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Abstract 

Seismic imaging is a significant element in hydrocarbon exploration to locate 

drilling prospects and it relies mainly on an accurate velocity model. Prestack depth 

migration (PreSDM) versus traditional post-stack time migration has become a common 

method for seismic velocity model building and imaging. This methodology accounts for 

seismic velocity anisotropy of the propagating waves in the subsurface with a higher level 

of accuracy in positioning the seismic events in their true positions in the subsurface. 

In this thesis, we examine a 303 km2 of 3D seismic data acquired by Saudi Aramco 

in the Serri field of North-West Saudi Arabia. The dataset is diagnosed to be of extremely 

poor reflective quality likely due to seismic anisotropic effects caused by shale deposits. 

Our main goal was to produce an enhanced and better focused seismic image that is 

geologically accurate and interpretable 

This study develops a practical method for building an anisotropic velocity model 

to be further used in the anisotropic PreSDM. Based on this study, three main approaches 

have made a significant impact on the improvement of seismic imaging: (1) analysis of 

elastic reflection coefficients characterizing heterogeneities in the subsurface, (2) study of 

the variation of the reflection coefficients with the angle of incidence, and (3) a detailed 

characterization of the P-wave propagation velocity field. The seismic imaging results 

showed that PreSDM provided a significant improvement of the seismic image quality. 

Moreover, the anisotropic PreSDM provided more continuous and brighter reflections than 

the isotropic PreSDM. 
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Chapter 1 

 Introduction 

1.1  Introduction to Seismic Imaging 

The reflection seismic method is based on sending elastic waves into the Earth and 

letting them propagate in all directions. In their travel to the subsurface, waves encounter 

heterogeneities, where they ‘refract’, ‘reflect’, or ‘convert’. The reflected energy travels 

back to the surface, where it is eventually measured by specific receivers and recorded.  

Seismic imaging have the objective to create from the recordings an image of these 

heterogeneities, which are mainly the geological features present in the subsurface. The 

geological heterogeneities in the subsurface are usually continuous laterally and therefore 

called layers or interfaces. These features are called ‘diffractors’ when they are more 

localized. In other words, refraction occurs wherever there is a change in propagation 

velocities and reflection takes place any time where the propagating wave encounters a 

change in velocity and density as we refer to as ‘acoustic impedance’ which is an elastic 

property of any medium. Consequently, the seismic image is an image of the ‘elastic 

reflectivity’ at each point of the subsurface. There are many types of seismic waves; and 

seismic reflection imaging deals mainly with primary waves (P-waves) which are 

compressional waves that are longitudinal in nature and travel through any type of material.
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However, at elastic interfaces, part of the wave energy is converted into secondary waves 

(S-wave) which are shear waves that are transverse in nature and travel only through solids. 

(Robein, 2010) 

Estimation of the velocity field of the Earth in which waves propagate is a key 

element to create an image of the subsurface. The amount of conversion depends on the 

‘angle of incidence’ which is the angle measured from the normal to the interface. The 

reflection coefficient of the P-wave depends on this angle where the basic image depends 

on the reflectivity for a zero incidence angle. The reflection coefficient, in a mathematical 

sense, is derived from the logarithm of acoustic impedance. It is important to note that the 

elastic signal that is sent into the ground does not include all the frequencies which makes 

it bandlimited. Band-limitation happens because of the intrinsic physical limitations in 

sending very low frequencies in the ground and the normal attenuation of the high 

frequency components of waves as they propagate into Earth. Band-limitation affects the 

seismic image resolution. (Robein, 2010). 

The seismic wave field is computed on a discrete grid in space and time. Migration 

methods are performed to compensate for refraction during the extrapolation of the 

wavefield in the subsurface. Unlike time migration (PSTM) where it assumes straight ray 

paths and corrects for refraction through a locally horizontal earth model, depth migration 

(PSDM) is done in a structural velocity in depth and it takes into account lateral variations 

in velocity within an earth model. Complex geology structures and changing in facies in 

the subsurface requires a significant attention to vertical and lateral variations in velocity. 

It is also as important to take into account that the subsurface is not homogeneous in nature, 

and rather anisotropic, which makes waves propagate at a velocity that depends on its 
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direction of propagation. It is therefore vital to account for the variation of the velocity, 

vertically and laterally, in order to construct the best model that can represent the Earth 

model. 

Here, I use the 3D seismic data of the Serri oil field to perform a sequential velocity 

model building, the term ”velocity model building” in this thesis is used in a generalized 

sense to refer to the construction of a model. The velocity model building will aim to 

enhance the seismic image quality. So, in this introductory chapter, after I introduce the 

location of the Serri field, I will briefly discuss the major tectonic setting of the region and 

the geology of key formations of the study area. I will also describe how the data used in 

this thesis were acquired and pre-processed with preliminary analysis of the input gathers. 

The second chapter will give an introduction of the velocity model representation in a 

geological environment. There, I will show the initial stacking velocities (vertical 

functions) picking and creation of the CVS stack. The third chapter will feature the build-

up of the isotropic model by firstly giving an introduction of the constrained velocity 

inversion (CVI) technique followed by the procedure and results. The fourth chapter in this 

thesis, will discuss the method used in depth migrating the seismic volume. There, I will 

provide an introduction to how the Kirchhoff wavefront PreSDM work. It will also display 

the results of migrating the data using the CVI isotropic model. The fifth chapter will be 

dedicated to the anisotropic velocity model building. I will first present the theory 

highlighting the VTI anisotropic type. Secondly, I will show the stages used to update the 

isotropic model using the depth gathers to create the anisotropic velocity model. In this 

chapter, a preSDM result from this model will be shown. The sixth chapter will contain a 

collective of images of preSDM results. There, I will compare and discuss the results from 
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the different stages of the seismic imaging presented in previous chapters. I will finally 

conclude this research by restating the importance of seismic imaging and giving 

recommendations to obtain better results. 

1.2  Serri Field Location and Region Geological Settings 

 
 

Figure 1.1 Serri Field Location map 

The Serri field is, which part of the Arabia tectonic plate, located in the northern 

west region of Saudi Arabia and sits at some 40 km between the borders of Iraq and Jordan. 

Figure 1.1. This location attracts a deal of attention for hydrocarbon exploration of the area 

since the country targets more reserves in such undeveloped regions. Further in this section, 

I will briefly discuss the geological settings of the Arabian plate that led to the birth of this 
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field followed by stratigraphic geology enlightenment and how some of the formation were 

deposited. 

The Arabian Plate is a minor tectonic plate in the northern and eastern hemispheres. 

It is one of three continental plates (the African, Arabian, and Indian Plates) that have been 

moving northward in recent geological history and colliding with the Eurasian Plate. There 

are 5 major tectonic settings in the geological history of the region (1) during the 

Precambrian Amar Collision (~640-530 Ma), the north-trending Precambrian Amar suture 

bisects the Arabian Peninsula creating a regional and regular north- trending structure 

pattern as result of compression (Ziegler, 2001). A basement depth map in figure 1.2 shows 

the adjacent structures in the North and Central Saudi Arabia with north-, north-east and 

north-west trending patterns including the greater Ghawar structure, Khurais, and Qatar 

dome. The North-South trending anticlines persisted elevated as horsts bounded by faults 

after the widespread extensional collapse of the Arabian shield that followed the Amar 

collision between 620 and 530 Ma. (2) The Late Devonian Hercynian Orogeny (~370-300 

Ma): The Hercynian orogeny had a significant impact on the entire Arabian Plate. Multiple 

compressional phases affected the Arabian Peninsula during this period. Those 

compressional phases produced significant changes in the Arabian basin geometry. Uplifts, 

folding and inversion were also caused by those compressional events in the region. Many 

of the Hercynian faults bounding the major N-S uplifts were reactivated during the Triassic 

and late Cretaceous as discussed below. (3) The Early Triassic Zagros Rifting and Opening 

of Neo-Tethys Sea (260-240 Ma): During the Early Triassic, thermal subsidence and 

stretching of the Arabian plate due to the fragmenting of the Arabian-Gondwana\Iranian-

Laurasia created widespread extensional faulting system. Zagros rifting caused the opening 

https://en.wikipedia.org/wiki/Northern_hemisphere
https://en.wikipedia.org/wiki/Eastern_hemisphere
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of the Neo-Tethys Sea as shown in figure 1.3. Earlier Hercynian structures were reactivated 

and enhanced. (4) In the Late Cretaceous 1st Alpine Orogeny (~100 – 80 Ma), Alpine 

Orogeny began in the late Cretaceous through a compressional phase that caused the onset 

of closing the Neo-Tethys Sea affecting the Hercynian structures created in the region 

(Ziegler, 2001). (5) In the Second Alpine Orogeny (~35-20 Ma), the second episode of the 

Alpine Orogeny started in the middle to late Tertiary. It was associated with the opening 

of the Red Sea and collision of Arabia and Eurasia (Konert et al., 2001). Zagros orogeny 

was initiated from this collision of the Arabian plate and the Asia. The Arabian plate 

converged and subducted beneath Iran and caused the Arabian plate to tilt slightly to the 

northwest to form a series of anticlines and synclines in the Zagros Mountains (Konert et 

al., 2001) 

 
 

Figure 1.2.  Crystalline Basement Isodepth Map from 

Ziegler (2001). 



 

7 

 
 

Figure 1.3 Schematic geological model of major tectonic events affecting  

the Arabian Plate Modified from McGilivray and Husseini (1992) 

1.3 Stratigraphic Settings of Serri Field 

Interests in the exploration for gas reserves in the North Western area in Saudi 

Arabia has always been a demand due the increased industrialization and power demand 

of the area. In this chapter, I will discuss the stratigraphic deposition of the main reservoir 

targets in the region (Figure 1.4). The Qasim formation was deposited in Middle to Upper 

Ordovician, consisting of four units: Hanadir, Kahfah, Ra’an and Quwara. The lowermost 

unit, Hanadir, is between 13 to 18 m in thickness and composed of shales deposited in a 
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shallow marine environment. Kahfah makes the thickest in this formation with 100 – 120 

m of sandstone thickness in a shore-face environment. Ra’an unit was deposited in a calm 

marine setting and is composed of 30-36 m of silty clay. The uppermost unit, the Quwara, 

is a deep water open shelf consisting of shale. Zarga and Sarah formation were deposited 

during the glaciation toward the end of the Ordovician time forming channels of sandstones 

of maximum thickness of 100 m for Zarga and thicknesses of 83 m to 290 m for Sarah 

formation. Both formations frequently appear in the North Western section of Saudi Arabia 

and represent potential gas reservoir targets. The clastic Qalibah group was deposited in 

the Silurian and represents a regional regressive sequence. The Qalibah consists of two 

units: Qusaiba and Sharawra formations. Qusaiba formation is subdivided into five units 

representing cycles of transgressions and regressions in a lower to upper offshore domain 

forming stacked sedimentary sequences mainly composed of clayey siltstone. The shales 

in the base of Qusaiba formation represent a proven hydrocarbon source for the area. In 

some regions, during the deposition of the Qusaiba formation, there were igneous extrusion 

from subaerial volcanoes (Mahmoud et al, 1992). Sharwara formation is composed of 

siltstones and sandstones forming thicknesses between 315 to 430 m deposited in 

environments that vary from shallow to deep subtidal on a storm dominated shelf. (Saudi 

Stratigraphic Committee, 2013). 

1.4 Available Dataset and Survey Design 

Saudi Aramco Oil Company has thankfully provided the 3D seismic dataset that 

will be used in order to examine the processing techniques in this thesis. The 3D seismic 

data have been selected carefully and is known to have evident anisotropic effect from what 
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Figure 1.4. Generalized Stratigraphic Column in North West  

Saudi Arabia from the Saudi Stratigraphic Committee (2013) 

we have learned from the Serri field stratigraphic geology that formations contain shale 

lithology. This lithology will affect the wavelength of the sent elastic wave producing 

anisotropy which will be discussed further in chapter 5. Paradigm Geodepth 15.0 software 

is the primary software used to carry out the study. 
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The full 3D seismic block was acquired in a 50 degrees angle and has 550 inlines 

and 887 xlines with 25 meter spacing over an area of 303 km2. Table 1.1 and figure 1.5 

show the survey parameters and acquisition layout. The maximum fold of the data used for  

Table 1.1 3D seismic survey parameters 
 

seismic imaging is 4000 with irregular offset distributions. This will be one of the 

challenges due to the lack of number of traces in the near and far offsets (Figure1.6)  

The shot gather shown in Figure 1.7 was acquired between inlines 1705 - 1800 and 

xlines 5258 – 5408. It could simply be inferred that the seismic data has a poor signal to 

noise ratio. The events are imbedded under the noise indicating that the reflective energy 

is extremely weak. This could be due to the acquisition parameters used in acquiring this 

survey. The surface geology in some areas is composed of basaltic layers. A different 

source such as dynamite would have been more efficient. However, this will add a 

challenge to the processing especially in picking the initial velocity vertical functions 

which will be discussed in more details in chapter 2. 

Criteria Value Criteria Value 

Area (km2) 303.6  Max. Fold 4000 

Year 2004 Max. Offset (m) 7000 

Sweep Type Vibroseis Samples 1251 

Shots 32,394 Sample rate (ms) 4 

Receiver Stations 47,892 Time Length (ms) 4000 

Receiver Spacing (m) 50 Inlines (IL) 550 

Traces 125,000,000 Xlines (XL) 887 

Max. Channels 4000 IL/XL Spacing (m) 25 
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Figure 1.5 Survey layout: inlines vs xlines view of the 3D seismic block 

 
 

Figure 1.6 Offset histogram of the input dataset 
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Figure 1.7 Input shot gather example 

This shot gather was selected to analyse the spectral frequency of the seismic. The 

green area square inside the shot gather at the left bottom of figure 1.8 is where the spectral 

frequncy analysis was performed where the blue circle indicates where this shot was 

acquired in this survey. It can be deduced that the frequencies in this data range from 5 Hz 

to 80 Hz where it is around 30 - 60 Hz at highest amplitudes. However, this study will not 

carry out any signal processing and will merely focus on imaging. 
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Figure 1.8 Shot Gather Spectral Frequency Analysis 

The data have been processed in the Time Processing Department in Saudi Aramco 

and was preconditioned to depth processing. The following are the major time processing 

steps done on the data set before it was written to a segy: 

 COG noise suppression. 

 Statics: GeoTomo, Wave-equation Datuming. 

 Residual 3D statics analysis (24ms). 

 Trace editing. 

 Common Offset Noise Suppression IL/XL: LFK/ FXDECN/ Sort. 

 Residual 3D statics 48ms. 
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There are plenty of wells drilled in the area, and only 6 wells were accessible and 

provided for this research. All of these wells had targeted lower Silurian and upper 

Ordovician sandstone reservoirs stratigraphically related to the Sarah paleocurrent channel 

as well as Qasim formation. The wells contain gamma ray, density, neutron, S-wave sonic 

and P-wave sonic logs. The well logs will be useful tools to pick TWT horizons and identify 

formations on the seismic section and also calibrate the depth maps to wells during the 

velocity model building. Moreover, slowness attributes from the sonic are going to be 

significant inputs in determining the anisotropic parameters required to create an 

anisotropic velocity model. 

The goals of this thesis was approached through a sequential practical work.  Figure 

1.9 shows a flow chart that displays the sequence of major steps that were used in order to 

achieve the objectives of this research.  

 
 

Figure 1.9 Workflow of Velocity Model Building and PreSDM 
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Chapter 2 

Preliminary Seismic Velocity Analysis 

2.1 Seismic Velocity Model Representation 

A seismic velocity model is a set of geological layers separated by interfaces, 

horizons, fold, and transition zone. In sedimentary geology, velocity within each layer is 

characterized by a smooth laterally varying distribution, which normally increases 

monotonously with the increasing thickness of the layers. Generally, there are 

discontinuities in the velocity and density parameters which is known as reflection 

coefficients that occur across the interfaces. In sediments such as sand and shales velocities 

tend to change whereas it is normally homogenous in hard rocks such as igneous or 

carbonate rocks. (Upadhyay, 2004) 

A velocity model can be represented as: (1) layer based model, (2) grid based 

model, and (3) hybrid model representation. In layer-based model, velocities are 

represented vertically by a piece-wise continuous function indicating the vertical changes 

of velocity within and across the layers. In grid-based model, velocities are represented in 

a fine grid computed from lateral and vertical location whose dimension indicates the grid 

seismic resolution. Hybrid model represent velocities in a grid in every geological layer 

where the grid can be regular or irregular. The study area is interpreted to have low dipping



 

16 

formations so in this thesis, the layer based velocity model will be used throughout the 

analysis. (Dekel)

2.2 Seismic Velocity Vertical Functions 

The shot/offset gathers were first sorted by CMP/offset gathers in order to be able 

to pick reflections and correct for the normal move-out (NMO) (Figure 2.1). Paradigm 

software undertakes a CMP as the point of intersection of every inline and xline. Although 

the signal to noise ratio is still weak after sorting, it is slightly more coherent, and thus, 

initial vertical functions were picked by using the semblance velocity method. (Figure 2.2& 

2.3) show a CMP before and after a vertical function being picked. The QC time gate in 

the bottom right corner shows how the time stack section behave after presenting those 

energies in the vertical function. 

 
 

Figure 2.1: Multi gather view of raw data with automatic gain control AGC applied. 
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Figure 2.2 Example of a CMP input gather QC before picking a seismic  

vertical velocity function 

 
 

Figure 2.3. Example of CMP Input Gather QC after picking a seismic vertical  

velocity function where time gate shows more continuous reflections 
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In this application, vertical functions were picked every 20th CMP over the 3D 

volume. The graph in Figure 2.4 shows the initial vertical 1220 functions displayed in lines 

and points. A 2000 m smoothing operator was run while creating the stacking velocity 

volume. These vertical velocity functions will be used to create a stacking velocity section 

which will be used to perform a normal moveout correction to the gathers where time 

events will be brought back to t0. The stacking velocities range from 2350 to 4900 m/s. It 

also can be deduced that the velocity does not always increase with time implying some 

velocity inversions throughout the seismic volume which will be more evident after 

generating interval velocities in the next chapter. 

 
 

Figure 2.4. Display of vertical velocity functions points interpolated by lines. 
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The Serri field has a layered sub-horizontal stratigraphy with gently dipping 

horizons. However, a horizontal velocity analysis is needed in order to detect any lateral 

variations due to facies changes. After running a 3D automatic TWT picking of key 

horizons using the well markers, the TWT interpretations were loaded into the software 

and gridded separately. These time surfaces were used in hyperbolic stacking velocity 

analysis. Although the signal-to-noise ratio is unquestionably poor on all horizons, 

successful attempts were made to pick velocities. Figure 2.5 shows an example of a horizon 

velocity analysis before and after picking velocity. The QC time gate in Figure 2.5 shows 

little to no improvement in the image quality.  

 
 

Figure 2.5. Horizon velocity analysis where top section is before picking the event whereas 

the bottom is after picking. 

The horizon velocity interpretation were then left out and a moving average 

interpolation method was run to interpolate and grid the vertical functions, and create a 

layer based stacking velocity model. Figure 2.6 shows a 3D display of the stacking velocity 

volume while Figure 2.7 displays a cross section of the stacking velocity model along 

inline# 1627. TWT horizons were superimposed on the section to show the vertical and 

lateral behavior of the velocity. Preliminary observations from the velocity volume confirm 
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that the geology seems to have a layer-cake stratigraphy with little lateral complexities. 

However, there appear to be some vertical changes in velocity at ~1200 s TWT where it 

drops from 3500 m/s to 3100 m/s. In addition, although the velocity section has been 

smoothed, there are noticeable fluctuations of the velocity especially in the middle of the 

volume due to poor reflections. 

 
 

Figure 2.6. 3D Cube of the stacking average velocity volume 
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Figure 2.7: Stacking velocity section at IL1627 

Using the stacking velocity volume above, NMO and stack modules were run to 

produce constant velocity stack (CVS) sections. Figure 2.8 shows the seismic section 

across inline# 1625. This stack raises a number of observations: (1) the seismic image has 

poor quality and the horizons seem to be discontinuous laterally, (2) the horizons show 

gentle slopes, (3) there is a hint of some structural features such as low degree anticlines 

and faults. All of these preliminary interpretations are indications of a need for further 

processing which will be discussed in more details throughout this thesis. 
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Figure 2.8 Seismic Stack Section of IL 1625  
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Chapter 3 

Constrained Velocity Inversion Velocity Model Building 

3.1 Constrained Velocity Inversion: Theory 

CVI is a stable inversion method to create geologically constrained instantaneous 

velocities from a set of sparse, irregularly picked stacking or root mean square-velocity 

functions (RMS) in vertical time. A stacking velocity is defined as a parameter for the 

hyperbolic curve that best fits the moveout of reflection times over source-receiver offset. 

Inversion is done in four stages: establishing a global initial background-velocity trend, 

applying an explicit unconstrained inversion, performing a constrained least-squares 

inversion, and finally, fine gridding. (Harlan, 1999)  

RMS Velocities are assumed to be equivalent to stacking velocities. Let a one dimensional 

vector 𝑠 be a single function of squared stacking slownesses, and 𝑣  for interval velocities. 

The RMS average of 𝑣 is written in a discrete function as: 

1/𝑠𝑗 =
1

𝑗+1
∑ 𝑣2

𝑘
𝑗

𝑘=0
         (3.1) 

Dix equation is an explicit inverse of RMS and written as: 

𝑣𝑘 = √(
𝑘

𝑠𝑘
−

𝑘−1

𝑠𝑘−1
)         (3.2) 

However, velocity inversions in stacking velocities could lead equation to fail when 

required to take square root of negative numbers. A small perturbation ∆𝑣𝑘 of interval 

velocity results in the following perturbation ∆𝑠𝑗 of squared stacking slowness.
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∆𝑠𝑗 = [−
2 𝑠2

𝑗

𝑗+1
] ∑ 𝑣𝑘  ∆𝑣𝑘

𝑗
𝑘=0         (3.3) 

So, for a constrained inversion a linearization of the Dix equation is written as: 

∆𝑣𝑘 = 𝑣𝑘 ∑ [−
2 𝑠2

𝑗

𝑗+1
]

∞

𝑗=𝑘
∆𝑠𝑗        (3.4) 

Damped least-squares is used to balance data errors with minimal complexity in the model. 

It works by defining a linear smoothing operator  𝐵̃ and vector 𝑤 to contain the smoothing 

coefficients: 

𝑣𝑘 ≡ ∑ 𝑏𝑘−𝑖 𝑤𝑖𝑖 ≡ (𝐵̃ .  𝑤)
𝑘
        (3.5) 

After convolving indirectly over all spatial indices (5) the best coefficients of 𝑤 should 

minimize the following function: 

 {𝑠𝑗 − [
1

𝑗+1
 ∑ (𝐵̃ .  𝑤)2

𝑘

𝑗

𝑘=0
]

−1

}

2

+∈ ∑ 𝑤2
𝑘𝑘       (3.6) 

An error ∆𝑠 could result from producing a particular set of square stacking slownesses 𝑠 

from a partially optimum set of coefficients 𝑤. The following equation is defined at the 

best perturbation of coefficients with linearization from (3).  

[∆𝑠𝑗 − 
2 𝑠2

𝑗

𝑗+1
 ∑ (𝐵̃ .  𝑤)

𝑘
(𝐵̃ .  ∆𝑤)

𝑘

𝑗

𝑘=0
]
2

+∈ ∑ (𝑤𝑘 + ∆𝑤𝑘)
2

𝑘     (3.7) 

As a final optimization, early iterations begin with a large smoothing operator which is 

reduced after a full optimization over a simplified interval velocity (Harlan, 1999). 

The method is primarily designed for building initial velocity models for curved-ray time 

migration and initial macro models for depth migration and tomography. It is mainly 

applicable in regions containing compacted sediments, in which the velocity gradually 

increases with depth and can be laterally varying. The method can be applied to create a 

new velocity field or to update an existing one (Koren and Ravve, 2006). 
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3.2 Constrained Velocity Inversion Model 

3D models were created to contribute to the constrained velocity inversion. The 

stacking velocity volume from the previous chapter was used as input to create the first 

initial CVI model. More weights of 60% were applied to trend whereas 30% of weights 

will be used from data due to the noticeable trend and clear poor quality of the data. Figure 

3.1 shows the input to CVI and the resulting interval velocity volume in depth.  

 
 

Figure 3.1 3D view of three inputs to create the constrained velocity model. Top left TWT 

surfaces, bottom left is the stacking velocity volume, right is the CVI model. 

A cross section of the CVI velocity volume in depth along inline # 1627 is displayed 

in Figure 3.2. Interval velocity depth maps were extracted from the volume and used to 

convert to depth the TWT horizons. Then, they were superimposed in the section below to 

QC the resultant velocity model. at 4,000 m. the velocity drops down. Velocities increase 

significantly at the lower Base Qusaiba formation. Hanadir formation at a depth 4500 – 

5,200 m shows a fluctuation in lateral velocity values between 4,800 m/s to 5,800 m/s as 

we go SW. This layer based velocity volume overall contains a detailed representation of 

the subsurface geology. Therefore, it will be used to create a travel time table to perform 

the first run of prestack depth migration (PreSDM). 

CVI Interval Velocity in Depth 

Stacking Velocity in Time 

TWT surfaces 
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Figure 3.2 CVI velocity section view at IL1627 

 The velocity section displayed in the Figure 3.2 above provides a more detailed 

information about the variation of the velocity in the medium and we can draw several 

conclusions especially looking at the very noticeable inversion of velocity at 3740 m where 

the velocity drops from 4800 m/s to 4000 m/s. This event could relate to an igneous body 

intrusion at this depth. The horizons on the section represent the depth maps converted 

from time using the stacking velocity model. In addition, the section outlays a lateral 

change in velocity along the Hanadir formation at the bottom of the section which is known 

to be composed of shales (Saudi Stratigraphic Committee, 2013)
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Chapter 4 

Kirchhoff’s PreSDM Migration 

4.1 Kirchhoff’s PreSDM Migration - Theory 

Prestack depth migration is a useful tool for positioning the geological events at 

their true position in the subsurface media. There are many depth migration algorithms 

used widely in the oil and gas industry, and all differ based on computation requirements 

and mathematical operations. Depth migration has also become an important technique in 

velocity model building. In this research, our objective was to develop an anisotropic 

velocity model that is a product of lateral and vertical variations of velocities of the 

propagating waves in the subsurface. 

Kirchhoff’s ray-tracing algorithm was used to carry out the prestack depth 

migration.in developing this model. In Kirchhoff PreSDM traveltimes are computed by ray 

tracing performed through complex 3D models. Data are primarily stored into several 

common-offset 3D volume. Each of these volumes is ‘regularized’ to contain traces of 

comparable fold and possible azimuth range, placed on a regular grid in x and y Every 

imaged point are considered as diffraction point D; traveltimes and weights are computed 

for each imaged point by explicitly shooting dynamic rays through this 3D velocity model 

in depth (Figure 4.1). Thus, reflectivity in any point D is computed by a weighted sum 

along its corresponding diffraction surface; the limits of the diffraction surface are 

governed by the aperture of the migration operator. In other words, the diffraction surface 
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for a given point D at depth z, aperture x and offset 2h is computed from the sum of the 

traveltimes ts along the ray from the shot to the image point plus the traveltime tr from the 

imaged point to the receiver (Robein, 2010). 

 
 

Figure 4.1. Seismic raypaths from a diffraction point D in a schematic anisotropic 

migration velocity model in depth (from Robein, 2010). 

4.2 Isotropic Kirchhoff PreSDM Using the CVI model 

The interval velocity model in depth created in the previous chapter contains 

isotropic information about the geological layers of the study area. It was used to build the 

travel time tables based on the wavefront Kirchhoff’s computation technique. 

Subsequently, a depth migration was run on the gathers using an aperture of 2000 m. 

Offsets were limited to 5000 m during the migration because (1) the traces beyond offsets 

above 5000 were limited, (2) migrating data with shorter offsets requires less computation 
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power. Figure 4.2 shows several migrated gathers along IL1625. These gathers are 

converted back to time using the CVI velocity model.  

 
 

Figure 4.2 Multi gather view of isotropic PreSDM depth to time gathers with 300 AGC. 

The depth migrated gathers (scaled to time) in Figure 4.2 correspond to the input 

gathers shown in Figure 2.1 in Chapter 2 with the difference that here is after PreSDM 

which will be discussed further in Chapter 6. The PreSDM results show how clear the 

reflections that were imbedded within noise became after the depth migration as a 

consequence of boosted signal to noise ratio.  

Figures 4.3(in depth) and 4.4 (in TWT) are cross sections of the stacked volume 

along IL1625 where Figure 4.3 is in the depth domain and Figure 4.4 is in the time domain 

after scaling the depth stack using the CVI velocity model.. Although the reflections in 

these new processed data appear to be more clear and continuous, they do not appear to be 

flat as expected throughout the migrated gathers. This is an indication that the velocity 

model did not correct the events at the far offsets likely being a sign of anisotropic effects. 

This will be examined in the next chapter.
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Figure 4.3 Seismic depth section at IL1625 after isotropic PreSDM. 

 
 

Figure 4.4 Seismic depth section at IL1625 after isotropic PreSDM converted to time  
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Chapter 5 

Anisotropic Seismic Velocity Model Building 

5.1 Concept of Seismic Anisotropy: Theory 

In geophysical exploration, seismic waves used to image the subsurface travel 

through the earth and are reflected and refracted at sediment interfaces because the 

sediments have different velocity and density effects on the waves. The returning signals 

are what are recorded at the surface by measuring elapsed time from when the seismic 

signal is generated. The Earth is heterogeneous in nature, and thus, the propagation waves 

travel through different rocks in multiple direction at different speeds. This means that 

“seismic waves travelling in one direction relative to a vertical axis are going faster (or 

slower) than in other directions, an effect which varies aerially and with depth.” (McBarnet, 

2008). 

Anisotropy is seen in almost all rocks affecting both compressional and shear waves 

in different ways. The directional and spatial effects of anisotropy can be difficult to 

distinguish when using only seismic data. Anisotropy arises from ordered heterogeneity at 

scales less than a seismic wavelength. There are different types of anisotropy and are 

classified based on the degree and effect of anisotropy (Tsvankin, 2001).  This paper 

focused on the vertical transverse isotropy due to the horizontal layering structure of the 

study area. The elastic behavior of a layered structure would be like a homogenous 

transversely isotropic (T.I) medium having a symmetry axis perpendicular to the plane of 
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stratification (Upadhyay, 2004). The elastic modulus matrix for an anisotropic case in a 

vertical transverse isotropic medium (VTI) is derived firstly from Hook’s Law which states 

that for elastic behavior strain is directly proportional to the stress producing it. So, we can 

express the following relationship 

 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑒𝑘𝑙           (5.1) 

 𝑖, 𝑗, 𝑘, 𝑙 = 1, 2, 3, where 𝜎 is the stress, 𝐶 is the elastic moduli or stiffness constant, and 𝑒 is 

the strain. The elastic modulus matrix for an anisotropic case in VTI medium is

𝐶 =

[
 
 
 
 
 

𝐶11 𝐶11 − 2𝐶66 𝐶13 0 0 0
𝐶11 − 2𝐶66 𝐶11 𝐶13 0 0 0

𝐶13 𝐶13 𝐶33 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶44 0
0 0 0 0 0 𝐶66]

 
 
 
 
 

     (5.2) 

Values of the constants 𝐶11, 𝐶13, .. etc. may be calculated knowing the thicknesses and 

elastic constants of isotropic constituents of the medium. (Thomsen, 2002).

In an isotropic medium, where the velocity is constant, the wavefront of a point 

source can be seen as the envelope of the propagation of an infinity of plane waves (Figure 

5.1). However, in an anisotropic medium where waves propagate at a phase velocity, the 

wavefront is still the envelope of plane waves, but propagate at phase velocity that depends 

on direction (Figure 5.2). In this example, we explain the parameters that characterize 

anisotropy in a given location (x, y, z) for P-wave propagation in a homogeneous 

subsurface. There are four parameters: phase velocity, the axis of symmetry that is vertical 

for vertically transverse isotropy VTI, and two Thomson’s parameters ε and δ. The VTI 

model for phase velocity (Thomson 1986) is: 

𝑉𝑝 (𝜃)  ≈ 𝑉𝑣𝑒𝑟 ∙ (1 +  𝛿 ∙  𝑠𝑖𝑛2𝜃 ∙ 𝑐𝑜𝑠2 +  𝜀 ∙  𝑠𝑖𝑛4𝜃)     (5.3 a) 

𝑉ℎ𝑜𝑟 = 𝑉𝑣𝑒𝑟 ∙ (1 + 𝜀)         (5.3 b) 
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𝑉𝑝 (45°) = 𝑉𝑣𝑒𝑟 ∙ (1 + 0.25 ∙ 𝛿 + 0.25 ∙ 𝜀)      (5.3 c) 

 
 

Figure 5.1 The wavefront envelope of planes in an isotropic case 

modified from Robein (2010). 

 
 

Figure 5.2 The wavefront envelope of planes in an anisotropic case  

modified from Robein (2010). 

Snell’s Law, which is a formula used to describe the angle of incidence and angle 

of reflection, can be illustrated using phase velocity to incorporate the anisotropy effect. 

(Figure 5.3). Here, the phase velocity which corresponds to the group velocity of the 
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incident ray is first computed from group and phase angles, group and phase velocity and 

anisotropic parameters ε and δ above the interface using the following equation: 

𝑉𝑝ℎ𝑎𝑠𝑒1 =  𝑉𝑣𝑒𝑟 1 ∙ 𝑓(𝜃1, 𝜀1, 𝛿1)         (5.4)  

We can then apply Snell’s Law to the phase velocity to compute  𝜃2 : 

sin 𝜃2

𝑉𝑝ℎ𝑎𝑠𝑒2(𝜃2)
=

sin 𝜃1

𝑉𝑝ℎ𝑎𝑠𝑒1(𝜃1)
          (5.5) 

Then we can compute the group angle which gives the propagation direction (5.6 a) and 

subsequently the corresponding group velocity propagation (5.6 b; Robein, 2010): 

𝜃2 = ф
2 
(ф = 𝑓(𝜃, 𝑉𝑣𝑒𝑟 , 𝜀, 𝛿)         (5.6 a)  

𝑉𝐺𝑟𝑜𝑢𝑝2 = 𝑔 (𝜃, 𝑉𝑝ℎ𝑎𝑠𝑒 2 ,
𝑑𝑉𝑝ℎ𝑎𝑠𝑒 2 

𝑑𝜃
)        (5.6 b) 

 
 

Figure 5.3. Snell's Law in anisotropic 

media modified from Robein (2010) 

5.2 Anisotropic Velocity Model Parameters Estimation 

Prestack depth and time migration need input from a velocity model, and therefore, 

they can handle the anisotropy effect but only if the anisotropic parameters are known. A 
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velocity layer based model can be defined as set of interfaces represented as depth maps 

digitized on a regular (x, y) grid, plus velocity functions within the layers between the 

interfaces parameterized as 𝑉0 + 𝑘 ∙ 𝑍. The starting velocities 𝑉0 and 𝑘 (gradient functions) 

can be calculated from P- sonic logs and horizon markers for each formation. Vertical 

transverse isotropy (VTI) anisotropy is added to each layer through constant values of 

Thomson’s parameters ε and δ. With the generalization of high-resolution tomography, we 

can now predict a field of ε and δ pairs modeled in a regular grid in conjunction with a 

predefined field of axis of symmetry. However, anisotropy parameters are poorly 

constrained by seismic data only. Estimating the epsilon and delta values has been a major 

challenge especially without some means of calibrating the anisotropy to some well 

information. Their inversion consequently requires imposing external constrains especially 

well data. Parameter delta (δ) defines the difference between a seismic near offset velocity 

𝑉𝑁𝑀𝑂 and a vertical velocity 𝑉𝑝 and is defined as: 

δ =  [𝑉𝑁𝑀𝑂(0) − 𝑉𝑝(0)]/ 𝑉𝑝(0)       (5.7) 

Delta (δ ) can be estimated from the difference between a well velocity and a 

seismic near offset velocity. This can be done by cross plotting well and seismic velocities 

as δ represents the bias. In this process, the parameter eta (𝜂) can also be estimated. The 

Alkhalifah eta parameter (𝜂) is an instantaneous anisotropic value that represents the non-

hyperbolic moveout of the traces far offset (Alkhalifah and Tsvankin, 1995). While 𝑉𝑁𝑀𝑂 

corrects for a hyperbolic moveout, (𝜂) can be estimated from the seismic interval velocities. 

Parameter epsilon (ε) affects long offsets and defines the difference between a horizontal 

and a vertical velocity and is defined as: 

 ε =  [𝑉𝑝(90) − 𝑉𝑝(0)]/ 𝑉𝑝(0)        (5.8) 
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Epsilon (ε) can be estimated from parameter eta (𝜂) for a given delta (δ) from (5.9; 

Alkhalifah and Tsvankin, 1995)): 

𝜂 =
(𝜀−𝛿)

1+2𝛿
         (5.9) 

5.3 Building the Anisotropic Seismic Velocity Model 

In this section, the interval velocity model created from CVI was updated and 

adapted to an anisotropic model through a number of processing steps. In the previous 

chapter, we noticed that the reflections were not subhorizontal especially at the far offsets. 

First, the depth migrated gathers were used to analyse and pick the residual moveouts to 

update the CVI velocity model. Figures 5.4 and 5.5 show an example of the horizon 

moveout effect on the QC depth gate. The horizons of residuals were then used to update 

the velocity volume. 

 
 

Figure 5.4 Horizon residual moveout analysis (before) 
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Figure 5.5. Horizon residual moveout analysis (after) 

FastVel is a tool to pick the NMO residual moveout at far offsets where NMO cannot move 

the reflector back to t0 using the isotropic velocity. These moveouts were run in a batch 

mode targeting all horizons, and fastvel moveout volume was created as shown in figure 

5.6. This residual moveout volume is in depth and indicates locations where the seismic 

gathers cannot be corrected at far offsets using the current velocity model. In this example, 

the moveouts are large between depths 2000 m to 4000 m. These geological layers are 

correlated to shale deposits within sediments which are a primary source of anisotropy. 

Also, the lateral variations in the moveouts indicate a lateral change in facies. I extracted, 

therefore, the velocity of the base Qusabia formation to track the lateral changes in velocity. 

Figure 5.7a is a horizon slice of the base Qusaiba formation interval velocity. These 

particular locations were used to in calculating the anisotropic parameters ε and δ from the 

sonic well logs from well# 1. From the previous section, we learned that delta δ can be 
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estimated by cross plotting the NMO seismic velocity and the p-velocity from the sonic 

well log. Figure 5.7b shows extracted velocity vertical functions, picked every 50 CMP, 

from the interval velocity with depth (CVI model), and also the well p-velocity. At Qusaiba 

formation, the p-velocitywell.is 3578 m/s while the seismic velocity is averaged to be 3169 

m/s. From δ equation (5.7), δ is calculated to be 0.11 which indicates the magnitude of the 

near offset effect of anisotropy. Alkhalifah 𝜂 parameter is estimated from the seismic 

interval interface at Qusaiba formation where moveouts are clearly visible, and 𝜂 is 

determined to be 0.25. Replacing 𝜂 and δ in equation (5.9) results in an epsilon (ε) value 

of 0.20. Epsilon is, according to Thomson, “the fractional difference between vertical and 

horizontal P velocities; i.e., it is the parameter usually referred to as 'the' anisotropy of a 

rock" (Thomson, 1986). These parameters values are usually positive because velocity is 

usually faster along bedding. 

 
 

Figure 5.6 FastVel residual moveout section at IL 1625. 
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Figure 5.7a Base Qusaiba Formation interval velocity horizon slice 

 
 

Figure 5.7b Seismic velocity & Well 1  

P-wave velocity cross-correlation. 
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After estimating the anisotropic parameters from the wells, another investigation of 

these parameters was done by using the migrated seismic data. Here, I ran a horizon 

residual analysis of delta (δ) and epsilon (ε). intervals on top the Qusaiba formation and 

Hanadir formations which are the interfaces with high residual moveouts events (Figure 

5.8 & 5.9). The moveouts from Figure 5.6 were overlaid on the depth migrated section 

showing in left top corner in Figures 5.8 & 5.9 in order to hint the locations where 

anisotropy is affecting the near and far offset of the data. The semblance of interval delta, 

as appears in the left bottom corner in Figure 5.8, shows that (δ)values range from – 0.2 – 

0.4, however, the average value is around 0.14 which is relatively close to the 0.11 

calculated parameter value from the sonic log. 

 
 

Figure 5.8. Residual analysis showing on bottom left corner interval 

Delta semblance analysis across Hanadir formation, the top left side  

is the depth migrated section with residual moveouts overlaid  
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Similarly, residual interval velocity analysis was created along the horizons to 

estimate the parameter (ε). (Figure 5.9). The result of this analysis indicate an inconsistent 

epsilon values as appears in the in the semblance section in the bottom left corner in Figure 

5.9. However, at some residual moveouts locations along the Hanadir horizon, the values 

range from 0.10 to 0.40 with an average of 0.25. Likewise delta, the value is relatively 

close to what the result of the calculated parameter from the sonic well log. Although, the 

anisotropic parameters cannot be concluded from the seismic due to the fluctuations and 

the wide range of values, we could get a good approximation to the values. The parameters 

calculated from the well however were the ones used to update the velocity model. 

 
 

Figure 5.9. Residual analysis showing on bottom left corner interval 

Epsilon semblance analysis across Hanadir formation, the top left side  

is the depth migrated section with residual moveouts overlaid  
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The velocity model representation used in this work is a layer-based model where 

interval velocity information of each horizon is added to a set of interfaces. The Thomson 

parameters, ε and δ were also fed into the formation table, and a formation volume 

incorporating the anisotropic volume was created (Figure 5.10). Every color in the 

formation volume represent one formation. These formations are created based on the 

depth maps originated from converting the TWT maps to depth maps as discussed in 

Chapter 3. This formation volume was subsequently used to create two anisotropic 

volumes, delta and epsilon (Figures 5.11 and 5.12) 

 
 

Figure 5.10. Formation volume for the Serri field project 

At this stage, the anisotropic velocity model was created by updating the CVI model 

using the results from anisotropic parameters and residual moveout maps. Figures 5.13 and 

5.14 show a 3D volume of the anisotropic velocity model and a cross section along IL1627. 
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The 3D Volume was our ultimate model for this study, although, more iterations of 

PreSDM can enhance the model when re-analyzing the residual moveouts. However, due 

to the expensive computation of PreSDM, this model will be sufficient to test the 

enhancement of the seismic record. The anisotropic velocity model incorporates the  

 
 

Figure 5.11 Interval delta cross-section at IL1625. 

 
 

Figure 5.12 Interval epsilon cross-section at IL1625. 



 

44 

 
 

Figure 5.13. 3D volume of the anisotropic interval velocity in depth model. 

intervals were determined. This velocity model was also smoothed in order to prepare it 

for our next iteration of PreSDM. 

5.4 Anisotropic Kirchhoff Wavefront PreSDM 

The anisotropic traveltimes are computed for each source and receiver pair by 

propagating wavefronts through the layered velocity model incorporating epsilon and delta 

parameters for each layer (Figure 4.1). Each time-increment points along a wavefront curve 

and is projected forward using an anisotropic ray velocity which is generally oblique to the 

wavefront direction. Once the anisotropic wavefront curves have been computed for each  
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Figure 5.14. Anisotropic velocity section showing interval velocity at depth across IL1627. 

The lines are the TWT horizons converted to depth. 

source and receiver pairs, a migration traveltime field for a given input trace is then 

calculated by adding the shot and receiver traveltimes for each point on the grid.  Each 

input sample at time T is mapped to all depth locations (x, z) with the same traveltime 

(Vestrum, 1999). 

The resultant depth gathers were then scaled back to time using the anisotropic 

velocity model. Figure 5.15 displays the gathers at the same locations of the isotropic 

example in Chapter 4. In this figure, we can see how the anisotropic velocity model did not 

only enhance the image quality but also corrected the moveout at the far offsets.  
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Figure 5.15. Multi-gather of anisotropic PreSDM gathers with 300 AGC. 

Figures 5.16 and 5.17 are the anisotropic PreSDM stacks in both depth and time of 

IL1625 showing much improved reflections in comparison with isotropic stacks discussed 

in Chapter 4. 

 
 

Figure 5.16. Seismic stack in depth from anisotropic PreSDM 
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Figure 5.17. Seismic stack from anisotropic PreSDM converted to time.
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Chapter 6 

Isotropic Vs. Anisotropic PreSDM: Final Results and Discussion 

The practical work to produce the final PreSDM results went through different 

velocity modelling stages. We firstly, ran an isotropic PreSDM using a geological 

constrained velocity model (CVI) which was subsequently updated to run a final PreSDM. 

The results throughout these stages were compared to check the improvement of the 3D 

seismic dataset. 

 
 

Figure 6.1 Comparison of CMP gather at XL5502 and IL1625, from left to right, (a) raw 

input, (b) after isotropic PreSDM, and (c) after anisotropic PreSDM.  

Figure 6.1 shows a CMP gather comparison after two passes of PreSDM. From left 

to right: (a) the input CMP gather before migration, (b) is after isotropic PreSDM, and (c) 

is the after anisotropic PreSDM. We observe that the CMP gather in  (a) is very noisy with 

reflections that can barely be noticed. TheCMP gather in (2) have reflections that are 
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consistently clear. However, we noticed that reflections in (b) are not flat at all offsets. 

After anisotropic PreSDM the CMP gather in (c) shows reflections that appear clear and 

flat laterally. This is most likely due the effect of the anisotropic parameters that were 

included in the velocity model used in the anisotropic PreSDM. Figure 6.2 compares the 

CMP gathers from different locations in the survey along IL 1625 where top (1) a collection 

of different CMP gathers after isotropic PreSDM, and bottom (2) is the CMP gathers after 

anisotropic PreSDM. In (1) we can notice the effect of seismic anisotropy at the far offset 

of the gathers throughout the seismic inline. Although isotropic PreSDM did a good job in 

making the reflections appear consistently better in (1) the reflections are not flat 

everywhere. The CMP gathers in (2) showed that the anisotropic velocity model helped to 

correct the behaviour of the reflections throughout the study area. Moreover, CMP gathers 

in (2) shows the deep reflections appear brighter and more defined. 

Final seismic stacks were also compared from all the processing stages. Figure 6.3 

shows from left to right (a) the CVS stack (input CMP gathers stacked with the initial 

stacking average velocity), (b) the stack from isotropic PreSDM gathers, and (c) the stack 

from anisotropic PreSDM gathers. It is clear that there is a progression of improved seismic 

imaging from left to right. The reflectors appear more robust and continuous throughout 

the section from left to right. It shows how effective the ray tracing migration method is in 

boosting up the energy. In addition, this imaging enhancement appears to be a result of 

performing depth migration, and in particular, using the structural interval velocity that 

took into account the lateral changes of velocity. Furthermore, the anisotropic stack does 

show a further improvement over the isotropic PreSDM stack. 
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Figure 6.2. Comparison of top (1) isotropic and bottom (2) anisotropic PreSDM gathers.  

In Figure 6.4, we compared the seismic stacks zoomed in at the event at the Base 

Qusaiba formation starting at 2.05 seconds, which is a formation where it sits on top of 

sandstone channels.(Saudi Stratigraphic Committee, 2013) The figure shows from top to 

bottom (a) CVS stack, (b) the stack after isotropic PreSDM, and (c) the stack after 

anisotropic PreSDM.The anisotropic result in (c) show that the PreSDM with the 

anisotropic velocity model has enhanced the overall imaging including the anticlines, and 

more importantly, made the reflections more continuous. Most likely anisotropic PreSDM 

move the events to their correct positions. 
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Figure 6.3 Seismic stacks comparisons: showing from left to right (a) CVS stack, (b) 

isotropic PreSDM stack, and (c) anisotropic PreSDM stack 

Figure 6.5 show compares the stacks zoomed in across the Hanadir formation 

occurring at ~2.65 seconds. The figure from top to bottom shows (a) the CVS seismic stack, 

(b) isotropic PresDM stack, and (c) anisotropic PreSDM stack. The seismic event in stack 

(a) is barely visible, and therefore, not interpretable. The isotropic PreSDM gave a great 

improvement to boost up the event in (b). The Hanadir formation in (c) appears to be more 

continuous whereas it is artificially interrupted on (b) the isotropic stack.  

Figure 6.6 is another stack seismic sections comparisons of the Serri field seismic 

data. The figure again compares the stacks, from left to right, (a) CVS stack, (b) isotropic 

PreSDM stack, and (c) anisotropic PreSDM stack. In this comparison, we noticed the  
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Figure 6.4 Seismic stacks comparisons, from top to bottom, (a) CVS stack, 

(b) isotropic PreSDM stack, (c) anisotropic PreSDM stack 

 
 

Figure 6.5. Seismic stacks comparisons: showing from top to bottom (a) CVS stack, 

(b) isotropic PreSDM stack, and (c) anisotropic PreSDM stack of Handir formation. 
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biggest improvement after anisotropic PreSDM. The event starting at 2.45 seconds 

highlighted in rectangle in (c) sharper and better focused than it is in the isotropic PreSDM 

in (b). This improvement is most likely because of the high degree of accuracy that the 

anisotropic velocity model has which consequently led to a better position of that event. 

 
 

Figure 6.6.Seismic stacks comparisons: showing from left to right (a) CVS stack, 

(b) isotropic PreSDM stack, and (c) anisotropic PreSDM from 1.7-2.8 seconds.
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Chapter 7 

Conclusions and Future Work 

7.1 Conclusions 

Based on this study, three main approaches seem to make a significant impact on 

the improvement of seismic imaging of the subsurface: (1) elastic reflection coefficient 

characterizing heterogeneities present in the subsurface, (2) information on the variation of 

this reflection coefficient with incidence angle, and (3) information on the P-wave 

propagation velocity field in the Earth. A good detailed velocity model leads to a good 

seismic image. Velocity anisotropy is an essential information that must be accounted for 

in order to achieve the goal of accurately positioning the seismic events in a subsurface 

geology. It is because the presence of anisotropy causes two principal distortions in the 

reflection moveout: (1) incorrect vertical velocity will result in incorrect estimations of 

reflector depths, and (2) anisotropy leads to nonhyperbolic moveout which causes 

distortions in velocity estimation and deteriorates the image quality, if not corrected for 

(Helbig and Thomsen, 2005). The case study in this thesis demonstrated that seismic 

imaging whether isotropic PreSDM or anisotropic PreSDM is a powerful technique to 

boost up the energy in the seismic record and increase the S/N ratio. Anisotropic PreSDM 

in particular provides better focusing and more realistic subsurface reflections compared 

to isotropic PreSDM, and results in more accurate subsurface structures.
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7.2 Limitation & Future work 

The computation power has been the most persistent obstacle throughout the 

research. The workstation has a RAM of 32GB where best PreSDM results would require 

at least 48GB. Thus, the data was narrowed down to meet the available computation power. 

Another limitation was the extremely poor quality of the data. It has affected building up 

the initial velocity model. In other words, if the data had better acquisition parameters, a 

better S/N ratio would have been recorded, and thus, a better first run of velocity analysis 

would have been performed. Disk space was another issue. Although, 12 TB was 

thankfully provided, the raw shot gathers segy file has a size of 1.2 TB. The educational 

license of Paradigm Geodepth 15.0 did not include other algorithms for prestack depth 

migrations such Reverse Time Migration (RTM), and Common Reflection Angle 

Migration). If available, comparing the Kirchhoff’s wavefront PreSDM to these algorithms 

would add more depth into the analysis of methods of seismic imaging. Moreover, it is 

thought-provoking to see update the anisotropic velocity model using horizon tomography 

and how it will reflect on the seismic imaging.
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