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ABSTRACT 

Heterogeneous Catalysis plays an extremely important role in the world. Metal 

particles supported on oxide supports are the most widely employed heterogeneous 

catalysts. In order to provide insight into the development of new catalytic materials, a 

fundamental understanding of surface reactions is required. Vapor-deposited metal 

clusters on single-crystal surfaces are well-defined systems that can be used to understand 

the structure-relationships in commercial catalysts. The pressure gap between 

fundamental surface analysis under ultra-high vacuum (UHV, P~10
-10 

Torr) conditions 

and kinetic evaluation of catalysts under realistic pressures has been bridged by 

constructing a micro-reactor interfaced with UHV chamber: pre- and post-reaction 

surfaces can be examined by X-ray photoelectron spectroscopy (XPS) without exposing 

the sample to air. The performance of this micro-reactor has been verified by reproducing 

kinetic parameters for CO oxidation on Pt/TiO2 (110). 

Pt-Re systems were studied in order to understand the nature of the enhanced 

bimetallic activity for oxidation reactions and the water gas shift (WGS) reaction. Model 

Pt-Re catalysts were prepared by sequential deposition of Pt and Re on a rutile TiO2 

(110) support. Active sites on the Pt-Re bimetallic clusters were investigated by 

temperature programmed desorption (TPD) using CO and methanol as probe molecules. 

At room temperature, Re on top of Pt can diffuse into Pt clusters in a kinetically limited 

process, and the surface composition of Re can be controlled by varying the Re coverage. 

Lattice oxygen participates in the recombination of dissociated CO and promotes CO2 
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formation on bimetallic surfaces. In methanol oxidation reactions on Pt-Re surface alloys, 

higher long-term activity is observed for Pt-Re compared to Pt because less carbonaceous 

deposits are formed on the alloy surface. However, surface Re is unstable due to 

formation and subsequent sublimation of Re2O7. For the WGS reaction, bimetallic 

surfaces consisting of Pt on Re have higher activity than pure Pt, while Re alone has no 

activity. Furthermore, XPS studies show that the active species for WGS is metallic Re 

rather than Re oxides. 
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CHAPTER 1 INTRODUCTION 
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1.1 CATALYSIS AND HETEROGENEOUS CATALYSIS 

Catalysis usually refers to the acceleration of a chemical reaction by the action of a 

catalyst. It is a kinetic concept: the catalyst does not change the thermodynamics of the 

reaction; it changes the reaction pathway, through which a less activation energy is 

required
[1]

. Catalysis is of great important in our modern society. It has been estimated 

that 90% of chemical products involve catalytic processes
[2]

. From an economic 

perspective, catalysis potentially contributes to over 30% of GDP in the whole world
[3]

, 

and the global demand on catalysts was approximately 29.5 billion USD in 2010
[4]

. 

Usually catalysis is divided into three categories
[5]

: (i) homogeneous catalysis, 

typically reactions in liquid phase solutions (eg, Suzuki reaction catalyzed by ligand-free 

palladium catalyst
[6, 7]

); (ii) heterogeneous catalysis, which deals with the catalytic 

reactions on gas-solid surface or liquid-solid phase (eg, CO oxidation by transition metals 

such as Pt
[8, 9]

 or Au/TiO2
[10-12]

) and (iii) bio-catalysis in biological systems that using 

natural catalysts such as protein enzymes (eg, hydrolysis of proteins
[13, 14]

). Among them 

heterogeneous catalysis plays the most crucial role in industrial processes. For example, 

the refining of petroleum
[15-17]

, energy conversions steps like gas reforming, water-gas 

shift reaction and preferential oxidation of CO in proton exchange membrane fuel cells 

(PEMFC)
[18, 19]

 and environmentally, the emission control of automobile exhaust
[20-22]

. 

Supported catalysts consisting of metal particles dispersed on the internal surface of 

porous oxides or carbon are the most important materials in heterogeneous catalysis 
[23, 24]

. 

Catalysts with higher activity, better selectivity and longer life time are always desired. In 

order to provide effective guidance to design better catalysts for industrial processes, it is 

crucial to know about the chemical nature behind the high activity and selectivity. 
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Despite the extensive use of solid supported catalysts, it is hard to fully understand the 

exact mechanism of improving factors and deactivation reasons, since traditional solid 

catalysts are too complicated systems for fundamental studies. For example, catalyst 

support can be amorphous or microcrystalline materials, and could contain different 

crystal phases and due to the fact that most of synthesis and treatment recipe are based on 

empirical studies, it is challenging to maintain dispersion and control for impurities
[25]

. In 

many cases only bulk information can be extracted by conventional characterizations 

methods in solid catalysts, while surface is the location where most reactions take place. 

Hence, it is extremely difficult to grasp the structure-activity relationship there because a 

complete analysis of the surface is difficult to establish.  

1.2 IMPORTANCE OF SURFACE SCIENCE IN CATALYSIS 

Surface science is the study of physical and chemical phenomena that occur at the 

interface of two phases, which has a major influence on the understanding of processes 

relevant to heterogeneous catalysis in nature
[26]

. As emphasized by Campbell, the goal of 

surface science is to fundamentally understand the relationship between atomic level 

structure of a catalyst surface and its catalytic performance
[27]

, for example, extracting the 

connection between the surface structure of a certain gas-solid surface and its macro 

kinetic behaviors such as activity, selectivity and stability. 

In order to gain fundamental understanding of real world catalysts, it is necessary to 

get started with a system where the complexities of those catalysts are reduced. The 

ultimate goal is to systematically study the key structural and electronic factors for the 

function of the real catalytic material
[28]

. To achieve this end, the model catalyst approach 

had been put forward
[29-31]

. 
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The basic concept of model catalyst approach is simplifying the complexities of real 

catalyst, so that surface composition, morphology as well as surface active sites can be 

identified and accurately controlled. In a starting point, a planar metal single crystal 

which is highly uniform in surface structure serves as the model catalyst
[32]

. Later on, the 

supported model catalyst, which consists of metal clusters deposited on oxide substrate, 

has been widely employed. For our fundamental studies, ultra high vacuum (UHV) 

condition (pressure<10
-10

 Torr), which can guarantee a contamination-free surface in 

atomic scale to keep adsorption of residual gases below 10
−3

 monolayer/second
[33]

, is 

required to minimized impurities and maintain a clean environment, so that the surface 

chemistry can be well understood.  

Impressive progresses have been made in the surface science and catalysis with the 

powerful characterization techniques under UHV conditions. Those important electronic 

and ion based techniques in this work including scanning tunneling microscope (STM), 

low energy ion scattering (LEIS), X-ray photoelectron spectroscopy (XPS), Auger 

electron spectroscopy(AES) and temperature programmed desorption (TPD). Most 

surface analysis techniques must be carried out in high vacuum, since electrons and ions 

are scattered by molecules in the gas phase. Though photon based techniques can be 

operated in the ambient pressure in principle, sometimes gas phase absorption of photons 

can occur and as a consequence their operation also require vacuum operation
[33]

. Benefit 

those surface science techniques, our model catalyst can be prepared and controlled 

precisely in an atomic clean environment, comprehensively characterized, followed by 

carefully chemical activity study under UHV conditions. 
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1.3 MOTIVATION OF THIS THESIS WORK 

The combination of powerful surface analysis techniques in UHV chamber enables us 

to gain comprehensive knowledge of the surface information (morphology, composition 

and structure). Assuming the fundamental studies for a certain industrial catalyst is 

provided, the question is: do the behaviors observed in the model system truly reflect or 

represent those in the real reactions? This is a difficult question to answer. It is generally 

accepted that there are mainly two gaps between real catalytic reaction studies and 

surface science studies: the materials gap and pressure gap. 

The pressure gap is usually the main concern between the surface science study and 

conventional heterogeneous catalysis, since the majority of surface analysis techniques 

must be undertaken in UHV condition (P ~10
-9

 Torr), the adsorption and desorption 

behavior for reactants or probe molecules in vacuum could be totally different from that 

in real case, since most of industrial reactions run at higher pressure condition (P~10
+2

 

Torr or higher). A micro-reactor coupled to the UHV system can bridge the pressure gap 

for catalytic kinetic evaluation and surface analysis techniques 
[34]

. By this design the 

kinetic part on a given surface can be measured using the elevated pressure reactor, while 

the analysis of the structure and composition of the surface can be achieved both before 

and after reaction without exposure to air, a suitable gate valve could hold the pressure 

difference in standby state. When opening the gate valve, a transfer arm can be used to 

move the sample or “catalyst” between the higher pressure reactor and UHV chamber. 

The detail of reactor design is included in chapter 2.  

The primary objective of this work is to understand the activity of model catalysts 

under both UHV conditions and realistic catalytic conditions. Pt and Pt-Re clusters 
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supported on TiO2 (110) are the main model surfaces employed in this work. The CO 

oxidation (chapter 2), methanol oxidation (chapter 3 and chapter 6) and water-gas shift 

reaction (chapter 4) are the typical probe reactions investigated, within the capability of 

current reactor system’s configurations. The chemical activity studies of those surfaces 

under UHV conditions (TPD) were also examined (chapter 5 and appendix A). 

To summarize, compared with complicated conventional catalysts, the supported 

model catalyst is a much simplified system which can be fully characterized and 

extensively studied under UHV condition. Meanwhile, the chemical activity and kinetics 

of model catalysts can also be measured in simulated real reaction conditions without 

exposure to air between pre- and post-reaction surface analysis. With atomic-level clean 

surface, well-defined surface structure and composition, precise control of background, 

simulated real reaction study, the model catalyst system is believed to provide a more 

fundamental understanding of surface structure-function relationship, for the guidance of 

design of better catalysts. 

1.4 EXPERIMENTAL TECHNIQUES 

The supported model catalysts in this thesis were prepared in UHV chambers by 

physical vapor deposition (PVD) if no further mentioned. The characterizations of model 

surfaces were achieved by a set of surface techniques explained one by one below. The 

activity tests under realistic catalytic conditions were performed in a higher pressure 

micro-reactor which will be illustrated in Chapter 2 in detail. 

1.4.1 TEMPERATURE PROGRAMMED DESORPTION (TPD)  

TPD is also called temperature-programmed reaction spectroscopy (TPRS), or 

thermal desorption spectroscopy (TDS)
[35]

. It is a powerful surface science technique 
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which studies the chemical activity of model surface under UHV condition. It helps to 

determine surface coverages as well as provides information on the strength of the bond 

between adsorbate and substrate
[36]

. For example, H2-TPD helps to understand the active 

sites of model Pt and Pd surface
[37, 38]

. Figure 1.1 shows a schematic set-up for TPD in 

vacuum chamber. The sample surface which usually mounted on a manipulator is heated 

resistively via thin tantalum or tungsten wires. A thermocouple which is spot-welded to 

the crystal is used to monitor the temperature. This type of sample responds much more 

rapidly to heating than a catalyst in a reactor. The concentration of desorbing species is 

usually measured by a quadrupole mass spectrometer. Pumping capacity is an important 

consideration in TPD. The pumping speed should be sufficiently high to prevent re-

adsorption of the desorbed species back onto the surface. 

 

Figure 1.1: Schematic of temperature programmed desorption in vacuum chamber
[36]
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Figure 1.2 shows the TPD setup in this work. The Hiden mass spectrometer is 

shielded with gold-covered flag that has a 2mm diameter hole in the center of the flag. 

The sample is placed approximately 3 mm from the aperture in the flag, which helps to 

eliminate any contribution from molecules that desorb from the rest of the sample holder 

or manipulator. Before preparing any surface for a standard TPD experiment, the surface 

must be free of adsorbates, and the cool-flash-cool procedure is applied. For example, 

after being sputtering and annealing, the sample is cooled by liquid nitrogen to ~80 K to 

adsorb weakly bound species. After that a flash step is applied to remove those 

adsorbates right before dosing metal clusters.  

The flag of mass spectrometer here is to prevent detection of species desorption 

from the sample holder. The performance has been verified by excellent baseline in 

successful control experiments. During the temperature programmed linear ramping, the 

sample is also biased at -100 V to avoid any electron-induced chemistry on the surface. 

 

Figure 1.2: TPD setup in this work, showing clean TiO2 sample is in front of the mass 

spectrometer flag
[39]
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1.4.2 X-RAY PHOTOELECTRON SPECTROSCOPY (XPS) 

XPS, also named Electron Spectroscopy for Chemical Analysis (ESCA), is among 

the most frequently used surface sensitive techniques in heterogeneous catalysis 
[40]

. XPS 

can determine elemental compositions of the surface (top 0-10 nm usually), obtain 

oxidation state information of certain elements as well as the valence band structure. It is 

the core analysis method for the characterization of model catalysts in this work. 

 

Figure 1.3: Schematic diagram of the XPS process, showing photoionization of an atom 

by the ejection of a 1s electron
[41]

 

In principle, XPS is based on the photoelectric effect as outlined by Einstein in 

1905, which can be expressed by equation Ek=hν-Eb-φ. In the equation, ν is defined as the 

frequency of exciting radiation of X-ray, and the energy of the incident light would be hν 

(h is Planck’s constant); Eb is the binding energy of the electron which is the parameter 

identifies the electron specifically, and φ is the work function of the spectrometer, which 

denotes the minimum energy necessary to eject an electron from the valence band into 
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vacuum, and can be measured by a standard reference. Theoretically if the energy 

transfer is sufficient, that is, hν is larger than (Eb+φ), a core or valence electron with 

binding energy Eb will be ejected with kinetic energy Ek. By using an X-ray source, 

routinely Al-Kα (1486.6 eV) or Mg-Kα line (1253.6 eV), photons are created which have 

the ability to transfer their entire energy to electrons within atoms by striking them. The 

process of photoemission is shown schematically in Figure 1.3, where a 1s electron from 

the K shell is ejected.  

XPS works by sending X-rays of a known energy toward the sample to produce 

photoelectrons and comparing the Ek with the initial energy of the photon. As described, 

this part of energy difference is the summation of Eb and work function φ, while φ can be 

calculated from a standard reference. Therefore by collecting the Ek we will be able to 

calculate the Eb, which is dependent on the type of atom the electron came from as well 

as the environment it came from. Hence the photoelectron spectrum will reproduce the 

electronic structure of an element quite accurately since all electrons with a binding 

energy less than the photon energy will be featured in the spectrum
[42]

.  

As illustrated in Figure 1.4, the XPS spectrum is superimposed on a 

representation of the electron orbital. The electrons which are excited and escape without 

energy loss contribute to the characteristic peaks in the spectrum; while those that 

undergo inelastic scattering and suffer energy loss contribute to the background of the 

spectrum. A change of the oxidation state of a certain element will result in a shift of the 

binding energy. Therefore, a “chemical shift” can be detected in XPS and based on 

chemical shift the oxidation state information can be exacted. 
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Figure 1.4: Photo electron spectrum of lead showing the manner in which electrons 

escaping from the solid can contribute to discrete peaks or suffer energy loss and 

contribute to the background
[41]

 

It should be noted that regular XPS experiment must be conducted under a 

pressure lower than 10
-9

 Torr, since the emitted photoelectrons must be able to travel 

from the sample through the analyzer to the detector without colliding with gas phase 

molecules, meanwhile the surface composition of the sample under investigation must 

not change during experiment
[40]

. For studies in UHV chambers, the pressure is not a 

problem. Technically XPS can also be used to probe surface at ~10
+1

 Torr range if 

differential pump stages can be achieved, this is also ambient-pressure XPS. AP-XPS has 

been well-developed in past years
[43, 44]

 for in situ. 

1.4.3 AUGER ELECTRON SPECTROSCOPY (AES) 

Auger Electron Spectroscopy (AES) is also one of the most important chemical 

surface analysis tools for conducting samples, which could provide information 

essentially on the elemental composition of the first 2–10 atomic layers
[45]

. Unlike XPS, 

AES is a three-electron process. When the surface is irradiated with electrons, core 
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electrons are ejected in the same way as that in XPS. The other possibility is that the core 

hole (for example K shell vacancy as shown in Figure 1.3) may be filled by an electron 

from a higher level, thus another electron must be ejected from the atom conforming with 

the principle of the conservation of energy. For instance, for the L2,3 level in Figure 1.5, 

this electron is termed the KL2,3L2,3 Auger electron. 

The energy of an Auger transition (KLM) can be approximately given by EKLM = 

EK - EL- EM-δE- φ. In this equation: EKLM is the kinetic energy of the Auger electron; EK, 

EL and EM is the binding energy of an electron in the K-, L- and M-shell; φ is the work 

function; δE is the energy shift caused by relaxation effects. 

 

Figure 1.5: Relaxation of ionized atom by emission of a KL2,3 L2,3 Auger electron
[41]

 

 

AES provides element-specific information on the surface region. Compared with 

XPS, Auger spectra has a better spatial resolution, which can be obtained from spots with 

diameters as small as a few nanometers
[36, 45]

.For many catalytically relevant elements (C, 

Cl, S, Pt, Ir, Rh), the main Auger electrons have energies in the range of 100 to 300 eV, 

where the mean free path of the electrons is at its minimum. Thus, for those elements, 

AES is considerably more surface sensitive than XPS
[42]

. 



13 

1.4.4  LOW ENERGY ELECTRON DIFFRACTION (LEED) 

LEED is use d to determine the surface structure of single crystal surfaces and the 

structure of ordered adsorbate layers
[46]

. The principle of LEED is illustrated in Figure 

1.6: a beam of mono energetic low-energy electrons (50–200 eV) minimum mean free 

path) falls on a surface, whereupon electrons are scattered elastically in all directions
[36]

. 

 

Figure 1.6: The principle of low-energy electron diffraction (LEED)
[36]

 

 

The electrons can be considered as a wave with wavelength λ= h·(2·me·Ekin)
-1/2

, 

where h is Planck’s constant; me is the mass of the electron; Ekin is the kinetic energy of 

the electron. Hence, scattered electrons will exhibit an interference pattern with 

constructive interference in directions with and the other symbols as defined. Hence, if 

the scattered electrons are collected with a fluorescent screen, one observes a pattern of 

spots, each of which corresponds to a direction in which constructive interference takes 
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place. The set-up is shown schematically in Figure 1.6. For work in this thesis, LEED 

was used to verify there is no reconstruction of TiO2 (110) surface. 

1.4.5 LOW ENERGY ION SCATTERING SPECTROSCOPY (LEIS) 

Low-energy ion scattering, also referred to as ion scattering spectroscopy (ISS), is 

exclusively sensitive for the top-first surface layer, which makes this technique an 

extremely powerful tool for the characterization of catalysts. It is the surface-sensitive 

counterpart of the Rutherford backscattering technique. The principle of LEIS is shown 

in Figure 1.7. The primary ion with certain energy will be ejected to surface, by 

collecting the energy of scattered ions, information of surface atoms can be extracted. 

Because of its extreme surface sensitivity, LEIS requires vacuum conditions which allow 

the sample to be prepared and maintained in a defined state for a sufficiently long period. 

Therefore the scattering chamber must be a UHV system with a base pressure below 10
−9

 

Torr
[46]

. LEIS experiments were carried out with a beam of helium ions in this work. 

 

Figure 1.7: Principle of low energy ion scattering (LEIS)
[47]
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1.4.6 SCANNING TUNNELING MICROSCOPY (STM) 

The STM is an example of the practical application of quantum mechanical 

phenomenon: quantum tunneling
[48]

. Based on quantum theory, the cloud of electrons at 

the surface is not entirely confined to the surface atoms, electrons have probability that 

extend into the vacuum. As can be illustrated from Figure 1.8, when a fine STM tip 

approaches the surface (~a few Angstroms), the electron clouds of the tip and surface 

begin to overlap. A small positive potential on the tip is sufficient to cause a measurable 

tunneling current over the gap between the tip and the surface, therefore a certain 

relationship can be built between the tunneling current and the distance. Using a constant 

current mode, STM experiments were conducted to image the surface, to obtain the 

surface morphology and cluster size information. 

 

Figure 1.8: Principle of scanning tunneling microscope (STM)
[36]

 

Since STM relies on the tunneling current between a tip and the surface, its 

operation must limit to conducting substrates, usually metals and semiconductors, while 

it is still possible for us to image oxides using STM, for example, the TiO2 (110) support, 
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which is the primary single crystal support in this work. The structure of rutile TiO2 is 

shown in Figure 1.9. Even though TiO2 itself is an insulator, after heating to high 

temperature in vacuum condition or bombardment by ions, the oxygen atoms on the 

surface can be removed, leaving oxygen vacancies there. Those oxygen vacancies could 

provide sufficient conductivity for the application of STM. Many high quality images of 

the TiO2 (110) surface have been reported
[49-51]

, and due to its outstanding chemical and 

physical properties, in the past decades, TiO2 surfaces have been used as a model support 

for metal particles
[12, 52, 53]

.  

 

Figure 1.9: Structure of Rutile TiO2 
[54]

 

 

 

 

 

 

Figure 1.10: Crystal structure of the rutile TiO2 surface cut along the [110] plane
[39]

 

  



17 

1.5 REFERENCES 

(1) Webb, S. J.; Thomson, G., Heterogeneous Catalysis. 1969; p 1-200. 

(2) Chorkendorff, I.; Niemantsverdriet, J. W., Introduction to Catalysis. In Concepts 

of Modern Catalysis and Kinetics, Wiley-VCH Verlag GmbH & Co. KGaA: 

2005; pp 1-21. 

(3) Recognizing the Best in Innovation: Breakthrough Catalyst. R&D Magazine 

September 2005, p 20. 

(4) https://en.wikipedia.org/wiki/Catalysis#cite_note-33. 

(5) Rothenberg, G., Catalyis. Wiley: 2008. 

(6) Leadbeater, N. E.; Marco, M., Ligand-Free Palladium Catalysis of the Suzuki 

Reaction in Water Using Microwave Heating. Organic Letters 2002, 4 (17), 2973-

2976. 

(7) Durap, F.; Baysal, A.; Elma, D.; Aydemir, M.; Ok, Ö.; Baysal, Z., p(HEMA)-

Pd(II) and p(HEMA-MAH)-Pd(II) Microspheres: Efficient, Recyclable and 

Ligand-Free Catalyst for Suzuki-Miyaura Cross-Coupling Reaction in Water. 

Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 

2016, 46 (9), 1402-1409. 

(8) Langmuir, I., The mechanism of the catalytic action of platinum in the reactions 

2CO+O2= 2CO2 and 2H2+O2= 2H2O. Transactions of the Faraday Society 1922, 

17, 621-654. 

(9) Goodman, D. W.; Kelley, R. D.; Madey, T. E.; Yates Jr, J. T., Kinetics of the 

hydrogenation of CO over a single crystal nickel catalyst. Journal of Catalysis 

1980, 63 (1), 226-234. 

(10) Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N., Novel Gold Catalysts for the 

Oxidation of Carbon Monoxide at a Temperature far Below 0 deg C. Chemistry 

Letters 1987, 16 (2), 405-408. 

(11) Lin, S. D.; Bollinger, M.; Vannice, M. A., Low temperature CO oxidation over 

Au/TiO2 and Au/SiO2 catalysts. Catalysis Letters 1993, 17 (3), 245-262. 

(12) Valden, M.; Lai, X.; Goodman, D. W., Onset of Catalytic Activity of Gold 

Clusters on Titania with the Appearance of Nonmetallic Properties. Science 1998, 

281 (5383), 1647-1650. 

(13) Hill, R. L., Hydrolysis of Proteins. In Advances in Protein Chemistry, C.B. 

Anfinsen, M. L. A. J. T. E.; Frederic, M. R., Eds. Academic Press: 1965; Vol. 

Volume 20, pp 37-107. 



18 

(14) Silveira, S. T.; Martínez-Maqueda, D.; Recio, I.; Hernández-Ledesma, B., 

Dipeptidyl peptidase-IV inhibitory peptides generated by tryptic hydrolysis of a 

whey protein concentrate rich in β-lactoglobulin. Food Chemistry 2013, 141 (2), 

1072-1077. 

(15) Gates, B. C.; Topsøe, H., Reactivities in deep catalytic hydrodesulfurization: 

challenges, opportunities, and the importance of 4-methyldibenzothiophene and 

4,6-dimethyldibenzothiophene. Polyhedron 1997, 16 (18), 3213-3217. 

(16) Miller, J. T.; Reagan, W. J.; Kaduk, J. A.; Marshall, C. L.; Kropf, A. J., Selective 

Hydrodesulfurization of FCC Naphtha with Supported MoS2 Catalysts: The Role 

of Cobalt. Journal of Catalysis 2000, 193 (1), 123-131. 

(17) Estrada-Villagrana, A. D.; Quiroz-Sosa, G. B.; Jiménez-Alarcón, M. L.; Alemán-

Vázquez, L. O.; Cano-Domínguez, J. L., Comparison between a conventional 

process and reactive distillation for naphtha hydrodesulfurization. Chemical 

Engineering and Processing: Process Intensification 2006, 45 (12), 1036-1040. 

(18) Park, E. D.; Lee, D.; Lee, H. C., Recent progress in selective CO removal in a H-

2-rich stream. Catalysis Today 2009, 139 (4), 280-290. 

(19) Liu, Y.; Fu, Q.; Stephanopoulos, M. F., Preferential oxidation of CO in H2 over 

CuO-CeO2 catalysts. Catalysis Today 2004, 93-95, 241-246. 

(20) Hodjati, S.; Vaezzadeh, K.; Petit, C.; Pitchon, V.; Kiennemann, A., 

Absorption/desorption of NOx process on perovskites: performances to remove 

NOx from a lean exhaust gas. Applied Catalysis B: Environmental 2000, 26 (1), 5-

16. 

(21) Wang, Y.; Li, X.; Zhan, L.; Li, C.; Qiao, W.; Ling, L., Effect of SO2 on Activated 

Carbon Honeycomb Supported CeO2–MnOx Catalyst for NO Removal at Low 

Temperature. Industrial & Engineering Chemistry Research 2015, 54 (8), 2274-

2278. 

(22) Castoldi, L.; Aneggi, E.; Matarrese, R.; Bonzi, R.; Llorca, J.; Trovarelli, A.; 

Lietti, L., Silver-based catalytic materials for the simultaneous removal of soot 

and NOx. Catalysis Today 2015, 258, Part 2, 405-415. 

(23) Tauster, S. J.; Fung, S. C.; Baker, R. T. K.; Horsley, J. A., Strong Interactions in 

Supported-Metal Catalysts. Science 1981, 211 (4487), 1121-1125. 

(24) Henry, C. R., Surface studies of supported model catalysts. Surface Science 

Reports 1998, 31 (7–8), 231-325. 

(25) Chusuei, C. C.; Lai, X.; Luo, K.; Goodman, D. W., Modeling heterogeneous 

catalysts: metal clusters on planar oxide supports. Topics in Catalysis 2000, 14 

(1), 71-83. 



19 

(26) Somorjai, G. A., Surface Science and Catalysis. Science 1985, 227 (4689), 902-

908. 

(27) Charles T, C., Studies of Model Catalysts with Well-Defined Surfaces Combining 

Ultrahigh Vacuum Surface Characterization with Medium- and High-Pressure 

Kinetics. In Advances in Catalysis, D.D. Eley, H. P.; Paul, B. W., Eds. Academic 

Press: 1989; Vol. Volume 36, pp 1-54. 

(28) Freund, H.-J., The Surface Science of Catalysis and More, Using Ultrathin Oxide 

Films as Templates: A Perspective. Journal of the American Chemical Society 

2016, 138 (29), 8985-8996. 

(29) Campbell, C. T., Studies of Model Catalysts with Well-Defined Surfaces 

Combining Ultrahigh Vacuum Surface Characterization with Medium- and High-

Pressure Kinetics. In Advances in Catalysis, D.D. Eley, H. P.; Paul, B. W., Eds. 

Academic Press: 1989; Vol. Volume 36, pp 1-54. 

(30) Freund, H. J.; Bäumer, M.; Libuda, J.; Risse, T.; Rupprechter, G.; Shaikhutdinov, 

S., Preparation and characterization of model catalysts: from ultrahigh vacuum to 

in situ conditions at the atomic dimension. Journal of Catalysis 2003, 216 (1–2), 

223-235. 

(31) Boudart, M., Model catalysts: reductionism for understanding. Topics in Catalysis 

2000, 13 (1), 147. 

(32) Somorjai, G. A.; Mujumdar, A. S., Introduction to Surface Chemistry and 

Catalysis. Drying Technology 1995, 13 (1-2), 507-508. 

(33) Vickerman, J. C., Introduction. In Surface Analysis – The Principal Techniques, 

John Wiley & Sons, Ltd: 2009; pp 1-8. 

(34) Goodman, D. W., Correlations between Surface Science Models and “Real-

World” Catalysts. The Journal of Physical Chemistry 1996, 100 (31), 13090-

13102. 

(35) Vickerman, J. C., Molecular Surface Mass Spectrometry by SIMS. In Surface 

Analysis – The Principal Techniques, John Wiley & Sons, Ltd: 2009; pp 113-205. 

(36) Niemantsverdriet, J. W., Spectroscopy in Catalysis. 2007. 

(37) Greenlief, C. M.; Akhter, S.; White, J. M., Temperature-programmed desorption 

study of hydrogen-deuterium exchange on platinum(111) and the role of 

subsurface sites. The Journal of Physical Chemistry 1986, 90 (17), 4080-4083. 

(38) Miller, J. T.; Meyers, B. L.; Modica, F. S.; Lane, G. S.; Vaarkamp, M.; 

Koningsberger, D. C., Hydrogen Temperature-Programmed Desorption (H2 TPD) 

of Supported Platinum Catalysts. Journal of Catalysis 1993, 143 (2), 395-408. 



20 

(39) Tenney, S. A. Characterization and Chemical Activity of Titania-Supported AU-

Based Bimetallic Clusters (Ph.D. Dissertation). University of South Carolina, 

2012. 

(40) Ratner, B. D.; Castner, D. G., Electron Spectroscopy for Chemical Analysis. In 

Surface Analysis – The Principal Techniques, John Wiley & Sons, Ltd: 2009; pp 

47-112. 

(41) Watts, J. F.; Wolstenholme, J., Electron Spectroscopy: Some Basic Concepts. In 

An Introduction to Surface Analysis by XPS and AES, John Wiley & Sons, Ltd: 

2005; pp 1-15. 

(42) Surface Science: An Introduction. Materials Today 2003, 6 (9), 40. 

(43) Tao, F., Operando Studies of Catalyst Surfaces during Catalysis and under 

Reaction Conditions: Ambient Pressure X-Ray Photoelectron Spectroscopy with a 

Flow-Cell Reactor. ChemCatChem 2012, 4 (5), 583-590. 

(44) Tao, F., Design of an in-house ambient pressure AP-XPS using a bench-top X-ray 

source and the surface chemistry of ceria under reaction conditions. Chemical 

Communications 2012, 48 (32), 3812-3814. 

(45) Mathieu, H. J., Auger Electron Spectroscopy. In Surface Analysis – The Principal 

Techniques, John Wiley & Sons, Ltd: 2009; pp 9-45. 

(46) Taglauer, E., Low-Energy Ion Scattering and Rutherford Backscattering. In 

Surface Analysis – The Principal Techniques, John Wiley & Sons, Ltd: 2009; pp 

269-331. 

(47) Galhenage, R. P. Metals on Titania/HOPG as Models for Heterogeneous 

Catalysts (Ph.D. Dissertation). University of South Carolina, 2015. 

(48) Leggett, G. J., Scanning Probe Microscopy. In Surface Analysis – The Principal 

Techniques, John Wiley & Sons, Ltd: 2009; pp 479-562. 

(49) Suzuki, S.; Onishi, H.; Sasaki, T.; Fukui, K.-i.; Iwasawa, Y., Identification of 

individual 4-methylpyridine molecules physisorbed and chemisorbed on 

TiO2(110)-(1 x 1) surface by STM. Catalysis Letters 1998, 54 (4), 177-180. 

(50) Bennett, R. A.; Stone, P.; Price, N. J.; Bowker, M., Two (1x2) Reconstructions of 

TiO2(110): Surface Rearrangement and Reactivity Studied Using Elevated 

Temperature Scanning Tunneling Microscopy. Physical Review Letters 1999, 82 

(19), 3831-3834. 

(51) Iwasawa, Y.; Onishi, H.; Fukui, K.-i., In situ STM study of surface catalytic 

reactions on TiO2(110) relevant to catalyst design. Topics in Catalysis 2000, 14 

(1), 163-172. 



21 

(52) Xu, C.; Lai, X.; Zajac, G. W.; Goodman, D. W., Scanning tunneling microscopy 

studies of the TiO2(110) surface: Structure and the nucleation growth of Pd. 

Physical Review B 1997, 56 (20), 13464-13482. 

(53) Starr, D. E.; Shaikhutdinov, S. K.; Freund, H.-J., Gold Supported on Oxide 

Surfaces: Environmental Effects as Studied by STM. Topics in Catalysis 2005, 36 

(1), 33-41. 

(54) Diebold, U., The surface science of titanium dioxide. Surface Science Reports 

2003, 48 (5–8), 53-229. 

 

 



22 

CHAPTER 2 NOVEL RECIRCULATING LOOP REACTOR FOR STUDIES ON 

MODEL CATALYSTS: CO OXIDATION ON PT/TIO2 (110)
1
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23 

2.1 INTRODUCTION 

The ability to couple basic surface science with more practical catalyst evaluation 

methods provides detailed surface characterization that is critical for guiding the 

development of new catalytic materials. Studies of model catalysts in ultrahigh vacuum 

(UHV, P<1x10
-10

 Torr) are desirable due to the precisely controlled environment and the 

ability to use electron and ion based spectroscopies for characterization of atomic 

composition and structure. Furthermore, the uses of model catalysts that consist of metal 

particles deposited on single-crystal surfaces provide surface structures that are known 

and well-defined on the atomic level. A number of studies in the literature have illustrated 

the importance and utility of combining UHV surface analysis with studies of reaction 

rates
[1-4]

. However, one of the most critical concerns regarding kinetic studies on 

atomically flat, single-crystal surfaces is the low concentration of catalytic sites. 

Therefore, the bridge between model surfaces and real catalysts is difficult to establish, 

and significant effort has been devoted to the construction of reactor systems that can 

couple kinetic evaluation of model surfaces with UHV analysis; these designs have been 

summarized in a review article by Campbell
[1]

 and in subsequent papers
[5-8]

. 

The various reactor designs each have their strengths and weaknesses, and in 

general they can be divided into two categories: the reactor cup design and the transfer 

rod design. In all cases the reaction products are analyzed either by gas chromatography 

(GC) with flame ionization or thermal conductivity detectors, or by mass spectrometry. 

The internal reactor cup design was pioneered by Somorjai and coworkers and represents 

the first study that couples UHV analysis on single crystals with high pressure reaction 

conditions
[9]

.Subsequent modifications of this reactor cup design have been used by a 
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number of research groups
[6, 7, 10-17]

. The main advantage of the reactor cup design is that 

high pressures of 100 atm can be achieved; the reactor cup is sealed against the sample 

holder by using a hydraulic piston to apply 2000 lb/in
2
 to the metal gasket seal

[12]
. A 

disadvantage is that the reactor cannot be isolated from the UHV chamber after the cup is 

removed from the sample holder, and therefore outgassing from the walls of the reactor 

limits the pressure in the UHV chamber. Although the reactor cup itself often has a small 

volume (~30 cm
3
)
[10, 11]

, the entire reactor system typically has a volume of 100 cm
3 [10, 11, 

14]
 since the position of the reactor within the UHV chamber limits the proximity to the 

GC system. Consequently, the gas mixture is recirculated to avoid concentration 

gradients. In the transfer rod design, the sample holder is introduced into separate 

chamber or reaction cell, and the sample transfer rod supporting the sample holder is 

isolated from the main chamber by sliding seals consisting of differentially-pumped O-

rings
[8, 18-22]

. In some cases, a relative large reaction cell is used (500 cm
3
)
[21]

, and the 

reaction cell is physically isolated from the UHV chamber by a gate valve when the 

reactor is not in operation. However, mass transfer limitations can be an issue at high 

pressures in the absence of recirculation in the larger volume reactors
[23, 24]

. While in 

other cases, a much smaller volume of the reaction cell (~30 cm
3
) is used to avoid issues 

of mass transfer even without recirculation
[18]

; however, the small volume precludes 

regular sampling of the reaction mixture over long reaction times because the pressure in 

the reaction cell cannot be maintained. The second disadvantage of the transfer rod 

design is that the differential pumping removes gas from the reaction cell at rates of 0.05-

0.3 cm
3
/min 

[1, 8, 18]
. Because the pressure of the reactant gases decrease either by gas 

sampling or differential pumping, it is not possible to measure steady-state reaction 
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kinetics. A maximum reactor pressure of 10 atm has been achieved with transfer rod 

design
[18]

,and although higher pressures are possible, additional stages of differential 

pumping would be required
[1]

. 

In this study, we report the design and operation of a novel recirculating loop 

microreactor that allows frequent sampling of reaction mixtures over extended time 

periods and is directly coupled to a UHV chamber. This reactor combines several 

desirable features that distinguish it from the existing reactors previously reported in the 

literature. First, the reactor is completely isolated from the UHV chamber except during 

sample transfer, and therefore the chamber pressure is never limited by outgassing from 

the reactor walls during normal operation. Second, the small reactor volume (32 cm
3
) and 

ability to recirculate the gas mixture allow high sensitivity for detection and preclude 

mass transfer limitations. Third, the ability to replenish the reaction mixture with fresh 

feed gas after every injection into the GC permits extensive sampling over long reaction 

times despite the small reactor volume. However, a drawback of this design is that 

sample heating in the reactor does not share the heating stage used for the UHV sample 

holder, as in many of the reactor cup and transfer rod designs. Also, the maximum 

pressure in the reactor is limited to 1 atm in the current configuration although valves and 

fitting designed for higher pressures could be used to increase the range of operating 

pressures. Recirculating loop reactors have the potential to contaminate the model 

surfaces since the reactant gases have increased contact time with surfaces other than the 

catalyst
[1]

, but recirculation also eliminates concentration gradients and stagnant regions 

present in batch reactors, as well as enhances sensitivity over single-pass flow reactors. 
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CO oxidation over titania-supported Pt clusters was chosen as a system to 

establish a proof of concept for the reactor because CO oxidation on Pt has been well 

studied in the literature
[25-28]

. Furthermore, the investigation of catalytic activity on metal 

clusters deposited on single crystal oxide supports is even more challenging than on 

single crystal metal surfaces due to the smaller number of active sites, and consequently 

there have been comparatively few such studies in the literature
[29-31]

. Our experiments 

for CO oxidation on 2 ML Pt clusters on TiO2(110) with an estimated 1.2x10
15

 active 

sites show that the CO2 product can easily be detected after only 15 minutes of 

recirculation and reaction. During these experiments, automated GC sampling of the 

reaction mixture occurred every 15 minutes over the course of 24 hours for reaction 

temperatures between 145 and 165 °C. Our reactor experiments successfully reproduced 

kinetic parameters from the literature for CO oxidation on Pt, such as activation energy, 

turnover frequencies and reaction order in O2 and CO
[28, 32]

. 

2.2  BUILD-UP OF NOVEL MICRO-REACTOR SYSTEM  

The housing for the reactor is a cylindrically shaped stainless steel piece (diameter 

1.5", and height 0.875"), which can be separated into two halves and attaches to a 2 3/4" 

outer diameter ConFlat flange (Figure 2.1a). The two VCR fittings welded onto the 

atmospheric side of this flange serve as the gas inlet and outlet, and a type K 

thermocouple is fed through the gas outlet so that the temperature of the reactant gas can 

be measured directly. A slot is cut in the body of the reactor to house the single-crystal 

sample (1 cm ×1 cm ×1 mm) mounted on a Ta plate, which can be transferred directly 

from the reactor to the sample holder in the attached UHV chamber; the two holes 

positioned directly under the sample slot and the beveled edges at the top and bottom of 
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the slot accommodate the gripping mechanism of the sample transfer system. Figure 2.1b 

shows the reactor flange with only the bottom half of the housing attached so that the gas 

inlet port behind the top half of the housing is visible, as well as the details of the sample 

holder inside the housing.  

 

 

 

 

 

 

 

 

 

 

The reactor housing sits inside of an all-metal gate valve (VAT 481) that isolates the 

reactor from the UHV chamber, and the gap between reactor housing and inside wall of 

the gate valve is 1-2 mm (Figure 2.2). The flanges of the gate valve and reactor are sealed 

with Ag or Au-plated Cu gaskets to eliminate CO oxidation activity from the Cu 

surface
[33]

. 

 A differentially pumped glass nipple and another gate valve separate the VAT valve 

from the UHV chamber to prevent heat transfer and diffusion of He from the reactor to 

the UHV chamber. Before opening the reactor to UHV chamber, the reactor is isolated 

from the remainder of the recirculation loop by closing two Swagelok bellows-sealed 

Figure 2.1: Photographs of: a) the reactor housing showing the Ta plate 

with the TiO2(110) crystal partially inserted into the sample holder; and 

b) the reactor housing with the top half removed to show the sample 

holder and the gas inlet 
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valves and then opening a third valve to a 150 l/s turbomolecular pump (Leybold 

Turbovac) to evacuate the reactor. The resulting chamber pressure during sample transfer 

is 1x10
-7

 Torr, and the chamber pressure dropped to ~2x10
-10

 Torr within 5 minutes of 

closing the gate valve to the reactor. Operation of the reactor had no effect on the 

chamber pressure, which remained below 2x10
-10

 Torr, and no He diffusion into the 

chamber was detected by the quadrupole mass spectrometer.  

 

 

One of the key features of this recirculation loop reactor is the use of four VICI 

switching valves, which allow operation of the reactor to be switched between single-

pass, recirculation, sampling and feed gas makeup mode. The VICI valves and the reactor 

are coupled by 0.0625" outer diameter and 0.040” inner diameter stainless steel tubing. 

By turning valve 4 (V4) from clockwise (CW) to counterclockwise (CCW) and closing 

the vent valve , the system is switched from the single-pass, catalyst pretreatment mode 

in which the effluent goes to vent, to a closed-loop recirculation mode (Figure 2.3, Table 

2.1). The feed manifold consists of an array of mass flow controllers (Brooks 5850e and 

5850i) for O2, He, and CO, and each flow controller is calibrated with a digital flowmeter 

Figure 2.2: Diagram of the entire reactor setup coupled to the UHV chamber. 
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(Agilent Technologies ADM2000) over the appropriate range. A low dead volume 

absolute capacitance manometer (MKS Instruments Baratron 722A) records the pressure 

of the gas in the system. 

 

 

 

 

In the recirculation mode of operation, the gas stream is passed through the reactor 

that houses the 1 cm
2
 sample (A) before being recirculated by a stainless steel bellows 

pump (Metal Bellows Corp. MB-21). This recirculation pump is throttled by a metering 

valve (Swagelok SS-SS2-VH) set to allow 15 standard cubic centimeters per minute 

(sccm) of gas flow through the system in order to minimize pressure differentials 

generated by the high capacity of the recirculation pump. For V1and V2, the valves are 

rotated through a 60° arc to connect alternating pairs of ports, whereas for V3 and V4 the 

valves are rotated 36° and 90°, respectively, to connect alternating ports. In the position 

shown in Figure 2.3, the gas flow passes through the sample loop (B) and then back into 

Figure 2.3: Schematic of the reactor system shown in recirculation mode with the 

following valve positions: V1:CW, V2:CW, V3:CW, V4:CCW. The positions of the 

valves for the other modes of operation are described in Table I 
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the recirculation loop reactor, where it undergoes another recirculation cycle. The 

contents of the sample loop are injected into the GC by turning V3 through a 36° arc 

from the CW to CCW position, using the He carrier gas from the GC to sweep the 

contents of the sample loop into the column inlet (sampling mode). Note that when this 

occurs, the reactor gas and the He carrier gas flows are only momentarily halted (< 0.2 

sec) while V2 is being switched to essentially maintain continuous flow conditions. 

Table 2.1: Positions of the switching valves for the reactor system for the four different 

modes of operation. 

 

Mode V1 V2 (TCD column) V3 V4 

Singe-pass CW CW CW CW 

Recirculation CW CW CW CCW 

Sampling CW CW CCW CCW 

Make-up CCW CW CW CCW 

 

In the sampling mode, the contents of the gas sample loop (B) are directed to a gas 

chromatograph (HP 5890A) employing both a thermal conductivity detector (TCD) and a 

flame ionization detector (FID), with V2 allowing column selection. The TCD is 

connected to a PLOT molecular sieve 5A or PoraPLOT Q capillary GC column to allow 

accurate analysis of non-organic gases such as CO, CO2, O2, H2, and H2O, while the FID 

is linked to a second PoraPLOT Q capillary GC column for more sensitive analysis of 

organic compounds. Following sample injection, V1 is turned CCW to shorten the 

recirculation pathway between V4 and V1. V3 is then turned back from CCW to CW (the 

normal recirculation position), which permits the sample loop to be filled with fresh feed 

gas (makeup mode) in order to compensate for the loss of gas during injection and to 

maintain constant pressure in the system. After V1 is switched back from the CCW to the 

CW position, the recirculation loop pathway is restored, and the feed gas contents in the 
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sample loop are added into the recirculation loop. An in-house LabVIEW program 

controls the operation of V1, V3 and V4 for automated switching between the various 

modes of operation. The positions of the switching valves in Figure 3 for the different 

modes are described Table 2.1. 

The following high purity gases were used for all experiments: 5% CO balance He 

(Praxair), O2 (Airgas 99.5%) and He (Praxair 99.999%). The CO was passed through an 

alumina trap heated to 150 ºC in order to remove any metal carbonyls from the feed. The 

temperature of the reactor was controlled externally by heating tapes, which were 

regulated by a Chromalox 2104 series temperature controller and achieved reactor gas 

temperatures up to 200 ºC; the gas lines and gas sampling loop were always maintained at 

60º C using a Valco Instruments temperature controller. Based on the volume of the 

reactor and the measured 15 sccm recirculation rate, the reactant gases recirculate over 

the catalyst once every 2 minutes. 

The model catalysts consisted of 2 ML of Pt vapor deposited onto a rutile TiO2(110) 

single crystal. The TiO2 support was cleaned by multiple cycles of Ar
+
 sputtering 

followed by annealing to ~1000 K, and Pt was evaporated using a commercial electron 

beam evaporator (Oxford Applied Research, EGC04) from a high purity Pt rod (99.95%). 

The Pt coverage was measured by an independently calibrated quartz crystal 

microbalance
[34]

, and one monolayer is defined according to the packing density of 

Pt(111) (1.50x10
15

 atoms/cm
2
). Detailed descriptions of the UHV chamber and the 

surface preparation procedures have been previously reported
[35-40]

. For the studies 

reported here, the Pt/TiO2 catalysts were prepared in a separate UHV chamber and then 

transferred in air to the load lock of the UHV chamber attached to the reactor
[41]

;exposure 
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time to air was approximately 30 min. A vacuum transfer system allows samples to be 

moved directly from the UHV analysis chamber to the reactor using a gripper mechanism 

that holds the key on the end of the Ta plate on which the TiO2 crystal is mounted (Figure 

2.1a). The UHV chamber attached to the reactor is now set up for sample cleaning, metal 

deposition and surface analysis so that model surfaces can be prepared in situ in the 

future. After delivery into the reactor, the catalyst was heated to the desired temperature 

in a flow of He (35 sccm) at 760 Torr. The samples were held at the desired temperature 

for five hours, and then the reactant gases were introduced into the reactor loop in the 

single-pass mode before switching to recirculation mode. The measured pressure in the 

reactor during recirculation was approximately 850 torr for all of the experiments.  

Dead volumes for the various sections of the reactor system were measured by first 

evacuating the entire reactor system with the turbomolecular pump and then allowing He 

from a cylinder with a known pressure and volume to expand into reactor system; the 

volumes of the various sections were calculated using the ideal gas law and measured 

pressures after filling with He from the calibration cylinder. The following volumes of 

the reactor system were measured: the reactor only (18.04 cm
3
), the total recirculation 

loop (30.49 cm
3
), sample injection loop for the GC (1.10 cm

3
) and the section of the 

recirculation loop plus sample loop filled with fresh feed gas during makeup mode (1.15 

cm
3
).  

2.3 RESULT AND DISCUSSION 

CO oxidation on 2 ML Pt deposited on TiO2(110) was carried out at the following 

temperatures: 145, 152, 156, 160 and 165 °C using a feed gas mixture of 0.83% CO, 

17.4 % O2, balance helium. Experiments at each temperature were conducted over 24 



33 

hours, and the reaction gas mixture was sampled by the GC every 15 minutes using the 

TCD to measure the CO2 concentration. The number of moles of CO2 in the entire 

recirculation loop was determined from the number of moles of CO2 detected in the GC 

analysis, the ratio of the volumes of the sample injection loop and recirculation loop, and 

the ideal gas law for the measured temperatures and pressures of the recirculation and 

sample injection loops. Furthermore, the total amount of CO2 produced as function of 

time on-line included the corrections for the gas lost due to injection into the GC and the 

gas replaced by fresh feed gas after each injection. The partial pressures of O2 and CO in 

the recirculation loop after each injection were calculated from the known CO2 

concentration and the reaction stoichiometry to determine how much of the reactant gases 

were consumed in the CO oxidation reaction. The conversion of CO and O2 is defined as 

the moles of gas consumed by reaction divided by the moles of gas consumed by reaction 

plus the moles of gas currently in the recirculation loop. Thus, conversion is decreased by 

more frequent sampling of the reaction mixture because fresh feed gas (~1 cm
3
 ) replaces 

the gas lost to GC injection, and this represents 3% of the total volume of the system (32 

cm
3
). The activity of the empty reactor and the clean TiO2(110) crystal without Pt 

constituted only ~3% of the activity for CO oxidation on 2 ML Pt at 160 °C. 

Figure 2.4 shows the CO2 produced, integral rate of CO2 formation and % CO 

conversion as a function of time on-line for CO oxidation over the 2 ML Pt clusters at 

various temperatures. For each temperature, the amount of CO2 produced increases 

linearly with time up to 24 hours, illustrating the effectiveness of the recirculation of the 

reactant gases over the catalyst for enhancement of product concentrations. The CO2 

concentration at the lowest temperature after the first 15 min online is already sufficiently 
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high to be detected by the GC, and the system is capable of detecting concentrations in 

the recirculation loop as low as 1 nmol/cm
3
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For reaction temperatures of 145 to 156 °C, the integral rate of reaction was constant 

over the entire 24 hour reaction period, implying that pseudo-steady state reaction 

conditions are reached. At a 15 minute interval between injections, the concentrations of 

reactants are kept constant because the rate of consumption for the limiting reagent CO is 

equal to rate at which the feed gas is replaced in makeup mode after each injection. 

Therefore, by adjusting the injection time, it is possible to achieve pseudo state-steady 

conditions in which the concentration of the reactants are not changing. This assumes that 

Figure 2.4: CO oxidation data for 2 ML Pt on TiO2(110) as a function of 

time on-line at various temperatures: a) CO2 production in mol; b) integral 

rate in mol of CO2/hour; and c) % CO conversion. The feed gas composition 

was 0.83% CO/17.4% O2/balance He 
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a reaction temperature is chosen such that the reaction rate can be matched by the rate at 

which feed gas can be restored in makeup mode. For longer injection intervals like 60 

min, the rate is no longer constant because the reactants are consumed more quickly than 

they are replenished. Similarly, at 160 and 165 °C, the changes in reactant concentrations 

are greater, and the rate increases slightly over time rather than remaining constant. 

Furthermore, since the reaction order in CO is known to be negative for CO oxidation on 

Pt
[25, 28]

, the reaction rate is expected to increase as more CO is consumed at the longer 

reaction times; this effect should be more pronounced at the higher temperatures, as 

observed in the 160 and 165 °C experiments. Figure 4c illustrates that the CO conversion 

reaches 68% after 24 hours at 165 °C and decreases as a function of temperature, with 

only 36% conversion after 24 hours at 145 °C. 

An activation energy of 16.4 kcal/mol was calculated from the Arrhenius plot for CO 

oxidation over the 145-165 °C range (Figure 2.5, Table 2.2). The reaction rates were 

determined from the differential rates, and these values were averaged over the time 

range in which the CO conversion was less than 10% at each temperature. This reaction 

time was 0.5-4.5 hours for the 145 °C data and 0.5-1.75 hours at the highest temperature 

of 165 °C, where changes in concentrations occurred most rapidly. Experiments were 

conducted on the same 2 ML Pt/TiO2 surface by successively increasing the temperature 

from 145 to 165 °C. The experiment at 160 °C then was repeated, and the reaction rate 

for the second experiment was nearly identical (within 4%) to that of the first, indicating 

that the surface was not poisoned by sequential experiments. The high degree of linearity 

for the Arrhenius plot demonstrates that the activation energy for CO oxidation is 

constant over this temperature range. 
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Table 2.2: Comparison of kinetic parameters from this work with those on Pt(100) and Pt 

clusters supported on powdered oxides. 

 2 ML Pt on 

TiO2(110) 

Pt(100) Pt/SiO2
[31]

 Pt/SiO2
[42]

 Pt/TiO2
[43

]
 

Ea (kcal/mol) 16.4 13.0
[28]

 17-19 13.4 12.2 

Order in O2  0.9 (160 °C) 

0.9 (145 °C) 

1.0 (150-230 

°C) 
[28]

 

---- 

 

0.9 (177 

°C) 

---- 

Order in CO  -0.8 (160 °C) 

-0.5 (145 °C) 

0 to -0.6 

(150-230 

°C)
[28]

  

---- -0.2 

(177°C) 

---- 

TOF 

(molec)/(site·s) 

0.03 (152 °C) 

0.06 (165 °C) 

0.01-0.02
 

(152 °C) 
[44]

 

0.01-0.02 

177 °C 

0.04 

(177 °C) 

0.009  

(27 °C) 

 

The reaction order in O2 for CO oxidation at 160 °C was determined to be 0.9, based 

on the slope of the plot of ln(rate) vs. ln(PO2) (Figure 2.6). For these experiments, the CO 

concentration was fixed at 0.83%, the O2 concentrations were 5%, 8%, 12% and 17.4%, 

and the reaction mixture was sampled every 15 min. Reaction rates were calculated by 

Figure 2.5: Arrhenius plot for CO oxidation on 2 ML Pt on 

TiO2(110) at various temperatures. The feed gas composition 

was 0.83% CO/17.4% O2/balance He 
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averaging the differential rates between 0.5 and 1.25 hours so that the CO conversion was 

always less than 5%, with the maximum conversion occurring for the highest oxygen 

concentration. A single Pt/TiO2 sample was used for this set of experiments, and the 

experiments were conducted by varying the O2 concentration from high to low values. 

The order in O2 at 145 °C was also determined to be 0.9 from a similar set of experiments 

for O2 concentrations of 5%, 8% and 17.4% and a fixed CO concentration of 0.83% 

(Figure 2.10). The differential rates were averaged over the entire experiment, which 

ranged from 4-10 hours, keeping the maximum conversion less than 10%.  

 

 

 

The reaction order in CO was determined to be -0.8 at 160 °C from the data in Figure 

2.7. It was not possible to determine CO reaction order by varying the initial 

concentrations of CO while keeping the O2 concentration fixed because the surface 

deactivated rapidly at CO concentrations greater than 0.83%; at lower CO concentrations, 

Figure 2.6: Plot of ln(rate) vs. ln(PO2) for CO oxidation on 2 ML 

Pt clusters on TiO2(110) at 160° C with feed gas compositions of 

0.83% CO and 5, 8, 12 and 17.4% O2/balance He. From the slope 

of the plot, the order in O2 was 0.9. 
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differential conversion conditions (<10% conversion) could not be achieved at 160 °C 

due to the accelerated reaction rates. Instead, the data in Figure 2.7 were extracted from a 

single experiment in which the initial concentration was 0.83% CO/17.4% O2, and the 

time interval between injections was 1 hour. In this manner, the CO partial pressure 

decreased from 0.00741 to 0.00215 atm as it was consumed during the 14 hour reaction 

period reaction,  whereas the relatively high concentration of O2 diminished by less than 

2% over the same period. For longer reaction times, the plot of ln(rate) vs. ln(PCO) 

became nonlinear as the O2 concentration began to change more significantly. The 

differential rates in Figure 2.7 were calculated from a 3 point moving average in order to 

reduce the scatter, but the slope of the plot was unchanged by the smoothing process. The 

CO concentration corresponding to each differential rate was determined by averaging 

the initial and final concentrations.  

At 145 °C, the order in CO was determined to be -0.5, based on a series of 

experiments with initial CO concentrations of 0.2%, 0.4% and 0.8% and an O2 

concentration fixed at 17.4% O2 (Figure 2.11). Data were collected over a 1-5.6 hour time 

period when the conversion of CO was less than 10%. Furthermore, the order in CO at 

145 °C was also calculated as -0.5 from a single experiment for 0.21%CO/17.4% O2, in 

which the gas mixture was sampled every 15 min; under these conditions, the O2 

concentration was unchanged (<0.3%) and the CO concentration varied from 0.00168 

atm to 0.00117 atm (Figure 2.12). In general, reaction orders at 145 °C were more 

difficult to calculate because the surface was easily poisoned at the lower temperatures, 

particularly for high CO and low O2 concentrations. For example, a repeat of the 0.2% 

CO/17.4% O2 experiment at 145 °C resulted in a ~15% decrease in activity. 
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The kinetic parameters for CO oxidation determined from these experiments are 

compared with values from the literature in Table 2.2 for CO oxidation on Pt(100) as well 

as Pt clusters supported on powdered oxide supports. The activation energy of 16.4 

kcal/mol calculated for the Pt clusters on TiO2 (110) is in general agreement with the 

literature values for similar reaction temperatures. For example, activation energies of 17-

19 kcal/mol were reported for high surface area Pt/SiO2 catalysts that were evaluated in a 

flow reactor
[32]

.A slightly lower value of 13 kcal/mol was reported on Pt(100) for a batch 

reactor study
[28]

 and 12-13 kcal/mol was also reported for CO oxidation on Pt/SiO2
[42]

 and 

Pt/TiO2
[43]

 in flow reactors. CO oxidation on Pt is a well-studied system, and it is 

believed that the reaction occurs via a Langmuir-Hinshelwood mechanism in which 

Figure 2.7: Plot of ln(rate) vs. ln(PCO) for CO oxidation on 2 ML Pt 

clusters on TiO2(110) at 160° C with an initial feed gas composition 

of 0.83% CO/17.4% O2/balance He. Data was collected at 60 

minute intervals, over which the CO partial pressure varied from 

0.00741 to 0.00215 atm. From the slope of the plot, the order in CO 

was -0.8 
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adsorbed CO reacts with absorbed oxygen atoms produced from dissociation of O2
[27, 28, 

45]
. The surface is predominantly covered with CO, and the reaction rate is controlled by 

the rate of CO desorption from the surface. Under these conditions, CO desorption must 

occur for in order for Pt sites to be available for oxygen adsorption, and the reaction is 

first order in oxygen and negative order in CO
[25]

. However, CO oxidation on Pt is 

believed have two distinctly different reaction mechanisms with different activation 

energies. The change between the mechanisms occurs around 200 °C, which is the 

temperature range corresponding to CO desorption. Above 230 °C, the activation energy 

on Pt(100) increases to 33 kcal/mol, which is a value similar to the binding energy of CO 

on Pt
[28]

.Since the transition between the two mechanisms occurs around the high 

temperature range for our experiments, it is not surprising that there are differences 

between the activation energy reported here and the literature values, given that the 

activation energy is temperature dependent below 230 °C
[28]

. 

For CO oxidation on Pt clusters on TiO2(110), the calculated order in O2 was 0.9 

at both 145 and 160 °C, and this value agrees well with orders in O2 of 0.9-1 on Pt(100) 

[28]
 and Pt/SiO2

[42]
. The order in CO is -0.8 at 160 °C and -0.5 at 145 °C for Pt/TiO2(110) 

compared to 0.9-1 on Pt(100) 
[28]

 and Pt/SiO2 
[42]

. Furthermore, the order in CO is known 

to change with reaction temperature, ranging from 0 to -0.6 on Pt(100) below 230 °C, 

with larger negative orders observed at the higher temperatures 
[28]

. On Pt/SiO2, the order 

for CO is -0.2 at 177 °C 
[42]

. Our reaction orders in CO are consistent with the negative 

values reported in the literature, indicating that CO has an inhibiting effect on the 

reaction since the high concentrations of CO block sites on Pt for O2 adsorption and 

dissociation. 
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Turnover frequencies (TOF) for the 2 ML Pt /TiO2(110) catalyst at 152 and 165 °C 

were calculated from the average differential rate and the concentration of active sites 

(1.5x10
15

 cm
-2

). The active sites were estimated from the total Pt surface area, which was 

calculated from a numerical integration of a STM image for 2 ML Pt on TiO2 (Figure 

2.8)
[35]

; it was also assumed that the packing density of the atoms on the surface of the Pt 

clusters is the same as Pt(111) and that one Pt atom constitutes an active site. The 

calculated TOFs of 0.03-0.06 molecules/(site·s) are slightly higher than those reported in 

the literature for reaction on Pt(100) (0.01-0.02 at 152 °C)
[44]

 and Pt/SiO2 (0.01
[32]

-0.04
[42]

 

at 177 °C). However, TOF values are extremely sensitive changes in reaction temperature 

and also dependent on an accurate estimation of the number of active sites. Therefore, the 

Figure 2.8: STM image of 2 ML Pt supported on 

TiO2 (110). The image size is 1000 Ax1000A, and 

the image was acquired at a +2.3 V bias to the 

sample and 0.1 nA tunneling current. 
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minor differences between our TOF and those reported in the literature are not outside the 

range of expected experimental error. 

 

 

 

XPS experiments were conducted on the 2 ML Pt clusters on TiO2(110) before and 

after CO oxidation in the catalytic reactor. A comparison of survey scans show that 

carbon is the major surface contaminant based on the C(1s) feature that appears at 284.5 

eV; note that the Ta(4d) features are from the Ta foil straps that hold the crystal to the 

back plate (Figure 2.8). Trace amounts of Si are also detected, with the Si(2p) and Si(2s) 

features appearing at 102.5 and 153.0 eV, respectively. The Si(2p) binding energy for the 

Si contaminant corresponds more closely with SiO2 (103.4 eV) than with unoxidized Si 

(99.2 eV)
[44]

. Low energy ion scattering experiments confirmed that Si was a contaminant 

Figure 2.9: XPS data for 2 ML Pt on TiO2(110) before (red) 

and after (blue) CO oxidation experiments in the reactor. 
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present in the top monolayer of the surface (data not shown). The silica contaminant does 

not have any activity for CO oxidation under these experimental conditions since 

accumulation of silica on TiO2(110) did not contribute to CO oxidation activity. The 

exact origin of the silica contamination is not known, but it is possible that a flake of 

fiberglass insulation from the external heating tapes was accidentally introduced into the 

reactor system. 

XPS spectra were collected over the 0-1200 eV energy range, but only the 50-450 eV 

range is shown in Figure 2.9 for the sake of clarity. After reaction in the recirculating 

reactor for 24 hours, the Pt/TiO2 surfaces showed no evidence of fluorine contamination 

(F(2p) at 685 eV) associated with the fluorine-containing Kalrez and PTFE seals for the 

switching valves. 

 

 

 

 

Figure 2.10: Plot of ln(rate) vs. ln(PO2) for CO oxidation on 2 

ML Pt clusters on TiO2(110) at 145° C with feed gas 

compositions of 0.83% CO and 5, 8, and 17.4% O2/balance 

He. From the slope of the plot, the order in O2 was 0.9 
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Figure 2.11: Plot of ln(rate) vs. ln(PCO) for CO oxidation 

on 2 ML Pt clusters on TiO2(110) at 145° C with feed gas 

compositions of 17.4% O2 and 0.2, 0.4 and 0.8% 

O2/balance He. From the slope of the plot, the order in CO 

was -0.5. 

Figure 2.12: Plot of ln(rate) vs. ln(PCO) for CO oxidation on 2 ML 

Pt clusters on TiO2(110) at 145° C with an initial feed gas 

composition of 0.21% CO/17.4% O2/balance He. Data was 

collected at 15 minute intervals, over which the CO partial pressure 

varied from 0.00168 to 0.00117 atm. From the slope of the plot, the 

order in CO was -0.5 
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2.4 CONCLUSIONS 

A novel recirculation loop reactor has been constructed for catalytic evaluation of 

model catalysts with low concentrations of active sites. This reactor is directly attached to 

a UHV chamber so that surface analysis can be conducted before and after reaction 

without exposure of the catalyst to air. The volume of the entire reaction system has been 

kept to a minimum (32 cm
3
) for faster build-up of concentrations of reaction products, 

and the recirculation capability eliminates heat and mass transfer issues often associated 

with batch reactors. Furthermore, the gas removed for injection into the GC is 

automatically replaced with fresh feed gas so that there is no pressure decrease in the 

reactor due to sampling. Consequently, catalytic activity can be studied at frequent 

sampling intervals (15 min) over extended periods of time on-line (24 hours), despite the 

small volume of the reaction cell. One of the main advantages of this reactor design is 

that kinetics can be investigated under near steady-state conditions by adjusting the time 

interval between injections such that the concentrations of the reactants are unchanged 

even over extended times on-line. The fact that the reactor is completely isolated from the 

UHV chamber except during sample transfer means that samples can be analyzed by the 

various surface science techniques immediately after introduction into the UHV chamber. 

Catalytic evaluation of 2 ML Pt clusters on vapor-deposited on TiO2 (110) for CO 

oxidation were conducted in this reactor as a proof of concept study. Kinetic parameters 

such as activation energy, order in CO and O2 and TOFs were in good agreement with 

those reported in the literature for Pt(100) and Pt clusters supported on conventional, 

powdered oxide supports.  
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CHAPTER 3 SUPERIOR LONG-TERM ACTIVITY FOR A PT-RE ALLOY 

COMPARED TO PT IN METHANOL OXIDATION REACTIONS
1
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Adapted from Audrey S. Duke, Kangmin Xie, J.R. Monnier, D.A. Chen, "Superior 

Long-Term Activity for a Pt-Re Alloy Compared to Pt in Methanol Oxidation 

Reactions," submitted to Surface Science, 2016 
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3.1 INTRODUCTION 

Bimetallic surfaces are often highly desirable catalysts due to superior activity, 

selectivity and stability compared to their monometallic counterparts
[1-3]

. Bimetallic Pt-

Re systems have been used in hydrocarbon reforming since the 1960s
[4, 5]

, and Pt-Re 

catalysts are reported to have increased activities and longer lifetimes than pure Pt 

catalysts
[6, 7]

. This sustained activity on the Pt-Re alloy has been attributed to increased 

resistance to the accumulation of carbonaceous species, which block active Pt sites
[6-10]

. 

Studies have also suggested that the improved activity might be due to Pt-Re electronic 

interactions in the bimetallic alloy catalysts
[10-12]

. Pt-Re systems have more recently 

garnered attention as catalysts for the reforming of biomass-derived products to hydrogen, 

which is used in hydrogen fuel cells as well as other catalytic applications
[13-16]

. For 

example, greater activity is observed for Pt-Re catalysts compared to pure Pt in the 

aqueous phase reforming (APR) of glycerol and other polyols used as models for 

understanding chemistry of biomass-derived carbohydrates
[15, 17-22]

. Higher activity for 

Pt-Re was attributed to weaker binding of CO and decreased poisoning of active sites by 

CO on the Pt-Re alloy
[12, 18, 23-25]

; however, it was also proposed that increased activity for 

the water gas shift reaction on Pt-Re was responsible for removing CO from the surface 

during the APR reaction
[20, 22, 26]

. In addition, Pt-Re catalysts have exhibited higher 

activity than Pt for the water gas shift reaction itself
[26-31]

, as well as for glycerol 

hydrogenolysis
[32, 33]

 and electrochemical oxygen reduction reactions
[34]

. For the water 

gas shift reaction, ReOx has been proposed as the active site that promotes dissociation of 

water 
[29-31]

. 
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The oxidation of alcohols such as methanol is industrially relevant given that these 

reactions provide the basis for the production of many fine commodity chemicals
[35]

. For 

example, selective oxidation of methanol yields products such as formaldehyde and 

formic acid, which have a variety of applications; while formaldehyde is an important 

feedstock for the polymer, adhesive and paint industries
[36]

, formic acid is used as a 

starting reagent for other organic synthesis reactions
[37]

 and in alternative energy
[38, 39]

. 

Furthermore, methanol reaction on Pt surfaces has been well-studied in the literature both 

in reactor systems
[40-45]

 and in ultrahigh vacuum experiments on single crystals
[46-54]

 

Methanol is one of the world's large volume commodity chemicals and has a total 

production of more than 25 million tons
[55]

. In addition to serving as a feedstock for the 

production of other chemicals, methanol is particularly relevant in the fuel industry since 

it can be used in both internal combustion engines and in direct methanol fuel cells
[56-60]

. 

Furthermore, methanol oxidation serves as a simple model system for understanding 

reactions of polyols in oxidation processes like aqueous phase reforming. 

In the work reported here, methanol oxidation is studied on Pt and Pt-Re bimetallic 

surfaces in order to investigate the effect of Re on Pt-Re catalysts in oxidizing 

environments. Model catalysts consist of a polycrystalline Pt foil and a Pt-Re alloy 

surface prepared by annealing a Re film deposited on the Pt foil. Activity is investigated 

in a home-built microreactor coupled to the UHV chamber so that preparation of the 

surfaces as well as pre- and post-reaction XPS studies can be conducted without exposing 

the surface to air. The long-term activity of Pt-Re is superior to pure Pt in methanol 

oxidation at 60 °C, where formic acid is the main product. The loss of Pt activity after 10-

12 hours is attributed to the accumulation of carbon on the surface, whereas almost no 
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carbon is detected on Pt-Re. Oxygen-induced diffusion of Re to the surface is believed to 

occur during reaction, and the presence of oxygen on Re species appears to be more 

efficient at removing carbon from the surface than oxygen on Pt. Since surface carbon is 

readily oxidized on the Pt surface at higher reaction temperatures, a loss in activity from 

carbon accumulation is not observed. Furthermore, methanol oxidation does not occur in 

the absence of surface oxygen, and consequently there is a reaction onset time for activity 

to reach its maximum value as the oxygen coverage increases. Kinetic parameters such as 

activation energy (27.9±0.2 kJ/mol) and turnover frequency (90 s
-1

 at 100 °C) determined 

for the Pt foil in this home-built reactor system agree with the values reported in the 

literature for methanol oxidation on Pt. 

3.2 EXPERIMENTAL 

Experiments were performed in an ultrahigh vacuum (UHV) chamber (P < 3×10
-10

 

Torr) attached to a custom designed microreactor that has been described in detail 

elsewhere
[61]

. The chamber is equipped with an X-ray source (Leybold Heraeus, RQ 

20/63) and hemispherical analyzer (SPECS, EA10) for X-ray photoelectron spectroscopy 

(XPS) experiments, as well as a quadrupole mass spectrometer (Stanford Research 

Systems, RGA 300). A homemade gripping device was used to remove the Ta sample 

plate from the sample holder and transfer it to the reactor while the pressure in the 

chamber remained below 1×10
-7

 Torr
[61]

.  

A polycrystalline Pt foil (ESPI Metals, 99.95%, 10 mm × 10 mm × 0.5 mm) was 

mounted to a Ta sample plate and cleaned by multiple cycles of Ar
+
 sputtering (20 

minutes, 1 kV) and annealing (3 minutes, 727 ºC); the cleanliness of the foil was 

confirmed by XPS. The foil was heated via electron bombardment of the Ta back plate, 
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and the temperature of the foil was measured by an infrared pyrometer (Heitronics, 

CT18.04). A 2.4 ML Re film was deposited on the Pt foil at room temperature from a 2 

mm diameter Re rod (ESPI, 99.99%) in a four-pocket electron-beam evaporator (Oxford 

Applied Research, EGC04), and a Pt-Re surface alloy was formed by annealing the Re 

film to 727 ºC for 5 minutes. Re coverages were determined by a UHV bakeable quartz 

crystal microbalance (Inficon). One monolayer of Re is defined according to the packing 

density of Re(0001) (1.52× 10
15

 atoms/cm
2
). Fresh surfaces were prepared for every 

experiment unless otherwise specified. 

In the reactor, the sample was heated and cooled in a continuous flow of He (Airgas, 

99.999%) at 50 sccm to temperatures between 60 °C to 150 °C at a rate of ~1.5-2 °C /min 

by heating tapes (Briskheat, BWHD) wrapped around the exterior of the reactor housing. 

Heating was regulated by a feedback loop on a temperature controller (Auber, SYL-

4342P) to ensure controlled heating rates. The reactor temperature was measured by a 

type K thermocouple (Omega, KMQSS-040G-6) welded into the feed gas outlet in close 

proximity to the surface of the sample. The gas lines were maintained at 60 °C using two 

Valco Instruments temperature controllers. After the sample reached the desired 

temperature, the reaction mixture of 2% methanol (Fisher Chemical, 99.9%)/ 4% O2 

(Airgas, 99.5%)/ 94% He was mixed and introduced. Both O2 and He were introduced 

via independently calibrated mass flow controllers (Brooks, 5850e and 5850i) with the 

total flow rate of all feed gas maintained at 58 sccm as determined by a digital flow meter 

(Agilent Technologies, ADM2000). Methanol vapor was introduced into the feed gas line 

by a homemade vapor-liquid equilibrator (VLE) filled with liquid methanol, where 

helium served as the sweep gas and was introduced via a mass flow controller. The 
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temperature of the VLE was controlled by a refrigerating/heating circulating bath (VWR), 

and the concentration of methanol in the vapor outlet was calculated using the Antoine 

equation for pure methanol. Pressure was monitored by two capacitance manometers 

(MKS Instruments, Baratron 722A) located upstream of the reactor in the feed gas line 

(790-800 Torr) and downstream of the reactor (770 Torr-780 Torr).  

The reactor was operated in single-pass mode in which the reactant gas mixture 

makes one pass over the model catalyst and is then vented from the reactor system. For 

the activity tests performed over extended periods of time at a single temperature, the 

automated system was switched to sampling mode every 20 min; a sample of the gas (~1 

cm
3
) was injected to a gas chromatograph (HP 5890A) which is equipped with a 

PoraPLOT Q capillary GC column leading to a thermal conductivity detector (TCD). 

Methanol oxidation was observed for 10 and 24 hour periods over a temperature range of 

60-150 °C. To determine the activation energy of the reaction, a freshly prepared sample 

was first stabilized in the reaction mixture at 60 °C for 10 hours and then stabilized at 

80 °C, 100 °C, 130 °C, and 150 °C for 80 min each while four sampling injections were 

taken at each temperature. Response factors for each product were determined as 

described in the Supporting Information. The reaction rate and % selectivity calculations 

are based on the formation rate of the three detected carbon-containing products (CO2, 

formaldehyde and formic acid). The background activity of the empty reactor and sample 

support was verified to be zero before and after all experiments.  

XPS spectra were collected before and after reactor experiments with an Al Kα anode 

at a 30° off normal detection angle. Peak fitting for the C(1s) and O(1s) spectra was 
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carried out with the shareware program XPSPeak using a Shirley background and 

Gaussian-Lorentzian peak shapes. The FHWM for the peaks was set at 2.0 eV. 

3.3 RESULT 

The Pt-Re alloy surfaces were prepared by depositing 2.4 ML Re on the clean Pt foil 

and annealing to 727 °C for 5 minutes. Previous studies of similar coverages of Re 

deposited on Pt(111) and annealed at 727 °C demonstrate that Re diffuses subsurface
[53, 62, 

63]
. Specifically, STM experiments have shown an atomically flat surface with no Re 

islands after annealing, and the surface appears to be pure Pt based on low energy ion 

scattering data
[63]

. For Re deposited on the Pt foil, the integrated Re signal decreases by 

30% after annealing (Figure 3.1a). Furthermore, after Re deposition at room temperature, 

the Pt signal is attenuated to 60% of the intensity for clean Pt, and the Pt signal increases 

back to 80% of clean Pt value after the Re film is annealed to 727 °C (Figure 3.1b). 

These changes in both the Pt and Re signals are consistent with the diffusion of Re into 

the Pt surface, and similar changes in the Pt and Re XPS signals were observed for the 

alloying of Re into Pt(111) (Figure 3.9).  

Based on grazing angle XPS experiments, the attenuation of the Pt signal is consistent 

with Re being in the second and third subsurface layers
[53]

. In high resolution XPS 

experiments at the synchrotron, the formation of the Pt-Re alloy was confirmed by a 

small shift in the Pt(4f) and Re(4f) peaks to higher binding energy compared to the bulk 

surfaces. For these experiments with a conventional X-ray source, the Pt(4f7/2) shifts from 

70.7 to 70.8 eV after alloying whereas the Re(4f7/2) of 40.3 eV is close to what is reported 

on Re single crystal surfaces
[64, 65]

. 
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Methanol oxidation studies on the clean Pt foil and Pt-Re alloy surface were carried 

out in a microreactor coupled to the UHV chamber over the temperature range of 60-

150 °C. All feed gas compositions are 2% methanol/4% O2/94% He. On both surfaces, 

Figure 3.1: X-ray photoelectron spectroscopy data of 

the: a) Re(4f); and b) Pt(4f) regions for the 2.4 ML Re 

film annealed at 727 °C for 5 min to prepare the Pt-Re 

alloy. The dotted trace in (a) shows 2.4 ML of Re 

deposited on the Pt foil before annealing to prepare 

the alloy 
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the detected products are CO2, formaldehyde, formic acid and water; the selectivities of 

the carbon-containing products as a function of temperature are very similar for Pt and 

Pt-Re (Figures 3.2 a,b). The selectivity for formic acid is greatest at 60 °C but decreases 

sharply with increasing temperature such that the selectivity is nearly zero at 130 °C. In 

contrast, no formaldehyde is observed at 60 °C, but formaldehyde production increases 

with temperature. The formaldehyde selectivity is close to its maximum value at 80 °C 

and remains relatively constant at the higher temperatures. The CO2 yield is also low at 

60 °C but increases steadily with temperature, and the selectivity to CO2 reaches its 

maximum value of ~50% at 150 °C. Methanol conversion on the Pt foil ranges from 2% 

at 60 °C to 16% at 150 °C (Figure 3.10). Data is not reported for temperatures greater 

than 150 °C because the increased product yields at temperatures >170 °C, resulted in 

mass transfer limitations even at higher flow rates of 126 sccm.  

 

Figure 3.2: Product selectivities as a function of temperature for methanol oxidation on: 

a) the Pt foil; and b) the Pt-Re alloy. The total product formation as a function of 

temperature for these two surfaces is shown in (c). Error bars for the Pt data are the 

standard deviations from two experiments. 

Total product formation for methanol oxidation on the Pt-Re alloy is shown in Figure 

3.2c as a function of temperature and compared to activity on the Pt foil. At 60 °C, the 

two surfaces have identical activities, but at higher temperatures, the product yields on 

the Pt-Re alloy are 10-20% lower than on the Pt foil. Rates of product formation in 
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µmol/hour for both surfaces as a function of temperature are shown in Figure 3S3. While 

the rates of CO2 and formic acid production are comparable on both surfaces, the lower 

formaldehyde production on Pt-Re between 80 and 150 °C accounts for the lower overall 

activity of the alloy. 

 

Figure 3.3: Turnover frequency as a function of temperature for methanol oxidation on 

the Pt foil (a); and Arrhenius plots for CO2 formation during methanol oxidation on: b) 

the Pt foil; and c) the Pt-Re alloy. Error bars in (a) are the standard deviations from two 

experiments 

Kinetic parameters such as the turnover frequency (TOF) and activation energy for 

methanol oxidation were also determined. The Pt foil is estimated to have a total of 

1.0x10
15

 active sites; this calculation is based on the total exposed surface area of the foil 

(0.684 cm
2
), and the assumption that the polycrystalline foil has the same number of 

atoms/cm
2
 as the Pt(111) surface. The measured TOF is 88±7 s

-1
 at 100 °C, which agrees 

reasonably well with the value of 50 s
-1

 reported in the literature for methanol oxidation 

on Pt gauzes (Figure 3.3a), again assuming a Pt(111) packing density for Pt
[41]

. An 

Arrhenius plot for CO2 production over the temperature range of 80-150 °C yields an 

activation energy of 27.9±0.2 kJ/mol for reaction on the Pt foil (Figure 3.3b). The fact 

that the rate at 60 °C does not fit the linear trend for the rest of the data suggests that there 

may be a change in the reaction mechanism between 60 and 80 °C, especially since 

product selectivities change significantly in this temperature range. For the Pt-Re alloy 
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surface, the measured activation energy for CO2 formation is 27±1 kJ/mol (Figure 3.3c). 

The nearly identical activation energies for the Pt foil and Pt-Re alloy imply that the 

mechanism for CO2 formation from methanol oxidation is the same on both surfaces. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Despite the slightly lower activity for Pt-Re compared to pure Pt over a two hour 

time period, the Pt-Re alloy exhibits greater long-term activity at 60 °C (Figure 3.4). In 

both cases, the initial activity is near zero, and the activity steadily increases over the first 

10-15 hours. The activity of the Pt foil is initially higher than that of the Pt-Re alloy, but 

after roughly 10 hours, the activity of the Pt-Re alloy continues to increase over time 

whereas the activity of the Pt foil is diminished over the 10-24 hour time period. After 24 

hours, the activity of the Pt-Re alloy is 15% higher than for Pt. 

Figure 3.4: Activity data for Pt foil and Pt-Re alloy for 

methanol oxidation at 60 °C over 24 hours. Error bars 

shown at 6, 10 and 12 hours are the standard deviations 

from three different experiments on each surface. 
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The induction time observed before activity reaches its maximum value is 

attributed to a lack of surface oxygen, which appears to be necessary to facilitate 

methanol oxidation. For a Pt foil pre-oxidized at 100 °C before exposure to methanol 

oxidation conditions, the activity for methanol oxidation at 100 °C is initially 270 

µmol/hour and remains relatively constant over a 10 hour reaction period (Figure 3.5). 

XPS analysis shows that this oxidation treatment (100% O2 at 100 °C for 1 hour) results 

in atomic oxygen on the surface, but the Pt remains metallic. In contrast, the activity of 

the Pt foil subjected to the usual sputtering/annealing treatments without pre-oxidation 

has an initial activity that is half of what is observed on the pre-oxidized surface; 

however, the activity on the unoxidized Pt foil increases with reaction time and reaches 

the same value as on the pre-oxidized surface after approximately 10 hours. At 100 °C, 

Figure 3.5: Activity for methanol oxidation on the pre-

oxidized (blue) and unoxidized (red) Pt foil at 100 °C, and on 

the unoxidized Pt foil at 150 °C (purple). The pre-oxidized Pt 

foil was exposed to 100% O2 at 100 °C for 1 hour. 
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the initial activity of the unoxidized surface is significantly higher than at 60 °C, where 

the activity is almost zero. Furthermore, at 150 °C, no induction time for reaction is 

observed, and the activity is relatively constant over the entire 10 hour reaction period 

(Figure 3.5). These results are consistent with higher initial activities at 100 and 150 °C 

compared to 60 °C due to the greater coverages of surface oxygen initially formed at the 

elevated temperatures. 

Post-reaction XPS data were acquired in order to understand the nature of the 

decrease in activity at 60 °C for reaction on the Pt foil (Figure 3.6). The C(1s) regions 

show that there is 40% more carbon on the surface of the Pt foil compared to the Pt-Re 

alloy after 24 hours under reaction conditions. On the Pt surface, the main C(1s) peak 

appears at 284.8 eV and is attributed to atomic carbon
[54, 66, 67]

, but there is also a smaller 

feature at 286.0 eV assigned to CO based on the C(1s) spectrum for CO itself on the Pt 

foil (Figure 3.12), as well as previously reported CO on Pt(111) binding energies
[53, 54, 67, 

68]
. On the Pt-Re alloy surface, both peaks are also observed, but the atomic carbon peak 

is significantly smaller than on Pt while the CO feature is of comparable intensity. Thus, 

it appears that the Pt surface is poisoned by atomic carbon whereas the Pt-Re alloy 

accumulates less carbon and maintains higher activity. C(1s) data for both surfaces after 

only 10 hours at 60 °C show equal coverages of both forms of carbon on the surface, and 

the subsequent loss of activity on Pt after 10 hours is consistent with the greater carbon 

buildup on Pt vs. Pt-Re during this time period. When the 10 hour-post reaction surfaces 

are heated to 427 °C, the 286 eV peak disappears as expected since CO should desorb 

from the surface below this temperature. Furthermore, at higher methanol oxidation 



64 

temperatures of 100 and 150 °C, almost no carbon is observed on Pt or Pt-Re after a 10 

hour reaction period. 

 

 

 

 

 

Post-reaction XPS experiments also show that significant surface oxygen is 

present on both Pt and the Pt-Re alloy (Figure 3.7). The total oxygen signal is 15% lower 

on the Pt-Re alloy than on the Pt foil after methanol oxidation at 60 °C for 24 hours. The 

O(1s) spectra for both surfaces can be fit with two peaks, indicating that at least two 

types of surface oxygen are present. For the Pt surface, the O(1s) region is fit with a peak 

at 531.0 eV attributed to atomic oxygen or hydroxyls, and at 532.5 eV assigned to water 

and CO. The 531 eV binding energy is slightly higher than the ~530 eV typically 

reported for atomic oxygen on Pt(111) surfaces
[63, 69-75]

 but is the same as the binding 

Figure 3.6: X-ray photoelectron spectroscopy data of the C(1s) region for: a) the Pt 

foil and b) Pt-Re alloy after exposure to methanol oxidation conditions at the 

designated temperatures and reaction times. The surface after 10 hrs at 60 °C was 

heated to 427 °C to desorb the weakly adsorbing surface species. The rising baseline 

below 280 eV for the Pt-Re alloy is from the Re(4d3/2) peak.  
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energy observed when the Pt foil is exposed to 4% O2/He at room temperature (Figure 

3.13). 

 

 

 

 

In many cases, the binding energy of hydroxyl groups on Pt(111) appears at a 

slightly higher value (530.5-531.5 eV) 
[69, 73, 76]

, and this suggests that the observed 531 

eV peak has contributions from both atomic oxygen and surface hydroxyls. The 532.5 eV 

value is consistent with reports of water on Pt(111)
[69, 71, 75, 76]

.In addition, the C(1s) data 

indicate that CO exists on the surface as a minority carbon species, and therefore CO also 

contributes to the 532.5 eV peak at 60 °C, given its similar O(1s) binding energy of 

~532.7 eV
[53, 68, 77]

.On the Pt-Re alloy, the species attributed to O/OH appears at 530.5 eV, 

which is slightly lower than for the O/OH on Pt; this is in agreement with the lower 

binding energies observed after exposing a 2.4 ML Re film on the Pt foil to O2 at 100 °C 

Figure 3.7: X-ray photoelectron spectroscopy data of the O(1s) region for: a) the 

Pt foil and b) Pt-Re alloy after exposure to methanol oxidation conditions at the 

designated temperatures and reaction times. The surface after 10 hrs at 60 C was 

heated to 427 °C to desorb the weakly adsorbing surface species. 
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(Figure 3.13). Similarly, the oxygen species assigned to water has a lower binding energy 

(532.1 eV) on the Pt-Re alloy, and this indicates that there is a difference in the 

adsorption of oxygen-containing species on the Pt-Re alloy compared to the Pt foil. On 

the Pt foil, the contribution of O/OH is larger than that of water, but on the Pt-Re alloy 

surface, the two oxygen species have roughly the same concentrations, suggesting that 

water is more stable on the Pt-Re alloy surface. The spectra collected on both surfaces 

after a shorter 10 hour reaction time at 60 °C demonstrate that 40-45% of the oxygen 

observed after 24 hours accumulates over the last 14 hours. The loss of the 532.5 eV peak 

after heating the post reaction Pt foil surface to 427 °C confirms the assignment of this 

feature to a weakly adsorbing species such as water or CO. On the post reaction Pt-Re 

alloy surface, heating to 427 °C removes the majority of oxygen at both binding energies; 

the loss of the higher binding energy species is due to water desorption, while the 

decrease in 530.5 eV intensity could be explained by diffusion of oxygen into the 

subsurface region. The surfaces after reaction at 100 °C for 10 hours show that 50-70% 

more oxygen accumulates at this higher reaction temperature compared to at 60 °C, but 

the O(1s) intensities do not increase significantly for reaction at 150 °C. There should be 

no contribution of CO to the 532.5 eV peaks at these higher temperatures since the C(1s) 

region indicates that CO is not present on the surface. At temperatures below 150 °C, the 

concentration of O/OH on the Pt-Re alloy is lower than on pure Pt; moreover, the 

concentrations of water and O/OH are roughly equivalent on the Pt-Re alloy whereas the 

O/OH concentration is always higher on the Pt foil. At 150 °C, O/OH becomes the 

dominant species on the Pt-Re alloy, presumably because water is less stable on the 

surface at higher temperature.  
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The Re(4f) and Pt(4f) regions were also collected for the Pt-Re alloy after reaction at 

various temperatures. Reaction at 60 °C results in only metallic Re on the surface since 

the Re(4f) peak shape is identical to that of metallic Re in the Pt-Re alloy before reaction 

(Figure 3.8a). There is a small shift in binding energy from 40.3 eV to 40.4 eV after 

reaction. Because the adsorption of oxygen on the Re surface is known to shift the 

binding energy by 0.2-0.7 eV
[64, 65, 78]

, the +0.1 eV shift is attributed to the diffusion of a 

small fraction of Re atoms to the surface and the interaction of oxygen with this surface 

Re. The Re:Pt ratio decreases to 60% of its initial value before reaction after 10 hours 

under reaction conditions, and to 45% after 24 hours. The Re:Pt ratio is a better indicator 

of changes in the surface Re concentration than the absolute Re signal since adsorbate 

species that accumulate on the surface during reaction attenuate both the Pt and Re 

intensities. The loss of Re signal is attributed to the formation of Re2O7 under methanol 

oxidation conditions, given that Re2O7 is volatile and known to sublime at relatively low 

temperatures
[79, 80]

. This behavior has been previously observed by our group for Pt-Re 

surface alloys formed by Re deposition on Pt(111) in ambient pressure XPS studies for in 

situ CO and methanol oxidation with O2
[53, 63]

.  

Notably, heating the Pt-Re alloy surface in helium or ultrahigh vacuum did not result 

in the same attenuation of the Re signal, which is only observed when heating in the 

presence of oxygen. For the Pt-Re alloy, most of the subsurface Re remains metallic, but 

O2 induces diffusion of some fraction of Re to the surface; this surface Re is quickly 

oxidized to Re2O7 which then sublimes from the surface
[53, 63]

. For methanol oxidation at 

100 °C, metallic Re at 40.4 eV is still present on the surface, but the appearance of a 

small shoulder at 46 eV indicates that Re is oxidized. The 46 eV feature from ReOx 
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becomes more pronounced at the higher reaction temperature of 150 °C. For these 

surfaces, the Re:Pt ratio decreases to 46-48% of the value before reaction. For 

comparison, a 2.4 ML Re film exposed to methanol oxidation at 100 °C for 10 hours was 

also studied. The Re(4f) spectrum shows that Re at the surface is more easily oxidized 

than subsurface Re in the Pt-Re alloy, given that no metallic Re is present, and the Re:Pt 

ratio was only 15% of the initial value. The Pt(4f) spectra in Figure 3.8b demonstrate that 

Pt remains metallic under methanol oxidation conditions at all temperatures. 

 

 

 

 

3.4 DISCUSSION 

The Pt-Re alloy surfaces exhibit superior long-term activity compared to pure Pt 

due to greater carbon buildup on Pt at 60 ºC. At this temperature, there is high selectivity 

Figure 3.8: X-ray photoelectron spectroscopy data of the: a) Re(4f); and b) Pt(4f) 

regions for the Pt-Re alloy after exposure to methanol oxidation conditions for the 

designated reaction times and temperatures. A 2.4 ML Re film exposed to methanol 

oxidation conditions at 100 °C for 10 hrs is also shown in (a).  
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(~75%) for formic acid production on both Pt and Pt-Re. Other studies of methanol 

oxidation on Pt have also reported that carbon buildup on the Pt surface leads to eventual 

deactivation 
[42, 43]

. Pt does not efficiently remove carbon species by oxidation at 60 ºC, 

but at higher temperatures of 100 and 150 ºC, carbon accumulation and deactivation on Pt 

were not observed. On the Pt-Re alloy surface, carbonaceous residues are more 

effectively removed at low temperature than on pure Pt. A possible explanation for this 

behavior is that some fraction of Re atoms diffuse to the surface under reaction 

conditions and contribute to oxidation activity. Before exposure to the reactant gases, the 

Pt-Re alloy consists of pure Pt at the surface
[63]

, and the shift in the Re(4f7/2) binding 

energy after exposure of the Pt-Re surface to methanol oxidation conditions implies that 

Re diffuses to the surface, where it binds with oxygen. Oxygen-induced diffusion of Re 

to the surface of the Pt-Re surface alloys during methanol and CO oxidation has been 

previously reported by our group
[53, 63]

. The initial activity of Pt is greater than that of Pt-

Re at all temperatures studied, and we propose that diffusion of Re to the surface of the 

alloy blocks active sites since Pt is active for methanol oxidation while Re is not
[64]

. 

Notably, the decreased activity on Pt-Re is specifically due to diminished production of 

formaldehyde. 

Methanol oxidation on the atomically clean Pt foil produces CO2, H2O, formic 

acid and formaldehyde in the 60-150 ºC temperature range under oxygen-rich conditions. 

Previous studies of methanol oxidation on Pt catalysts have also reported that CO2 and 

H2O are the most commonly observed products. The formation of partial oxidation 

products like formaldehyde and formic acid depend heavily on the specific reaction 

conditions, including concentration of O2 in the feed gas mixture and reaction 
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temperature 
[42, 43]

; the following comparisons with the literature are for feed gas mixtures 

rich in O2, as also used in this study. For example, on Pt wire catalysts, CO2 and 

formaldehyde are the only carbon-containing products observed 
[41, 42]

. However, activity 

was not investigated at the low temperatures (<150 ºC) corresponding to high selectivity 

for formic acid
[42]

.On Pt foil
[43]

 and gauze
[40]

 catalysts, CO2 and H2O were observed as 

the main products. On Pt(111) surfaces, CO2 and H2O are produced at low temperatures 

(<177 ºC), and in one case formaldehyde was also observed
[51, 53]

. Formic acid was 

reported as a product from methanol oxidation on catalysts at low temperature
[44]

. At 

higher temperatures, it is believed that the surface formate intermediate decomposes too 

quickly for formic acid desorption to occur, and this may explain the decrease in formic 

acid production with increasing temperature observed in our study on the Pt foil. Ambient 

pressure infrared spectroscopy experiments for methanol oxidation on Pt(111) have also 

detected a surface formate intermediate although no formic acid production was 

observed
[51]

. 

Methanol oxidation activity is extremely sensitive to the coverage of surface 

oxygen. Specifically, a minimum concentration of surface oxygen is required to promote 

methanol oxidation, and the atomically clean Pt foil has no initial activity in the absence 

of surface oxygen. At 60 ºC, a temperature at which dissociation of O2 is not facile on Pt, 

there is an onset time of ~10 hours when the activity gradually increases from near zero 

to its maximum value. At higher methanol oxidation temperatures, O2 dissociation occurs 

more readily; consequently, the onset time is shorter at 100 ºC and is nonexistent at 150 

ºC. In addition, methanol oxidation studies on Pt wires have shown that the selectivity to 

formaldehyde is sensitive to the O2:methanol feed gas ratio, with higher values resulting 
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in greater formaldehyde production.40 In our studies we have also found that selectivity 

for formaldehyde changes depending on the exact preparation of the foil surface. 

Sputtering and annealing for 12 cycles led to the most consistent activity, whereas 

exposure to highly oxidizing conditions coupled with only 6 sputter/anneal cycles often 

resulted in higher selectivities for formaldehyde. Since the two surfaces were 

indistinguishable by XPS, the higher formaldehyde selectivity could be related to the 

presence of subsurface oxygen, which is known to exist on other polycrystalline Pt 

surfaces
[81]

, but could be difficult to detect by XPS if it exists deep in the bulk. Given that 

formaldehyde production is highly sensitive to adsorbates like oxygen, it is not surprising 

that the presence of surface Re would also change the formaldehyde yield. 

Kinetic parameters such as activation energy (Ea) and turnover frequency (TOF) 

for methanol oxidation on the Pt foil are in general agreement with values reported in the 

literature for methanol oxidation on bulk Pt surfaces, and these results confirm that the 

correct kinetic parameters can be measured in our novel reactor system
[61]

. On the Pt foil, 

the calculated Ea was 27.9±0.2 kJ/mol over a temperature range of 80-150 °C. This value 

is consistent with the 33 kJ/mol reported on Pt wires
[41]

 and is also close to the 22 kJ/mol 

observed on Pt(111)
[51]

. A higher value of 42 kJ/mol was measured for reaction on Pt 

wire, but these surfaces were oxidized at high temperature (1325-1375 ºC) which may 

affect activity
[42]

.The TOF of 90 s
-1

 measured for the Pt foil at 100 ºC is in reasonable 

agreement with the value of 50 s
-1

 reported on Pt wires at the same temperature
[41]

, given 

that in both cases the number of active surface sites was roughly estimated from the 

exposed surface area and an assumed Pt(111) packing density. The similarity in the 
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activation energies on Pt and the Pt-Re alloy (27.0±1.0 kJ/mol) implies that CO2 

production occurs via the same mechanism. 

A comparison between in situ ambient pressure XPS (AP-XPS) investigations of 

methanol oxidation on the Pt and Pt-Re surfaces
[53]

 with the reactor studies reported here 

provides insight into the differences in activity for the two pressure regimes. For the AP-

XPS work, the Pt(111) crystal and the Pt-Re alloy prepared on Pt(111) were exposed to 

200 mTorr of O2 and 100 mTorr of methanol (reactant pressure 0.300 Torr) under 

reaction conditions. In the reactor experiments, experiments were conducted in a feed gas 

mixture of 2% methanol/4% O2/94% He at total pressure of ~760 Torr and reactant 

partial pressure of 46 Torr. Thus, the O2:methanol ratio was 2:1 in both studies, but the 

pressure of the reactant gases was ~150 times lower for the AP-XPS experiments. At the 

higher pressures of the reactor experiments, O2 dissociation occurs readily, resulting in a 

significant coverage of surface oxygen detected in post-reaction XPS and attributed to 

O/OH species; the oxygen coverage increases with reaction temperature. In contrast, 

almost no surface oxygen was detected in the AP-XPS experiments, and the surface 

oxygen coverage decreased between 77 ºC and 127 ºC. Furthermore, in the reactor 

experiments, almost no carbon was observed at reaction temperatures >100 ºC, whereas 

the deposition of atomic carbon on Pt(111) in the AP-XPS experiments was significant at 

127 ºC and continued to increase at higher reaction temperatures. Therefore, at higher 

pressures, it appears that oxygen easily dissociates on the Pt and allows for carbon to be 

removed above 100 ºC via oxidation to CO2. At lower pressures, the rate of oxygen 

dissociation is slow enough that decomposition of methanol causes accumulation of 
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atomic carbon faster than it can be removed by oxidation, and this effect becomes more 

pronounced at the higher temperatures. 

Although there are differences in the adsorbed species for methanol oxidation in 

the higher and lower pressure regimes, alloying Re into Pt enhances surface oxidation 

processes in both cases. For the AP-XPS studies at lower pressure, the oxygen-induced 

diffusion of Re to the surface is believed to facilitate O2 dissociation and provide a source 

of surface oxygen for the removal of carbonaceous species
[53]

. As a result, there is less 

atomic carbon on the Pt-Re alloy surface, and the selectivity for the fully oxidized 

reaction products like CO2 and H2O does not decrease at temperatures of 277 ºC and 

higher. However, diffusion of Re to the surface is limited below 177 ºC, and 

consequently the activities of Pt and Pt-Re are almost identical below this temperature. 

For the reactor studies at higher pressures, there is evidence for oxygen-induced diffusion 

of Re to the surface at the much lower temperature of 60 ºC. Deposition of atomic carbon 

causes the Pt surface to lose activity after 24 hours at 60 ºC, whereas the Pt-Re alloy 

surface does not become deactivated by surface carbon. Both Pt and Pt-Re dissociate O2 

even at 60 ºC, but the Pt-Re alloy surface is apparently more effective at removing the 

carbon from the surface through oxidation to CO2. At higher temperatures, oxidation of 

surface carbon occurs readily on Pt, and therefore there is no pronounced difference in 

activity for Pt-Re and Pt. 

Although ReOx has been proposed to be the active site in WGS reactions on Pt-Re 

catalysts, there is no evidence that ReOx promotes methanol oxidation on the Pt-Re alloy. 

Pt-Re shows better long-term activity at 60 ºC, but at these reaction temperatures, Re is 

not substantially oxidized, presumably because diffusion of Re to the surface is limited. 
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Although greater Re oxidation occurs at 100 ºC and 150 ºC, metallic Re still constitutes 

the majority of surface Re. Under reaction conditions where ReOx is detected on the 

surface, the Pt-Re alloy does not show superior activity to Pt itself. Moreover, the 

extensive oxidation of Re in the alloy is not desirable because Re2O7 is volatile and 

sublimes under reaction conditions. Similar results were reported in the AP-XPS study of 

methanol oxidation on Pt-Re in which ReOx also did not promote the reaction
[53]

. 

3.5 CONCLUSIONS 

Pt-Re alloy surfaces exhibit greater long-term activity at low temperatures for 

methanol oxidation compared to pure Pt because the Pt-Re alloy surface is more effective 

at removing carbonaceous residues that poison Pt active sites. At 60 ºC, more carbon is 

deposited on the Pt surface than on Pt-Re over a 24 hour reaction period. The decreased 

carbon coverage on the Pt-Re alloy surface is attributed to more facile O2 dissociation 

and removal of carbon species by oxidation. Diffusion of Re atoms to the surface under 

reaction conditions may promote O2 dissociation. Studies of Pt-Re catalysts for other 

reactions like hydrocarbon reforming also report decreased carbon accumulation and 

longer lifetimes for Pt-Re compared to Pt catalysts
[6, 7, 9-11]

.On atomically clean Pt and Pt-

Re alloy surfaces, there is no activity for methanol oxidation until sufficient oxygen has 

dissociated on the surface. Re oxide does not enhance activity for methanol oxidation, 

and diffusion of Re to the surface followed by Re oxidation results in loss of Re due to 

sublimation of Re2O7. Activation energies for methanol oxidation to CO2 are similar on 

Pt and Pt-Re (27.9±0.2 and 27±1 kJ/mol respectively), indicating that reaction occurs by 

the same mechanism, and these values are also consistent with other methanol oxidation 

studies on bulk Pt surfaces reported in the literature. A comparison of these reactor 
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studies with AP-XPS experiments carried out at reactant pressures ~150 times lower 

show that at higher pressures, the surface coverage of oxygen is higher while the carbon 

coverage is lower. This behavior is attributed to greater oxygen dissociation and 

oxidation of surface carbon at the higher pressures. 

3.6 SUPPORT INFORMATION 

 

 

 

Figure 3.9 shows X-ray photoelectron spectroscopy data collected with an AlKα 

source for the Pt(4f) and Re(4f) regions: before deposition; after deposition of 1.9 ML of 

Re on Pt(111), and after annealing to 1000 K for 5 min to form the Pt-Re surface alloy. 

LEIS and STM data collected for these same surfaces indicate that the surface is pure Pt 

and that all Re islands diffuse subsurface. The integrated Pt signal is attenuated to 57% of 

initial value after Re deposition and 76% of the initial value after annealing to 1000 K, as 

observed for Re on the Pt foil; the Re signal is also attenuated by 80% after annealing, as 

on the Pt foil. 

Figure 3.9: XPS data collected with an AlKα source for the Pt(4f) and Re(4f) 

regions: before deposition; after deposition of 1.9 ML of Re on Pt(111), and after 

annealing to 1000 K for 5 min to form the Pt-Re surface alloy. 
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Figure 3.10: Methanol conversion as a function of 

temperature for methanol oxidation on the Pt foil. 

Figure 3.11: Product formation in μmol/hr as a function of temperature for 

methanol oxidation on the: a) Pt foil and b) Pt-Re alloy. Error bars for the 

data on the Pt foil are standard deviations from two experiments. 
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Figure 3.12: X-ray photoelectron spectroscopy data of the C(1s) 

region for the Pt foil exposed to 5% CO/He at room temperature 

for 1 hour and the same surface heated to 427 °C 

Figure 3.13: X-ray photoelectron spectroscopy data of the O(1s) region 

for the Pt foil exposed to 4% O2/He at 25 °C for 10 hours; the same 

surface flashed to 427 °C; and a 2.4 ML Re film on the Pt foil exposed to 

100% O2 for 1 hour at 100 °C. 
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Description of response factor calibration: 

The response factors for CO2 and methanol were determined from calibration 

experiments using different concentrations (1.5-10%) of CO2 in He and methanol (0.6-

2%) in He. The response factor for formaldehyde was determined by direct injection of 

various concentrations of formaldehyde in ethanol (55-130 nmol). No direct calibration 

for formic acid was possible since formic acid interacts strongly with itself and solvent 

molecules in solution and exists in a variety of chemical states. Instead, the rate of 

formaldehyde production and associated response factor were determined from the 

difference between the methanol conversion and CO2 formation at 60 ºC, where the only 

detectable products were CO2 and formic acid. The assumption is that no other carbon-

containing products are formed; note that a study of methanol oxidation on a Pt foil 

showed that no CO was formed below 400 ºC under oxygen-rich reaction conditions. 

Although we cannot definitively rule out the production of CO, which has an identical 

retention time to that of the reactant O2, methanol reaction on Pt should not produce CO 

in an oxygen-rich feed gas mixture. 
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CHAPTER 4 ACTIVITIES OF PT AND PT-RE SUPPORTED CLUSTERS IN THE 

WATER-GAS SHIFT REACTION
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Adapted from Audrey S. Duke*, Kangmin Xie*, A. J. Brandt, T. Maddumapatabandi, 

John R. Monnier, Donna A. Chen, "Activities of Pt and Pt-Re Supported Clusters in the 

Water-Gas Shift Reaction”, in preparation. 
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4.1 INTRODUCTION 

Many studies have shown that bimetallic catalysts often have superior activity, 

stability and selectively compared to either of the pure metals by themselves
[1, 2]

. These 

enhanced properties have been attributed to electronic effects from metal-metal 

interactions, changes in surface structure, or the creation of new bifunctional active 

sites
[2-7]

.The Pt-Re system represents one of the most successful industrial catalysts since 

it has been used since the 1960s for the reforming of hydrocarbons
[8-10]

. The Pt-Re 

bimetallic catalysts have better long-term activity than Pt alone, and it is believed that the 

electronic interactions in the bimetallic system inhibit carbon fouling, which causes the Pt 

catalysts to lose activity
[8, 9, 11-14]

. Recently Pt-Re bimetallic catalysts have also been 

reported to show superior activity for the low temperature water-gas shift (WGS) reaction 

compared to Pt alone
[15-20]

. There has been significant interest in the development of a 

WGS catalyst capable of generating clean H2 for use in fuel cells, which are limited to 

lower operating temperatures due to the thermal stability of the polymer membranes
[19]

. 

However, the nature of this enhanced WGS activity for Pt-Re activity is not well 

understood. Given that O-H bond breaking in water is believed to be the rate-limiting 

step in WGS reaction on Pt, it has been proposed that ReOx provides the active sites for 

water dissociation in the Pt-Re catalysts
[17, 20, 21]

. Alternatively, it has also been proposed 

that CO poisoning is reduced on Pt-Re surfaces due to the weaker binding of CO to Pt 

compared to Pt-Re
[22-24]

. One of main challenges in understanding the behavior of the Pt-

Re catalysts is the difficulty in making conventional Pt-Re catalysts with controlled 

bimetallic compositions or sizes. Furthermore, nothing is known about the oxidation 

states of Re during WGS reaction on Pt-Re catalysts. 
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In order to better understand the effects of Pt-Re bimetallic composition and Re 

oxidation states on WGS activity, investigations have been carried out on model systems 

consisting of vapor-deposited pure and bimetallic clusters deposited on a rutile TiO2(110) 

surface. The surfaces were prepared and characterized in ultrahigh vacuum (UHV) and 

then introduced into a microreactor coupled to the UHV chamber. WGS activity was 

studied at pressures of ~ 1 atmosphere, and the surfaces were then transferred back into 

the UHV chamber for X-ray photoelectron spectroscopy (XPS) and infrared absorption 

reflection spectroscopy (IRAS) studies without exposure to air. In this manner, well-

characterized Pt-Re bimetallic surfaces can be studied under catalytically relevant 

pressure conditions, and for the first time, Re oxidation states in the Pt-Re clusters have 

been determined after WGS reaction and without exposure to air, which is known to 

oxidize metallic Re. The bimetallic clusters that exhibit the highest activity for WGS 

reaction are those consisting of Pt on Re structures. These clusters are prepared either by 

depositing 2 ML of Pt on 2 ML Re seed clusters, or by depositing submonolayer (0.5 

ML) coverages of Re on 2 ML Pt clusters, where the Re atoms diffuse into the Pt cluster. 

XPS investigations show that the active surfaces contain metallic Re, which is not 

oxidized under WGS conditions, and furthermore, the presence of ReOx does not promote 

WGS activity in the bimetallic clusters. The enhanced activity of the Pt on Re clusters is 

instead attributed to reduced CO poisoning on the Pt-Re surfaces.  

4.2 EXPERIMENTAL  

 Experiments were conducted in two ultrahigh vacuum chambers which have been 

described in detail elsewhere. The first chamber
[25]

 (P < 3x10
-10

 Torr) is coupled to a 

homemade microreactor 
[26]

, and is equipped with a residual gas analyzer (Stanford 
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Research Systems, RGA 300), a hemispherical analyzer (SPECS, EA10) and Mg/Al Ka 

X-ray source (Leybold Heraeus, RQ 20/63) for XPS, and an infrared reflection absorption 

spectroscopy (IRAS) system (Bruker, Tensor 27). The second chamber
[27-31]

 (P<1x10
-10

 

Torr) houses a quadrupole mass spectrometer (Hiden HAL 301/3F) for temperature 

programmed desorption studies, a cylindrical mirror analyzer (Omicron CMA 150) for 

Auger electron spectroscopy, and a low energy electron diffraction optics (Omicron 

SPECTALEED). 

 In the first chamber, Pt and Re clusters were deposited onto a rutile TiO2(110) crystal 

(Princeton Scientific Corporation, 10 mm x 10 mm x 1 mm) which was mounted on a Ta 

back plate using thin Ta foil straps. The sample was heated radiatively by a tungsten 

filament from behind and by electron bombardment from the filament with a positive bias 

applied to the sample. The sample temperature was monitored via an infrared pyrometer 

(Heitronics). The crystal was cleaned by cycles of Ar
+
 sputtering (20 minutes, 1 kV) and 

annealing (3 minutes, 950-1000 K) in vacuum. Pt and Re were deposited sequentially 

onto the titania surface from a Pt rod (ESPI, 2 mm diameter, 99.95%) and a Re rod 

(ESPI, 2 mm diameter, 99.99%), respectively, using a four-pocket electron-beam 

evaporator (Oxford Applied Research, EGC04). The metal flux was calibrated with a 

UHV bakeable quartz crystal microbalance (QCM, Inficon, XTM-2) before each 

deposition. Metal deposition rates were approximately 0.08-0.1 ML/min, where one 

monolayer (ML) is defined as the packing density of Pt(111) (1.50×10
15

 atoms/cm
2
) or 

Re(0001) (1.52×10
15

 atoms/cm
2
). 

 XPS data were collected before and after reactor experiments using Al Kα X-rays, a 

0.2 s dwell time, and a 0.025 eV step size. Samples were prepared in the UHV chamber 
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and then transferred in and out of the microreactor without exposing the sample to air. In 

the reactor, the sample was heated and cooled in a continuous flow of fresh feed gas, 

which was a mixture of 3% CO (Praxair)/ 7% H2O/ 90% He (Airgas, 99.999%) with a 

flow rate of 60 sccm as determined by a digital flow meter (Agilent Technologies, 

ADM2000). The CO was passed through an alumina trap heated to 150 °C in order to 

remove metal carbonyl contaminants. Water vapor was introduced to the feed gas line by 

a homemade vapor-liquid equilibrator (VLE) filled with ultrapure liquid water (18.2 MΩ 

resistivity, Barnstead EasyPure II 7138), with He serving as the sweep gas. The 

temperature of the VLE was controlled by a refrigerating/ heating recirculation bath 

(VWR), and the concentration of water in the vapor outlet was calculated using the 

Antoine equation. Both CO and He were introduced via independently calibrated mass 

flow controllers (Brooks, 5850e and 5850i). The sample was heated to temperatures 

between 130 °C and 190 °C at a rate of ~1.5-2 °C /min by heating tapes (Briskheat, 

BWHD) wrapped around the exterior of the reactor housing; the heating tapes were 

regulated by a feedback loop on a temperature controller (Auber, SYL-4342P) to ensure 

uniform heating and cooling. The temperature of the sample was measured by a type K 

thermocouple (Omega, KMQSS-040G-6) welded into the feed gas inlet, close to the 

surface of the sample. The gas lines were maintained at ~65 °C using two Valco 

Instruments temperature controllers. Pressure was monitored by two capacitance 

manometers (MKS Instruments, Baratron 722A) located upstream of the reactor in the 

feed gas line (790 Torr ~ 800 Torr) and downstream of the reactor (770 Torr ~ 780 Torr).  

 Activity measurements were performed in recirculation mode 
[26]

, in which the 

reactant gases recirculate over the catalyst surface once every 2 min. A gas 
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sample(~1.096 cm
3
) was injected into the gas chromatograph (HP 5890A) equipped with 

a PoraPLOT Q capillary column and thermal conductivity detector (TCD). Automatic 

injections occurred every 20 min and were followed by refilling the gas sampling loop 

with fresh feed gas so that the pressure in the reactor remained unchanged. WGS activity 

was recorded after 2 hours of reaction at 130 °C, 145 °C, 160 °C, 175 °C, and 190 °C. 

The background activity of the empty reactor and sample support were evaluated and 

found to contribute minor amounts of CO2 to the overall activity, as described on the 

supplemental section. 

For the TPD experiments in the second chamber, the TiO2 crystal was cleaned by 

cycles of Ar sputtering followed by annealing, and the cleanliness of the crystal was 

checked by AES. Pt was deposited from a homemade evaporator consisting of a Pt wire 

(ESPI, 0.25 mm diameter, 99.999%) wrapped around a tungsten wire (0.50 mm), and Re 

was deposited from a Re rod (ESPI, 1.6 mm diameter, 99.99%) installed in an Omicron 

electron beam evaporator (EFM3). The metal fluxes were measured by a QCM before 

deposition and were found to be 0.06-0.08 ML/min for Pt and 0.018 ML/min for Re. 

Surfaces were exposed to CO (National Welders, 99.99%) via a stainless steel directed 

dosing tube, and a saturation exposure of CO was achieved by leaking in CO at a 

pressure rise of 3.0×10
−10

 Torr for 3 minutes. CO exposure was carried out at room 

temperature, and the sample was cooled to 100 K before TPD. During TPD experiments, 

the sample was heated at a rate of 2 K/s and was positioned directly in front of a 4 mm 

diameter aperture in the shroud of the mass spectrometer in order to minimize detection 

of products desorbing from the sample holder. A -100 V bias was applied to the sample 
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during TPD to prevent damage from the electrons emitted by the mass spectrometer 

filament.  

 All IRAS spectra were collected at a grazing angle of 87° using a liquid nitrogen 

cooled mercury cadmium telluride (LN-MCT) detector. The Pt(111) single crystal 

(99.999%, Princeton Scientific Corp., 8 mm diameter, 2 mm thickness) used for IRAS 

experiments was mounted by press-fitting two Ta wires into 1.1 mm deep slots cut into 

the sides of the crystal. The Ta wires were spot welded onto a standard Omicron sample 

plate with an 8.9 x 8.9 mm
2 

window so that the back of the crystal could be directly 

heated by electron bombardment from a tungsten filament. The crystal was cleaned by 

cycles of Ar
+
 ion sputtering at 1 kV for 20 minutes at room temperature and subsequent 

annealing to 1000 K for 3 minutes. The temperature of the crystal was measured by an 

infrared pyrometer. The Pt-Re surface alloys were prepared by heating the Re films to 

1000 K for 5 min. The surfaces were then either introduced directly into the reactor for 

WGS experiments or exposed to CO (Airgas, 99.99%) by backfilling the chamber to a 

specific pressure of CO by means of a variable leak valve. For each set of data, 1200 

spectrometer scans were obtained with 1 cm
-1

 resolution. Background spectra were 

collected on the clean Pt(111) crystal prior to introduction into the reactor or CO 

exposure.  

4.3 RESULTS AND DISCUSSION 

 Pt-Re bimetallic clusters with varying surface compositions were prepared by the 

sequential deposition of Pt on Re and Re on Pt, and surface compositions were evaluated 

by CO TPD. Activity on Pt and Re can be distinguished since CO dissociates on Re but 

not on Pt; specifically, only molecular desorption around 500 K is observed on Pt, 
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whereas a high temperature recombinant peak at 950 K is observed on Re in addition to 

the molecular desorption peak at 500 K. Previous STM studies of 2 ML Re deposited on 

2 ML Pt and 2 ML Pt deposited on 2 ML Re have demonstrated that exclusively 

bimetallic clusters are formed from both orders of deposition
[32]

. In both cases, the 

addition of the second metal does not result in the formation of new clusters, indicating 

that the atoms of the second metal are incorporated into the existing clusters of the first 

metal. When Re is deposited on 2 ML Pt clusters (Figure 4.1), the recombinant CO peak 

is not observed at Re coverages <0.5 ML; this behavior is consistent with the diffusion of 

Re into the Pt clusters, given that the higher surface free energy of Re (3.6 J/m
2
) 

compared to Pt (2.5 J/m
2
) thermodynamically favors Pt remaining at the surface of the 

clusters 
[33]

. Furthermore, the appearance of the high temperature desorption peak at ~900 

K is first observed at a Re coverage of 0.86 ML, and higher Re coverages result in 

increasing intensities of the high temperature peak, which becomes a prominent feature at 

2 ML. The accumulation of Re at the cluster surface at higher coverages is attributed to 

kinetic limitations for the complete diffusion of Re atoms into the existing clusters. Thus, 

both Pt and Re atoms exist at the surface for clusters prepared from the deposition of >0.5 

ML of Re on 2 ML Pt clusters. The cluster surfaces undergo substantial changes during 

annealing to 950 K due to the encapsulation by the TiOx support upon heating in vacuum 

[32-35]
; however, since CO dissociation occurs at room temperature

[22, 34, 36]
, the intensity 

of the recombinant peak should still reflect the concentration of Re atoms at the surface 

when CO was adsorbed at room temperature. 
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Figure 4.1: Temperature programmed desorption data for saturation exposures of CO at 

room temperature on 2 ML Pt clusters on TiO2 after deposition of varying coverages of 

Re.  

 For the deposition of Pt on 2 ML Re clusters, almost no CO dissociation is observed 

at Pt coverages of 0.5 ML and higher (Figure 4.2). After deposition of 0.13 ML Pt, the 

intensity of the 940 K peak decreases by ~50% as Pt partially covers the Re surface. CO 

dissociation associated with Re continues to decrease after deposition of 0.25 ML Pt, and 

at 0.5 ML Pt almost no CO dissociation is detected; although a small feature that is only 

15% of the high temperature CO intensity observed on 2 ML of Re is detected, the 

intensity of this feature continues to gradually decrease to 5% of the intensity on pure 2 

ML Re as the Pt coverage is increased from 0.75 ML to 3 ML. The lack of activity 
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associated with Re for Pt coverages of >0.5 ML on 2 ML Re indicates that the Pt 

completely covers the Re surface for these coverages. Pt should remain at the cluster 

surface when deposited on top of Re clusters, based on the lower surface free energy of 

Pt. Based on the total surface area of the 2 ML Re clusters from a numerical integration 

of the STM images
[32]

, the minimum coverage of Pt required to completely cover the Re 

clusters is one monolayer. Therefore, the Pt-Re clusters consist of both Pt and Re atoms 

at the surface when the Re clusters are partially coverage by Pt at coverage <1 ML. At 

higher Pt coverages, the bimetallic clusters consist of core-shell structures in which the 2 

ML Re core is covered with a Pt shell with thicknesses that increase with Pt coverage.  

 
Figure 4.2: Temperature programmed desorption data for saturation exposures of CO at 

room temperature on 2 ML Re clusters on TiO2 after deposition of varying coverages of 

Pt. 
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 XPS for the Re(4f) region for different coverages of Re deposited on 2 ML Pt is 

consistent with the diffusion of Re into the clusters at coverages below 0.5 ML. Figure 

4.3 shows that the binding energy for pure 2 ML Re clusters is at 40.3 eV, which is close 

to the value on bulk Re surfaces
[37-39]

. However, the binding energy for 0.13 and 0.25 ML 

Re deposited on 2 ML Pt is shifted to 40.8 eV and attributed to an electronic interaction 

between Pt and Re. This same shift to higher binding energy is also observed for Pt-Re 

surface alloys prepared by annealing Re films on Pt(111) so that the Re atoms diffuse 

subsurface and the top monolayer consists of pure Pt 
[40]

. 

 
 

Figure 4.3: Re(4f) XPS data for the following clusters deposited on TiO2(110): various 

Re coverages deposited on 2 ML Pt; 2 ML Re; and 2 ML Re+2 ML Pt. The feature at 37 

eV is from the Ti(3p3/2) peak.  
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Figure 4.4: Pt(4f) XPS data for various Re coverages deposited on 2 ML Pt. The red 

traces show the spectrum after Re deposition, and the blue traces for the initial deposition 

of 2 ML Pt are shown for comparison. The pink trace shows Pt(4f) region for the reverse 

order of the deposition of 2 ML Re + 2 ML Pt. 

 As higher coverages of Re are deposited on the 2 ML Pt clusters, the Re(4f7/2) 

binding energy gradually shifts from 40.8 eV at 0.13 ML to 40.3 eV at 2.0 ML as the 

fraction of Re atoms at the surface increases compared to Re atoms intermixing in the 

cluster. Moreover, the Re(4f7/2) binding energy for 2 ML Re + 2 ML Pt clusters is the 

same as for the pure Re clusters (40.3 eV) since all of the Pt remains at the surface and 

these clusters are not intermixed. XPS data for the Pt(4f7/2) is also consistent with 

intermixing of Re into the clusters at lower coverages and accumulation of Re at the 

surface at higher coverages (Figure 4.4); however, Pt surfaces are known to exhibit a 

significant shifts in binding energy toward higher values when atoms or adsorbates are 

deposited on the surface; this effect is known as a surface core level shift (SCLS) and 
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originates from the lower binding energies (-0.4 eV) for undercoordinated surface Pt 

atoms compared to Pt atoms in the bulk
[41, 42]

. As the coverage of Re is increased from 

0.25 ML to 2 ML, the Pt(4f7/2) binding energy shifts from 70.9 to 71.25 eV; for 

comparison, the spectra before Re deposition are also shown. Thus, the shift in binding 

energy is consistent with alloying of Re into Pt, as observed for the Pt-Re surface alloys 

[40]
, but could also be explained by the SCLS. For 2 ML Re + 2 ML Pt, the Pt(4f7/2) 

binding energy appears at 70.9 eV, which is consistent with the fact that Pt atoms reside 

at the surface as well as lack of Pt-Re intermixing since the deposited Pt remains at the 

surface rather than diffusing into the clusters.  

 
 

Figure 4.5: Activity data for the rate of CO2 production in the water gas shift reaction on 

Pt, Re and Pt-Re clusters on TiO2 as a function of temperature. The feed gas composition 

was 3% CO/7% H2O/balance He, and the feed gas was recirculated over the catalyst for 2 

hours before each measurement. Error bars for the 2 ML Pt and 2 ML Pt + 0.5 ML Re are 

based on standard deviations from three experiments, and error bars for the Pt foil 

experiment are based on two experiments.  
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 Activity for the water gas shift reaction was studied on pure and bimetallic Pt-Re 

clusters at temperatures between 130 ºC and 190 ºC. Figure 4.5 shows the rate of CO2 

production as a function of temperature during water gas shift reaction with a feed gas 

mixture of 3% CO/7% H2O/ balance He; CO2 production was measured after a period of 

two hours at each temperature with the feed gas recirculated over the catalyst in order to 

increase product concentrations to detectable levels. For the 2 ML Pt clusters, the rate of 

WGS reaction increases with temperature according to the Arrhenius equation, yielding 

an activation energy of 44.6 kJ/mol over the temperature range of 145-190 ºC 

(Supplemental Figure 4.12), which is comparable to the values of 45.7 kJ/mol reported in 

the literature for WGS reaction on supported Pt clusters in a similar temperature range 

(50-100 ºC)
[15]

. Notably, the 2 ML Re clusters have almost no WGS activity, and lack of 

activity consistent with the dissociative adsorption of CO on Re. Bimetallic clusters 

consisting of 0.5 ML Re deposited on 2 ML Pt have higher activity than the pure 2 ML Pt 

clusters except at 190 ºC, where the activity shows a decrease with increasing 

temperature; for these surfaces, the CO TPD data show that the deposited Re is believed 

to diffuse into the cluster so that the cluster surface is pure Pt. Furthermore, the standard 

deviations at 175 and 190 ºC are much higher than at the other temperatures, suggesting 

that there may be changes in surface composition at the high temperatures such as 

adsorbate-induced diffusion of Re to the surface of the clusters. For the 2 ML Pt + 1 ML 

Re clusters, in which some of the deposited Re remains at the surface, the activity is 

similar to that of pure Pt at 130 and 145 ºC, slightly higher (17%) at 160 ºC but then does 

not increase at 175 and 190 ºC. For the 2 ML Pt +2 ML Re clusters which have 

substantial Re at the surface, the activity is lower than that of pure Pt at all temperatures, 
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and this behavior is consistent with the fact that Re does not provide active sites for 

WGS. Thus, the bimetallic clusters consisting of pure Pt at the surface and subsurface Re 

(2 ML Pt+0.5 ML Re) have higher activity than pure Pt clusters, but clusters with 

significant surface Re concentrations have lower activity, particularly at the higher 

temperatures. The Pt clusters have the highest activity at 175 and 190 ºC. At this 

temperature Re diffusion to the surface may occur on the Re on Pt clusters with low Re 

coverage, given that Re initially diffused into the clusters upon deposition in UHV. 

 Turnover frequencies (TOF) based on CO2 production are shown in Figure 4.6 for 

both Pt on Re and Re on Pt clusters with a 2 ML coverage of the first metal followed by 

varying coverages of the second metal. The number of sites for each cluster surface was 

determined from total CO desorption relative to the 2 ML Pt clusters in the TPD 

experiments (Figure 4.7); furthermore, the absolute number of surface sites for the 2 ML 

Pt clusters was calculated to be 1.55x10
+15

 sites/cm
2
 based on a numerical integration of 

the STM image
[43]

 for this surface and assuming the clusters have the same surface 

packing density as Pt(111) surface. For Re on 2 ML Pt, the TOF initially increases as the 

Re coverage is increased to 0.5 ML and then decreases as the Re coverage is further 

increased to 1.0 and 2.0 ML. Therefore, activity trends in Figure 4.5 for the bimetallic 

clusters cannot be attributed to differences in surface areas. For the bimetallic clusters 

prepared by depositing 1-3 ML of Pt on 2 ML Re, the TOFs are higher than for pure 2 

ML Pt and increase with Pt coverage; for all of these surfaces, the 2 ML Re clusters 

should be completely covered by Pt. Specifically, the TOF for the 2 ML Re+2 ML Pt 

clusters is 1.6 times higher than the pure Pt clusters. 
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Figure 4.6: Turnover frequencies (TOFs) based on CO2 production in the water gas shift 

reaction on Pt, Re and Pt-Re clusters at 160 C. The feed gas composition was 3% CO/7% 

H2O/balance He, and the feed gas was recirculated over the catalyst for 2 hours before 

each measurement. Error bars are based on standard deviations from three experiments.  

 

 
 

Figure 4.7: CO desorption yields for various coverages of Re on 2 ML Pt and Pt on 2 

ML Re. All values relative to the desorption yield for CO on 2 ML of Pt. 
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 In order to understand the Re oxidation states, the Re(4f) spectra before and after 

WGS reaction were collected (Figure 4.8). The activity of these cluster surfaces for the 

WGS reaction were investigated at 130-190 ºC (Figure 4.5); the reactor was then 

evacuated, cooled to room temperature, and the sample of introduced into the UHV 

chamber for XPS studies. For the pure Re clusters, the Re(4f) spectrum before reaction is 

fit with a single doublet with a Re(4f7/2) peak at 40.3 eV, which is a binding energy 

similar to that observed on single-crystal Re surfaces
[37-39]

.After WGS reaction at 190 ºC, 

the Re(4f) spectrum is fit with a main peak at 40.6 eV that accounts for 70% of total peak 

area and is attributed to oxygen coordinated to metallic Re atoms at the surface
[39, 44, 45]

. 

There is also 23% contribution from a peak at 41.7 eV that is assigned to Re
+2 [39]

 and a 

small peak (7 %) from Re
+4

 at 43.8 eV
[46]

.Furthermore, the 40% decrease in total Re 

signal suggests significant sintering of the clusters. It is also possible that Re may leave 

the surface as volatile Re2O7
[40, 47]

, but this seems less likely since the higher oxidation 

states such as Re
+6 

and Re
+7 

are not observed. For the 2 ML Pt + 2 ML Re clusters, where 

some Re resides at the surface, there is a much smaller shift of +0.1 eV after reaction 

which is consistent with the coordination of oxygen to Re surface atoms
[39, 44, 45]

.For the 

bimetallic clusters that show activity greater than pure Pt (2 ML Pt +0.5 ML Re and 2 

ML Re+2 ML Pt), there is no evidence for Re oxidation after WGS reaction. The 2 ML 

Pt + 0.5 ML Re clusters have a metallic Re(4f7/2) peak at 40.6 eV before reaction, and 

this binding energy is consistent with Re intermixed with Pt
[48]

; after reaction, the peak 

position and shape are unchanged, and still characteristic of metallic Re. Similarly, the 

Re(4f7/2) binding energy is 40.3 eV metallic Re in the 2 ML Re + 2 ML Pt clusters before 

reaction, and both the peak position and peak shape are unchanged after reaction. Since 
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these Pt-Re surfaces both consist of pure Pt in the top monolayer, it appears that it is 

difficult to oxidize subsurface Re under WGS conditions. 

 
Figure 4.8: XPS data for the Re(4f) region for different cluster surfaces before (blue) and 

after (red) exposure to WGS reaction conditions. XPS data was collected following the 

activity measurements at 190 °C for the experiments shown in Figure 4.5. Peak fits are 

shown in purple. 

 To further investigate the potential role of rhenium oxide in the WGS reaction, the 2 

ML Pt+0.5 ML Re clusters were oxidized before exposure to reaction conditions in 4% 

O2/He for 1 hour at room temperature. XPS experiments show that a significant fraction 

of Re becomes highly oxidized with 35% as Re
+6

 (45.0 eV), 20% as Re
+4

 (43.8 eV), 22% 

as Re
+2

 (42.1 eV)
[39, 44, 46, 49]

, and only 23% as metallic Re (Figure 4.9). After WGS 

reaction, the oxidized Pt-Re clusters are reduced: Re
+6

 is not observed, and total intensity 

of the Re
+4

 peak is decrease by approximately a factor of two, whereas the absolute 



104 

intensities of the Re
+2

 and Re
0
 peaks are slightly greater than before reaction. The loss of 

highly oxidized Re
+6

 is attributed to further oxidation to Re
+7

, followed by the 

sublimation of volatile Re2O7 at the higher reaction temperatures, given that Re2O7 is 

known to sublime at temperatures as low as 177 ºC
[40, 47]

. A comparison of the activity for 

CO2 production on the oxidized Pt-Re clusters with pure Pt and the unoxidized Pt-Re 

clusters is shown in Figure 4.5. The oxidized clusters have comparable activity to pure 2 

ML Pt at all temperatures except 190 ºC, where the activity on pure Pt is significantly 

higher; this decrease in activity at 190 ºC could be attributed increased diffusion of Re to 

the cluster surface at elevated temperatures. Furthermore, the unoxidized Pt-Re clusters 

have higher activity than the oxidized clusters at all temperatures, and therefore there is 

no evidence that rhenium oxide provides active sites in the WGS reaction.  

 
 

Figure 4.9: XPS data for the Re(4f) region for different cluster surfaces before (blue) and 

after (red) exposure to WGS reaction conditions. XPS data was collected following the 

activity measurements at 190 °C for the experiments shown in Figure 3. The peak at 37 

eV is from the Ti(3p3/2) peak.  
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 DFT calculations were carried out in order to understand differences in activities for 

the pure Pt surface compared to the Pt-Re alloy surface. The pure Pt surface was modeled 

as a 5-layer slab with a (4x3) surface cell, and the second layer of the Pt slab was 

replaced with Re atoms in the model structure for the Pt-Re alloy surface (Figure 4.13). 

Since O-H bond scission in water is believed to be the rate limiting step in WGS on Pt 

catalysts 
[17, 20, 21]

, the activation energy barrier for O-H was calculated to determine if 

more facile O-H bond breaking on Pt-Re contributes to the higher activity. However, the 

activation energy for O-H bond scission on pure Pt slab (0.77 eV) and was slightly lower 

than on the Pt-Re alloy surface (0.92 eV). Therefore, Ea for O-H bond breaking cannot 

explain the higher activity of Pt-Re compared to Pt. 

 The energies associated with adsorption and dissociation of H2O, CO and H2 were 

also calculated on Pt and Pt-Re, as shown in Table 4.1. For the dissociation of water into 

OH(ad) and H2(g) or H(ad), the lower reaction energy on Pt-Re demonstrates that 

dissociation to OH(ad) is more thermodynamically favorable on Pt-Re. In contrast, the 

adsorption of CO at either top or fcc sites is favored on Pt compared to Pt-Re. Similarly, 

the dissociation of H2(g) to H(ad) is favored on Pt compared to Pt-Re, whereas the 

adsorption of gaseous water is equally favored on both surfaces. Based on these results, 

the stronger bonding of CO to Pt vs. Pt-Re should lead to reduced CO poisoning on the 

Pt-Re surface and the higher observed activity in the WGS reaction. Active sites on the 

pure Pt surface are also more likely to be blocked by adsorbed hydrogen than Pt-Re sites, 

thereby reducing activity for WGS on Pt. Moreover, the higher stability of OH(ad) on the 

Pt-Re surface provides a greater thermodynamic driving force for water dissociation on 

Pt-Re vs. Pt.  
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Table 4.1: Density functional theory calculations for reaction energies on Pt and Pt-Re 

alloy structures. 

Reaction Reaction Energy (eV) 

Pt-Pt-Pt-Pt-Pt Pt-Re-Pt-Pt-Pt 

H
2
O(g) 

 
OH(ad) + ½ H2(g) 

 

0.81 (top) 

 

0.55 (top) 

 

H
2
O(g) 

 OH(ad) 
+ H(ad) 

 

0.32  

 

0.22  

 

CO(g) 
 CO(ad) 

 

-1.75/-1.85 

(top/fcc)  

 

-1.51/-1.21 

(top/fcc ) 

 

H2(g) 
 ½ H(ad) 

 

-0.49 (fcc) 

 

-0.33 (fcc) 

 

H2O(g) 


 H2O(ad) 

 

-0.26 (top) 

 

-0.25 (top) 

 

 

 IRAS experiments provide further evidence that the Pt-Re alloy surface is less 

susceptible to CO poisoning than pure Pt in the WGS reaction. A Pt(111) crystal was 

exposed to WGS reaction conditions (3%CO/7% H2O/balance He, 160 ºC, 2 hours), and 

then IRAS data was collected on the surface after reaction. As shown in Figure 4.10, an 

intense feature is observed at 2085 cm
-1

 and attributed to CO at top sites
[50, 51]

 and a 

smaller peak appears at 1848 cm
-1

 and is assigned to CO at bridge sites
[50, 51]

. The Pt-Re 

alloy surface is prepared by depositing 2.4 ML of Re on Pt(111) and annealing at 1000 K 

to form a surface alloy, in which the Re diffuses subsurface and the top surface 

monolayer consists of pure Pt
[40]

. After the Pt-Re alloy surface is exposed to identical 

WGS reaction conditions, the CO stretching peak at 2066 cm
-1

 has an integrated intensity 

that is 50% of that at 2085 cm
-1

 from CO on Pt(111). The shift toward lower CO 

stretching frequencies on the Pt-Re alloy cannot be completely accounted for by 

decreased dipole-dipole coupling at the lower coverages
[52, 53]

. Specifically, the stretching 

frequency of CO on Pt(111) decreases from 2090 cm
-1

 at a saturation exposure of 3 L to 
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2081 cm
-1

 at a 0.01 L exposure, where the peak intensity has decreased by 90%. Thus, the 

20 cm
-1

 decrease in C-O stretching frequency is too large to be solely attributed to 

decreased dipole-dipole coupling at lower coverages on the Pt-Re alloy. 

 
Figure 4.10: Infrared absorption-reflection spectra of the CO stretching region for 

Pt(111) and the Pt-Re alloy surface (2.4 ML Re on Pt(111) heated to 1000 K for 5 min) 

after exposure to WGS reaction conditionsfor 2 hours at 160° C.  

 Post-reaction XPS data for the O(1s) region was also collected for WGS reaction on 

various pure and bimetallic clusters following the reactor experiments shown in Figure 

4.5. Given that the TiO2(110) substrate contributes a large O(1s) signal at 530.2 eV, the 

changes in the O(1s) after reaction are shown in Figure 4.11, where the O(1s) spectrum 

before reaction has been subtracted from the O(1s) spectra after reaction for each surface. 

The clean TiO2 surface, which has no activity for WGS, exhibits a small feature at 531.8 

eV and residual signal at ~530 eV, which may be from error in the subtraction of the 

TiO2 contribution. The O(1s) difference spectrum for the 2 ML Pt clusters show a peak 

with a binding energy at 530.7 eV, which is characteristic of oxygen on Pt, given that this 

same binding energy is observed with a pure Pt foil is exposed to the same WGS reaction 
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conditions. In contrast, the spectrum for 2 ML Re exhibits a peak at a lower binding 

energy of 529.5 eV, and therefore oxygen on Re and oxygen on Pt can be distinguished. 

Intensity also appears at 531.8 eV as a higher binding energy shoulder from oxygen 

species on TiO2 for both the 2 ML Pt and 2 ML Re spectra. 

 
 

Figure 4.11: XPS data for the O(1s) region after WGS reaction up to 190 °C on the 

various surfaces. For each spectrum, the O(1s) spectrum before reaction was substract 

from the post-reaction spectrum in order to remove the contribution from TiO2.  
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 The 2 ML Pt+2 ML Re clusters have both Pt and Re atoms at the surface, and 

accordingly, the O(1s) difference spectrum shows contribution at both 530.7 and 529.5 

eV from oxygen on Pt and Re, respectively. For the 2 ML Pt + 0.5 ML Re clusters, more 

distinct features are observed at 530.7 and 529.5 eV, with the latter peak suggesting that 

there is some diffusion of Re to the surface during WGS reaction. The O(1s) difference 

spectrum after reaction for the 2 ML Re+2 ML Pt clusters has intensity at ~529.5 eV, but 

this intensity is not greater than what is observed on the post-reaction TiO2 surface. 

Consequently, it is not clear that diffusion of Re to the surface occurs for these Re core-Pt 

shell clusters. 

 Post-reaction C(1s) data collected on the pure and bimetallic clusters demonstrate that 

carbon is deposited on all surfaces during reaction, including on the TiO2 support itself 

(Figure 4.14). However, for all surfaces, there is no significant difference in the amount 

of carbon deposited, with the exception of the 2 ML Pt+2 ML Re clusters, which appear 

to have more carbon than the other surfaces; this is also the only bimetallic surface 

studied that has a high concentration of Re at the surface. The rising baseline at low 

binding energies for surfaces containing Re is from the Re(4d3/2) at 277 eV. 

 

4.4 SUMMARY 

 Bimetallic Pt on Re clusters were prepared by depositing 2 ML Pt on 2 ML Re to 

form Re-core-Pt-shell structures, or by depositing 0.5 ML Re on 2 ML Pt clusters, where 

the Re atoms diffusing into the Pt cluster leaving a monolayer of Pt at the surface. Both 

of these Pt on Re surfaces exhibited greater activity for WGS than pure Pt clusters; in 

contrast, bimetallic clusters with a significant fraction of Re atoms at the surface had 
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lower activity than pure Pt, given that Re is active for the WGS reaction. XPS 

investigations on the Pt on Re clusters after reaction showed that the Re remained 

metallic and was not oxidized during reaction. Moroever, Pt-Re clusters that were 

oxidized before WGS reaction showed lower activity than the unoxidized Pt-Re clusters, 

and this implies that the active sites for the WGS reaction in Pt-Re catalysts do not 

involve ReOx. Both DFT and IRAS studies show that CO binds more strongly to Pt 

surfaces compared to Pt-Re, and therefore the improved activity on Pt-Re is attributed to 

reduced CO poisoning. 

 

4.5 SUPPLEMENTAL INFORMATION  

 
 

Figure 4.12: Arrhenius plot for WGS reaction on 2 ML Pt clusters on TiO2(110) over the 

temperature range of 145-190° C. Data collected at 130° C was not included in this plot 

since it did not fit the linear trend. 
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Figure 4.13: Structure for the pure Pt (left) and Pt-Re alloy (right) model surfaces used in 

the DFT calculations.  

 

 
 

Figure 4.14: XPS data for the C(1s) region after WGS reaction up to 190 °C on the 

various surfaces. 



112 

ACKNOWLEDGEMENTS 

We gratefully acknowledge financial support from the National Science Foundation 

(CHE 1300227). AJB also acknowledges funding from the NSF IGERT program. Thanks 

to Dr. Audrey Duke, Amy Brandt and Thathsara Maddumapatabandi for the preparation 

and characterizations (XPS and IR) of supported Pt-Re catalysts. 

4.6 REFERENCES 

(1) Sinfelt, J. H., Catalysis by alloys and bimetallic clusters. Accounts of Chemical 

Research 1977, 10 (1), 15-20. 

(2) Chen, J. G.; Menning, C. A.; Zellner, M. B., Monolayer bimetallic surfaces: 

Experimental and theoretical studies of trends in electronic and chemical 

properties. Surface Science Reports 2008, 63 (5), 201-254. 

(3) Sinfelt, J. H., Bimetallic catalysts: discoveries, concepts, and applications. Wiley: 

1983. 

(4) Campbell, C. T., Bimetallic Surface Chemistry. Annual Review of Physical 

Chemistry 1990, 41 (1), 775-837. 

(5) Rodriguez, J., Physical and chemical properties of bimetallic surfaces. Surface 

Science Reports 1996, 24 (7), 223-287. 

(6) Liu, P.; Norskov, J. K., Ligand and ensemble effects in adsorption on alloy 

surfaces. Physical Chemistry Chemical Physics 2001, 3 (17), 3814-3818. 

(7) Yu, W.; Porosoff, M. D.; Chen, J. G., Review of Pt-Based Bimetallic Catalysis: 

From Model Surfaces to Supported Catalysts. Chemical Reviews 2012, 112 (11), 

5780-5817. 

(8) Kluksdahl, H. E. Reforming a sulfur-free naphtha with a platinum-rhenium 

catalyst. US Patent 3415737, 1968. 

(9) Carter, J. L.; McVinker, G. B.; Weissman, W.; Kmak, M. S.; Sinfelt, J. H., 

Bimetallic catalysts; application in catalytic reforming. Applied Catalysis 1982, 3 

(4), 327-346. 

(10) Somorjai, G. A., Introduction to surface chemistry and catalysis. Wiley: 1994. 

(11) Barbier, J., Deactivation of reforming catalysts by coking - a review. Applied 

Catalysis 1986, 23 (2), 225-243. 



113 

(12) Godbey, D. J.; Somorjai, G. A., The adsorption and desorption of hydrogen and 

carbon monoxide on bimetallic Re-Pt(111) surfaces. Surface Science 1988, 204 

(3), 301-318. 

(13) Parera, J. M.; Beltramini, J. N., Stability of bimetallic reforming catalysts. 

Journal of Catalysis 1988, 112 (2), 357-365. 

(14) Godbey, D. J.; Garin, F.; Somorjai, G. A., The hydrogenolysis of ethane over Re-

Pt(111) and Pt-Re(0001) bimetallic crystal surfaces. Journal of Catalysis 1989, 

117 (1), 144-154. 

(15) Sato, Y.; Terada, K.; Hasegawa, S.; Miyao, T.; Naito, S., Mechanistic study of 

water–gas-shift reaction over TiO2 supported Pt–Re and Pd–Re catalysts. Applied 

Catalysis A: General 2005, 296 (1), 80-89. 

(16) Iida, H.; Igarashi, A., Difference in the reaction behavior between Pt–Re/TiO2 

(Rutile) and Pt–Re/ZrO2 catalysts for low-temperature water gas shift reactions. 

Applied Catalysis A: General 2006, 303 (1), 48-55. 

(17) Azzam, K. G.; Babich, I. V.; Seshan, K.; Lefferts, L., Role of Re in Pt–Re/TiO2 

catalyst for water gas shift reaction: A mechanistic and kinetic study. Applied 

Catalysis B: Environmental 2008, 80 (1–2), 129-140. 

(18) Iida, H.; Yonezawa, K.; Kosaka, M.; Igarashi, A., Low-temperature water gas 

shift reaction over Pt–Re/TiO2 catalysts prepared by a sub-critical drying method. 

Catalysis Communications 2009, 10 (5), 627-630. 

(19) González, I. D.; Navarro, R. M.; Wen, W.; Marinkovic, N.; Rodriguéz, J. A.; 

Rosa, F.; Fierro, J. L. G., A comparative study of the water gas shift reaction over 

platinum catalysts supported on CeO2, TiO2 and Ce-modified TiO2. Catalysis 

Today 2010, 149 (3–4), 372-379. 

(20) Azzam, K. G.; Babich, I. V.; Seshan, K.; Mojet, B. L.; Lefferts, L., Stable and 

Efficient Pt–Re/TiO2 catalysts for Water-Gas-Shift: On the Effect of Rhenium. 

ChemCatChem 2013, 5 (2), 557-564. 

(21) Azzam, K. G.; Babich, I. V.; Seshan, K.; Lefferts, L., A bifunctional catalyst for 

the single-stage water–gas shift reaction in fuel cell applications. Part 2. Roles of 

the support and promoter on catalyst activity and stability. Journal of Catalysis 

2007, 251 (1), 163-171. 

(22) Ramstad, A.; Strisland, F.; Raaen, S.; Borg, A.; Berg, C., CO and O2 adsorption 

on the Re/Pt(111) surface studied by photoemission and thermal desorption. 

Surface Science 1999, 440 (1–2), 290-300. 

(23) Ishikawa, Y.; Liao, M.-S.; Cabrera, C. R., Energetics of H2O dissociation and 

COads+OHads reaction on a series of Pt–M mixed metal clusters: a relativistic 

density-functional study. Surface Science 2002, 513 (1), 98-110. 



114 

(24) Greeley, J.; Mavrikakis, M., Near-surface alloys for hydrogen fuel cell 

applications. Catalysis Today 2006, 111 (1–2), 52-58. 

(25) Duke, A. S.; Xie, K.; Monnier, J. R.; Chen, D. A., Superior Long-Term Activity 

for a Pt-Re Alloy Compared to Pt in Methanol Oxidation Reactions. Submitted to 

surface science. 

(26) Tenney, S. A.; Xie, K.; Monnier, J. R.; Rodriguez, A.; Galhenage, R. P.; Duke, A. 

S.; Chen, D. A., Novel recirculating loop reactor for studies on model catalysts: 

CO oxidation on Pt/TiO2(110). Review of Scientific Instruments 2013, 84 (10), 

104101-104108. 

(27) Varazo, K.; Parsons, F. W.; Ma, S.; Chen, D. A., Methanol Chemistry on Cu and 

Oxygen-Covered Cu Nanoclusters Supported on TiO2(110). The Journal of 

Physical Chemistry B 2004, 108 (47), 18274-18283. 

(28) Ozturk, O.; Park, J. B.; Black, T. J.; Rodriguez, J. A.; Hrbek, J.; Chen, D. A., 

Methanethiol chemistry on TiO2-supported Ni clusters. Surface Science 2008, 

602 (19), 3077-3088. 

(29) Tenney, S. A.; Ratliff, J. S.; Roberts, C. C.; He, W.; Ammal, S. C.; Heyden, A.; 

Chen, D. A., Adsorbate-Induced Changes in the Surface Composition of 

Bimetallic Clusters: Pt−Au on TiO2(110). The Journal of Physical Chemistry C 

2010, 114 (49), 21652-21663. 

(30) Tenney, S. A.; He, W.; Roberts, C. C.; Ratliff, J. S.; Shah, S. I.; Shafai, G. S.; 

Turkowski, V.; Rahman, T. S.; Chen, D. A., CO-Induced Diffusion of Ni Atoms 

to the Surface of Ni–Au Clusters on TiO2(110). The Journal of Physical 

Chemistry C 2011, 115 (22), 11112-11123. 

(31) Tenney, S. A.; Cagg, B. A.; Levine, M. S.; He, W.; Manandhar, K.; Chen, D. A., 

Enhanced activity for supported Au clusters: Methanol oxidation on 

Au/TiO2(110). Surface Science 2012, 606 (15–16), 1233-1243. 

(32) Galhenage, R. P.; Xie, K.; Yan, H.; Seuser, G. S.; Chen, D. A., Understanding the 

Growth, Chemical Activity, and Cluster–Support Interactions for Pt–Re 

Bimetallic Clusters on TiO2(110). The Journal of Physical Chemistry C 2016, 120 

(20), 10866-10878. 

(33) Boer, F. R. d., Cohesion in metals : transition metal alloys. North-Holland ; Sole 

distributors for the U.S.A. and Canada, Elsevier Scientific Pub. Co.: Amsterdam; 

New York; New York, N.Y., U.S.A., 1988. 

(34) Ozturk, O.; Park, J. B.; Ma, S.; Ratliff, J. S.; Zhou, J.; Mullins, D. R.; Chen, D. 

A., Probing the interactions of Pt, Rh and bimetallic Pt–Rh clusters with the 

TiO2(110) support. Surface Science 2007, 601 (14), 3099-3113. 



115 

(35) Tenney, S.; He, W.; Ratliff, J.; Mullins, D.; Chen, D., Characterization of Pt–Au 

and Ni–Au Clusters on TiO2 (110). Topics in Catalysis 2011, 54 (1), 42-55. 

(36) Ducros, R.; Fusy, J.; Jupille, J.; Pareja, P.; Tatarenko, S., CO adsorption on 

rhenium single crystal surfaces: Characterization of molecular and dissociated 

states and influence of structural defects. Applied Surface Science 1987, 29 (2), 

179-193. 

(37) Ducros, R.; Alnot, M.; Ehrhardt, J. J.; Housley, M.; Piquard, G.; Cassuto, A., A 

study of the adsorption of several oxygen-containing molecules (O2, CO, NO, 

H2O) on Re(0001) by XPS, UPS and temperature programmed desorption. 

Surface Science 1980, 94 (1), 154-168. 

(38) Mrårtensson, N.; Saalfeld, H. B.; Kuhlenbeck, H.; Neumann, M., Structural 

dependence of the 5 \textit{d} -metal surface energies as deduced from surface 

core-level shift measurements. Physical Review B 1989, 39 (12), 8181-8186. 

(39) Chan, A. S. Y.; Chen, W.; Wang, H.; Rowe, J. E.; Madey, T. E., Methanol 

Reactions over Oxygen-Modified Re Surfaces:  Influence of Surface Structure and 

Oxidation. The Journal of Physical Chemistry B 2004, 108 (38), 14643-14651. 

(40) Duke, A. S.; Galhenage, R. P.; Tenney, S. A.; Sutter, P.; Chen, D. A., In Situ 

Studies of Carbon Monoxide Oxidation on Platinum and Platinum–Rhenium 

Alloy Surfaces. The Journal of Physical Chemistry C 2015, 119 (1), 381-391. 

(41) Björneholm, O.; Nilsson, A.; Tillborg, H.; Bennich, P.; Sandell, A.; Hernnäs, B.; 

Puglia, C.; Mårtensson, N., Overlayer structure from adsorbate and substrate core 

level binding energy shifts: CO, CCH3 and O on Pt(111). Surface Science 1994, 

315 (1–2), L983-L989. 

(42) Ramstad, A.; Strisland, F.; Raaen, S.; Worren, T.; Borg, A.; Berg, C., Growth and 

alloy formation studied by photoelectron spectroscopy and STM. Surface Science 

1999, 425 (1), 57-67. 

(43) Zhou, J.; Ma, S.; Kang, Y. C.; Chen, D. A., Dimethyl Methylphosphonate 

Decomposition on Titania-Supported Ni Clusters and Films:  A Comparison of 

Chemical Activity on Different Ni Surfaces. The Journal of Physical Chemistry B 

2004, 108 (31), 11633-11644. 

(44) Ducros, R.; Fusy, J., Core level binding energy shifts of rhenium surface atoms 

for a clean and oxygenated surface. Journal of Electron Spectroscopy and Related 

Phenomena 1987, 42 (4), 305-312. 

(45) Liu, P.; Shuh, D. K., Adsorption of O2 on polycrystalline rhenium metal at room 

temperature studied by synchrotron X-ray photoemission spectroscopy. Journal of 

Electron Spectroscopy and Related Phenomena 2001, 114–116, 319-325. 



116 

(46) Wagner, C. D.; Muilenberg, G. E., Handbook of x-ray photoelectron spectroscopy 

: a reference book of standard data for use in x-ray photoelectron spectroscopy. 

Physical Electronics Division, Perkin-Elmer Corp.: Eden Prairie, Minn., 1979. 

(47) Duke, A. S.; Galhenage, R. P.; Tenney, S. A.; Ammal, S. C.; Heyden, A.; Sutter, 

P.; Chen, D. A., In Situ Ambient Pressure X-ray Photoelectron Spectroscopy 

Studies of Methanol Oxidation on Pt(111) and Pt–Re Alloys. The Journal of 

Physical Chemistry C 2015, 119 (40), 23082-23093. 

(48) Koso, S.; Watanabe, H.; Okumura, K.; Nakagawa, Y.; Tomishige, K., 

Comparative study of Rh–MoOx and Rh–ReOx supported on SiO2 for the 

hydrogenolysis of ethers and polyols. Applied Catalysis B: Environmental 2012, 

111–112, 27-37. 

(49) Morant, C.; Galán, L.; Sanz, J. M., X-ray photoelectron spectroscopic study of the 

oxidation of polycrystalline rhenium by exposure to O2 and low energy O2+ ions. 

Analytica Chimica Acta 1994, 297 (1–2), 179-186. 

(50) Bolivar, C.; Charcosset, H.; Frety, R.; Primet, M.; Tournayan, L.; Betizeau, C.; 

Leclercq, G.; Maurel, R., Platinum-rhenium-alumina catalysts. Journal of 

Catalysis 1976, 45 (2), 163-178. 

(51) Peri, J. B., Infrared studies of Pt and Pt-Re reforming catalysts. Journal of 

Catalysis 1978, 52 (1), 144-156. 

(52) Scheffler, M., The influence of lateral interactions on the vibrational spectrum of 

adsorbed CO. Surface Science 1979, 81 (2), 562-570. 

(53) Persson, B. N. J.; Ryberg, R., Vibrational interaction between molecules adsorbed 

on a metal surface: The dipole-dipole interaction. Physical Review B 1981, 24 

(12), 6954-6970. 

 

 



117 

CHAPTER 5 UNDERSTANDING THE GROWTH, CHEMICAL ACTIVITY, AND 

CLUSTER–SUPPORT INTERACTIONS FOR PT–RE BIMETALLIC CLUSTERS ON 

TIO2 (110)
1
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Cluster-Support Interactions for Pt-Re Bimetallic Clusters on TiO2(110), Journal of 

Physical Chemistry C, 2016, 120 (20), pp 10866–10878. Copyright 2016 American 
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5.1 INTRODUCTION 

The Pt-Re bimetallic system has exhibited unique properties that are different from 

pure Pt and pure Re for a number of surface reactions and catalytic processes. For 

example, the Pt-Re on alumina catalysts have been used in industrial naphtha reforming 

since the 1960s and represent one of the first commercially successful bimetallic 

catalysts
[1, 2]

.The Pt-Re catalyst has greater selectivity and activity in hydrocarbon 

reforming reactions
[3-5]

 as well as better long-term activity compare to pure Pt; the 

presence of Re is believed to inhibit carbon buildup and subsequent deactivation of the Pt 

sites
[3, 5-11]

. Furthermore, Pt-Re/TiO2 catalysts have recently been reported to have higher 

activity than pure Pt/TiO2 for the water gas shift (WGS) reaction 
[12-22]

. Recent studies of 

the aqueous phase reforming (APR) of glycerol and other polyols have demonstrated that 

Pt-Re/C catalysts have higher turnover frequencies, activities and lifetimes compared to 

Pt/C 
[19-27]

. The weaker binding of CO to the Pt-Re surface vs. Pt is proposed to be 

responsible for the APR higher activity due to decreased CO poisoning
[23, 28]

. 

Alternatively, it has also been suggested that CO is removed via the enhanced WGS 

activity at ReOx sites on the Pt-Re/TiO2 catalysts 
[15, 16, 18]

. Superior properties for the Pt-

Re catalysts have been observed in reactions associated with biomass reforming, such as 

glycerol hydrogenolysis to propanediols
[24, 29]

 and selective hydrogenation of carboxylic 

acids
[30, 31]

 and aldehydes
[32]

 to alcohols. In addition, a number of studies report unusual 

and desirable chemical activity for the bimetallic Pt-Re surfaces. Both the weaker binding 

of CO 
[33, 34]

 and the decreased activation energy for H2 desorption on Pt-Re compared to 

Pt(111) have been ascribed to electronic effects
[35]

.Our group's recent investigations show 

that oxygen dissociates more readily at 500 K on Pt-Re alloy surface compared to Pt(111), 
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but in this case it is believed that Re diffuses to the alloy surface to facilitate oxygen 

dissociation
[36]

. 

Another effect of the addition of Re to the Pt catalysts is increased Pt dispersion, 

particularly on oxide supports 
[4, 13, 29, 37, 38]

. Moreover, the Pt-Re particles are more 

resistant to sintering compared to Pt alone 
[15, 23, 39]

. For example, after 20 hours onstream 

for WGS at 300 °C, the Pt/TiO2 particles lose 36% of their initial dispersion whereas the 

Pt-Re/TiO2 particles lose only 8%
[15]

. However, the increased activity for Pt-Re in the 

WGS reaction cannot in general be attributed solely to increased dispersion 
[15, 40]

. 

Despite the many investigations of Pt-Re catalysts, the details of Pt-Re bimetallic 

interactions, Re oxidation states and interactions of the metal particles with the oxide 

support are still not completely understood. This is largely because the Re oxidation state 

and extent of Pt-Re interactions are known to be strongly influenced by exact preparation 

conditions, including catalyst pretreatment conditions
[13, 18, 41-47]

. Although it is possible 

to control the Pt-Re particle size to <2nm, it is not possible to control the Re oxidation 

state because Re remains partially oxidized even after high temperature reduction in H2 
[3, 

24, 29]
. Therefore, studies of model surfaces consisting of vapor-deposited Pt, Re and Pt-Re 

clusters on a single crystal oxide support are important in order to better understand the 

chemical interactions in the oxide-supported Pt-Re system. 

Furthermore, there have been no detailed studies of Re growth and interaction on 

an oxide support surface like TiO2. The Re on TiO2 catalyst itself has attracted attention 

for selective oxidation of methanol to methylal 
[48, 49]

 and selective hydrogenation of 

steric acid to octadecanol 
[31]

. In both cases, it is believed that rhenium oxide is 

responsible for the active sites. Thus, it is valuable to investigate the nature of Re 
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interaction with the TiO2 support and understand how interactions with the TiO2 support 

could affect oxidation states.  

In the work reported here, we have deposited Pt, Re and Pt-Re clusters on rutile 

TiO2(110) and studied these surfaces by scanning tunneling microscopy (STM) in order 

to understand the nucleation, growth and formation of bimetallic clusters, as well as the 

effect of annealing on cluster size. Furthermore, Re oxidation states were investigated by 

X-ray photoelectron spectroscopy (XPS), and the atomic composition of the cluster 

surfaces were examined by low energy ion scattering (LEIS) and temperature 

programmed desorption (TPD) using CO as a probe molecule. We find that Pt-Re 

bimetallic clusters can be grown via sequential deposition of Pt on Re or Re on Pt, the 

cluster surfaces are Pt-rich, and there is a strong interaction between Re and the TiO2 

support. 

5.2 EXPERIMENTAL 

Experiments were carried out in two ultrahigh vacuum chambers (P<1×10
-10

 Torr), 

which have been described in detail elsewhere 
[50-57]

. The first chamber is equipped with a 

variable-temperature scanning tunneling microscope (Omicron VT-25), a hemispherical 

anayzer (Omicron EA125) for X-ray photoelectron and low energy ion scattering 

spectroscopies, optics for low energy electron diffraction and Auger electron 

spectroscopy (Omicron Spec 3) and a quadrupole mass spectrometer (Leybold-Inficon, 

Transpector 2)
[51, 53-57]

. The second chamber is equipped with a quadrupole mass 

spectrometer for temperature programmed desorption studies (Hiden HAL 301/3F), a 

cylindrical mirror analyzer for Auger electron spectroscopy (Omicron CMA 150), and 

low energy electron diffraction optics (Omicron SPECTALEED) 
[50, 52, 55-57]

. 
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Rutile TiO2(110) crystals (Princeton Scientific Corporation, 1cm x 1cm x 0.1 cm) 

were used as the support surfaces for the growth of the metal clusters. The crystals were 

mounted on Ta back plates using Ta foil straps; the samples were radiatively heated from 

a tungsten filament positioned behind the back plate and heated via electron 

bombardment of the back plate when a positive bias was applied to the sample. The 

sample temperature was monitored with a type K or type C thermocouple that was 

spotwelded to the edge of the back plate and independently calibrated using an infrared 

pyrometer (Heitronics) 
[53]

. The crystals were cleaned by cycles of Ar
+
 sputtering at 1 kV 

for 20 min followed by annealing at 950 K-1000 K for 3 min. This treatment 

preferentially removes lattice oxygen and results in a n-type semiconductor that is 

sufficiently conductive for STM, XPS and LEIS experiments. The cleanliness and 

crystallinity of the TiO2(110)-(1x1) surface were confirmed by a combination of STM, 

XPS, low energy electron diffraction and Auger electron spectroscopy studies. 

In the first chamber, Re and Pt were deposited from Re (ESPI, 2 mm diameter, 

99.99%) and Pt rods (ESPI, 2 mm diameter, 99.95%) using an Oxford electron beam 

evaporator (EGC04). Metal flux was measured by a quartz crystal microbalance (QCM, 

Inficon XTM-2), which was independently calibrated by depositing a submonolayer 

coverage of Au onto a Ru(0001) single crystal
[58]

. In the second chamber, Re was 

deposited from a Re rod (ESPI, 1.6 mm diameter, 99.99%) with an Omicron electron 

beam evaporator (EFM3), while Pt was deposited from a homemade source consisting of 

Pt wire (ESPI, 0.25 mm diameter, 99.999%) wrapped around a tungsten wire (0.50 mm) 

through which current was passed. The Pt flux was calibrated with a QCM before each 

deposition; for Re deposition, the internal flux monitor of the evaporator was used to 
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control Re flux, and the flux monitor readings were initially calibrated with a QCM. 

Metal coverages are given in monolayer (ML) equivalents that correspond to packing 

density of the corresponding metals (Re(0001):1.52×10
15

 atoms/cm
2
, Pt(111): 1.50×10

15
 

atoms/cm
2
). Metal deposition rates were approximately 0.02-0.1 ML/min.  

STM experiments were carried out with the sample biased at +2.3 V with respect to 

the tip, and images were collected at a constant tunneling current of 0.05 nA–0.1 nA. 

STM tips consisted of 0.38 mm-diameter tungsten wire that was electrochemically etched 

in NaOH and subjected to Ar
+
 sputtering at 3 kV

[54]
. For the low coverage surfaces (0.11-

0.43 ML), cluster heights were determined using an in-house program 
[56, 59]

 that 

measured all clusters in a 500 Åx500 Å region. For the high coverage surfaces (>1.7 ML), 

average heights were determined from the manual measurement of 30 clusters. Clusters 

heights are used as a measure of cluster size since the diameters are known to be 

overestimated due to tip convolution effects, particularly for the smaller clusters 
[54, 58, 60, 

61]
. Cluster densities were measured by counting all of the clusters in a 1000 Å×1000 Å 

image. Numerical integration of the STM images to determine surface area were carried 

out with a Matlab program
[51]

, and the surface area of uncovered TiO2 was subtracted to 

obtain the cluster surface area only. 

XPS data were collected with an Al Kα source using a 0.2 s dwell time and 0.02 eV 

step size. LEIS experiments were conducted with a 600 eV He
+
 beam using a 0.2 eV step 

size and 0.2 s dwell time. The relative sensitivities to Pt and Re were established by LEIS 

experiments on pure Pt and Re foils (ESPI 99.95% and 99.99% purity, respectively) with 

identical exposed surface areas. The foils were cleaned by multiple cycles of Ar
+
 

sputtering at 1 kV for 15 min and annealing at 900 K for 6 min. Curve fitting for the 
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Ti(2p3/2) region was carried out with the shareware program XPSPEAK 4.1 using a 

Shirley background, FWHM of 1.8-2.0 eV and Gaussian-Lorenztian lineshapes. For the 

deconvoluted LEIS spectra, the data fit using the peak shapes from the spectra of the pure 

metals at a coverage of ~0.2 ML for the low coverage surfaces and ~2 ML for the high 

coverage surfaces. The pure Re spectrum was shifted by 0.7-1.0 eV in order to be able to 

fit the bimetallic spectra. Fitting with Re spectra for different coverages of 0.22-0.43 ML 

for the low coverage data and 2-10 ML for the high coverage data did not change the 

calculated compositions by more than 1%; the pure Pt spectra had the same peak shape 

for all coverages studied.  

The surfaces were exposed to CO (National Welders, 99.99%) via a stainless steel 

directed dosing tube
[62]

. The sample temperature was held at 300 K during CO dosing, 

and a saturation exposure of CO was achieved by leaking in CO at a pressure rise of 

3.0×10
−10

 Torr for 3 min. After cooling to 100 K, the crystal was heated at a constant rate 

of 2 K/s in front of the mass spectrometer during TPD experiments. The crystal was 

positioned ∼2 mm in front of a 4 mm diameter hole cut in the shroud of the mass 

spectrometer in order to minimize sampling of products desorbing from the sample 

holder. Furthermore, the crystal was biased at −100 V during TPD experiments to avoid 

damage from the electrons emitted by the mass spectrometer filament. For titania pre-

oxidation with 
18

O2, the crystal was exposed to 1×10
-7

 Torr of 
18

O2 at 800 K for 5 min 

via directed dosing. 
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5.3 RESULT AND DISCUSSION 

Growth of Pure Re on TiO2(110) 

Submonolayer Re coverages on TiO2(110) result in the growth of a high density 

of small clusters that cover most of the surface and have an average height of one to two 

monolayers. STM images for Re clusters corresponding to different coverages are shown 

in Figure 5.1a-c. For 0.11 ML of Re, clusters with an average height of 2.9±1.1 Å and 

cluster density of 31.4×10
12

/cm
2
 are observed. Based on the 2.23 Å step height for 

Re(0001)
[63]

, the majority of the Re clusters are a single layer high. Therefore, nearly the 

entire surface appears to be covered by a discontinuous two-dimensional layer of Re. For 

all surfaces, average height and cluster densities are reported in Table 5.1, while 

histograms of cluster heights are presented in Figure 5.10 for the low coverage clusters. 

When the Re coverage is doubled (0.22 ML), there is an increase in the average cluster 

height (3.2±1.1 Å), but the cluster density decreases by ~10% due to cluster coalescence. 

At 0.43 ML of Re, the average cluster height continues to increase to 4.0±1.3 Å, and the 

cluster density is reduced by ~20% compared to the value at 0.11 ML. Thus, the density 

of Re clusters is saturated even at the lowest coverage of 0.11 ML, given that no 

additional islands are nucleated at the higher coverages. Instead, additional Re deposition 

causes the clusters to grow in a more three-dimensional manner. This growth behavior is 

characteristic of metals that interact strongly with the support such that adatom mobility 

on the surface is low, and therefore relatively small clusters with high cluster densities 

are formed. Previous studies have shown that the strength of the admetal-titania 

interaction increases with admetal-oxygen bond strength 
[64, 65]

; given that Re is an 

oxophilic group 7 element, strong Re-titania interactions are expected and are consistent 



125 

with the nearly two-dimensional cluster growth observed here for Re on TiO2(110). 

Moreover, our group's previous investigations of different metals on TiO2 (Au, Ni, Pt, 

Co ) by STM and density function theory calculations reported that the cluster sizes 

decrease with increasing admetal-TiO2 and admetal-oxygen bond strengths
[64]

. Since Re 

is more oxophilic than later transitions metals like Ni, Cu, Rh, Pt and Au, lower diffusion 

rates for Re and smaller cluster sizes are observed, as predicted
[54, 55, 60, 64, 66, 67]

.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Scanning tunneling microscopy images for the following metals 

deposited at room temperature on TiO2(110): a) 0.11 ML Re; b) 0.22 ML Re; 

c) 0.43 ML Re; d) 0.11 ML Re + 0.13 ML Pt; e) 0.13 ML Pt; and f) 0.13 ML 

Pt + 0.11 ML Re. All images are 1000 Å x1000 Å. 
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Table 5.1: Average cluster heights and densities for various metals on TiO2(110) 

 

Surface Av. cluster height (Å) Cluster density (x10
12

/cm
2
) 

0.11 ML Re 2.9+1.1 31.44 

0.22 ML Re 3.2+1.1 28.16 

0.43 ML Re 4.0+1.3 25.76 

0.11 ML Re + 0.13 ML Pt 4.5+1.3 25.58 

0.13 ML Pt 4.7+1.7 9.34 

0.13 ML Pt + 0.11 ML Re 5.0+1.8 18.60 

1.7 ML Re 4.7+1.0 15.49 

1.7 ML Re + 2.0 ML Pt 6.3+1.1 10.77 

2.0 ML Pt 13.2+2.3 5.66 

2.0 ML Pt+1.7 ML Re 17.2+3.1 5.41 

0.22 ML Re,  

annealed at 800 K 

4.6+1.4 17.51 

0.11 ML Re + 0.13 ML Pt, 

annealed at 800 K 

5.5+2.3 14.61 

0.25 ML Pt 6.2+2.1 11.24 

0.25 ML Pt,  

annealed at 800 K 

9.1+2.9 5.71 

0.13 ML Pt + 0.12 ML Re, 

annealed at 800 K 

5.9+3.1 11.26 

 

LEIS experiments for different coverages of Re deposited on TiO2(110) 

demonstrate that titanium and oxygen are still detected in the top monolayer even for the 

highest Re coverage of 13 ML. The LEIS spectra (Figure 5.2a) indicate that the titanium 

and oxygen peaks are not completely attenuated at 13 ML, and the decrease in signal 

intensities for both these peaks is not substantial between 4.3 ML and 13 ML. This 

behavior suggests that the Re clusters are covered by titania even at room temperature. 
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Although some diffusion of Re into the titania crystal cannot be ruled out, STM images 

indicate that Re remains on the surface as clusters. The evolution of the Re LEIS peak is 

shown in Figure 5.2b as the Re coverage is increased from 0.11 to 8.7 ML, and the 

spectrum for a Re foil is also presented for comparison. At the submonolayer coverages, 

the Re peak is broad with significant intensity at a lower kinetic energy of ~505 eV. As 

more Re is deposited on the surface, the peak shape begins to resemble that of the Re foil 

with the main intensity at 515 eV, but the broad shoulder around 495 eV remains. The 

unusual peak shape for submonolayer Re coverages is consistent with TiOx species 

partially covering the surface, as also observed in the XPS studies. The peak shape 

becomes more similar to the metallic Re foil with increasing Re coverage. 

 

 

 

 

 

 

 

 

 

 

Growth of Bimetallic Pt-Re Clusters on TiO2(110) 

STM images for similar coverages (0.11-0.13 ML) of Re and Pt on TiO2(110) are 

compared in Figures 5.1a and 5.1e. In contrast to Re, the 0.13 ML Pt clusters grow as 

three-dimensional islands with much larger average heights of 4.7±1.7 Å and a lower 

Figure 5.2: Low energy ion scattering spectra for various coverages of Re on 

TiO2 (110) for the: a) oxygen and titanium regions; and b) rhenium region. 

The dotted trace in (b) is for a Re foil. 
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cluster density of 9.34×10
12

/cm
2
. These results are consistent with a stronger Re-TiO2 

interaction compared to Pt-TiO2, leading to lower diffusion rates for Re on TiO2.  

Bimetallic surfaces were prepared from the sequential deposition of Pt on Re 

(Re+Pt) or Re on Pt (Pt+Re) for coverages of ~0.1 ML for each metal (Figures 5.1d and 

5.1f). For 0.11 ML Re+0.13 ML Pt, the total number of clusters decreases by 19% upon 

deposition of Pt, whereas the average cluster height increases to 4.5±1.3 Å, indicating 

that Pt atoms are incorporated into existing Re clusters rather than nucleating new 

clusters; in this case, exclusively bimetallic clusters are formed. For 0.13 ML Pt+0.11 

ML Re, the cluster density increases to 18.60×10
12

 clusters/cm
2
, and the average cluster 

height also increases to 5.0±1.8 Å. This increase in cluster density indicates that roughly 

30-40% of the clusters are pure Re clusters while the remaining clusters have Re atoms 

incorporated into the existing Pt clusters. Thus, exclusively bimetallic Pt-Re clusters can 

be grown by sequential deposition of the metals when the initial cluster density of the 

first metal provides sufficient nucleation sites to accommodate the metal atoms from the 

second deposition. For 0.13 ML Pt+0.11 ML Re, the initial nucleation density of Pt does 

not provide enough nucleation sites for the less mobile Re atoms, and therefore clusters 

of pure Re coexist with bimetallic clusters on the surface. In the case of 0.11 ML 

Re+0.13 ML Pt, only bimetallic clusters are formed since the relatively high cluster 

density for Re provides sufficient nucleation sites for the more mobile Pt atoms. Similarly, 

previous studies of other metals grown on TiO2(110) by sequential deposition, such as Pt-

Au
[54]

, Ni-Au
[56]

,Co-Au
[58]

, Co-Pt
[67]

 and Rh-Pt
[68]

, have demonstrated that exclusively 

bimetallic clusters are prepared from equal metal coverages when the less mobile metal is 

deposited first, serving as nucleation sites for the more mobile metal. The surface areas of 
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the various cluster compositions were calculated by a numerical integration of the STM 

images, followed by subtracting the area of the uncovered TiO2
[51]

. These surface areas 

relative to the 0.25 ML Pt clusters were: 1.4 for Pt+Re, 1.4 for 0.22 ML Re and 1.9 for 

Re+Pt. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is possible to deposit only bimetallic Pt-Re clusters via either order of 

deposition at higher metal coverages, where the initial nucleation density is high. When 

1.7 ML of Re is deposited on 2.0 ML of Pt (Pt+Re), the cluster density decreases from 

5.66 to 5.41×10
12

/cm
2
 as clusters coalesce. There is no evidence of nucleation of new 

clusters because the initial cluster density of the Pt seed clusters is sufficient to support 

Figure 5.3: Scanning tunneling microscopy images for the 

following metals deposited at room temperature on TiO2(110): 

a) 2.0 ML Pt; b) 2.0 ML Pt+1.7 ML Re; c) 1.7 ML Re; and d) 

1.7 ML Re+2.0 ML Pt. All images are 1000 Å x 1000 Å. 
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the nucleation of all of the Re atoms (Figure 5.3a,b). The average cluster height increases 

from 13.2±2.3 Å to 17.2±3.1 Å, and bimetallic clusters are formed with significantly 

larger sizes than for the ~0.25 ML total coverage surface. When 2.0 ML Pt is deposited 

on 1.7 ML Re (Re+Pt), there is a substantial decrease in cluster density from 15.49 to 

10.77×10
12

/cm
2
, and the average cluster height increases from 4.7±1.0 Å to 6.3±1.1 Å 

(Figure 5.3c,d). The surface morphologies are different for Pt+Re and Re+Pt surfaces 

with the lower initial nucleation density for Pt+Re resulting in substantially larger cluster 

sizes. Notably, the average heights for the 1.7 ML Re and 1.7 ML Re+2.0 ML Pt clusters 

in Table 5.1 are likely to be underestimated. For these high coverages, clusters appear to 

be growing on top of an underlying layer of clusters, based on the fraction of the surface 

covered and the high cluster densities observed at the much lower Re coverages of 0.22 

and 0.43 ML. Numerical integration of the STM images yields the following surface 

areas relative to 2.0 ML Pt: 1.0 for Pt+Re, 0.88 for 1.7 ML Re and 0.88 for Re+Pt. Thus, 

all of the high coverage surfaces have similar surface areas despite the difference in 

cluster sizes and densities. 

Pt-Re and Metal-TiO2 Interactions 

XPS data for the Ti(2p3/2) region shows that 1.7 ML of Re induced slight 

reduction of the titania support upon deposition at room temperature. For comparison, the 

spectrum for clean TiO2 is shown in Figure 5.4a, and the spectrum is fit with three peaks 

corresponding to Ti
+4

 at 459.1 eV, Ti
+3

 at 457.8 eV and Ti
+2

 at 456.2 eV; these 

assignments are based on binding energies of Ti
+n

 reported in the literature 
[52, 64, 69-71]

. 

The contributions of the Ti
+3

 and Ti
+2

 species to the total intensities are 16% and 3% 

respectively. For 1.7 ML Re deposited on TiO2(110), the contribution from the reduced 
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species increases to 21% for Ti
+3

 and 11% for Ti
+2

(Figure 5.4b ). However, deposition of 

2.0 ML Pt on 1.7 ML Re does not induce further change in the peak shape, suggesting 

that Pt does not replace Re at the cluster-support interface. For 2.0 ML Pt deposition on 

TiO2(110), the contributions of the reduced species are within 2% of those on clean TiO2, 

and therefore Pt deposition does not cause significant reduction of TiO2 (Figure 5.4c). 

No change in the peak shape is observed after deposition of 1.7 ML on top of 2.0 ML Pt, 

indicating that Re does not substantially replace Pt at the cluster-support interface. The 

reduction of the TiO2(110) is not detectable for the low coverage cluster surfaces due to 

the smaller cluster-support interface. In other oxide-supported Re catalysts, it has also 

been proposed that Re interacts strongly with an alumina support 
[3, 4, 72]

. 

 

 

 

 

Furthermore, XPS experiments suggest that Pt-Re electronic interactions occur in 

1.7 ML Re deposited on 2.0 ML Pt but not for the reverse order of deposition. The 

Pt(4f7/2) peak for pure 2 ML Pt clusters appears at 71.1 eV and shifts to 71.5 eV for 1.7 

Figure 5.4: X-ray photoelectron spectroscopy data for the Ti(2p3/2) region for the 

following cluster surfaces after deposition on TiO2(110) at room temperature: (a) 

TiO2(110) before deposition of any metels; (b) 1.7 ML Re and 1.7 ML Re + 2.0 

ML Pt; and (c) 2.0 ML Pt and 2.0 ML Pt + 1.7 ML Re. The vertical axis is the 

same for all three graphs. 
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ML Re deposited on 2.0 ML Pt (Figure 5.5a). On bulk Pt surfaces, the Pt(4f7/2) binding 

energy is reported to shift by approximately +0.5 eV when adsorbates are present, and 

this effect is known as a surface core level shift (SCLS)
[73, 74]

. Undercoordinated Pt atoms 

at the surface have a lower binding energy than fully coordinated Pt atoms in the bulk; 

therefore, the presence of surface species diminishes the contribution of the lower 

binding energy peak from undercoordinated Pt, resulting in an overall shift to higher 

binding energies. However, the shift in Pt(4f7/2) observed upon the addition of Re to the 

2.0 ML Pt clusters cannot be attributed solely to a SCLS because LEIS data indicate that 

the majority of the deposited Re atoms have diffused into the bulk of the cluster rather 

than remaining at the surface. There is no shift in the Pt(4f7/2) binding energy for 2.0 ML 

Pt deposited on 1.7 ML Re. This lack of Pt-Re intermixing could be explained by the 

tendency for Pt atoms to remain at the surface due to the lower surface free energy of Pt 

compared to Re. In addition, the strong binding of Re to the titania support could inhibit 

intermixing of the Pt and Re atoms within the clusters. There is also no shift in the 

Re(4f7/2) binding energies for the 1.7 ML Re clusters compared to the Pt+Re and Re+Pt 

bimetallic clusters (Figure 5.5b) since the Re(4f7/2) peak appears at 40.6 eV for all 

surfaces. In the case of the lower coverage cluster surfaces, the Pt(4f7/2) binding energy 

appears at 71.7 eV for 0.13 ML Pt and is unshifted for the 0.13 ML Pt+0.11 ML Re and 

0.11 ML Re+0.13 ML Pt clusters (Figure 5.11a). Likewise, the Re(4f7/2) binding energy, 

which is at 41.2 eV for the 0.11 ML Re clusters, is the same for the two bimetallic 

surfaces (Figure 5.11b). Given that the lower coverage bimetallic clusters are believed to 

be intermixed, a possible explanation is that strong interactions between Re and the 

titania support inhibit electronic interactions between Pt and Re. Alternatively, a larger 
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fraction of Re atoms are at the surface of the smaller clusters, and these Re atoms may be 

partially oxidized or covered with TiOx, which would also inhibit Pt-Re interactions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: X-ray photoelectron spectroscopy data for 

pure and bimetallic clusters on TiO2(110) for the: a) 

Pt(4f) region; and b) Re(4f) region. The peak at 37 eV is 

from Ti(3p). 
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For pure Re clusters, the Re(4f7/2) binding energy shifts from 41.3 eV to 40.6 eV 

as the Re coverage is increased from 0.11 to 1.7 ML. Cluster size effects can increase the 

binding energies of clusters to higher values than observed for the bulk metal. 

Specifically, atoms in small clusters have lower coordination numbers and experience 

decreased core-hole screening after photoemission; for more highly coordinated atoms, 

there is a greater number of conduction electrons from neighboring atoms that can shield 

the core hole, resulting in a lowered energy for the final state
[75-80]

. However, a 

comparison with similarly-sized (4-4.6 Å average height) Re clusters on highly oriented 

pyrolytic graphite suggests the binding energy shift observed for Re on TiO2 is too large 

to be explained solely by a cluster size effect
[81]

. An alternative explanation for the shift 

in binding energies is that the small clusters are more oxidized or O-covered compared to 

the large clusters. The large clusters are more metallic, given that their binding energies 

are closer to that of Re single crystals and polycrystalline Re surfaces (~40.3 eV) 
[82-86]

. 

On oxygen-covered surfaces, the Re(4f7/2) binding energy can increase by as much as 

0.73 eV when Re is coordinated to three oxygen adatoms 
[85, 86]

. Similar to the shift 

observed for the Re clusters, the Re(4f7/2) binding energy for ReO is increased by ~1 eV 

compared to the bulk value 
[85, 87, 88]

. Re2O3 appears at a binding energy ~1.7 eV higher 

than the bulk value 
[83, 85]

, and this is a larger shift than what is observed for the smallest 

clusters.  

The Pt(4f7/2) binding energy is also higher for the low coverage Pt clusters than 

for bulk Pt
[89]

 and shifts to lower values with increasing Pt coverage, reaching 71.0 eV for 

the 2.0 ML Pt clusters. Since Pt is not oxidized on TiO2, this binding energy shift is 

attributed to a cluster size effect. 
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Surface Composition Probed by LEIS 

The compositions of the top monolayer of the bimetallic clusters were probed by 

LEIS experiments (Figure 5.6). Due to the similar masses of Pt and Re, it was not 

possible to resolve two distinct peaks, but qualitative information regarding the relative 

compositions of the different cluster surfaces can still be extracted. The spectrum of 0.13 

ML Pt exhibits the normal metallic peak shape. In contrast, the 0.11 ML Re spectrum has 

an unusually broad peak shape with a shoulder extending to 500 eV, and the integrated 

intensity is less than 20% of that for 0.13 ML Pt despite greater surface area for the 

smaller Re clusters. This behavior is consistent with the surfaces of the Re clusters being 

partially covered by TiOx or oxygen.  

For the lower coverage clusters, both bimetallic surfaces have intensities and peak 

shapes that are similar to that of pure Pt, implying that the cluster surfaces are 

predominantly Pt (Figure 5.6a). However, both spectra also exhibit a low kinetic energy 

shoulder assigned to contribution from Re at the surface (Figure 5.11). Thus, when Pt is 

deposited second to make bimetallic clusters only (Re+Pt), mixing between Pt and Re 

occurs within the clusters despite the lower surface free energy of Pt (3.6 J/m
2
 for Re vs. 

2.5 J/m
2
 for Pt)

[90]
. The slightly higher intensity (6%) at 520 eV for Re+Pt compared to 

pure Pt is attributed to increased dispersion of Pt when nucleated at the Re seed clusters. 

The Pt+Re spectrum has an intensity at 520 eV from Pt contribution that is 10% lower 

than the pure 0.13 ML Pt, and this suggests that some of the Re atoms must reside at the 

surface of the 0.13 ML Pt clusters. The Re LEIS contribution from the pure Re clusters 

that exist on the Pt+Re surface is relatively low, possibly because the small Re clusters 

are partially covered by oxygen or titania.  
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Figure 5.6: Low energy ion scattering spectra for 

the following metals on TiO2(110): a) 0.11 ML Re, 

0.13 ML Pt, 0.11 ML Re+0.13 ML Pt and 0.13 ML 

Pt+0.11 ML Re; and b, i) 1.7 ML Re; b ii) 1.7 ML 

Re+2.0 ML Pt; b, iii) 2.0 ML Pt; and b, iv) 2.0 ML 

Pt+1.7 ML Re. For the fit data in (b,iv), the blue 

trace is the Pt contribution, the red trace is the Re 

contribution, the green trace is the curve fit, and the 

pink markers represent the raw data. 
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The two high coverage bimetallic cluster surfaces (2.0 ML Pt, 1.7 ML Re) have 

different surface compositions based on the different LEIS peak shapes, indicating that 

there are kinetic limitations for diffusion of metal atoms within the clusters at room 

temperature (Figure 5.6b). The spectrum of the pure 2.0 ML Pt clusters has an identical 

peak shape to the 1.7 ML Re+2.0 ML Pt, whereas the 2.0 ML Pt+1.7 ML Re surface 

exhibits a low kinetic energy shoulder from Re contribution. The absolute intensity of 1.7 

ML Re itself is small compared to 2 ML Pt and is again attributed to decoration of the Re 

clusters by titania. The 1.7 ML Re+2.0 ML Pt clusters have surfaces that are ~100% Pt; 

based on the lower surface free energy of Pt compared to Re
[90]

, it is expected that Pt 

remains at the surface when deposited second. For the 2.0 ML Pt+1.7 ML Re clusters, Re 

deposited on Pt diffuses into the Pt clusters although some fraction of Re atoms remain at 

the surface. A rough estimate of surface composition was made from the attenuation of 

the Pt peak in the deconvoluted spectrum of the Pt+Re clusters (Figure 5.6b, top) 

compared to that of the pure Pt clusters. Since the Pt+Re and pure Pt surfaces have 

identical surface areas based on the STM images, the 50% attenuation of the Pt peak 

suggests that the Pt+Re cluster surface is ~50% Pt. Diffusion of metal atoms within the 

clusters appears to be limited at room temperature since both bimetallic surfaces are 

richer in the metal that was deposited second. Studies of Pt-Au and Ni-Au bimetallic 

clusters deposited at room temperature on TiO2(110) from our group have also reported 

that the surface compositions are kinetically limited for larger clusters corresponding to 

~4 ML total coverage
[55, 56, 70]

.  

In order to understand changes in the cluster surfaces upon annealing, the low 

coverage bimetallic clusters were annealed to 800 K for 1 min. STM images show that 
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there is some loss of surface area due to cluster sintering for all surfaces, but these 

changes are not extensive (Figure 5.12, Table 5.1). The decrease in density and increase 

in height after annealing range from 40-50% for the pure clusters, whereas the changes in 

cluster density and height range from 20-35% for the bimetallic clusters. If the rate 

limiting step in cluster sintering is the dissociation of metal-metal bonds, the observed 

behavior suggests that the reduced sintering for the bimetallic clusters could be attributed 

to stronger Pt-Re bonds compared to Pt-Pt and Re-Re. 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, the decrease in the integrated Pt-Re LEIS signals as a function of 

temperature indicates that in addition to sintering, the clusters become encapsulated by 

the titania support (Figure 5.7). This effect has been well studied in the literature for Pt 

clusters on TiO2 heated in a reducing environment (H2 or UHV) and is known as a strong 

metal support interaction 
[91-94]

. The pure Pt clusters lose 80% of the integrated LEIS 

Figure 5.7: Integrated low energy ion scattering 

spectroscopy intensities for pure and bimetallic clusters 

as a function of annealing temperature. All of the 

signals are normalized to the value at room temperature. 
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intensity after heating to 800 K. For each surface, the intensities are normalized to the 

initial values at room temperature in order to view intensity changes on the same scale. 

For the 0.22 ML Re clusters, only ~40% of the LEIS signal is lost at 800 K, but the Re 

clusters are believed to be already covered by titania even at room temperature, thus 

accounting for the initially low Re contribution to the LEIS intensity. For the bimetallic 

clusters, the total Pt-Re signal decreases to 25-35% of the room temperature value, which 

is more comparable to the behavior of pure Pt. These results are consistent with the 

bimetallic cluster surfaces consisting mainly of Pt or with the surface Re atoms already 

being partially covered by titania at room temperature. 

CO Adsorption 

CO TPD experiments on the pure bimetallic clusters were carried out to provide 

further insight into the surface composition of the clusters (Figure 5.8). Notably, CO does 

not adsorb on the TiO2 support at 300 K. On the pure 0.13 ML Pt clusters, the desorption 

profile is similar to what has been previously reported for Pt clusters on TiO2 (Figure 

5.8a)
[55, 67]

. The sharp peak at 500 K is attributed to CO adsorption at step sites 
[95, 96]

. As 

expected, the relative intensity of this feature compared to the peak at 365 K from 

desorption at terrace sites diminishes with increasing Pt coverage since the larger clusters 

have a smaller fraction of step sites. For the 0.11 ML Re clusters, the onset of CO 

desorption is shifted to higher temperature compared to Pt, and the main feature appears 

at 460 K (Figure 5.8a). There is also a smaller peak at 865 K that is attributed to 

recombinant CO desorption from the dissociation of CO at lower temperatures; in 

contrast, there is no evidence for CO dissociation on the pure Pt clusters. CO dissociation 

on Re but not Pt is in agreement with CO adsorption and reaction in the literature on 



140 

single crystal Pt 
[97-99]

 and Re 
[87, 100, 101]

surfaces. Given the higher dispersion of Re on the 

surface due to the smaller cluster size and higher cluster density, it is expected that the 

total CO desorption yield would be greater on the Re clusters. However, the observed 60% 

greater desorption yield on the Pt clusters is consistent with the Re clusters being covered 

by oxygen or TiOx, which block sites for CO adsorption. In addition, the peak 

temperature for molecular CO desorption is 70 K greater than on higher coverage Re 

clusters and bulk Re surfaces 
[87, 100, 101]

. This higher desorption temperature can be 

explained by the presence of oxygen on the Re clusters since the CO desorption 

temperature shifts to higher values of ~440 K on oxidized Re(0001) surfaces 
[100]

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Temperature programmed desorption data (28 amu signal) for a 

saturation exposure of CO at room temperature on the following surfaces: a) low 

coverage Pt, Pt-Re and Re on TiO2; and b) high coverage Pt, Pt-Re and Re on 

TiO2. In (b), the pink, blue, green and brown traces are for 1.7, 1.3, 0.87, and 0.43 

ML of Re, respectively, on 2.0 ML Pt. 
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CO desorption on the low coverage bimetallic surfaces is presented in Figure 5.8a. 

The bimetallic clusters formed by depositing 0.11 ML Re on 0.13 ML Pt have a CO 

desorption yield that is 50% higher than on the pure 0.13 ML Pt clusters, and this 

behavior is attributed to the greater dispersion of Pt when Pt is deposited on top of high 

density Re seed clusters. The 0.13 ML Pt+0.11 ML Re clusters have a similar desorption 

profile to the clusters with the reverse order of deposition even though the pure Re 

clusters should coexist with Pt-Re bimetallic clusters. This suggests that the small pure 

Re clusters on the Pt+Re surface do not contribute significantly to CO adsorption since 

they are likely to be covered by TiOx or oxygen. Furthermore, the comparable CO 

desorption intensities for the two bimetallic surfaces implies that Pt dispersion for Pt+Re 

clusters is also increased compared to pure Pt due to incorporation of Re into the existing 

Pt clusters and subsequent diffusion of Pt to the surfaces of these higher surface area 

clusters. The high temperature CO desorption peak associated with pure Re activity is 

absent for both bimetallic surfaces. Furthermore, there is a shift in the peak maximum 

toward lower temperature for the Pt-Re bimetallic clusters compared to pure Pt. This ~65 

K shift to lower temperature for CO desorption is also observed when Au is deposited on 

0.25 ML Pt on TiO2(110)
[55]

, suggesting that the shift is due to blocking of the Pt step 

sites by the second metal and is not unique to Re on Pt. A similar 65 K shift to lower 

temperature is observed for CO desorption on 0.13 ML Co deposited on 0.13 ML Pt 

clusters on TiO2 compared to desorption on the pure Pt clusters; on the Co-Pt clusters 

there is also another desorption peak from CO from Co sites below 400 K
[67]

. 

CO adsorption on the higher coverage surfaces was also studied by TPD. On the 

pure 1.7 ML Re clusters, a molecular desorption peak centered at 400 K is observed as 
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well as a high temperature feature at ~925 K from recombinant CO (Figure 5.8b). In 

general, the molecular desorption peak shifts to lower temperatures with increasing Re 

coverage. For CO desorption from the pure 2.0 ML Pt clusters, two distinct features are 

observed at 410 and 500 K, with the higher temperature peak again ascribed to desorption 

from step sites. No high temperature desorption peak is detected on the 2.0 ML Pt 

clusters, demonstrating the lack of CO dissociation on this surface. Unlike the behavior 

on the lower coverage clusters, the two bimetallic surfaces do not have the same activity 

for CO adsorption. The 1.7 ML Re+2.0 ML Pt surface, which consists of ~100% Pt at the 

surface, exhibits a main desorption peak at 500 K with only a very small feature at higher 

temperature. Furthermore, only a small recombinant CO peak is observed at temperatures 

significantly higher than that on pure Re (965 K vs. 920 K), and the recombinant CO 

production is <10% of that on the pure 1.7 ML Re clusters. The 2.0 ML Pt+1.7 ML Re 

surface exhibits a peak at 420 K that is 45% greater in intensity than for Re+Pt. There is 

also a high temperature desorption peak, which has a maximum at 890 K and is shifted to 

lower temperatures compared to the recombinant peak observed on pure Re. The Pt+Re 

surface shows a small desorption feature at 690 K that is not observed on the Re+Pt 

surface. This peak is believed to arise from recombinant desorption at step sites on Re 

since a similar desorption peak at 660 K appears on stepped single-crystal Re surfaces
[101]

. 

The 660 K feature is observed for various coverages of Re (>0.43 ML) deposited on 2.0 

ML Pt but not for the pure Re clusters, implying that these step sites exist only on the 

bimetallic clusters. The CO adsorption capacities for both bimetallic cluster surfaces are 

comparable to that of the 2.0 ML Pt clusters; 2.0 ML Pt + 1.7 ML Re adsorbs 20% more 

CO than 2.0 ML Pt whereas 1.7 ML Re+2.0 ML Pt adsorbs 18% less. Consequently, 
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decoration of the bimetallic surfaces by TiOx does not substantially decrease the number 

of active metal sites for CO adsorption. 

Experiments in which the titania surface is pre-oxidized with 
18

O2 show that the 

high temperature CO desorption from Re involves oxygen from the TiO2 lattice. The 

TiO2(110) surface was exposed to 1×10
-7

 Torr 
18

O2 at 800 K for 5 min to incorporate 
18

O 

into the titania lattice before deposition of 1.7 ML of Re. Results from this experiment 

indicate that only C
18

O at 30 amu is observed for the high temperature desorption peak, 

and only C
16

O (28 amu) is observed at 400 K. The fact that recombinant C
16

O is not 

detected when the titania support is pre-oxidized with 
18

O2 indicates that the 
16

O from CO 

decomposition is not available for recombination at elevated temperatures, perhaps due to 

diffusion of 
16

O into the titania surface. The 920 K peak temperature for recombinant CO 

evolution on 1.7 ML Re clusters is significantly higher than the 800-820 K desorption 

temperature observed on Re(0001) surfaces 
[87, 100, 101]

 or Re films on Pt(111)
[33, 35, 82]

. The 

rate-limiting step in CO evolution on the titania-supported Re clusters appears to be 

diffusion of lattice oxygen from the support to the clusters. Consequently CO is evolved 

at higher temperatures than on pure Re surfaces, where oxygen from CO dissociation is 

available for recombination with surface carbon at lower temperatures. Moreover, the 

temperature of the recombinant peak increases with increasing Re coverage, and this 

behavior is attributed to more facile migration of lattice oxygen to the surfaces of the 

smaller Re clusters. On the bimetallic 2.0 ML Pt+1.7 ML Re clusters deposited on 
18

O-

labelled TiO2, only C
18

O (30 amu) desorbs at 675 and 806 K (Figure 5.14). Thus, lattice 

oxygen is incorporated into CO for both of these desorption processes. 
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Since the primary CO desorption peaks for pure Pt and pure Re are both observed 

at the same temperature of 400 K, it is therefore not possible to distinguish molecular 

adsorption on Pt vs. Re. This desorption behavior is expected, given that CO on both 

Re(0001) 
[87, 100, 101]

 and Pt(111) 
[33]

 exhibit molecular desorption peaks at ~400 K; similar 

desorption temperatures are also observed for Re films grown on Pt(111)
[35, 82]

. The main 

difference in peak shape between desorption on pure Pt and on the Pt-Re clusters is that 

the pure Pt clusters exhibit a shoulder at 500 K assigned to desorption from Pt step sites, 

whereas the step sites are blocked by Re in the bimetallic clusters. Furthermore, the 2.0 

ML Pt+1.7 ML Re clusters have a slightly higher desorption temperature of 420 K for 

molecular desorption. This small shift to higher desorption temperatures and appearance 

of the high temperature recombinant peaks follow the trends observed for Re islands on 

Pt(111) 
[33]

. On Pt(111), the CO desorption peak is found at 400 K, and the desorption 

temperature shifts to higher values upon Re deposition, reaching ~420 K at 0.5-1.0 ML. 

For CO on the Pt-Re alloy surfaces prepared by depositing Re on Pt(111) and annealing 

at 1100 K
[33]

, the peak temperature shifts to lower values with increasing Re coverage 

from ~380 K for 0.10 ML Re to ~325 K for 1.10 ML Re 
[33]

. In contrast to these studies 

on single-crystal alloy surfaces, the gradual shift to lower temperature with increasing Re 

coverage is not observed for the 2 ML Pt+Re clusters; the loss of the high temperature 

shoulder peak observed on pure Pt clusters also results in an apparent shift to lower 

temperature, but this is not the same effect as observed for the Pt-Re alloy surface. 

In agreement with LEIS data, the appearance of the high temperature desorption 

peak in the CO TPD experiments on the 2.0 ML Pt+1.7 ML Re bimetallic clusters 

indicates the presence of Re at the cluster surface, given that Re dissociates CO while Pt 
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does not. These results are therefore consistent with the shift in the Pt(4f7/2) peak for the 

2.0 ML Pt+1.7 ML Re cluster attributed to Pt-Re intermixing. Furthermore, the intensity 

of the high temperature CO desorption peak reflects the concentration of Re at the cluster 

surface after Re deposition onto pure Pt clusters and subsequent diffusion into the bulk. 

When different coverages of Re are deposited on 2.0 ML Pt in separate CO TPD 

experiments, the TPD data show that the concentration of Re atoms that remain at the 

surface gradually diminishes with decreasing Re coverage from 1.7 ML to 0.43 ML 

(Figure 8b). For the lower coverages, a greater fraction of Re diffuses into the clusters. At 

Re coverages < 0.43 ML, the concentration of Re atoms at the surface is not sufficient for 

CO dissociation to occur, and consequently no high temperature recombinant peak is 

observed. The 0.43 ML Re on 2.0 ML Pt clusters should have a Re concentration of less 

than 10%, given that for CO on Re films deposited on Pt(111), the recombinant peak 

barely detectable at a Re coverage of 0.1 ML
[33]

. The 500 K observed from desorption 

from Pt step sites is still apparent at Re coverage of 0.22 ML, demonstrating that the 

deposited Re diffuses into the cluster rather than remaining at the Pt surface to block step 

sites. Although the cluster surfaces change during TPD due to the encapsulation effects 

described in the previous section, information about the surface composition of the 

bimetallic clusters at room temperature can still be obtained. The total CO adsorption 

capacity at room temperature still reflects the number of active adsorption sites on the 

metal surfaces at room temperature regardless of how the surfaces change at elevated 

temperatures. Also, the CO dissociation on Re occurs below the temperatures at which 

the clusters encapsulate (400-450 K) 
[33, 101, 102]

. 
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CO2 production 

CO TPD experiments also show significant CO2 (44 amu) production from CO 

adsorption on the 1.7 ML Re+2.0 ML Pt clusters (Figure 5.9a) due to oxidation of 

adsorbed CO by oxygen from the titania support. A smaller amount of CO2 (40%) is 

evolved from CO on pure 2 ML Pt clusters on TiO2 (Figure 5.9b) whereas no CO2 is 

observed on the pure 1.7 ML Re clusters (Figure 5.9c). Moreover, no CO2 is produced on 

the bimetallic clusters formed from the reverse order of deposition of 2.0 ML Pt+1.7 ML 

Re (Figure 5.9d). Other Re on Pt bimetallic clusters were prepared by decreasing the Pt 

coverage (1.7 ML Re+1.0 ML Pt, Figure 5.9e) or decreasing the Re coverage (0.88 ML 

Re +2.0 ML Pt, Figure 5.9f), but both of these surfaces produced only ~60-70% of the 

CO2 formed from 1.7 ML Re + 2.0 ML Pt. When the Pt coverage was increased by 0.5 

ML for 1.7 ML Re+2.5 ML Pt (Figure 5.9g), there was no change in CO2 formation. In 

order to confirm that lattice oxygen is participating in CO oxidation on the 1.7 ML 

Re+2.0 ML Pt clusters, experiments were carried out on TiO2 surfaces that were oxidized 

at 800 K with 
18

O2 prior to metal deposition (Figure 5.14). Since the majority of carbon 

dioxide produced is C
16

O
18

O (46 amu), lattice oxygen must be incorporated into the 

product. Unlabeled C
16

O2 (44 amu) is also formed from 
16

O oxygen from dissociated CO; 

16
O cannot be from the titania support since no C

16
O is observed for recombinant CO 

desorption, and therefore titania is not a source of 
16

O. We propose that when the Re 

clusters are initially deposited, oxygen from the support diffuses onto the Re surface. 

After deposition of Pt on Re and exposure to CO, the oxygen on the Re surface facilitates 

oxidation of CO on Pt. However, when Re is deposited on Pt, diffusion of lattice oxygen 

onto Re does not occur due to lack of direct contact between Re and titania, and 
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consequently CO2 production is not observed. When a lower coverage of Pt is deposited 

on the 1.7 ML Re clusters, the CO2 yield decreases; similarly, the CO2 yield decreases 

when the Re coverage is decreased from 1.7 ML to 0.85 ML. It appears that Re at the 

cluster-support interface is needed to promote oxygen diffusion from titania, and surface 

Pt is needed for CO adsorption and reaction. Therefore, decreasing either the Re or Pt 

concentrations will diminish CO2 production. When a greater coverage of Pt (2.5 ML) is 

deposited onto 1.7 ML of Re, the CO2 production remains the same because sufficient Pt 

sites are already available at the 2.0 ML Pt coverage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: Temperature programmed desorption data 

(44 amu signal) for a saturation exposure of CO at room 

temperature on the following surfaces: a) 1.7 ML 

Re+2.0 ML Pt; b) 2.0 ML Pt; c) 1.7 ML Re; d) 2.0 ML 

Pt+1.7 ML Re; e) 1.7 ML Re+1.0 ML Pt; f) 0.88 ML 

Re+2.0 ML Pt; and g) 1.7 ML Re+2.5 ML Pt. 



148 

5.4 CONCLUSIONS 

Bimetallic Pt-Re clusters are grown on a TiO2 support via sequential deposition of Pt 

on Re at low coverages and through either order of deposition at high coverages. Only 

bimetallic clusters are formed when the diffusion lengths for the atoms of the second 

metal are shorter than the intercluster distance. Since Re atoms have lower mobilities and 

shorter diffusion lengths than Pt atoms on TiO2, bimetallic clusters will always be formed 

when Pt is deposited on an equal coverage of Re clusters. CO TPD and LEIS experiments 

show that when Pt is deposited on Re for the higher coverage clusters (3.7 ML), the 

bimetallic surfaces are ~100% Pt, as expected based on the lower surface free energy of 

Pt compared to Re. However, the higher coverage bimetallic surfaces consist of both Pt 

and Re atoms when Re is deposited on Pt due to kinetic limitations for diffusion of atoms 

within the clusters. CO TPD experiments with different coverages of Re deposited on 2.0 

ML Pt clusters demonstrate that Re completely diffuses subsurface for coverages <0.43 

ML, and the fraction of deposited Re that diffuses into the clusters decreases with 

increasing Re coverage.  

Re interacts strongly with the TiO2 support upon deposition at room temperature. 

Specifically, the titania support is reduced, and the low coverage Re clusters appear to be 

partially oxidized. Furthermore, the Re clusters are covered by TiOx even for high Re 

coverages (13 ML), and CO desorption studies show loss of Re activity due to site 

blocking by TiOx or oxygen. Therefore, highly dispersed Re clusters are likely to be 

partially oxidized, and lattice oxygen is expected to play a role in reactions on these 

surfaces. For both Re and Pt-Re clusters, dissociation of CO and subsequent 

recombination of surface carbon and oxygen involves oxygen from the titania lattice. CO 
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is oxidized to CO2 by lattice oxygen on Pt-Re bimetallic clusters, which provide Pt sites 

for CO adsorption as well as Re sites that promote diffusion of oxygen from the titania 

lattice to the surface of the clusters. These studies demonstrate that Re and Re-containing 

catalysts should interact strongly with metal oxide supports such as titania. However, the 

high coverage Pt-Re bimetallic clusters have CO adsorption capacities that are similar to 

that of pure Pt clusters; this implies that although the bimetallic clusters may be decorated 

by lattice oxygen or TiOx, the clusters are still have mainly metallic adsorption behavior. 

5.5  SUPPORTING INFORMATION 

Histograms of cluster sizes, XPS data for low coverage clusters, LEIS peak fits for 

low coverage clusters, STM images of clusters heated to 800 K, and TPD data for CO on 

bimetallic clusters supported on 
18

O-TiO2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Histograms of cluster heights 

for surfaces with approximately 0.25 ML 

total metal coverage. 
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Figure 5.11: Peak fits for the low energy ion scattering spectra for a) 0.11 ML 

Re+0.13 ML Pt; and b) 0.13 ML Pt+0.11 ML Re on TiO2(110). The red trace is the 

contribution from the pure Re spectrum, the blue trace is the contribution from the pure 

Pt spectrum, the raw data is shown in black and the fit spectrum is shown in green. 

Figure 5.12: Scanning tunneling microscopy images for the 

following metals on TiO2(110) after annealing to 800 K for 1 

min: a) 0.25 ML Pt; b) 0.13 ML Pt+0.11 ML Re; c) 0.11 ML 

Re+0.13 ML Pt; and d) 0.22 ML Re. All images are 1000 Å x 

1000 Å 



151 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13: X-ray photoelectron spectroscopy data for 

the low coverage clusters on TiO2(110): a) Pt(4f) and 

b) Re(4f) regions. The peak at 37 eV in the Re(4f) 

region is from Ti(3p). 

Figure 5.14: Temperature programmed desorption data for 

CO on 2.0 ML Pt+1.7 ML Re deposited on a TiO2 surface 

that was preoxidized with 
18

O2 for C
16

O (28 amu, red) and 

C
18

O (30 amu, blue). 
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6.1 INTRODUCTION 

The activity, selectivity and lifetime of a monometallic catalyst in a specific reaction 

can be manipulated by the addition of another metal. Due to the wide use of platinum in 

catalysis, Pt-based bimetallic catalysts are extensively studied in industrial processes and 

have been playing a crucial role in the understanding of surface catalysis 
[1, 2]

. There is 

growing interest in Pt-Re bimetallic system since the first commercial use of Pt-Re 

catalysts in naphtha reforming 
[3-8]

, which is a vital process in the petroleum refining. The 

addition of Re to Pt-based catalysts brings many benefits to reforming reactions. For 

naphtha reforming, Pt-Re/Al2O3 can reduce the deactivation rate and enhance hydrogen 

uptake and aromatic yields compared with pure Pt 
[9-11]

. Another example is the aqueous 

phase reforming (APR) of xylitol, where the bimetallic Pt-Re/TiO2 catalysts show a 

higher selectivity to alkanes compared to the monometallic catalysts which are more 

selective toward hydrogen formation 
[12]

.  

Although much attention has been paid to study the attractive effects of the Re in Pt-

Re catalyst for reforming and oxidation reactions, the explored results were inconclusive. 

For instance, in the aqueous-phase reforming of glycerol, Zhang et al. found that the 

acidity of Pt nanoparticles supported on carbon was increased with Re addition, which 

favors C–O over C–C cleavage 
[13]

; the work by Dumesic group suggested the primary 

promotional effect of Re in Pt-Re/C is to weaken the interaction of CO with the surface, 

decreasing the CO coverage and allowing the catalyst to operate at high rates 
[14]

. Ciftci et 

al. has reported that the overall APR catalytic performance correlates with the water–gas 

shift (WGS) reaction: the role of Re in the bimetallic Pt-Re/C catalysts is to facilitate 

water dissociation, lower steady-state CO coverage and increase the glycerol conversion 
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rates 
[15, 16]

. In addition, studies of Pt-Re/TiO2 or CeO2 by Azzam proposed that Re can 

form ReOx to provide an additional redox route for WGS reaction 
[17, 18]

. So far, the 

effects of added Re in Pt-based system are still not fully understood, mainly due to the 

fact that catalyst preparation is not well controlled and the Re oxidation state is difficult 

to identify. 

The model catalyst approach uses a simplified and well-controlled surface to gain 

fundamental understanding about more complicated catalytic systems. Recently, 

Galhenage and co-workers have studied the growth of vapor-deposited Pt-Re bimetallic 

clusters supported on TiO2 (110) by STM, XPS, LEIS and TPD 
[19]

. Based on this work, 

Pt-Re bimetallic clusters can be formed in either sequential deposition order on TiO2, Pt-

Re core-shell alloy can be formed when dose more than 0.75 ML Pt on top of 2 ML Re. 

Furthermore, the role that TiO2 support plays during the evolution of CO2 makes this 

bimetallic system more interesting towards oxidation reactions 
[19]

. 

Methanol oxidation can serve as a model reaction for the oxidation of alcohols and 

provides valuable information for reforming reactions. Methanol itself is an abundant 

liquid fuel that can easily be transported and stored, while the partial oxidation products 

formaldehyde and formic acid are good synthesis reactants, and the hydrogen generated 

from methanol is such an attractive clean feed for proton exchange membrane (PEM) and 

direct-methanol fuel cells 
[20-23]

. Potentially, the high atomic ratio of H/C makes oxidation 

of methanol more interesting in hydrogen energy related field. The reaction of methanol 

on Pt catalysts has been well studied in higher pressure reactors
[24-26]

 and UHV 

chambers
[27-29]

, while only few work in Pt-Re systems has been reported
[30]

 in near 

reaction condition.  
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One of the biggest benefits to study methanol is the accessibility of gas-solid surface, 

so that a number of UHV surface analysis techniques can be employed for the careful 

characterization of Pt-Re bimetallic system. Meanwhile, the higher turnover frequency 

(TOF) of methanol oxidation allows the reactor to be operated at lower temperatures 

under continuous flow mode, where the concentrations of products are high enough for 

the analysis of regular gas chromatograph with thermal conductivity detector. In addition, 

the study of Pt-Re system could potentially provide valuable insights for steam reforming 

of methanol 
[31-33]

 and oxidative steam reforming of alcohols 
[34-36]

. In this chapter, the 

methanol oxidation by oxygen is chosen as the probe reaction to study the bimetallic Pt-

Re/TiO2 system under oxidation conditions. The reactivity of Pt/TiO2, Re/TiO2 and Pt-

Re/TiO2 was evaluated in the reactor under single-pass mode at 80- 150 °C. Post-reaction 

XPS analysis was conducted to understand the oxidation state of Re after reaction. 

6.2 EXPERIMENTAL 

The TiO2 (110) supported Pt, Re, and Pt-Re bimetallic clusters for higher pressure 

activity studies were prepared in an UHV chamber to which the micro-reactor is coupled 

[37]
. This chamber is also equipped with a mass spectrometer (Stanford Research Systems, 

RGA 300), a dual Al/Mg anode X-ray source (Leybold Heraeus, RQ 20/63), a 

hemispherical analyzer (SPECS, EA10) for X-ray photoelectron spectroscopy (XPS), a 

set of retractable optics with a retarding field analyzer (SPECS, ErLEED-4) for low 

energy electron diffraction (LEED) and Auger electron spectroscopy (AES), which has 

been described elsewhere 
[38]

. The rutile TiO2 (110) single crystal support (Princeton 

Scientific Corporation, 10 mm x 10 mm x 1 mm) was cleaned by a number of cycles of 

Ar
+
 sputtering (1000 V, 3.0-3.2 μA, twenty minutes) and annealing (673 °C, three 
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minutes). The surface structure of TiO2 (110) was confirmed by LEED. The Pt, Re and 

Pt-Re clusters were prepared by sequential vapor deposition of Pt and Re onto the clean 

TiO2 (110) surface. The coverages of Pt and Re were measured by an independently 

calibrated quartz crystal microbalance (QCM). For Pt, one monolayer (ML) is defined 

according to the packing density of Pt (111) (1.50× 10
15

 atoms/cm
2
); for Re, 1 ML is 

defined according to the packing density of Re (0001) (1.52× 10
15

 atoms/cm
2
).  

After being prepared and characterized in the UHV chamber, the catalyst sample was 

transferred to the reactor under vacuum (pressure~ 2.5 x10
-8

 Torr). The detail of reactor 

and transfer have been illustrated elsewhere 
[37]

. After loading the sample, the reactor cell 

was heated to the desired temperature (80 °C or 100 °C) in a 50 sccm continuous flow of 

He (Airgas, 99.999%), at a heating rate of 1.5~2 °C /s; the rest of reactor loop and lines 

were heated to ~60 °C. The temperature of the reactor cell was controlled externally by 

heating tapes (Briskheat, BWHD), which were regulated by a temperature controller 

(Auber SYL-4342P) for approximately linear heating. The temperature of sample surface 

was monitored by a type K thermocouple (Omega, KMQSS-040G-6), which was 

installed through the reactor cell and close to the surface of crystal. The temperature of 

the loop was maintained using two Valco Instruments temperature controllers. The 

pressure of reactor system is monitored by two manometer gauges (MKS Instruments 

Baratron 722A): one installed in the beginning of feed line (790 Torr ~ 800 Torr) and 

another located downstream of reactor loop (770 Torr ~ 780 Torr).  

After maintaining the sample at a desired temperature in helium for one hour, the feed 

was switched to the reaction mixture (2% MeOH, 4% oxygen and 94% Helium). The 

single-pass mode was chosen for the activity test because of the concentration of each 
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product is high enough for GC analysis. Methanol (MeOH) vapor was introduced into the 

feed gas line by a home-made vapor-liquid equilibrator (VLE), which is filled with 

methanol (Fisher Chemical, 99.9%) and helium serves as the sweep gas. The temperature 

of VLE is controlled by a VWR refrigerated and heated circulating bath. The methanol 

concentration in out-let VLE is calculated from Antoine equation of pure methanol. 

Three mass flow controllers (Brooks 5850e and 5850i) are used to control the gas flow 

for those lines: sweep helium (Airgas 99.999%), oxygen (Airgas 99.5%) and balance 

helium (Airgas 99.999%), so that the feed concentration was maintained at 2% methanol, 

4% oxygen and 94% Helium, with a total flow of 58 sccm. Every twenty minutes, the 

sampling loop (~1.096 cm
3
) was injected to a HP 5890A gas chromatograph (GC), where 

a thermal conductivity detector (TCD) is equipped. The TCD is connected to a 

PoraPLOT Q capillary GC column for the quantitatively analysis of potential products: 

CO2, H2O, formaldehyde (HCHO), MeOH, formic acid (HCOOH), etc. For experiments 

held at one fixed temperature: activity tests at 80 °C were conducted for 10 hours, while 

tests at 100 °C were conducted for 6 hours. For activation energy experiments, the 

surfaces were firstly kept under 94 sccm of reaction mixture at 80 °C for 12 hours under 

single-pass mode, followed by 80 minutes’ test for each higher temperature (100 °C, 

130 °C and 150 °C) with the same flow rate at 94 sccm. The heating rate between 

reaction temperatures was 1.5 °C /s. The reaction rate and selectivity calculation is based 

on the formation rates of CO2, HCHO and HCOOH. The sample was cooled down to 

~30 °C at a rate of 1.5~2 °C /s in pure helium after each experiment. Then the reactor cell 

was pumped to vacuum and the post-reaction sample was transferred back into UHV 

chamber for further XPS analysis. 
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6.3 RESULT AND DISCUSSION 

Before and after all methanol oxidation experiments on Pt-Re/TiO2, the activity of 

clean TiO2 support was shown to be zero at 60-150 °C. Different from the studies that our 

group had done previously on a Pt foil and Re-Pt surface alloy 
[39]

, the activity of 2 ML 

Pt/TiO2 in this work is zero at 60°C, even after exposing to reaction mixture for sufficient 

time period (~12 hours) under recirculation mode; however, significant activity can be 

observed on the Pt foil for CO2 and HCOOH formation at 60°C 
[39]

 after few hours. 

Figure 6.1 shows the total formation rate vs reaction time which measured on 2 ML 

Pt/TiO2 at 80 °C for ten hours. Here carbon products CO2, HCHO and HCOOH were 

detected, a total formation rate was calculated to be 210 μmol/hour (Selectivity: 11.5% 

for CO2, 42% for HCHO and 46.5% for HCOOH). Previous studies of methanol 

oxidation did not report HCOOH as product 
[24-26]

 because the temperature range in those 

studies was much higher. 

As can been seen from Figure 6.1, there is an onset time for the reaction: initially no 

carbon product can be detected, and the activity slowly increases with reaction time; 

hence several hours of reaction time is needed for the oxygen to dissociate on Pt surface. 

This behavior was also observed on a clean Pt foil at 60 °C 
[39]

 under same experimental 

conditions, but no HCHO product was observed on Pt foil at that temperature, and 

HCOOH was the dominant product. This result supports the fact that oxygen should 

dissociate on Pt first to initiate any reaction on Pt/TiO2. Meanwhile, the dissociation of 

oxygen on supported Pt clusters is apparently difficult than that on Pt foil since a higher 

temperature is required. 
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Figure 6.1: MeOH oxidation, total formation rate of CO2, HCHO and HOOCH on 2 ML 

Pt/TiO2 at 80 °C for 10 hours, 2%MeOH +4%O2+94% He single-pass mode at 58 sccm. 

 

Figure 6.2 shows the total formation rates of CO2, HCHO and HCOOH on 2 ML 

Pt/TiO2, 2 ML Re/TiO2, 2 ML Pt+2 ML Re/TiO2, 2 ML Re+2 ML Pt/TiO2 surfaces at 

100 °C under single-pass mode for six hours. As expected, the 2 ML Re clusters 

supported on TiO2 exhibit no activity for methanol oxidation, while the 2 ML Pt surface 

is the most active sample. Meanwhile, at 100 °C the onset time for 2 ML Pt/TiO2 (less 

than one hour) is much less than that at 80 °C (~eight hours). Turnover frequency for the 

2 ML Pt-TiO2(110) catalyst at 100 °C for 6 hours was 70 site
-1

·s
-1

, which is calculated 

from the observed rate and the concentration of active sites (1.5x10
15

 cm
-2

). The active 

sites were estimated from the total Pt surface area that was calculated from a numerical 

integration of a STM image for 2 ML Pt on TiO2 
[37]

. Compared with the TOF value 48.8 

site
-1

·s
-1

estimated from Pt foil with same experimental configuration. Compared with Pt 

foil, 2 ML Pt/TiO2 is much more active, and this much higher reaction rate is not due to a 

larger surface area. One possible reason could be Pt-interfacial sites promote reactions. 
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The activity of 2 ML Pt clusters is significantly diminished when adding 2 ML Re to 2 

ML Pt/TiO2 to form 2 ML Pt+2 ML Re. This indicates that surface Re on top of Pt has no 

contribution to the observed activity, though 2 ML Pt+2 ML Re should have more total 

surface sites than 2 ML Pt when equilibrium is reached, based on the CO temperature 

programmed desorption (TPD) studies from our group 
[19]

. Meanwhile, at six hours the 

activity of 2 ML Re+2 ML Pt/TiO2 surface (500 μmol//hr) is ~12% higher than 2 ML 

Pt+2 ML Re/TiO2 (450 μmol/hr). This might be due to more Pt sites on the 2 ML Re+2 

ML Pt in the six hours’ time frame, since Pt atoms are initially present at the surface in 

this deposition order.  

 

Figure 6.2: MeOH oxidation, total formation rate of CO2, HCHO and HOOCH on 2 ML 

Pt, 2 ML Re, 2 ML Pt+2 ML Re, 2 ML Re + 2 ML Pt on TiO2 at 100 °C for 6 hours, 

2%MeOH +4%O2+94% He single-pass mode at 58 sccm. 
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Figure 6.3 shows XPS result of Re (4f) region on 2 ML Re+2 ML Pt/TiO2, 2 ML 

Re/TiO2, and 2 ML Pt+2ML Re/TiO2 surface before and after the methanol oxidation at 

100 °C. For both Pt+Re and Re+Pt surfaces, the position of Re (4f) peak before reaction 

is un-shifted compared with 2 ML Re/TiO2 (42.8 eV). After methanol oxidation, for all 

surfaces the Re signal diminished dramatically, while the residual Re signal shifts to 

much higher oxidation states such as +4, +6 and +7. It is well-known that Re2O7 is 

volatile and can easily leave the surface 
[39, 40]

. Therefore at this reaction temperature 

surface Re is unstable under methanol oxidation condition. However, the post-reaction 

Re signal on 2 ML Re + 2 ML Pt/TiO2 is much less than the case of 2 ML Re/TiO2 after 

reaction, indicates that Re on top of Pt is more easily oxidized than Re on top of Re. 

 

Figure 6.3: Post- vs pre- reaction XPS Re(4f) result on 2 ML Re, 2 ML Pt+2 ML Re, 2 

ML Re + 2 ML Pt supported onTiO2 after MeOH oxidation at 100 °C for 6 hours 
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Figure 6.4: post- vs pre- reaction XPS Pt(4f) result on 2 ML Re, 2 ML Pt+2 ML Re, 2 

ML Re + 2 ML Pt supported onTiO2 after MeOH oxidation at 100 °C for 6 hours 

Figure 6.4 presents the XPS result of Pt (4f) region on 2 ML Re+2 ML Pt/TiO2, 2 ML 

Pt+2 ML Re/TiO2, and 2 ML Pt/TiO2 surface before and after methanol oxidation at 

100 °C for six hours. As can be seen, the deposition of 2 ML Re on top of 2 ML Pt (2 ML 

Pt+2 ML Re) shifts the Pt (4f) peak to a higher binding energy, which is attributed to an 

effect known as core level shift (SCLS). This effect was seen on Pt when atoms or 

adsorbates are deposited on the surface
[41, 42]

. Based on the growth study of Pt-Re 

bimetallic clusters by STM, Pt-core and Re-shell bimetallic clusters will be formed by 

dosing 2 ML Re on top of 2 ML Pt/TiO2 
[19]

. The Pt (4f) peak shifts back after exposing 

to reaction mixtures, which suggests that Re is lost from the surface. 
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Activity was monitored from 80-150 °C on 2 ML Pt/TiO2 to study the distribution of 

products as a function of temperature as well as the activation energy. In contrast to the 

experiments at 80 °C or 100 °C alone, the total flow rate of reaction mixture is increased 

to 94 sccm instead of 58 sccm, to avoid any mass transfer limitation at high reaction 

temperatures. The feed concentration is maintained at 2% methanol, 4% oxygen and 

balance helium. Based on the activity trend at 80 °C, the activity of 2 ML Pt surface was 

firstly stabilized at 80 °C for 12 hours before ramping to 100 °C. For each temperature 

above 80 °C, the temperature was maintained at that value for 1.5 hours, and the data was 

averaged from three consecutive injections.  

Figure 6.5 shows the individual formation rate of CO2, HCHO and HCOOH on 2 ML 

Pt/TiO2 from 80-150 °C under single-pass mode. As can be seen, at 80 °C the formation 

rate of HCHO is almost the same as HCOOH, which is the main product at lower 

temperatures and also observed on clean Pt foil 
[39]

. The formation rate of formic acid 

reaches its maximum at 100 °C and decreases substantially with increasing reaction 

temperature. CO2 is a minor product at 80 °C, and its formation rate increases 

significantly with reaction temperature. HCHO becomes the dominant product after 

heating the reactor to 100 °C, and the exact formation rate is approximately twice that of 

the CO2 formation rate. At 150 °C, the formation rate of HCHO only increases by ~5% 

compared with that at 130 °C. The selectivity of each product was calculated from the 

individual rate divided by the total formation rate (Figure 6.6). The selectivity of HCHO 

is 60% from 100-130 °C and remains at 55% at 150 °C. This is different from the result 

obtained on Pt foil, where CO2 has a slightly higher selectivity than HCHO at 150 °C 
[39]

. 
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Figure 6.5: MeOH oxidation, formation rate for CO2, HCHO and HCOOH on 2 ML Pt 

from 80-150 °C, single-pass mode, 2%MeOH+4%O2+He, 94 sccm 

 
 

Figure 6.6: MeOH oxidation, selectivity of carbon products as a function of reactor 

temperature on 2 ML Pt from 80-150 °C, single-pass mode, 2%MeOH+4%O2+He, 94 

sccm. 
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The total formation rate of the three carbon products from 80-150 °C is shown in 

Figure 6.7. As mentioned previously, on Pt clusters supported on TiO2(110), no activity 

was found at at 60 °C , while on the Pt foil, HCOOH and CO2 were observed at 60 °C. 

This suggests the dissociation energy of oxygen on supported Pt clusters is higher than 

pure Pt foil. At 80 °C, the total formation rate on 2 ML Pt/TiO2 is also much lower than 

the Pt foil 
[39]

 (210 vs 420 umol/hr). At 100 °C, the total formation rate observed on 2 ML 

Pt is ~10% higher than Pt foil (560 vs 500 umol/hr), owing to much more HCHO 

formation on Pt clusters supported on TiO2, and the observed rate is much higher than Pt 

foil at 130 °C (1100 vs 600 umol/hr), and 150 °C (1270 vs 800 umol/hr). This suggests 

that the higher activity on 2 ML Pt is not due to a higher surface area, given that the 

surface sites on 2 ML Pt and Pt foil are comparable. 

 
 

Figure 6.7: MeOH oxidation, total formation rate on 2 ML Pt from 80-150 °C, single-

pass mode, 2%MeOH+4%O2+He, 94 sccm. 
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MeOH conversion on 2 ML Pt/TiO2 as a function of reactor temperature (80-

150 °C) is shown in Figure 6.8. At 80 °C, only ~5% of the methanol feed was converted 

to CO2, HCHO and HCOOH. Over a temperature range of 100- 130 °C, the calculated 

methanol conversion is increased from 11% to 22%, and at 150 °C the conversion 

reaches 26%, which is a relatively high value for a steady-state study. In order to check 

whether there is mass transfer limitation at 150 °C, the total flow rate of was increased to 

120 sccm for additional two injection periods following data collection at 94 sccm. The 

calculated total formation rate with the increased flow rate was the same as that with 94 

sccm, which indicates that there was no mass transfer limitation for this activation energy 

experiment.  

 
 

Figure 6.8: MeOH conversion as a function of temperature on 2 ML Pt from 80-150 °C, 

single-pass mode, 2%MeOH+4%O2+He, 94 sccm. 
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The total product formation rate vs temperature (Figure 6.7) does not follow 

Arrhenius behavior. Furthermore, the formation rate of HCOOH sharply decreases with 

reaction temperature, and it is suggested that under these experimental conditions there 

are multiple reaction pathways for the methanol oxidation process, and HCOOH is 

believed to be a reaction intermediate. In this work we estimate the activation energy for 

the formation of CO2 only based on Arrhenius equation.  

Figure 6.9 shows the Arrhenius plot for CO2 product on 2 ML Pt/TiO2 at 80-

150 °C. It is not suitable to do the linear fitting and get the activation energy for this wide 

temperature region because the formation rate of CO2 appears too low at 80 °C. The 

reason might be that there are two reaction pathways: first, CO2 can be formed directly on 

Pt cluster supported on TiO2; secondly, CO2 production also occurs via oxidation of 

HCOOH. At 80 °C there is a significant amount of HCOOH in the reaction system, 

which yields a selectivity of ~45%; hence the CO2 formation rate is lower at 80 °C 

compared to all higher temperatures. At 100 °C and higher temperatures, the reaction 

intermediate HCOOH is quickly consumed to form CO2 and the residual HCOOH is at a 

very low concentration: in this reaction pathway, CO2 formation is almost constant and 

the activation energy plot for this region should be linear. Therefore, by removing the 

data point at 80 °C, a linear plot is obtained for CO2 formation on 2 ML Pt (Figure 6.10), 

and the activation energy for CO2 is calculated to be 47.6 kJ/mol. This value is much 

higher than the values we obtained on clean Pt foil at 100-150°
[39]

 (27.9 kJ/mol, 100-

150 °C). It is also higher than Endo et al.’s work on Pt(111) 
[28]

(33 kJ.mol, 144-277 °C), 

and slightly higher than what McCabe et al. reported on highly oxidized Pt wire 
[26]

 (42 

kJ.mol, 130-260 °C). 
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Figure 6.9: Activation energy calculation for CO2 formation on 2 ML Pt from 80-150 °C, 

single-pass mode, 94 sccm. 

 

 
 

Figure 6.10: Activation energy calculation for CO2 formation on 2 ML Pt from 100-

150 °C, single-pass mode, 94 sccm. 
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6.4 CONCLUSIONS 

Onset time is required for methanol oxidation on Pt/TiO2, which is attributed to the 

accumulation of atomic oxygen on surface for reaction. Pt sites are the active sites for 

methanol oxidation, while Re clusters on TiO2 are inactive for methanol oxidation and 

can block the active sites for Pt. Under these experimental conditions, at 60-80 °C the 2 

ML Pt/TiO2 is less active than clean Pt foil, at 100 °C the total formation rate is 

comparable for both surfaces, but at 130-150 °C it is much more active than clean Pt foil. 

For CO2 formation, the activation energy observed on 2 ML Pt/TiO2 is much higher than 

Pt foil. Surface Re is unstable due to the formation and subsequent sublimation of Re2O7 

during methanol oxidation conditions.  
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APPENDIX A TEMPERATURE PROGRAMMED DESORPTION STUDY OF 

METHANOL ON PT-RE CLUSTERS SUPPORTED ON TIO2 

Summary 

In this section, the temperature programmed desorption (TPD) study of methanol 

on Pt, Re and Pt-Re clusters supported on TiO2 (110) was conducted in order to 

understand the sites of Pt-Re clusters and the role titania support might play. The 

representative mass fractions (CO, H2, CH4 and H2O) were collected by a mass 

spectrometer during TPD. Post-TPD AES was also recorded and served as supplementary 

information to confirm metal coverage and probe surface composition. 

Experimental setup 

The preparation of Pt, Re and Pt-Re bimetallic clusters supported on TiO2 were done 

in a UHV chamber (base pressure ~1.0x10
-10

 Torr), which has been described elsewhere 

[1, 2]
. This rutile TiO2 (110) single crystal support was cleaned by a number of cycles of 

sputter (Ar
+
, 1000 V, 3.0μA, twenty minutes) and anneal (960 K, three minutes). The 

surface structure of TiO2 is confirmed by LEED; the cleanness was verified by AES.  

For every experiment, after the last sputter and anneal cycle, the clean TiO2 was 

cooled to ~100 K with liquid nitrogen, followed by flashing to 960 K to further remove 

adsorbates from chamber background. After this cool-flash –cool procedure, the surface 

was maintained at room temperature during vapor deposition of metal clusters, which 

was achieved by heating via a filament behind the crystal. Pt clusters were deposited 

from a homemade source consisting of Pt wire (ESPI, 0.25 mm diameter, 99.999%) 
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wrapped around a tungsten wire (0.50 mm) through which current was passed. The Pt 

flux (0.06-0.08 ML/min) was calibrated with a QCM before each deposition. The 

definition of ML is same as previously mentioned. Re clusters were deposited from a Re 

rod (ESPI, 1.6 mm diameter, 99.99%), with an Omicron electron beam evaporator 

(EFM3). The internal flux monitor of the evaporator was used to control Re flux (0.02 

ML/min), which was initially calibrated with a QCM. After metal deposition, sample 

surface was exposed to methanol (Fisher Scientific, 99.9%) via a stainless steel directed 

dosing tube. The fresh methanol was purified by three freeze-pump-thaw cycles. During 

methanol dosing, the surface was held at ~100 K. Saturation exposures of methanol were 

determined from the appearance of the methanol multilayer peak in the TPD data.  

For each TPD experiment, the surface of crystal was positioned ~3 mm in front of a 4 

mm diameter hole cut in the shroud of the mass spectrometer in order to prevent 

detection of products desorbing from the sample holder. The sample was biased at -100 V 

during TPD experiments to prevent damage from the electrons emitted by the mass 

spectrometer filament. The sample was heated by the filament in the back and the 

ramping rate was kept at 2 K/s from 100 K to 950 K, controlled by programmable power 

supply. Nine masses were collected in a typical TPD experiment. Wide mass scan 

experiments (40 channels for 26-66 amu and 66-106 amu) were also conducted to check 

for additional products if possible. No significant amount of carbon was detected on the 

surface in post-TPD Auger experiments after methanol adsorption/reaction. The mass 

fractions of products (CO, H2, CH4 and H2O) were collected. For isotope labeled 

experiment, the crystal was exposed to 1×10
-7

 Torr of 
18

O2 at 800 K for 5 min via 

directed dosing, while 
18

O related mass fractions were also monitored.  
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Result and Discussions 

Methanol desorption on pure Pt/TiO2 

Figure A.1 shows the 28 amu (CO) desorption profile from different coverage 

(0.13-4.0 ML) of Pt clusters supported onTiO2 (110) during methanol TPD from 100 K to 

960 K. As expected, there is no CO peak from clean TiO2 support after desorption of 

physically adsorbed methanol layers at ~100 K. For Pt on TiO2, there is one major CO 

peak observed at ~480 K. The methanol desorption behavior on 2 ML Pt/TiO2 surface 

was compared to that of CO on the same surface, as shown in Figure A.13. In CO-TPD 

experiments, the higher temperature peak at ~500 K was attributed to the CO molecules 

desorbed from step edge sites of Pt 
[2]

, while the major peak at ~400 K should correspond 

to normal terrace Pt sites. In MeOH-TPD experiment, only one peak (~ 500 K) was 

observed on pure Pt clusters. This can be explained by the coverage effect, and the step 

edge sites of Pt are preferred to be filled than terrace sites. The measured CO peak area 

from MeOH-TPD on 2 ML Pt/TiO2 is less than half of that from CO-TPD, since CO is a 

much smaller molecule than methanol. 

The integrated CO desorption peaks area from MeOH TPD on 0.13, 0.25, 0.50, 

1.0, 2.0 and 4.0 ML Pt/TiO2 are shown in Figure A.14. The integrated CO peak area does 

not increase much when the Pt coverage is increased from 0.25 ML to 0.50 ML, while it 

is greatly enhanced from 0.50 ML Pt to 1.0 ML Pt. For CO desorption on 1 ML Pt and 2 

ML Pt, the CO area looks almost identical. Adding another 2 ML Pt cluster on top of 2 

ML Pt (4 ML Pt in total) only increased the CO peak signal by ~10% compared to 2 ML 

Pt, suggesting that for methanol adsorption, Pt sites are nearly saturated on 2 ML Pt. This 

trend curve for MeOH TPD experiments is significantly different from that for CO TPD 
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ones, which are shown in Figure A.15. The Pt sites for CO adsorption still increased 

significantly from 2 ML Pt to 4 ML Pt on TiO2. 

Figure A.2 shows the 2 amu (H2) desorption signal from methanol TPD on 

different coverage (0.13-4.0 ML) of Pt clusters on TiO2. There is no hydrogen desorption 

peak from clean TiO2 surface. On 0.13 ML Pt, we saw a primary peak located at ~480 K 

and another peak at ~280 K with much less intensity. This observation is consistent with 

the study by Wang et al. on the Pt(110)-(1x1) surface, although their reported second 

peak position is much lower (430~450 K) 
[3]

. When the Pt coverage increases to 0.25 ML 

and above, the 280 K peak becomes the main peak; its intensity increases with Pt 

coverage, and can be regarded as a characteristic H2 desorption peak on Pt. The intensity 

of the second peak is maximized on 0.25 ML Pt, and it does not increase when the Pt 

coverage ranges from 0.50 ML to 4.0 ML, suggesting those sites must be related to the 

interface of Pt and TiO2 support. 

The 16 amu (CH4) desorption signal from methanol TPD on the Pt clusters is 

shown in Figure A.3. On clean TiO2 there is a small and broad 16 amu signal. On pure 

Pt/TiO2, the biggest CH4 desorption peak is observed on 0.25 ML Pt, and 0.13 ML Pt 

surface also generates a large amount of methane. The CH4 yield on 0.50 ML Pt is much 

less than 0.25 ML Pt. When the Pt coverage was increased from 0.50 ML to 4 ML, there 

is no significant change for methane product. Therefore it is also proposed that CH4 is 

generated from interface of Pt and TiO2. When a lower coverage of Pt (<0.25 ML) was 

dosed on TiO2, smaller clusters are formed and more Pt-TiO2 interface sites are present. 

When more Pt is dosed, the size of Pt clusters increases and there is less such interface 

sites available. 
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Methanol desorption on pure Re/TiO2 

Figure A.4 shows the 28 amu (CO) desorption profile from different coverages 

(0.11-3.5 ML) of Re clusters supported on same TiO2 (110) support during methanol TPD 

experiments. Two peaks were observed on Re/TiO2: the lower temperature peak (430 K) 

corresponds to the CO molecule desorption peak on Re, and the higher temperature figure 

(~900 K) is a recombinant peak from dissociated carbon and surface oxygen. It is a 

characteristic CO desorption peak from reaction on Re, since Pt is not able to dissociate 

C-O bond hence no such recombinant peak is observed on Pt. Re clusters can be covered 

by the TiO2 support so for lower coverages of Re, the Re might exist as ReOx on TiO2 
[2]

 

and the CO molecule desorption peak looks similar for 0.11 ML Re and 0.22 ML Re. The 

position of CO molecule desorption peak shifts to lower temperature when the Re 

coverage increases from 0.11 ML to 3.5 ML, while the recombination peak shifts to 

higher temperature with increasing Re coverage. Therefore on higher Re coverages, the 

baseline for the higher temperature peak did not return to zero at the end of the 

temperature ramp to 960 K. 

The integrated CO desorption peaks areas from MeOH TPD on 0.11, 0.22, 0.43, 

0.87, 1.70 and 3.5 ML Re/TiO2 are shown in Figure A.16. Re sites increased significantly 

from 0.11 ML to 1.7 ML, but there is only a 10% increase from 1.7 ML to 3.5 ML. As a 

comparison, the integrated CO peaks from CO TPD on 0.11-1.7 ML Re are shown in 

Figure A.17. The result: on same Re/TiO2 surface, more CO adsorption can be achieved 

on Re than methanol adsorption, since CO is a much smaller molecule than methanol. 

Figure A.5 shows the 2 amu (H2) desorption profile from different coverage 

(0.11-3.5 ML) of Re clusters supported on TiO2 (110) during methanol TPD. Re can be 
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covered by TiOx 
[2]

, and therefore on 0.11 ML and 0.22 ML Re, the first hydrogen peak 

(220 K) might from surface ReOx, and such peak is not observed on higher coverages. 

The peak at ~440 K gradually shifts to lower temperature when increasing the Re 

coverage. On 0.87-3.5 ML Re, a large desorption peak was observed at ~340 K, which is 

60 K higher than methanol on Pt clusters (~280 K). 

Figure A.6 presents the 16 amu (CH4) desorption signal from 0.11 to 3.50 ML Re 

clusters on TiO2. On pure Re/TiO2, the biggest CH4 desorption peak was observed on 

0.25 ML Re and 0.13 ML Re, which is consistent with Pt’s case. The CH4 yield on 0.50 

ML Re and higher coverages is much less than 0.25 ML Pt, and therefore it is believed 

that CH4 is generated from interface of Re-TiO2 interfacial sites.  

Methanol desorption on 2 ML Pt +1.7 Re and 1.7 ML Re+2 ML Pt/TiO2 

The CO (28 amu) desorption profiles on 2 ML Pt, 1.7 ML Re, 2 ML Pt+1.7 ML 

Re and 1.7 ML Re+2 ML Pt/TiO2 from methanol TPD are shown in Figure A.7. The 

dashed lines presented are the CO desorption profile from CO TPD on various surfaces. 

For 28 amu desorption signal on 2 ML Pt surface, the difference between CO TPD and 

MeOH TPD has been described in Figure A.13 previously. As for the molecule 

desorption peak (~500 K) on each surface, the total CO signal of methanol TPD 

experiment is much less than that of CO TPD case, and the peak onset is at a higher 

temperature. The recombinant CO peak is absent for the 1.7 ML Re+2 ML Pt surface, 

since the initially deposited Re is totally covered by deposited Pt, and the surface is 100% 

Pt. For recombinant peak on Re and Pt+Re bimetallic surfaces, the peak intensity is 

similar for MeOH TPD and CO TPD. 
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The normalized integrated CO areas on 2 ML Pt+1.7 ML Re, 2 ML Pt, 1.7 ML 

Re+2 ML Pt and 1.7 ML Re onTiO2 from methanol experiments are shown in Figure 

A.17; values are normalized to that of 2 ML Pt. The results for CO TPD are shown in 

Figure A.18. For MeOH TPD, the total number of sites on 2 ML Re is similar to that on 

Pt; 1.7 ML Re+2 ML Pt surface has ~36% fewer sites than 2 ML Pt or 2 ML Re, and 2 

ML Pt+1.7 ML Re has ~27% more sites than 2 ML Pt. These results are different from 

the CO TPD experiments, where the number of 2 ML Re sites is ~58% of that on 2 ML 

Pt, and the sites on 1.7 ML Re+2 ML Pt are ~19% less than 2 ML Pt. The 2 ML Pt+1.7 

ML Re surface has the most CO sites: it is ~18% more than 2 ML Pt for CO TPD. 

The H2 (2 amu) desorption profiles for methanol TPD on 2 ML Pt, 1.7 ML Re, 2 

ML Pt+1.7 ML Re and 1.7 ML Re+2 ML Pt on TiO2 are shown in Figure A.8. On 1.7 ML 

Re+2 ML Pt, there is also less H2 desorption compared to 2 ML Pt. A new peak at ~200 

K was seen on 2 ML Pt + 1.7 ML Re, which is not observed on either 2 ML Pt or 2 ML 

Re surface, and it is also absent on 1.7 ML Re+2 ML Pt surface. This peak is attributed to 

reaction on Pt-Re bimetallic sites. 

The CH4 (16 amu) desorption profiles on those four surfaces are shown in Figure 

A.9. The peak position for 2 ML Pt is different from the other three, and appears at a 

higher temperature. There is no significant difference for the integrated areas of methane 

on all of the surfaces, indicating that similar metal-TiO2 sites available. 

Methanol desorption on 2 ML Pt +x ML ReTiO2 set 

For a more comprehensive coverage study, 2 ML Pt+x ML Re surfaces (x=0, 0.22, 

0.43, 0.87 and 1.7 ML) were prepared and investigated by methanol TPD, and in Figure 

A.10, the CO (28 amu) desorption profiles are shown. The characteristic CO desorption 
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peak from Re was not observed on 2 ML Pt+0.22 ML Re, and there is only a trace of 

such a peak on 2 ML Pt+0.43 ML Re. When a significant amount of Re (> 0.5 ML) was 

dosed on 2 ML Pt, Re exists on the surface and the recombinant CO peak can be 

observed clearly. These results are consistent with our CO TPD experiments on the same 

2 ML Pt+ x ML Re surfaces. As the Re coverage is increased from 0 to 1.7 ML, the 

molecular desorption peak gradually shifts from 450 K to 420 K. 

The integrated CO areas from the MeOH TPD experiments are shown in Figure 

A.19. Adding 0.5 ML Re to 2 ML Pt increases the Pt sites that are available for CO 

adsorption by ~20%, and no further increase was seen when more Re is deposited. 

However, the situation is much difference for CO-TPD which is shown in Figure A.20.: 

there is no big difference for 2 ML Pt and 2 MLPt+0.87 ML Re, and a substantial 

increase in surface sites compared to 2 ML Pt is observed only when more than 1 ML Re 

is deposited on 2 ML Pt. 

The H2 (2 amu) desorption profiles for methanol TPD on 2 ML Pt+x ML Re/TiO2 

(x=0, 0.22, 0.43, 0.87 and 1.7 ML) are shown in Figure A.11. The most interesting peak 

is the one at 200 K. On the 2 ML Pt and 2 ML Pt+0.22 ML Re surfaces, which are nearly 

100% Pt, this peak does not appear. The 200 K peak is first observed on 2 ML Pt +0.43 

ML Re and the peak intensity is enhanced when more Re is dosed. This peak is attributed 

to reaction at Pt-Re sites since its intensity is highest when both Pt and Re atoms are at 

the surface. 

The CH4 (16 amu) desorption profiles for methanol TPD are shown in Figure 

A.12. On 2 ML Pt +x ML Re (x>=0.43) surfaces, an additional CH4 peak is detected at 

~240 K. Similar to the H2 feature, this peak is only seen on Pt+Re, and is absent from 
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pure Pt, pure Re or the Re+Pt surfaces. Therefore it is believed that dosing substantial 

amounts of Re onto 2 ML Pt surface can form unique Pt-Re bimetallic sites which 

facilitate the formation of methane at a much lower temperature. 

Conclusion 

1. Methanol desorption behavior on Re is similar to CO desorption; the recombinant CO 

peak characteristic of CO dissociation on Re can be observed at ~900 K. 

2. The interfacial sites of Pt-TiO2 or Re-TiO2 are proposed to lead the formation of 

methane and hydrogen at ~450 K. 

3. For methanol adsorption, the 2 ML Pt +1.7 ML Re surface has more sites available 

for methanol adsorption than 2 ML Pt, 1.7 ML Re and 1.7 ML Re+2 ML Pt. 

4. In contrast to CO TPD, the CO desorption signal from methanol TPD is similar for 

the 1.7 ML Re and 2 ML Pt surfaces. 

5. Methanol TPD studies confirmed that the surface composition of 2 ML Pt + x ML 

Re/TiO2 (x<0.43) is ~100% Pt.  

6. When more than 0.43 ML Re is dosed on 2 ML Pt, new Pt-Re sites that facilitate 

hydrogen and methane production are created. 
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Figure A.1: MeOH TPD CO (28 amu) desorption profile on, 0.13, 0.25, 0.50, 1.0, 2.0, 

4.0 ML Pt on TiO2 and clean TiO2 
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Figure A.2: MeOH TPD H2 (2 amu) desorption profile on, 0.13, 0.25, 0.50, 1.0, 2.0, 4.0 

ML Pt on TiO2 and clean TiO2 
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Figure A.3: MeOH TPD CH4 (16 amu) desorption profile on, 0.13, 0.25, 0.50, 1.0, 2.0, 

4.0 ML Pt on TiO2 and clean TiO2 
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Figure A.4: MeOH TPD CO (28 amu) desorption profile on 0.11-3.5 ML Re on TiO2 
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Figure A.5: MeOH TPD H2 (2 amu) desorption profile on 0.11-3.5 ML Re on TiO2 
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Figure A.6: MeOH TPD CH4 (16 amu) desorption profile on 0.11-3.5 ML Re 
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Figure A.7: MeOH TPD CO (28 amu) desorption on 2 ML Pt, 1.7 ML Re, 2 ML Pt+1.7 

ML Re and 1.7 ML Re+2 ML Pt on TiO2. The dashed line is the CO desorption profile 

that on same bimetallic surface. 
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Figure A.8: MeOH TPD H2 (2 amu) desorption on 2 ML Pt, 1.7 ML Re, 2 ML Pt+1.7 

ML Re and 1.7 ML Re+2 ML Pt on TiO2 
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Figure A.9: MeOH TPD CH4 (16 amu) desorption on 2 ML Pt, 1.7 ML Re, 2 ML Pt+1.7 

ML Re and 1.7 ML Re+2 ML Pt on TiO2 
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Figure A.10: MeOH TPD CO (28 amu) desorption on 2 ML Pt+x ML Re on TiO2 where 

x=0, 0.22, 0.43, 0.87 and 1.7 ML. 
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Figure A.11: MeOH TPD H2 (2 amu) desorption on 2 ML Pt+x ML Re on TiO2 where 

x=0, 0.22, 0.43, 0.87 and 1.7 ML. 
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Figure A.12: MeOH TPD CH4 (16 amu) desorption on 2 ML Pt+x ML Re on TiO2 

where x=0, 0.22, 0.43, 0.87 and 1.7 ML. 
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Figure A.13: MeOH TPD, integrated CO area as a result of Pt coverage on TiO2 

 

 

Figure A.14: CO TPD, integrated CO area as a result of Pt coverage on TiO2 
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Figure A.15: MeOH TPD, integrated CO area as a result of Re coverage on TiO2 

 

 

Figure A.16: CO TPD, integrated CO area as a result of Re coverage on TiO2 
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Figure A.17: MeOH TPD, integrated CO area on 2 ML Pt+1.7 ML Re, 2 ML Pt, 1.7 ML 

Re+2 ML Pt and 1.7 ML Re on TiO2 

 

 

Figure A.18: CO-TPD, integrated CO area as a result of Re coverage on 2 ML Pt+1.7 

ML Re, 2 ML Pt, 1.7 ML Re+2 ML Pt and 1.7 ML Re on TiO2 
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Figure.A.19: MeOH TPD, integrated CO area as a function of Re coverage on top of 2 

ML Pt supported on TiO2 

 

 

Figure A.20: CO-TPD, integrated CO area as a function of Re coverage on top of 2 ML 

Pt supported on TiO2 
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APPENDIX B SOME STUDIES OF STRONG ELECTROSTATIC ADSORPTION 

AND ELECTROLESS DEPOSITION 

1. Strong electrostatic adsorption (SEA) 

1.1 SEA study of Pt on TiO2-P25 powder  

1.1.1  Summary:  

The precursor salt of Pt here is PtCl2·(NH3)4·H2O (PTA). The pH of solution was 

adjusted by NaOH and HCl. 0.400g TiO2 powder was added to 20ml Pt solution and 

shake for 60 minutes. All PTA solutions were diluted form 1ml to 10ml. Adsorption 

Atomic Absorption Spectroscopy (AAS) were conducted for initial and post adsorbed Pt 

solution for each pH. Also, the quantitatives of Pt adsorbed on the TiO2 had been 

calculated by wt%. 

1.1.2 Conclusion:  

1. Pt
+ 

cation can be easily deposited on the surface of TiO2 P25 Powder; 

2. The highest deposition happened at a initial pH 11.5~12.0; 

3. The maximum uptake for this experiment is determined to be 0.78 wt%, which is 

less than expected 2wt%. 

1.1.3 Experiment detail: 

(1) Precursor salts: PtCl2·4(NH3)·H2O, 10%HCl, 1%La. 

Solutions for pH adjustment: DI water; 0.1N, 1N and 10N NaOH; 0.1N, 1N and 

12.5N HCI.  

Equipments and instruments: pH meter, beakers, burette/droppers. 
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Initial Pt solution- PTA has already been prepared. 

Concentration of [Pt] is about 200 ppm. 

The pH of initial [Pt] solution is 11.24. 

TiO2-P25 powder: surface area= 50 m
2
/gram, not porous, the PZC is about 4.4. 

(2)  pH Adjustment 

i) Base pH range: 8, 8.5, 9, 10, 10.5, 11, 11.5… 13.5, totally 11 sample solution; 

ii) Acid pH range: 6-7, 5.0, totally 2 pH sample solutions. 

iii) Adjusted with 0.1N, 1N and 10N NaOH and 0.1N, 1N and 12.5N HCI. 

We collected a little more than 5 ml solution for each pH to do AA for the 

concentration of initial solutions (Ci); in the same time, collected 20 ml solution for 

each pH to do adsorption on TiO2 P25 powder.  

(3) Absorption for Pt on TiO2 powder.  

i) Weighed 13 set of 0.4000 gram powder.  

ii) Put the powder into the bottle with base pH range.  

iii) Shake for 1 hour. 

(4) Final pH test and dilution 

After adsorption, using filter to take another 5ml from the after-adsorption solutions do 

AA for (Cf). Test the final pH for each after-adsorption solutions. Dilute all the 

solutions by 10 times. From 1 ml to 10ml (~200 ppm to 20 ppm) 

(5) AAS test for each pH condition,  

Use [C(i) - C(f)] to estimate the Pt adsorbed on the TiO2 surface. 

For AAS tests, the original samples can be diluted to meet the best probe region of 

instruments. Results are shown in Table B.1 and Figure B.1 below: 
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Table B.1 Pt uptake on TiO2 data with different initial pH 

Set pH initial pH Final pH Initial Conc. final Conc. Ci-

Cf=ΔC(uptake) 

5 5.02 4.33 20.52 19.81 0.71 

6-7 6.62 4.71 20.09 19.02 1.07 

8 7.99 5.08 20.16 18.65 1.08 

9 8.99 5.17 19.71 18.00 1.71 

9.5 9.51 5.43 19.74 17.43 2.31 

10 10.00 5.63 19.47 16.69 2.78 

10.5 10.49 6.16 19.12 15.53 3.59 

11 11.00 8.23 18.73 8.751 9.979 

11.5 11.50 10.16 18.81 3.876 14.934 

12 12.01 11.68 18.55 3.006 15.544 

12.5 12.50 12.35 18.30 6.96 11.34 

13 13.01 12.92 18.18 12.64 5.54 

13.5 13.46 13.36 19.80 16.23 3.57 

 

 

 

 

 

 

 

 

 

 

 

Figure B.1: The Graph of Pt uptake on TiO2 VS initial pH. 
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If choose the condition with initial concentration of Pt salt at195 ppm and adjust it 

to pH=12, the estimation wt% of Pt uptake on TiO2 power should be 0.78%, the detail is: 

15.544ppm*(10ml/1ml)*20ml*(≈1.0g/ml)/0.4g = 0.007772 ≈ 0.78%. This wt% value is 

lower than what we expected before this experiment.  

Figure B.2 shows the plot of Pt uptake on TiO2 power (P-25) in terms of the final 

pH. As can be seen, the plot is much different since the pH of system could substantially 

changed by Pt deposition. The maximum uptake happened at pH value ~11.5. Therefore, 

in next part of following experiment we would select an initial pH between 11.5 and 12 

to make the ≈0.80 wt% Pt/TiO2 catalyst. The purpose is to get as much as deposition of 

Pt, providing more Pt sites on surface. 

 

 

Figure B.2: The Graph of Pt uptake on TiO2 as a function of final pH 
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1.2 Preparation of 0.82 wt% Pt on TiO2 – P25 

1.2.1 Summary:  

Here the precursor salt of Pt is PTA, PtCl2· (NH3)4·H2O. In the sample container, 

the initial pH was adjusted to 11.76. A weight of 4.000g TiO2 (P-25) powder was added 

to the 200 ml Pt solution and was moderately shake for 60 minutes. The final pH was 

measured at 11.22. Both initial and after-absorption solutions were diluted form 1ml to 

10ml for Adsorption Atomic Absorption Spectroscopy (AAS) test. Finally, the amount of 

Pt deposited on the TiO2 was calculated in terms of wt%. 

1.2.2 Conclusion:  

1. The uptake under this condition is higher than last time (0.78 wt%), the maximum 

uptake in this experiment is 0.82 wt%; 

2. The obtained value is still less than 0.94 wt%, the reported maximum for Pt on TiO2; 

3. We used 4.0 g TiO2 powder for adsorption and finally we obtained 3.2g Pt/TiO2. 

1.2.3 Experiment detail: 

(1) Precursor salts: PtCl2·4(NH3)·H2O, 10%HCl, 1%La 

Solutions for pH adjustment: 10N NaOH. 

Equipment and instruments: pH meter, beakers, burette/dropper 

Initial concentration of [Pt] is about 200 ppm 

TiO2 P-25 powder: surface area= 50 m
2
/g, not porous, PZC is about 4.4; 

(2) pH Adjustment 

Adjusted with 3 drops 10N NaOH then pH went to 11.76. Collect a little more than 5 

ml solution to do AA for the concentration of initial solutions (Ci); in the same time, the 

rest 200 ml solution for each pH to do adsorption on TiO2 P-25 powder.  
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(3) Absorption for Pt on TiO2 powder.  

4.00 gram powder was weighted. The powder was added into the bottle with base 

pH range. After that, the mixtures were shaking for 1 hour. 

(4) Final pH test and dilution 

After adsorption, we used filters to take about 2ml from the after-adsorption 

solutions do AA for (Cf). Test the final pH for each after-adsorption solutions. Final 

pH=11.22 Dilute all the solutions by 10 times. From 1 ml to 10ml (~200 ppm to 20 

ppm) 

(5) For AAs test of these solutions, [C(i) - C(f)] was used to estimate the Pt adsorbed 

on the TiO2 surface. Results are shown below: 

Set pH 

 

 

Actual pH 

 

Final pH Ci Cf Ci-Cf 

11.8 11.76 11.22 20.26 ppm 3.898 ppm 16.362 ppm 

Therefore the estimated wt% of Pt/TiO2 ≈ 0.82% 

16.362ppm*(10ml/1ml)*200ml*(≈1.0g/ml)/0.4g = 0.008181 ≈ 0.82% 

(6) Catalyst collection: the operator obtained 3.2g Pt/TiO2. 

(7) Temperature programmed reduction (TPR) test was also done by Hye-Ran,  

The condition is 10% hydrogen in Ar, heated from room temperature to 800C with a 

constant ramping rate at 3 C/min. 

The reduced PTA on P-25 was held at 200 C. 

(8) Chemical absorption test result of Pt/TiO2: 

Wt. % (Coverage) = 0.8%; 

% dispersion of Pt on TiO2 =60.6%; 

Number of metal atoms per gram=2.47*10
19

; 

Number of metal atoms per gram=1.50*10
19

; 
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2. Electroless Deposition (ED) 

2.1 TiO2 as the support 

The experiments on TiO2 (110) were based on the successful deposition of metal salts 

on TiO2 P-25 powder. The material gap could be bridged if the ED deposition of Ag on 

Pt-TiO2 (110) or HOPG can be established. 

2.1.1 Typical experimental parameters for Ag on Pt/TiO2 

ED bath main components and conditions:  

Ag salt: KAg(CN)2, 10 ppm; 

Reducing Agent (RA): hydrazine, N2H4,  

Ratio of RA to Ag= 10/1;  

RA will be added at t=0, 1, 1.5 hour. 

Temperature=0-5 C; (ice- water bath control) 

ED bath pH=10; (adjusted with HCl and NaOH) 

ED bath volume=100ml; 

Deposition time=2 hours in total, including the stability check at 0-0.5 hour. 

Under this ED conditions, it has been verified that there is no deposition of Ag on 

TiO2 P-25 powder support so Ag can selectively adsorb on Pt sites to form bimetallic 

catalysts. 

2.2 HOPG as the support 

The experiments on HOPG are based on the successful deposition on XC-72 powder. 

2.2.1 Typical experimental parameters for Pt on Ru/HOPG 

Sample: HOPG-3 (10mm*10mm); 

0.50 ML Ru on lm-HOPG 
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Conditions: Volume of ED bath: ~120 ml; 

The Pt source is H2PtCl6, initial concentration=2 ppm 

Temperature of surrounding: 70 C; 

pH=11.1 +/- 0.2; (adjusted with HCl and NaOH) 

Reducing agent: DMAB, 5/1=[RA]/[Pt] , added in t=0 and 0.5h. 

After ED, clean the HOPG surface with DI water, standard wash 

2.2.2 Typical experimental parameters for Ru on Pt/HOPG: 

Sample: HOPG-3 (10mm*10mm); 

0.50ML Pt on highly modified surface. (hm-HOPG) 

Ru source: Ru(NH3)6Cl3, ~50 ppm; 

Conditions: Volume of ED bath: 120 ml; 

Temperature of surrounding: 100 C; 

pH=4 -5 ; (adjusted with HCl and NaOH) 

Reducing agent: formic acid, 10/1=[RA]/[Ru] , added in t=0, 1h and 1.5h. 

After ED, clean the HOPG surface with DI water, standard wash 

2.2.3 Typical experimental parameters for Ag on Pt/HOPG: 

ED bath main components and conditions:  

Ag salt: KAg(CN)2, ~10 ppm; 

Reducing Agent (RA): hydrazine, N2H4,  

Ratio of RA to Ag= 10/1;  

RA will be added at t=0, 1, 1.5 hr. 

Temperature=0-5 C; (ice- water bath control) 

ED bath pH=10; (adjust with HCl and NaOH) 
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ED bath volume=100 ml; 

Deposition time=2 hours in total, including the stability check at 0-0.5 hour. 

 

Figure B.3: The ED of Ag on Pt/XC-72 under conditions of temperature=0-5C and 

pH=10  

Preliminary result on activated carbon was shown in Figure B.3. The exact parameters 

are shown below: Under this ED conditions, it has been verified that there is no 

deposition of Ag on HOPG support so Ag can selectively adsorb on Pt sites to form 

bimetallic catalysts. Exact parameters are shown below: 

Sample: 0.50 ML Pt on XC-72. 

Conditions: Volume of ED bath: ~100 ml; 

The Ag source is KAg(CN)2, initial conc.=15 ppm 

Temperature of surrounding: 0-5 C; (ice- water bath control) 

pH=10 +/- 0.3; (adjusted with HCl and NaOH) 

Reducing agent: hydrazine (N2H4), 10/1=[RA]/[Ag] , added in t=0 h and 1h. 

Deposition time=2 hours in total including the stability check
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APPENDIX C DESCRIPTION OF REACTOR GENERATION II 

The purpose of creating reactor generation II is to broaden the temperature range that 

reactor sample can be operated, which is the major limitation of generation I, and to 

increase the heating efficiency, so as to minimize the required time for sample heating. 

As described in chapter 2, the current maximum operating temperature of reactor 

generation I is 200 ºC (sample surface). The heating tapes were wrapped from outside of 

the flange, thus even though we can heat the outer-flange to 250 ºC, the temperature of 

the reactor (monitored by the TC in the middle of reactor housing) could not go beyond 

200 ºC. Meanwhile, significant background activity was observed when the empty reactor 

(without sample or catalyst) was heated to ~170 ºC for CO oxidation reaction and 190 ºC 

for water gas shift reaction under recirculating mode, with our standard feed gas 

concentration. Therefore, the design of reactor generation II mainly focuses on two parts 

(a) heating the sample from inside of flange, to increase the upper temperature limit; (b) 

coating the reactor housing surface to minimize the activity from background when the 

reactor is kept at higher temperature. 

1. Diagram and measurements 

In general, the body frame of generation II is a copy of generation I, since the transfer 

mechanism of sample surfaces between micor-reactor and UHV chamber should be the 

same. The measurements-based diagrams for both generations are shown below (Figure 

A1-A6). Some of the details are explained below each figure if possible. 
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Figure C.1 describes the parameters of current reactor, with upper and down 

pieces assembled. Figure C.2 and C.3 describes the parameters of current reactor, with 

upper and down pieces disassembled.  

 

Figure C.1: Measurements of reactor generation I, view-1 
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Figure C.2: Measurements of reactor generation I, view-2 
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Figure C.4 describes the parameters of reactor generation II, with upper and down 

pieces assembled. Figure C.5 and C.6 describes the parameters of current reactor, with 

upper and down pieces disassembled.  

 

Figure C.3: Measurements of reactor generation I, view-3 
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Figure C.4: Measurements of reactor generation II, view-1 
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Figure C.5: Measurements of reactor generation II, view-2 
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Figure C.6: Measurements of reactor generation II, view-3 
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2. Heating rods configuration 

To achieve our goal that heating from inside of the flange, the as-received flange was 

modified by Art and Allen from the machine shop. It is found suitable for us to install 

four cartridge rods based on the allowable space. As can be seen from Figure C7, this 

drawing overlapped the front and back side of reactor. The circles with blue color are the 

locations for the reactor heater. The heating efficiency test has been done without 

attaching this reactor flange to the UHV chamber and our goal was achieved: the reactor 

can be heated to 150 ºC in twenty minutes, and the outside temperature is lower than the 

temperature probe near reactor sample. 

 

 

 

 

 

 

 

 

 

 

Figure C.7: The locations for the four heating rods 

Ordering information for the heating rods of generation II: Company: McMaster-

Carr;Part number: 8376T22, (P=50W each, U=120V, I=0.42A) diameter=1/8''; 

Description: Miniature High-Temperature Cartridge Heater 1-1/4" Length, 50 Watts, 120 

VAC. Website link: http://www.mcmaster.com/#die-cartridge-heaters/=l8db08  



 

226 

3. Information of surface coating 

This part of work was primarily done by Joe Swanstrom from Dr. Michael Myrick’s 

group and the lab that locates on the first floor of Sumwalt College. To begin with, a 

reactor dummy was tested for proof of principle, later the true reactor generation II was 

coated with SiO2. The reactor dummy pieces were initially cleaned with acetone and 

methanol, and were heated in a clean oven at 220 ºC for 12 hours to passivate the surface. 

Then the dummy was placed in the drum (Figure C.8), during the coating process, the 

drum was evenly rotated to make sure the exposed surface get approximately same SiO2 

coverage. Based on Joe’s calculation, approximately one micron layer of SiO2 is 

estimated to be on the surface.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.8: Drum in the coating chamber in Dr.Myrick lab 
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Figure C.9: Drum surface looking from outside 

Figure C.9 shows the surface view of the drum mentioned before. There were many 

round plates fixed by stainless steel wires held by screws. Several of those plates were 

removed during coating, to provide locations for reactor dummy pieces and reactor 

generation II. The coating of dummy piece was successful, as can be seen in Figure C.10.  

 

Figure C.10: SiO2 coated reactor dummy 

After that the real reactor generation II was put into the chamber and was coated 

with the same parameters as dummy piece.
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APPENDIX D DEAD VOLUME MEASUREMENT OF REACTOR 

This measurement was done by the author on July 3
rd

 2013 with reactor 

generation I. Before this measurement, a tube which has certain volume must be ready. 

For the test here the tube was borrowed from Dr. John Monnier. The fixed volume is 

16.54 cm
3 

when fully open; 0.45 cm
3
when fully closed. The steps are follower below: 

Step 1: connect this tube to the reactor loop, the needle there valve should be open; 

(If necessary, attach the auxiliary bridge also) 

Step 2: under single pass mode, fill the whole loop with pure helium; 

Step 3: Switch the V4 valve to the CCW position, result the recirculation mode, 

record the pressure of gauge 1 (P0), then close the needle to the added tube; 

Step 3: pump down the whole reactor loop with the desired mode in page 2; 

Step 4, open the needle to the added tube and record the pressure of gauge 1 (Pi). 

Repeat the step 2 to step 4 for all needed modes. 

 

Some definitions:    VTotal= VSL+ V1-3 + VR +VRL-R 

VSL~ Volume of sampling loop (red) 

V1-3~ Volume of tubing between V1 and V3 (blue) 

VR ~ Volume of reactor cell part (orange) 

VRL-R 
~ 

Volume of whole reactor loop minus the (VR , Vsl and V1-3) (green) 

VB ~ Volume of the assistant bridge (pink) 
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Figure D.1: Measurement result of dead volume of reactor generation I. 

 

(1) Make-up mode 

 

V4 V1 V3 

CCW CCW CW 

 

P0*16.54=P1*(16.54+0.45+VR+VRL-R) 

  VR+VRL-R=16.54 *P0/P1 – 16.99                                Equation#1 

 

(2) Make-up mode plus the bridge 

 

V4 V1 V3 

CCW CCW CW 

    

P0*16.54=P2*(16.54+0.45+VR+VRL-R +VB) 

  VR+VRL-R+ VB =16.54 *P0/P2 – 16. 99                     Equation#2 

 

(3) Make-up mode plus the bridge minus the reactor part 

 

V4 V1 V3 

CCW CCW CW 

   

       P0*16.54=P3*(16.54+0.45+VB+VRL-R) 

            VRL-R+ VB =16.54 *P0/P3 – 16. 99                        Equation#3 
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(4) Sampling mode 

 

V4 V1 V3 

CCW CW CCW 

 

     P0*16.54=P4*(16.54+0.45+VR+VRL-R + V1-3) 

       VR+VRL-R + V1-3=16.54 *P0/P4 – 16. 99                     Equation#4 

 

(5) Recirculation mode 

 

V4 V1 V3 

CCW CW CW 

 

         P0*16.54=P5*(16.54+0.45+VR+VRL-R + V1-3+VSL) 

        VR+VRL-R +V1-3 +VSL =16.54 *P0/P5– 16. 99             Equation#5 

 

Calculation details for the dead volume of each section: 

Equation#1 combines with Equation#2, to get VB,  

Equation#2 combines with Equation#3, to get VR,  

                 then put it back to Equation#1 to get VRL-R 

Equation#4 combines with Equation#5, to get VSL,  

Equation#1 combines with Equation#4, to get V1-3,  

or, Equation#1 combines with Equation#5, to get (VSL plus V1-3).  

 

Attention: *Record the temperature, better to keep the reactor at the same temperature as 

the loop (no heating is provided). After that all the measured volumes need to be 

normalized to those at standard temperature or 298 K. For future experiments all result s 

are based on standard conditions 
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