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ABSTRACT 

 Heterodyne displacement measuring interferometry provides important metrology 

for applications requiring high resolution and accuracy. Heterodyne Michelson 

interferometers use a two-frequency laser source and separate the two optical frequencies 

into one fixed length and one variable length path via polarization. Ideally these two 

beams are linearly polarized and orthogonal so that only one frequency is directed toward 

each path. An interference signal is obtained by recombining the light from the two paths; 

this results in a measurement signal at the heterodyne (split) frequency of the laser 

source. This measurement signal is compared to the optical reference signal. Motion in 

the measurement arm causes a Doppler shift of the heterodyne frequency which is 

measured as a continuous phase shift that is proportional to displacement. In practice, due 

to component imperfections, undesirable frequency mixing occurs which yields periodic 

errors. Ultimately, this error can limit the accuracy to approximately the nanometer level. 

Periodic error is typically quantified using a Fourier transform-based analysis of constant 

velocity motions. However, non-constant velocity profiles lead to non-stationary signals 

that require alternate analysis techniques for real-time compensation. A new discrete time 

continuous wavelet transform (DTCWT)-based algorithm has been developed, which can 

be implemented in real time to quantify and compensate periodic error for constant 

velocity motion in heterodyne interferometer. The objective of this study is to extend the 

application of this algorithm to compensate non-stationary periodic error. In non-constant 

velocity motion, the frequency of periodic error varies with the velocity of the target. 
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Also, the periodic error amplitude may fluctuate due to the use of a fiber-coupled laser 

source. The algorithm is also applied into the situation where higher order periodic error 

occurs. To validate the effectiveness of the novel wavelet-based algorithm in practice, the 

algorithm is implemented on the hardware and operated in real-time.  

The wavelet analysis is generalized and extended to a method of structural health 

monitoring (SHM). Currently, there are nearly 70,000 t of used nuclear fuel in spent fuel 

pools or dry cask storage increasing by nearly 2,000 t per year. After being used in a 

reactor, this fuel is stored for 3 to 5 years in spent fuel pools. Eventually the spent fuel 

will be placed into dry cask storage for another 20 years to more than 100 years. From the 

spent fuel pool, used fuel rod assemblies are loaded into casks underwater. This water 

must be removed to avoid corrosion or potential creation of combustion gases burning 

subsequent storage. During the drying process, if this operation is rapid, the water 

retained in the failed rods is likely to form ice. In this case, the ice crystal is difficult to 

remove. Moreover, if the ice forms at some critical location on the water flow path (e.g., 

a fretting on a fuel rod), it will prevent removal of the remaining water inside the rod. 

The objective of this research is to develop an integrated wavelet-based approach for 

structural health monitoring in dry cask storage based on concepts developed in the 

periodic error compensation. The key conditions (defect location, ice formation, etc.) of 

failed fuel rods in dry cask storage are monitored to acquire any possible structure change 

in real-time. The relationship between different conditions and wavelet transform results 

is investigated. Simulations and experiments are used to validate this approach. A 

wavelet-based approach can be used to effectively do SHM and periodic error 

compensation. 
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CHAPTER 1 

WAVELET ANALYSIS 

 

Wavelet analysis began in the mid-1980s where it was first used to examine seismic 

signals. At the beginning of 1990s, wavelet analysis was recognized as a useful tool in 

science and engineering, and began rapidly developing during that decade. The wavelet 

transform has been found to be particularly useful for analyzing aperiodic, noisy, 

intermittent, and transient signals. It can examine a signal in both time and frequency 

domain, which is distinctly different from the traditional Fourier transform. A number of 

wavelet-based methods have been created to identify signals based on this advantage. 

Wavelet analysis has been applied to many research areas, including condition 

monitoring of machinery, video image compression, seismic signal denoising, 

characterization of turbulent intermittency, analysis of financial indices, etc. 

 

1.1 INTRODUCTION 

 Wavelet analysis has been developed to be an analytical tool for signal processing, 

mathematical modeling, and numerical analysis. Early work was in the 1980’s by Morlet, 

Grossmann, Meyer, Mallat, and others, and the paper by Ingrid Daubechies in 1988 first 

directed the attention of the larger applied mathematics communities in signal processing 

and statistics to wavelet analysis [1-6]. Early work was related to a specific application, 

and now the theory is abstracted from applications and developed on its own. One 
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modern wavelet research goal is to create a set of basic functions and transforms 

describing a function or signal. Work done by Donoho, Johnstone, Coifman, and others 

explained why wavelet analysis is versatile and powerful and showed wavelet system is 

optimal for a number of problems [7]. Multiresolution is another important feature. 

Wavelets are called “The Mathematical Microscope” since discrete wavelet transform 

can decompose a signal at independent scales and conduct this in a quite flexible way 

which is superior to other methods for processing, denoising, and compression [8, 9]. 

Because of this advantage, signal processing in wavelet domain provides many new 

methods for signal detection, compression, and filtering [7, 10-14]. 

 The wavelet transform includes the discrete wavelet transform (DWT) and the 

continuous wavelet transform (CWT). The DWT is usually used for compression, 

filtering, and denoising, while the CWT is preferred to provide interpretable multi-scale 

information of signals. The transform is computed at various locations of the signal and 

for various scales of the wavelet, thus filling up the transform plane. This is done in a 

smooth continuous fashion for the continuous wavelet transform (CWT). A CWT of a 

time domain signal provides information in both the temporal and frequency domains 

[15]. For example, calculating the Morlet CWT enables the frequency content of a signal 

to be observed at different times. The CWT can be more informative than the Fourier 

transform because the CWT shows the relationship between frequency content and signal 

based on the wavelet scale and the time period. This enables the frequency and time 

information of the signal to be determined simultaneously by applying an appropriate 

wavelet. When applied to non-stationary signals, the CWT can supply frequency 

information at any time. 
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The next two sections introduce these two transforms separately. 

 

1.2 DISCRETE WAVELET TRANSFORM 

 A signal  f t  can be better analyzed if expressed as a linear decomposition 

    l l

l

f t a t , (1.1) 

where l  is an integer index for the finite or infinite sum, la  is the real-valued expansion 

coefficient, and  t  is a set of the real-valued functions of t  (expansion set). An unique 

expansion set is called a “basis”. If the basis is orthogonal, i.e. 

        , 0k l k lt t t t dt k l      , (1.2) 

Then the coefficient la  can be calculated by 

        ,l k ka f t t f t t dt    . (1.3) 

For the wavelet expansion, a two-parameter system is constructed as 

    , ,j k j k

k j

f t a t . (1.4) 

where ,j ka  is a set of expansion coefficients. Two-dimensional families of scaling and 

wavelet functions are generated from the basic scaling function and mother wavelet,  t  

and  t , by scaling and translation, 

 
   

   

/2

,

/2

,

2 2

2 2

j j

j k

j j

j k

t t k

t t k

 

 

 

 
, (1.5) 

 where j  is the scale, and k  is the time or space location. Further,  t  and  t  can be 

expressed as 
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     

     1

2 2

2 2

n

n

t h n t n

t h n t n

 

 

 

 




, (1.6) 

where  h n  and  1h n  are low-pass filter and high-pass filter in the decomposition 

filters, respectively. Therefore, as a series expansion in terms of the scaling functions and 

wavelets, any function  g t  can be given by 

          0 0

0

0

/2 /22 2 2 2
j j j j

j j

k k j j

g t c k t k d k t k 




     , (1.7) 

where 0j  is the basis scale, and  c k  and  d k  are some sets of coefficients. These 

coefficients are called the discrete wavelet transform of the signal  g t  , and Equation 

1.7 is the inverse discrete wavelet transform (IDWT). If the wavelet system is orthogonal, 

the coefficients can be calculated by 

 
         

         

, ,

, ,

,

,

j j k j k

j j k j k

c k g t t g t t dt

d k g t t g t t dt

 

 

 

 




. (1.8) 

 The DWT applies a pair of decomposition filters to the original time domain 

signal repeatedly. The low-pass filter and high-pass filter are designed to avoid any loss 

of information during transform process. Figure 1.1 shows a typical structure of the DWT 

process. For a decomposition at a single scale, the wavelet decomposition filters are 

applied to a signal  x t  in time domain, and the output coefficients are down sampled 

into low-pass band (approximation band) 1A  and high-pass band (detail band) 1D . The 

bands are time domain signals, and they have half of samples compared to the original 

signal. At the next stage, the low-pass band 1A  is decimated into quarters, 2A  and 2D , 



5 

and so on. The final output of DWT is the approximation subband of the final scale ( 2A  

in this example), and the detail subband of all the scales ( 1D , 2D  and 3D  in the same 

example). 

 

Figure 1.1 Structure of a discrete wavelet transform (DWT) computation. 

 

 However, after transforming a signal, the DWT wavelet coefficients are difficult 

to interpret and need an IDWT for comparison with the original signal. For CWT, in 

contrast, the wavelet coefficient directly provides substantial information at any 

particular time instance for a time domain signal. The final goal of this research is to 

analyze the signals in real-time. Therefore, CWT is used in a real-time algorithm design 

to examine the spectral information of signals. 

 

1.3 CONTINUOUS WAVELET TRANSFORM 

 A continuous wavelet transform is used to construct a time-frequency 

representation of a signal  x t  which provides sufficient time and frequency localization.  
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To perform a CWT, a wavelet is needed. It is a function  t  which satisfies certain 

mathematical criteria. This function is operated to transform the time domain signal into 

another form via translation and dilation. 

 

1.3.1 REQUIREMENTS FOR THE WAVELET 

 A wavelet function of time,  t , must have finite energy 

  
2

E t dt



   . (1.9) 

 A wavelet must have an average of zero, 

     0t t dt 



  . (1.10) 

 Additionally, a wavelet is usually normalized to a unit value [16], 

    
2

1t t dt 



  . (1.11) 

 

1.3.2 WAVELET MANIPULATIONS 

 In order to transfer a chosen “mother” wavelet to be a more flexible form, two 

basic manipulations can be performed. The wavelet function can be stretched and 

squeezed (dilation), or moved (translation). 

A wavelet family can be generated from the mother wavelet by translating it via 

the shift parameter, u ,  and dilating the wavelet via the scale parameter, 0s  . This 

series of wavelets can be denoted as 

  ,u s

t u
t

s
 

 
  

 
. (1.12) 
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The movement of the wavelet along the time axis is governed by the shift parameter. 

Figure 1.2(a) displays the movement of the real part of the Morlet wavelet from 0u   via 

1u   to 2u   along the time axis. The dilation and contraction of the wavelet is 

governed by the scale parameter, which is the distance between the center of the wavelet 

and the origin of time axis. Figure 1.2(b) shows the real Morlet wavelet stretched and 

squeezed to half and double of its original width, respectively. 

 

1.3.3 WAVELET TRANSFORM 

 In the form of Equation 1.12, the wavelet transform of a continuous signal,  x t , 

with respect to a wavelet function is defined as 

            * *

,, u s

t u
Wx u s w a x t t dt w a x t dt

s
 

 

 

 
   

 
  , (1.13) 

 

Figure 1.2 (a) Translation of the mother wavelet (the real Morlet wavelet). (b) Stretching 

and squeezing the real Morlet wavelet at three dilations, 1,2,3s  . 

 

(a) 

(b) 
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where  w a  is a weighting function, and the asterisk indicates the complex conjugate of 

the wavelet function used in the transform, which is needed when complex wavelets are 

used. Typically  w a  is chosen as 1 a  for energy conservation, which ensures the 

wavelet at each scale has the same energy. Sometimes 1 a  is also adopted in some 

special applications. 

In the following discussion,   1w a a  is used as the weighting function. Thus 

the wavelet transform is written as 

     *1
,

t u
Wx u s x t dt

sa






 
  

 
 . (1.14) 

This is the continuous wavelet transform. The signal  x t  could be a gearbox vibration 

signal, audio signal, or even a crack profile in the spatial domain. The normalized 

wavelet function can be written as 

  * *

,

1
u s

t u
t

sa
 

 
  

 
. (1.15) 

Equation 1.14 shows the integration in the product of the signal and the normalized 

wavelet. In mathematics, this is called the convolution integral. Therefore, the CWT can 

be described in a compact form as 

      *

,, u sWx u s x t t dt



  . (1.16) 

 

1.3.4 TYPICAL WAVELETS 

 The Haar wavelet is a sequence of rescaled square functions [17]. It is the 

simplest example of an orthonormal wavelet. The Haar wavelet is also known as 
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Daubechies 1 tap wavelet. The mother wavelet of the Haar wavelet (shown in Figure 1.3) 

can be described as 

  

1
1 0

2

1
1 1

2

0

t

t t

otherwise




 




   





. (1.17) 

Based on the characteristics of the Haar wavelet, it can be useful in discontinuity 

detection. 

 

Figure 1.3 The Haar wavelet. 

 

Hermitian wavelets are a family of continuous wavelet, which can also be used in 

the CWT [18]. The n
th

 Hermitian wavelet is defined as the n
th

 derivative of a Gaussian 

function, 

    
21

222
n t

n
n n n

t
t n c H e

n


  
  

 
, (1.18) 
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where  nH x  denotes the n
th

 Hermite polynomial, and the normalization coefficient is 

given by 

  

1
1 2
2 2 2 1 !!

n
n

nc n n n




 
   
 

. (1.19) 

Figure 1.4 shows an example of Hermitian wavelets, which is the negative normalized 

first derivative of a Gaussian function, 

  
21

4 2
1 2

t

t te 
 

 . (1.20) 

Figure 1.5 displays another example of a Hermitian wavelet, which is sometimes called 

“Mexican hat wavelet” and is the negative normalized second derivative of a Gaussian 

function [19], 

    
21

24 2
2

2
3 1

3

t

t t e 
 

  . (1.21) 

Depending on the application, all derivatives of the Gaussian function may be employed 

as a wavelet. 

 

Figure 1.4 One Hermitian wavelet (first derivative of a Gaussian function). 
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Figure 1.5 The Mexican hat wavelet. 

 

 The complex Morlet wavelet is composed of a complex exponential multiplied by 

a Gaussian window (shown in Figure 1.6), 

  
2

0

1 1
2* 4 2

t
i f t

t e e
 

 

 . (1.22) 

where 0f   is the central frequency of the mother wavelet. It is closely related to human 

hearing and vision, and has been applied into many research fields, such as the 

electrocardiogram (ECG), medicine, and music transcription. More detailed introduction 

and analysis to the complex Morlet wavelet is given in next section. 

 

1.3.5 COMPLEX MORLET WAVELET 

 In 1946, the use of Gaussian-windowed sinusoids for time-frequency 

decomposition was introduced from ideas in quantum physics. It provides the best trade-

off between spatial and frequency resolution. In 1984, it was modified to keep the same 
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Figure 1.6 The complex Morlet wavelet. 

 

wavelet shape over octave intervals, offering the first formalization of the continuous 

wavelet transform [20]. 

The shift parameter, u , and the scale parameter, s , can be included within the 

definition of the complex Morlet wavelet given by Equation 1.22. The shifted and dilated 

version of the mother wavelet can be given by 

 

2

0

11
2

* 24

t ut u
i f

ss
t u

e e
s



 

    
 

 
 

 
. (1.23) 

As the wavelet is squeezed and stretched to half and double of its original width (shown 

in Figure 1.2b), its frequency increases and decreases to double and half of its original 

value. 
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1.3.6 LINEARITY PROPERTY 

 One property of the continuous wavelet transform is its linearity. Given a multi-

component signal 
1

N

i i

i

x x


 , where  1ix i N  are signal components, and 

 1i i N   are scalar weightings, the linearity states that the CWT coefficients for the 

signal x  are equivalent to the sum of the CWT coefficients for each component of x . In 

fact, the CWT is a convolution of a signal with a set of wavelets. Therefore, the 

foundation of this property is actually the linearity of integration. The property can be 

derived from 
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


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

















   





 



. (1.24) 

Based on Equation 1.24, the CWT linearity property can be expressed as 

    
1 1

, ,
N N

i i i i

i i

W x u s Wx u s 
 

 
     

 
  . (1.25) 

It can be used to analyze the multi-component signal. The linearity is used in the periodic 

error compensation algorithm to obtain periodic error amplitudes (or weightings). 

 

1.3.7 DISCRETE TIME CONTINUOUS WAVELET TRANSFORM 

 The data collected from the real world is always a digital signal. Measured 

displacement data by a heterodyne interferometer, for instance, is collected at a very high 
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sampling rate (typically 50 – 100 kHz), but it is still discrete signal. For a discrete signal, 

the continuous wavelet transform shown in Equation 1.14 cannot be directly applied. 

Instead, it must be transformed to a discretized form. For a digital signal  1x M  which 

has M  data points, the discrete time continuous wavelet transform (DTCWT) can be 

described as 

    
 *

' 1

'
, '

M

n

n n t
Wx n s x n s t

s




   
    

  
 , (1.26) 

where  x n  is the n
th

 discrete data point, 
*  is the mother wavelet, M  is the number of 

total data points in the signal, and t  is the sampling time.  
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CHAPTER 2 

PERIODIC ERROR COMPENSATION IN HETERODYNE INTERFEROMETRY 

 

Since first introduced in the early 1960s, the displacement measuring interferometer has 

provided high accuracy, long range and high resolution for dimensional metrology. The 

interferometer is used in a number of non-contact displacement measurement applications 

including: 1) position feedback of lithographic stages for semiconductor fabrication; 2) 

transducer calibration; and 3) position feedback/calibration for other metrology systems. 

In these situations, Heterodyne (two-frequency) Michelson-type interferometers with 

single, double, or multiple passes of optical paths is a common configuration choice. 

These systems infer changes in the selected optical path length difference by monitoring 

the optically induced variation in the photodetector, where current is generated 

proportional to the optical interference signal. The current is processed and converted to 

voltage and the phase is determined by phase-measuring electronics. The measured phase 

change is nominally linearly proportional to the displacement of the measurement target, 

based on ideal performance of the optic elements. 

 

2.1 BACKGROUND 

 The use of monochromatic light as a standard technique for displacement 

measurement was first introduced in 1892. Interferometry was used for the measurement 

of the standard meter by Albert Michelson and Rene Benoit. A schematic of the 
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Michelson interferometer is shown in Figure 2.1. Beam 1 is from an extended light 

source, and split by a beam splitter with semi-reflective coating on the surface. Two 

separated beams travel to and reflect back from two mirrors, M1 and M2 (M2 can move 

to generate an optical path difference), and then recombine at the same beam splitter. The 

interference pattern of the recombined beam is imaged on the screen. 

 

Figure 2.1 Schematic of the Michelson interferometer. 

 

After the development of the He-Ne laser in the 1960s, interferometry has been 

widely used for precision length and displacement measurement in many demanding 

applications requiring high resolution and accuracy. In past five decades, the basic 

configuration of the interferometer, developed by Michelson, remains the same. The 

modern interferometer has been developed with the improvement in laser source, optics, 
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and signal processing. The extended light source is replaced by the laser, generating 

monochromatic light, and the screen is replaced by a photodetector, with an added digital 

electronics behind to interpret the measurement signal (irradiance variation or phase 

change) and to convert fringe to displacement. 

Currently, polarization encoded heterodyne interferometers have become a 

standard instrument for displacement measurement. Its difference from a homodyne 

(single frequency) interferometer is that the laser source in a heterodyne interferometer 

emits two slightly different frequencies. This difference introduces a number of 

advantages and results in improved accuracy. 

 

2.2 PROBLEM DEFINITION 

 Periodic error is an intrinsic error among various error sources in the heterodyne 

interferometer. It is caused by optical frequency mixing, which results from non-perfect 

optical component alignment. Its frequency varies with the target velocity, and its 

amplitude may fluctuate due to the use of fiber-coupled laser source. 

To compensate this error, real-time digital error measurement may be applied, as 

it requires no change to the optical system, which allows convenient implementation for 

existing systems. Previous research has demonstrated a frequency domain approach to 

periodic error identification [21-23], where the periodic error is measured by calculating 

the Fourier transform of the time domain data collected during constant velocity target 

motion. But, the limitation of this method is also apparent. For non-constant velocity 

motion, the Doppler frequency varies with velocity. In this case, the frequency domain 

approach is not well-suited because the Fourier transform assumes stationary signals.  
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Another time domain regression algorithm can compensate the periodic error in 

both constant and non-constant velocity motions [24, 25]. Since it uses a mathematical 

model for first and second order periodic error, however, it cannot be used to compensate 

higher order periodic error. Moreover, fiber delivery from the laser to interferometer is 

used to limit optical alignment and isolate heat sources, but it also leads to periodic error 

amplitude fluctuation, which is difficult to compensate using existing methods. 

Therefore, an alternative tool, for example, wavelet analysis used in this work, is 

needed to overcome this issue. 

 

2.3 RESEARCH OBJECTIVE 

A wavelet-based analysis is a novel approach in the study of periodic error 

measurement and compensation and enables the analysis of non-constant velocity 

motions. This research results in a new wavelet analysis algorithm to measure and to 

compensate periodic error for both constant and non-constant velocity target motions. 

This algorithm is able to compensate the periodic error with varying amplitude and 

higher order. The algorithm is implemented on the hardware. 

 

2.4 HETERODYNE INTERFEROMETER 

For displacement measurement, two types of the Michelson interferometer are 

commonly used. One is the homodyne interferometer, which uses a single frequency laser 

head and converts the intensity variation induced by interferences into displacement. On 

the other hand, a heterodyne interferometer uses a two-frequency laser source and 
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measures displacement by identifying the phase shift between the reference and 

measurement signals. 

 A Michelson-type interferometer is implemented with a certain configuration 

(signal, double, or multiple passes of the optical path). The single pass configuration prior 

to the introduction of two interferometer types will be described. In a single pass 

configuration (shown in Figure 2.2), a beam with both vertical and horizontal polarization 

components splits at a polarizing beam splitter (PBS). The horizontally polarized beam is 

transmitted while the vertically polarized beam is reflected. The transmitted beam 

(measurement beam) propagates forward to the moving retroreflector and then backward 

to the polarizing beam; the reflected beam (reference beam) is reflected at the fixed 

retroreflector. The two measurement and reference beams are recombined at the PBS and 

brought into interference after passing through a linear polarizer (LP). The phase change 

of the measurement beam, single , is proportional to double displacement of the moving 

retroreflector, 

 2single d  , (2.1) 

where d  is the displacement of the target. 

The optical resolution of the signal pass system is half of the laser wavelength. 

Thus, in the single pass interferometer, the target displacement can be determined by 

 
2

fringed N


 , (2.2) 

where fringeN  is the number of fringes,   is the wavelength. 
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Figure 2.2 Schematic of a single pass interferometer. 

 

The basic heterodyne interferometer consists of a laser source (two-frequency 

beam), a polarizing beam splitter, retroreflectors, and a photodetector. A schematic of a 

single pass heterodyne interferometer is shown in Figure 2.3. The laser source typically 

contains two slightly distinct optical frequencies with a known split frequency. They are 

generated by either placing a magnetic field around the laser tube to obtain two 

frequencies, or combining a single frequency laser with an acousto-optic modulator, 

which produces another beam with a modulated frequency [26]. The two optical  

frequencies are orthogonally polarized and do not interfere, so they can be separated. One 

frequency is used in the reference arm, while another one is used in the measurement arm. 

 An initial beam splitter splits part of the laser output, and a polarizer causes 

interference between the two beams. This interference is detected at the reference 

detector, generating an optical reference. The main beam travels to PBS, where the 
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frequency 1f   reference beam is reflected and then travels to the fixed retroreflector and 

back, while the frequency 2f   measurement beam transmits through the beam splitter and 

then travels to the moving retroreflector and back. The two beams are combined again 

within the PBS, where interference is created by passing these two collinear, orthogonal 

beams through this polarizer aligned at 45°. The irradiance can be then observed at the 

measurement photodetector. 

 

 

Figure 2.3 Schematic of heterodyne interferometer setup. Optical components include: 

retroreflectors (RR), polarizing beam splitter (PBS), polarizers, half wave plate (HWP), 

and photodetectors. 

 

Heterodyne interferometer advantages: 

 System has directional sensitivity. 

 One optical reference can be used for multiple interferometers. 

 System is insensitive to laser power fluctuations and stray light. 

 System can measure fast-moving targets. 

 System is adaptable to multipass configurations. 
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Heterodyne interferometer disadvantages: 

 Two-frequency source with a split frequency is needed, increasing 

hardware costs. 

 High speed signal processing is required. 

 Polarization manipulation leads a more complex alignment procedure and 

costly components. 

The two light waves are both linearly polarized, and have different amplitudes 

and frequencies. They are described by 
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where  2 1,2i if i    are the different angular frequencies of the light waves, E  is 

the light wave amplitude. According to the Principle of Superposition, when they 

interfere, the resultant wave, E , is given by the sum of the two light waves, 1E  and 2E , 
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The resultant irradiance, I , is proportional to the square of the amplitude, 
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, (2.5) 

where 1 2     . There is a frequency difference  , referred as to split or beat 

frequency, which results from two slightly different optical frequencies. In the 

heterodyne interferometer, the irradiance is measured by the fluctuation at the split 
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frequency. The displacement of the moving target causes phase change,  . 

Measurement of this phase change is proportional to the displacement. The output of the 

heterodyne interferometer occurs at some frequency around the split frequency. 

Therefore, the sign of the frequency shift can describe the direction of the motion.  

 

2.5 PERIODIC ERROR 

 There are many well-known error sources that can degrade the accuracy of the 

system [27-31]. These include cosine error, Abbe error, refractive index uncertainty, 

thermal drift and deadpath. These errors can be compensated by setup changes or 

additional metrology approaches. Other errors, such as electronics error and source 

vacuum wavelength uncertainty, are usually small. Frequency mixing in heterodyne 

interferometer resulting from non-ideal performance of the optical system causes periodic 

errors which are superimposed on the measured displacement signal. For heterodyne 

interferometers, both first and second order periodic errors occur, which correspond to 

one and two periods per displacement fringe. Periodic error is an intrinsic error in the 

heterodyne interferometer that can limit the accuracy to the nanometer level (or higher) 

depending on the optical setup. This is true when the interferometer is operated in 

vacuum to minimize the error associated with refractive index uncertainty due to 

uncompensated fluctuations in temperature, pressure, and humidity. While any of these 

error sources may dominate in a given situation, the focus of this study is periodic error. 
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2.5.1 INTRODUCTION 

 Periodic error is a noncumulative error in the measured displacement from 

spurious interference signal arising from source mixing and beam leakage. Imperfect 

separation of two frequencies into the measurement and reference beam produce periodic 

error, or errors of some cycles per wavelength of optical path change. From another 

perspective, the measured moving target displacement within superimposed periodic 

error can be treated as cyclically oscillating about the nominal displacement, typically 

with amplitude of several nanometers [32]. 

 Ideally, the phase-to-displacement relationship is assumed to be linear, but due to 

the spurious interference signal, in practice, there exists a cyclic deviation and this 

assumption becomes incorrect since the relationship is nonlinear. 

Periodic error occurs at a predictable interval. First order periodic error has one 

harmonic per full cycle of phase change and second periodic error has two harmonics per 

full cycle of phase change, etc. 

Periodic error characteristics can be described as: 

 Periodic error does not scale with measured displacement. Source mixing 

and frequency leakage cause periodic error superimposed in the true 

displacement to be predictable. 

 Periodic error is a function of interferometer geometry and the source 

wavelength, detectable as first, second, and higher spatial harmonics as the 

target moves. 

 Each order of periodic error is caused by different mixing errors and 

alignment. 
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 Sources of frequency mixing and leakage include non-orthogonality between the 

linear beam polarization, elliptical polarization of one beam, imperfect optical 

components, parasitic reflections from the surface, and mechanical misalignment in the 

interferometer [33]. For a motion of a moving retroreflector in a single pass 

interferometer, for example, Figure 2.4 displays a simulated displacement of this motion 

from 25 µm to 30 µm with a velocity of 50 mm/min in 0.006 s, and superimposed 

periodic error with a first order magnitude of 4 nm and second order magnitude of 2.5 nm. 

The nominal constant velocity motion is extracted to reveal only the remaining periodic 

error component. 

 

Figure 2.4 (a) Simulated linear displacement at 50 mm/min and periodic error with 

magnitudes of 4 nm and 2.5 nm for first and second order, respectively. (b) Periodic error 

amplitudes in the frequency domain. 

 

 

 

(a) 

(b) 
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2.5.2 LITERATURE REVIEW 

 Periodic error is a fundamental accuracy limitation for the heterodyne Michelson-

type interferometer. It can limit the interferometer accuracy to the nanometer or 

subnanometer level. The measurement and reference beams are linearly polarized and 

mutually orthogonal, separated and recombined perfectly at polarizing beam splitter. 

Errors and defects in the optical system components cause source mixing and frequency 

leakage between the two beams. This frequency mixing causes periodic error 

superimposed on the measured displacement signal, which is extensively explored in the 

literature. 

 Fedotova [34], Quenelle [35], and Sutton [36] first investigated periodic error in 

heterodyne Michelson-type interferometers. Subsequent studies of periodic error in 

displacement measuring interferometry and its reduction have been reported in many 

publications [21, 22, 24-31, 33, 37-106]. They are divided into the following categories: 1) 

error sources [26-29, 37-39]; 2) refractive index in air [40-46]; 3) periodic error 

description and modeling [47-65]; 4) periodic error measurement under various 

conditions [22, 66-73]; 5) periodic error correction and compensation [21, 24, 25, 33, 56, 

74-101]; 6) uncertainty evaluation of interferometric displacement measurement [30, 31]; 

7) measurement applications [102-106]. 

 Optical mixing is a major source causing periodic error in heterodyne Michelson-

type interferometers that rely on polarization coding. Optical mixing refers to part of one 

arm frequency leakage into the other of the interferometer. This includes imperfect 

optical components, mechanical misalignment between interferometer elements, non-

orthogonality of linear beam polarizations, ellipticity in the nominally linear polarization 
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of the individual beam, deviation of the optics from ideal behaviors, and parasitic 

reflections from individual surface. 

 Further, optical mixing can be subdivided into two kinds based upon the 

mechanism of mixing, polarization mixing and frequency mixing [27]. For polarization 

mixing, it is due to the imperfect separation of the beams on their polarization (due to 

leakage in the beam splitter). On the other hand, frequency mixing is due to 

contamination by correct polarization but incorrect frequency for light. It can be caused 

by imperfect angular alignment of the polarization states of the beam relative to the beam 

splitter direction, or ellipticity in polarization states for the individual beam. Each passage 

through the polarizing beam splitter attenuates the leakage term for polarization mixing, 

while in frequency mixing, repeated passage through the beam splitter does not affect the 

mixing. In both kinds of mixing, the consequence is always contamination from one 

beam in the interferometer into another. 

 In spite of the source of the optical mixing, its effect can be described in Figure 

2.5. The interaction of the two beams with the PBS in a practical interferometer result in 

an imperfect separation of the two frequencies. Beam 1 with frequency 1f  and amplitude 

01E  is contaminated by a small component with frequency 2f  and amplitude 21 , while 

beam 2 with 2f  and 02E is contaminated by a component with 1f  and 12 . The resultant 

output beam has four components instead of two in the ideal interferometer. The resultant 

irradiance can be expressed by 
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Four components combine and produce eight terms. The DC terms are the irradiance of 

four beams, which are self-interference. The quasi-DC terms are low-frequency 

irradiance variations, which originate from interference between the main component in 

one beam and the contamination component in the other beam with the same frequency. 

It is identical to the case in homodyne interferometer, and shows a small variation close 

to DC. In most cases they can be considered as DC terms unless   is close to  . The 

remaining three terms,  
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, are 

around the split frequency. The nominal signal results from the interference between two 

beams, and it is the desired signal. The first harmonic term arises from the interference of 

the desired beam and the mixing term in a given arm. The interference result is at the split 

frequency since they are at different frequencies 1f  and 2f . This term can be 

distinguished from the nominal signal by its independence of phase. The second 

harmonic term arises from the interference between two mixing terms, 2

21

i te  
 and 

1

12

i te  
. This result shows a negative phase dependence. Its amplitude is much smaller 

than that of the nominal signal. The first and second order periodic errors, which are 

derived from the first and second harmonic terms, can be approximately given by 
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 sin   as a simplified model of a pure sine wave [22]. When the heterodyne 

interferometer system is under high-speed displacement and amplifier nonlinearity is 

considered, high order periodic errors will emerge as Doppler shifted terms; these errors 

can also be modeled as pure sine waves [48]. For convenience, each order of periodic 

error is expressed in terms of  sinA t  in the following discussions, where t  is the time, 

and   is the phase. 

 

Figure 2.5 Interferometer showing optical mixing. 

 

As discussed above, the nominal, first harmonic, and second harmonic terms are 
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. If the measured moving 

retroreflector is at a constant velocity, v , then   can be described as 
2 Nv

t



, where 

N  is the number of passes in the interferometer. In this case, 
2 Nv


 is a constant. 
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Therefore, these three terms are at constant frequencies of 
2 Nv




  ,  , and 

2 Nv



  . The traditional frequency domain approach [21-23] can be applied here 

since they are all stationary signals. The periodic error amplitudes are determined by 

computing the Fourier transform of the time domain displacement data. 

 Each order of the periodic error can be described as a simplified mathematical 

model, a pure sine wave  sinA t , where t  is the time, A  is the amplitude, and   is the 

phase. For example, for a periodic error, which consists of only first and second order 

periodic errors, can be expressed as    1 1 2 2sin sinA t A t  . Figure 2.6 shows first and 

second order periodic errors in both the time and spatial (polar coordinate) domains. The 

frequency, 1f , of the first order periodic error is half of the second order error frequency, 

2f . Thus, the phase, 1 , of first order periodic error is half of the second order phase, 2 . 

 Higher order periodic error holds the similar relationship to the first order periodic 

error. In general, for the k
th

 order periodic error,  sink kA t , the frequency, 1kf kf , and 

the phase 1k k  . 

 

 

Figure 2.6 First and second order periodic error in time and spatial domain. 
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2.6 WAVELET-BASED PERIODIC ERROR COMPENSATION ALGORITHM 

 This section describes a detailed real-time periodic error compensation algorithm 

design based on DTCWT, where the complex Morlet wavelet is used as the mother 

wavelet. It includes periodic error identification and reconstruction. 

 

2.6.1 DETREND OF THE SIGNAL 

The algorithm starts with storing the latest N data points in a memory array, 

 1X N , which is used as the signal to conduct the DTCWT. First, detrending  

 1X N  is required to eliminate the main displacement component (subtracting the line 

connecting the beginning and ending points of the signal). This step is required because 

the magnitude of the periodic error is typically on the nanometer level while the overall 

displacement is usually on the micrometer level or larger. A new array  1X N  is 

obtained after detrending the measured data  1X N . 

 

2.6.2 APPLICATION OF THE WAVELET TRANSFORM 

 The DTCWT (Equation 1.26) is applied to the signal  1X N  using the 

following five steps:  

1) substitute the data points in  1X N for x in Equation 1.26; 

2) select the mother wavelet to be the complex Morlet wavelet to produce 

child wavelets at various scales; 

3) set the shift parameter n to N (for the last point of the array); 
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4) build a scale array  1s M  to produce the child wavelets where M is the 

total integer number of scales used in the DTCWT calculation; 

5) using Equation 1.26 calculate the wavelet coefficient of the N
th 

data point 

in the array. 

Because the complex Morlet wavelet has complex values the resulting 

coefficients from the DTCWT calculation in Equation 1.26 will also be complex. 

Therefore, after applying the complex Morlet wavelet to the signal, the resulting wavelet 

transform is a complex array along the scale direction (see Figure 2.7).  

 

Figure 2.7 DTCWT coefficients calculation at n N  and scale  1s M . 

 

2.6.3 IDENTIFICATION OF THE RIDGE AND PHASE 

 The modulus and the phase for each complex coefficient can be calculated as: 
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    , ,abs n s Wx n s  and (2.7) 

  
  
  

Im ,
, arctan

Re ,

Wx n s
n s

Wx n s


 
  

 
 

, (2.8) 

where Im and Re represent the imaginary and real parts of the DTCWT coefficient, 

respectively. For the modulus  ,abs N s  at  'X N  along the scale array, the maximum 

value of the DTCWT coefficient or “ridge” can be extracted. The ridge is defined as the 

location where the modulus reaches its local maximum at scale ridges  [107]. When the 

modulus is maximal at the ridge, the frequency of the wavelet scaled by ridges  shows the 

greatest match with the convolved periodic error signal [108]. 

 This ridges  equals 
1s , which corresponds to the frequency of first order periodic 

error. Therefore, the phase  , ridgeN s  is the first order periodic error phase at  'X N . A 

phase array  1 N  is used to store this phase. A new point is added by completing two 

steps: 1) remove  1  and shift  2 N  forward to  1 1N   and 2) set 

   , ridgeN N s  . Subsequently, the array  1 N  has the first order periodic error 

phase information for the latest N data points. Based on the periodic error model defined 

in Section 2.5, with the phase array  1 N  and an assumed unit amplitude, the k
th

 

order periodic error is    sin sink kA k  . It is located at the scale 1 /ks s k  since its 

frequency is 1kf kf  and the scale is inversely related to the frequency. The k
th

 order 

periodic error for the latest N points is 

            1 sin 1 ,sin 2 , ,sinkr N k k k N   , (2.9) 
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which is called the “reference periodic error”. 

 

2.6.4 IDENTIFICATION OF THE AMPLITUDE 

 The next step is to determine the amplitude of different periodic error orders. The 

entire periodic error  1e N  is a linear combination of m order periodic errors, which 

can be expressed as 

    
1

1 1
m

j j

j

e N A r N


 , (2.10) 

where  1jA j m  is the periodic error amplitude on the j
th

 order, which is to be 

quantified. 

Assuming that the detrended array,  1X N , is exactly the periodic error
1
, the 

assumed sinusoidal combination of periodic errors  1e N  can be said to be equivalent 

to  1X N  according to Equation 2.10 to obtain 

    
1

1 1
m

j j

j

X N A r N


  . (2.11) 

 The discrete form of the CWT in Equation 1.26 can then be used on both sides of 

Equation 2.11. Equation 2.11 is effectively substituting the actual periodic error for x on 

one side of the equation and substituting the periodic error model on the other side of the 

equation. Once the values are substituted the complex Morlet wavelet can be used to 

calculate the coefficients by setting the location to be n N , and using scales  1s M . 

                                                           
1
 If there is a difference between the detrended signal and the actual periodic error due to imperfect 

detrending, this causes an error in the algorithm results. 
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The linearity property of the CWT introduced in Equation 1.25 can then be used to 

construct the following result: 

          
1

' 1 , 1 1 , 1
m

j j

j

WX N N s M A Wr N N s M


    , (2.12) 

where     ' 1 , 1WX N N s M  has already been calculated. For m order reference 

periodic errors, another m DTCWT calculations about     1 , 1jWr N N s j m  are 

required. Amplitudes  1jA j m  include m unknowns, which require at least m 

equations to be solved. Recall that the frequency of j
th

 order periodic error is related to 

the scale 1 /js s j , so the DTCWT results   ' 1 , iWX N N s  and   1 ,j iWr N N s at 

scale is  are extracted for use  , 1i j m . Let   ' 1 ,i ic WX N N s , 

  1 ,ij j id Wr N N s , , 1i j m . The following set of equations can then be obtained 

from Equation 2.12: 

 

1
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               

. (2.13) 

The amplitudes  1jA j m  can therefore be determined. 

 

2.6.5 RECONSTRUCTION OF PERIODIC ERROR 

The magnitude M  of the periodic error at the latest sampling time is calculated 

using 

   
1

sin
m

i

i

M A i N


 , (2.14) 
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where   siniA i N  is i
th

  order reconstructed periodic error at n N . Finally, the 

magnitude M is subtracted from the original displacement data to determine the 

compensated displacement data point. 

 Figure 2.8 displays the sequence of calculations required for compensating one 

displacement data point in the DTCWT algorithm. 

 

Figure 2.8 Calculations to implement the periodic error compensation algorithm. 

 

2.7 APPLICATION ON CONSTANT VELOCITY MOTION 

 In this section, simulated displacement data with superimposed periodic error are 

used to assess the validity of the wavelet-based compensation algorithm. The simulated 

data is first introduced. Then identifications of periodic error ridge, phase and amplitude 



 

37 

are provided in sequence. Finally, overall periodic error compensation performance of the 

wavelet-based algorithm is shown. In order to demonstrate the capability of the wavelet-

based approach to compensate periodic error, it is compared to the traditional Fourier-

based approach. 

 

2.7.1 SIMULATED DISPLACEMENT DATA 

The simulated displacement is designed to coincide with the collected data in a 

real heterodyne interferometer. But more ideally, only the first and second order periodic 

errors are considered in the simulated data. The interferometer parameters used in the 

simulation are: 

1) He-Ne laser wavelength of   = 633 nm; 

2) a fold factor of FF = 2, which describes the number of light passes 

through the interferometer (the first order error completes a full cycle in 

633/2 = 316.5 nm, while the second order error requires 633/4 = 158.3 

nm); 

3) a sampling frequency was 62.5 kHz. 

A typical simulated signal used in the simulations is a linear displacement signal where 

first and second order periodic errors (amplitudes 4 nm and 2.5 nm, respectively) are 

superimposed during a constant velocity (50 mm/min) displacement as shown in Figure 

2.9. 

The following sections discuss the results of ridge detection, amplitude detection, 

and a comparison between the DTCWT and frequency domain approaches. 
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Figure 2.9 Simulated linear displacement at 50 mm/min and periodic error with 

magnitudes of 4 nm and 2.5 nm for first and second order. 

 

 

2.7.2 RIDGE DETECTION 

 Identifying periodic error frequency components first requires ridge detection 

using Equation 2.7. The performance of the ridge detection portion of the algorithm is 

evaluated using the simulated displacement signal shown in Figure 2.9. The measured 

DTCWT ridge for this signal is displayed in Fig. 2.10 along with the result of the same 

algorithm implemented offline. The ridge detected from the real-time algorithm is at the 

integer scale 190 1 . The algorithm is simulated in real-time. It means that each time a 

new data point is received and operated by the algorithm; only after a compensated point 

is outputted, next new data point will be accepted. 
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Figure 2.10 The measured DTCWT ridge for the error signal. 

 

2.7.3 AMPLITUDE DETECTION 

 For the simulations in this section, a simulated constant velocity motion (50 

mm/min) with first order periodic error amplitude of 4 nm and second order periodic 

error amplitude of 2.5 nm is used just as in Section 2.7.2. To identify the periodic error 

amplitudes under this constant velocity condition, two methods are compared at every 

sampling instant. The first method is a fast Fourier transform (FFT) method similar to 

[21-23]. The FFT of the error is computed after detrending the nominal displacement 

stored in the displacement array  1X N  and applying a Hanning window. The second 

method is the DTCWT-based algorithm. This algorithm is applied to calculate first and 

second order periodic error amplitudes (Equation 2.13, where m = 2 because only first 

and second order periodic errors exist) after obtaining the modulus and phase information 

(Equations 2.7 and 2.8) and determining the reference periodic errors (Equation 2.9). The 
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measured amplitudes are displayed in Figure 2.11. The frequency domain approach result 

is smoother since windowing reduces the spectral leakage. The FFT assumes that the data 

is infinite and stationary. However, the signal used in the algorithm is finite (200 points, 

which is the same amount used in the DTCWT algorithm) and shifts forward by one data 

point each sampling interval. It actually measures the average amplitude over the signal. 

For first order periodic error, the true value of its amplitude is 4 nm. The average value 

from the FFT approach is 3.92 nm; the amplitude measured by the DTCWT approach is 

4.25 nm. For second order periodic error, the true value is 2.5 nm. The amplitudes 

measured by the FFT and DTCWT approaches are 2.34 nm and 2.31 nm, respectively. 

The two approaches show good agreement for amplitude measurement. 

 

2.7.4 PERIODIC ERROR COMPENSATION 

 In these tests, the performance of the entire DTCWT algorithm (from receiving a 

new data point to providing a compensated data point) is examined. Again, the simulated 

50 mm/min constant velocity motion with superimposed periodic errors is used. The time 

domain periodic error compensation result is displayed in Figure 2.12. The root-mean-

square error is reduced from 3.32 nm to 0.49 nm for both two methods. Figure 2.13 

displays the compensation result in the frequency domain. After compensation, the 

amplitudes of the first and second order periodic errors are reduced from 4 nm to 0.24 nm 

(0.27 nm for the FFT method) and from 2.5 nm to 0.30 nm (0.27 nm for the FFT 

method), respectively. These similar results indicate that the DTCWT algorithm has the 

capability to accurately compensate the periodic error. 
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Figure 2.11 The measured amplitudes for the FFT and DTCWT approaches. 

 

Figure 2.12 The result of periodic error compensation (both DTCWT and FFT 

approaches) in the time domain. 
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Figure 2.13 (a) The result of periodic error compensation in the frequency domain is 

presented. (b) Zoomed view of the compensation result for first order periodic error. 

(a) 

(b) 
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Figure 2.13 (continued) (c) Zoomed view of the compensation result for second order 

periodic error. 

 

 

2.8 EXTENDED APPLICATION ON NON-CONSTANT VELOCITY MOTION 

One major advantage of the novel wavelet-based approach is that it can 

compensate periodic error during non-constant velocity motion. Not only did the wavelet-

based approach demonstrate better results for constant velocity motions but the 

traditional frequency domain approach cannot be applied to non-constant motion profiles. 

This is because the FFT based approach to measuring periodic error amplitude assumes 

stationary signals during the period covered by the measurement array. However, for 

non-constant velocity motion, the periodic error time period and frequency is not constant 

although the spatial period is constant [25]. This section extends the application of this 

wavelet-based approach to non-stationary signals. Both simulated and experimental non-

constant velocity motions with constant periodic error amplitudes are discussed to 
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validate the effectiveness of the novel algorithm. Also, compensation results of varying 

amplitude periodic errors and higher order periodic errors imposed in the displacement 

are displayed. Besides, the result of algorithm implementation on the hardware is shown. 

 

2.8.1 COMPENSATION OF PERIODIC ERROR IN THE SIMULATED NON-

CONSTANT VELOCITY MOTION 

 The simulated displacement here used exactly same interferometer parameters as 

in Section 2.7.1. In this case, however, the velocity of the target motion is not constant. 

The non-stationary signal used in the simulation is an accelerating motion signal where 

first and second order periodic errors (amplitudes 4 nm and 2 nm, respectively) are 

superimposed during a constant acceleration (3000 mm/min
2
) displacement as shown in 

Figure 2.14. 

 

Figure 2.14 Accelerating motion at 50 mm/min
2
 and periodic error with magnitudes of 4 

nm and 2.5 nm for first and second order. 
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The results of ridge detection, phase detection, amplitude detection, and overall 

periodic error compensation are shown in Figures 2.15-17. 

 The ridge is first detected using Equation 2.7. The performance of the ridge 

detection portion of the algorithm is evaluated using the simulated displacement signal 

shown in Figure 2.14. The measured DTCWT ridge for this signal is displayed in Fig. 

2.15. The decreasing ridge shown in the figure means the periodic error frequency and 

the motion velocity are increasing since the frequency is inversely related to the scale in 

the CWT. 

 

Figure 2.15 The measured DTCWT ridge for the error signal (simulated non-constant 

velocity motion). 

 

 

 The periodic error amplitudes are then identified using the DTCWT approach. 

The true values for first and second order periodic errors are 4 nm and 2 nm .The 
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measured amplitudes are shown in Figure 2.16, with the standard deviations of 0.32 nm 

and 0.17 nm for first and second orders, respectively. 

 

Figure 2.16 The measured amplitudes for the DTCWT approach (simulated non-constant 

velocity motion). 

 

 

 The overall result of time domain periodic error compensation in real-time using 

the DTCWT algorithm is displayed in Figure 2.17. The root-mean-square error is reduced 

from 3.16 nm to 0.56 nm by 82.3%. 

 

2.8.2 COMPENSATION OF PERIODIC ERROR IN THE EXPERIMENTAL NON-

CONSTANT VELOCITY MOTION 

Experimental data of a small stage was collected for a displacement of 300 µm with 

parabolic velocity profile (due to constant acceleration of 3000 mm/min
2
). Figure 2.18 

shows the displacement and periodic error, which was isolated by subtracting a least 
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Figure 2.17 The result of periodic error compensation in the time domain (simulated non-

constant velocity motion). 

 

 

squares fit polynomial from the displacement signal. The low frequency drift is caused by 

an imperfect polynomial fit or non-constant acceleration. The source of this low 

frequency content may also generically result from vibration or refractive index variation, 

for example. 

Figure 2.19 shows the identified ridge, which is decreasing since the target is 

accelerating. 

Figures 2.20-21 displays the compensated periodic error for the motion. The 

DTCWT algorithm only removes the reconstructed periodic errors from the 

displacement. Other errors are not compensated and remain as residuals. These errors are 

implicitly included in the compensation calculation, as they cannot be eliminated with a 

low-order polynomial fit. This leads to spikes at some locations in the compensated 
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result. Overall, the compensated result is results in significant periodic error 

compensation and reduces the RMS error by approximately 75.2%. 

 

Figure 2.18 Experimental displacement for a 50 mm/min
2
 constant acceleration and 

periodic error. 

 

Figure 2.19 The measured DTCWT ridge for the error signal (experimental non-constant 

velocity motion). 
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Figure 2.20 The result of periodic error compensation in the time domain (experimental 

non-constant velocity motion). 

 

 

Figure 2.21 Zoomed view of periodic error compensation result (experimental non-

constant velocity motion). 
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2.8.3 COMPENSATION OF PERIODIC ERROR WITH VARYING AMPLITUDES 

Fiber-coupled laser sources present the problem that periodic error amplitude can 

fluctuate due to changes in frequency mixing. The DTCWT approach is also applied to a 

simulated non-constant velocity motion where the amplitudes of first and second order 

periodic errors are varying. Again, the displacement is designed based on the same 

interferometer parameters in Section 2.7.1 to coincide with the real data. The simulated 

displacement and superimposed first and second order periodic errors are shown in 

Figure 2.22. The amplitude of first order periodic error is varying from 4.2 nm to 4.8 nm, 

and the one of second order from 1.8 nm down to 1.2 nm. 

 The simulated motion is increasing, which can be observed from the descending 

trend of detected ridge shown in Figure 2.23. The varying amplitudes are measured and 

displayed in Figure 2.24, with the standard deviations of 0.30 nm and 0.17 nm for first 

and second orders. 

 Finally, the overall compensation result in the time domain is shown in Figure 

2.25. The root-mean-square error is reduced from 3.36 nm to 0.49 nm by 85.4%. 

 

2.8.4 COMPENSATION OF PERIODIC ERROR WITH HIGHER ORDERS 

 Typically, first and second order periodic errors occur in the measured target 

displacement by heterodyne interferometer. In some cases, even higher order periodic 

errors are imposed in the displacement. The novel wavelet-based algorithm can be also 

used to compensate the periodic error with order higher than two. This section shows an 

example of compensating periodic errors up to third order.  
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Figure 2.22 Simulated displacement for a 3000 mm/min2 constant acceleration and 

periodic error with varying amplitudes. 

 

 

Figure 2.23 The measured DTCWT ridge for the error signal (varying amplitudes). 
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Figure 2.24 The measured amplitudes for the DTCWT approach (varying amplitudes). 

 

 

Figure 2.25 The result of periodic error compensation in the time domain (varying 

amplitudes). 
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First, second and third order periodic errors (amplitudes of 4 nm, 2.5 nm and 1 

nm) in a simulated displacement (1800 mm/min
2
 acceleration) are shown in Figure 2.26. 

Their amplitudes are measured, where the standard deviations are 0.45 nm, 0.11 nm, and 

0.16 nm (Figure 2.27). The high order periodic error compensation result is displayed in 

Figure 2.28. The root-mean-square error is reduced from 2.74 nm to 0.29 nm by 89.4%. 

 

Figure 2.26 Simulated displacement for a 1800 mm/min2 constant acceleration and 

periodic error with high orders. 

 

 

2.9 HARDWARE IMPLEMENTATION 

 After validating the algorithm for compensating periodic error in different 

situations on the software, it is also implemented on the hardware to demonstrate that it 

can be finally applied in practice. The hardware used here is a field-programmable gate 

array (FPGA), which is an integrated circuit designed to be configured by a customer or a 

designer after manufacturing. It is common in digital signal processing algorithm 
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Figure 2.27 The measured amplitudes for the DTCWT approach (high orders). 

 

Figure 2.28 The result of periodic error compensation in the time domain (high orders). 

 

 



 

55 

development, since it takes advantage of hardware parallelism (it can accomplish many 

calculations per clock cycle), and has no fabrication cost (it can program repeatedly). 

 The algorithm is programmed in National Instruments (NI) FPGA module, and 

implemented on DSP-focused Xilinx Kintex-7 FPGA (NI PXIe-7975R FlexRIO FPGA 

Module, specifications on Table 2.1), which is installed on NI PXIe-1085 PXI Express 

Chassis (Figure 2.30). PXI is a rugged PC-based platform for measurement and 

automation systems. Data and program can be downloaded from PC to PXI system. Real-

time operating system is installed on the PXI system. PXI system can run real-time 

programs on FPGA module. 

 

Table 2.1 NI PXIe-7975R specifications. 

FPGA Kintex-7 XC7K410T 

LUTs 254,200 

DSP48 Slices 1,540 

Embedded Block RAM 28,620 

Default time base 40 MHz 

Data transfers DMA, interrupts, programed I/O 

Onboard memory size 2 GB single bank 
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Figure 2.29 NI FPGA module and PXI platform. 

 

From receiving a new data point to outputting a compensated data point, the 

algorithm is operated in 545 clock cycles on the FPGA board. The clock is 200 MHz. 

Therefore, for each new point, it costs 2.725 µs to output the compensated point, which 

means the algorithm has a 2.725 µs time delay for compensating periodic error in real-

time. The sampling frequency used here remains 62.5 kHz. This implies the time interval 

between two neighboring data points is 16 µs. In this case, the algorithm can be 

completed for current point before next point arriving. 

 Figure 2.31 shows the periodic error compensation result for a constant velocity 

motion. The RMS error is reduced by approximately 91.8%. 
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Figure 2.30 The result of periodic error compensation in the time domain (hardware). 
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CHAPTER 3 

STRUCTURAL HEALTH MONITORING IN DRY CASK STORAGE 

 

In this chapter, another application of wavelet analysis will be introduced and 

investigated. Used nuclear fuel will be stored in dry cask storage for 20 to more than 100 

years after moving from spent fuel pools. To avoid any corrosion or degradation, fuel 

must be dried before storing for such a long period. During drying process, the conditions 

of failed fuel rods in dry cask storage should be monitored to acquire any possible 

structure change in real-time. An integrated approach based on wavelet analysis will be 

developed to monitor the conditions and detect the changes. 

 

3.1 BACKGROUND 

Currently, there are nearly 70,000 t of used nuclear fuel in spent fuel pools or dry 

cask storage increasing by nearly 2,000 t per year. After being used in a reactor, this fuel 

is stored for 3 to 5 years in spent fuel pools. Eventually the spent fuel will be placed into 

dry cask storage for another 20 years to more than 100 years. This fuel is now stored in 

34 states. The cooling time of this fuel ranges from a minimum of 5 years. Each assembly 

emits thermal energy from radioisotope decay of 0.5 kW to 1 kW. From the spent fuel 

pool, used fuel rod assemblies are loaded into casks (Figure 3.1) underwater. This water 

must be removed to avoid corrosion or potential creation of combustion gases [109]. 

Combustion gases such as H2 and O2 can be generated by radiolysis. The accepted 
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drying process includes evacuation of the canister to less than 3 Torr and maintaining for 

30 minutes after disconnecting from the pumping system [109-111]. An alternative 

approach is to recirculate helium in the canister to achieve the same water vapor pressure 

as in vacuuming the canister. 

 

Figure 3.1 Illustration of dry storage. 

 

The temperature of rods in the drying process is subject to vary due to the 

removal of the heat, since pressure, flow rates and some other system parameters are 

changing in this process. The maximum of the rod temperature should not exceed 400 °C 

[110, 112], which is the limit of peak but not average. The number of thermal cycles of 

heating and cooling for the fuel rods in the drying process is also limited to 10, where the 

clad temperature varies by more than 65 °C [110]. 

 Structural health monitoring is a process of implementing a damage detection and 

characterization strategy for an engineering structure. Here, damage is referred as the 

change from the original system which may cause adverse effects to the system. SHM 
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may also be used to predict the remaining life of the structure at critical locations. 

Another potential application is to embed SHM sensors into a new structure to save 

weight and cost. SHM integrates a wide range of techniques, including sensors, smart 

materials, data acquisition and signal processing, etc. Five main objectives of SHM are 

defect detection and location, defect identification, defect assessment, defect monitoring, 

and failure prediction [113]. 

 There are different methodologies to monitor the structure. One that will be used 

in this research is ultrasonic testing. In this case, ultrasonic guided waves will be excited 

and propagate along the designed path. Compared with traditional point-to-point bulk 

waves, the guided waves can travel in long distances with little amplitude loss. 

Particularly, the guided waves in a cylinder will be studied and used. 

 

3.2 PROBLEM DEFINITION 

 Fuel rod failures (for example see Figure 3.2) typically occur in the first 100 days. 

There are two main failure modes. One is grid-rod fretting, which result in a small square 

hole at the grid dimple point. The leak path may not be tortuous but partially blocked by 

the dimple. Another failure mode is axial split because of pellet clad interaction (PCI), 

which could be dominant in the higher heat flux zones. Since failures occur in fuel rod 

early life, there will be little creep down of the cladding, which makes the ingress of 

coolant into the failed fuel rods possible. In this case, the failed rods will hold water at 

the lower portion, particularly if axial blankets are used. On the other hand, the surface 

temperature of the fuel pellets could be nearly 600 °C and the center temperature could 

be above 1200 °C, because the power is generated at the pellet stack. Hence, most of the 
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water that is contained in the failed rod exists in the form of superheated steam. The 

steam will oxidize the inside cladding surface and may result in hydride. The steam will 

also oxidize the UO2 and form U3O8. This will lead to an increase in volume and then 

cause the pellet to fragment into small pieces. If this is the case, a considerable amount of 

water will be retained by the fragmented fuel particles due to these hygroscopic particles 

with high surface area. 

 

Figure 3.2 Grid to rod fretting failure in the fuel rod. 

 

 After the reactor shut down, the steam will condense and fill in the voids in the 

rods. In the spent fuel pool, little reaction will occur, and therefore, most of the primary 

coolant will remain unchanged. During the subsequent placement into the storage canister, 

most of this water will be retained and may not be removed during subsequent evacuation, 

since the path for water flow through the point of failure in the cladding could be tortuous. 

A substantial quantity of water may still be retained through the absorption on the U3O8 

particles even if the liquid water is removed. The absorbed water could be slowly 

removed over time since the fuel is under high vacuum condition and modest temperature 

where the equilibrium partial pressure of steam is high. 
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 During the drying process of evacuation, if this operation is rapid (e.g., only a few 

hold points during the pressure drop from atmosphere to vacuum inside the canister), the 

water retained in the failed rods is likely to form ice. In this case, the ice crystal is 

difficult to remove. Moreover, if the ice forms at some critical location on the water flow 

path (e.g., the failure on the fuel rod), it will prevent all the retained water inside the rod 

from being removed. 

 Since the canister is sealed during evacuation, it is difficult to directly observe the 

condition inside (Figure 3.3). A systematic approach is needed to determine if the fuel 

rod is failed. If it occurs, some related information, such as the location of the failure 

(Figure 3.4), and if there is any ice formation, needs to be detected to guide the later 

operations in the evacuation. This detection is required to be conducted in real-time, since 

certain system parameters will be recorded when there is any remarkable condition 

change (e.g., ice formation) inside the fuel rod. 

 

Figure 3.3 An example of a sealed chamber to accommodate the mock fuel rod assembly. 
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Figure 3.4 Defect on a mock failed fuel rod. 

 

3.3 RESEARCH OBJECTIVE 

 The focus of this study is on the structural health monitoring in fuel rods using the 

ultrasonic guided wave technique. Piezoelectric ceramic Lead Zirconate Titanate (PZT) 

transducers are used to produce cylindrical guided waves through fuel rods to identify 

and quantify the critical structural health information. In order to obtain substantial 

information, the transmitted waves include multiple frequencies. Therefore, the received 

signal from the fuel rods also contains components of different frequencies. To obtain 

useful information from this multi-frequency signal, the continuous wavelet transform is 

performed. The relationship will be built between the system conditions and the CWT 

coefficients. Eventually, if any condition changes inside the canister, it can be observed 

from the change in the CWT coefficients. The typical conditions that are to be monitored 

include: 



 

64 

 The location and size of the failure on the fuel rod 

 The ice formation inside or on the failed rod. 

 The ice level inside the failed rod. 

 

3.4 GUIDED WAVES IN PIPES 

 Ultrasonic guided waves are commonly used in plate and hollow cylinder 

inspections. It is possible to inspect long lengths from a single probe position using the 

guided waves. It has excellent defect detection sensitivities and long inspection distances. 

In a hollow cylinder, the guided waves may travel in the circumferential or axial direction. 

The wave behavior can be described by solving the governing wave equations based on 

the appropriate boundary conditions. This research will focus on the guided waves 

propagating in axial directions in cylindrical structures.  

 

3.4.1 LITERATURE REVIEW 

3.4.1.1 GUIDED WAVE PROPAGATION IN A CYLINDER 

 The first theoretical study of guided waves was conducted by Rayleigh more than 

one century ago [114]. However, the ultrasonic guided wave technique began to apply 

and develop in the mid-1980s. With the efforts of many pioneers, the guided wave 

technique has shown potential in the field of structural health monitoring due to its long-

range testing ability and efficiency compared to the traditional bulk wave methods [115]. 

Guided waves can propagate in different structures and result in different behaviors, such 

as a Lamb wave in a plate, a Rayleigh wave in a free surface, or longitudinal and 

torsional waves in a cylinder. The theory of different guided waves was investigated by 
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many pioneers [115-121]. A comprehensive review was given on the historical 

development and applications of guided waves [122, 123]. 

 Guided waves in a hollow cylinder (pipeline) can propagate in two directions. 

One is the circumferential direction, including the circumferential Lamb type wave and 

the circumferential shear horizontal (SH) waves [124-127]. Many applications of this 

type of waves can be found in [128-131]. Another one is the axial direction, including the 

longitudinal and torsional waves with both axisymmetric and non-symmetric (flexural) 

modes. Compared to the waves in the circumferential direction, the guided waves in the 

axial direction can travel in long distances. The investigations of axisymmetric waves can 

be found in [132-138], including theoretical solutions and experimental excitation 

methods. In some cases, however, the axisymmetric waves are not well-suited for SHM. 

Related studies were reported in [139-141]. 

 

3.4.1.2 FINITE ELEMENT METHOD 

Analytical method can be used to solve wave propagation problem for simple 

geometries [142, 143]. When the structure is complex (for instance, structure with some 

defects), it is usually difficult to obtain the exact solution. In these cases, numerical 

methods may be used. Typical numerical methods include elastodynamic finite 

integration technique (EFIT) [144-146], spectral element method (SEM) [147, 148], 

boundary element method (BEM) [149-151], finite difference method (FDM) [152-155], 

and finite element method (FEM) [156-158].  

The FEM is a numerical technique for obtaining approximate solutions for partial 

differential equations [156-158]. It transforms the governing equations into weak form 
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(integral representations of the governing equations). The analysis domain is discretized 

to a set of finite elements. FEM approximates the PDE solutions in the analysis domain. 

FEM has served as a primary numerical tool to simulate the elastic wave propagation. 

This work uses FEM to solve and simulate the wave propagation. Commonly used FEM 

software includes ABAQUS, COMSOL, ANSYS, etc [159-161]. With these powerful 

tools, complicated wave propagation problems can be solved and simulated, from wave 

interaction with defects, to wave propagation in complex structures, to nonlinear guided 

wave propagation [159-161]. Here ANSYS is used in this work. 

 

3.4.1.3 WAVELET ANALYSIS IN DEFECT DETECTION 

 Defect detection in pipes with signal processing techniques is widely used. 

Recently the wavelet analysis has become a popular tool to be performed on the received 

signals. Cho [162] studied the subsurface lateral defect detection with wavelet transform 

on propagating Lamb waves. Abbate [163] processed signals with nonstationary spectral 

contents using wavelet transform. Kaya [164] investigate the approach to detect flaws in 

stainless steel samples using wavelet decomposition. Murase and Kawashima [165] 

showed that for a thin aluminum plate, the group velocity curves can be plotted when 

Gabor functions are chosen as the mother wavelet among different wavelet functions. 

Ahmad and Kundu [166] plotted group velocities for defective and defect-free cylindrical 

pipes from experimental data using Gabor wavelet functions. Ahmad [167] reported the 

study of identifying the defects in transmission pipes with Daubechies wavelet functions. 
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3.4.2 GUIDED WAVE THEORY IN PIPES 

 The guided wave theory discussed here is about the ones in the axial direction, 

since it can travel at long distances and will be used in this research. Gazis [133] first 

obtained the 3-dimensional solution of axial-direction guided waves with displacement 

fields in the axial, radial and angular directions. By solving the wave propagation 

equation in a hollow cylinder with traction free boundary conditions (Figure 3.5), the 

solution can be acquired. The longitudinal waves have dominant particle motions in 

either the radial or the axial directions and the torsional waves have dominant particle 

motions in the angular direction. 

 

Figure 3.5 Cylindrical coordinates of a hollow cylinder. 

 

 The Navier’s governing wave equation for guided wave propagation can be 

written as 

  
2

2

2

u
u u

t
   


    


, (3.1) 

where u  is the displacement field, t  is the time,   and   are Lamé constants, and  is 

the density. Six traction-free boundary conditions at the inner ( 1r r ) and outer ( 2r r ) 

surfaces are 
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 1 20,rr rr rr at r r and r r       . (3.2) 

Assume the cylinder is isotropic, Helmholtz decomposition can be used: 

 u H , (3.3) 

where   is the dilatational scalar potential field, and H  is the equivoluminal vector 

potential. Then the displacement u  can be expressed based on Equations. 3.2 and 3.3: 

 
1 z

r

HH
u

r r z





  
   
   

, (3.4.1) 

 
1 z rH H

u
r r z




   
   

   
, (3.4.2) 

 
1 r
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H H
u H r

z r r






   
    
   

. (3.4.3) 

Assuming the hollow cylinder is infinity long, the gauge invariance can be defined as: 

 0H  . (3.5) 

Equation 3.5 can be used to separate longitudinal and shear waves into: 

 
2

2

2

1

1

c t

 
  


, (3.6) 

 
2

2

2

2

1 H
H

c t


 


, (3.7) 

where 1

2
c

 




  is the longitudinal bulk wave velocity, and 

2c



  is the shear 

bulk wave velocity. 

 To separate variables, the solutions can be assumed as: 

    cos cosf r n t kz    , (3.8.1) 

    sin sinr rH g r n t kz   , (3.8.2) 
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    cos sinH g r n t kz     , (3.8.3) 

    sin cosz zH g r n t kz   , (3.8.4) 

where  f r ,  rg r ,  g r  and  zg r  are unknown potentials as functions of radius, 

0,1,2n   is the circumferential order of a wave mode, and k  is the wavenumber. 

Substitute Equation 3.8 into Equations 3.6 and 3.7 to obtain: 

 
2

2

2

1
0

n
f f f f

r r
     , (3.9.1) 
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3 3 3 32

1
0

n
g g g g

r r
     , (3.9.2) 

 
 
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0

n
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r r



     , (3.9.3) 
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n
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
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where 1
2

rg g
g 
 , 2

2

rg g
g 

 , 

2
2

2

1

k
c


   , and 

2
2

2

2

k
c


   . The unknowns 

 f r ,  rg r ,  g r  and  zg r  in Equation 3.8 can be expressed as the solutions of the 

Bessel equations in Equation 3.9: 

    1 1n nf AZ r BW r   , (3.10.1) 

    3 3 1 3 1n ng A Z r B W r   , (3.10.2) 

    1 1 1 1 1 1 12 2 2r n ng g g A Z r BW r       , (3.10.3) 

    2 2 1 1 2 1 12 2 2r n ng g g A Z r B W r       , (3.10.4) 
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where 1r r   , 1r r  , and Z indicates a Bessel function J or I while W indicates a 

modified Bessel function Y or K, which depends on that   and   are real or imaginary 

(Table 3.1). 

Table 3.1 Bessel function types used at different frequencies. 

Frequency interval   and   Bessel function types 

1c k   2 0  , 
2 0    J r ,  Y r ,  J r ,  Y r  

2 1c k c k   2 0  , 
2 0    1I r ,  1K r ,  J r ,  Y r  

2c k   2 0  , 
2 0    1I r ,  1K r ,  1I r ,  1K r  

 

According to the gauge invariance property, any of the terms 1g , 2g  or 3g  could 

be set to zero. Let 2 0g   and use 6 boundary conditions in Equation 3.2. Then the 

displacement field can be solved by substituting Equations 3.8 and 3.10 into Equation 

3.4: 

      3 1 cos cos cos cosr r

n
u f g kg n t kz U r n t kz

r
   

 
      

 
, (3.11.1) 

      1 3 sin cos sin cos
n

u f kg g n t kz U r n t kz
r

    
 

       
 

, (3.11.2) 

        1
1 1 cos sin cos sinz z

g
u kf g n n t kz U r n t kz

r
   

         
 

,(3.11.3) 

where  rU r ,  U r  and  zU r  are the wave field distributions in the radial direction 

[115]. 

 From Equations 3.11, the stress can be derived and then applied to the six traction 

free boundary conditions with a matrix form shown in Equation 3.12: 
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  

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36 1 1

6 6
41 42 43 44 45 46 1 1

51 52 53 54 55 56 3 3

61 62 63 64 65 66 3 36 6 6 1

c c c c c c A A

c c c c c c B B

c c c c c c A A
C

c c c c c c B B

c c c c c c A A

c c c c c c B B



 

     
     
     
        

     
     
    
    
         6 1

0









, (3.12) 

where A, B, A1, B1, A3, B3 are unknown amplitudes, 

       2 2 2

11 1 1 1 1 12 1 2n nc n n k a Z a aZ a   
     
 

 

     2

12 1 1 1 12 2 1n nc k a Z a ka n Z a      

     13 1 2 1 1 12 1 2n nc n n Z a n aZ a       

       2 2 2

14 1 1 1 12 1 2n nc n n k a W a aW a   
     
 

 

     2

15 2 1 1 1 12 2 1n nc k a W a n kaW a       

     16 1 1 1 12 1 2n nc n n W a n aW a      

     21 1 1 1 1 12 1 2n nc n n Z a n aZ a        

     2

22 1 1 1 12 1n nc k a Z a ka n Z a      

     2 2

23 1 2 1 1 12 1 2n nc n n a Z a aZ a    
        

     24 1 1 1 12 1 2n nc n n W a n aW a       

     2

25 2 1 1 1 12 1n nc k a W a ka n W a       

     2 2

26 1 1 1 12 1 2n nc n n a W a aW a   
        

   2

31 1 1 1 1 12 2n nc nkaZ a k a Z a       

     2 2 2

32 1 1 1 1n nc n aZ a k a Z a        
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 33 1nc nkaZ a   

   2

34 1 1 1 12 2n nc nkaW a k a W a      

     2 2 2

35 2 1 1 1 1n nc n aW a k a W a         

 36 1nc nkaW a   

The fourth to sixth rows can be obtained by replacing a by b in the expressions of the first 

three rows. λi varies as follows: 

 

1 1 2

2 1 1 2

2 1 2

: 1, 1

: 1, 1

: 1, 1

c k

c k c k

c k

  

  

  

  

    

    

.  

The dispersion equation (also called the characteristic or frequency equation) can be 

expressed as a solution in Equation 3.13: 

 
6 6

0C

 . (3.13) 

Numerical methods (for example, a bisection method in [115]) can be used to solve the 

dispersion equation. 

 Theoretically, guided waves in pipes include infinite number of modes 

considering the explicit circumferential order n and the implicit family order m. 

According to the circumferential order, they are categorized as axisymmetric waves for n 

equal to zero and non-axisymmetric waves for n greater than zero. Taking into account 

the displacement component, axisymmetric waves include longitudinal waves L(0,m) 

with two displacement components ur and uz (uθ = 0), and torsional waves T(0,m) with 

the angular displacement uθ (ur=uz=0). When n is greater than zero, the modes are called 

flexural modes F(n,m) with all three displacement components ur, uθ, and uz. 
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 Dispersion curves for a 304 stainless steel pipe (12.7 mm outer diameter and 10.9 

mm inner diameter) are shown as an example. The phase velocity and group velocity 

dispersion curves for axisymmetric longitudinal waves are displayed in Figure 3.6. In the 

frequency range from 0 to 2 MHz there are three modes L(0,1), L(0,2) and L(0,3). Phase 

velocity of a wave is the rate at which the phase of the wave propagates in space. It is 

important in terms of mode excitation. Group velocity is the propagation speed of the 

energy transport or of the wave group package. The curves are dispersive showing phase 

velocity as a function of frequency. Dispersion curves for axisymmetric torsional waves 

are shown in Figure 3.7. T(0,1) torsional mode is non-dispersive indicating a wave 

package with consistent length as it travels along the structure. 

 

3.5 WAVELET-BASED FAILED FUEL ROD CONDITION DETECTION 

APPROACH 

To fill the gap toward implementing the guided wave-based SHM on failed fuel 

rod, a wavelet-based approach is developed to monitor the structure change (rod defect 

and ice formation) at the failed rod. Guided waves are transmitted from one side of the 

failed fuel rod. Once the guided waves are received on the other side, they are processed 

with the CWT, where different frequency components at any particular time instance can 

be visualized and identified. Different from traditional signal-frequency guided wave 

propagation method [115], multi-frequency guided waves are used in this research. The 

advantage of this method is that it is able to extract complex information simultaneously. 

With the wavelet transform, guided waves can be displayed in both time and frequency 

domains. 
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Figure 3.6 (a) Phase velocity and (b) group velocity dispersion curves of axisymmetric 

longitudinal waves (L(0,m)) in a 304 stainless steel pipe (12.7 mm outer diameter and 

10.9 inner diameter), where m is the mode family order. 

(a) 

(b) 
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Figure 3.7 (a) Phase velocity and (b) group velocity dispersion curves of axisymmetric 

torsional waves (T(0,m)) in a 304 stainless steel pipe (12.7 mm outer diameter and 10.9 

inner diameter), where m is the mode family order. 

 

(a) 

(b) 
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According to Figure 3.6-7, for axisymmetric waves below 140 kHz, only L(0,1) 

and T(0,1) exist. In this work, L(0,1) waves with 50 kHz and 100 kHz frequencies are 

used. Simulations and experiments are conducted to investigate the relationship between 

different conditions (defect location and size, and ice formation and ice level) and CWT 

coefficients. Then the wavelet-based approach is developed based on this. 

 

3.5.1 MULTI-FREQUENCY GUIDED WAVE EXCITATION 

The exited single-frequency guided waves can provide some information of 

structural features. However, if multiple features are desired to acquire synchronously 

from the single received wave, the multi-frequency guided waves are needed to provide 

further information. A simple time or frequency domain analysis cannot satisfy this 

situation. Using a Morlet wavelet, wavelet analysis can transform a time domain signal 

(which includes two or more frequencies) into both time and frequency domains to 

display frequency components at each time instance. Wavelet analysis provides sufficient 

information about the received wave at different frequencies. By calculating the 

difference between two locations of the maximum modulus (Equation 2.7) in transmitted 

and received signals, the propagation time for guided waves at different frequencies can 

be obtained [168]. Figure3.8 shows the CWT result for a double-frequency guided wave 

propagating on a sample rod, which is transmitted from one side and received from the 

other side. Via the CWT, the two frequencies included in the guide wave are successfully 

differentiated. 
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Figure 3.8 The CWT results of transmitted and received signals. t1 and t2 show different 

propagation time for f1 and f2 guided waves (L(0,1) mode). 

 

 

3.5.2 DETECTION OF DEFECT LOCATION AND SIZE 

In this section, the influence of defect location and size to the received signals is 

investigated. Pitch-catch measurement is used (guided wave is excited on one side of the 

rod and received on the other side). The received guided waves are analyzed by the CWT 

based on different defects. 

FEM software ANSYS/Multiphysics 15.0 is used to investigate the influence of 

different defect locations along circumferential direction and various defect sizes to the 

received signals, the. The model rod built in the simulations is a 304 stainless steel pipe 

with 300 mm length, 12.7 mm outer diameter and 10.9 mm inner diameter, Young’s 

modulus 196.5 GPa, Poisson’s ratio 0.29, and density 8000kg/m
3
. The defect is at the 
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middle of the rod (150 mm away from each side). Figure 3.9 shows the finite element 

model of the failed fuel rod with defect. The SOLID45 elements are used to build the rod. 

Guided waves including 50 kHz and 100 kHz frequencies are excited from one side of 

the rod, and only longitudinal direction displacement is considered. 

Transient analysis is used in the simulations. The calculation accuracy is ensured 

by limiting the maximum dimensions of elements to less than ten elements per 

wavelength along the wave propagation direction and limiting the integration time step 

for transient analysis stability [161]. In this work, the maximum size of elements is 

smaller than 1 mm, and the time step is 0.1 µs. 

 

Figure 3.9 The finite element model of the failed fuel rod with defect, and guided wave 

propagation simulation. 
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 The received guided waves are processed by the CWT and the maximum modulus 

results are compared. The angle between receiver sensor and defect along circumferential 

direction is defined in Figure 3.10. Figure 3.11 shows the results for 1 mm diameter 

defect whose angles are from 0° to 180°. The results indicate that the maximum modulus 

for both 50 kHz and 100 kHz signals is varying as the angle is increasing. Figure 3.12 

shows simulation results of the maximum modulus in CWT for different sizes of defects 

at 0°, 90° and 180° angles. Again, the change in size of defect influences the maximum 

modulus at different angles. The relationship can be built based on this connection 

between different defect conditions and the maximum modulus at 50 kHz and 100 kHz. 

  

Figure 3.10 The definition of angle θ between defect and receiver sensor along 

circumferential direction. 
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Figure 3.11 Simulation results of the maximum modulus in CWT at (a) 50 kHz and (b) 

100 kHz frequencies for different angles between received sensor and defect (1 mm) 

along circumferential direction. 

(a) 

(b) 
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Figure 3.12 Simulation results of the maximum modulus in CWT at (a) 50 kHz and (b) 

100 kHz frequencies for different sizes of defects at 0°, 90° and 180° angles between 

received sensor and defect along circumferential direction. 

 

(a) 

(b) 
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3.5.3 DETECTION OF ICE FORMATION AND ICE LEVEL 

Ice formation will cause a different structural response from the fuel rod that can 

be measured. Local parameter changes caused by ice can be discovered by guided waves 

introduced into the rod structure. The guided waves have different propagating speeds on 

an empty rod over frequencies based on the dispersion curves. When there is ice inside 

the rod, the propagation speeds will be attenuated. Since the traveling speeds on an empty 

rod and a rod with ice inside are different, the ice level can be calculated based on the 

guided wave arrival time. PZTs are used to excite and receive longitudinal guided wave 

L(0,1) using pitch-catch measurement for ice formation and ice level detection (Figure 

3.13). The wave propagation path d from the transmitter to the receiver consists of ice 

path di and empty rod path d-di. Therefore, the total propagation time t can be expressed 

as 

 i i

i

d d d
t

v v


  . (3.14) 

where v and vi are guided wave propagation speeds in the empty rod and the rod with ice. 

Ice forming inside the rod from water can be detected using Equation 3.14. The 

comprehensive approach to determine ice formation is designed as following. 

A guide wave is transmitted that includes two frequencies (f1 and f2). The 

received signal is analyzed using the CWT to extract the total propagation time of waves 

at each frequency (t1 and t2). Based on Equation 3.14, the following equations are 

obtained according to guided waves with different frequencies traveling on the rod: 
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Figure 3.13 Pitch-catch measurement for ice formation and ice level detection. 

 

where d is the distance between transmitter and receiver, di is the height of ice, v1 and v2 

are guided wave propagating speeds through empty rod at f1 and f2, and v1i and v2i are 

guided wave propagating speeds through the rod with ice inside from the f1 and f2 signals. 

If the calculated results of di match each other, it means there is ice inside the rod and it 

indicates the ice level. Otherwise, it shows there is still water inside the rod. 

 The PZT uses piezoelectric effect on materials that can convert an applied 

mechanical force to the internal generation of electrical charge and vice versa. Linear 

piezoelectricity can be described in coupled equations, of  which the strain-charge form is 

[169]: 
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ij ijkl kl kij k

i ijk jk ij j

S s T d E

D d T E

 

 
, (3.16) 

where S  is strain, s  is compliance under short-circuit conditions, T  is stress, d  

represents the direct piezoelectric effect, E  is electric field strength, D  is electric 

displacement, and   is permittivity (free-body dielectric constant). 

 One advantage of PZT is their capability of tuning its output to excite various 

guided wave modes. The tuning effect of PZT benefits the selective actuation and sensing 

of guided wave modes [170, 171].  In the experiments, the transmitter and receiver PZTs 

are the same round PZT (7 mm diameter, 0.2 mm thickness) bonded on a 304 stainless 

steel pipe (12.7 mm outer diameter and 10.9 inner diameter). Their distance is 300 mm. 

The amplitude of voltage given to the transmitter PZT is 35 V. Figure 3.14 shows 

experimental tuning curve of the receiver PZT. 

Experiments are conducted by building a PZT sensing system (Figure 3.15). 

Guided waves are generated from a PZT. The excitation signal has 20 V amplitude and 

50 kHz and 100 kHz frequencies. The guided waves 300 mm away from the PZT are 

measured by another PZT. First, for both two frequencies, the propagation speeds on 

empty rod and rod with ice are measured, respectively. In this way, v1, v2, v1i and v2i in 

Equation 3.15 are known. The experimental results are v1 = 4834 m/s, v2 = 3901 m/s, v1i 

= 3902 m/s, and v2i = 3327 m/s. Then, the guided waves are measured at various ice 

levels from 0 to 300 mm, and converted to calculated ice level using Equation 3.15 

(Figure 3.16). The results indicate that this approach can accurately identify the ice 

formation as well as the ice level. 
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Figure 3.14 Tuning curve of a round PZT (7 mm diameter, 0.2 mm thickness) bonded on 

a 304 stainless steel pipe (12.7 mm outer diameter and 10.9 inner diameter). 

 

 

3.5.4 ADVANCED WAVELET-BASED APPROACH 

Combining the methods used in Sections 3.5.2-3, a novel wavelet-based structural 

health monitoring approach is established. 

In Section 3.5.2, it is shown that there is a relationship between defects and CWT 

coefficients of received signal. For any specific problem (for example, failed fuel rods), 

first use pitch-catch measurement and wavelet analysis to build this relationship from 

known conditions. Then for any unknown but same condition, the defect can be detected 

and predicted by only analyzing the received signals. 
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Figure 3.15 Experiment setup for PZT sensing system. 

 

For detecting the ice formation and ice level inside the rod, first measure the 

propagation speeds on the specific rod and the rod with ice inside. After that, any ice 

formation and the related ice level can be identified using Equation 3.15. 

 Figure 3.17 displays the sequence of the wavelet-based approach. 
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Figure 3.16 Experimental results for the measured ice levels by 50 kHz and 100 kHz 

guided waves. 
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Figure 3.17 The wavelet-based approach for structural health monitoring in dry cask 

storage. 
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CHAPTER 4 

CONCLUSIONS AND FUTURE WORK 

 

This chapter includes an overall conclusion to this work, from Chapter 1 to 3, and 

outlines directions for future research. 

 

4.1 CONCLUSIONS 

 This dissertation introduces a novel wavelet-based periodic error measurement 

and compensation method that can be used to compensate periodic errors for both 

constant and non-constant velocity profiles in real-time. It also describes a novel wavelet-

based approach for structural health monitoring in dry cask storage. 

 Chapter 1 introduces wavelet analysis, including DWT and CWT. For CWT, 

related equations, typical wavelets that could be used, and the linearity property are given. 

The complex Morlet wavelet is described in detail since it is used in the research. The 

complex Morlet wavelet is suitable in periodic error compensation algorithm because it 

enables localization in both the time and frequency domains. The frequency of the 

periodic error signal is located at the scale with the maximum wavelet coefficient and the 

phase information can be extracted based on the real and imaginary parts of this 

coefficient. It is also used in detecting the conditions of the failed fuel rod since it can 

identify the propagation time of guided waves at different frequencies. 
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 Chapter 2 provides background of interferometry. Heterodyne interferometer is 

introduced. Error sources in heterodyne interferometry are analyzed, and the focus is on 

periodic error. The traditional frequency domain compensation approach for periodic 

error and its limitation are also given. Then it describes the entire algorithm design 

process. The implementation of the algorithm consists of detrending the signal, applying 

the wavelet transform, identifying the ridge, phase and amplitude, and finally 

reconstructing and compensating periodic error. It shows the simulation and experimental 

results using the wavelet-based algorithm for constant and non-constant velocity motions. 

It also discusses the situations where the periodic error amplitude is varying, and higher 

order periodic errors. The algorithm is also implemented on the hardware (FPGA).  

Chapter 3 describes the background of spent nuclear fuel rod drying. SHM is first 

introduced into this field. Guided waves in pipes are shown. Dispersion curves are given 

for the sample rod. After that, the novel wavelet-based detection approach for failed fuel 

rod conditions is described. In order to extract complex information, multi-frequency 

guided waves are excited, which is different from traditional single-frequency guided 

wave propagation. The relationship between location and size of defects and CWT 

coefficients of received signals is investigated. Also, the method to identify ice formation 

and ice level inside the fuel rod is discussed. Finally, the approach is synthesized and 

shown its potential to apply to other applications. 

 

4.2 FUTURE WORK 

 The algorithm presented in this work is designed to be executed on parallel 

hardware offering the potential application for real-time compensation of periodic error 



 

91 

in heterodyne interferometers. In the future, the algorithm will be implemented in the 

experiments to determine the limits for the industrial implementation of wavelet analysis 

for periodic error measurement and compensation. Using the experimental setup, the 

performance of the wavelet-based algorithm to accurately characterize and compensate 

the periodic error will be investigated. 

 Also, experiments will be conducted in the drying cask storage. Different defects 

will be detected based on the established relationship between defects and CWT 

coefficients. The approach will be applied to monitor any ice formation during different 

drying tasks in the storage. 
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