are far 

apart, the kernel function 𝑘(𝑥, 𝑥′) ≈ 0 meaning that 𝑓(𝑥) and 𝑓(𝑥′) are highly 

uncorrelated. The measure of distance between points is given by the parameter called 

lengthscale l. This means that distant observations have negligible effect while estimating 

the current prediction. The observation at time t will have higher covariance with the 

observations in recent history and this effect diminishes exponentially as the observations 

are more in the past. This is a stationary kernel which is invariant to translations of data 

points. 

Another popular choice of kernel when dealing with time-series data is the periodic 

kernel. 

𝑘(𝑥, 𝑥′)  = 𝜎𝑓
2 𝑒𝑥𝑝 [−

2 𝑠𝑖𝑛2(
𝜋|𝑥−𝑥′|

𝑝
)

𝑙2 ] ,     (9) 

When 𝑥 ≈ 𝑥′ or 𝑥 ≈ 𝛼𝑥′, where α depends on the periodic nature of the sin 

function, the kernel function 𝑘(𝑥, 𝑥′) reaches the maximum amplitude of covariance 𝜎𝑓
2 

meaning that 𝑓(𝑥) and 𝑓(𝑥′) are highly correlated. The period p determines the distance 

between repetitions of the function. Here, the observation at time 𝑡 is highly correlated with 

the observation at time 𝑡 − 1 as well as with a certain observation in the past. This periodic 

nature cannot be modeled using the squared exponential kernel. This is a non-stationary 

kernel. 
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2.2.2.2 Combination of kernels 

The choice of kernels depends on the type of the dataset and the type of the 

application. There are many other types of kernels like linear kernel, polynomial kernel, 

matern kernel, Brownian kernel and neural network kernel. There are several ways to 

combine kernels – product, sum, convolution. Product is the standard way to combine 

kernels while sum is also often used. As proposed in [26], various univariate time-series 

can be approximated using different combinations of the basic kernels. 

Product: Intuitively, multiplying two kernels can be interpreted as an AND 

operation, meaning the resulting kernel will have a high value only if both the two base 

kernels have a high value. 

𝑘(𝑥, 𝑥′) = 𝑘1(𝑥, 𝑥′) .  𝑘2(𝑥, 𝑥′) ,     (10) 

Sum: Intuitively, adding two kernels can be interpreted as an OR operation, 

meaning the resulting kernel will have a high value if either of the two base kernels have a 

high value. 

𝑘(𝑥, 𝑥′) = 𝑘1(𝑥, 𝑥′) + 𝑘2(𝑥, 𝑥′) ,    (11) 

2.2.2.3 Gaussian process regression (GPR) 

Let (𝑋, 𝑦) be a training set of independent and identically distributed random 

variables following a certain distribution. Using GPR [27, 28] the data is modelled that 

follows a true distribution function 𝑓 and has additive Gaussian white noise 𝜖, 

𝜖 ~ 𝑁(0, 𝜎2), around the function. A zero-mean Gaussian process prior is assumed as the 

prior distribution over the function 𝑓. 
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𝑦 = 𝑓(𝑋) +  𝜖 ,       (12) 

 𝑓(. ) ~ 𝐺𝑃(0, 𝑘(. , . )) ,      (13) 

Since the prior is a GP, the posterior is also a GP as the marginal likelihood is a 

normalizing constant. This can be proved by using the Bayes’ theorem. 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑥 𝑝𝑟𝑖𝑜𝑟

𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑
 ,    (14) 

𝑝(𝑓|𝑋, 𝑦) =
𝑝(𝑦|𝑋, 𝑓) 𝑝(𝑓|𝑋)

𝑝(𝑦|𝑋)
 ,     (15) 

The likelihood is given by: 

𝑝(𝑦|𝑋, 𝑓) ~ 𝑁(𝑓, 𝜎2𝐼) ,      (16) 

The marginal likelihood the integral of the likelihood times the prior: 

𝑝(𝑦|𝑋) =  ∫ 𝑝(𝑦|𝑋, 𝑓)𝑝(𝑓|𝑋) 𝑑𝑓 ~ 𝑁(0, 𝐾 + 𝜎2𝐼) , (17) 

For prediction, assuming n training input and output pairs (𝑋, 𝑦) and m test inputs 

𝑋𝑚, the joint training and test marginal likelihood is: 

𝑝(𝑦, 𝑦𝑚) = 𝑁(0, 𝐾𝑛+𝑚 + 𝜎2𝐼) ,     (18) 

where,  𝐾𝑛+𝑚 =  [
𝐾𝑛 𝐾𝑛𝑚

𝐾𝑚𝑛 𝐾𝑚
] ,      (19) 

Conditioning on training outputs: 

𝑝(𝑦𝑚|𝑦) = 𝑁(𝜇𝑚, ∑𝑚) ,      (20) 
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The mean and covariance of correlated predictions are given by the following 

equations: 

𝜇𝑚 =  𝐾𝑚𝑛 [𝐾𝑛 + 𝜎2𝐼]−1 𝑦 ,     (21) 

∑𝑚 =  𝐾𝑚 − 𝐾𝑚𝑛 [𝐾𝑛 + 𝜎2𝐼]−1 𝐾𝑛𝑚 + 𝜎2𝐼 ,  (22) 

The cost of computation of  [𝐾𝑛 + 𝜎2𝐼]−1 is 𝑂(𝑛3). So often during 

implementation marginal variances, i.e. diagonal of ∑𝑚, are used. This is sufficient enough 

to compute prediction for a single test input. This reduces the cost of prediction for each 

test input to 𝑂(𝑛) for the mean and 𝑂(𝑛2) for the variance. 

The hyperparameters of GPR i.e. lengthscale and noise variance, are optimized by 

minimizing the negative logarithm of marginal likelihood with respect to the 

hyperparameters. Thus GPR is a simple yet powerful non-parametric model, where the 

hyperparameters are obtained directly from the training data without requiring to use 

techniques like cross validation. 

2.2.3 Mahalanobis Distance 

The Mahalanobis distance [28] is a measure of the number of standard deviations 

away a data point is from the mean of a distribution. This metric of distance grows as the 

data point moves away from the mean along the principal axis. This is a scale invariant 

metric that takes into account the correlations of the data set. If a bivariate normal 

distribution is taken for consideration and concentric probability density ellipses are drawn, 

then the probability density is high for ellipses near the origin and the density continues to 

decrease as we go farther from the origin. The level of correlation between the data set, i.e. 
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the mean of the distribution, and a single test point can be found out by calculating the 

position of this test point with respect to the probability density ellipses. These ellipses are 

a generalization of the units of standard deviation away from the mean. 

The Mahalanobis distance of a data point �⃗� =  (𝑥1, 𝑥2, … , 𝑥𝑛)𝑇 from a data set with 

mean 𝜇 =  (𝜇1, 𝜇2, … , 𝜇𝑛)𝑇 and covariance matrix ∑ is defined as: 

𝐷𝑀(�⃗�) =  √(�⃗� − �⃗�)∑−1(�⃗� − �⃗�) ,    (23) 

Mahalanobis distance has the following properties: 

 It takes into account that the variances in each dimension are different. 

 It takes into account the covariance among variables. 

 It corresponds to Euclidian distance for uncorrelated variables with unit variance, 

or if all the dimensions are rescaled to have unit variance. 

 Its square corresponds to the canonical form of the equation of an ellipse. 

 Its square, for multivariate normal data, is intimately related to the chi-squared 

distribution. 

Thus, this metric can be used for outlier detection by keeping a threshold that 

corresponds to a certain level of significance and certain degrees of freedom of the chi-

squared distribution. 
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CHAPTER 3 

RESULTS 

3.1 THE DATA 

Multiple types of data are used in this thesis to prove the generalization capability of 

the proposed pipeline. The following sheds information on the types of data used. 

Synthetic data: 

 Univariate: Four different functions of two different types, exponential and linearly 

periodic, are concatenated together to get three major change points. 

 
Figure 3.1: Synthetic univariate data 

 

 Multivariate: Five concentric circles with increasing radius and exponentially 

weighted intensity are drawn on an image with zero intensity background. This 

whole circle is translated horizontally from left to right and again right to left along 
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the center of the image. The circle is also translated diagonally from left top to right 

bottom and again from right bottom to left top. Thus, these images form a time-

series reflecting the dynamics of the circle. 

 
Figure 3.2: Synthetic multivariate image data showing circle dynamics 

 

Real-world data: 

 Retail trade economic data: This data is acquired from Federal Reserve Economic 

Data (FRED). It consists of all monthly and seasonally adjusted retail trade data 

from January 1992 to September 2016. This data is used to predict recession as a 

change point in economics. The recession indicator data is also obtained from 

FRED. 

 
Figure 3.3: Graph of total retail trade, the gray bars indicate recession 

 

 fMRI images of larval zebrafish: This fMRI video of larval zebrafish is based on 

the procedure proposed in [17] and is obtained from YouTube. These sequential 
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fMRI images reflect the brain activity dynamics of larval zebrafish. They are used 

to segment similar brain activity patterns in time. 

 
Figure 3.4: Different types of brain activity in larval zebrafish 

 

3.2 PIPELINE SPECIFICATION 

 For univariate data, Gaussian process regression (GPR) and Mahalanobis distance 

is applied directly to detect change points. Whereas for multivariate data, locally linear 

embedding (LLE) is applied before I apply GPR and outlier detection. For image data, I 

use pixel values of each image which results in 20000 features as each of these images has 

a resolution of 200x100. For economic data, I use 19 features where all of them are monthly 

and seasonally adjusted values. In both the cases, I reduce the dimension of the data to only 

3 dimensions. This also helps us to visualize the lower dimensional data. 

 One GPR model is used to capture the dynamics of each feature. The resulting 

hypermodel consists of the 𝑘 different GPR models, where 𝑘 is the dimension of the latent 

space, which is 3 in this work. I predict the mean and the covariance for each new test data 

point. These are used to compute Mahalanobis distance for change point detection. 

 All the values shown in the following sections reflect time-steps. The values 

corresponding to change points show the particular time-step where a change point 

occurred. The values corresponding to segments are shown in parenthesis, which indicates 

the range of time-steps where the data points are homogeneous with respect to each other. 
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3.3 RESULTS ON SYNTHETIC DATA 

Segmentation of univariate data using jumping window approach: 

Predicted change points (shown in Fig 3.5): 27, 51, 96, 124, 193 

Real change points (shown in Fig 3.5): 50, 100, 200 

Predicted segments: (0 - 26), (27 - 50), (51 - 95), (96 - 123), (124 - 192), (193 - 292) 

Real segments: (0 - 50), (51 - 100), (101 - 200), (201 - 300)  

 

Figure 3.5: Predicted change points in synthetic univariate data using jumping window 

 

Segmentation of univariate data using sliding window approach: 

Predicted change points (shown in Figure 3.6): 54, 109, 186, 215 
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Real change points (shown in Figure 3.6): 50, 100, 200 

Predicted segments: (0 - 53), (54 - 108), (109 - 185), (186 - 214), (215 - 292) 

Real segments: (0 - 50), (51 - 100), (101 - 200), (201 - 300)  

 

Figure 3.6: Predicted change points in synthetic univariate data using sliding window 
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Multivariate data: 

 

Figure 3.7: LLE on synthetic multivariate data using 16 neighbors and 3 components 

 

Segmentation of multivariate data using jumping window: 

Predicted change points: 27, 63, 90 

Real change points: 30, 61, 92 

Predicted segments (shown in Figure 3.8): (0 - 26), (27 - 62), (63 - 89), (90 - 105) 

Real segments: (0 - 30), (31 - 61), (62 - 92), (93 - 123) 
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Figure 3.8: Predicted segments on synthetic multivariate data using jumping window 

 

Segmentation of multivariate data using sliding window: 

Predicted change points: 26, 61, 91 

Real change points: 30, 61, 92 

Predicted segments (shown in Figure 3.9): (0 - 25), (39 - 60), (78 - 90), (108 - 115) 

Real segments: (0 - 30), (31 - 61), (62 - 92), (93 - 123) 

 

Figure 3.9: Predicted segments on synthetic multivariate data using sliding window 
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3.4 RESULTS ON REAL-WORLD DATA 

Retail trade data: 

 

Figure 3.10: LLE on retail trade data using 16 neighbors and 3 components 

 

Segmentation of retail trade data using jumping window: 

Predicted change points (shown in Figure 3.11): 109, 195 

Real change points: 111, 119, 192, 210 

Predicted segments: (0 - 108), (109 - 194), (195 - 288) 

Real segments: (0 - 110), (111 - 118), (119 - 191), (192 - 209), (210 - 297) 
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Figure 3.11: Predicted change points on retail trade data using jumping window 

 

Segmentation of retail trade data using sliding window: 

Predicted change points (shown in Figure 3.12): 109, 156, 194, 212 

Real change points: 111, 119, 192, 210 

Predicted segments: (0 - 108), (112 - 155), (156 - 193), (197 - 211), (214 - 288) 

Real segments: (0 - 110), (111 - 118), (119 - 191), (192 - 209), (210 - 297) 
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Figure 3.12: Predicted change points on retail trade data using sliding window 
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fMRI data: 

 

Figure 3.13: LLE on fMRI data using 16 neighbors and 3 components 

 

Segmentation of fMRI data using jumping window approach: 

Predicted segments (shown in Figure 3.14): (0 - 21), (22 - 41), (42 - 62), (63 - 84), (85 - 

114), (115 - 145), (146 - 177), (178 - 197), (198 - 236), (237 - 275), (276 - 311) 

Real segments: Not available as this is unlabeled data. The embedding space provides 

intuition regarding the segmentation of the fMRI data as shown in Figure 3.15. 
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Figure 3.14: All predicted segments of fMRI data using jumping window 
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Figure 3.15: Different segments in embedding space using jumping window 

 

Segmentation of fMRI data using sliding window approach: 

Predicted segments (shown in Figure 3.16): (0 - 24), (28 - 49), (50 - 81), (92 - 137), (154 - 

173), (174 - 184), (185 - 196), (210 - 243), (253 - 274), (275 - 282), (283 - 311) 

Real segments: Not available as this is unlabeled data. The embedding space provides 

intuition regarding the segmentation of the fMRI data as shown in Figure 3.17. 
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Figure 3.16: All predicted segments of fMRI data using sliding window 
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Figure 3.17: Different segments in embedding space using sliding window 
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CHAPTER 4 

CONCLUSION 

 The proposed pipeline is a blind non-parametric multivariate approach to segment 

high dimensional time-series data. The pipeline works on various datasets and each stage 

of the pipeline can be replaced by a different algorithm if so desired. As shown in the 

results, the jumping window method outperforms the sliding window method. This is 

because in sliding window approach, data points from the previous segment are used for 

partitioning the next segment. Thus, the data points within each instantaneous window are 

sometimes heterogeneous in nature and sometimes homogeneous depending on the 

location of the sliding window. In case of jumping window approach, the window jumps 

from existing segment to the next stream of incoming data after a change point has 

occurred. Thus, the data points within each instance of the window are always 

homogeneous in nature. 

The pipeline has the elements of working as an online method, with the only 

limitation of locally linear embedding (LLE). Currently, in this work LLE needs the entire 

batch of data for dimensionality reduction. An incremental LLE has been proposed in [30], 

which if implemented can turn the pipeline to a truly online method. Online methods are 

important in the age of big data for scalability purposes.
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There are some hyperparameters in the pipeline which are not optimized and are 

kept constant. They are tweaked manually to get better segmentation. These are: 

 The number of dependencies on the previous time-steps or the order of the Markov 

chain: This is kept constant at 4 throughout the work. 

 The dimension of the embedding space: This is kept constant at 3 throughout the 

work. 

 The combination of kernels: Depending on the data, this can be dynamically 

generated as proposed in [26]. We use the product of squared exponential and 

periodic kernel throughout the work. 

 The length of moving window: We use different user specified lengths of windows 

for different data. 

 The stride of sliding window: This is kept constant at 1 throughout the work. 

If the above mentioned concerns are addressed, I believe the proposed pipeline will 

get significant improvement in segmenting high dimensional multivariate time-series 

data. 

In all the experiments, the proposed pipeline was run on a single CPU using scikit-

learn [31] and GPy Gaussian process framework [32].
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