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Abstract

The leading-order Lorentz-violating hadronic Lagrange densities are constructed

using chiral perturbation theory. This is done for both pions and nucleons starting

from a two-flavor quark-level Lagrangian that consists of dimension-four Lorentz-

violation operators. The effective Lagrangians are first constructed in the absence of

external fields. The formalism is then extended to include interactions with external

fields. The presence of Lorentz violation modifies the transformation behavior of ex-

ternal fields under the chiral group SU(2)L×SU(2)R. This in turn leads to modified

pion and nucleon covariant derivatives. By expanding parts of both mesonic and

baryonic Lagragians in terms of physical pion and nucleon fields, new approximate

bounds on the effective pion Lorentz-violation coefficients are placed using experi-

mental observations from the proton and neutron sectors. The resulting constraints

on four pion parameters are at the 10−23 level.
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Chapter 1

Introduction and Motivation

Lorentz symmetry (LS) is at the foundation of what physicists think is their best

description so far of the fundamental particles and forces observed in nature. It is

a symmetry of space and time (space-time), named after Dutch physicist Hendrik

Antoon Lorentz, which represents the invariance of the laws of physics for different

observers and has two components: rotational symmetry and boost (change of ve-

locity) symmetry. The framework of relativistic quantum field theory (RQFT) is the

result of integrating Lorentz symmetry into quantum mechanics. Elementary parti-

cles and their interactions, excluding gravitation, are currently described by what is

known as the Standard Model (SM) of particle physics, which itself is a RQFT.

The SM Lagrangian which controls the kinematics and dynamics of the theory is

constructed from fundamental particles, namely quarks, leptons (both classified as

fermions), gauge bosons and the Higgs boson. Quarks and leptons are the matter

particles, while the gauge bosons are the force carriers. The Higgs boson interacts

with fermions to give them mass. Each kind of particle is represented by a dynamical

field pervading space-time. The SM Lagrangian is invariant under the Poincaré group

which is the full symmetry of special relativity. It is generated by translations and

Lorentz transformations. In addition to this space-time symmetry, the SM is defined

by an internal symmetry, SU(3)× SU(2)× U(1) local gauge symmetry.

Despite its many successes in describing and providing an explanation of almost
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all experimental results as well as accurately predicting a wide range of observed phe-

nomena, the SM is still incomplete. It not only fails to account for the fundamental

force of gravity, but also leaves a variety of important questions unanswered, such

as those related to the nature of dark matter and dark energy, matter-antimatter

asymmetry, neutrino masses and other issues. Therefore, the SM is thought to be

only a part of a broader picture that hides within it new physics.

The last two decades have witnessed a growing interest in the possibility that the

fundamental Lorentz and CPT symmetries might actually be violated in nature.

CPT symmetry is the product of charge conjugation (C)—replacing particles with

anti-particles and vice versa—parity (P )—space inversion; reversal of the spatial

coordinates—and time reversal (T )—replacing t by -t. The CPT theorem [1] states

that a local quantum field theory which is Lorentz invariant and has a Hermitian

Hamiltonian must have CPT symmetry. If CPT is violated in field theory, then LS

must also be broken.

This rapid rush of interest in these two symmetries being violated has arisen

because their violation might be part of a fundamental theory of quantum gravity;

however, no LS violation has yet been detected experimentally. Indeed, if it is ever

discovered, this will be proof of new fundamental physics beyond the SM and gen-

eral relativity, providing substantial information about the nature of the new physics.

It is important to distinguish between observer and particle Lorentz transforma-

tions in order to understand Lorentz violation (LV). LS violation signifies that there

is a noticeable difference between two systems related only by a particle Lorentz

transformation. An observer Lorentz transformation is a rotation, a boost (or a

combination of both) of the observer frame that does not affect the laws of physics.

Measurements made in frames of reference with differing velocities and orientations
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are related by observer Lorentz transformations. So, all observers will agree on the

laws of physics since this transformation is simply a change of coordinates. On the

other hand, a particle Lorentz transformation is a rotation or boost (or a combination

of both) of the particle or physical system under consideration. In this case, the same

inertial observer studies identical experiments that are rotated or boosted relative to

each other whereby the same experimental setup is physically transformed into a new

configuration.

In vacuum, these two types of Lorentz transformation (usually known as passive

and active Lorentz transformations, respectively) are inversely related; however, this

relation no longer holds true in Lorentz-violating theories because of the presence of

fixed background fields extending over all space and time. These background fields,

which are tensor-like quantities, create preferred directions and boost-dependent ef-

fects and are thus the source of the symmetry breaking. When LS is violated, phys-

ical laws remain invariant under observer (or coordinate) transformations because a

change of coordinates cannot affect the physics. So, observer LS is expected for all

theories including the Lorentz-violating ones, nevertheless, effects that are measur-

able arise when the physical system which is sensitive to one of the background fields

gets rotated or boosted with the background fields remaining unchanged. The invari-

ance of the laws of physics under observer Lorentz transformations is implemented in

field theories by writing a scalar Lagrangian in which space-time indices are properly

contracted.

As an illustration of the above, consider a particle with magnetic moment ~µ. In

vacuum, either the coordinate system used to describe the particle (coordinate/observer

transformation) or the particle itself (particle transformation) can be rotated, and

these two transformations are inversely related. Invariance under particle Lorentz
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transformations signifies the physical symmetry of the system [see Figure 1.1]. However,

Figure 1.1 Magnetic moment ~µ in vacuum

Credit:J.S. Diaz [2] (used with permission)

the existence of a background field, such as a magnetic field ~B, breaks the physical

symmetry of the system under particle transformations (the system can be physically

distinguished from its transformed version), while it retains invariance under trans-

formations of the observer’s frame [see Figure 1.2].

Figure 1.2 Magnetic moment ~µ in a background magnetic field ~B

Credit:J.S. Diaz [2] (used with permission)

This example shows rotation invariance as the broken symmetry, but the same idea

can as well be extended to Lorentz invariance, which constitutes invariance under

both rotations and boosts.

More recently, interest and research in LS violation has grown because of the

development of an effective field theory (EFT), known as the Standard Model Ex-
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tension (SME), that can be used to describe all forms of LV that may exist in a

quantum field theory built around the standard model fields [3, 4]. The SME is quite

general, and even the minimal SME (mSME)—which is a subset of the full SME re-

stricted to contain only gauge invariant, power-counting renormalizable operators in

its action—includes many more forms of LV than previous studies had ever looked at.

However, understanding of the SME is still far from complete. The SME is formu-

lated as a relativistic field theory, in terms of the fundamental quark, lepton, gauge,

and Higgs fields of the SM, and the relationships between the parameters in the fun-

damental SME Lagrangian and experimental observables can be complicated. The

most important outstanding issue in this area arises from the fact that at low ener-

gies, the SM’s strongly interacting degrees of freedom are composite hadrons. There

are many extremely precise constraints on effective LV coefficients for protons and

neutrons, as well as weaker constraints for other hadrons. However, it has not been

possible to systematically translate these constraints into bounds on the more basic

parameters appearing in the SME action. Non-perturbative QCD calculations that

include LV are yet unavailable.

As mentioned above, in the low-energy regime of quantum chromo-dynamics

(QCD), due to confinement, hadrons are the “new” fundamental degrees of freedom

rather than quarks and gluons. Chiral perturbation theory (χPT) [5, 6] provides a

systematic approach to transition from the quark and gluon level to that of hadrons.

It is the low-energy EFT of the strong interactions (QCD). Using χPT, we shall ex-

amine the relationships between quark- and hadron-level parameterizations of LV.

This will be done by first constructing the χPT action in two-flavor QCD for both

pions and nucleons, up to appropriate orders thus revealing how Lorentz-violating

parameters in the quark sector contribute to particular operators built out of the
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hadron fields. Moreover, we shall find that even at the lowest chiral orders, there

are terms in the hadronic theory that have previously not been studied. Coupling

to external fields will also be considered in both pion and nucleon sectors. This will

necessarily lead to modified pion and nucleon covariant derivatives. Finally, we shall

look at how bounds on the Lorentz-violating behavior of one variety of hadron may

be used to place constraints on different phenomena involving different species of

particles.
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Chapter 2

Standard Model Extension

It was mentioned in the previous chapter that some theories of quantum gravity give

rise to the violation of the fundamental Lorentz and CPT symmetries. So, given this

theoretical impetus, the SME was formulated to help facilitate experimental research

in the area of Lorentz and CPT violation. According to the pioneers of the SME, it is

a general theoretical framework that includes all possible Lorentz and CPT violation

effects. More specifically, it is developed as an extension of the SM aimed at treat-

ing spontaneous LV occuring at the level of some more fundamental theory. This

treatment is done in a low energy EFT context where specific terms can be added

that seem to break LS explicitly [3, 4]. In constructing the SME Lagrangian, two

important points had to be taken into account. The first is invariance under observer

Lorentz transformations remains intact, while the presence of a fixed background field

affects only invariance under particle Lorentz transformations. The second point is

related to the fact that the SM has shown wide experimental success which means

that any LV must be comparatively small. The SME coefficients are assumed to be

heavily suppressed by inverse powers of the Planck mass; however, it is not possible

to assign definite values to these coefficients. The alternative way is to follow a phe-

nomenological approach by regarding these coefficients as quantities to be bounded

in experiments.

Following these two requirements, the full LSME is constructed from all possible

Lorentz-violating terms that remain invariant under observer Lorentz transforma-
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tions. The generic form of a Lorentz-violating term is composed of two parts, one that

acts as a coupling coefficient representing a fixed background field and another part

built from basic SM fields. The SME coefficients are constrained by the requirement

that the Lagrangian be Hermitian. The field part may contain covariant derivatives,

and in case of fermions, it will contain gamma matrices too. The space-time indices

carried by the two parts are contracted such that the whole Lorentz-violating term

is a singlet under observer Lorentz transformations.

2.1 Minimal Standard Model Extension

The full SME consists of an infinite number of terms, so as a starting point, a subset

of the full SME was constructed that preserves gauge invariance—which requires that

the field part be a singlet under SU(3)× SU(2)× U(1)—and power-counting renor-

malizability. The reasoning is that since these two features are at the foundation of

our current understanding in particle physics, it made sense to construct a subset

theory that maintains them. It is known as the minimal SME (mSME) and contains

a finite number of terms constructed from operators with mass dimension four or

less. The minimal LSME describes leading-order effects of LV, but one must keep in

mind that certain types of LV might only occur at sub-leading orders. The mSME

consists of a fermion sector, a Yukawa sector, a gauge fields sector, and a Higgs sector.

The fermion sector is built of four sets of terms classified according to whether

they involve quarks or leptons and whether CPT is odd or even. The Yukawa sec-

tor contains CPT-even as well as CPT-odd terms; it describes the coupling between

fermions and the Higgs field. The two remaining sectors are composed of both CPT-

even and CPT-odd terms. The SME coefficients in these sector can be dimensionless

or have dimensions of mass. Some are traceless and anti-symmetric in (µν) indices.

An important point to note is that some of the mSME terms can be eliminated by field
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redefinitions, such as position-dependent phase redefinitons or field-normalization re-

definitions [3, 4, 7, 8]. In such cases, the explicit LV in the theory has no physical

effects due to the theory being equivalent to a Lorentz-invariant one through field

redefinitions.

After its construction, the mSME has been employed widely by theorists and

experimentalists to search for leading-order signals of LV. Many sensitive tests of

Lorentz and CPT symmetry are performed in high-precision atomic and particle

experiments that involve photons and charged particles. These tests are examined in

a generalized QED framework that allows for possible Lorentz and CPT violations [4].

The ability of the SME to parameterize a wide array of Lorentz-violating phenomena

has led to a tremendous expansion in experimental tests of Lorentz symmetry—in

practically all sectors of the theory. An up-to-date summary of the results of these

tests may be found in [9].

2.2 Lorentz Violation at the Quark Level

The portion of the mSME Lagrange density relevant to our present work is given

by [4]
LCPT-even

quark = i

2(cQ)µνABQ̄Aγ
µ
↔
DνQB

+ i

2(cU)µνABŪAγµ
↔
DνUB

+ i

2(cD)µνABD̄Aγ
µ
↔
DνDB,

(2.1)

where the left- and right-handed quark multiplets are denoted by

QA =

uA
dA


L

, UA = (uA)R , DA = (dA)R , (2.2)

and A,B = 1, 2, 3 label the quark generations, with uA = (u, c, t), and dA = (d, s, t).

The cµν parameters in Eq. (2.1) are dimensionless coupling coefficients that are Her-
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mitian in quark generation space spanned by A and B, while µ and ν are space-time

indices.

Restricting the Lagrange density of Eq. (2.1) to up (u) and down (d) quarks, we

rewrite it as1

LCPT-even
light quarks = iQ̄LCLµνγ

µDνQL + iQ̄RCRµνγ
µDνQR, (2.3)

where now QL/R = (u, d)TL/R and the couplings are collected in the matrices

Cµν
L/R =

cµνuL/R 0

0 cµνdL/R

 . (2.4)

Note that this formalism allows for there to be different cµν coefficients for the left-

handed u and d quarks. Physically, the SU(2)L gauge invariance of the mSME re-

quires that the coefficients for these two chiral fermion species be identical. Moreover,

the separate coefficients for left- and right-handed chiral fermions are not typically

what are observed in experiments with baryons. Experimental constraints are typi-

cally placed on the combinations cµν = 1
2(cµνL + cµνR ) and dµν = 1

2(cµνL − c
µν
R ).

It may also be convenient to split the coefficients into isosinglet and isotriplet pieces.

These are 1Cµν
L/R = Tr(Cµν

L/R) and 3Cµν
L/R = Cµν

L/R−(1/2) 1Cµν
L/R (where 1 is the identity

in flavor space).

It will frequently be important that the portions of these Lorentz-violating two-

index tensors that are antisymmetric in their Lorentz indices cannot be observed at

linear order. Only at second order in the Lorentz violation do these antisymmet-

ric combinations have physical effects. This is a consequence of the fact that field

redefinitions such as Q′L = [1 − (i/2)(Cµν
L − C

νµ
L )σµν ]QL can actually eliminate the

1For a more complete analysis, one should explicitly integrate out the heavy degrees of freedom
via the renormalization group.
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antisymmetric terms from the Lagrange density at first order [8]. In addition, as dis-

cussed below, in the absence of external gauge fields the antisymmetric terms do not

contribute to the effective hadronic Lagrange density at leading order in the chiral

power counting. We will thus assume Cµν
L/R to be symmetric in the following.

Using the Lagrangian of Eq. (2.3), we will construct the effective LV hadronic

Lagrangians consisting of pion and nucleon degrees of freedom. This will be done by

applying the framework of χPT. Before we show the details that go into constructing

the above-mentioned effective Lagrangians, we will use the next chapter to introduce

the EFT formalism. We will also explain the framework of χPT and demonstrate

how it is applied in the construction of effective Lagrangians.
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Chapter 3

Effective Field Theory

The physical universe ranges from the microscopic world at the Planck scale (≈

1.5 × 10−35 m) to the macroscopic world of galaxies at length scales of hundreds of

thousands of light-years. Nevertheless, the dynamics of physical processes at low en-

ergies (long distances) do not depend on the details of what is taking place at high

energies (short distances). This basic tenet allows physicists to find a suitable de-

scription and explanation, a theory, of the important and relevant dynamics in each

energy range. Such a theory of the relevant physics at a particular energy (length)

scale is called an effective theory. So, an EFT is a field theory framework appropriate

for the description of “low-energy” physical phenomena, low with respect to some

energy scale or cutoff Λ below which the EFT is valid.

The idea behind an effective theory is setting the parameters that are negligible

in comparison to the physical quantities we are interested in to zero, and those which

are very large to infinity. Then the effects of these parameters can be treated as small

perturbations. Thus, an effective theory is only applicable in a limited energy domain

and is therefore a systematic approximation to a more “fundamental” theory, which

is valid across a larger range of energy.

It is certainly not essential or mandatory to use an effective theory approach in

cases where the more fundamental theory is known and established, but it is actually

more convenient and simpler to do so in many cases. One example that comes to mind
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is Newtonian classical mechanics. Newtonian mechanics is an effective theory valid in

the range of small velocities compared to the speed of light c. The fundamental theory,

in this case, is Einstein’s theory of special relativity. However, there are situations

where the structure of the fundamental theory is not understood. It could also be the

case that the more basic theory is very difficult to solve. In these cases, it is therefore

necessary to formulate an effective theory and employ it in order to find a useful and

simple picture of the important and relevant physics. For instance, theoretical particle

physicists have not yet been able to solve quantum chromo-dynamics (QCD), which

is the theory of the strong interactions, at low energies; however, the framework of

χPT was developed to deal with QCD at low energies. Thus, χPT is the low-energy

effective theory of QCD.

3.1 Effective Field Theory Techniques

The basic idea behind an EFT is to treat the light particles whose mass m � Λ as

the only relevant degrees of freedom (dof). The heavy particle dof with mass M � Λ

are integrated out resulting in non-local interactions. These get replaced by a col-

lection of local interactions in the effective theory constructed in such a way as to

reproduce the same physics at low energies. However, it should be noted that the

distinction between light and heavy dof is not always possible because the labeling

of “light” and “heavy” is not clear or obvious and can be misleading in some cases.

In these situations, the light dof in the underlying theory might not be those one

actually observes, so it then becomes necessary to construct a framework using dof

that can be detected in experiments. For example, χPT is constructed from pions

and nucleons—which are part of the hadron spectrum—as the relevant dof while the

QCD Lagrangian is written in terms of quarks and gluons. χPT will be discussed in

more details in the subsequent section.
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The main point is that in constructing an EFT, one relies on the symmetries of the

underlying “fundamental” theory and starts by writing down an effective Lagrangian

Leff using the relevant dof and that contains all the terms allowed by the symmetries

of the underlying theory [5, 10]

Leff =
∑
i

ci Oi. (3.1)

The above sum is an infinite expansion in powers of q
Λ . Here, q stands for energy,

mass, or momentum of the relevant dof such that q � Λ. As mentioned previously,

Λ is the energy scale that determines the range of applicability of the EFT. The Oi’s

are local operators constructed from the relevant particles and are consistent with the

symmetries of the high-energy theory. The low-energy constants (LECs), ci’s, carry

the information on the high-energy interactions.

Even though Leff contains an infinite number of terms, the reason behind the EFT

approach being useful is that in calculating physical observables, one only requires a

certain finite accuracy of results. For a given accuracy, only a finite number of terms

have to be taken into account. These terms can be identified using power counting.

Power counting is an organization scheme. Leff is arranged in increasing powers of
q
Λ . Feynman rules can be derived from the Lagrangian which then allows one to con-

struct Feynman diagrams for the observable of interest. The observables are also to

be expanded in the ratio of scales. Power counting tells us which diagrams have to be

considered to calculate a given observable up to a particular power in this expansion.

So in order to achieve a given accuracy, one has to expand up to a given order in q
Λ

and thus works with a finite number of terms in the effective Lagrangian (see e.g. [11]).

In quantum field theories (QFTs) and therefore in EFTs, when calculating the

values of observable quantities, one encounters integrals that diverge at high mo-

menta. These integrals come from quantum loop corrections (for more details, see
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e.g. [12]). Physical observables can be measured in experiments and of course are not

infinite. These infinite integrals are to be dealt with so one calculates finite values for

observable quantities that in turn are to be compared to experimental measurements.

The ability to handle these infinities saves the theory from losing its predictive power.

Taking care of the divergences is a two-step process starting with regularization

then renormalization. I will briefly explain the ideas behind each (see e.g. [13]). Reg-

ularization is basically a mathematical trick whereby the divergences are concealed

and the integral looks finite. This is done by using a regulator of some kind. For

example, the regulator can be a fictitious mass or a cut-off scale; after perform-

ing the integration the fictitious mass is set equal to zero or in the case of cut-off

scale regularization, the resulting expression is then taken in the limit of the cut-off

becoming infinite. There are other methods to regularize divergent integrals such

as Pauli-Villars or dimensional regularization to name a couple (see e.g. [12] and

[13]). Following regularization is the renormalization procedure which removes the

divergences. The basic general idea behind this is the following. One starts with

a Lagrangian that contains a certain number of parameters, sometimes known as

“bare couplings”. Upon encountering these divergent integrals, the first step, as men-

tioned above, is to regularize the integral. So, an extra parameter, the regulator,

is introduced to the calculation. In the next step (known as renormalization), the

parameters appearing in the Lagrangian are redefined appropriately (according to a

particular scheme) in such a way that after this redefinition accompanied with the

introduction of the regulator, the divergences are removed. After this is done, one

is left with finite values of the couplings now called “renormalized couplings”. It

should be mentioned that there are different renormalization schemes one can em-

ploy, and for a thorough examination of these, one can consult references such as [13].
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Before ending this discussion, it is important to address renormalization in the

context of EFTs. Traditionally, a QFT is said to be renormalizable if there are a

finite number of parameters in the Lagrangian that need to be adjusted or redefined

to reproduce physical observables. For instance, in quantum electrodynamics (QED),

these two parameters are the electron mass and its charge. Once they are adjusted,

every other physical quantity can be calculated, and all divergences get removed. An

EFT has an infinite number of these parameters in the effective Lagrangian and is

therefore not renormalizable in the traditional sense. Nevertheless, this does not strip

an EFT from its usefulness and predictive power. Thanks to the power counting tool

and the fact that physical observables are calculated to a finite accuracy, one needs to

expand the effective Lagrangian up to a given finite order in powers of q
Λ . This means

that only a finite number of parameters need to be adjusted up to the given order in

power counting. Therefore, in this sense EFTs are not different from “traditionally

renormalizable” QFTs (see e.g. [14]).

3.2 Chiral Perturbation Theory

QCD is the QFT that describes the strong interactions. The QCD Lagrangian is

written down in terms of quarks and gluons—quarks are the matter fields and glu-

ons are the gauge bosons—both of which carry color charges and interact with a

coupling strength g. QCD’s renormalized coupling, g, is momentum-dependent and

decreases with the increase in the momentum scale Q. This is known as running of

the strong coupling constant. Due to the decrease in the value of g at high momenta,

the quarks become quasi-free and QCD is said to be an asymptotically free theory.

So perturbation theory in αs(Q) = g2(Q)
4π is valid for large Q. However, when Q is

decreased, αs increases, becoming sufficiently large, so that perturbation theory fails

to converge and thus cannot be used to describe the physics at low momentum scales.

Some methods have been devised to deal with the non-perturbative regime such as
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lattice QCD, which provides numerical solutions to QCD, and χPT, the low-energy

EFT of the strong interactions.

The idea behind χPT is based on observing hadrons at low energy. In this domain,

quarks are not free; they are rather bound and confined in hadrons (baryons such as

the protons and neutrons and mesons like pions, kaons, etc.). Thus in the low-energy

regime, it is sensible to make use of hadrons as they are the relevant effective dof.

The QCD Lagrangian then needs to be replaced by an effective Lagrangian which is

constructed from hadronic fields and contains all terms allowed by the symmetries of

QCD.

3.2.1 Chiral Symmetry and Construction of the χPT Leading-order

(LO) Pionic Effective Lagrangian

The QCD Lagrangian is 1

LQCD =
∑

f=u,d,s,
c,b,t

q̄f (iγµDµ −mf )qf −
1
2Tr(GµνGµν), (3.2)

where f denotes the quark flavor, and each flavor comes in 3 different colors (red,

green and blue), mf is the quark mass parameter, γµ are the gamma matrices, Dµq =

∂µq − igGµq is the co-variant derivative with Gµ being the gluon fields, and Gµν =

∂µGν − ∂νGµ − ig[Gµ, Gν ] is the gluon field strength tensor. The trace Tr is taken in

color space.

In compact notation,

LQCD = q̄(iγµDµ −mq)q −
1
2Tr(GµνGµν) (3.3)

where q is a column vector consisting of the six quark flavors and mq is a 6×6 quark

mass matrix.

1We use L to denote Lorentz-conserving and L for Lorentz-violating Lagrange densities.

17



Table 3.1 Quark Masses [15]

Flavor Mass (GeV)
u up 0.005
d down 0.01
s strange 0.2
c charm 1.5
b bottom 4.7
t top 180

The six quark flavors can be grouped according to their current-quark masses into

two categories of light (u, d, s) and heavy (c, b, t) quarks. Compared to the typical

scale of hadron masses ≈ 1 GeV, the c, b, and t quarks are relatively very heavy

and thus are to be integrated out leaving only the light quarks whose current masses

range from a few MeV to 100 MeV. Compared to the up and down quarks, the strange

quark’s mass is at least 16 times larger than that of u and d. So, the s quark can also

be integrated out, leaving only the up and down quarks as the relevant dof. Hence,

the limit mu = md = 0 known as the chiral limit is a good point to start constructing

the low-energy effective theory of QCD.

Let us denote the QCD Lagrangian in the chiral limit by L 0
QCD.

L 0
QCD = q̄iγµDµq −

1
2Tr(GµνGµν), (3.4)

where q is now a column vector consisting of only the two light quarks (u,d) with

mu = md = 0. We introduce the projection operators

PR = 1
2(1 + γ5), PL = 1

2(1− γ5) (3.5)

where the subscripts R and L denote right- and left-handed, respectively, and γ5 =

γ5 = iγ0γ1γ2γ3 is called the chirality matrix. Using the above two operators, we can

project the chiral components qR and qL of the Dirac field q such that

qR = PRq, qL = PLq. (3.6)
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These are the right- and left-handed quark fields, respectively. Then, using the chiral

quark fields, the Lagrangian of Eq.(3.4) can be re-written as

L 0
QCD = q̄RiγµD

µqR + q̄LiγµD
µqL −

1
2Tr(GµνGµν). (3.7)

It can now be observed that under independent transformations of the right- and

left-handed quark fields

qR → RqR, qL → LqL (3.8)

with R ∈ U(2)R and L ∈ U(2)L, where U(2) denotes the group of all unitary

2×2 matrices, L 0
QCD is invariant owing to the flavor-independence of the covari-

ant derivative Dµ. The U(2)L × U(2)R transformations can be decomposed into

SU(2)L×SU(2)R×U(1)L×U(1)R, where SU(2) is the group of all unitary 2×2 ma-

trices with unit determinant. The U(1)L and U(1)R transformations can be combined

into U(1)V and U(1)A, where V and A denote vector and axial, respectively. Then,

the group U(2)L×U(2)R can be decomposed into SU(2)L×SU(2)R×U(1)V ×U(1)A.

However, the U(1)A transformation where q → eiαγ5q is not a symmetry of the quan-

tum theory. It is only conserved at the classical level, and so the U(1)A symmetry is

broken by quantum effects leading to an anomaly [16, 17]. We are then left with a

SU(2)L×SU(2)R×U(1)V symmetry. The U(1)V symmetry is that under which both

left- and right-handed quarks of all flavors pick up a common phase. It results in

baryon number (B) conservation and leads to a classification of hadrons into mesons

with B = 0 and baryons with B = 1. The invariance of L 0
QCD under the remaining

SU(2)L × SU(2)R, also known as the chiral group, is referred to as chiral symmetry

of SU(2) massless QCD.

According to Noether’s theorem, a conserved current Jµ with ∂µJµ = 0 is associ-

ated with each continuous symmetry of a Lagrangian. The corresponding charge

Q(t) =
∫
d3x J0(t,x) (3.9)
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is time-independent, dQ
dt

= 0, and commutes with the Hamiltonian. For example,

invariance of the Lagrangian under temporal and spatial translations as well as under

rotations, imply conservation of energy, linear momentum and angular momentum,

respectively.

The conserved currents of chiral symmetry, in the chiral limit of QCD, are

Ra
µ = q̄Rγµ

τa

2 qR, Laµ = q̄Lγµ
τa

2 qL (3.10)

with the corresponding invariant charges

Qa
R =

∫
d3x Ra

0(t,x), Qa
L =

∫
d3x La0(t,x), (3.11)

respectively, where τa are the Pauli matrices, and a = 1,2,3.

The linear combinations

Qa
V ≡ Qa

R +Qa
L, and Qa

A ≡ Qa
R −Qa

L (3.12)

commute with the QCD Hamiltonian in the chiral limit, H0
QCD, and have opposite

parity,

Qa
V

P→ Qa
V , Qa

A
P→ −Qa

A. (3.13)

It is therefore expected to observe mass degenerate states of opposite parity; however,

this pattern is not verified in the particle spectrum [18]. As an example, the scalar

(JP = 0+) mesons, have a significantly higher mass than the light pseudo-scalar

(JP = 0−) mesons.

This seeming paradox is resolved by the Nambu-Goldstone realization of chiral

symmetry [19]. It is assumed that the QCD vacuum, |0〉, is not invariant under the

action of the axial charges

Qa
V |0〉 = 0, Qa

A |0〉 6= 0. (3.14)
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So, it is said that the chiral SU(2)L × SU(2)R symmetry of the QCD Hamiltonian is

spontaneously broken down to SU(2)V . The spontaneous breakdown of a symmetry

happens if the vacuum state does not share the full symmetry group of the Hamilto-

nian.

Goldstone’s theorem states that the consequence of a spontaneously broken con-

tinuous symmetry is the appearance of massless Goldstone bosons (GB). In the case

of massless two-flavor QCD, the axial charges Qa
A create states |φa〉 = Qa

A |0〉 which

are energetically degenerate with the vacuum |0〉 since [Qa
A, H

0
QCD] = 0. These cre-

ated states are three massless GBs. The three pseudo-scalar mesons (π+, π− and π0)

are considered to be the GBs of spontaneously broken two-flavor chiral symmetry.

In reality, these three pseudo-scalars are not exactly massless owing to the non-zero

masses of the light quarks—only up and down quarks in our case—which cause the

explicit breaking of chiral symmetry.

We can now outline the general principles for constructing the chiral SU(2) effec-

tive Lagrangian (Lπ). The quarks and gluons of the QCD Lagrangian get replaced

by pions in the chiral SU(2) Lπ. The pion fields (π+, π−, π0) get collected in a ma-

trix, U(x) ∈ SU(2), which has the following transformation behavior under the SU(2)

chiral group [20],[21]

U(x)→ U ′(x) = RU(x)L†, (3.15)

where (L,R) ∈ SU(2)L × SU(2)R.

U(x) can be represented in different ways; for our purpose, the exponential represen-

tation is a convenient choice [20, 21]

U(x) = exp
[
i

F0
τaφa(x)

]
, Φ(x) =

∑
a

τaφa =

 φ3 φ1 − iφ2

φ1 + iφ2 −φ3

 , (3.16)
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where φa are the Cartesian pion fields, τa are the Pauli isospin matrices, and F0 ≈

92.4MeV is the pion decay constant in the chiral limit.

As mentioned earlier, Lπ must have the same symmetries as the underlying theory,

which is QCD in this case. These are charge conjugation (C), parity (P), time reversal

(T), Lorentz invariance and chiral SU(2)L × SU(2)R symmetry. At low energies the

χPT power counting dictates that derivatives acting on the pion fields are suppressed,

and Lπ is then expanded in increasing powers of derivatives [5]. This ordering of the

effective Lagrangian is referred to as chiral power counting or chiral ordering. The

derivative on a pion field corresponds to the pion momentum, q, which is the small

quantity used in the expansion. Therefore, in the counting scheme of χPT, the

building blocks count as U(x) = O(q0) and ∂µU(x) = O(q). Since the Lagrangian is

a Lorentz scalar, all space-time indices must be contracted. This means that terms

with only an even number of derivatives of the pion fields are allowed. Moreover,

at each order Lπ must be invariant under chiral transformations. At zeroth chiral

order, there is only one term that satisfies this requirement and that is Tr(UU †) =

Tr(1) = 2. Being a constant, L (0)
π can be dropped.

At LO, i.e. second chiral order,

L (2)
π = c1Tr[∂µU †∂µU ] + c2Tr[U †∂µ∂µU ], (3.17)

where c1 and c2 are called low-energy constants (LECs), and they are related to the

pion decay constant F0. Note, however, that the second term in Eq.(3.17) can be

re-expressed as

Tr[U †∂µ∂µU ] = ∂µ[Tr(U †∂µU)]− Tr[∂µU †∂µU ]. (3.18)

Up to a total derivative, it can be reduced to the first term in that equation. We

know that adding a total derivative to the Lagrangian does not change the equations

of motion. Therefore, the total derivative can be dropped. So, the LO chiral effective
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Lagrangian is

L LO
π = cTr[∂µU †∂µU ] (3.19)

where c can be chosen to be F
2
0

4 .

Before concluding the discussion in this section, it is important to introduce the

mass term—in reality, the up and down quarks have finite masses—which explicitly

breaks chiral symmetry and to show how this is dealt with in χPT framework while

constructing the effective Lagrangian. The pattern that breaks chiral symmetry at

the quark level must be reproduced at the effective Lagrangian level. The quark-mass

term of the QCD Lagrangian is

LM = −q̄RMqL − q̄LM†qR (3.20)

where the quark-mass matrix is M = diag(mu,md). In order to include this term

in the LO chiral Lπ, a so-called “spurion” field is introduced. The idea behind

this is that although M is a constant matrix and does not transform along with

the quark fields, it is promoted to a hypothetical dynamical field that transforms in

such a way as to maintain the invariance of the total QCD Lagrangian under chiral

transformations. So, ifM transformed as

M→ RML†, (3.21)

then LQCD (with the mass term included) would be invariant under chiral transfor-

mations. The matrixM with the assumed transformation is used as a building block

for Lπ to construct invariant terms. The chiral counting rule isM = O(q2), which

means that the quark masses are of second chiral order. In this way, the pattern

of symmetry breaking is matched from the quark level to the hadronic level. It is

now possible to construct a symmetry-breaking mass term and add it to the effec-

tive Lagrangian. At lowest order in the symmetry-breaking parameter, M, Ls.b. is
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constructed to look like 2

Ls.b. = c′Tr[MU † + UM†], (3.22)

with c′ equal to F 2
0B0

2 where B0 is related to the scalar quark condensate [10]. So,

the QCD LO SU(2) chiral effective Lagrangian is

L LO
π = F 2

0
4 Tr[∂µU †∂µU ] + F 2

0B0

2 Tr[MU † + UM†]. (3.23)

Covariant Derivative and Local Chiral Invariance

We have derived the LO pion effective Lagrangian for a global SU(2)L × SU(2)R

symmetry. We want to extend the χPT formalism to include external fields. To this

end, the QCD Lagrangian in the SU(2) chiral limit is to be extended in the presence

of external fields [10]

LQCD = L 0
QCD + Lext, (3.24)

where
Lext =

3∑
a=1

νµa q̄γµ
τa
2 q + 1

3ν
µ
(s)q̄γµq +

3∑
a=1

aµa q̄γµγ5
τa
2 q

−
3∑

a=0
saq̄τaq +

3∑
a=0

paiq̄γ5τaq

= q̄γµ
(
νµ + 1

3ν
µ
(s) + γ5a

µ
)
q − q̄(s− iγ5p)q.

(3.25)

The external fields νµ, aµ, s, p, and νµ(s) denote the vector, axial-vector, scalar, pseudo-

scalar and singlet vector fields, respectively.

The Lagrangian of Eq.(3.24) can be re-written in terms of the right- and left-handed

quark fields as follows

LQCD =L 0
QCD + q̄Lγ

µ
(
lµ + 1

3ν
(s)
µ

)
qL + q̄Rγ

µ
(
rµ + 1

3ν
(s)
µ

)
qR

− q̄R(s+ ip)qL − q̄L(s− ip)qR,
(3.26)

2The subscript“s.b.” refers to symmetry breaking.
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where rµ = νµ + aµ and lµ = νµ − aµ.

By promoting global chiral SU(2) symmetry to a local one, interactions can be in-

troduced in the effective Lagrangian. The Lagrangian of Eq.(3.26) remains invariant

under local chiral SU(2)L×SU(2)R×U(1)V transformations, where VR(x) and VL(x)

are space-time dependent SU(2) matrices

qR −→ exp
(
−iΘ (x)

3

)
VR(x)qR,

qL −→ exp
(
−iΘ (x)

3

)
VL(x)qL,

(3.27)

provided the external fields are subject to the transformations

rµ → VRrµV
†
R + iVR∂µV

†
R,

lµ → VLlµV
†
L + iVL∂µV

†
L ,

ν(s)
µ → ν(s)

µ − ∂µΘ,

s+ ip→ VR(s+ ip)V †L ,

s− ip→ VL(s− ip)V †R.

(3.28)

Local chiral symmetry must also be maintained at the effective pion Lagrangian level

in the presence of external fields. This requirement is satisfied by introducing a pion

covariant derivative, DµU , acting on the pion matrix U(x) and which transforms in

the same manner as U(x),

U(x) −→ VR(x)U(x)V †L(x). (3.29)

So, the normal partial derivative gets promoted to a covariant derivative

∂µU −→ DµU ≡ ∂µU − irµU + iUlµ, (3.30)

which transforms under chiral transformations as

DµU −→ VR(DµU)V †L . (3.31)

In the power counting scheme of χPT, DµU is of first chiral order like the normal

derivative, ∂µU . Since U is of chiral order zero, the external fields, rµ and lµ count
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as chiral order one to match the chiral power of ∂µU . The linear combination χ =

2B0(s+ip) is also introduced as a building block of the locally invariant chiral effective

Lagrangian; it counts as second chiral order in the power counting scheme [22].

Then, the LO most general locally invariant chiral pion effective Lagrangian is [23]

L LO
π = F 2

0
4 Tr[DµU(DµU)†] + F 2

0
4 Tr[χU † + Uχ†]. (3.32)

Beyond LO effective Lagrangians have been considered. Mesonic χPT has been

employed to construct the most general SU(3)L × SU(3)R-invariant Lagrangian at

O(q4) [10]. Higher orders (up to q6) have also been investigated [24].

3.2.2 LO Baryonic Effective Lagrangian

In this section we aim to construct the LO pion-nucleon (πN) effective Lagrangian

L (1)
πN in χPT. The form of the effective Lagrangian is the same in both cases of global

and local SU(2)L × SU(2)R symmetries. The only difference is at the levels of the

covariant derivative and the so-called chiral vielbein, a building block of the baryonic

chiral effective Lagrangian.

As a shorthand notation, let the chiral group SU(2)L×SU(2)R be denoted by G and

the nucleon doublet by

Ψ =

p
n

 , (3.33)

where p and n are four-component Dirac fields for the proton and neutron, respec-

tively. We also recall the SU(2) matrix U(x) that contains the pion fields and its

transformation behavior under the chiral group G in both the global and local cases.

Under global G, U transforms as

U(x) −→ RU(x)L†, (3.34)
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where the independent matrices L andR are space-time-independent such that (L,R) ∈

global G. In the local case, the transformation of U looks similar

U(x) −→ VR(x)U(x)VL(x)†, (3.35)

where VL and VR are independent space-time-dependent matrices that belong to local

G.

The unitary square root of U is denoted by u such that u2(x) = U(x). The SU(2)-

valued function K(L,R, U) is defined by [22]

u(x) −→ u′(x) =
√
RUL† ≡ RuK†(L,R, U) = KuL†, (3.36)

where it should be understood that when we are dealing with the local case, wherever

the matrices L and R appear, they must be replaced by their local counter-parts,

VL(x) and VR(x).

The nucleon doublet Ψ transforms as

Ψ(x)→ K[L,R, U(x)]Ψ(x) or Ψ(x)→ K[VL(x), VR(x), U(x)]Ψ(x) (3.37)

in the global/local case, respectively.

Before we discuss the nucleon covariant derivative, we will modify our symmetry

group G to include the U(1)V transformation. So, the full symmetry group under

consideration is G̃ = SU(2)L × SU(2)R × U(1)V . The U(1)V group only affects

the nucleon field transformation by introducing a phase factor exp[−iΘ(x)] in the

following manner

Ψ(x)→ exp[−iΘ(x)]K[VL(x), VR(x), U(x)]Ψ(x). (3.38)

Since K depends not only on L (or VL) and R (or VR) but also on U , the covariant

derivative of the nucleon field, DµΨ, is expected to contain u via the so-called chiral

connection Γµ, where

Γgµ = 1
2(u†∂µu+ u∂µu

†) (global case)

Γlµ = 1
2[u†(∂µ − irµ)u+ u(∂µ − ilµ)u†] (local case)

(3.39)
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where rµ and lµ are the right- and left-handed external fields appearing in Eq.(3.26).

DµΨ has the usual property of transforming in the same way as Ψ. It has the following

form:

Dg
µΨ = (∂µ + Γgµ)Ψ (global case) (3.40)

Dl
µΨ = (∂µ + Γlµ − iν(s)

µ )Ψ (local case) (3.41)

where ν(s)
µ is the singlet-vector field also appearing in Eq.(3.26).

At LO, another Hermitian building block exists, uµ, the chiral vielbein,

ugµ ≡ i(u†∂µu− u∂µu†) (global case) (3.42)

ulµ ≡ i[u†(∂µ − irµ)u− u(∂µ − ilµ)u†] (local case) (3.43)

which transforms under G̃ as

uµ → KuµK
† (3.44)

where K depends on L (or VL), R (or VR) and U(x).

Keeping in mind that the effective pion-nucleon Lagrangian must have SU(2)L ×

SU(2)R × U(1)V global or local symmetry, therefore it should be of the general form

Ψ̄ÔΨ, where Ô is an operator in Dirac and iso-spin space which transforms as KÔK†

under G̃. Just like the pion effective Lagrangian, the baryonic Lagrangian must be a

Hermitian Lorentz scalar, even under C, P , and T . So, the most general LO baryonic

effective Lagrangian with the least number of derivatives is [25]

L (1)
πN = Ψ̄(i /D −m+ gA

2 γµγ5uµ)Ψ. (3.45)

There are two LECs, m, the nucleon mass in the chiral limit, and gA, the axial-vector

coupling constant in the chiral limit. Both of these parameters are not determined

by chiral symmetry.

Unlike the pion mass, the nucleon mass, mN , is a new, heavy mass scale that does not

vanish in the chiral limit. This means that ∂0Ψ is not a “small” quantity, so there are
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different power counting rules in the baryonic sector of χPT which are summarized

as follows [26]:

Ψ, Ψ̄, DµΨ = O(q0), (i /D −m) = O(q),Γµ, uµ = O(q),

1, γµ, γ5γµ, σµν = O(q0), γ5 = O(q),
(3.46)

where the order given is the minimal one. As an example, γ5γµ has two pieces of

different orders, γ5γ0 of O(q0) and γ5γi of O(q). It should be mentioned that higher-

order baryonic Lagrangians have been constructed, e.g. Fettes et al., to order q4 [27].

29



Chapter 4

Lorentz-Violating Hadronic Lagrangians

In the previous chapter, we have shown how χPT is used to construct the LO pion

and pion-nucleon effective Lagrangians in the absence of LV. In order to construct

the effective Lagrangian including LV in terms of hadronic dof, we have to match

symmetry properties of the quark-level Lagrangian from Eq.(2.3),

LCPT-even
light quarks = iQ̄LCLµνγ

µDνQL + iQ̄RCRµνγ
µDνQR,

onto the hadronic level. Under global chiral transformations, QR → RQR, QL →

LQR, the above Lagrangian transforms as

LCPT-even
light quarks → iQ̄LL

†CLµνLγ
µDνQL + iQ̄RR

†CRµνRγ
µDνQR. (4.1)

The matrices Cµν
L/R are constant, and chiral symmetry is broken by the terms in

Eq.(2.3). Following the method for the quark-mass term in the QCD Lagrangian,

Eq.(3.20), which was described in the previous chapter, we note that the Lorentz-

violating action would be invariant under global chiral transformations if Cµν
L/R trans-

formed as

Cµν
L → LCµν

L L†, Cµν
R → RCµν

R R†. (4.2)

Because of the cyclic property of the trace, this implies for the isosinglet and isotriplet

components

1Cµν
L → 1Cµν

L , 3Cµν
L → L3Cµν

L L†, (4.3)

1Cµν
R → 1Cµν

R , 3Cµν
R → R3Cµν

R R†.
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Using this transformation behavior to construct a Lagrangian that is invariant under

global chiral transformations, the pattern of symmetry breaking in the quark-level

action is matched onto the hadronic Lagrangian.

We recall the SU(2) pion matrix and the nucleon doublet

U(x) = exp
[
i
Φ(x)
F0

]
,

Ψ(x) =

p(x)

n(x)

 ,
(4.4)

and their transformation behavior under global chiral transformations

U(x)→ U ′(x) = RU(x)L†,

Ψ(x)→ K(L,R, U)Ψ(x).
(4.5)

With these basic building blocks, we can construct the chirally invariant, Lorentz-

violating LO effective Lagrangians for the pure pion sector and for pion-nucleon in-

teractions.

4.1 Leading-order Lorentz-violating Mesonic

Lagrangian

We start by writing down all possible LO expressions that are invariant under global

chiral transformations. The number of indices on CL/R
µν requires us to have at least

two pion derivatives which count as O(q2) in the pion χPT scheme. These terms are

the following:
(a) Tr(CL

µν)Tr[(∂µU)†∂νU ]

(b) Tr[∂µUCL
µν(∂νU)†]

(c) Tr[UCL
µνU

†∂µU(∂νU)†]

(d) Tr[UCL
µν∂

µ∂νU †] + Tr[∂ν∂µUCL
µνU

†]

(e) Tr[UCL
µν(∂µU)†U(∂νU)†]

(4.6)
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Listed above are the left-handed terms with the CL
µν building block; however, similar

matching right-handed terms can also be written with CR
µν . The upcoming discussion

applies to both the left- and right-handed terms.

Terms (c), (d) and (e) in Eq.(4.6) are not independent and can be shown to be equal

or proportional to (b). We will make use of the following two identities:

∂µU † U = −U † ∂µU

(∂µ∂νU †)U + U †(∂µ∂νU) = −∂µU †∂νU − ∂νU †∂µU,
(4.7)

which can easily be derived using ∂µ(U †U) = 0 and ∂µ∂ν(U †U) = 0, respectively.

Term (d) can be written in the following way

Tr[UCL
µν∂

µ∂νU †] + Tr[∂ν∂µUCL
µνU

†] = Tr[CL
µν(∂µ∂νU † U + U † ∂ν∂µU)], (4.8)

where we have used the cyclic property of the trace. Employing the second identity

of Eq.(4.7), we get

Tr[UCL
µν∂

µ∂νU †] + Tr[∂ν∂µUCL
µνU

†] = −Tr[∂νUCL
µν∂

µU † + ∂µUCL
µν∂

νU †]

= −2Tr[∂µUCL
µν∂

νU †],
(4.9)

since the Cµν ’s are symmetric in (µν) at LO.

Terms (c) and (e) are equal after using the first identity of Eq.(4.7). As for (c),

Tr[UCL
µνU

†∂µU(∂νU)†] = Tr[CL
µνU

†∂µU(∂νU)†U ]

= Tr[CL
µν(∂µU)†UU †∂νU ]

= Tr[CL
µν(∂µU)†∂νU ]

= Tr[∂νUCL
µν(∂µU)†]

= Tr[∂µUCL
µν(∂νU)†],

(4.10)

where we have used the first identity of Eq.(4.7) twice going from line 1 to line 2 of

the above equation.
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So, as can be seen, there are only two terms from the above list that survive and are

independent. These terms are (a) Tr(CL
µν)Tr[(∂µU)†∂νU ] and (b) Tr[∂µUCL

µν(∂νU)†].

In a similar manner, for the right-handed terms, we also find that only two indepen-

dent terms exist which are Tr(CR
µν)Tr[(∂µU)†∂νU ] and Tr[(∂µU)†CR

µν∂
νU ].

The LO Lorentz-violating pion effective Lagrangian that can be constructed from

these terms has the following structure

LLO
π =[αF

2
0

4 Tr(CRµν ) + α′
F 2

0
4 Tr(CLµν )]Tr[(∂µU)†∂νU ]

+ Tr[βF
2
0

4 (∂µU)†CRµν∂νU + β′
F 2

0
4 ∂µUCLµν (∂νU)†],

(4.11)

where α, α′, β, and β′ are dimensionless low-energy couplings (LECs). The factors

of F 2
0 /4 are present for dimensional reasons and to mirror their appearance in the

standard pion Lagrange density.

Moreover, the transformation properties under P and C of the Lagrange density in

Eq.(4.11) will also produce relationships among the right- and left-handed terms1.

The Lorentz-violating terms in the quark-level Lagrange density are the only sources

of C, P , and T violations in this theory. So, at LO, the terms in the pion Lagrange

density need to have the same discrete symmetries as the terms in the underlying

quark density that are multiplied by the same Cµν
L/R coefficients. This forces the co-

efficients for left- and right-handed quark fields to enter the pion Lagrange density

multiplied by the same numerical LECs, drastically reducing the number of indepen-

dent terms.

In order to show in more explicit details how α is related to α′ and β to β′, the

transformation behavior of the quark-level Lagrange density, Eq.(2.3), under charge

1T does not give any additional constraint due to the quark-level Lagrange density being CPT
invariant.
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conjugation C will be examined more closely,

LCPT−even
light quark = iQ̄LC

L
µνγ

µDνQL + iQ̄RC
R
µνγ

µDνQR

= i(cLu)µν ūLγµDνuL + i(cLd )µν d̄LγµDνdL

+ i(cRu )µν ūRγµDνuR + i(cRd )µν d̄RγµDνdR,

(4.12)

where (qL/R)f = PL/Rqf = 1
2(1 ∓ γ5)qf , in which PL/R is the left/right-handed pro-

jection operator, and f refers to quark flavor, which in our case, can only be up (u)

or down (d). Under C, the quark fields transform as

qα,f → Cαβ q̄β,f (4.13)

q̄α,f → −qβ,f C−1
βα , (4.14)

where C = iγ2γ0 = −C−1 = −C† = −CT is the charge conjugation matrix, and the

subscripts α and β are Dirac-spinor indices. Then, the right- and left-handed quark

fields transform as
(qR/L)α,f = 1

2(1± γ5)αβ qβ,f
C−→ 1

2(1± γ5)αβCβγ q̄γ,f

(q̄R/L)α,f = ¯qβ,f
1
2(1∓ γ5)βα

C−→ −qγ,f C−1
γβ

1
2(1∓ γ5)βα.

(4.15)

For quark bilinears, this implies

(q̄R/L)fΓ(qR/L)f = (q̄R/L)α,f Γαβ (qR/L)β,f
C−→ −qλ,f C−1

λµ

1
2(1∓ γ5)µα Γαβ

1
2(1± γ5)βρ Cρσ q̄σ,f

= − ¯qσ,f Cλµ
1
2(1∓ γ5)µα Γαβ

1
2(1± γ5)βρ Cρσ qλ,f

= −q̄σ,f [CPL/RΓPR/LC]Tσλ qλ,f

= −q̄σ,f (CP T
R/LΓTP T

L/RC)σλ qλ,f

(4.16)
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where Γ denotes one of the sixteen 4× 4 matrices. In our case, Γ = γµ.

Using γT5 = γ5, we find that P T
R/L = PR/L. We also find that CPR/L = PR/LC. So,

(q̄R/L)fΓ(qR/L)f C−→ − q̄fPR/LCΓTCPL/Rqf

= (q̄L/R)f (−CΓTC)(qL/R)f ,
(4.17)

with [−C(γµ)TC] = −γµ. We note that there is a derivative on (qR/L)f , which means

that

(q̄R/L)fγµDµ(qR/L)f C−→ Dµ(q̄L/R)f (−γµ)(qL/R)f (4.18)

In order to move the derivative back onto q, not q̄, we integrate by parts and this

gives an additional factor of (-1).

Therefore,

LCPT−even
light quark

C−→ L′CPT−even
light quark = i(cLu)µν ūRγµDνuR + i(cLd )µν d̄RγµDνdR

+ i(cRu )µν ūLγµDνuL + i(cRd )µν d̄LγµDνdL

= iQ̄RC
L
µνγ

µDνQR + iQ̄LC
R
µνγ

µDνQL.

(4.19)

We notice that for the general case (CL
µν 6= CR

µν), the LV quark-level Lagrange density

is no longer invariant under charge conjugation. However, if CL
µν = CR

µν , LCPT−even
light quark is

even under C, whereas it is odd (i.e. L′CPT−even
light quark = −LCPT−even

light quark) if CL
µν = −CR

µν .

Next, we need to look at the transformation behavior of the LV pion effective Lagrange

density, Eq.(4.11), under charge conjugation. First let us consider the following part,

LLO
π,β,β′ = Tr[βF

2
0

4 (∂µU)†CR
µν∂

νU + β′
F 2

0
4 ∂µUCL

µν(∂νU)†]

= β
F 2

0
4 Tr[(∂µU)†CR

µν∂
νU ] + β′

F 2
0

4 Tr[∂µUCL
µν(∂νU)†].

(4.20)

Under C, U C−→ UT, then LLO
π,β,β′ transforms into

L′LO
π,β,β′ = β

F 2
0

4 Tr[(∂µU †)TCR
µν(∂νU)T] + β′

F 2
0

4 Tr[(∂µU)TCL
µν(∂νU †)T]

= β
F 2

0
4 Tr{[∂νU(CR

µν)T∂µU †]T}+ β′
F 2

0
4 Tr{[∂νU †(CL

µν)T∂µU ]T}.
(4.21)
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Using the property, Tr(A) = Tr(AT), Eq.(4.21) yields the following result

L′LO
π,β,β′ = β

F 2
0

4 Tr[∂µUCR
µν(∂νU)†] + β′

F 2
0

4 Tr[(∂µU)†CL
µν∂

νU ]. (4.22)

In arriving at Eq.(4.22), we made use of CL/R
µν = (CL/R

µν )T as well as CL/R
µν = CL/R

νµ

since CL/R
µν are diagonal in SU(2) space and symmetric in µ, ν at LO in LV.

Recall that the LV quark-level Lagrange density is invariant under C if CL
µν = CR

µν .

This special case should also hold at the level of the effective Lagrange density LLO
π,β,β′ .

Noting that in general Tr(ABC) 6= Tr(CBA), this gives the requirement β = β′ for

LLO
π,β,β′ to also be invariant.

The remaining part of the Lagrange density in Eq.(4.11) is

LLO
π,α,α′ = [αF

2
0

4 Tr(CRµν ) + α′
F 2

0
4 Tr(CLµν )]Tr[(∂µU)†∂νU ], (4.23)

which transforms under C into itself, so

L′LO
π,α,α′ = [αF

2
0

4 Tr(CRµν ) + α′
F 2

0
4 Tr(CLµν )]Tr[(∂µU)†∂νU ]. (4.24)

In order to find the relation between α and α′, we choose the special case CL
µν = −CR

µν

which results in the quark-level Lagrange density being odd under C. This must

also hold at the level of LLO
π,α,α′ . Setting CL

µν = −CR
µν in Eqs.(4.23) and (4.24) and

demanding that LLO
π,α,α′ = −L′LO

π,α,α′ , we arrive at the relation α = α′.

So, Eq.(4.11) becomes

LLO
π = α

F 2
0

4 [Tr(CRµν ) + Tr(CLµν )]Tr[(∂µU)†∂νU ]

+ β
F 2

0
4 Tr[(∂µU)†CRµν∂νU + ∂µUCLµν (∂νU)†],

(4.25)

which can be re-written in terms of 1Cµν
L/R and 3Cµν

L/R in the following manner

LLO
π = β(1)F

2
0

4
(

1CRµν + 1CLµν
)

Tr[(∂µU)†∂νU ] (4.26)

+ β(2)F
2
0

4 Tr[(∂µU)† 3CRµν∂
νU + ∂µU 3CLµν(∂νU)†],
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where β(1) and β(2) are dimensionless LECs that encode short-distance physics and

that cannot be determined from symmetry arguments. In principle, they can be

determined from nonperturbative QCD calculations, which however are currently

not available. The factor of F 2
0 in eq. (4.26) is also chosen such that based on naive

dimensional analysis [28] the β(i) are expected to be of natural size, i.e. O(1).

The isotriplet part, the term with β(2), of the pion Lagrange density of Eq.(4.26) does

not contribute in the pion sector as we are currently considering it (leading order and

no external fields). There exists another parametrization of the matrix U(x), which

turns out to be more convenient to use in showing this. It is given by

U(x) = 1
F0

[
σ(x)1 + i~Π(x) · ~τ

]
, (4.27)

where σ(x) =
√
F 2

0 − ~Π2(x). Our isotriplet Lagrangian is proportional to (and anal-

ogously for U and U † interchanged)

L ∼ Tr(∂µUτ3∂νU
†)

∼ ∂µσ∂νσTr(τ3) + i∂µΠa∂νσTr(τaτ3)

− i∂µσ∂νΠaTr(τ3τa) + ∂µΠa∂νΠbTr(τaτ3τb).

(4.28)

The first term is identically zero, while the remaining terms become

2i[∂µΠ3∂νσ − ∂µσ∂νΠ3] + 2i(∂µ~Π× ∂ν~Π)3, (4.29)

which vanish when contracted with a tensor symmetric in µν, with this being the

case with 3CL/R
µν at LO.

In principle there is a second, nearly-identical-looking copy of the Lagrange density of

Eq. (4.26) contracted with the antisymmetric parts of the Cµν
L/R. These terms would

be accompanied by an independent set of LECs. However, all the terms involved

can be shown to be total derivatives, so they may be dropped; and thus only the

symmetric part of the Cµν
L/R contributes at LO. Therefore, the LO minimal mesonic

Lorentz-violating Lagrange density is given by

LLO
π = β(1)F

2
0

4
(

1CRµν + 1CLµν
)

Tr[(∂µU)†∂νU ]. (4.30)
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Expanding U(x) in terms of the pion fields shows that the Lagrange density in

Eq. (4.30) not only contains corrections to the pion propagator, but also induces

new multi-pion interactions. The two-pion portion of the Lagrange density is

LLO,2φ
π = β(1)

2 (cµνuL + cµνdL + cµνuR + cµνdL)∂µφa∂νφa. (4.31)

It would have been interesting to have a three-pion term due to its completely novel-

looking structure. It does not have a Lorentz-invariant analogue as it depends on

C-odd forms of LV. Unfortunately, all three-pion vertices vanish when the symmetric

parts of the cµνL/R are involved.

The four-pion vertex takes the form

LLO,4φ
π = β(1)

6F 2 (cµνuL + cµνdL + cµνuR + cµνdL)(φaφb∂µφa∂νφb − φbφb∂µφa∂νφa). (4.32)

This term is a straightforward Lorentz-violating generalization of the usual four-pion

vertex. Many Lorentz-violating operators in the SME Lagrange density are struc-

turally similar to operators found in the usual standard model. For example, the

quark kinetic terms from Eq. (2.3) resemble standard kinetic terms, but instead of

the indices on γµ and Dν being contracted with the metric tensor gµν , they are con-

tracted with the Lorentz-violating backgrounds. The four-pion vertex can be similarly

viewed as a deformation of the standard model four-pion vertex. Vertices with more

pion fields can similarly be derived. It is important however to point out that the

coefficient of the Lorentz-violating four-pion vertex is fixed; it is the same as that of

the two-pion. This constraint comes from chiral symmetry.
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4.1.1 Local Chiral Transformations and The Modified Pion

Covariant Derivative

So far, we have dealt with global chiral symmetry and the absence of external fields.

We constructed the LO Lorentz-violating effective pion Lagrange density invariant

under global chiral transformations. We shall now extend our formalism to include

external fields in the presence of LV. To this end, global chiral symmetry needs to be

promoted to a local symmetry. In the previous chapter, we have shown how in the

absence of LV, the introduction of external fields on the level of the quark Lagrangian

leads to introducing the pion covariant derivative

∂µU −→ DµU ≡ ∂µU − irµU + iUlµ, (4.33)

where rµ and lµ are the right-and left-handed external fields in Eq.(3.26).

Under local chiral transformations, and in the absence of any LV

DµU −→ VR(DµU)V †L ,

rµ −→ VRrµV
†
R + iVR∂µV

†
R,

lµ −→ VLlµV
†
L + iVL∂µV

†
L .

(4.34)

where rµ = νµ + aµ and lµ = νµ − aµ.

Let us now consider our Lorentz-violating quark-level Lagrange density and study

its transformation behavior under local chiral SU(2)L × SU(2)R transformations

qR −→ VR(x)qR,

qL −→ VL(x)qL,
(4.35)

Recall the Lorentz-violating quark-level Lagrange density

LCPT-even
light quarks = LLV = i

2Q̄LCLµνγ
µ
↔
DνQL + i

2Q̄RCRµνγ
µ
↔
DνQR, (4.36)

where A
↔
∂µB ≡ A∂µB − (∂µA)B and DνQL/R = (∂ν + ig3Aν)QL/R, with g3 and Aν

being the strong coupling constant and the gluon fields, respectively.
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From Eq.(4.36), we get

LLV = i

2Q̄LCLµνγ
µ∂νQL −

i

2∂
νQ̄LCLµνγ

µQL

+ iQ̄LCLµνγ
µ(ig3Aν)QL + (R↔ L).

(4.37)

Under the transformations of Eq.(4.35),

∂νQL/R −→ ∂νVL/RQL/R + VL/R∂
νQL/R

∂νQ̄L/R −→ Q̄L/R∂
νV †L/R + ∂νQ̄L/RV

†
L/R.

(4.38)

Then, with Cµν
L/R −→ VL/R C

µν
L/R V

†
L/R under local chiral transformations,

LLV −→
i

2Q̄LCLµνγ
µV †L∂

νVLQL −
i

2Q̄L∂
νV †L VLCLµνγ

µQL

+ i

2Q̄LCLµνγ
µ∂νQL −

i

2∂
νQ̄LCLµνγ

µQL

+ iQ̄LCLµνγ
µ(ig3Aν)QL + (R↔ L).

(4.39)

We notice that upon transformation, additional terms get generated that were not

present in the original Lorentz-violating quark-level Lagrange density. These extra

terms are
(1) i

2Q̄L/RCL/Rµνγ
µV †L/R∂

νVL/RQL/R

(2) − i

2Q̄L/R∂
νV †L/R VL/RCL/Rµνγ

µQL/R.

(4.40)

Since these terms got generated by promoting the global chiral symmetry to a local

one, they need to be absorbed by the transformations of the external fields, namely,

lµ and rµ. Upon taking this step, we will be able to render LLV invariant under local

chiral transformations.

In order to do this, the transformations of lµ and rµ need to be modified to include

a Lorentz-violating part. So, we let

lµ −→ l′µ +X l
µ

rµ −→ r′µ +Xr
µ

(4.41)
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where l′µ = VLlµV
†
L + iVL∂µV

†
L and r′µ = VRrµV

†
R + iVR∂µV

†
R. We now consider the

terms of
Lext =q̄Lγµ

(
lµ + 1

3ν
(s)
µ

)
qL + q̄Rγ

µ
(
rµ + 1

3ν
(s)
µ

)
qR

− q̄R(s+ ip)qL − q̄L(s− ip)qR,
(4.42)

that have the lµ and rµ external fields in them. Under local chiral transformations in

the presence of LV,

Q̄Lγ
µlµQL −→ Q̄LV

†
Lγ

µl′µVLQL + Q̄LV
†
Lγ

µX l
µVLQL. (4.43)

A similar expression holds for the right-handed term. The first term of Eq.(4.43)

along with its right-handed counter part takes care of the extra terms generated from

locally transforming

L0
QCD = q̄RiγµD

µqR + q̄LiγµD
µqL −

1
2Tr(GµνGµν). (4.44)

The second term of Eq.(4.43) along with its right-handed counter part takes care of

the extra terms generated from locally transforming the Lorentz-violating quark-level

Lagrangian. Therefore, we require

i

2[CL/RµνV
†
L/R∂

νVL/R − ∂νV †L/R VL/RCL/Rµν ] = −V †L/RX
l/r
µ VL/R, (4.45)

and find

X l/r
µ = i

2[VL/RCL/Rµν∂νV
†
L/R − ∂

νVL/RCL/RµνV
†
L/R]. (4.46)

So the transformations of lµ and rµ get modified in the presence of LV to take the

form
lµ −→ VLlµV

†
L + iVL∂µV

†
L + i

2[VLCLµν∂νV
†
L − ∂νVLCLµνV

†
L ],

rµ −→ VRrµV
†
R + iVR∂µV

†
R + i

2[VRCRµν∂νV
†
R − ∂νVRCRµνV

†
R].

(4.47)

The modification of the transformation behavior of the external left- and right-handed

fields due to the presence of LV necessarily leads to the modification of the pion

covariant derivative. Upon transforming DµU under chiral transformations in the
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presence of LV, we get

DµU −→ VR(DµU)V †L

− i[ i2(VRCRµν∂νV
†
R − ∂νVRCRµνV

†
R)](VRUV †L)

+ i(VRUV †L)[ i2(VLCLµν∂νV
†
L − ∂νVLCLµνV

†
L)],

(4.48)

where U −→ VRUV
†
L under local chiral transformations, and DµU = ∂µU − irµU +

iUlµ. The extra terms appearing in Eq.(4.48) can be removed by adding certain

terms to DµU that transform as VR(...)V †L in addition to generating opposite terms

that cancel the extra ones. The terms that need to be added are i
2 [CR

µνr
νU −UCL

µνl
ν ]

and − i
2 [UlνCL

µν− rνCR
µνU ]. So, the modified pion covariant derivative in the presence

of LV, which is denoted by DLV
µ U , will take the form

DLV
µ U = DµU + i

2{C
R
µν , r

ν}U − i

2U{C
L
µν , l

ν}, (4.49)

where {CL/R
µν , lν/rν} is the anti-commutator of CL/R

µν with lν/rν .

Having arrived at the form of the modified pion covariant derivative, we go back

to the list of terms in Eq.(4.6) and replace the partial derivative ∂µU with DLV
µ U and

expand it as DµU + i
2{C

R
µν , r

ν}U − i
2U{C

L
µν , l

ν} retaining only terms with a single

CL/R
µν . The reason for this is that we are only working up to O(CL/R

µν ). We find that

we get the same list as in Eq.(4.6) with the regular pion covariant derivative DµU

replacing ∂µU . These terms exhaust all the possibilities at LO; however, they are not

all independent. Here again the same dependent terms can be eliminated following

exactly what was done in the beginning of section 4.1. The identities in Eq.(4.7) still

hold with DµU taking the place of ∂µU ,

(DµU)†U = −U †(DµU)

(DµDνU †)U + U †(DµDνU) = −(DµU)†(DνU)− (DνU)†(DµU).
(4.50)

Before continuing our main discussion, it is worthwhile to prove the above two iden-

tities as they are not as obvious like the ones in Eq.(4.7) where there is the regular
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partial derivative acting on the pion field matrix.

The first line appearing in Eq.(4.50) can be proven as follows,

(DµU)†U = ∂µU †U + iU †rµU − ilµU †U

= −U †∂µU + iU †rµU − ilµ

−U †(DµU) = −U †∂µU − U †(−irµU)− iU †Ulµ

= −U †∂µU + iU †rµU − ilµ

= (DµU)†U,

(4.51)

where rµ and lµ are Hermitian.

As for the second identity in Eq.(4.50), we will refer to the paper by Fearing and

Scherer [24] in proving it. In this paper, the authors show that one can define a

product chain rule for covariant derivatives analogous to ordinary derivatives. This

is done by first defining the covariant derivatives of certain objects that transform in

the following way under local chiral transformations [24]:

A→ A; DµA ≡ ∂µA,

B → VLBV
†
L ; DµB ≡ ∂µB − ilµB + iBlµ,

C → VRCV
†
R; DµC ≡ ∂µC − irµC + iCrµ,

D → VLDV
†
R; DµD ≡ ∂µD + iDrµ − ilµD,

E → VREV
†
L ; DµE ≡ ∂µE − irµE + iElµ.

(4.52)

Given the product V = MN such that M , N , and V all transform like any of the

objects in Eq.(4.52), one can still apply the well-known product chain rule

DµV = Dµ(MN) = (DµM)N +M(DµN). (4.53)

To prove the second identity, we start with

0 = DµDν(U †U)

= Dµ[(DνU
†)U + U †(DνU)]

= (DµDνU
†)U + (DνU

†)(DµU) + (DµU
†)(DνU) + U †(DµDνU).

(4.54)
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This then gives the desired result

(DµDνU
†)U + U †(DµDνU) = −(DµU

†)(DνU)− (DνU
†)(DµU). (4.55)

Going back to our main discussion, we find that after eliminating the dependent

terms, the ones that remain are the following

Tr(CL
µν)Tr[(DµU)†DνU ]

Tr[DµUCL
µν(DνU)†]

Tr(CR
µν)Tr[(DµU)†DνU ]

Tr[(DµU)†CR
µνD

νU ].

(4.56)

Hence, the constructed LO Lorentz-violating pion effective Lagrangian in the presence

of external fields has the form

LLO
π,rµ,lµ =[αF

2
0

4 Tr(CRµν ) + α′
F 2

0
4 Tr(CLµν )]Tr[(DµU)†DνU ]

+ Tr[βF
2
0

4 (DµU)†CRµνDνU + β′
F 2

0
4 DµUCLµν (DνU)†],

(4.57)

where α, α′, β, and β′ are the dimensionless LECs appearing in Eq.(4.11).

The above Lagrange density has exactly the same transformation behavior under C

as that in Eq.(4.11). Due to α = α′ and β = β′, Eq.(4.57) becomes

LLO
π,rµ,lµ = α

F 2
0

4 [Tr(CRµν ) + Tr(CLµν )]Tr[(DµU)†DνU ]

+ β
F 2

0
4 Tr[(DµU)†CRµνDνU +DµUCLµν (DνU)†].

(4.58)

We can again re-write the above Lagrange density in terms of 1Cµν
L/R and 3Cµν

L/R in

the following manner

LLO
π,rµ,lµ = β(1)F

2
0

4
(

1CRµν + 1CLµν
)

Tr[(DµU)†DνU ] (4.59)

+ β(2)F
2
0

4 Tr[(DµU)† 3CRµνD
νU +DµU 3CLµν(DνU)†],

where β(1) and β(2) are the same dimensionless LECs in Eq.(4.26).

In this case too, that is, in the presence of external fields accompanied with LV,
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there is in principle a second, nearly-identical-looking copy of the Lagrange density

of Eq. (4.59) contracted with the antisymmetric parts of the Cµν
L/R. These terms would

be accompanied by an independent set of LECs. However, all the terms involved can

be shown to vanish; and thus even in the presence of external fields, we find that only

the symmetric part of the Cµν
L/R contributes at LO.

The Lagrange density in Eq.(4.59) is an exact copy of the one in Eq.(4.26) with the

covariant derivative substituting the partial derivative. However, taking the standard

LO effective pion Lagrangian

L LO
π = F 2

0
4 Tr[DµU(DµU)†], (4.60)

and replacing DµU by DLV
µ U = DµU + i

2{C
R
µν , r

ν}U − i
2U{C

L
µν , l

ν}, then expanding

up to O(CL/R
µν ), we find two new terms in addition to recovering the standard pion

Lagrangian term,

F 2
0

4 Tr[DµU(DµU)†] −→ F 2
0

4 Tr[DLV
µ U(DLVµU)†], (4.61)

where
F 2

0
4 Tr[DLV

µ U(DLVµU)†] = F 2
0

4 Tr[DµU(DµU)†]

+ i
F 2

0
4
[
Tr
(
DµU †{CR

µν , r
ν}U

)
+ Tr

(
DµU{CL

µν , l
ν}U †

)]
.

(4.62)

It is reassuring that the last two terms in Eq.(4.62) above have the expected trans-

formation behavior under C, where

iTr
(
DµU †{CR

µν , r
ν}U

)
+ iTr

(
DµU{CL

µν , l
ν}U †

)
→ iTr

(
DµU{CR

µν , l
ν}U †

)
+ iTr

(
DµU †{CL

µν , r
ν}U

)
.

(4.63)

Therefore, the total LO Lorentz-violating pion effective Lagrange density in the pres-

ence of external fields is

LLO
π,rµ,lµ = α

F 2
0

4 [Tr(CRµν ) + Tr(CLµν )]Tr[(DµU)†DνU ]

+ β
F 2

0
4 Tr[(DµU)†CRµνDνU +DµUCLµν (DνU)†]

+ i
F 2

0
4
[
Tr
(
DµU †{CR

µν , r
ν}U

)
+ Tr

(
DµU{CL

µν , l
ν}U †

)]
.

(4.64)
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Application: The Electromagnetic Interaction

At the quark-level, if one considers only the two-flavor version of QCD, i.e. only u

and d quarks (which is the case in this dissertation), the coupling of quarks to an

external electromagnetic four-potential Aµ is given by setting [22, 29]

rµ = lµ = −e2Aµτ3, ν(s)
µ = −e2Aµ, (4.65)

where ν(s)
µ is the U(1)V gauge field. Instead, one can replace the traceless fields rµ

and lµ by non-traceless ones of the form [29]

r̃µ = rµ + 1
3ν

(s)
µ 12×2 = −e2Aµ(τ3 + 1

312×2),

l̃µ = lµ + 1
3ν

(s)
µ 12×2 = −e2Aµ(τ3 + 1

312×2).
(4.66)

As an application, we consider the last term of Eq.(4.64) and substitute rν = lν =

− e
2A

ν(τ3 + 1
312×2) where e > 0 is the elementary charge. We write

CR/L
µν = 1

2C
R/L
+µν1 + 1

2C
R/L
−µν τ3, (4.67)

where CR/L
+µν = cR/Luµν + c

R/L
dµν

and CR/L
−µν = cR/Luµν − c

R/L
dµν

, and expand the term

i
F 2

0
4
[
Tr
(
DµU †{CR

µν , r
ν}U

)
+ Tr

(
DµU{CL

µν , l
ν}U †

)]
(4.68)

with

U = exp
(iφaτa
F0

)
= 1 + i

F0
φaτa + ...... (4.69)

Up to one pion field, we get

Tr
(
DµU †{CR

µν , r
ν}U

)
= Tr

{
(− i

F0
τa∂

µφa)(−
e

2A
ν)

[(1
3C

R
+µν + CR

−µν)1 + (1
3C

R
−µν + CR

+µν)τ3](1)
}

= ie

2F0
(1
3C

R
−µν + CR

+µν)Aν∂µφaTr(τaτ3)

= ie

F0
(1
3C

R
−µν + CR

+µν)Aν∂µφ3.

(4.70)

Similarly, we find that up to a single pion field,

Tr
(
DµU{CL

µν , l
ν}U †

)
= − ie

F0
(1
3C

L
−µν + CL

+µν)Aν∂µφ3. (4.71)
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Therefore, the final result of expanding Eq.(4.68) to a single pion field is

−eF0

4
[1
3(CR

−µν − CL
−µν) + (CR

+µν − CL
+µν)

]
Aν∂µφ3. (4.72)

In physical pion fields, φ3 = π0, so Eq.(4.72) represents a Lorentz-violating process

whereby a photon, via interacting with the fixed background field, produces a neutral

pion. Looking at the quantum numbers of the particles involved, we find that both

carry zero charge and have negative parity. While the spin of the neutral pion is s = 0,

that of the photon is s = 1. This means that in SM physics, an incoming photon

cannot produce a π0 due to non-conservation of angular momentum. In cases where

rotation invariance is not an exact symmetry, the conversion of a photon to a neutral

pion is not forbidden by angular momentum conservation. In a Lorentz-violating

process, angular momentum need no longer be conserved owing to the presence of a

background field. Thus, in the presence of LV, the process of an incoming photon

interacting with the background and producing a neutral pion becomes admissible.

4.2 Leading-order Lorentz-violating Baryonic

Lagrangian

The LV effective pion-nucleon Lagrangian, LLO
πN , that we will construct is of zeroth

chiral order, i.e. O(q0), and it contains up to two derivatives on the nucleon field.

The O(q0) elements that form its building blocks are the following [22, 27]:

Ψ, Ψ̄, DµΨ, u, γµ, γµγ5, σµν , gµν , and ελµνρ, (4.73)

where γµ are the so-called gamma or Dirac matrices satisfying the anti-commutation

relation {γµ, γν} = 2gµν14×4 with gµν being the space-time metric tensor. The

anti-symmetric combination of two gamma matrices is denoted by σµν = −σνµ =
1
2 [γµ, γν ] = 1

2(γµγν − γνγµ) [30]. Finally, ελµνρ is the totally anti-symmetric tensor in

four dimensions (λ, ....ρ = 0, 1, 2, 3).
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Recall that Ψ is the nucleon field doublet, DµΨ = (∂µ+Γµ)Ψ is the nucleon covariant

derivative, where Γµ = 1
2(u†∂µu + u∂µu

†) is the chiral conection, and u2 = U such

that under the global chiral group G = SU(2)L × SU(2)R [see section 3.2.2]
u

Ψ

DµΨ

 −→


u′

Ψ′

(DµΨ)′

 =


RuK† = KuL†

K[L,R, U ]Ψ

K[L,R, U ](DµΨ)

 (4.74)

Since LLO
πN must be chirally invariant, its terms should have the general form Ψ̄ÔΨ,

where Ô is an operator in Dirac and isospin space which transforms as KÔK† under

chiral transformations. Bearing in mind all of the above, we can now write down all

of the following chirally invariant O(q0) terms where a(n)
R/L’s are LECs:

1. Ψ̄[(a(1)
R u† CRµνu+ a

(1)
L u CLµνu

†)(γνDµ + γµDν)]Ψ

2. [a(2)
R Tr(CRµν ) + a

(2)
L Tr(CLµν )]Ψ̄(γνDµ + γµDν)]Ψ

3. Ψ̄[(a(3)
R u† CRµνu+ a

(3)
L u CLµνu

†)(γνγ5Dµ + γµγ5Dν)]Ψ

4. [a(4)
R Tr(CRµν ) + a

(4)
L Tr(CLµν )]Ψ̄(γνγ5Dµ + γµγ5Dν)Ψ

5. Ψ̄(a(5)
R u† CRµνu+ a

(5)
L u CLµνu

†)σµνΨ

6. [a(6)
R Tr(CRµν ) + a

(6)
L Tr(CLµν )]Ψ̄σµνΨ

7. Ψ̄(a(7)
R u† CRµνu+ a

(7)
L u CLµνu

†)εµνρλσρλΨ

8. [a(8)
R Tr(CRµν ) + a

(8)
L Tr(CLµν )]Ψ̄εµνρλσρλΨ

9. Ψ̄(a(9)
R u† CRµνu+ a

(9)
L u CLµνu

†)εµνρλγρDλΨ

10. [a(10)
R Tr(CRµν ) + a

(10)
L Tr(CLµν )]Ψ̄εµνρλγρDλΨ

11. Ψ̄(a(11)
R u† CRµνu+ a

(11)
L u CLµνu

†)εµνρλγργ5DλΨ

12. [a(12)
R Tr(CRµν ) + a

(12)
L Tr(CLµν )]Ψ̄εµνρλγργ5DλΨ
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13. Ψ̄[(a(13)
R u† Cµ

Rµu+ a
(13)
L u Cµ

Lµu
†)σρλ(DρDλ +DλDρ)]Ψ

14. [a(14)
R Tr(Cµ

Rµ) + a
(14)
L Tr(Cµ

Lµ)]Ψ̄σρλ(DρDλ +DλDρ)Ψ

15. Ψ̄[(a(15)
R u† CRµνu+ a

(15)
L u CLµνu

†)εµνρλ(DρDλ +DλDρ)]Ψ

16. [a(16)
R Tr(CRµν ) + a

(16)
L Tr(CLµν )]Ψ̄εµνρλ(DρDλ +DλDρ)Ψ

17. Ψ̄[(a(17)
R u† CRµνu+ a

(17)
L u CLµνu

†)(DµDν +DνDµ)]Ψ

18. [a(18)
R Tr(CRµν ) + a

(18)
L Tr(CLµν )]Ψ̄(DµDν +DνDµ)Ψ

19. Ψ̄[(a(19)
R u† CRµνu+ a

(19)
L u CLµνu

†)σνρ(DµDρ +DρD
µ)]Ψ

20. [a(20)
R Tr(CRµν ) + a

(20)
L Tr(CLµν )]Ψ̄σνρ(DµDρ +DρD

µ)Ψ

21. Ψ̄(a(21)
R u† CRµνu+ a

(21)
L u CLµνu

†)gµνΨ

22. [a(22)
R Tr(CRµν ) + a

(22)
L Tr(CLµν )]Ψ̄gµνΨ

The majority of these terms vanish. All terms in which CL/R
µν are contracted with an

anti-symmetric tensor such as σµν or εµνρλ or a combination of these two result in

a zero contribution to the pion-nucleon Lagrange density. The reason behind this is

that in the fermion sector of the mSME, the anti-symmetric portions of Cµν cannot

be observed at linear order in LV [8]. So, at LO, CL/R
µν are taken to be symmetric,

therefore, terms no. 5 through no. 12 are identically zero.

Due to CL/R
µν being symmetric, only the operators that are symmetric in their Lorentz

indices will contribute at this order. This avoids the presence of terms such as those

containing [Dµ, Dν ]. In addition, the anti-symmetric combination of two nucleon

covariant derivatives is of higher order in the χPT power counting as well [27]. More-

over, every term in which σµν or εµνρλ is contracted with the symmetric combination

of two nucleon covariant derivative vanishes. These terms are no. 13 through no. 16.
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Terms no. 17 and 18 where Cµν is contracted with the symmetric combination

(DµDν + DνDµ) are reduced to terms no. 1 and 2, respectively, up to higher-order

chiral corrections. This is done by using the equations of motion:

iγµD
µΨ = mNΨ + h.o.⇒ /DΨ = −imNΨ,

−iΨ̄
←−
/D = mNΨ̄ + h.o.⇒ Ψ̄

←−
/D = imNΨ̄,

(4.75)

where h.o. stands for higher-order chiral corrections. The equation of motion in the

first line of Eq.(4.75) can be re-written as

DνΨ = σρνD
ρΨ− imNγνΨ, (4.76)

then,

DµDνΨ = −imNγ
νDµΨ + σρνDµDρΨ. (4.77)

Here, mN is the nucleon mass. After inserting the last equation above in no. 17 and

18, one gets terms which are proportional to no. 1 and 2 up to another term of the

form σρνDµDρΨ. The second term, σρνDµDρΨ, appears in no. 19 and 20 which will

be shown to vanish next. So, at LO, terms no. 17 and 18 are proportional to no. 1

and 2, respectively. Thus, they are not independent.

As for terms no. 19 and 20 with the combination σνρ(DµDρ+DρD
µ), they vanish

at LO. This can be seen in the following manner.

For term no. 20,

Ψ̄σνρ(DµDρ +DρD
µ)Ψ = Ψ̄(γνγρ − gνρ)(DµDρ +DρD

µ)Ψ

= Ψ̄
(
γνDµ /D − /DγνDµ + [Dν , Dµ]

)
Ψ

= Ψ̄γνDµ /DΨ + (Ψ̄
←−
/D)γνDµΨ + Ψ̄[Dν , Dµ]Ψ,

(4.78)

where we have applied integration by parts to the second term of line 2 and ne-

glected the total derivative which resulted from this partial integration. Using the

LO equation of motion and its Hermitian conjugate appearing in Eq.(4.75), the first
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two terms of line 3 in the above equation cancel each other. The remaining term

containing [Dν , Dµ] is of higher order in the χPT power counting and is neglected.

When applying integration by parts for term no. 19, one has to make sure to include

the structure CL/R
µν sandwiched in between the pion fields u and u†.

Let us denote the combination of the pion fields and the Lorentz-violating coefficients,

namely, u† CRµνu and u CLµνu† by X, so we have

Ψ̄Xσνρ(DµDρ +DρD
µ)Ψ = Ψ̄X(γνγρ − gνρ)(DµDρ +DρD

µ)Ψ

= Ψ̄X
(
γνDµ /D − /DγνDµ + [Dν , Dµ]

)
Ψ

= Ψ̄XγνDµ /DΨ− Ψ̄X /DγνDµΨ + Ψ̄X[Dν , Dµ]Ψ,

(4.79)

where the last term of the last line of the above equation is of higher order in chiral

power counting and can thus be ignored. Again using the LO equation of motion

iγµD
µΨ = mNΨ, the first term Ψ̄XγνDµ /DΨ is reduced to −imΨ̄XγνDµΨ.

As for the second term, we have

Ψ̄X /DγνDµΨ = Ψ̄XγργνDρD
µΨ

= Ψ̄Xγργν(∂ρ + Γρ)DµΨ

= Ψ̄Xγργν∂ρ(DµΨ) + Ψ̄XγργνΓρDµΨ

= total derivative− ∂ρ(Ψ̄X)γργνDµΨ + Ψ̄XγργνΓρDµΨ.

(4.80)

Neglecting the total derivative, we find

Ψ̄X /DγνDµΨ = −(∂ρΨ̄)XγργνDµΨ− Ψ̄∂ρXγργνDµΨ + Ψ̄XγργνΓρDµΨ

= −(∂ρΨ̄)XγργνDµΨ + Ψ̄ΓρXγργνDµΨ− Ψ̄ΓρXγργνDµΨ

+ Ψ̄XγργνΓρDµΨ− Ψ̄∂ρXγργνDµΨ

= −(Ψ̄
←−
/D)XγνDµΨ− Ψ̄(ΓρX −XΓρ)γργνDµΨ

− Ψ̄∂ρXγργνDµΨ

= −(Ψ̄
←−
/D)XγνDµΨ− Ψ̄[Γρ, X]γργνDµΨ− Ψ̄∂ρXγργνDµΨ

= −(Ψ̄
←−
/D)XγνDµΨ− Ψ̄

(
∂ρX + [Γρ, X]

)
γργνDµΨ.

(4.81)
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We can then define a covariant derivative of X as DρX = ∂ρX + [Γρ, X], so that up

to a total derivative,

Ψ̄X /DγνDµΨ = −(Ψ̄
←−
/D)XγνDµΨ− Ψ̄DρXγ

ργνDµΨ. (4.82)

Note that DρX is of higher chiral order, and the second term in the equation above

will thus be dropped, resulting in

Ψ̄Xσνρ(DµDρ +DρD
µ)Ψ = −imΨ̄XγνDµΨ + (Ψ̄

←−
/D)XγνDµΨ + h.o.

= −imΨ̄XγνDµΨ + imΨ̄XγνDµΨ

= 0.

(4.83)

The last two terms that vanish are the ones where Cµν is contracted with the metric

tensor, gµν . These are terms no. 21 and 22. The reason behind their vanishing is

that the combination of CL/R
µν and gµν results in C(L/R)µ

µ . This is the trace of CL/R
µν in

the space of Lorentz indices which can be taken to be zero [4].

We finally find that the only terms that remain from the long list of nucleon terms

are no. 1 through no. 4. The operators in these terms are not the only structures with

two free Lorentz indices that may be constructed out of Dirac matrices and nucleon

covariant derivatives. As an example, one can add to these operators DµDµ or γµDµ

terms sandwiched between Ψ̄ and Ψ. However, these terms can be eliminated using

the equations of motion, Eq.(4.75). Therefore, at LO, any operator with an extra

DµDµ or γµDµ can be absorbed into the terms no. 1 through 4.

So, the LO Lorentz-violating independent pion-nucleon terms are

Ψ̄[(a(1)
R u† CRµνu+ a

(1)
L u CLµνu

†)(γνiDµ + γµiDν)]Ψ + h.c.

[a(2)
R Tr(CRµν ) + a

(2)
L Tr(CLµν )]Ψ̄(γνiDµ + γµiDν)]Ψ + h.c.

Ψ̄[(a(3)
R u† CRµνu+ a

(3)
L u CLµνu

†)(γνγ5iDµ + γµγ5iDν)]Ψ + h.c.

[a(4)
R Tr(CRµν ) + a

(4)
L Tr(CLµν )]Ψ̄(γνγ5iDµ + γµγ5iDν)Ψ + h.c.

(4.84)
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where h.c. stands for Hermitian conjugate.

In order to find the relation between the LECs a(n)
R and a

(n)
L , again we need to

consider the transformation behavior of the pion-nucleon terms in Eq.(4.84) under

charge conjugation. In the previous section, we worked out the transformation be-

havior of LCPT−even
light quark under C. Please refer to section 4.1 for details. As discussed in

that section, for the general case (CL
µν 6= CR

µν), the LV quark-level Lagrange density

is not invariant under charge conjugation. However, if CL
µν = CR

µν , then LCPT−even
light quark is

even under C, whereas if CL
µν = −CR

µν , it is odd (i.e. L′CPT−even
light quark = −LCPT−even

light quark).

The first Lagrangian term of Eq.(4.84) above will be used as an example and shown

how it transforms under C. The same method applies to the remaining terms.

First, let us denote by LR1 the term Ψ̄[(a(1)
R u† CRµνu)(γµiDν + γνiDµ)]Ψ, and find its

Hermitian conjugate, so that

LR1 = Ψ̄[(a(1)
R u† CRµνu)(γµiDν + γνiDµ)]Ψ

= Ψ̄a(1)
R (u† CRµνu)[γµi(∂ν + Γν) + (µ↔ ν)]Ψ,

(4.85)

and2

(LR1 )(h.c.) = −ia(1)
R Ψ̄(

←−
Dνγµ +

←−
Dµγν)u†CRµνuΨ, (4.86)

where Ψ̄←−Dν ≡ ∂νΨ̄− Ψ̄Γν . The same method applies to the left-handed part of this

term, and so

L1
h.c. = −iΨ̄[(

←−
Dνγµ +

←−
Dµγν)(a(1)

R u†CRµνu+ a
(1)
L uCLµνu

†)]Ψ (4.87)

is the Hermitian conjugate of

L1 = iΨ̄[(a(1)
R u† CRµνu+ a

(1)
L u CLµνu

†)(γνDµ + γµDν)]Ψ. (4.88)

The next step is to find out how these two terms transform under charge conjugation.

Here again the right-handed part of both terms will be presented knowing that the

2See appendix A for details.
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left-handed part is similar.

Under charge conjugation, we get3

(LR1 )(C) = −ia(1)
R Ψ̄(

←−
Dνγµ +

←−
Dµγν)uCR

µνu
†Ψ, (4.89)

so that

L(C)
1 = −iΨ̄[(

←−
Dνγµ +

←−
Dµγν)(a(1)

R uCR
µνu

† + a
(1)
L u†CLµνu)]Ψ. (4.90)

In exactly the same way, we can show that under charge conjugation, Lh.c.1 transforms

into

(Lh.c.1 )(C) = iΨ̄[(a(1)
R uCR

µνu
† + a

(1)
L u†CLµνu)(γνDµ + γµDν)]Ψ. (4.91)

Finally, we find that under C,

Ltot.1 = L1 + Lh.c.1

= iΨ̄[(a(1)
R u† CRµνu+ a

(1)
L u CLµνu

†)(γνDµ + γµDν)]Ψ

− iΨ̄[(
←−
Dνγµ +

←−
Dµγν)(a(1)

R u†CRµνu+ a
(1)
L uCLµνu

†)]Ψ

(4.92)

transforms as

(Ltot.1 )(C) = L(C)
1 + (Lh.c.1 )(C)

= −iΨ̄[(
←−
Dνγµ +

←−
Dµγν)(a(1)

R uCR
µνu

† + a
(1)
L u†CLµνu)]Ψ

+ iΨ̄[(a(1)
R uCR

µνu
† + a

(1)
L u†CLµνu)(γνDµ + γµDν)]Ψ.

(4.93)

For the special case of CL
µν = CR

µν , LCPT−even
light quark is even under C. This must also hold

at the level of the effective Lagrange density. Therefore, we see that the requirement

of Ltot.1 = Ltot.(C)
1 for CL

µν = CR
µν forces a(1)

R to be equal to a(1)
L .

The same method and arguments apply for the remaining pion-nucleon terms of

3See appendix A for details.
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Eq.(4.84), and we obtain the following relations between the left and right LECs:

a
(1)
L = a

(1)
R

a
(2)
L = a

(2)
R

a
(3)
L = −a(3)

R

a
(4)
L = −a(4)

R .

(4.94)

Written in terms of the iso-singlet and iso-triplet parts of CL/R
µν , the minimal LO

Lorentz-violating baryonic Lagrange density is

LLO
πN =

{
α(1)Ψ̄[(u† 3Cµν

R u+ u 3Cµν
L u†)(γνiDµ + γµiDν)]Ψ (4.95)

+α(2)
(

1Cµν
R + 1Cµν

L

)
Ψ̄(γνiDµ + γµiDν)]Ψ

+α(3)Ψ̄[(u† 3Cµν
R u− u 3Cµν

L u†)(γνγ5iDµ + γµγ
5iDν)]Ψ

+α(4)
(

1Cµν
R − 1Cµν

L

)
Ψ̄(γνγ5iDµ + γµγ

5iDν)Ψ
}

+ h.c.,

where the α(n)’s are dimensionless LECs that by naive dimensional analysis are ex-

pected to be O(1).

4.2.1 Local Chiral Transformations and The Modified Nucleon

Covariant Derivative

Analogous to the pion case, extending the χPT formalism in the presence of LV to

include interactions of nucleons with external fields forces global chiral symmetry to

be promoted to a local one. This is also true in the absence of any LV. We recall the

transformation behavior of the building blocks of the baryonic effective Lagrangian

under the local SU(2)L × SU(2)R chiral group, denoted by G, in the absence of LV.
u

Ψ

DµΨ

 −→


u′

Ψ′

(DµΨ)′

 =


VRuK

† = KuV †L

K[VL, VR, U ]Ψ

K[VL, VR, U ](DµΨ)

 (4.96)

55



where VL(x) and VR(x) are independent space-time-dependent matrices that belong

to the local group G. The nucleon covariant derivative in the presence of external

fields and absence of LV is

DµΨ = (∂µ + Γµ)Ψ,

Γµ = 1
2[u†(∂µ − irµ)u+ u(∂µ − ilµ)u†].

(4.97)

We have seen that the transformations of the external fields lµ and rµ get modified

in the presence of LV,

lµ −→ VLlµV
†
L + iVL∂µV

†
L + i

2[VLCLµν∂νV
†
L − ∂νVLCLµνV

†
L ]

rµ −→ VRrµV
†
R + iVR∂µV

†
R + i

2[VRCRµν∂νV
†
R − ∂νVRCRµνV

†
R].

(4.98)

Since lµ and rµ enter the nucleon covariant derivative via the chiral connection Γµ,

DµΨ needs to be modified in the presence of LV in order to retain its transformation

behavior under local transformations.

With LV and under local chiral transformations, Γµ transforms as

Γµ −→ Γ′µ + Γ̃µ, (4.99)

where Γ′µ is the transform of Γµ in the absence of LV, and

Γ̃µ = − i2(Ku†V †R)
[ i
2VRCRµν∂

νV †R −
i

2∂
νVRCRµνV

†
R

]
(VRuK†)

− i

2(KuV †L)
[ i
2VLCLµν∂

νV †L −
i

2∂
νVLCLµνV

†
L

]
(VLu†K†)

= 1
4Ku

†CRµν∂
νV †RVRuK

† − 1
4Ku

†V †R∂
νVRCRµνuK

†

+ 1
4KuCLµν∂

νV †LVLu
†K† − 1

4KuV
†
L∂

νVLCLµνu
†K†.

(4.100)

These four extra terms in Eq.(4.100) can be canceled out by adding four terms to Γµ

which upon being transformed produce terms that have the desired transformation

behavior and other terms that cancel the extra ones in the equation above. Let us

denote the terms that need to be added to Γµ by Γ(Cµν)
µ , where

Γ(Cµν)
µ = i

4u
†{CR

µν , r
ν}u+ i

4u{C
L
µν , l

ν}u†. (4.101)
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So,

ΓLV
µ ≡ Γµ + Γ(Cµν)

µ

= 1
2
[
u†(∂µ − irµ + i

2{C
R
µν , r

ν})u+ u(∂µ − ilµ + i

2{C
L
µν , l

ν})u†
]
,

(4.102)

and

DLV
µ Ψ = (∂µ + ΓLV

µ )Ψ (4.103)

is the modified nucleon covariant derivative that maintains the transformation be-

havior K[VL, VR, U ](DLV
µ Ψ) in the presence of both external fields and LV.

We can then take the standard LO baryonic effective Lagrange density

L (1)
πN = Ψ̄(i /D −m+ gA

2 γµγ5uµ)Ψ, (4.104)

and replace DµΨ by DLV
µ Ψ. So,

Ψ̄(i /D −m+ gA
2 γµγ5uµ)Ψ→ Ψ̄(i /DLV −m+ gA

2 γµγ5uµ)Ψ, (4.105)

where

Ψ̄(i /DLV −m+ gA
2 γµγ5uµ)Ψ = L (1)

πN + Ψ̄i/Γ(Cµν)Ψ. (4.106)

Therefore, we recover the standard LO baryonic effective Lagrangian, L (1)
πN , as well as

generate a Lorentz-violating term of the form Ψ̄i/Γ(Cµν)Ψ which is of the same chiral

order, i.e. O(q).

Application: The Electromagnetic Interaction

As an application, we would like to consider the electromagnetic interaction with

baryons in the presence of LV. For this purpose, we will first look at the term

Ψ̄i/Γ(Cµν)Ψ with Γ(Cµν)
µ = i

4u
†{CR

µν , r
ν}u + i

4u{C
L
µν , l

ν}u†. In the case of baryons,

the electromagnetic interaction is dealt with by substituting rν = lν = − e
2A

ν(1+ τ3)

and taking u = u† = 1, considering zero pion fields. Writing the nucleon doublet Ψ

as (p n)T and

CR/L
µν = 1

2C
R/L
+µν1 + 1

2C
R/L
−µν τ3, (4.107)
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with CR/L
+µν = cR/Luµν + c

R/L
dµν

and CR/L
−µν = cR/Luµν − c

R/L
dµν

, gives the result

Ψ̄iΓ(Cµν)
µ γµΨ = e

4(CR
+µν + CL

+µν + CR
−µν + CL

−µν)Aνγµp̄p. (4.108)

In our LO Lorentz-violating baryonic Lagrange density, Eq.(4.95), external fields can

be accommodated by taking the chiral connection Γµ to be

Γµ = 1
2[u†(∂µ − irµ)u+ u(∂µ − ilµ)u†], (4.109)

with external right- and left-handed fields, rµ and lµ, respectively. The portion of the

Lagrangian of Eq.(4.95) that contains interactions of baryons with external fields is

LLO
int. =

{
α(1)Ψ̄[(u† 3Cµν

R u+ u 3Cµν
L u†)(γνiΓµ + γµiΓν)]Ψ (4.110)

+α(2)
(

1Cµν
R + 1Cµν

L

)
Ψ̄(γνiΓµ + γµiΓν)]Ψ

+α(3)Ψ̄[(u† 3Cµν
R u− u 3Cµν

L u†)(γνγ5iΓµ + γµγ
5iΓν)]Ψ

+α(4)
(

1Cµν
R − 1Cµν

L

)
Ψ̄(γνγ5iΓµ + γµγ

5iΓν)Ψ
}

+ h.c.,

where 3Cµν
R/L = 1

2C
(R/L)µν
− τ3 and 1Cµν

R/L = C
(R/L)µν
+ .

Here again we substitute rµ = lµ = − e
2Aµ(1 + τ3) and take u = u† = 1 in Eq.

(4.110). Therefore, the expression for the electromagnetic interaction with baryons

in the presence of LV is

LLO
int. =

{
− α(1)

2 e(CRµν
− + CLµν

− )p̄(γνAµ + γµAν)p

− α(2)e(CRµν
+ + CLµν

+ )p̄(γνAµ + γµAν)p

− α(3)

2 e(CRµν
− − CLµν

− )p̄(γνγ5Aµ + γµγ
5Aν)p

− α(4)e(CRµν
+ − CLµν

+ )p̄(γνγ5Aµ + γµγ
5Aν)p

}
+ h.c.

(4.111)
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Chapter 5

Experimental Constraints

Physicists interested in the possibility of LV have widely used the mSME to search

for leading-order signals of LV. Many experiments provide tests of Lorentz invariance;

however, relatively few of them have the necessary sensitivity to observe possible LV

signals. This is because the Lorentz-violating coupling coefficients in the SME are

small. Nevertheless, a few high-precision tests were able to place bounds on some

of the coefficients for LV in the SME in the different particle sectors. These include

neutral-meson oscillation experiments [31, 32, 33, 34, 35, 36], QED tests [37, 38, 39,

40, 41], analyses of high-energy astrophysical processes [42, 43, 44, 45, 46] and others.

An extensive summary of the results of the various tests can be found in [9].

5.1 Bounds on Pion Lorentz-violating Coefficients

We will now use the hadronic Lagrange densities constructed in chapter 4 to set new

constraints on the effective LV coefficients in the pion sector. This will be done by

using experimental observations from the proton/neutron sector. It is important to

note that the limited number of underlying Lorentz violations on the quark level

determines the effective coefficients for different types of mesons and baryons. More-

over, when a certain combination of the quark coefficients is measured or bounded

using one type of hadrons, it is possible to transfer this information to an altogether

different kind of particle. Bounds placed in the second particle sector are of limited

precision due to the presence of numerous LECs. However, there is still order of
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magnitude validity assuming the LECs have natural sizes.

Let us now return to the pure pion sector and take a closer look at the pion

propagation terms. The free two-pion Lorentz-violating Lagrange density,

LLO,2φ
π = β(1)

2 (cµνuL + cµνdL + cµνuR + cµνdL)∂µφa∂νφa, (5.1)

written in terms of the physical pion fields, π± = 1√
2(φ1 ± iφ2) and π0 = φ3, has the

form

LLO
2π = β(1)

2 (cµνuL + cµνdL + cµνuR + cµνdL)(∂µπ+∂νπ− + ∂µπ−∂νπ+ + ∂µπ0∂νπ0). (5.2)

This looks like the standard form for LV involving a spin-0 field. In the general

Lagrange density [47]

Lspin-0 = 1
2∂

µφa∂µφa + 1
2k

µν∂µφa∂νφa −
m2

2 φaφa, (5.3)

the equations of motion, or equivalently, the energy-momentum relation for free prop-

agating particles are modified by the tensor kµν . These propagation modifications lead

to observable physical consequences. Modified energy-momentum relations may lead

to the presence of upper and lower thresholds for various particle emission and decay

processes. As an example, the decay of photons into charged particle-antiparticle

pairs (such as γ → π+ + π−) may occur, with an appropriate choice of parameters,

for sufficiently energetic γ-rays. Another important process is the dominant decay

mode for neutral pions (π0 → 2γ). However, the presence of LV can lead to some

interesting changes in neutral pion decay. For pions with large momenta, the process

π0 → N + N̄ may become allowed, where N stands for nucleons. So, above a certain

energy threshold, neutral pions can decay into nucleons rather than photons due to

the strong pion-nucleon coupling.
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It can be a great challenge to make very precise measurements with short-lived

particles such as pions. In fact, the tightest constraints on LV in the pion sector

come from analyses of high-energy astrophysical data [45, 47, 48]. The reason is that

very large distances and very high energies available in extraterrestrial environments

can make astrophysical tests of Lorentz symmetry extremely sensitive. Typically,

astrophysical observations involving observed quanta at an energy E allow us to have

constraints on combinations of kµνπ at the ∼ m2
π/E

2 level. Currently, the pion bounds

are at the 10−10–10−13 levels, which are fairly strong [47, 48]. However, these bounds

are on combinations of all the kµνπ coefficients, which are determined by the sky coor-

dinates of the sources involved. Moreover, other sectors show much stronger bounds,

and there are limited possibilities for improving the direct pion bounds. Major im-

provements would require observations of substantially more energetic quanta, which

can be sparse.

Looking at Eqs. (5.1) and (5.2), we find that common to all the physical pion

fields is a single kµνπ tensor having the form

kµνπ = β(1)(cµνuL + cµνuR + cµνdL + cµνdR). (5.4)

It is expected that the three pion types share these same LO LV coefficients since in

the chiral limit, the pion wave functions all contain equal mixtures of the u and d

fields, as well as equal right and left helicities.

We shall now relate the pion LV tensor, kµνπ , to the combination cµνp + cµνn of readily

measurable baryon parameters. The mSME Lagrange density for a Dirac fermion is

given by [49]

Lspin− 1
2

= ψ̄ [i(γµ + cνµγν + dνµγ5γν)Dµ −m]ψ, (5.5)

where the Lorentz-violating kinetic terms in the SME nucleon sector effective La-

grangian are written in terms of four coefficient tensors cµνp , cµνn , dµνp , and dµνn .
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Recall the LO chiral pion-nucleon effective Lagrange density constructed in chap-

ter 4,

LLO
πN =

{
α(1)Ψ̄[(u† 3Cµν

R u+ u 3Cµν
L u†)(γνiDµ + γµiDν)]Ψ (5.6)

+α(2)
(

1Cµν
R + 1Cµν

L

)
Ψ̄(γνiDµ + γµiDν)]Ψ

+α(3)Ψ̄[(u† 3Cµν
R u− u 3Cµν

L u†)(γνγ5iDµ + γµγ
5iDν)]Ψ

+α(4)
(

1Cµν
R − 1Cµν

L

)
Ψ̄(γνγ5iDµ + γµγ

5iDν)Ψ
}

+ h.c.

By looking at the form of the Lagrange densities in Eqs. (5.5) and (5.6), we can

see that cµνp and cµνn are related to the α(1) and α(2) terms, while dµνp and dµνn receive

contributions from α(3) and α(4) terms. Writing the nucleon doublet Ψ as (p n)T and

taking u = u† = 1, one gets

LLO
πN =

{
α(1)(p̄ n̄)

[(τ3

2 (cµνuR − c
µν
dR

) + τ3

2 (cµνuL − c
µν
dL

)
)
(γνiDµ + γµiDν)

]
(p n)T

+α(2)(p̄ n̄)
(
(cµνuR + cµνdR) + (cµνuL + cµνdL)

)
(γνiDµ + γµiDν)](p n)T

+.....
}

+ h.c. (5.7)

Expanding the above expression gives the following result,

LLO
πN =

{
α(1) p̄

2
[
(cµνuL + cµνuR)− (cµνdL + cµνdR)

]
(γνiDµ + γµiDν)p

+α(1) n̄

2
[
− (cµνuL + cµνuR) + (cµνdL + cµνdR)

]
(γνiDµ + γµiDν)n

+α(2) p̄

2
[
(cµνuL + cµνuR) + (cµνdL + cµνdR)

]
(γνiDµ + γµiDν)p

+α(2) n̄

2
[
(cµνuL + cµνuR) + (cµνdL + cµνdR)

]
(γνiDµ + γµiDν)n

+.....
}

+ h.c. (5.8)

We can then read off the cµνp and cµνn coefficients directly from LLO
πN as

cµνp =
[1
2α

(1) + α(2)
]

(cµνuL + cµνuR) +
[
−1

2α
(1) + α(2)

]
(cµνdL + cµνdR),

cµνn =
[
−1

2α
(1) + α(2)

]
(cµνuL + cµνuR) +

[1
2α

(1) + α(2)
]

(cµνdL + cµνdR).
(5.9)
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Table 5.1 Existing constraints on LV (proton and neutron sectors) [9].

Coefficient Proton Bound Neutron Bound
cQ = cXX + cY Y − 2cZZ 10−21 10−10

c− = cXX − cY Y 10−24 10−28

c(XY ) 10−24 10−29

c(XZ) 10−25 10−28

c(Y Z) 10−25 10−28

c(TX) 10−20 10−5

c(TY ) 10−20 10−5

c(TZ) 10−20 10−5

cTT 10−11 10−11

The sum of these two expressions results in

cµνp + cµνn = 2α(2)(cµνuL + cµνuR + cµνdL + cµνdR), (5.10)

which is the same combination of quark coefficients occuring in the pion kµνπ . This

makes it possible to place order-of-magnitude bounds on the kµνπ by combining obser-

vations made of the proton and neutron. Most measurements of LV involving protons

and neutrons are done non-relativistically, typically using atomic clocks [50, 51, 52, 53,

54, 55]. The best current order of magnitude constraints for the cµνp and cµνn coefficients

are reported in table 5.1. However, new analyses based on more careful nuclear mod-

els suggest significant improvements over some of these constraints [56, 57]. Bounds

on LV are conventionally expressed in the sun-centered celestial equatorial coordinate

system in which X, Y , Z, and T are the coordinates [58]. The Z-axis points along

the rotation axis of the Earth, and the X-axis points to the vernal equinox point on

the celestial sphere. The Y -direction is determined by the right-hand rule, and time

in these coordinates is denoted by T . Table 5.1 shows four types of coefficients for

which there are much stronger constraints in both the proton and neutron sectors

than in the pion sector. These are the c−, c(XY ), c(XZ) and c(Y Z) coefficients. There-

fore, in table 5.2, we quote new bounds on four pion parameters. The LECs in the

nucleon and meson sectors are unknown but expected to be of O(1). This educated
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Table 5.2 New constraints on pion LV.

Coefficient Bound
(kπ)− = (kπ)XX − (kπ)Y Y 10−23

(kπ)(XY ) 10−23

(kπ)(XZ) 10−24

(kπ)(Y Z) 10−24

assumption allows us to place order-of-magnitude bounds on the corresponding pion

coefficients. Thus, we have set the pion constraints to be one order of magnitude

weaker than the looser of the contributing proton and neutron bounds. For example,

the c(XY ) coefficient is bounded at 10−24 in the proton sector and at 10−29 in the

nucleon sector. The bound on the pion parameter (kπ)(XY ) is set to be one order of

magnitude weaker than 10−24. Therefore, we find that the new bound on (kπ)(XY ) is

at the 10−23 level.

Better than order-of-magnitude accuracy is not possible because of the presence of

unknown LECs in all the hadronic expressions, which at the moment can only be es-

timated using naive dimensional analysis. Yet we are still able to make improvements

of at least ten orders of magnitude over direct astrophysical constraints on the same

parameters. Our analysis of the pion bounds is all based on assuming “natural” size

of the LECs in the nucleon and meson sectors. In order to make an exact statement,

one would need non-perturbative QCD calculations with LV.
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Chapter 6

Conclusions and Outlook

Starting from a CPT -even Lorentz-violating quark-level Lagrange density with mass-

dimension four operators, we constructed the LO Lorentz-violating effective La-

grangians with pion and nucleon degrees of freedom. This was done using the frame-

work of χPT. The construction of the pion and pion-nucleon Lagrange densities first

excluded external fields. In the pure pion sector, χPT provided us with a systematic

way to generate multi-pion vertices with definite relations between them imposed by

chiral symmetry. The work was then extended to include interactions with external

fields in the presence of LV. The inclusion of LV leads to a modification of the trans-

formation behavior of the external fields. This affected the structure of the pion and

nucleon covariant derivatives which also got modified in order to retain their usual

transformation behavior under the chiral group. We were also able to produce order-

of-magnitude bounds on four LV coefficients that affect pion propagation, without

looking directly at any pions.

Our χPT analysis was restricted to a subset of the mSME terms that are likely

to affect hadrons. There are still more steps that can be taken. We have not con-

sidered any LV in the SU(3)c gauge sector which is an important omission. Pure

gauge interactions could make a LO contribution to the two-index tensors such as

kµνπ . Therefore, a more complete analysis should include the effects of both quark

and gauge LV on hadronic fields. There are also other forms of LV that may exist

for hadrons. Other quark-level operators such as those with mass-dimension three
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will contribute in completely different ways to symmetry violations by mesons and

baryons. An important future task is to study these operators in details. Moreover,

the kind of analysis we applied in constructing the Lorentz-violating pion-nucleon

Lagrangian may lead to an understanding of LV for spin-1 and spin-3
2 composite par-

ticles which have never really been studied in any detail.

One of the most important remaining puzzles in Lorentz-violating effective field

theory is how to relate the underlying quark and gluon mSME coefficients to corre-

sponding Lorentz-violating coefficients for hadrons. Using χPT, we were able to look

at how quark-level operators get translated into pion, proton, and neutron operators.

Our work in addition to other recent work [59] demonstrate the power of the χPT

technique, and there remains a lot more to be understood about the use of χPT in

the framework of the SME.
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Appendix A

Hermitian and Charge Conjugation

Trasnformation Behavior

The Hermitian conjugate of L1 is calculated as follows.

(LR1 )(h.c.) = a
(1)
R [−i(∂νΨ)†(γµ)†u†(CRµν )†uγ0Ψ

+ (−i)Ψ†(Γν)†(γµ)†u†(CRµν )†uγ0Ψ] + (µ↔ ν)

= −ia(1)
R [(∂νΨ)†(γµ)†u†CRµνuγ0Ψ

−Ψ†(Γν)†(γµ)†u†CRµνuγ0Ψ] + (µ↔ ν)

= −ia(1)
R [∂νΨ̄γµu†CRµνuΨ− Ψ̄Γνγµu†CRµνuΨ] + (µ↔ ν)

= −iΨ̄
←−
Dνγµu†CRµνuΨ + (µ↔ ν)

= −ia(1)
R Ψ̄(

←−
Dνγµ +

←−
Dµγν)u†CRµνuΨ,

(A.1)

where Ψ̄←−Dν ≡ ∂νΨ̄− Ψ̄Γν . The same method applies to the left-handed part of this

term, and so

L1
h.c. = −iΨ̄[(

←−
Dνγµ +

←−
Dµγν)(a(1)

R u†CRµνu+ a
(1)
L uCLµνu

†)]Ψ (A.2)

is the Hermitian conjugate of

L1 = iΨ̄[(a(1)
R u† CRµνu+ a

(1)
L u CLµνu

†)(γνDµ + γµDν)]Ψ. (A.3)

Next, we want to find the charge conjugation behavior of L1. In index notation,

LR1 = ia
(1)
R Ψ̄aα(u†)ab(CR

µν)bc(u)cd(γµ)αβ(∂νΨ)dβ

+ ia
(1)
R Ψ̄aα(u†)ab(CR

µν)bc(u)cd(γµ)αβ(Γν)deΨeβ + (µ↔ ν).
(A.4)
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Under charge conjugation, we get

(LR1 )(C) = −ia(1)
R ΨaδC

−1
δα [(u†)T ]ab(CR

µν)bc(uT )cd(γµ)αβCβλ(∂νΨ̄)dλ

− ia(1)
R ΨaδC

−1
δα [(u†)T ]ab(CR

µν)bc(uT )cd(γµ)αβCβλ[−(Γν)T ]deCβλΨ̄eλ + (µ↔ ν)

= −ia(1)
R (∂νΨ̄)dλCλβ[(γµ)T ]βαCαδudc(CR

µν)cb(u†)baΨaδ

− ia(1)
R Ψ̄eλCλβ[(γµ)T ]βαCαδ(−Γν)edudc(CR

µν)cb(u†)baΨaδ + (µ↔ ν)

= ia
(1)
R ∂νΨ̄[−C(γµ)TC]uCR

µνu
†Ψ− ia(1)

R Ψ̄[−C(γµ)TC]ΓνuCR
µνu

†Ψ + (µ↔ ν)

= −ia(1)
R ∂νΨ̄uCR

µνu
†γµΨ + ia

(1)
R Ψ̄ΓνuCR

µνu
†γµΨ + (µ↔ ν)

= −ia(1)
R Ψ̄(

←−
Dνγµ +

←−
Dµγν)uCR

µνu
†Ψ,

(A.5)

so that

L(C)
1 = −iΨ̄[(

←−
Dνγµ +

←−
Dµγν)(a(1)

R uCR
µνu

† + a
(1)
L u†CLµνu)]Ψ. (A.6)
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