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ABSTRACT 

 

Radioactive materials, as they decay, generate different high-frequency 

electromagnetic radiation such as alpha particles, beta particles, x-rays, gamma-rays, and 

neutrons.  Nuclear detectors could stop these high-energy ionizing radiations, collect and 

transport the charges generated to an external circuit, and produce an electrical signal 

which is amplified by readout electronics to measure the energy of nuclear interaction.  

Thus, nuclear detectors are important tools for accounting of radioactive materials and 

have widespread applications in nuclear power plants, nuclear waste management, in 

national security, in medical imaging such as x-ray mammography, digital chest 

radiography, CT scan, and in high energy astronomy for NASA space exploration.  

In this dissertation three different types of wide bandgap (WBG) radiation 

detectors were studied: (1) amorphous selenium (a-Se), (2) cadmium zinc telluride 

(CZT), and (3) silicon carbide (SiC).  All three semiconductors have attractive electrical 

properties such as wide bandgap (≥ 1.5 eV) facilitating room temperature operation, high 

resistivity (≥ 1010 Ω-cm) contributing to low thermal noise for high-resolution, and high 

charge carrier mobility-lifetime product offering high charge collection efficiency.   

However, these semiconductors have distinct characteristics that set them apart 

from one another.  For example, high Z (atomic numbers of constituent elements, Cd=48, 

Zn=30, Te=52) and high density of CZT offering high stopping power to absorb high 

energy x- and gamma-rays so CZT could be used for x- and gamma ray spectrometers at 
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room temperature.  On the other hand, SiC has low Z value (Si = 14, C = 6) appropriate 

for detection of alpha particles and low energy x-rays and gamma rays (<60 keV) regime.  

Furthermore, high bandgap energy (~3.27 eV at 300 K) of 4H-SiC allows detector 

operation well above room temperature (~773 K) as required for nuclear fuel processing 

environment in nuclear power plants. Amorphous Se alloy with enriched boron (10B) has 

high thermal neutron cross-section (3840 barns, 10-24 cm2) due to boron and high 

radiation tolerance due to its amorphous structure, making it a favorable candidate for 

solid-state thermal neutron detectors. 

In this study, semiconductors were grown from in-house zone-refined ultra-pure 

precursor materials using specialized growth furnaces, which were modified, re-coded 

and optimized to obtain high quality detector materials.  Different metal-semiconductor 

contacts with metals of various work functions and metal-semiconductor-metal (MSM) 

devices with planar, guard-ring, and large area thin-film structures have been studied to 

ensure good charge transport properties and opto-electronic device performances.  A 

series of characterization were carried out including scanning electron microscopy 

(SEM), x-ray diffraction (XRD), glow discharge mass spectroscopy (GDMS), optical 

absorption study, thermally stimulated current (TSC), deep-level transient spectroscopy 

(DLTS), and current-voltage (I-V) measurements.  These extensive characterizations 

provided information on stoichiometry, morphology, purity, bandgap energy, resistivity, 

leakage current and presence of any performance-limiting electrical defect levels.  

Finally, to determine detection specificity, sensitivity and energy resolution, fabricated 

detector devices were evaluated with radiation sources, such as 241Am (5.5 MeV) for 

alpha, 137Cs (662 keV) for gamma, and 252Cf for moderated thermal neutron source.   
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High quality boron (10B) doped a-Se (As, Cl) alloys were synthesized in a 

specially designed alloying reactor.  Alloy films were deposited using thermal 

evaporation, a low-cost technique which can be scaled up for large area detector 

production.  The films used for detector fabrication had smooth, defect-free amorphous 

structure as determined by SEM and XRD.  The bandgap and resistivity of 10B-doped a-

Se (As, Cl) alloy was determined to be 2.21 eV and ≥1012 Ω-cm, respectively, at 300K.  

Single layer planer MSM (4″ x 4″) detectors were fabricated on ITO glass and oxidized 

aluminum substrates.  Current-voltage (I-V) characteristics showed very low leakage 

(~-10 nA at -1000V); by using Al2O3 as blocking layer, leakage current was reduced to 

pA to a fraction of nA at -1000V.  Nuclear testing with high energy alpha particles 

(241Am) and neutron (252Cf) sources showed specific signature of thermal neutron 

detection.  The data confirms that 10B-doped a-Se (As, Cl) alloy films can be used to 

construct high performance compact neutron detectors.   

The CZT crystals were grown at a stoichiometry of Cd0.9Zn0.1Te from zone 

refined ultra-pure precursor materials with 50% excess Te using modified multi-pass 

vertical furnace.  The bandgap energy was determined to be 1.56 eV.  The electrical 

resistivity was estimated to be ~ 6 × 1010 Ω-cm, which is high enough to fabricate a 

functional CZT radiation detector.  The CZT detectors showed very low leakage current 

at a high bias (below 5 nA at –1000V) due to their high resistivity, which are beneficial 

for high resolution detectors.  The drift mobility and mobility-lifetime product of 

electrons were estimated to be 1186 cm2/V.s and 5.9×10-3 cm2/V, respectively.  An 

energy resolution of 6.2% was obtained for CZT planar detector when irradiated with 

60 keV low-energy gamma radiations (241Am).  The peaks were sharper and better 
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resolution was observed for the CZT detector with guard ring geometry.  An energy 

resolution of 2.6% was observed for detector with guard-ring structure irradiated with 

high energy 662 keV gamma radiations using 137Cs radiation source.   

Schottky barrier detectors in planar configuration have been fabricated on 50 𝜇m 

n-type 4H-SiC epitaxial layers grown on 360 𝜇m SiC substrates by depositing ~10 nm 

nickel (Ni) Schottky contact. Current-voltage (I-V), capacitance-voltage (C-V), and alpha 

ray spectroscopic measurements were carried out to evaluate the Schottky barrier detector 

properties.  Room temperature I-V measurement revealed a very low leakage current of 

~ 0.78 nA at 250 V reverse bias.  The barrier height for Ni/4H-SiC Schottky contact was 

found to be ~1.4 eV and the diode ideality factor was measured to be 1.4, which is 

slightly higher than unity showing the presence of deep levels as traps and/or 

recombination centers.  Capacitance mode deep level transient spectroscopy (DLTS) 

revealed the presence of the deep levels along with two shallow level defects related to 

titanium impurities (Ti(h) and Ti(c)) and an unidentified deep electron trap located at 

2.42 eV below the conduction band minimum which is being reported for the first time.  

The concentration of the lifetime killer Z1/2 defects was found to be 1.6× 1013 cm-3.  The 

detectors’ performances were evaluated for alpha particle detection using a 241Am alpha 

source.  An energy resolution of ~ 2.58 % was obtained with a reverse bias of 100 V for 

5.48 MeV alpha particles.  The measured charge collection efficiency (CCE) was seen to 

vary as a function of bias voltage.  With increased reverse bias, the detector active 

volume increases with the increase in depletion layer width accommodating more number 

threading type dislocations at the epilayer/substrate interface resulting in higher FWHM 

values as observed experimentally. 
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CHAPTER 1: GENERAL INTRODUCTION 
 

1.1 DISSERTATION INTRODUCTION 

Higher frequency electromagnetic (EM) radiation such as alpha particles, x-rays, 

gamma-rays, and neutrons are known as ionizing radiation.  These radiations contain 

sufficient quantum energy so that when interacting with matter they could knock out an 

electron from the orbit of an atom producing positively charged ions. A common source 

of ionizing radiation is radioactive materials such as uranium (U), as it decays.  Radiation 

detectors are devices that detect and quantitatively measure the intensity of the ionization 

caused by different nuclear radiations.  To measure the radiation, the primary ionization 

must be preserved; created ions must be collected and not be lost through recombination; 

the electrical signals produced must be amplified to measure the energy of nuclear 

interaction.  Therefore, detector materials and electronic instrumentation play critical 

roles in fabricating better nuclear detectors. 

Nuclear radiations affect various aspects of our lives.  Nuclear energy has become 

an important component of nations’ sustainable energy portfolio.  With expansion of 

nuclear enrichment, there are also growing concerns about the nuclear terrorism risk, a 

major issue for the national security.  Nuclear radiation such as x- and gamma-ray are 

being used in medical imaging (for example x-ray imaging, CT scan, PET brain imaging 

machines) to provide valuable diagnostic information.  Radionuclides are used to directly 

treat illnesses, such as radioactive iodine to treat hyperthyroidism and radioactive tracers 
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such as technetium-99 to map heart and surrounding arteries for diminished blood flow.  

Nuclear radioactive materials are also proliferated to construct nuclear warheads with 

intention to cause mass destruction.   

For nuclear (radioactive) material classification, accounting and safeguards, for 

measuring the dosage of exposure, for preventing and detecting theft or diversion of 

special nuclear materials (SNMs), for verification non-proliferation treaty, there is a need 

for compact, high performance radiation detectors that can accurately identify the type, 

state, and location of the nuclear materials.  When evaluating radiation detectors, the 

most important criteria are: (i) sensitivity of the detector – what type of radiation (alpha, 

neutron, gamma or x-ray) the detector will detect, (ii) energy resolution of the detector – 

how precisely the detector will distinguish between two isotopic radiations, (iii) time 

resolution of the detector – how high a counting rate will be measured without 

error/noise, (iv) detector efficiency – the percentage of ionization that will be accurately 

captured and amplified.  As the need for better sensitivity, resolution, and efficiency 

increases, so does the complexity of the detector structures and its operation, but not one 

detector available today that could satisfy all the above requirements.  

In this dissertation three different types of wide bandgap (WBG) radiation 

detectors were studied and compared: (1) amorphous selenium (a-Se), (2) cadmium zinc 

telluride (CZT), and (3) silicon carbide (SiC).  All three materials have attractive 

electrical properties such as wide bandgap energy (≥ 1.5 eV) facilitating room 

temperature operation, high resistivity (≥ 1010 Ω-cm) contributing to low leakage current 

and thereby low thermal noise for high resolution, and high charge carrier mobility-

lifetime product offering high charge collection efficiency.   
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However, these semiconductors have distinct characteristics that set them apart 

from one another.  For example, high Z (atomic numbers of constituent elements, Cd=48, 

Zn=30, Te=52) and high density of CZT offering high stopping power to absorb high 

energy x-rays and gamma-rays so CZT could be used for x- and gamma ray spectrometer 

at room temperature.  On the other hand, SiC has low Z value (Si=14, C=6) appropriate 

for detection of alpha particles and low energy x-rays (<10 keV) regime.  Furthermore, 

high bandgap energy (~3.27 eV at 300 K) of 4H-SiC allows detector operation well 

above room temperature (~773 K) as required for nuclear fuel processing environment in 

nuclear power plants. Amorphous Se alloy with enriched boron (10B) has high thermal 

neutron cross-section (3840 barns, 10-24 cm2) due to boron and high radiation tolerance 

due to its amorphous structure, making it a favorable candidate for solid-state neutron 

detectors. 

Therefore, in this dissertation experiments were carried out to study: 

(1) amorphous selenium (a-Se) based x-ray detectors for medical imaging devices or 

solid-state thermal neutron detectors for nuclear power plant;  (2) cadmium zinc telluride 

(CZT) based high-energy x-ray and gamma ray detectors for nuclear material accounting 

and safeguards; and (3) silicon carbide (SiC) based low-energy x-ray and gamma ray 

detectors that can operate in harsh radioactive environments such as in nuclear weapon 

complexes and space applications useful for NASA and DOD explorations. 
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1.2 CURRENTLY AVAILABLE SEMICONDUCTORS FOR RADIATION DETECTOR 

The most common radiation detector is the gas proportional counter or Geiger-

Muller counter.  It uses a gas-filled tube with a central wire at high voltage to collect the 

ionization produced by incident radiation. It can detect alpha, beta, and gamma radiation 

although it cannot distinguish between them. Gas detectors can be made rugged but they 

require high pressures, have timing speed limitations, and long term stability problems.  

Because of these limitations, it is best used for demonstrations or for radiation 

environments where only a rough estimate of the amount of radioactivity is needed. [1]   

Currently high-purity germanium (HP Ge) detectors are most widely used for 

gamma-ray spectroscopy; other materials include NaI(TI), mercuric iodide (HgI2), and 

CdTe [1, 2].  Germanium (Ge) has a high atomic number, can be produced in large 

volumes (> 10 cm3), and has excellent energy resolution of 0.2% using a benchmark 

662 keV gamma-ray irradiation [3] at low temperature.  Such detectors have applications 

in environmental radiation and trace element measurements.  However, due to its low 

band gap of 0.67 eV at 300 K, germanium detectors require cryogenic cooling to function 

properly (<110 K) [4].  This makes the system bulky and increases power consumption to 

the level where the field applications are complicated.  Consequently, there has been an 

enormous effort to develop room temperature (RT) alternative to Ge. 

Scintillator based detectors such as NaI(TI) give off light when radiation interacts 

with them.  The light is detected with an optical detector, most commonly a 

photomultiplier tube (PMT) or avalanche photodiodes (APD), and then converted to 

electrical pulses with readout electronics.  Response speeds can be quite fast with some 

scintillators, but main drawbacks are low energy resolution, poor temperature stability, 
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and strong background [5].  Moreover, scintillation detectors have proven difficult to 

pixelate economically.  Such system may be more suitable for large-area standoff 

imaging system, as used in portal applications [2].  In general, solid-state “direct read-

out” semiconductor detectors have proven to be very versatile.  In such semiconductors, 

only a few eV are necessary to create an electron-hole pair (compared to 50 eV or more 

of energy in scintillators); thus a much greater signal is generated for a given amount of 

energy deposited. 

Mercuric iodide (HgI2) has a high stopping power due to high atomic numbers 

(Hg = 80 and I = 53) and wide band-gap (2.13 eV at 300 K) for possibility of room 

temperature operation with low leakage current [6].  Nevertheless HgI2 demonstrates very 

poor charge transport properties due to low mobilities of both electron and hole limiting 

charge collection efficiency. Mercuric iodide also requires encasement, since it is 

hygroscopic and a soft material [7]. This restricts its widespread use as a high energy 

gamma-ray detector. 

Cadmium telluride (CdTe) is a good choice for nuclear detection due to its good 

charge transport properties, however the bandgap of CdTe cannot be tuned above 1.5 eV, 

and it has a resistivity of ~108 – 109 Ω-cm, which is less than ideal for noise performance 

reasons [8].  However, inclusion of Zn in CdTe increased the bandgap energy to a range 

of 1.50 – 1.90 eV resulting in higher resistivity of 1011 Ω-cm [9].  CdZnTe (CZT) 

demonstrated capability of room temperature operation and an energy resolution of ≤ 2% 

resolution at 662 keV with up to 1.5 cm crystal length [10].  In Table 1.1, properties of 

various commercially available and prospective semiconductors are compared with the 

ideal detector materials. 
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Table 1.1.  Properties of commercial (bold) and prospective (italic) semiconductors for direct read-out radiation detectors  
Semi-

conductor 
Energy 

bandgap   
at 300 K 

Eg 
 

 (eV) 

Growth 
TMP 
 (oC) 

Atomic 
number  

Z 

Density 
(g/cm3) 

Electron-
hole pair 
creation 
energy,  

W 
(eV) 

Resistivity 
(Ω-cm) 

Mobility,  
µ  

(cm2/Vs) 
hole/electron 

Carrier 
lifetime,  

τ  
(x10−6sec) 

Mobility-
lifetime 

product of 
electron 

µτe 
 

(cm2/V) 

Handling; 
crystal growth 

Ideal 1.6-  2.1 700-1200 >50a - <3Eg ≥ 1010 - - ≥ 10-3 Robust; Non-
hygroscopic 

Ge 0.67 938 32 5.33 2.96 50 1900/3900 ≥300 0.57 Excellent; 
Growable 

HgI2 2.1 260 80, 53 6.4 ~4.2 1012 4/100 ~2 10-4 Very soft; 
Difficult to grow 

CdTe 1.5 950-1085 48, 52 6.2 4.43 109 100/1100  0.4 0.4×10-3 Small crystal 
domains 

CdZnTe 
(CZT) 1.6-1.9 1175 52 5.78 4.6 >1010 50/1000 ~1  10-3 Small crystal 

domains 

4H-SiC 3.27 1550-1750 14, 6 3.21 7.28 >1012 115/1020 ~1  0.8×10-3 

Polytype 
inclusions, high 
temperature and 

defects 

a-Se alloy 2.24 365-485 34 4.29 ~50 ~1013 0.12/0.04 342 1.4×10-5 Large area 
detector possible   

a: For detection of high energy x-ray and gamma ray 

Note: Data were collected from these references: [2, 6, 8, 9, 10, 11, 12]. 
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1.3 CHOICE OF A-SE, CZT, AND SIC AS RADIATION DETECTORS 

In order for a detector to detect and quantify the ionization radiations caused by 

nuclear material, it must be able to absorb nuclear radiation, generate electron-hole 

charge pairs, and transport the charge pairs across the detector material to be collected by 

readout electronics.  Therefore, semiconductor materials for nuclear detectors must offer 

following material properties: 

• Large bandgap energy (≥ 1.5 eV at 300 K) contributing to low thermal noise 

(generation of electron-hole pair is due to ionization by radiation only not due 

to elevated temperature)  

• High resistivity (≥ 1010 Ω-cm), for low leakage current, thereby low noise 

• Small electron–hole pair generation energy so that more charge carriers could 

be generated by the incident radiation 

• High mobility lifetime product (µτ ≥ 10-3 cm2/V) for both electrons and holes 

for good charge transport properties so that probability of charge collection 

will be high and recombination is low 

• Low dielectric constant and high intrinsic mean drift length for faster 

collection time thereby better time resolution 

• High atomic number and density to stop high energy x- and gamma-ray  

• High atomic displacement energy for radiation hardness, damage resistance 

• High thermal conductivity for high temperature operation 

Nuclear radiations from radioactive materials cover a vast energy range from a 

few eV (soft x-rays) to MeV (high energy gamma rays).  A single detector may not be 
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ideal to capture this wide range of radiations.  Thus there are various distinct applications 

of the radiation detectors and each application will impose certain requirements.  

As can be seen in Table 1.1 semiconductors CZT, a-Se, and SiC have several 

favorable properties for nuclear detectors.  These semiconductors were first chosen for 

the research project because of their inherent wide bandgap energy and high resistivity 

that will imply low thermal generation of charge carriers that is independent of the 

incoming radiation, leading to low thermal noise and high resolution.  Radiation detectors 

based on these materials, therefore, are able to operate at or above room temperature 

(~300 K) without any need for cooling with liquid nitrogen, thus allowing possibility of 

portable compact detector device.  These semiconductors also offer direct readout 

meaning that incident radiation is directly converted to electrical response unlike 

scintillators where incoming radiation is first converted into light then a second detector 

system converts light to electrical response. 

CZT has higher density and higher atomic number offering stopping power to 

absorb high energy x-rays and gamma-rays so CZT could be used for x- and gamma ray 

spectrometers.  Furthermore, CZT has tunable bandgap energy (depending on Zn 

concentration), higher density, low electron-hole pair generation energy, and high 

electron mobility which are ideal for gamma radiation detectors.  Such detectors could be 

used for screening of radioactive materials and radiological dispersal devices (RDDs) at 

the ports-of-entry, for detecting illicit radioactive enrichment, nuclear weapons and their 

components during verification of non-proliferation treaty, for monitoring and 

management of nuclear waste at nuclear power plants, and for hard x-ray and gamma ray 

imaging of space for future NASA or DOD exploration missions.   



 

9 

However, hole mobility of CZT is several orders of magnitude less than electron 

mobility (µh = 50 cm2/Vs compared to µe = 1000 cm2/Vs), thereby giving rise to a relative 

stationary hole movement within the electron collection time [12].  Since detection 

signals are a composite of both the electron and hole signals, the resulting spectrum will 

yield incomplete information about the incident radiation.  To compensate for the effects 

of poor hole trapping, special detector structures such as small pixel, Frisch grid, guard 

ring could be adapted where readout signal is due to electron movement only [13]. CZT 

also suffers from poor crystal yield due to defects and inhomogeneity, making the 

material very costly [14].  With continued growth experiments, it is hoped that CZT will 

become more cost effective to produce and will become an effective replacement of 

cumbersome Ge gamma-ray detectors. 

Amorphous selenium (a-Se) offers the highest resistivity (1013) among the three 

semiconductors chosen for the study, thus has potential for very low thermal noise.  

Although a-Se does not have high enough Z value (atomic number = 34) to stop gamma 

rays, it has enough stopping capabilities for x-rays and has commercially being used for 

mammography [15, 16].  Unlike crystalline semiconductors such as CZT, a-Se alloy 

growth process requires relatively low temperature (365 - 485°C), and thick layer (500 

μm) could be deposited via low cost technique such as thermal evaporation to obtain 

large area detectors.  The characteristics such as high thermal neutron cross-section (3840 

barns, 1 barn = 10-24 cm2), low effective atomic number of Se for small gamma ray 

sensitivity, and high radiation tolerance due to its amorphous structure, makes a-Se a 

favorable candidate for solid-state thermal neutron detectors [17, 18, 19].  Existing gas 

proportional counters used for neutron detection employ 3He gas, however, there is a 
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world-wide shortage of 3He gas, so a-Se will offer solid-state neutron detection system 

without the requirement of 3He gas.  In addition to current applications in medical 

imaging such as x-ray mammography, a-Se neutron detectors will find extensive use in 

nuclear power plants including safeguard of special nuclear materials (SNMs), reactor 

instrumentation, process monitoring, and nuclear waste management. 

Drawbacks of a-Se are it’s much higher than ideal electron-hole pair creation 

energy (~50 eV, 22 times of bandgap energy) and poor charge transport properties 

(µτe = 1.4×10-5 cm2/V).  High field has been applied to generate charge carries in the 

avalanche field region to reduce the electron-hole pair production energy form 50 eV to 

~12.5 eV [20, 21].  Transport properties of electron and holes are reported to be improved 

by alloying a-Se with As and Cl doping, which also helps in stabilizing the amorphous 

structure [22, 23]. 

Silicon carbide is an indirect wide band-gap semiconductor.  Although there are 

many polytypes (variations of crystal structure), 4H-SiC is the preferred one for 

electronic devices due to better electrical properties [24].  Wide bandgap energy, high 

breakdown electric field, high carrier saturation drift velocity, and high atom 

displacement energy make 4H-SiC a potential candidate for nuclear detectors.  Epitaxial 

layer of SiC is highly crystalline which offers superior electronic properties that are 

appropriate for nuclear radiation detection.  High bandgap energy (~3.27 eV at 300 K) of 

4H-SiC allows detector operation well above room temperature (~773 K) and extremely 

low leakage currents (low noise) at operating bias (~ tens of pA for 20 µm 4H-SiC 

epilayers).  Because of low Z value SiC is appropriate for detectors of low energy x-ray 

(<10 keV) regime.  SiC is a highly radiation hard material because of high displacement 
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energies of the constituent elements, making it available for detectors that are deployed in 

harsh environments such as high radiation field in the upper atmosphere and/or outer 

space.  Therefore SiC based soft x-ray detector will find its application in NASA’s 

astronomical planet finding missions.   

One of the primary obstacles to development of SiC devices is the presence of 

various defects in device structures. These defects in SiC include dislocations, 

micropipes, grain boundaries, stacking faults, and have detrimental effects on device 

performance [25, 26, 27].  For example, dislocations are the primary defects in SiC that 

affect the current-voltage (I–V) characteristics of devices and micropipes significantly 

affect device leakage current and breakdown voltage.  Therefore defect-device 

performance correlation is an import study in order to achieve optimum detectors.  In this 

dissertation research a significant amount of time was spend for defect analysis using 

techniques such as electron beam induced current (EBIC), thermally stimulated current 

(TSC), and deep level transient spectroscopy (DLTS). 

In summary, all three materials have their own merits as nuclear detectors, and 

with respect to their inherent properties, they capture different types of nuclear radiation, 

offering diverse nuclear detectors applications (cf. Table 1.2).  They also have some 

inadequacy which must be resolved in order to achieve the goal of high performance 

nuclear detectors based on these materials.  Table 1.3 summarizes strategies that will 

require in resolving these significant issues. These strategies were explored during the 

dissertation research and are described in details in the subsequent chapters. 
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Table 1.2.  Weighing pros and cons of the wide bandgap semiconductors that are investigated in this study 

 a-Se CZT 4H-SiC 

Advantages • Highest resistivity 1013 Ω-cm 
• Atomic number, Z (34), high enough to 

stop x-rays  
• High thermal neutron cross sections  

with B-10 doped a-Se alloys 
• Low temperature growth (365 – 485 °C)  
• Possibility of low-cost, large-area 

detector  

• High mobility (μ) 
• Atomic number Z high enough to 

stop hard x-ray and gamma rays  
• Very low electron-hole pair 

creation energy (~4.28 eV) 
• Good electron mobility (~1000 

cm2/V.s 
• Room temperature operation 

• High bandgap, so very low 
leakage current (low noise) 

• High temperature operation 
(≥773 K) 

• Possibility of large-area 
• Highly radiation hard suitable 

for harsh environments 
• Low Z, good for soft x-rays 

Disadvantages • Radiation damage at high gamma doses 
• Relatively low mobility (could be 

improved by selective doping) 
• Relatively high electron-hole pair 

creation energy (high electric field could 
be applied to lower this) 

• Hole mobility is much lower than 
electron mobility, energy 
resolution could be improved by 
single carrier detector structure 

• Large area is not possible 
• High cost 

• Material quality not optimized 
yet (presence of device killer 
defects) 

• High temperature growth 

Applications • x-ray, gamma-ray, and thermal neutron 
detectors 

• Process monitoring and nuclear waste 
management at nuclear power plants  

• Homeland security 
• Medical imaging (mammography) 

• Hard x-ray and γ-ray detectors  
• Screening at ports of entry, non-

proliferation treaty verification  
• NASA space mission 
• Medical imaging (PET and CT) 

• Low energy x- and gamma ray 
• In high radiation field NASA 

applications such as planet 
finding mission 

• Nuclear power plants 
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Table 1.3.  Issues concerning a-Se, CZT, and SiC as radiation detector materials 
and intended mitigation strategies 

Issues/Risks Mitigation Strategies 

Low resistivity 
• Compensating doping  

• Post-growth annealing and component overpressure growth 

Low electron 
mobility  

• Reduce carrier-scattering defect densities by 
isoelectronic doping 

Low hole 
mobility  

• Use Frisch grid, coplanar, or small pixel detector structure 
so that single electron transport mechanism holds 

Low carrier 
recombination time 

• Analyze impurity concentrations  

• DLTS to identify and quantify deep levels 

• Microscopy to correlate inclusions and grain boundaries 

Low breakdown 
voltage  

• Correlate to native defects, non-stoichiometry, and ionizing 
centers 

• Correlate to different surface treatments and passivation 
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1.4 DISSERTATION OVERVIEW 

This study conducts a comparative investigation of three wide-bandgap 

semiconductors – a-Se, CZT, and SiC – for nuclear radiation detection applications.  The 

research was centered on four key areas: (i) precursor material purification and crystal 

growth experiments; (ii) material and detector characterization to evaluate crystal quality 

and device attributes such as resistivity, breakdown voltage, carrier mobility, carrier 

lifetimes, contact performance, and their contribution in device applications; (iii) defect 

analysis to understand the impact of native defects on electrical properties and how they 

affect device characteristics and their performances; (iv) device fabrication and 

evaluation of nuclear detector with radiation sources to determine detector sensitivity, 

resolution, and efficiency.  The results obtained were crucial information about the 

controllable variables for optimum detection performance. 

This dissertation is divided into five chapters. Chapter 1 provides a background, 

review of the existing nuclear detectors, properties of ideal nuclear detectors, and 

motivation for selecting a-Se, CZT, and SiC as detector materials for present study.  

Chapter 2 describes the experiments carried out to develop a new high 

performance thermal neutron detector based on enriched boron (10B) doped a-Se (As, Cl) 

detectors.  First, purification of selenium (Se) precursor material by zone purification and 

subsequent impurity analysis by glow discharge mass spectroscopy was carried out.  

Synthesis of boron doped a-Se alloys was performed in a specially designed alloying 

reactor.  Trace amount of arsenic (As) and chlorine (Cl) were added to the alloy 

composition to stabilize the amorphous structure, a requirement for high resistivity.  

Large area alloy films were prepared by thermal evaporation and characterized by 
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different techniques such as scanning electron microscopy (SEM), x-ray diffraction 

(XRD), electron beam induced current (EBIC), and current-voltage (I-V) measurements.  

Monolithic metal-semiconductor-metal (MSM) detector structures were fabricated using 

various metals of different work functions for Schottky contact analysis.  A thermionic 

emission model has been used to study the Schottky contacts.  Finally, nuclear detector 

performance evaluations with 241Am alpha source and 252Cf neutron source were carried 

out and detection resolution were measured from Pulse Height Spectra (PHS) 

measurements. 

Chapter 3 details the investigation performed on the CZT detectors.   Unlike a-Se 

detectors where thin- films are used for nuclear detector, large single crystals are used to 

fabricate CZT detectors for hard x-ray and gamma radiation detection.  This chapter 

describes a novel crystal growth methodology using excess tellurium (Te) as the solvent; 

this method is a modified Bridgman growth method where some advantageous aspects of 

travelling heater method have been incorporated.  Furthermore control electronics were 

customized for growth ampoule pulling and rotation along with automation via H-Bridge 

motor controller and Arduino microcontroller to ensure growth of high quality 

homogeneous crystals.  The characterization includes analysis of the stoichiometry of the 

grown crystals, optical characterization using UV-Vis spectroscopy, defect analysis by 

thermally stimulated current spectroscopy (TSC) and electron beam induced current 

(EBIC) imaging, and electrical characterization using I-V, and C-V measurements.  Two 

type of detector structures namely “planar” and “guard-ring” geometry were fabricated 

and evaluated for carrier (electron and hole) transport properties such as mobility and 

mobility-lifetime products.  The fabricated detectors are characterized using Pulse Height 
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Spectra (PHS) measurements for radiation testing using x-ray and gamma-ray sources.  

Further analysis of fabricated detectors was performed using biparametric correlation. 

Chapter 4 describes the fabrication and performance of radiation detectors based 

on n-type 4H-SiC epitaxial layer grown on off-axis bulk SiC crystals.  First, radiation 

detectors were fabricated using low-leakage current and low-defect bearing 4H-SiC 

n-type epilayer on high-purity low resistive 4H-SiC wafers.  Detailed defect 

characterization using deep level transient spectroscopy (DLTS) and electrical 

characterizations using current-voltage, and capacitance-voltage measurements were 

carried out for high purity n-type 4H-SiC epitaxial layers.  A systematic study was 

conducted to evaluate performance of 4H-SiC n-type epilayer detectors as alpha particles 

and low energy x-ray and gamma radiation detectors. 

Finally, Chapter 5 concludes the research presented in this dissertation.  A brief 

review of the current challenges and suggestions for future work are also provided. 
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CHAPTER 2: AMORPHOUS SELENIUM THERMAL NEUTRON 
DETECTOR 

 

2.1 OVERVIEW 

This chapter details the experiments carried out to develop enriched boron (10B) 

doped a-Se (As, Cl) alloy film detectors for thermal neutron detection.  Such a solid-state 

nuclear detector will be employed for safeguards of nuclear materials and spent fuel at 

nuclear power plants, verification of international non-proliferation treaty, and 

surveillance of nuclear terrorism activities for national security.  To develop high 

performance a-Se neutron detectors a series of experiments were carried out including 

a-Se alloy material preparation, optimization of alloy composition, film preparation and 

characterizations, detector fabrication and electrical characterization, and finally, testing 

with radiation sources.  Detection performance was evaluated with single layer planar (up 

to 4″ x 4″ area and varying thicknesses of 65-300 µm thick) detectors using high energy 

alpha particles and neutron sources.  The 10B-doped a-Se (As, Cl) alloy detectors grown 

from highly resistive alloy film contributed very low electrical noise to the readout 

spectra under high voltage bias, and showed specific signature of thermal neutron 

detection.  
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2.2 CONSIDERATIONS FOR A-SE NEUTRON DETECTOR 

Amorphous selenium (a-Se) alloy materials have become highly-demanding as a 

xerographic photoreceptor and a direct conversion x-ray detector material for medical 

imaging applications [28, 29] including digital mammography [30] and digital chest 

radiology [31, 32].  This is mainly due to its ability of operating in very high reverse bias 

voltage without breakdown while maintaining very low dark leakage current attributed to 

its high resistive nature and its feasibility of large-area thin-film deposition [29, 33, 34].  

In this dissertation, a novel concept was implemented by doping a-Se alloys with 

enriched boron (10B) to detect alpha particles which are surrogate for thermal neutrons.  

With the expansion of nuclear power, there are growing concerns about the nuclear 

proliferation and nuclear terrorism risk.  High performance, solid-state nuclear 

spectrometers will be employed for safeguards of enriched materials and spent fuel, 

verification of non-proliferation treaty, and surveillance of nuclear terrorism activities. 

Current neutron detection system such as the gas proportional counters are 

inadequate by their stability of response, speed of operation, size, and recently by world-

wide shortage of 3He gas used in this system.  Thus a-Se based solid-state neutron 

detection system will offer an alternative compact design without the requirement of 3He.  

Amorphous selenium (a-Se) has many favorable characteristics for a neutron detector - a 

high thermal neutron cross-section (3840 barns, 1 barn = 10-24 cm2), a wide bandgap 

(2.22 eV at 300 K) which allows room temperature operation, high radiation tolerance 

due to its amorphous structure, and low effective atomic number of Se for small gamma 

ray sensitivity offering easy gamma ray discrimination.  Presence of 10B is essential to 
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capture thermal neutrons.  When captured by the 10B nucleus, thermal neutrons undergo 

the following reaction, producing two energetic charged particles [35]. 

10B  +  1n0 (neutron)     7Li  +  4He (α)  +  2.79 MeV 2.1 
 

The kinetic energy of the charged particles excites electrons in the valence band 

of a-Se lattice expelling the electrons into the conduction band and thereby producing 

holes in the valence band.  The generated charge carriers (electrons and holes) are free to 

move, and under an electric field across the a-Se film, they travel to their respective 

electrodes producing a measurable electrical current signal.  Charge-sensitive amplifier 

electronics are used to measure the current pulses indicating the occurrence of a thermal 

neutron capture event.  Figure 2.1 shows a schematic of neutron capture by enriched 

boron and resulting charge carrier generation in the a-Se film.   

 

 
 

 
 
 

 

 

Figure 2.1. Conceptual design of a thermal neutron detector using B-doped a-Se  

 
In this study to develop high performance a-Se alloy neutron detectors, first alloy 

composition was optimized to ensure good opto-electronic properties. Second, a series of 

characterizations were carried out such as scanning electron microscopy (SEM), x-ray 

10B ̶+ ̶+ ̶+ ̶+ ̶+ 
̶- ̶- ̶- ̶- 



 

20 

diffraction (XRD), glow discharge mass spectroscopy (GDMS), optical absorption study, 

current-voltage (I-V) measurements to identify presence of any performance-limiting 

factors.  Then boron (10B) doped a-Se (As, Cl) alloy detectors were fabricated and 

radiation detection performance was evaluated using high energy alpha particles and 

neutron sources.  The following sections provide experimental parameters and results on 

the research work carried out on a-Se neutron detectors. 

 

2.3 SELENIUM ALLOY PREPARATION 

2.3.1 Zone Purification of Precursors 

Semiconductors’ opto-electronic properties of crystals are strongly and negatively 

influenced by the presence of trace levels of residual impurities since they reduce 

substantially charge carrier transport properties. Under high electrical field operation, 

impurities might cause harmful native defects which may act as recombination centers 

and significantly deteriorate charge carrier transport properties and collection efficiency.  

These defects/trapping centers could also lead to charge build up hence hindering the 

uniformity of the electric response across the detector volume.  Commercially available 

selenium material is of 5N purity (99.999%) and cannot be used in radiation detector 

devices since a-Se is highly sensitive to material impurity.  Therefore, zone refining (ZR) 

process was carried out on the commercially available Se to obtain a-Se material of ~7N 

purities (impurity at ppb level or lower) for successful applications as radiation detectors. 

Zone refining technique [36] relies on the idea that impurities are distributed 

differently in their solid and liquid phases at equilibrium. If Cs is the impurity 

concentration in the solid phase, and Cl is the impurity concentration in the liquid phase, 
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then the segregation constant k refers to the relative concentration of impurities in the 

solid crystal compared to that of the melt: 

𝑘 =
𝐶𝑠
𝐶𝑙

 2.2 

If a small zone of a material is melted with the remainder of the material 

remaining solid, impurities will collect in this molten zone when k < 1.  Figure 2.2 

illustrates the ZR process.  A section of the material at one end is melted, and the molten 

zone is passed through the feed material very slowly by moving the heater very slowly 

towards the other end of the ampoule.  The impurities get dissolved in the molten zone 

and transported through the material from one end to other.  Thus most of the impurities 

will be collected in one end of the material, and the remainder of the material will be 

relatively pure.  If this process is repeated multiple times further purification of the 

material is achieved, and eventually a highly pure material could be obtained [37, 38].  

Just as with the impurities, the portion of the ingot containing pure precursor material is 

purified further due to more zone passes [37]. 

 
Figure 2.2.  Schematic of zone refining process, showing the solidified pure end, molten 

zone material where impurity segregation occurs, and there is yet more precursor material 
to be purified.   
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Figure 2.3. ZR a-Se ingots (~7N) in quartz ampoules after multi-pass zone purification. 
 

Commercially available 5N selenium (Alpha Aesar) was purified using an 

in-house horizontal zone refining (ZR) system.  First, the quartz ampoule was thoroughly 

cleaned using successive washes with acetone, methanol, 10% HF aqueous solution and 

de-ionized water (18 MΩ) and then baked overnight at 950°C under a constant nitrogen 

flow (∼0.25 liter/min).  The ampoule was loaded with 5N Se, sealed and then suspended 

over the track actuator in the horizontal ZR system.  The ZR system uses a single zone 

furnace mounted on a track actuator which is controlled using an Arduino electronics 

microcontroller that can be programmed to perform motor control.   The heater 

temperature was maintained at about 255°C (melting point of Se is 221°C) using a 

temperature controller.  Using Arduino program the motion of the heater was controlled 

at ~ 4 cm/hr.  Once the heater passed the entire length of ampoule (constitutes for one ZR 

pass), the heater was then quickly returned to its original position.  About 40 ZR passes 

were carried out which took around 32 days.   

A yield of ~85% purified material with ~7N purity was obtained after the 

completion of ZR process [18].  Photographs of typical ZR ampoule after completion of 

zone purification for Se are shown in Figure 2.3 with impurities segregated to the right 

end of the ampoule, and pure precursor material on the left side of the ampoule.  After 
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completion of the ZR process, the ampoule was cut and the zone-refined material was 

removed inside an argon-controlled glove box.  Depending on uniformity of shiny color, 

a length of ingot was considered 'pure' material, and cropped from the impure end of the 

ingot.  The removed 'pure' precursor material was then stored in argon filled polyethylene 

bottles until they were ready to be used in the alloy materials synthesis. 

 

Table 2.1. Impurity analysis by GDMS showing reduction in elemental 
impurity concentration in Se material after zone-purification. 

Element Concentration before 
ZR 

Concentration after 
ZR 

Se Major Major 

Hg 5-9 ppm <3 ppb 

Pb 10-15 ppm <6 ppb 

Sn 12 ppb Not Detected 

Ag 5-6 ppm Not Detected 

Cu 20-25 ppm 0.2 ppm 

Fe 12 ppm Not Detected 

Mg 4-6 ppm Not Detected 

Si 3-5 ppm 0.4 ppm 

Te 6-8 ppm 0.35 ppm 

H2O 10-12 ppm Not Detected 

 

To examine the effectiveness of ZR process, zone-refined selenium were analyzed 

using glow discharge mass spectrometry (GDMS) to determine the presence and 

concentration of different impurities and compared to that of non-ZR Se samples.  A 

typical GDMS analysis data after 40 ZR passes are presented in Table 2.1.  The data 



 

24 

clearly demonstrated that most of the major impurity concentrations were reduced to ppb 

level or lower.  The results confirmed that purification by ZR process reduced several 

impurities (which can act as defect center) in commercially bought Se precursor.   

 

2.3.2 Alloy Synthesis 

It is well known that unalloyed a-Se material is prone to crystallization [10, 28].  

In order to use a-Se in high energy radiation detector applications or for medical imaging 

devices, alloying with various elements for stabilizing is a necessity.  A very effective 

way for retarding the a-Se crystallization is to alloy it with arsenic (As) in the range of 

0.3%-0.6%.  While this specific amount of As keeps the p-type properties of a-Se and 

prevents the crystallization, as a tradeoff, it decreases hole lifetime resulting in decreased 

hole properties of the material.  To overcome this drawback, a-Se is further alloyed with 

chlorine (Cl) in the parts-per-million (ppm) range. Careful control of the alloy 

composition is therefore instrumental in ensuring optimum detector performance. 

For the preparation of stabilized a-Se (As, Cl) alloys with controlled electrical 

properties, a custom designed alloying reactor was used.  The reactor operation is 

customized with a specific temperature profile for each alloy. The process cycle was 

operated in a glove box maintained in a pure argon atmosphere.  A picture of the alloying 

reactor with the reactor schematic is shown in Figure 2.4.  The aim was to have a final 

mixture containing ~0.5% As and ~5ppm Cl to keep physical and electrical properties of 

the alloy in an optimum level.  Using ZR Se, a successive synthesis of different master 

alloys, as listed below, were carried out to prepare a-Se (As, Cl) bulk alloy. 

 Synthesis of Se-As master alloys at 658-700°C, using ZR a-Se and 7N As 

 Synthesis of Se-Cl master alloys at 345-355°C, using ZR a-Se and SeCl2 gas 
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 Synthesis of a-Se (As, Cl) bulk alloys at 465-485°C, using ZR a-Se, Se-As 

master alloy, and Se-Cl master alloy. 

 
 
 

 
 

Figure 2.4. Schematic diagram (top) and a picture (bottom) of a-Se alloying reactor. 
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Boron-doped a-Se (As, Cl) alloy materials were prepared in the pelletizing alloy 

reactor as used to synthesize a-Se alloys and is shown in Figure 2.4.  The alloy reactor 

was heated in a controlled manner using a PID temperature controller (Omega) to 465°C 

and a rotating impeller (400-450 rpm) mixed the precursors to ensure homogeneity.  

After 5 hours, the melt was cooled to 355oC and shotting was performed with Stainless 

Steel 316 shotter maintained at 360oC on a shotter plate at 5oC.  When the melt reached 

the shotting plate, it was quenched due to rapid decrease of temperature and it formed an 

amorphous phase. The alloying parameters such as height (dynamic relaxation effect) of 

a-Se (B, As, Cl) liquid melt in the shotter, synthesis temperature vs. time, and shotting 

plate temperature are very important and were observed closely.  A typical temperature 

profile with alloying time for one process run is presented in Figure 2.5.  The phase 

diagram of the B-Se system is presented in Figure 2.6. 

The phase diagram of the B-Se (Figure 2.6) show that the thermodynamics of 

B- alloy formation has some problems associated with an immiscibility-gap on the 

selenium rich side and with formation of B2Se3 compound which is very stable and has a 

very low vapor pressure.  These problems were overcome by heat treating the alloy melt 

at elevated temperature of 475 °C for 10-15 min.  Furthermore, the activity coefficient of 

B in the B-Se system is very low and hence so is the partial pressure of boron.  To 

overcome this problem, two different concentrated alloys of mono-dispersed boron in 

a-Se (As, Cl) matrix was prepared in order to increase the activity coefficient of boron.  

The key was to avoid the reaction of boron with selenium and successively increase 

boron concentrations in pre-synthesized alloys.  The physical appearances of the 
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synthesized bulk a-Se (As, Cl) alloys and B-doped a-Se (As, Cl) alloys are shown in 

Figure 2.7.  The synthesized alloys have a dark color with shiny surface on one side.   

 

  
Figure 2.5. Temperature profile (Temperature vs. Time characteristics) for 

10B-doped a-Se (As, Cl) bulk alloy synthesis. 
 

 

 
Figure 2.6. The phase diagram of B-Se alloy system. 
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 (a)            (b) 

Figure 2.7. (a) Dry pellets of a-Se (~0.52% As, 5ppm Cl) alloys and 
(b) 10B-doped a-Se (~0.52% As, 5ppm Cl) alloys.  

 

2.4 SELENIUM ALLOY FILM DEPOSITION  

2.4.1 Substrate Preparation 

After alloy synthesis, various alloy films with different thicknesses were 

deposited over aluminum and ITO coated glass substrates by carefully controlling the 

thin film deposition process.  Substrates were prepared before films were deposited to 

ensure surface uniformity and improved adhesion.  Indium tin oxide (ITO) coated TEC-7 

or TEC-15 glass substrates and aluminum oxide substrates (up to 10 × 10 cm2 in area) 

were used for the study.  Benefit of aluminum oxide substrates is that it could act as 

blocking layer for the injection of electrons from the respective negatively biased 

electrode.  ITO coated glass substrates were rinsed successively in ethanol, in acetone, 

followed by sonication with isopropanol, and finally with deionized water; and then they 

were dried by blowing nitrogen (N2) gas.   
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Aluminum (Al) substrate of following specifications: 1100 grade, ~3 × 10-6 Ω-cm 

electrical resistivity; sheet of thickness 0.032ʺ, was purchased from McMaster-Carr 

company.  Next Al substrates were washed with soft soap detergent and water to remove 

any grease and dust from the surfaces.  Abrasives used in polishing Al may become 

embedded in the surface due to softness of 1100 grade Al sheets, and may transfer larger 

particulates to finer stages of polishing.  The metal sheets were already planar; therefore 

the mechanical grinding stage was skipped completely in order to eliminate unnecessary 

scratching and pitting by large-grit abrasives.  The cleaned substrates were mounted flat 

on teflon cylindrical studs by molten red wax, then cleaned thoroughly with acetone and 

isopropanol.  Fine polishing of the Al substrate surfaces were carried out by using a 

suspension of 1 µm alumina (Al2O3) powder D.I. (deionized) water (~50 g/500 ml H2O) 

on short nap cloth disk (micro-cloth acquired from Buehler) at polishing wheel speed 

about 500 rpm for 10 minutes.  The Al substrates were then ultrasonically cleaned in D.I. 

water for about 5 minutes to remove any remaining abrasives.  For chemical polishing, 

the substrates were laid in an acid bath composed of 75 ml H2SO4 (1N), 150 ml H3PO4 

(85% w/w) and 10 ml HNO3 (68-70% ACS reagent grade) at 65 °C temperature for 

2 minutes, followed immediately by washing in D.I. water and drying with a N2 gun.  For 

the formation of Al2O3 passivation layer on the Al-substrate, the polished Al-substrates 

were oxidized in an open air in a pre-profiled furnace at 375 °C for about an hour 

resulting in a visibly white Al2O3 layer on the substrate surfaces. 

2.4.2 Film Deposition by Thermal Evaporation 

The film deposition was carried out using in-house thermal evaporation facilities 

(CHA SE 600 evaporator).  Figure 2.8 shows the schematic of the thermal evaporator 
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system used for a-Se (As, Cl) alloy film preparation.  This evaporator is equipped with 

planetary rotation system for substrate rotation.  Substrate temperature accessories and 

vacuum fixtures (capable of a vacuum pressure of 2 × 10-8 torr) are installed within the 

thermal evaporation system.  The mounting capabilities inside the vacuum chamber of 

the thermal evaporation system were modified so that two large area (10 × 10 cm2) films, 

two 5 × 5 cm2, and two 2.5 × 2.5 cm2 films (sister samples) could be produced in each 

deposition cycles.  Film depositions are monitored by a quartz crystal thickness monitor.  

A test sample is placed with the depositions and the corresponding film thickness was 

measured by Dektak IIA surface profilometer. 

 

 
   (a) (b) 
 
Figure 2.8. (a) Schematic of thermal evaporator system and accessories and (b) a picture 

of in-house CHA-SE600 thermal evaporation system used for a-Se alloy films.  
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For a-Se film deposition, first the prepared substrates of different sizes placed on 

the planetary rotating discs where they were held by thin tungsten wires placed on the 

edges.  The bulk alloy was then measured and loaded in a molybdenum or a tungsten 

boat.  The vacuum chamber was evacuated to about 2 × 10–6 torr and the chamber 

temperature was raised to ~ 100 °C in order to get rid of any moisture or residual gases.  

After about few minutes at ~100 °C, the temperature was lowered to 60 °C.  To grow 

amorphous structure, deposition of a-Se required a substrate temperature of 60-65 oC.  As 

Se has poor thermal conductivity and low glass transition temperature (~50 °C), it is 

crucial to control the substrate temperature during the deposition process, otherwise the 

alloy film could easily become polycrystalline.  Thus the substrate temperature was 

monitored and precisely controlled during the deposition process to keep the deposited 

films with homogeneous amorphous structure all over the film surface.  The vacuum 

during the deposition process kept in a minimum level ~10-6 torr and increment of the 

boat current was controlled precisely for smoother a-Se phase transitions.   After the 

deposition runs, no polycrystallinity or grains were observed on the films. 

An Inficon XTC/2 thin-film deposition controller connected to a quartz crystal 

thickness monitor was programmed for automated deposition of a-Se alloy films.  The 

tooling factor was precisely calculated in order to accurately control the deposited film 

thickness within ± 1% of the desired value.  B-doped a-Se (As, Cl) alloy films up to 100 

 cm2 in area grown on ITO coated glass substrates are presented in Figure 2.9.  The 

appearance of B-doped a-Se (As, Cl) alloy films of different sizes grown on oxidized 

aluminum substrates in a single deposition run are also shown in Figure 2.10.  The 
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structural, physical, and electrical characterization of a-Se (As, Cl) films on ITO coated 

glass and Al substrates were carried out in details as described in the next section.   

 

    

                                 (a)                                                                    (b) 

Figure 2.9.  Enriched 10B-doped a-Se (As, Cl) thin films deposited on ITO coated glass 
substrates: (a) 10 × 10 cm2 (4 × 4 sq. inches) films of ~ 300 µm and (b) 4 × 4 cm2  

(~1.5 × 1.5 sq. inches) sister films (deposited in one single deposition run). 
 

    
 

Figure 2.10.  Enriched 10B-doped a-Se (As, Cl) thin films deposited on Al/Al2O3 
substrates (4 × 4, 2 × 2, 1.5 × 1.5, and 1 × 1 sq. inches) in a single deposition 

 run grown in the modified evaporation system with larger mounting 
 capabilities in the vacuum chamber. 
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2.5 ALLOY FILM CHARACTERIZATION 

2.5.1 Surface Morphology Studies  

The surface morphology and microstructure of the deposited B-doped a-Se (As, 

Cl) alloy films were examined by scanning electron microscopy (SEM) studies with 

different magnifications.  In SEM, beam of electrons are focused on the sample, and 

electromagnets rather than lenses are used for focusing, so much higher resolution could 

be obtained.  The electron beam interacts with sample atoms, producing various signals 

that are collected to produce SEM image.  Figure 2.11 (a) shows SEM images of the 

surfaces of grown alloy films.  The picture at left shows very smooth and shiny surfaces 

without any micro-cracks or defects (even with1000 x magnification).  The SEM picture 

at right shows a few typical defects sometimes encountered with thin film deposition 

cycle.  The alloy films with defect-free smooth surface morphology were used to 

fabricate neutron detectors.  Figure 2.12 (a) shows a typical SEM image taken at the edge 

of the 10B-doped a-Se (As, Cl) alloy film on ITO-coated glass substrates. 

 

  

Figure 2.11.  SEM images of doped 10B doped a-Se (As, Cl) alloy films deposited on 
ITO-glass substrates: (a) showing smooth surface, 1000× magnification; (b) showing a 

few surface defects, 400 × magnification.   

 

(a) (b) 
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2.5.2 Compositional Characterization 

Energy-dispersive x-ray spectroscopy (EDAX) is an important tool to determine 

elemental composition of a material.  Performed within a SEM setup, in this technique, 

high-energy electrons from SEM beam excite and expel inner-shell electrons within the 

sample atoms. As electrons from the outer shell fill the holes created by the excited inner-

shell electrons, x-rays are generated.  The energies of these x-rays are distinctive of the 

elemental atom and contribute to the characteristic peaks on the EDAX spectra.  The 

element concentration is determined by integration of the peaks corresponding to the 

major elements present [39].  Figure 2.12 (b) presents an EDAX line scan showing the 

elemental concentration along the edge of the 10B-doped a-Se (As, Cl) alloy film on ITO-

coated glass substrates.  The EDAX scan shows the presence of Sn, O, and In of sodalime 

glass (SLG) at the substrate side.  Presence of Se and As is observed across the alloy 

film; however, counts of Cl are very small probably due to Cl concentration in ppm level.  

Boron count is not observed because of low atomic mass; for that inductively coupled 

plasma mass spectroscopy (ICP-MS) was performed.  

 

 
Figure 2.12.  (a) SEM image taken at the edge of the B-doped a-Se (As, Cl) 

alloy film on ITO-coated glass substrates, and (b) EDAX line scan showing the 
elemental concentration along the yellow arrow shown in (a). 

 

B-doped a-Se (As, Cl) film 

ITO-SLG 

(a)       (b) 
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2.5.3 Structural Characterization by XRD 

Amorphous structure of selenium alloys was confirmed by x-ray diffraction 

(XRD) analysis.  In order to get a diffraction pattern, the ground a-Se powder is 

bombarded with x-rays.  When these x-rays interact with the material they either get 

diffracted or transmitted.  Because of unique physical properties like composition, lattice 

spacing and arrangement, the incoming beam gets diffracted at characteristic angles. 

Intensity versus angle plot is measured to determine the corresponding material.  The x-

ray diffraction pattern was obtained using a Rigaku D/MAX 2100 powder x-ray 

diffractometer (CuKα radiation, λ = 0.15406 nm).  The observed diffraction patterns 

shown in Figure 2.13 corresponded very well to the standard x-ray pattern for Se alloys 

with an amorphous structure.  There are no diffraction peaks for any crystallographic 

orientation observed in the literature [40].  No other peaks due to impurities or any other 

phases were observed within the sensitivity of the instrument (0.1%).  Hence the XRD 

confirms the amorphous structure of the stabilized a-Se (As 0.52%, Cl 5 ppm) alloy.  For 

detector applications, maintaining amorphous structure is important because the 

resistivity decreases by orders of magnitude if the alloys are polycrystalline.   

 

    

Figure 2.13.  XRD patterns showing amorphous structure of (a) a-Se (As, Cl) alloy film 
and (b) B-doped a-Se (As, Cl) film on ITO-coated glass substrates. 

 
 

XRD Spectrum of a-Se(As, Cl) Film

0

10

20

30

40

50

60

5 15 25 35 45 55 65 75 85
2 Theta

In
te

ns
ity

 (a
.u

.) 
   

   
   

 



 

36 

2.5.4 Optical Absorption Study 

The optical absorption studies were conducted on B-doped a-Se (As, Cl) alloy 

films on ITO glass substrate to determine the bandgap energy.  Large bandgap energy 

(≥ 1.5 eV) is required for high resolution detectors  so that the detection signal is due to 

the ionization by radiation only and not due to thermal noise.  The relationship between 

indirect band gap energy, Eg, and absorption coefficient, α,  as a function of the photon 

energy, hν, could be expressed the following equations: 

 (𝛼ℎ𝜈)  ∝  �ℎ𝜈 − 𝐸𝑔�
1/2

  2.3 

 𝑜𝑟,    (𝛼ℎ𝜈) 2 = 𝐵. ℎ𝜈 − 𝐸𝑔 2.4 

where h is Planck’s constant, ν  is the frequency of light, and B is a constant.  By plotting 

optical absorption (αhν) vs. incident photon energy (hν) the bandgap energy could be 

determined.  Figure 2.14 shows such optical absorption curve obtained for B-doped a-Se 

(As, Cl) alloy film.   

 

Figure 2.14. Optical absorption spectra of B-doped a-Se (As, Cl) alloy film. 
 



 

37 

An ITO coated glass slide was used as the reference, and the values of α were not 

corrected for the reflection of the alloy film surface.  By extrapolating the linear region of 

the curves to (αhυ)2 = 0 [41], the bandgap energy (Eg) was estimated to be about 2.21 eV 

at 300 K which is in close agreement with other a-Se based alloys as reported in the 

literature [16, 31]. 

 

2.6 BORON-DOPED A-SE DETECTOR FABRICATION  

A planar metal-semiconductor-metal (MSM) structure (see Figure 2.1) was used 

to create boron- doped a-Se (As, Cl) alloy film based neutron detectors.  Using the 

deposited a-Se (10B, As, Cl) films, devices with two different contact structures were 

fabricated: 

Detector Structure (1): Au /a-Se (10B, As, Cl)/ Glass/ITO 

Detector Structure (2): Au /a-Se (10B, As, Cl)/ Al2O3/Al 

Different contact structures were studied to reduce the leakage current of the device by 

controlling carrier transport inside the devices for better detection signals.  In order to 

obtain a relatively low leakage current, a thin blocking layer (electron blocking) is 

necessary at the interface between the B-doped Se alloy film and the ITO-glass or 

aluminum substrate bottom contact.  This was achieved for aluminum substrate using 

Al/Al2O3 layers as an electron blocking layer in the device (structures #2).  The 

aluminum oxide layer prevents dark current injection from the substrate.  Al substrates 

were oxidized by heating at 220 °C for about two hours.  The top free surface of B-doped 

a-Se (As, Cl) layer normally acts as a blocking layer for holes preventing injection of 

surface charges into the bulk.    
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Gold top contacts were deposited on the top of the alloy films by using metallization 

shadow mask technique.  Semitransparent gold contact of thickness ~10 nm was 

deposited by RF/DC sputtering unit (Figure 2.15).  The bottom contact was oxidized 

aluminum /aluminum (Al2O3/Al) or ITO.  Thin copper wires were attached with silver 

epoxy and the contact area was encapsulated with very thin epoxy adhesives.  Fabricated 

detectors of different sizes and bottom contacts are shown in Figure 2.16. 

 

Figure 2.15.  RF/DC 13.56 MHz frequency sputtering unit used for metallization. 

 

 

Figure 2.16.  Enriched 10B-doped a-Se (As, Cl) alloy film devices with 2 × 2 monolithic 
arrays - 1.5″×1.5″ and 2″×2″ on Al/Al2O3 substrates (top) and 1.5″×1.5″ on ITO coated 

glass (bottom);  gold top contact with individual pixel size of ~ 0.78 cm2. 
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2.7 ELECTRICAL CHARACTERIZATION OF B-DOPED A-SE DETECTORS 

B-doped a-Se (As, Cl) alloy film must have high resistivity, which will reduce the 

leakage current flowing through the detector under high bias conditions.  For high 

resolution detectors, it is crucial to maintain the leakage (dark) current at very low levels 

of ~10-10 – 10-12 A, when biased.  Thus current-voltage (I-V) studies using metal-

semiconductor junction is used for electrical characterization to determine the leakage 

current of the fabricated alloy film detectors and then calculate the resistivity.   

The current-voltage characteristic (I-V characteristic) of a metal-semiconductor 

junction is determined by the barrier height at the interface.  There are two types of 

metal-semiconductor junctions: (i) Ohmic contact which has no barrier, allowing holes 

and electrons to travel through the semiconductor without being blocked and thereby 

producing a linear current-voltage response; (ii) Schottky contact is a rectifying contact 

which has potential barrier height at the interface restricting carrier movements.  Schottky 

barrier offers easy current flow in the forward direction and little current flow in the 

reverse direction, current flows mainly in one direction.  The barrier height (𝜙𝑏𝑖) at the 

metal-semiconductor interface is the difference between metal work function (𝜙𝑚) and 

semiconductor work function (𝜙𝑠): 

 𝜙𝑏𝑖 =  𝜙𝑠 − 𝜙𝑚 2.5 

Figure 2.17 shows band diagrams of Ohmic and Schottky contacts between a 

metal and a p-type semiconductor at thermal equilibrium.  The work function is 

characterized by the energy required to remove an electron from the Fermi level (EF) to 

the vacuum level.  Once the metal-semiconductor junction is formed, the metal and the 
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semiconductor Fermi levels get by exchanging charges at the edges of the bands. The 

energy band diagrams shows that there is no barrier blocks to halt the flow of holes in the 

case of Ohmic contact between metal and p-type semiconductor. Hence the current can 

flow through the junction regardless of the polarity of the applied voltage.  The rectifying 

effect of the Schottky contact is due to the formation of this barrier height (φbi) at the 

junction. 

The condition to form an Ohmic contact with a p-type semiconductor is that the 

metal must have higher work function compared to that of the p-type semiconductor 

(𝜙𝑚 > 𝜙𝑠).  On the other hand a Schottky contact will be formed if 𝜙𝑚 < 𝜙𝑠 [42].  The 

work function of amorphous selenium is ~5.9 eV.  The work function of gold (Au) is 

5.1eV, which is less than that of a-Se.  Hence, gold top contact formed Schottky contact 

with a-Se in the fabricated 10B-doped a-Se (As, Cl) detectors. 

 

 p-type Ohmic contact      p-type Schottky contact 

Figure 2.17.  Band diagrams of Ohmic and Schottky contacts between a metal 
 and a p-type semiconductor at thermal equilibrium energy. 
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Current-voltage (I-V) characteristics were carried out by measuring the current 

flowing through the a-Se detector at various applied voltages across the detector.  The 

electrical resistance was measured from inverse slope of the linear regression of dark 

current-voltage curve.  The resistivity was calculated using the equation: 

 𝜌 = 𝑅 ∙
𝐴
𝐿

 2.6 

where ρ is the resistivity of the crystal in Ohm-cm, R is the resistance in Ohms, A is the 

contact area (cm2), and L is the thickness of the a-Se film.  I-V measurement was carried 

out using Keithley 237 source measure unit.   

Figure 2.18 shows the current-voltage (I-V) characteristic of enriched 10B-doped 

a-Se (B, As, Cl) detector with top gold contacts and ITO glass or oxidized Al as bottom 

contact.  The detector on ITO glass substrate (Figure 2.18 (b)) indicates low leakage 

current (~-10 nA at -1000V), and high rectification ratio showing typical diode 

characteristic.  Figure 2.18 (c) shows I-V characteristic of a detector fabricated on Al 

substrate with Al2O3 interfacial layer as electron blocking layer.  The measured leakage 

current for these detectors were in the range of pA (pico-amp) to a fraction of few nA at 

-1000V.  The low leakage current at a very high bias is beneficial for detector 

performance because higher electric field can be applied to the detector without 

increasing noise and that will enhance the signal from a detector.  The devices with Al2O3 

electron blocking layer showed two to three orders of magnitude higher resistivity 

compared with the devices without an electron blocking layer.  The resistivity the 

10B-doped a-Se (B, As, Cl) detector measured to be ≥ 1012 Ω-⋅cm for the gold top 

electrode and the aluminum oxide and aluminum bottom electrode devices.  This is a 
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promising result, which can further improve the performance of a-Se (B, As, Cl) alloy 

detectors by reducing leakage current significantly. 

 

 
(a) 

 

 
(b)  

(c) 
  

Figure 2.18. (a) Schematic of enriched 10B-doped a-Se (B, As, Cl) planar MSM 
detector; (b) Current-voltage (I-V) characteristic of such detector fabricated on 

ITO glass; and (c) I-V characteristics of detector fabricated on oxidized Al 
substrate with Al2O3 as blocking contact. 

 
 

2.8 METAL CONTACT STUDIES FOR SCHOTTKY DEVICES 

For high resolution detectors, it is crucial to maintain the low dark (leakage) 

current levels (~10-10 – 10-12 A) under high bias conditions.  The choice of metal used for 

the top contact on metal/a-Se/metal sandwich structures plays a critical role in this matter.  

While obtaining high Schottky barrier heights might become an issue on p-type 
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semiconductors, the high work function of amorphous selenium (𝜙𝑆𝑒 ~5.9 eV) makes this 

goal cumbersome to achieve by using metals with low 𝜙𝑚 values.  However the complex 

physical properties of a-Se and unpredictable metal/a-Se junction mechanisms make it 

very challenging to control the leakage current by solely controlling the barrier height. 

Therefore optimum contacts were determined by experimenting with a set of various 

metals as top contacts. 

The voltage dependent junction current in a Schottky contact can be expressed as: 

𝐼 = 𝐼𝑠(𝑒
𝛽𝑉
𝑛 − 1) 2.7 

where 𝐼𝑆 is the saturation current, V is the applied voltage, 𝑛 is the diode ideality factor, 

𝛽 = 𝑞/𝑘𝐵𝑇, 𝑞 being the electronic charge (1.6 × 10-19 C), 𝑘𝐵 the Boltzmann constant 

(8.62 × 10-5 eV/K), and 𝑇 is the absolute temperature (°K). The saturation current is 

given by: 

𝐼𝑆 = 𝐴∗𝐴𝑇2�𝑒−𝛽𝜑𝐵� 2.8 

where 𝐴 is the area of the diode, 𝜑𝐵 is the Schottky barrier height, and 𝐴∗ is the effective 

Richardson constant which can be expressed as: 

𝐴∗ = 4𝜋2  𝑚∗ ℎ3⁄ = 120 (𝑚∗ 𝑚) 𝐴𝑐𝑚−2⁄ 𝐾−2 2.9 

where h is Planck constant, and m* is the electron effective mass [42].   

Using logarithm, the Equation 2.7 could be written as: 

𝑙𝑜𝑔(𝐼) =
𝛽𝑉
𝑛

+ 𝑙𝑜𝑔(𝐼𝑠) 2.10 
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Using current measurements at varying applied voltage and then plotting log(I) 

versus applied voltage bias, we could measure the ideality factor ‘n’ from the slope and 

saturation current Is from the intercept.  Figure 2.19 shows a typical such plot. 

 

 
Figure 2.19. Plot of semi log I vs V of I-V curve of Schottky contacts.  

 

The junction properties between B-doped a-Se (As, Cl) alloy films and a wide 

variety of metals with different work functions (Au, Ni, W, Pd) were investigated using 

current-voltage measurements.  The aim was to investigate whether the choice of metal 

can improve the performance of the detector by minimizing the dark leakage current.  For 

the top metal contacts, we have found significant dependencies of metal work functions 

on current transients following application of voltages from - 800 to 1000 volts.  By 

evaluating the barrier height dependency on the metal work function, we were able to 

estimate the space charge densities by using time of flight (TOF) measurements.   

Monolithic 3 × 3 arrays of metal contacts (M-S-M devices) for contact studies are 

presented in Figure 2.20.  Thin films of various metals were deposited on top of 

10B-doped a-Se (As, Cl) alloy film to form the front contact.  Metal deposition has been 

𝑙𝑜𝑔(𝐼) =
𝛽𝑉𝑎
𝑛

+ log(𝐼𝑆) 
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carried out by RF/DC 13.56 MHz frequency sputtering unit in argon ambient.  Current-

voltage (I-V) characteristics of various metals contacts were carried out and are shown in 

Figure 2.21.  Among the four metal contacts tested, Au contacts showed best diode 

characteristics with high rectification.  I-V characteristics in general showed very low 

leakage currents in the reverse biases as well as forward biases.  All metal contacts 

showed low dark currents under very high bias and leakage current pass beyond nA 

levels.  The performances of Ni and W contacts showed lowest leakage currents 

(~ 10-11 A at - 800V).  Forward bias voltage degradations were observed for some 

contacts especially with Ni and Pd contacts.  Further investigation is going on to 

investigate time dependence of the current transients under high bias by exposing the 

detector at a constant positive bias for 10-12 hours and measuring diode current. 

 
 

 

 

 

 

 

 
  

Figure 2.20.  Metal contacts (monolithic 3 × 3 arrays) on 10 x 10 cm2 (4 × 4 sq. inches) 
10B-doped Se (As, Cl) detector fabricated on Al/Al2O3 substrate.  Upper left: gold (Au); 

upper right: nickel (Ni); lower left: tungsten (W); and lower right: palladium (Pd). 

 
 

Metal  Work functions, 
 φm (eV) 

 

Au 5.1  
Ni 5.15  
W 4.55  
Pd 5.12  
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(Au) 

 
(Ni) 

(W) (Pd) 

Figure 2.21.  Current-voltage characteristics of various metals contacts of monolithic 
arrays in Figure 2.20; very low leakage currents were seen for all of these metal contacts. 

 

2.9   NUCLEAR RADIATION TESTING OF B-DOPED A-SE DETECTORS 

Thermal neutrons when are captured by 10B nucleus undergo an (n, α) nuclear 

reaction, producing two daughter particles (7Li and α) as shown in Figure 2.22.  The 

released 2.79 MeV kinetic energy is shared by these two charged particles traveling in 

opposite directions (energy of 7Li = 1.014 MeV and Eα = 1.78 MeV).   The kinetic energy 

of the charged particles excites electrons in a-Se atoms into the conduction band and 

subsequently generates holes in the valence band.  Generated electron-hole pair is free to 

travel to their respective electrodes under an electric field across the a-Se film, producing 
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a measurable electrical current.  The resulting signal pulse indicates the occurrence of a 

thermal neutron capture event.  These signals are then transformed into radiation 

spectrum by using standard nuclear instrumentation consist of preamplifiers, shaping 

amplifier, and multi-channel analyzers (MCA). 

 
 

 

                                  10B  +  1n0                            7Li  +  α  +  2.79 MeV 
 

                10B  +  1n0                          11B*  
 

 

 

Figure 2.22.  The 10B (n, α) 7Li reaction upon neutron capture by10B nucleus. 
 
 

Figure 2.23 shows the schematic diagram of the detection testing setup.  A 

preamplifier allows the charge signal to be converted to a voltage signal, which can be 

sent over standard BNC cables to a shaping amplifier.  Preamplification is a critical 

component, because noise introduced in this stage of the detection setup can have a 

significant effect on the resulting detection spectrum.  The preamplifier pulse output is 

shaped by the shaping amplifier, which will filter as much noise as possible while 

preserving information about the energy of the radiation countered by the detector.  The 

shaping amplifier spends a certain amount of time measuring the signal, which is known 

as the shaping time.  After shaping, the amplified pulses are sent to a multi-channel 

analyzer (MCA).  The MCA converts the analog signals into digital information 

containing the height of the shaped pulse (the “pulse height”), and record the number of 

pulse heights acquired within a given range. The resulting histogram, produced by the 

7Li* + α* 

7Li 
478 keV γ 
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MCA is called “Pulse Height Spectrum” (PHS), which depicts how many counts of 

radioactive photons interacted with the detector in a given energy window. 

 

 

Figure 2.23.  Schematic of the detector testing electronics. 

The response of the detectors to the nuclear particles was evaluated by irradiating 

the detector with nuclear radiation sources and by recording the pulse height spectrum 

(PHS) produced from the detector.   The bias to the detector was applied using a 

Canberra 3102D high voltage power supply.  The charge signals generated by the 

interaction of the nuclear particles with the detector were amplified with a Princeton 

Gamma-Tech RG-11B/C-RT preamplifier, and a Canberra 2022 linear amplifier.  The 

amplified signal was then fed into a Canberra Multiport II multichannel analyzer and 

evaluated using Genie-2000 software.  

Response of the fabricated 10B-doped a-Se (As, Cl) alloy detectors to nuclear 

radiation was first evaluated by irradiating the detector with 0.1 mCi 241Am source (peak 

energies: 60 keV for γ and 5.5 MeV for α particles) at room temperature (~300 K).  

Alpha particles were used as surrogates for neutrons since 10B neutron capture reaction 

directly produces α-particle (Figure 2.22).  Figure 2.24 shows the pulse height spectrum 
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produced by the detector with 241Am radiation source.  This spectrum completely 

vanishes and counts become background noises when a piece A4 white copying paper 

was placed in between the radiation source and detector, confirming the detector’s 

response to alpha particles.  By comparing response with gamma radiation, it is clear that 

the peak is distinctive signal of α-radiation.    

 

Figure 2.24.  Pulse height spectra of B-doped Se alloy detector under 241Am 
source (strong source).  No detection peak was observed with A4 bond paper, 

blocking the α-source.  By comparing response with gamma radiation, it is clear 
that the peak is distinctive signal of α-radiation.  

Finally, neutron response of the fabricated 10B-doped a-Se (As, Cl) alloy detectors 

was evaluated by irradiating the detector with a californium-252 source (0.7 µCi 252Cf) at 

300 K.  A stack of four 0.25″ high-density polyethylene (HDPE) moderator was placed 

~ 3 cm from the 252Cf source to convert fast neutrons emitted from the source to thermal 

neutrons [43].  Figure 2.25 shows the pictures of the neutron source vault and the 

detection setup.  Figure 2.26 shows the pulse height spectrum produced by the detector 

under thermal neutrons form 252Cf neutron source moderated by HDPE at various bias 

voltages.  The measured pulse-height spectra under thermal neutron irradiation show very 
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well resolved peaks corresponding to the product energies of 10B and thermal neutron 

reaction described in Figure 2.22.  Figure 2.26 shows that the peak position shifted to 

higher energies (represented by higher channel) with higher applied voltages.  This is due 

to greater collection efficiency since charges are more quickly separated and swept to the 

collecting electrodes under higher voltage bias applied to the detector. 

   
(a) (b) (c) 

 
Figure 2.25. (a) Picture of a neutron vault; (b) Picture of a detection system located 
outside of the neutron source vault chamber; (Middle) (Right) Detector electronics  

and sample box is within the neutron vault chamber and are placed below the  
0.7 µCi 252Cf source and with HDPE moderator during measurements. 

 

Figure 2.26.  Detection spectra of 10B-doped Se (As, Cl) alloy detector under 0.7 µCi 
252Cf neutron source and with a stack of four 0.25” HDPE moderators.  As expected 
the peak shifted to higher energies due to greater collection efficiency with higher 

applied voltages. 
 

 ~0.7 µCi 252Cf source 
Coarse gain: 30,  
Fine gain: 3,  
Shaping time: 0.5 µs,  
Acquisition time: 60 s)  
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2.10 CONCLUSION 

Direct read-out solid-sate thermal neutron detectors have been fabricated from 

enriched 10B-doped a-Se (As, Cl) alloy films.  Alloy composition was stabilized and 

optimized using As and Cl doping to Se precursor, which was zone refined to increase 

purity to ~7N in order to minimize deterioration in charge carrier transport and collection 

efficiency due to impurities.  Characterizations carried out with scanning electron 

microscopy (SEM), x-ray diffraction (XRD), glow discharge mass spectroscopy 

(GDMS), optical absorption study, current-voltage (I-V) measurements, measured 

stoichiometry, morphology, bandgap energy, resistivity, and dark leakage current.  The 

bandgap and resistivity was determined to be 2.21 eV and ≥1012 Ω-cm, respectively, at 

300K.  I-V characteristics showed very low leakage (~-10nA at -1000V); by using Al2O3 

as blocking layer, leakage current is reduced to pA to a fraction of nA at -1000V.  Metal-

semiconductor-metal (MSM) detectors were fabricated with up to 4″×4″ alloy films with 

thickness up to 300 µm.  The detectors demonstrated distinctive pulse-height spectra 

when irradiated by 241Am α-source and 252Cf neutron source moderated by HDPE stack, 

which was reduced to background noise when the sources were blocked or removed.  

These data are very encouraging and corresponds very well with the requirements of 

ideal semiconductor properties for application in neutron radiation detection.  The data 

confirms that 10B-doped a-Se (As, Cl) alloy films can be used to construct high 

performance compact neutron detectors.   
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CHAPTER 3: CZT GAMMA-RAY DETECTORS 
 

3.1 OVERVIEW 

Cadmium zinc telluride (CZT) is a direct-bandgap ternary semiconductor grown 

by alloying binary compound cadmium telluride (CdTe) with zinc (Zn).  The ratio of 

Cd:Zn is commonly 90%:10% for detector grade CZT crystals [9].  CdTe has cubic 

lattice structure; after alloying with Zn, 10% of the Cd atoms are replaced with Zn atoms 

to form the ternary lattice structure of Cd0.9Zn0.1Te (henceforth known as CZT).  Varying 

the concentration, x, of zinc present in the Cd1-xZnxTe, the bandgap energy of CZT can be 

adjusted from 1.5 to 2.2 eV.  CZT has many favorable properties for gamma-ray and 

x-ray detectors, and years of research show its effectiveness [9, 44, 45, 46, 47].  Its wide 

bandgap (>1.5 eV at 300 K) offers room temperature operation, high atomic numbers 

(Cd = 48, Te = 52) and high density (5.8 g/cm3) enables absorption of high energy 

gamma ray, high resistivity (1010 Ω-cm) reduces the effect of thermal noise, and good 

electron mobility (1100 cm2/Vs) represents decent charge collection to generate readout 

spectra.   Thus, CZT is one of the most promising room temperature radiation detector 

and can be used for a variety of optoelectronic devices and applications such as x- and 

gamma radiation spectroscopy for detection of dirty bomb or special nuclear materials 

(SNMs) to combat security threat, nondestructive testing for industrial process 

monitoring and control, for medical imaging using nuclear medicine such as in positron 

emission tomography (PET), and space astronomy for NASA application. 
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The following sections provide experimental procedures, theoretical background 

as needed, results and discussion on the research work carried out on CZT.  Details of the 

CZT single crystal growth by tellurium solvent method, morphological, optical and 

electrical characterization of grown CZT crystals, surface processing, nuclear radiation 

detector fabrication, and testing of these devices are presented.  First, elemental 

precursors (Cd, Zn, and Te) were purified using multi-pass zone purification method.  

Zone-refined precursor materials were then employed to grow CZT single crystal, by 

solvent-growth method [48].  Semiconductor characterization was then performed on the 

CZT crystals to determine crystal morphology, elemental stoichiometry, band gap, and 

electrical resistivity [49, 50].    Deep-levels and surface defect studies were conducted to 

determine the type and concentration of defects present in the crystals and the defect 

levels are correlated with detector performance [49, 50].  

CZT nuclear detectors were fabricated using in-house grown materials.  Two 

different types of detector structures were investigated.  First, planner detector was tested 

where both charge carriers, electrons and holes, generate electrical signals in the readout 

system [48, 50, 51].  Second, detector structure with guard ring was studied where only 

single carrier (electron only which has much higher mobility) will be responsible for 

readout spectra.  This is carried out to compensate for the poor hole mobility.  Electrical 

characterization was performed to determine the charge transport properties.  Pulse height 

spectroscopy measurements were carried out using a 241Am (59.6 keV) and 137Cs (662 

keV) radiation sources on CZT radiation detectors.  Finally, detectors were characterized 

using analog and digital radiation detection systems to measure their performance and 

energy resolutions [48, 49, 50, 51, 52].  
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3.2 CZT CRYSTAL GROWTH  

This section describes zone purification of precursor materials (Cd, Zn, and Te), 

preparation and carbon coating of growth ampoules, and details of the CZT single crystal 

growth by solvent growth method.   

3.2.1 Precursor Purification by Zone Refining Method 

Since material impurities have a very strong negative impact on device 

performance [44, 45], it is imperative that very high purity precursor materials are used 

for growth of semiconductor crystals.  The highest purity that is readily commercially 

available for elemental precursors of CZT (cadmium, zinc, and tellurium) is 5N (or 

99.999% pure).  Therefore further purifications of these precursors were carried out using 

in-house multi-pass horizontal zone refining system.  The existing set-up consists of a 

computerized process controller, a data acquisition system, and all safety features. An 

automated zone refiner was custom fabricated to work round the clock in programmable 

mode.  A photograph of a zone refiner is shown in Figure 3.1.  Details of how the zone 

refining system works have been provided in Chapter 2, Section 2.3.1.    

 

 

Figure 3.1. A photograph of a horizontal, two-heater zone refining system.  
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For zone refining, the quartz tubes used (length = 60 cm, OD = 28 mm, and 

ID = 25 mm) were manufactured by Quartz Scientific, Inc.  The quartz tube was first 

closed at one end to make an open ampoule.  The open ampoule was thoroughly cleaned 

using successive washes with acetone, methanol, 10% HF aqueous solution and 

de-ionized (DI) water (18 MΩ) and then baked overnight at ~ 1000 °C under a constant 

nitrogen flow (∼0.25 liter/min).  The cleaned and dry quartz ampoule was filled up to first 

18″ of the length with individual precursor feed material (~500 grams Cd, Zn, or Te of 

5N purity), sealed and then suspended over the track actuator in the horizontal zone 

refining furnace.  The furnace temperature was slowly ramped up (at a rate of 1 °C per 

minute) to a temperature which is slightly above the melting point of the precursor 

material.  The melting points of precursor materials Cd, Zn, and Te are 321.1°C, 419.6°C, 

and 449.5°C, respectively, at 1 atm pressure.  The track actuator moved the furnace along 

the ampoule length at a rate of 30 mm per day, and the furnace made 40-45 passes from 

one end of the ampoule to the other.  

The ring furnace melted a small zone of solid precursor material.  When the heat 

source was removed, the melted precursor material re-solidifies, and due to solid-liquid 

phase transition, impurities got segregated from solid phase to the molten zone.  As the 

furnace slowly moved along the ampoule, shifting the molten zone from one end to other, 

the expelled impurities got accumulated to the end of the ampoule.  After multiple passes 

(typically 45 passes), most of the impurities were collected into one end of the ampoule, 

while the remainder of the material became highly pure.  A photograph of a typical zone 

refined cadmium (Cd) ingot is shown in Figure 3.2, with impurities segregated to the left 

end of the ampoule, and pure precursor Cd material on the right side of the ampoule.   
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Figure 3.2. Zone refined (ZR) Cd ingot within a quartz ampoule; pure precursor material 

is on the right side while segregated impurities are on the left side of the ampoule. 

 

After completion of the ZR process, the ampoule was cut and the zone-refined 

material was removed inside an argon-controlled glove box.  Depending on uniformity of 

transparency, a length of ingot was considered 'pure' material, and cropped from the 

impure end of the ingot.  The removed 'pure' precursor material was then stored in argon 

filled polyethylene bottles until they were ready to be used in the CZT crystal growth.  

Glow discharge mass spectroscopy (GDMS) analysis was performed on the zone refined 

(ZR) precursor materials (Cd, Zn, and Te) and compared with the pre-ZR data to evaluate 

the effectiveness of the ZR purification.  Table 3.1 shows the results of the GDMS 

analysis performed on the zone-refined Cd, Zn, and Te materials.  Samples were tested 

for 72 elements from Li to Pb.  The relative error associated with the GDMS technique is 

reported to be about 20%.  The GDMS data showed that zone refining process has 

segregated out a diverse array of impurity materials.  The concentrations of the common 

elemental impurities in the zone-refined precursor Cd, Zn or Te material were 3-10 times 

less compared to samples before zone purification.   For example, the concentration of 

Hg impurity in Cd decreased from 4.5 ppb to 0.3 ppb after zone purification.   
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Table 3.1. Impurity analysis of zone refined Cd, Zn, and Te materials by Glow Discharge 
Mass Spectroscopy (GDMS). Impurity concentration in parts per billion.  Parenthesis 
data are after zone purification showing the effectiveness of zone refining process. 

Impurity Cd Zn Te 

O 3.2  (≤ 0.5) 2.7  (< 0.4) 5.2  (< 0.6) 

Na 1.6  (0.5 ) 1.4  (0.2 ) 1.8  (<0.4 ) 

Sn 1.2  (< 0.5) 1.2  (< 0.2) 1.4  (< 0.2) 

Al 2.8  (0.3 ) 1.5  (n/d ) 1.8  (n/d ) 

Cd Major 1.4  (0.3) 1.6  (0.3) 

Li 4.2  (1.4) 4.8  (1.2) 2.4  (<0.3) 

Mn 5.2  (1.5) 1.4  (<0.3) 1.2  (<0.3) 

Hg 4.5  (0.3) 5.1  (<0.3) 4.2  (<0.3) 

Ba 1.5  (<0.2) 0.8  (<0.2) 1.4  (<0.2) 

Cr 1.4  (< 0.3) 2.4  (< 0.3) 1.5  (< 0.3) 

Se n/m  n/m 1.1  (<0.2) 

Tl 1.6  (0.2) 2.6  (<0.3) 1.8  (<0.2) 

Zn 1.4  (0.6) Major n/m 

Pb 2.3  (n/d) 1.8  (n/d) 1.2  (n/d) 

Te 4.5  (0.6) 0.8  (<0.1) Major 

Cu 4.1  (1.2) 2.2  (0.2) 1.4  (<0.3) 

Pd 1.8  (<0.3) 1.6  (<0.2) 1.8  (<0.2) 

Co 2.2  (<0.2) 1.8  (<0.4) 1.5  (<0.2) 

Ni 3.2  (0.3) 1.8  (n/d) 1.2  (n/d) 

Ca 5.2  (0.3) 0.6  (n/d) 0.4  (n/d) 

Fe 0.5  (0.2) 0.4  (n/d) 0.6  (n/d) 

Hg 4.2  (0.3) 4.2  (<0.5) 4.1  (<0.3) 

Si 5.2  (1.6) 2.8  (0.6) 2.4  (1.2) 
 n/d – Not detected 
 n/m – Not measured 
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3.2.2 Carbon Coating of Growth Ampoule 

The combination of the low melting point (321°C) with high thermal conductivity 

(0.9 W/cm-1K-1) and volume expansion on melting, makes Cd susceptible to adhere to the 

inside wall of the quartz ampoule and react with the SiO2 material [53, 54].  This is one 

of the major issues with CZT crystal growth.  To protect the precursor Cd material and 

the resulting CZT ingot from interaction with the quartz surface, as well as, to prevent 

wearing of the ampoule surface, the interior of the quartz ampoule were coated with thin 

layers of carbon.  Carbon coating also prevents reaction of materials with a quartz 

ampoule. As carbon is a neutral impurity, it doesn’t influence the electrical properties of 

the grown crystals. Any residual oxygen or water present within the quartz ampoule walls 

also got trapped in the carbon layer.   

Prior to carbon coating, quartz ampoule was successively rinsed with acetone, 

methanol, and DI water. Next the ampoule was etched using 10% hydrofluoric acid, and 

rinsed with DI water several times. Ampoules were then loaded into the stainless steel 

encasement, and purged with argon for 15 minutes.  

The quartz ampoule wall is coated with carbon by n-Hexane (HPLC grade, 95+%) 

vapors at about 850 °C within a furnace under argon flow.  Figure 3.3 shows the 

schematic and picture of the carbon coating system developed in our laboratory, where 

several modifications were added to the basic systems described by Harrison et al. [54].  

For example, a new housing for the quartz ampoules with our new design of stainless 

steel piping system was developed.  This allows ampoules to be held within the coating 

system and once coated easily be removed to crystal growth furnace without harmful 

fumes escaping the encasement, as seen in the schematic in Figure 3.4 [55].   
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Figure 3.3.  Schematic diagram (top) and a picture of carbon coating system developed in 

our laboratory for coating quartz ampoules (bottom). 

 
 

 

Figure 3.4. Schematic diagram of the furnace end of the in-house carbon coating system, 
showing the inlet, ampoule encasement, and exhaust for the system [56].  
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For carbon coating, the furnace temperature was ramped up to 850 °C at a rate of 

1 °C per minute, under argon flow.  After purging with argon for 15 minutes at 850 °C, 

argon flow through the normal hexane (n-hexane) bubbler is enabled.  At a hexane flow 

rate of 15 mL/minute, it took about 1.5 hours to coat the inner wall of a 1″ diameter 

ampoule with 1 µm thick carbon layer.  After coating, argon flow is resumed, and the 

ampoule is purged of hexane gas for 30 minutes. The carbon coated ampoule is then 

annealed at 1100 °C for 1 hour.  Furnace temperature, time, bubble rate (by controlling 

argon gas pressure from the reading of a regulator), and location of the ampoule were 

changed to find the optimum conditions.  For n-hexane, no carbon coating was observed 

below the furnace temperature of 800 °C at bubbling rate of ten bubbles/s.  Carbon 

coating was formed at 850 °C. At <850 °C, the carbon film was delaminated and if the 

bubbling rate is not high enough. For good adhesion, we need a vigorous bubbling rate, 

which is over 10 in the regulator reading. We have observed that between acetone vs 

n-hexane: n-hexane is more efficient in pyrolysis reaction because it consumes less 

solvent for a carbon coating of similar quality.  Figure 3.5 shows a picture of carbon 

coated 1″dia. quartz ampoules.  

 

 
Figure 3.5. Picture of carbon coated quartz ampoules used for CZT crystal growth. 
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3.2.3 Single Crystal Growth Methods 

Single crystal of CZT growth entails transformation of precursor materials from a 

liquid phase to the solid phase ternary CdZnTe compound in order to grow an ordered 

lattice structure.  To form the covalent bonds in CZT compound that hold together the 

elements within the lattice structure, the growth temperature must be well above the 

melting point of the precursor elements as well as the compounds themselves (CdTe, 

ZnTe, and CZT).  The melting points of precursor materials Cd, Zn, and Te are 321.1°C, 

419.6°C, and 449.5°C, respectively, at 1 atm pressure.  CdTe has a melting point of 

1096°C for an atomic ratio of 50% Cd to 50% Te [53].  As seen on the ternary phase 

diagram shown in Figure 3.6, the melting point of Cd0.9Zn0.1Te is ~1120 °C [57].   

 

  

Figure 3.6.  Phase Diagram for CdZnTe. Top line indicates liquidus temperatures, bottom 
line indicates solidus temperatures [57]. 
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CZT crystal is typically grown by melt growth techniques such as Bridgman 

method and the travelling heater method (THM) which involve melting the precursor 

material, and then crystallizing the material by changing pressure, temperature, or a 

combination of both [45, 47, 58].  The Bridgman technique uses a “hot” and “cold” zone 

to create a temperature difference within a furnace.  A seed crystal is placed at the base of 

the growth ampoule. The precursor material melts at the hot zone which is kept at a 

temperature of about 1130 °C above the melting point of CZT.  As the growth ampoule 

moves through the furnace, hot zone is translated into the cold zone and the molten 

precursor gets solidified along with the seed crystal.  Although Bridgman method has 

been used extensively to grow CZT material, crystals grown by this technique suffer from 

non-homogeneity, small grain sizes, and zinc segregation [9, 45, 47] 

The travelling heater method (THM) requires the material to be grown be 

dissolved in a compatible solution.  CZT grown using the THM technique involves 

placing pre-synthesized Cd0.9Zn0.1Te and additional tellurium as the solvent material 

within a quartz ampoule [58].  The sealed ampoules are then placed in a furnace with a 

hot zone.  Being a solution growth method, the growth temperature is lower for the 

travelling heater method compared to the Bridgman method.  A uniform crystal without 

zinc segregation is achieved, however, THM requires that a homogeneous source ingot be 

used [58, 59].  Figure 3.7 shows schematic diagrams of Bridgman and THM methods and 

compares the temperature profiles for CZT crystal growth by these methods. 

For this study, CZT single crystals were grown using solvent growth technique 

that combines many favorable features of the Bridgman method and THM growth 

methods.  For example, as in Bridgman or THM, a seed crystal is used for directional 
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growth of CZT single crystal.  Like Bridgman method, synthesis of CZT compound from 

the elemental precursors and growth of single crystal are carried out in the same quartz 

ampoule, unlike THM which requires CZT to be pre-synthesized.  On the other hand, 

similar to THM method, the solvent growth method requires lower growth temperature.  

For the solvent growth method of CZT with Te solvent, the melting temperature was 

~980 °C.  Furthermore, as in THM, the furnace was modified to perform multiple passes 

through hot/cold zone to ensure homogeneity and segregation of excess Te from the rest 

of the CZT ingot.  Custom pulling and rotation was installed, along with automation via 

H-Bridge motor controller and Arduino microcontroller (Figure 3.9 and Figure 3.10). 

3.2.4 CZT Growth by Tellurium Solvent Method 

CZT crystals with stoichiometric ratio of Cd0.9Zn0.1Te were grown by tellurium 

(Te) solvent growth technique using 50% excess Te as a solvent.  Zone refined precursor 

elements at a Cd:Zn:Te ratio of 30:12:58 at% were used along with indium (In, at 

15-25 ppm) as a dopant.  The elemental materials were loaded into the carbon coated 

growth ampoule, which was then evacuated and sealed under ultra-high vacuum (10-6 torr 

or higher) to maintain an inert vacuum-sealed environment inside the ampoule (Figure 

3.8).  Ampoules were loaded onto the multi-zone growth furnace and attached to the 

puller and rotation system (Figure 3.9).  Using progressively slower ramp-up rates, the 

furnace temperature was raised to 980 °C and held at that temperature for several hours to 

ensure a thorough melting of the precursor materials.  Ampoule was then lowered to a 

zone of 900 °C for CZT synthesis.  After synthesis, the ampoule was lowered into the 

cold zone at a very slow rate of 2 mm/hr to initiate single crystal growth.  The CZT 

ampoule was rotated using accelerated crucible rotation, at a rate of 12 rotations per hour.    
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Figure 3.7.  Schematic diagram and temperature profile of CZT crystal growth by 

Bridgman method (top) and travelling heater method (bottom) 
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Figure 3.8.  Picture of a quartz ampoule sealing set up at USC. 

 

 

Figure 3.9. Schematic of CZT crystal growth furnace at USC. 
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Figure 3.10. Picture of in-house growth furnace (left) with custom electronics for 
controlled pulling and rotation of the growth ampoule to ensure crystal quality 

 and homogeneity. Custom pulling and rotation was installed, along with  
automation via H-Bridge motor controller and Arduino microcontroller. 

 
 

After crystal growth, the quartz ampoule containing the grown CZT crystals were 

removed from the furnace, grown CZT ingot was retrieved by cutting the quartz 

ampoules, and CZT wafers are obtained by cutting the ingot carefully with a diamond 

wire-saw.  Figure 3.11 presents pictures of grown CZT single crystal ingot and wafers.  

The cut crystal is then polished using a series of sandpapers of different grits and 

ultimately microfiber pads to achieve a mirror finish on all faces.  CZT crystal wafers are 

then cleaned using an ultrasonicator, etched with 2% bromine-methanol solution (Br-

MeOH) for 1 minute and 30 seconds, and rinsed off with de-ionized water.  These wafers 

were then characterized prior to use as nuclear detectors.   
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Figure 3.11. Typical pictures of grown CZT crystals: (left and middle) 
CZT crystal ingots and (right) two polished CZT crystal wafers. 

 
 

 
(a)      (b) 

 

   (c) 

Figure 3.12.  Schematic of a grown CZT ingot and a cut wafer (a) which was then diced 
and polished to mirror finish (b) in order to prepare for detector fabrication; (c) diamond 

impregnated stainless steel wire saw used to cut crystals. 
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3.3 CZT CRYSTAL CHARACTERIZATION 

This section provides experiments and results of morphology; stoichiometry, 

optical and electrical characterization of the grown crystals to ensure their effectiveness 

as radiation detectors.  Scanning electron microscopy (SEM) was used to analyze 

morphology of polished CZT wafers.  Energy dispersive x-ray analysis (EDAX) was 

used to determine the stoichiometry of the CZT ingot.  Optical transmission was used to 

determine band gap energy of the grown crystals.  Electrical characterization through 

current-voltage (I-V) studies reveals the resistivity of the grown CZT material.  Finally, 

deep-levels and surface defects were characterized using electron beam induced current 

(EBIC) and thermally stimulated current (TSC) measurements. 

3.3.1 Morphological Characterization 

CZT crystal wafers were polished using a series of sandpapers of different grits 

and ultimately microfiber pads to achieve a mirror finish on all faces.  CZT crystal wafers 

were then etched with 2% bromine-methanol solution (Br-MeOH) for 1 minute and 

30 seconds, and rinsed with DI water.  These wafers were examined under scanning 

electron microscope (SEM) to assess their surface morphology.  In SEM, beam of 

electrons are focused on the sample to form an image instead of light as in regular 

microscope.  The electrons interact with atoms in the sample, producing various signals 

that are collected to produce images showing that surface topography of the sample.  

Because the SEM uses electromagnets rather than lenses, a much higher resolution could 

be obtained.  Figure 3.13 (a) shows SEM images of the surface of grown CZT wafer 

samples.  The SEM picture at left shows very smooth and shiny surfaces without any 

micro-cracks or defects.  In order to do quantitative analysis of the crystal quality, etch 
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pit density was evaluated by taking SEM picture of the grown single crystal after Everson 

etching [60].  The SEM picture in Figure 3.13 (b) shows etch pits revealed after etching.  

The etch pit density was ≤ 3 × 104 cm-2, which also confirmed good crystal quality. 

 

              
  (a)  (b) 

Figure 3.13.  (a) SEM picture of a polished and chemically etched CZT crystal wafer;  
(b) SEM picture of etch pits revealed after Everson etching. 

 
3.3.2 Compositional Characterization 

The goal was to grow CZT with Cd0.9Zn0.1Te stoichiometry in order to produce 

detector grade crystals.  Historically, stoichiometry has been a significant issue with CZT 

due to the segregation of Zn from the rest of the ingot.  To verify the grown CZT crystals 

had desired stoichiometry (proper ratio of Cd:Zn:Te), multiple samples from grown CZT 

ingot were analyzed using energy-dispersive x-ray spectroscopy (EDAX).   

Performed in a scanning electron microscope, EDAX is an important tool to 

determine the elemental composition of a material [39], where sample to be tested is 

bombarded with high-energy electrons from the SEM.  These high-energy electrons 

excite and expel inner-shell electrons within the material, creating an electron-hole pair. 

As electrons from the outer shell fill the holes created by the excited inner-shell electrons, 
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x-rays are generated.  The energy of these x-rays is distinctive of the atom and 

contributes to the characteristic elemental peaks on the EDAX spectra.  The element 

concentration is determined by integration of the peaks corresponding to the major 

elements present, and taking the ratio of the area under the peaks.   

EDAX was carried out on five wafers cut at different axial distances along the 

grown ingot using a Tescan Vega 3 SEM-EDAX microscope.  The surface of each 

sample wafer were polished (but not etched) and then scanned in three different spots 

simultaneously, and values were averaged.  The Zn distribution profile presented in 

Figure 3.14 showed an approximately ± 5% deviation of stoichiometry at the top and 

bottom portions of the ingot, but less than 0.1% at the center.  Due to a higher Zn 

distribution coefficient (KZn (CdTe) = 1.35 [61]), the axial variation of Zn concentration 

was higher at the growing-end (tip-end).  However, the Zn concentration variation across 

the sliced wafer was much more uniform (≤ 1%).   

 

 

Figure 3.14.  Zn axial and cross-sectional concentration profile of grown CZT crystals. 
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The EDAX data suggests that stoichiometric CZT crystals can be harvested from 

the middle to upper region of the CZT ingot grown by the solvent growth method.  Thus 

the CZT wafers obtained from these regions were used for radiation detector fabrication. 

3.3.3 Optical Characterization 

For high resolution detector performance, large bandgap energy (≥ 1.5 eV) is 

required so that detection signal is due to ionization by radiation only not due to thermal 

noise.  Hence, optical characterization was performed using UV-Vis spectroscopy to 

determine bandgap energy.  For this study, transmission properties were measured from 

750 nm to 1500 nm wavelengths using a thin (~ 30 µm thickness) CZT wafer.  The band 

gap energy, Eg, was calculated from the cut-off wavelength (λ) of the transmission 

spectrum, by using the following equation: 

 𝐸𝑔 =
ℎ𝑐
𝜆

 3.1 

where h is Planck’s constant, c is the speed of light, Eg is the band gap of the CZT 

crystal, and λ is the cut-off wavelength.  The optical transmission results for grown CZT 

and CdTe (reference sample) samples are shown in Figure 3.15.  The optical transmission 

is ~60% for CZT for wavelengths greater than 800-900 nm.  As can be seen, the band 

edge for the reference CdTe crystal is at a longer wavelength as expected than the band 

edge for the CZT crystal (due to addition of Zn).  The band gap of CZT sample was 

calculated from the cut off wavelength of the transmission spectrum and calculated to be 

~1.56 eV which is within the expected range for Cd0.9Zn0.1Te and is ideal for 

semiconductors employed in nuclear detectors.  



 

72 

 
Figure 3.15. Optical transmission properties of a solution-growth CZT 

wafer. CdTe was used as a reference. 

 

3.3.4 Electrical Measurements: Resistivity 

For high performance detector, CZT crystal must be of high resistivity, which will 

reduce the leakage current flowing through the detector when biased.  Current-voltage 

(I-V) studies using metal-semiconductor junction is used for electrical characterization to 

determine the resistivity of the grown CZT material.  The current-voltage characteristic 

(I-V characteristic) of a metal-semiconductor junction is determined by the barrier height 

at the interface.  There are two types of metal-semiconductor junctions: (i) Ohmic contact 

which has no barrier, allowing holes and electrons to travel through the semiconductor 

without being blocked and thereby producing a linear current-voltage response; 

(ii) Schottky contact is a rectifying contact which has potential barrier at the interface 

restricting carrier movements and produces a non-linear response.  For nuclear detectors, 

an Ohmic contact is preferred since it allows the detector to have higher charge collection 

efficiency. 
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The following formulas can be used to calculate the barrier height at the metal-

semiconductor interface:  

 𝜙𝑏 =  𝜙𝑚 − 𝜙𝑠 3.2 

 𝜙𝑠 =  𝜒 + (𝐸𝐶 − 𝐸𝐹) =  𝜒 +  
𝐸𝑔
2

 3.3 

where ϕb is the barrier height, ϕm is the metal work function, ϕs is the semiconductor work 

function, Ec is the energy of the conduction band edge, EF is the Fermi-level energy, Eg is 

the bandgap energy, and χ is the electron affinity.  The electron affinity of CZT is about 

4.3 eV and the bandgap energy was determined to be 1.56eV.   Using these values in 

Equation 3.3, the work function of CZT was calculated to be at 5.08eV.   

CZT crystals grown in our laboratory contains indium doping in order to 

compensate for intrinsic defects.  It was reported that doping with indium also increases 

the resistivity and makes CZT slightly p-type [62].  To form an Ohmic contact with a 

p-type semiconductor, a metal must have higher work function compared to that of the 

semiconductor (Φm > Φs) [42].  Opposite ((Φm < Φs) is true for an n-type semiconductor.  

CZT has a work function of 5.08eV as calculated above, so the metal to form the Ohmic 

contact needs to have a work function greater than 5.08eV.  There are very few metals 

with such high metal work function; examples are gold (Au, Φm = 5.4eV) and platinum 

(Pt, Φm = 5.64eV).  Since Au is an inert metal can be deposited by electroless deposition 

and sputtering, it was the metal of choice to make CZT radiation detector. 

A simple CZT detector of 7 × 7 × 5 mm3 was fabricated by forming contacts with 

gold, applied to the top and bottom of the CZT crystals by DC sputtering, using a 

Quorum Q150T DC sputtering unit.  Current-voltage (I-V) characteristics were carried 

out by measuring the current flowing through the CZT detector at various applied voltage 
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bias across the detector.  I-V characteristics were carried out at room temperature using a 

Keithly 237 electrometer setup.  The electrical resistance was estimated from inverse 

slope of the linear regression of current-voltage curve.  The resistivity was calculated 

using the following equation: 

 𝜌 = 𝑅 ∙
𝐴
𝐿

 3.4 

where ρ is the resistivity of the crystal in Ohm-cm, R is the resistance in Ohms, A 

is the contact area (cm2), and L is the thickness of the CZT crystal in cm. Figure 3.16 

shows the current-voltage characteristic of a CZT detector with gold contacts (2.6 mm 

electrode diameter).  From the inverse slope of the linear fit of the I-V characteristic and 

using Equation 3.4, the electrical bulk resistivity was estimated to be 2 × 1011 Ω-cm.  

This is high enough resistivity to fabricate a functional CZT radiation detector.  The CZT 

detectors showed very low leakage current at a high bias (below 5 nA at – 1000V) due to 

their high resistivity, which are beneficial for high resolution detectors. 

 

 

Figure 3.16.  I-V characteristic of a detector-grade CZT crystal (right) and detailed 
reverse bias I-V characteristic (left). 
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3.4 DEFECT CHARACTERIZATION FOR CZT SCHOTTKY DEVICES 

The crystallographic defects and impurities in grown CZT crystals constrain its 

nuclear detector performance.  CZT crystals grown by various methods have been 

associated with formation of Te inclusions/precipitates and zinc segregation in the grown 

crystals which have resulted in major crystalline defects such as dislocations, grain 

boundaries, and twinning [37, 50, 51].  Such defects impede pulse charge collection due 

to the presence of deep electronic defect levels which act as traps and recombination 

centers for mobile charge carriers.  Macro-defects such as cracks, grain-boundaries, and 

twin-boundaries can lower the yield of usable single-crystal volume of CZT ingot.  

Surface defects can cause increased leakage current and poor noise performance for a 

fabricated CZT detector.  Furthermore, deep defect levels within the CZT semiconductor 

can act as charge traps (electron or hole), which can trap the charges generated due to 

interaction with nuclear radiation [52].  In particular, the poor hole transport properties of 

CZT caused by deep-level defects require that special detector geometries be applied to 

CZT-based detectors.  Therefore it is critical to study and further improve the 

understanding on the formation and characteristics of these electrically active defects 

which degrade CZT based detector performance. 

Using non-destructive characterization techniques such as electron beam induced 

current (EBIC) and thermally stimulated current (TSC) spectroscopy measurements, the 

crystallographic defects can be visually identified and correlated to the mobile charge 

loss in detectors as affected by defect trapping and recombination effects. Additionally, 

TSC has been used to determine the activation energy associated with the deep level 

defects in the grown CZT crystals. 
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3.4.1 Thermally Stimulated Current (TSC)  

Defect analysis using Thermally Stimulated Current (TSC) experiments was 

performed to determine the presence of deep-level defects within the grown CZT 

crystals.   In TSC experiments, a semiconductor sample is cooled to a temperature below 

100 K. At this temperature, first the trap centers for holes/electrons are filled using 

photon energy.  The sample is then heated slowly at a constant rate; as a result, the 

energy stored in the traps is released.  The current generated by the trapped charges are 

recorded and plotted as a function of temperature producing TSC spectra.  The TSC 

peaks representing trap centers will appear at various heating rates, and can be plotted on 

an Arrhenius plot. The activation energies of the trap centers can be determined from the 

slope of the Arrhenius plot, generated from the trap centers Tm, using the following 

equation [63]: 

 
𝐸𝑇
𝑘𝑇

= ln�
𝑇𝑚4

𝛽
� + ln�

1017 ∗ 𝜎
𝐸𝑇

� 3.5 

where ET is the activation energy of the trap level, β is the heating rate, σ is the capture 

cross section, k is the Boltzmann’s constant, and T is temperature.  After determining the 

activation energy, TSC peaks were fit using the following equation to determine the trap 

capture cross section: 

 𝐼𝑇𝑆𝐶 = 𝐶𝑉𝑏𝑞𝜇𝜏𝑁𝑇𝑒 ∗ exp �−�
𝑒

𝛽d𝑇
� 3.6 

where C is the constant related to the sample geometry, Vb is the bias voltage, q is 

electronic charge, µ is the carrier mobility, τ is the carrier lifetime, NT is the trap capture 

cross section, e is the emission rate of trapped carriers, and β is the heat rate. 
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Figure 3.17. Schematic of the thermally stimulated current TSC experimental setup. 

 
 

Figure 3.17 shows the schematic of TSC experimental setup.  A thermal stage 

provided temperature variation, and the generated TSC spectrum was controlled and 

recorded using a Keithley 6517A electrometer connected to a PC running LabVIEW 

software.  The CZT Schottky diode was attached to the thermal stage using graphite 

paste.  TSC measurements were conducted from a temperature range of 94 to 400 K 

under a 10-5 torr vacuum inside a low temperature microprobe station.  CZT Schottky 

diodes (1 cm x 1 cm x 0.1 cm) with indium (In, φm = 4.12 eV) and/or titanium (Ti, φm = 

4.33 eV) as top contact and platinum (Pt) as bottom contact were used for TSC 

experiments. Traps in the CZT diode were filled by illumination at 94 K for 2 minutes 

using a 10 W white halogen light bulb through a microscope window.  To analyze TSC 

spectrum and to identify the CZT defect levels, we have used the simultaneous multiple 

peak analysis (SIMPA) method [64, 65].  The TSC spectrum is a sum of all charge 

released by defect levels and can be expressed as:  

 𝐼𝑆𝐼𝑀𝑃𝐴(𝑇) = �𝐼𝑇𝑆𝐶𝑖 (𝑇)
𝑚

𝑖=1

+ 𝐼𝑑𝑎𝑟𝑘(𝑇) 3.7 
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where 𝐼𝑇𝑆𝐶𝑖 (𝑇) represents the ith individual TSC peak and m is the total number of defect 

levels that contribute to the peak analysis at temperature T. 

Figure 3.18 shows the TSC spectrum of the fabricated CZT Schottky detector, 

carried out at a heating rate of 15 K/min and under a bias of -10V.  To this spectrum 

simultaneous multiple peak analysis (SIMPA) curve fitting was applied.  The curve 

fitting has identified the defect levels D1-D11, which are described by discrete TSC peaks, 

and their respective energy levels and capture cross sections are summarized in Table 3.2. 

The cross-sections of defects were calculated assuming an effective-to-rest electron mass 

ratio (m*∕mo) of 0.1128.  Defect levels D1 and D2 are related to the so-called A centers in 

the CZT crystals affected by Cd vacancies and shifted by In doping [64, 66, 67, 68].  

Defect level D3 has been attributed to a VCd
- or VCd

2- defect in the literature [69, 70], and 

may be related to the A center levels.  Defect levels D4-D8 have been observed to be 

related to the VCd
2- defect [64, 68, 69, 70], however defect level D4 has also been 

theoretically calculated to be related to a Te-Te split bonding complex energy level [64, 

71, 72].  Defect levels D9-D11 are related to a TeCd antisite complex which may be related 

to the growth method (Te-solvent) and Te inclusions [66, 72]. 

 

 

 

  



 

79 

 
Figure 3.18 Thermally stimulated current (TSC) spectrum of CZT Schottky diode 

radiation detector (heating rate: 15 K/min, reverse bias: - 10 V), fitted by the 
simultaneous multiple peak analysis (SIMPA) method. 

 
 

Table 3.2. Trap parameters deduced from TSC measurement of the fabricated CZT 
Schottky diode radiation detector presented in Figure 3.18. 

 

Deep 
level 

defects 

Activation  
energy (eV) 

Tm 
(K) 

Capture cross 
sections 

(cm2) 

Origin of defect 
levels Ref. 

D1 0.181 ± 0.007 115.2 1.960×10-19 A center, [VCd-In]- 67, 68, 69 

D2 0.199 ± 0.026 125.3 7.263×10-19 A center, [VCd-In]- 67 

D3 0.215 ± 0.014 139.1 6.833×10-19 VCd
-/ VCd

2- 70, 71 

D4 0.231 ± 0.038 149.3 3.091×10-19 VCd
2-, (Te-Te)spl. 64, 71, 72 

D5 0.251 ± 0.026 162.7 2.431×10-19 VCd
2- 67 

D6 0.269 ± 0.021 177.0 1.750×10-19 VCd
2- 68 

D7 0.287 ± 0.006 196.6 1.102×10-19 VCd
2- 73 

D8 0.315 ± 0.002 225.8 3.619×10-20 VCd
* 68, 69, 70 

D9 0.329 ± 0.003 244.9 1.090×10-20 TeCd complex 68, 72 

D10 0.354 ± 0.005 262.5 4.433×10-21 TeCd complex 67, 68, 72 

D11 0.370 ± 0.003 299.1 3.968×10-21 TeCd complex 68, 72 
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3.4.2 Electron Beam Induced Current  

Electron Beam Induced Current (EBIC) analysis provides a unique correlation 

between collected current in a semiconductor sample under an electron beam and 

electrical defect properties in that sample.  EBIC measurement produces an image 

displaying contrast by the variation of collected current.  The crystallographic defects 

often are electrically active and introduce energy levels into the semiconductor band gap, 

acting as recombination or mobile carrier trap centers.  Furthermore, if these defects are 

shallow level defects, then they may assist in unintentional doping and carrier 

concentration modulation.  Defects in the CZT crystal can be delineated by observing the 

contrasts in the image which are the results of space-charge trapping [74].  

Figure 3.19 presents the schematic of the EBIC setup.  EBIC is performed using a 

scanning electron microscope (SEM). The electron beam from the SEM electron gun 

strikes semiconductor device, and as the beam scans across the sample, electron-hole 

pairs are generated in the semiconductor sample, and separated by the internal electric 

field due to the built-in space-charge region [75].  The resulting signal current is 

amplified and used as an image signal.  Variations in the generation, recombination, and 

drift of the electron-hole pairs will result in variations in the contrast of the EBIC image.  

These variations are most likely caused by the spatial differences in crystal quality and 

defects within the semiconductor material. 

According to the EBIC theory [74], total EBIC current (IEBIC) at a point is sum of 

defective and defect-free regions.  The current in the defect-free semiconductor (I0) forms 

the background of EBIC image and depends on energy of the electron beam, E.  The 

EBIC current of the defect region (I*) forms the contrast in the image and depends on the 
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defect strength γ and the point spread function H* according to the following equations 

[74]: 

 ),,()(),,( *
0 EIEIEI EBIC ηξηξ +=  3.8 

 ∫ ∫ ∫ −−=
F

EzyxHzyxdxdydzEI );,,(),,(),,( ** ηξγηξ  3.9 

where IEBIC (ξ, η, E) is the total collected current, x, y, z are Cartesian coordinates, ξ, η 

are the point coordinates in the XY plane where the EBIC current is considered, I0 (E) is 

the EBIC current in the defect-free region, I*(ξ, η, E) is the current contributed by the 

defect region, E is the energy of the electron beam, F is the region of space occupied by 

defect.  

 

 
Figure 3.19. Schematic of electron beam induced current (EBIC) setup. 

 

EBIC contrast images (spot size ~ 500 nm with accelerating voltage 23 kV) were 

taken on the CZT Schottky diode using a JEOL-35 SEM with the detector under reverse 

bias (50–100 V).  CZT Schottky diode with indium (In) metal contact and platinum (Pt) 

back contact was used for EBIC study.  The EBIC image of the reverse biased CZT 
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Schottky diode is presented in Figure 3.20 (b) and correlated to infrared transmittance 

(TIR) images of the CZT surface (Figure 3.20 (a)).  The EBIC image shows 

interpenetrating dark and white regions.  The leakage current in the diode is higher in the 

defective regions.  Therefore dark regions in Figure 3.20 (b) represent defective regions 

having high leakage current, whereas white regions represent areas devoid of any defects 

due to the semi-insulating resistivity and lower leakage current.   

The black spots observed in the TIR image in Figure 3.20 (a) are due to the 

inhomogeneity of the Te inclusions/precipitates distribution in the sample, whereas clear 

white areas are closer to stoichiometric Cd0.9Zn0.1Te in composition.   The morphology of 

the EBIC contrast image is similar to the TIR image morphology, with higher contrast 

regions in the EBIC image corresponding to a non-uniform distribution of tellurium (Te) 

within the bulk crystal.  The results give insight on the type and severity of the electrical 

defects present with the CZT crystals grown by solvent growth method using excess Te 

as the solvent.  This will assist in optimization of crystal growth process to reduce crystal 

defects produced in future growth runs. 

 

 
 

Figure 3.20. (a) IR transmittance image and (b) EBIC contrast image  
of the CZT Schottky detector. 
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3.5 CZT NUCLEAR DETECTOR FABRICATION 

Following the material characterizations, low-defect bearing CZT crystal wafers 

were used for detector fabrication.  Prior to detector fabrication, the grown CZT wafers 

were lapped by alumina suspension of various grain sizes down to 0.3 µm and polished 

by diamond paste of 0.03 µm grain sizes.  The wafers were then etched by applying the 

following cycle: 0.5 % Br2/MeOH dip for 20 seconds, ultrapure methanol rinse and final 

drying by blowing pure nitrogen.  Just before depositing the top and bottom metal 

electrode on the CZT, the wafers were etched for 2 minutes in KOH-KCl solution (15 % 

each), then rinsed thoroughly in DI water and finally dried by blowing with nitrogen.  

This procedure gave the best results as it removed Te-rich oxides from the surfaces. 

The electrodes were formed by DC sputtering semitransparent gold (Au) contact 

(100 – 120 Å) on one side using a metal mask and by depositing indium (In) contact 

(200 – 500  Å) on the opposite side using e-beam evaporation.  Palladium or copper wires 

of 25 µm in diameter were attached to the electrodes by applying a 1 mm diameter 

graphite suspension in n-butyl acetate.  The detectors fabricated in this manner were 

secured on an alumina substrate using a silicone adhesive (Dow Corning, RTV 3140).  

Two types of detector structures were explored to fabricate CZT gamma ray 

detectors: planar metal-semiconductor-metal (MSM) structure and guard ring structure.  

The contact schematic, as well as photographs of the planar single pixel detectors 

fabricated in our laboratory, are shown in Figure 3.21.  In a planar detector structure, 

large metal contacts are placed on both sides of the detector material.  In this 

configuration, gamma-rays will interact with the semiconductor material to produce 

electron-hole pairs.  Generated electrons will move towards the positively biased anode, 
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and holes will move towards the negatively biased cathode.  The readout signal is taken 

from the anode, and assuming neither holes nor electrons are lost when travelling to the 

contact electrodes, the charge seen by the electrodes ΔQ is expressed as follows: 

 ∆𝑄 = −(ℎ𝑒0)(0− 𝑍) + (𝑛𝑒0)(1 − 𝑍) = 𝑛𝑒0 3.10 

where h is the number of holes detected, n is the number of electrons detected, 𝑒0 is the 

charge of an electron, and Z is the interaction depth within the detector [76].  If both the 

energy of the holes and the energy of the electrons are being read without loss of 

information, the charge read at the contact electrodes is independent of the depth of 

interaction.  

 
 

         

Figure 3.21 Schematic cross-sectional view of a CZT planar detector (a). Picture of 
fabricated planar single pixel detector using grown CZT crystal: (b) 12×12×4 mm3; (c) 

10×10×3 mm3; and (d) 18×18×5 mm3.  

 
 

Guard ring structure was explored to reduce the noise caused by surface leakage 

current within a nuclear detector.  Figure 3.22 shows schematics of the cross-sectional 

and top view of a guard ring structure.  A guard ring structure involves the use of an 

CdZnTe (CZT) 

Gold Metal Contact (Anode) 

Indium Metal Contact (Cathode) 
 

(a) 

(d) 

(b) 

(c) 
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anode contact electrode, surrounded by a space where only the bare semiconductor 

surface exists (no contact electrode).  After the bare surface, another metal contact is 

placed, known as the guard ring.  The anode is connected to the read-out electronics and 

the guard ring is kept at the same voltage potential as the anode.  Since the guard ring is 

not connected to the anode, all current caused by surface conduction will be blocked by 

the guard ring, and therefore not interfere with the resulting detection signal from the 

anode, improving signal to noise performance of the detector. 

 

 

 
Figure 3.22. Schematics of a guard ring structure: (a) cross-sectional view and (b) top 
view; (c) picture of a typical single element guard-ring CZT detector (10×10×5 mm3) 

fabricated at USC. 

 

 

  

(a) 
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3.6 ELECTRICAL CHARACTERIZATION OF CZT DETECTOR 

Prior to CZT detector testing with gamma-ray irradiation, electrical 

characterization of fabricated CZT detectors were carried out using current-voltage (I-V), 

capacitance-voltage (C-V), and charge transport measurements.  I-V and high frequency 

(100 kHz) C-V measurements of the Schottky detectors were performed using a Keithley 

237 High Voltage Source Measure Unit and a Keithley 590 CV Analyzer.  All 

measurements were performed at room temperature (RT) under dark condition with 

forward voltage applied to the In/CZT/Au Schottky contact. 

3.6.1 Current-Voltage Measurements 

Current-voltage (I-V) characterization is an important assessment for fabricated 

CZT nuclear detectors.  Detectors with high resistivity and stable I-V characteristics are 

more likely to produce high energy resolution under gamma-ray irradiation, by reducing 

the leakage current of the detector under voltage bias.  Current-voltage characteristics 

were carried out by measuring the current flowing through the CZT detector at various 

applied voltage bias across the detector.  Figure 3.23 shows I-V characteristics for 

In/CZT/Au detector at various applied bias.  As discussed in detail in Section 3.3.4, the 

resistivity was measured form the inverse slope of the linear fit of the I-V characteristic 

and using Equation 3.4.  The electrical resistivity was estimated to be 7 × 1010 Ω-cm with 

In/CZT/Au Schottky contact.  This is high enough resistivity to fabricate a functional 

CZT radiation detector.  I-V characteristics indicate high rectification ratio for the 

detector with small leakage current (~1 nA at 50V reverse bias). Such detector can be 

used for nuclear radiation detection applications with low noise at room temperature.  
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Figure 3.23.  Room temperature current-voltage (I-V) characteristic of the 

10×10×10 mm3 CZT Schottky diode detector 

 

3.6.2 Capacitance-Voltage Measurements 

Capacitance-voltage (C-V) measurements were carried out to determine the full 

depletion bias.  In a Schottky device, the depletion region at the metal-semiconductor 

junction extends fully to the semiconductor side.  The capacitance (C) at the metal-

semiconductor junction of the Schottky device is a function of depletion width, W, of the 

junction, which in turn depends on the applied bias across the detector.  These 

relationships can be described by following equations [42]:  

𝐶 =
𝜀 × 𝜀0 × 𝐴

𝑊
 3.11 

𝑊 = �
2𝜀𝜀0 × (𝑉𝑏𝑖 − 𝑉)

𝑞𝑁𝑑
 3.12 

where C is capacitance, W is depletion width, A is the area of the junction, 𝜀 is the 

dielectric constant of semiconducotor material, and 𝜀0 is the permittivity in vacuum, q is 
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the electronic charge (1.6 × 10-19 C), 𝑁𝑑 is the effective doping concentration in the 

semiconductor, 𝑉𝑏𝑖 is barrier height at the junction (or junction potential) and V is the 

applied bias.  Thus junction capacitance is inversely proportional to the applied bias.   

Therefore, with increasing reverse bias, the width of the depletion region, W, will 

increase (Equation 3.12).  Consequently, the capacitance, C, will decrease with increasing 

reverse bias, as per the Equation 3.11.  High frequency (100 kHz) capacitance-voltage 

(C-V) characteristics of the CZT Schottky detector are shown in Fig. 6.  The figure shows 

that under applied reverse bias capacitance first decreases but then levels off, displaying 

that the detector is almost fully depleted, which is ideal for higher charge collection 

efficiency.  The semi-insulating nature of the CZT crystal is confirmed by this C-V 

characteristic.  

 

 
Figure 3.24.  High frequency (100 kHz) capacitance-voltage (C-V) characteristic of the 

10×10×10  mm3 CZT Schottky diode detector (same detector as in Figure 3.23) 
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3.6.3 Charge Transport Measurements 

As discussed earlier, the time electrons and holes takes to travel through the 

detector material to reach the respective electrodes is critical for high charge collection 

efficiency, subsequently for detector performance.  Therefore, it is important to determine 

charge transport properties, such as drift mobility (µ), carrier lifetime (τ), and especially, 

carrier lifetime mobility product (µτ) for both charge carriers (electrons and holes), in 

order to assess detector performance.  However, since hole charge transport properties are 

far worse than electron transport properties in CZT, the attention was given to transport 

properties of electrons. 

Drift mobility of electron (µe) is defined as the velocity acquired by a charge 

carrier per unit applied electric field, and is given by the following equation [42]: 

 𝑣𝑑 = 𝜇𝑒𝐸 3.13 

 𝐸 =
𝑉
𝐿

 3.14 

where vd  is the electron drift velocity of electrons, E is the electric field, V is the bias 

voltage applied to the device, and L is the detector thickness.  The carrier lifetime (τ) is 

defined as the average time charge carriers spend between generation and recombination. 

The mobility-lifetime product (μτ) is the product of the carrier mobility (µ) and the 

carrier lifetime (τ).   

It is possible to measure the drift velocity of the electrons for a nuclear detector, 

under a known electric field bias, using time-of-flight measurement [77].  In this 

measurement, a detector is irradiated with a 241Am alpha particle source on the cathode of 

the detector.  The alpha particles have very less penetration depth in CZT, and will 
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generate electron-hole pairs just below the cathode.  So the generated electron will have 

to travel the entire distance across the detector to reach to anode at the other end.  The 

anode will be grounded, and will collect the resulting generated signals.  The signal is 

then translated to provide a mean rise time representing time required for electrons to 

reach to anode.  The drift velocity is then calculated for each rise time using the 

relationship: 

 𝑣𝑑 =
𝐿
𝑡
 3.15 

where L is the detector thickness in cm, and t is the rise time in seconds.  By plotting drift 

velocities versus electric field, the electron mobility could be determined from the slope 

of a linear fit of the data (Figure 3.25).  This process was performed on the CZT planar 

detector, and the electron mobility was calculated to be 1186 cm2/Vs. 

 

 

Figure 3.25. Drift velocity vs. Electric field plot for a CZT MSM detector (5 × 5 × 5 
mm3). The slope of the linear fit of the data provides the value for electron mobility. 
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3.6.4 Mobility-Lifetime Product Measurements 

For CZT, the electron mobility-lifetime product (μτe) is a common measurement 

used to characterize the charge transport properties of a detector, since it highlights both 

the electron trapping tendency and electron mobility, both of which are important to 

radiation detection.   The mobility-lifetime product (μτe) of electron could be determined 

using Hecht analysis.  The charge collection efficiency (CCE) of electrons in a nuclear 

detector can be related to the μτe product using the Hecht equation [79]: 

 𝐶𝐶𝐸 =
𝑄𝑠
𝑄𝑜

=  
𝜇𝜏𝑒𝑉
𝑑2

�1 − 𝑒𝑥𝑝 �
−𝑑2

𝜇𝜏𝑒𝑉
�� 3.16 

where Qs is the total charge detected, Qo is the expected total charge, V is the bias 

voltage, and  d  is the detector thickness.  Hecht equation shows charge collection 

efficiency is also a function of the applied bias voltage.  As higher bias voltage is applied, 

carriers reaches to collecting electrode more quickly, thereby increasing the charge 

collection efficiency; as a results the peak positions of the detection signal shift to higher 

energies. 

The electron mobility-lifetime product is measured by irradiating a CZT detector 

with alpha particles at the cathode, in the same configuration as for drift mobility 

measurements.  After collecting the energy of the photopeaks versus bias voltage, the 

charge collection efficiency at each bias voltage is calculated by dividing the actual 

energy by the incident energy for 241Am alpha particles (5.486 MeV).  The charge 

collection efficiencies versus applied bias voltage are plotted, and the resulting values are 

fit using the single carrier Hecht equation (Equation 3.16) as shown in Figure 3.26.  After 

the curve fitting, the μτe of the planar CZT detector was determined to be 5.9×10-3 cm2/V.  
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The data obtained using various electrical characterizations of planar CZT MSM detector 

are summarized in the Table 3.3. 

 

   
 

Figure 3.26. Charge collection efficiency versus applied bias voltage plot for a CZT 
MSM detector (5 × 5 × 5 mm3). Fitting the data with the Hecht equation gives  

the value of mobility-lifetime product of electron (µτe). 
 
 
 

Table 3.3. Electrical properties of CZT Detectors 

Parameters CZT (Cd0.9Zn0.1Te)   

Bandgap [eV, 300 K] 1.56 

Resistivity [Ω-cm] 6 × 1010 

Leakage Current [nA] 5 (at -1000V) 

Electron mobility [cm2/V.s] 1186 

Electron µτ product [cm2/V] 5.9 × 10-3 
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3.7 CZT DETECTOR TESTING USING NUCLEAR RADIATION  

In this study, the CZT detectors were developed for detection of gamma radiation 

from nuclear materials.  Gamma radiation has frequencies of above 1019 Hz and energies 

typically above 10 keV.  In order to detect gamma radiation, first detector materials 

absorbs the gamma radiation to produce fast moving electrons within the detector by one 

of three methods: photoelectric absorption, Compton scattering, and electron-positron 

pair production [3].  Thus the photon energy of the gamma-ray is converted into electron 

energy.  By applying an external voltage bias, the fast moving electrons can be collected 

at an electrode (anode), inducing a charge on the contact electrodes of the detector, which 

is then read out by the front-end detection electronics to provide pulse height spectra 

(PHS) for the incident radiation.  Front-end electronics (Figure 2.23) consist of 

preamplifiers which converts charge signal to a voltage signal, shaping amplifier which 

filters noise, and multi-channel analyzers (MCA) which converts analog signals into 

digital information as pulse height spectrum. 

The analog radiation detection experiments are conducted using a Canberra 

3106D high voltage supply which biases the CZT radiation detector through an SHV 

bulkhead.  The CZT detector is housed in an aluminum RFI/EMI shielded test box.  

Inside the box, the detectors are placed either in a PCB holding mount, or one electrode is 

placed on a gold foil test pad and the other electrode is connected to a pogo-pin contact. 

Underneath the detector, a 241Am or 137Cs nuclear source is placed to irradiate the 

detector.  241Am provides low-energy gamma-rays at 59.6 keV or alpha particles at 5.486 

MeV, while 137Cs is used for high-energy gamma-rays at 662 keV.  Figure 3.27 (a) shows 

the basic schematic configuration of the electrical connections to the CZT detector.  The 
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shielded aluminum test box (Figure 3.27 (b)) is connected to an Amptek A250CF 

preamplifier through a BNC, which is then connected to an Ortec 671 spectroscopic 

shaping amplifier.  The shaping amplifier is then connected to an oscilloscope and a 

Canberra Multiport IIe multi-channel analyzer (Figure 3.27 (c)).  Data from the multi-

channel analyzer is sent to the Genie 2000 PC software, which generates the pulse height 

spectrum.  The radiation detection setup in our laboratory at USC is shown in Figure 

3.27.   

 

   
Figure 3.27. (a) Basic connection diagram for a CZT nuclear detector inside of the 

shielded test box, (b) picture of the shielded aluminum testing box with  
CZT detector, and (c) picture of the radiation detection system at USC. 

  

(b) 

(c) 

(a) 
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Figure 3.28. Schematic diagram of a digital nuclear detection measurement 

system at USC. 

 

Once pulse height spectrum was generated, the full width at half maxima 

(FWHM) of the gamma-ray energy peak was calculated through Gaussian peak fitting 

using the Origin plotting software. The energy resolution of the detector is calculated by 

the following equation: 

 
% 𝐸𝑛𝑒𝑟𝑔𝑦 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =

𝐹𝑊𝐻𝑀 (𝑘𝑒𝑉)
𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝐸𝑛𝑒𝑟𝑔𝑦 (𝑘𝑒𝑉)

∗ 100% 
3.17 

where the incident energy is the centroid of the energy peak observed in the pulse height 

spectrum.  Lower values of energy resolution and FWHM indicate better detector 

performance. 

The planar CZT MSM detector and CZT detector with guard ring were first tested 

using the 241Am (59.6 keV) source to test its response to low-energy gamma-rays.   

Figure 3.29 and Figure 3.30 show the resulting pulse height spectrum with 241Am for 

planar detector and detector with guard ring, respectively.  After performing Gaussian 

peak fitting, the FWHM of the gamma photopeak at ~59.6 keV was calculated to be 

~6.2% and 5.8% respectively.  Both these detectors clearly detect 59.6 keV energy, 
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however the detector with guard ring showed a much sharper peak.  The peaks are more 

resolved (low noise) due to lower leakage current observed for this detector. 

 

 

 Figure 3.29. Pulse height spectrum (PHS) of the CZT Schottky diode detector with a 
resolution of 6.2% at 59.6 keV using a 241Am radiation source. 

 

 
Figure 3.30. Pulse height spectrum (PHS) of the CZT Schottky diode detector  

with guard ring using a 241Am radiation source.  The peaks are more  
resolved due to lower leakage current (low noise). A resolution  

of 5.8% at 59.6 keV is observed. 
  

 

γ = 59.6 keV 
FWHM = 6.2% 

Detector: CZT Planar 
Source: 241-Am 
Shaping time: 1ms 
Bias voltage:-600 V 
Acquisition time: 120 s 

    

Detector: CZT Planar with 
      Guard Ring 
Source: 241-Am 
Shaping time: 8s 
Bias voltage:-100 V 
Acquisition time: 120 s 

 

γ = 59.6 keV 
FWHM = 5.8% 

1µs 
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Finally, CZT planar detector with guard ring was tested using 137Cs (662 keV) 

source to test its response to high-energy gamma-rays.  Figure 3.31 shows the resulting 

pulse height spectrum with 137Cs for planar detector with guard ring.  The data shows a 

sharp 662 keV energy peak.  After performing Gaussian peak fitting, the FWHM of the 

gamma photopeak at 662 keV was calculated to be 2.6%. 

 

 
Figure 3.31. Pulse height spectrum obtained for CZT planar detector with guard ring 

using 137Cs gamma radiation source. 

 

  

 

 

Detector: CZT Planar with 
    Guard Ring 
Source: 137-Cs 
Shaping time: 1s 
Bias voltage:-1800 V 

γ = 662 keV 
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3.8 CONCLUSION 

CZT crystal was grown at a stoichiometry of Cd0.9Zn0.1Te from zone refined ultra-

pure precursor materials with 50% excess Te using modified multi-pass vertical furnace.   

The bandgap of the crystals was found to be 1.56 eV, which is in the correct range for 

detector-grade CZT.  Defect analysis was performed on the grown CZT crystals using 

TSC and EBIC analysis.  TSC experiments revealed deep-level defects in the crystal 

which contribute to hole trapping.  EBIC results showed that clusters of dislocations and 

point defects within the bulk of the CZT crystals due to Te segregation.  These results 

give insight on the type and severity of defects present within the solution-growth CZT 

crystals, which may assist in reducing defects present in future crystal growths. 

The electrical resistivity was estimated to be 6 × 1010 Ω-cm, which is high enough 

to fabricate a functional CZT radiation detector.  The CZT detectors showed very low 

leakage current at a high bias (<5 nA at –1000V) due to their high resistivity, which are 

beneficial for high resolution detectors.  The drift mobility and mobility-lifetime product 

of electrons were estimated to be 1186 cm2/Vs and 5.9 × 10-3 cm2/V, respectively.  These 

data provides an insight on the potential performance of the CZT nuclear detectors, and 

ensures that only the best samples are chosen to be fabricated into detectors. 

Finally, CZT detectors were tested with gamma-ray irradiation.  An energy 

resolution of 6.2% was obtained for CZT planar detector when irradiated with 59.6 keV 

low-energy gamma radiations (241Am).  The peaks were sharper and better resolution of 

5.8% was observed for the CZT detector with guard ring with 59.6 keV radiation.  An 

energy radiation of 2.6 % was observed for detector with guard-ring structure irradiated 

with high energy 662 keV gamma radiations using 137Cs source.   
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CHAPTER 4: SILICON CARBIDE FOR ALPHA DETECTOR 
 

4.1 OVERVIEW 

Silicon carbide based high resolution radiation detectors for nuclear isotope 

identification and gamma- and x-ray imaging have recently attracted high attention.  

Unique properties of SiC make it an appealing candidate for its use in high-temperature 

and high radiation background with hot and humid environments, under which 

conventional semiconductor detectors (e.g., CZT, Si, Ge, etc.) cannot adequately perform 

[11, 79, 80, 81].  Due to favorable material properties of SiC such as wide band-gap 

(3.27 eV at 300 K), high radiation hardness and breakdown field, SiC detectors are 

expected to be compact, light-weight, and capable of operating long periods of consistent 

room-temperature and above operation.  These properties are very important in a wide 

range of applications including radiation detectors, medical imaging, national security, 

environmental safety, space applications, and high energy astrophysics or astronomy.  

In general, two types of SiC radiation detectors have been developed in our 

laboratory at USC and also by other research group: (a) diode-type detectors fabricated 

using SiC epitaxial layers [82, 83, 84, 85], and (b) bulk detectors utilizing semi-insulating 

(SI) SiC [79, 82, 84, 86].  Although diode-type detectors perform well in high-resolution 

detection of low penetration depth radiation (i.e. alpha, beta, low energy gamma rays, and 

soft x-rays), the unavailability of high quality thick low doped epitaxial films limit the 

application of the diode-type SiC detectors in the detection of high energy x-rays and 
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gamma rays [11, 79, 84, 85].  Available epitaxially grown SiC layers have a maximum 

thickness in the order of 150 μm with a residual n-type doping ~ 1014 cm-3 that limits the 

depth of the depletion layer (detector’s active region) to less than 100 μm at reasonable 

bias voltages [11, 79, 84, 85].  Bulk SI SiC available in the market with thicknesses up to 

400 μm have shown very high defect densities and high impurity concentrations, which 

prevents its use as a high energy x- and gamma-ray detector [11, 79, 84, 85, 86].  

However, recently, high-purity SI 4H-SiC wafers have become commercially available 

with low residual impurities corresponding to background net doping concentrations less 

than 1015 cm-3.  In addition, recent achievements in characterizing, passivating deep 

levels, and edge termination and isochronal annealing of SiC epitaxial films [87, 88, 89, 

90, 91] have resulted in a significant increase of the charge collection efficiency, energy 

resolution, and performance of 4H-SiC epitaxial radiation detectors.  

This chapter describes fabrication and performance of radiation detectors based 

4H-SiC n-type epilayer.  First, radiation detectors were fabricated using low-leakage 

current and low-defect bearing 4H-SiC n-type epilayer on high-purity 4H-SiC wafers. 

Detail defect characterization using deep level transient spectroscopy (DLTS) and 

electrical characterizations using current-voltage and capacitance-voltage measurements 

were carried out for semi-insulating (SI) high purity n-type 4H-SiC epitaxial layers.  A 

systematic study was conducted to evaluate performance of 4H-SiC n-type epilayer 

detectors as alpha particle and low energy gamma radiation detectors. 
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4.2 SIC POLYTYPES AND CRYSTAL GROWTH 

Silicon carbide (SiC) crystal lattice is structured from closely packed silicon-

carbon bilayers, which can be viewed as a planar sheet of silicon atoms coupled with a 

planar sheet of carbon atoms.  Due to the sequential variation of the stacked bilayers, SiC 

has many crystal structures such as cubic, hexagonal, and rhombohedral symmetry.  

These different structures of SiC are known as polytypes.  The different layers are usually 

designated by the letter A, B, and C.  To specify the crystal lattice structure of the 

polytype, alphabetical letters “C” is used for cubic structure, “H” is used for hexagonal 

structure, and “R” is used for rhombohedral structure [92].  The repetition number of 

bilayers in the stacking sequence is expressed by an integer number.  For example, in 

4H-SiC four layers (ABAC) are repeated in the stacking sequence, and it has hexagonal 

symmetry; hence it is known as 4H polytype.  Due to the variation in the stacking 

sequence, different polytypes have significantly different optical and electrical properties 

such as band-gap, drift velocity, breakdown electric field strength, and the impurity 

ionization energies [93, 94, 95].  Among different polytypes, 4H-SiC is usually preferred 

for electronic devices due to its better charge transport properties, specifically high 

electron mobility [96, 97, 98].  This polytype has wurtzite structure with 50% cubic and 

50% hexagonal lattice sites.  Figure 4.1 shows crystal structure of 4H-SiC.  

The SiC based electronic and optoelectronic device performances highly depend 

upon the bulk crystal and epitaxial growth technology.  SiC does not show a liquid phase 

and the only way to grow, synthesize, and purify silicon carbide is by means of gaseous 

phases.  For the growth of electronic-grade silicon carbide, the most common techniques 

are physical vapor transport (PVT), where a solid pre-synthesized silicon carbide is 
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evaporated at high temperatures and the vapors then crystallize at a colder part of the 

reactor, and chemical vapor deposition (CVD), where gas-phase silicon and carbon 

containing precursors react in a reactor and silicon carbide is solidified on a target.  

Nuclear detectors cannot be fabricated directly on the bulk SiC because of low crystal 

quality.  Therefore, higher crystalline quality SiC epitaxial layers are grown on bulk SiC.  

The growth of the epilayers are generally more controllable and reproducible than growth 

of the bulk SiC wafers.  There are several growth techniques for SiC epitaxial layers 

including liquid phase epitaxy (LPE), molecular beam epitaxy (MBE), and chemical 

vapor deposition (CVD). 

 

 

Figure 4.1. Structure of 4H-SiC polytype. 

 
 

The n-type 4H-SiC and semi-insulating (SI) epitaxial layers were grown on 8 × 8  

mm2 highly doped by nitrogen 4H-SiC (0001) substrates, 4 - 8o offcut towards [112�0] 

direction.  The epitaxial growth was carried out in a hot-wall CVD system. 

Dichlorosilane (SiH2Cl2, DCS) and propane (C3H8) were used as the precursors and 
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hydrogen of 6 slm was employed as the carrier gas.  The dilution ratio during growth was 

~ 1000.  The flow rates of dichlorosilane and propane were maintained to obtain C/Si 

ratio of 1.28 and 1.66 for n-type and SI epi, respectively.  Before growth, in-situ 

hydrogen etching was performed at 1550 °C for 5 – 20 min.  The growth temperature and 

pressure were 1550 °C and 80 - 120 torr, respectively.  No intentional dopants were used 

during growth of semi-insulating epitaxial layer.  The thicknesses of the n-type and SI 

epitaxial layers were ~ 20 - 50 µm and 10 - 50 µm, respectively. The net doping 

concentration of the n-type epitaxial layer measured using high frequency (100 kHz) 

capacitance-voltage (C-V) method was found to be 2 - 5×1014 cm-3.  The annular mercury 

probe with 0.5 mm diameter contact (MSI electronics, model Hg-402) was used for C-V 

measurements.  The high frequency capacitance of the SI epi was very low (2 - 8 pF) and 

remained practically constant with applied bias indicating semi-insulating nature of the 

epitaxial layer.  The transmission line method (TLM) measurement performed on the 

grown epitaxial layers confirmed semi-insulating properties.  Figure 4.2 shows a picture 

of 50 mm n-type 4H-SiC epitaxial layer wafer.  

 

 
 

Figure 4.2.  Photograph of a 50 mm n-type 4H-SiC epitaxial layer wafer. 
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4.3 FABRICATION OF 4H-SIC DETECTOR 

The performance of nuclear detector greatly depends on the careful fabrication of 

detector devices, which involve wafer dicing, cleaning, surface polishing, surface 

passivation, and metal contact deposition.  For detector fabrication, 50 μm thick n-type 

epitaxial layer grown on a 50 mm diameter 4H-SiC (0001) wafer (shown in Figure 4.2) 

was used.  The substrate was highly doped with nitrogen and 8o off-cut towards the 

[112�0] direction.  The net doping concentration of the epitaxial layer measured using 

high frequency (100 kHz) capacitance - voltage (C-V) method was found to be 

2.4 × 1014 cm-3.  A micropipe defect density less than 5 cm-2 has been calculated using 

scanning electron microscopy on a sister sample.   

The radiation detectors were fabricated on the Si-face of 8 × 8 mm2 substrates 

diced from the 50 µm diameter wafer.  Ni Schottky contact (3.8 mm diameter circular 

shape) with an area of ~ 11.34 mm2 and thickness of ~ 10 nm was deposited on top of the 

epitaxial layers through the shadow mask using a Quorum model Q150T sputtering unit.  

Large Ni contact (~ 6 × 6 mm2) 100 nm in thickness was deposited on the opposite 

surface (C-face) for the back contact.  Standard RCA cleaning procedure of the wafer 

was carried out prior to the contact deposition.  This process starts with the removal of 

organic contaminants (dust particles, grease, etc.) from the wafer surface by using 

solvents (trichloroethylene, acetone, and methanol) at a temperature of 70 °C.  Any 

organic residue left by the first step is then processed using sulfuric acid and ammonium 

hydroxide solutions (with hydrogen peroxide).  These solutions are designed to attack the 

organic impurities by dehydration process and oxidation of the carbon present at the 

surface of the wafer.  Finally, these oxide layers were etched with hydrofluoric acid (HF).  
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Figure 4.3 shows the cross-sectional schematic of the diced 8 × 8 mm2 4H-SiC 

epilayer, 4H-SiC buffer epilayer, and 4H-SiC bulk substrate with circular Ni-deposited 

on the epilayer face (Si-face) and larger Ni contact on the opposite site (C-face).  After 

fabrication, the detector was then mounted on a printed circuit board (PCB) and wire 

bonded for proper electrical connection.  Figure 4.4 shows an n-type 4H-SiC wafer with 

Ni deposited on the epilayer Si-face and a photograph of the detector mounted on a PCB 

and wire bonded for proper electrical connection.  The wire-bonding was done using very 

thin (25 µm) gold wire to ensure less scattering and obscuration of the alpha particles 

from the wire-bond region.  The PCBs were fitted with board-to-board connector pins in 

order to obtain plug-in modular configuration for stable electrical connections as shown 

in Figure 4.4 (b). 

 

 
 

Figure 4.3.  Cross-sectional view of a fabricated Schottky barrier detector on n-
type 4H-SiC epitaxial layer. 
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 (a)          (b) 
 

Figure 4.4.  (a) Photograph of a center aligned 4H-SiC epitaxial Schottky barrier detector 
with nickel contact diameter = 3.8 mm. (b) A detector mounted on a PCB and wire 

bonded for proper electrical connection. 
 

 

4.4 ELECTRICAL CHARACTERIZATION OF 4H-SIC DETECTOR 

4.4.1 Current-Voltage Measurements 

Current-voltage (I-V) measurements were carried out on the fabricated detectors 

using a Keithley 237 source meter to investigate the electrical properties of the metal-

semiconductor contact.  Figure 4.5 shows the schematic of the setup used to perform the 

I-V measurements and Figure 4.6 shows the picture of that system.  The I-V 

characterizations were performed at room temperature using forward, as well as reverse 

voltage bias applied across the 4H-SiC detector.  The forward-biased response was used 

to study the behavior of the Schottky contacts in terms of barrier height and the diode 

ideality factor using the thermionic emission model [42].  The reverse I-V characteristics 

give the magnitude of the leakage current under operating conditions.  

As per thermionic emission model, the voltage dependent junction current in a 

Schottky contact can be expressed as: 

𝐼 = 𝐼𝑠(𝑒
𝛽𝑉
𝑛 − 1) 4.1 
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where 𝐼𝑆 is the saturation current, V is the applied voltage, 𝑛 is the diode ideality factor, 

𝛽 = 𝑞/𝑘𝐵𝑇, 𝑞 being the electronic charge, 𝑘𝐵 the Boltzmann constant 

(8.62 × 10-5 eV/K), and 𝑇 is the absolute temperature (°K).  Using logarithm, the 

Equation 4.1could be written as: 

𝑙𝑜𝑔(𝐼) =
𝛽𝑉
𝑛

+ 𝑙𝑜𝑔(𝐼𝑠) 4.2 

Therefore, using current measurements at varying applied voltage and then plotting log(I) 

versus applied voltage bias, the ideality factor ‘n’ could be measured from the slope and 

saturation current Is from the intercept.  The saturation current, Is, is given by: 

𝐼𝑠 = 𝐴∗𝐴𝑇2�𝑒−𝛽𝜑𝐵� 4.3 

where A* is the effective Richardson constant (146 Acm-2K-2 for 4H-SiC), A is the area of 

the diode, 𝜑𝐵  is the Schottky barrier height. 

 

 
 

Figure 4.5.  Schematic of the electrical circuit diagram for I-V measurements of 
4H-SiC detector using Keithley 237. 
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   (a)         (b) 

Figure 4.6. (a) Photograph of the experimental setup for the electrical characterization 
measurements. (b) The detector is mounted inside the aluminum box. 

 

Figure 4.7 shows I-V characteristics of the detector at forward and reverse bias. 

The room temperature, reverse bias leakage current was found to be ~ 0.78 nA at a bias 

voltage of -250 V and ~ 0.15 nA at -100 V.  By plotting log of observed current, log(I), 

versus applied voltage bias, the diode ideality factor of 1.4 was measured from the slope 

as per the Equation 4.2.  The intercept of the above plot provided the data for the 

saturation current, which was used to calculate the barrier height using Equation 4.2.  The 

barrier height for Ni/4H-SiC Schottky contact was found to be 1.38 eV.  The barrier 

height thus calculated depends on the spatial homogeneity of the Schottky barrier height 

[99].  However, an ideality factor greater than unity as observed from I-V measurements, 

indicates non-uniformity in the surface barrier height, which in turn indicates the 

possibility of the presence of traps in the depletion region [100].   
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Figure 4.7. Forward and reverse I-V characteristics at 300 K for a Schottky barrier 
detector fabricated on n-type 4H-SiC epilayer. At reverse bias of ~ -250V: very low 

leakage current (< 1 nA) was observed; from forward bias, ideality factor is  
derived to be ~1.4. 

 

4.4.2 Capacitance-Voltage Measurements 

Capacitance-voltage (C-V) measurements were carried out using a Keithley 590 

CV analyzer at a frequency of 100 kHz (Figure 4.6) at room temperature.  The C-V 

measurements of the Schottky (or p-n) junction relies on the fact that the junction 

capacitance is a function of depletion region width at the semiconductor junction 

(Equation 3.11), which in turn depends upon the applied voltage and effective doping 

concentration (Equation 3.12).  These relationships can be expressed as:  

𝐶 = 𝜀𝜀0𝐴 �
2𝜀𝜀0 × (𝑉𝑏𝑖 − 𝑉)

𝑞𝑁𝑑
�
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where the symbols have their usual meaning as explained in Section 3.6.2.  The above 

equation could be written as below: 

1
𝐶2

=
2𝑉𝑏𝑖

𝑞𝜀𝜀0𝐴2𝑁𝑑
+

2𝑉
𝑞𝜀𝜀0𝐴2𝑁𝑑

 4.5 

which is a straight line equation when 1/C2 is plotted against applied voltage bias, V.  

Form the slope of this linear equation doping concentration (Nd) could be determined, and 

from the intercept of the linear fit built-in voltage (𝑉𝑏𝑖) could be estimated using 

following equation where A is the area, q is the electronic charge, 𝜀0 is permittivity of 

vacuum and 𝜀𝑆𝑖𝐶 is the dielectric constant of 4H-SiC. 

𝑁𝑑 = 2 𝑞𝜀𝑆𝑖𝐶𝜀0𝐴2 × 𝑠𝑙𝑜𝑝𝑒⁄  4.6 

Figure 4.8 shows a 1/C2 vs V plot obtained for the n-type 4H-SiC epitaxial 

Schottky detector at 300 K.  A linear fit to the curve gives an effective doping 

concentration of 2.4 × 1014 cm-3 and a built-in potential (Vbi) of 1.44 V.  The barrier-

height (𝜙𝐵) was also calculated to be 1.52 eV, using the equations given below. 

𝜙𝐵(𝐶−𝑉) = 𝑉𝑏𝑖 + 𝑉𝑛  4.7 

where, Vn is the potential difference between the Fermi level energy and the bottom of the 

conduction band in the neutral region of the semiconductor and is given by: 

𝑉𝑛 = 𝑘𝑇𝑙𝑛 𝑁𝐶
𝑁𝐷

   4.8 
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where NC is the effective density of states in the conduction band of 4H-SiC and is taken 

equal to 1.6×1019 cm-3 [101].    

The barrier height calculated from the C-V measurements is slightly higher than 

that obtained from the forward I-V characteristics.  The value of barrier-height obtained 

from forward I-V characteristics is dominated by low Schottky barrier-height locations in 

an inhomogeneous diode.  However, C-V characteristic gives an average value of the 

barrier height for the whole diode [102].  So, the barrier-height thus calculated from C-V 

characteristics is slightly higher than that determined by I-V characteristics.  Hence, the 

larger value of barrier height calculated from the C-V measurements further confirms the 

inhomogeneity of the surface barrier height. 

 

 
Figure 4.8. Mott-Schottky plot (1/C2 vs. V plot) of n-type 4H-SiC epitaxial Schottky 

detector at 300 K. Inset shows original C-V characteristic.  Doping concentration  
was measured from the slope of the linear fit and using the formula shown to be 

2.4 x 1014 cm-3. A is the area, e is the electronic charge, ε0 is permittivity of  
vacuum and εSiC is the dielectric constant of 4H-SiC. 

  

 

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

-2 0 2 4 6 8 10 12

1/
C2

(n
F-2

)

Reverse bias (V)

Linear fit Measured Data



 

112 

 

4.5 DEFECT STUDY BY DEEP LEVEL TRANSIENT SPECTROSCOPY 

Intrinsic defects, such as grain boundaries and dislocations, impurity related point 

defects or complexes have been reported in as-grown SiC epilayers [88, 103].  Many of 

these defects are electrically active and can lead to increased detector leakage current and 

poor carrier lifetime and mobility by acting as trap or recombination/generation centers.  

The electrically active defects may lead to charge loss or detector output pulse with large 

rise times leading to incomplete charge collection.  Therefore, it is very important to 

identify the electrically active defects in the epilayer and evaluate their role in affecting 

the ultimate detector performance.  

4.5.1 DLTS Setup 

Deep level transient spectroscopy (DLTS) is a very sensitive technique for the 

identification of defect related parameters such as energy level, trap concentration, 

capture cross-section, and spatial profile in semiconductors [104].  The activation energy 

gives the exact position of a deep level in the band-gap in respect to conduction and 

valence band.  The trap concentration is defined as the amount of a particular deep level 

in the band-gap of the semiconductor.  This parameter helps to determine the extent of 

the role defects have on device performance.  The capture cross-section provides 

information about the electron and hole capture rates, from which it can be determined if 

the deep level defects may act as a trapping, recombination, or generation center. 

DLTS measures the change in junction capacitance of the Schottky detector due 

to the emission of charge carriers from the defects existing in the space charge region.  A 

capacitance-DLTS (C-DLTS) spectrum is generated from the temperature dependent 
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capacitance transients followed by a saturated trap filling pulse applied to a 

semiconductor junction.  The defect concentration, Nt, capture cross cross-sections, σn, 

and the activation energies, ∆E, are extracted by analyzing the capacitance transients.  

In a capacitance DLTS mode, the system relaxes into equilibrium by thermally 

emitting the trapped charges after the termination of the filling pulse resulting in 

capacitance transients.  The thermally activated emission rate can be expressed as: 

𝑒𝑛 = (𝜎𝑛〈𝑉𝑡ℎ〉𝑁𝐶 𝑔⁄ )𝑒𝑥𝑝(−∆𝐸 𝑘𝑇⁄ ) 4.9 

where σn is the carrier capture cross section, 〈Vth 〉 is the mean thermal velocity, NC is the 

effective density of states, g is the degeneracy of the trap level and is considered to be 

equal to 1 in the present calculations and ∆E the energy separation between the trap level 

and the carrier band.  The emission rate is related to the capacitance transient by the 

following relationship: 

𝐶(𝑡) =  𝐶𝑜 +  ∆𝐶 exp(−𝑡𝑒𝑛)  4.10 

where C0 is the junction capacitance at steady-state reverse bias voltage, ∆C is the 

difference in capacitance change measured within the rate window.  The trap 

concentration Nt was calculated using the following expression: 

𝑁𝑡 = 2�∆𝐶(0)
𝐶� �𝑁𝑑 4.11 

where ∆C(0) is the difference in capacitance change between the two edges of the filling 

pulse and Nd  is doping concentration.  The rate windows were defined by an initial delay 

which is actually a delay set for the emission rate calculations following the termination 

of the filling pulse.  The initial delay is related to the rate window τ as follows: 
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𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑑𝑒𝑙𝑎𝑦 (𝑚𝑠)  =  1
(4.3 × 𝜏)�    4.12 

DLTS peaks corresponding to different traps appear as a function of temperature. 

Signals from different defect levels can be resolved in a single DLTS scan.  The peak 

position in DLTS spectroscopy depends on the rate window.  A larger rate window will 

shift a defect peak to higher temperature and a smaller rate window will shift a defect 

peak to lower temperatures.  The DLTS has the ability to set rate windows, and a series 

of spectra can be produced by using different rate windows as shown in Figure 4.9. 

 

 
 
 

Figure 4.9. (a) The DLTS spectra corresponding to a trap center at various rate windows 
and (b) the corresponding Arrhenius plots obtained from the spectra. 

  

 

(a) 
 

            (b) 
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4.5.2  DLTS Data for 4H-SiC Epitaxial Detector 

For defect characterization in 4H-SiC epitaxial Schottky barrier detector, a SULA 

DDS-12 modular DLTS system was used in a capacitance mode.  The DLTS system is 

comprised of a pulse generator, a capacitance meter, a correlator module, and a PC based 

data acquisition and analysis software.  The block diagram and a photograph of the DLTS 

system are presented in Figure 4.10 and Figure 4.11, respectively.  The correlator module 

uses a modified double boxcar signal averaging algorithm.  It automatically removes DC 

background from the capacitance signals and measures the capacitance transient in a 

given rate window.  The correlator unit is capable of assigning four simultaneous rate 

windows in a single thermal scan.  For sample temperature variation, the detectors are 

mounted in a Janis VPF 800 LN2 cryostat controlled by a Lakeshore LS335 temperature 

controller.  Temperature scans ranging from 80 - 800 K are selected for a single run at a 

heating rate of 0.05 Ks-1. 

The DLTS measurements were carried out in a temperature range of 80 - 850 K 

with a steady-state reverse bias of -2 V.  The pulsing was done to 0 V from the steady-

state reverse bias to fill/populate the majority carrier traps present within the steady state 

depletion width.  A pulse width of 1 ms was chosen in order to ensure saturation trap 

filling.  Figure 4.12 shows representative DLTS spectra in the temperature range of 80 to 

140 K using a smaller set of initial delays, and 100 to 800 K using a larger set of initial 

delays respectively.  The peaks appeared at different temperatures corresponding to 

different defect levels. In total, six distinct peaks were observed in the entire temperature 

scan range of 80 - 800 K and are numbered as Peak #1 to #6.  The negative peaks indicate 

that the detected traps are majority carrier traps (electron traps in this case).  The 
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activation energy was calculated from the Arrhenius plots (𝑇2 𝑒𝑛⁄ 𝑣𝑠 1000 𝑇⁄ ).  Figure 

4.13 shows the Arrhenius plot for all the peaks obtained from the DLTS scans.  The 

defect parameters were extracted from the DLTS scans using the equations described in 

and is summarized in Table 4.1. 

 

 
 

Figure 4.10.  Block-Diagram of the SULA DDS-12 DLTS setup. 

 
 
 

 
 

Figure 4.11.  Photograph of the SULA DDS-12 DLTS measurement system. 
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(a) 

 

    
(b) 

 
Figure 4.12.  Representative DLTS spectra obtained using 50 mm n-type Ni/4H-SiC 

epitaxial detector in the temperature range of: (a) 80 to 140 K using a smaller set 
of initial delays, and (b) 100 to 800 K using a larger set of initial delays. 
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Figure 4.13. Arrhenius plot for all the peaks obtained from the DLTS scans. 

 
 
 

Table 4.1.   Defect parameters obtained from the DLTS measurements 

Peak #   σn 
cm2 

∆E 
ev 

Nt 
cm-3 

Possible 
Trap 

Identity 

References 

Peak 1 4.08× 10-15 Ec ˗ 0.11 1.5× 1013 Ti(h) [105, 106, 107, 108] 

Peak 2 2.52× 10-15 Ec ˗ 0.17 3.4× 1013 Ti(c) [105, 106, 107, 108] 

Peak 3 3.42 10-15 Ec ˗ 0.68 1.6× 1013 Z1/2 [106, 109, 110, 111, 
112,113] 

Peak 4 3.78× 10-15 Ec ˗ 1.06 2.2× 1013 EH5 [111, 114,115] 

Peak 5 3.17× 10-17 Ec ˗ 1.32 7.8× 1012 Ci1 [114] 

Peak 6 1.59× 10-11 Ec ˗ 2.42 5.4× 1012 Unidentified  
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Using deep level transient measurements, six different defect centers (DLTS 

peaks) were detected in a temperature scan range of 80 - 800 K.  The trap levels 

corresponding to Peak #1 and Peak #2 were found to be located at Ec - 0.11 eV and 

Ec - 0.17 respectively, where Ec is the conduction band minimum.  Both these shallow 

level defects have been identified in the literature as titanium substitutional impurities in 

the Si sites.  Similar defect levels located at Ec - (0.117 ± 0.008) eV and Ec - (0.160 ± 

0.010) eV were reported from DLTS studies of Ti+ implanted 4H-SiC which were 

attributed to the ionized titanium acceptor Ti3+ (3d1) residing at hexagonal and cubic Si 

lattice, respectively [105, 106].  Other research group also assigned defect level located at 

Ec - 0.16 eV as Ti electron trap [107], and trap level located at Ec - 0.17 eV as chromium 

or titanium impurities (acceptor like) in hexagonal position [108].   

The trap center related to Peak #3 was found to be located at 0.68 eV below the 

conduction band edge. Several groups have reported the presence of a similar defect level 

often designated as Z1/2 [109, 110].  However, the exact microscopic structure is still 

unknown and several theories exist in the literature regarding the probable structure of 

Z1/2 centers. As summarized in [107], Z1/2 is most likely related to defect complexes 

involving equal number of carbon and silicon sites.  The possible structures are silicon 

and carbon vacancy complexes (VSi+VC), antisite complexes (SiC+CSi) pairs, or a pair of 

an antisite and a vacancy of different atoms [107, 109, 111].  On the contrary, other 

researchers reported that the participation of carbon interstitial with nitrogen form defect 

levels with similar activation energy [112].  Z1/2 center is also reported to be responsible 

for the reduction of carrier lifetime [106, 113].  The concentration of the Z1/2 defects was 

found to be 1.6 × 1013 cm-3 for the fabricated n-type 4H-SiC epitaxial detectors. 
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The activation energy corresponding to peak #4 was found to be located at 

1.06 eV below the conduction band edge.  The closest match with the Peak #4 were 

observed at a defect level located at Ec-1.03 eV which was designated as EH5 [114] and 

at a defect level located at Ec-1.07 eV) in 2.5 MeV electron irradiated 4H-SiC [115].  EH5 

defect has been found in ion irradiated 4H-SiC and has been attributed to a carbon cluster 

[111].  The concentration of the EH5 defects was found to be 2.2× 1013 cm-3 for the 

fabricated n-type 4H-SiC epitaxial detectors. 

The activation energy of Peak #5 was found to be 1.32 eV.   A similar defect was 

reported and assigned to be defect center Ci1 in a chlorine implanted n-type 4H-SiC 

epitaxial layer [114].  The Peak #6 was found to have the highest activation energy 

(2.42 eV) among all the defect centers observed in the DLTS scans and remains 

unidentified as the corresponding activation energy does not match with any known 

defect level in 4H SiC that has been reported in the literature.   

The trap concentrations corresponding to Peak #1 - #4 were all of the order of 

1013 cm-3 with the Ti impurity (cubic Si site) being the maximum.  Peak #5 and #6 were 

found to be one order of magnitude less in concentration.  Prior investigations with 

4H-SiC epitaxial layer detectors showed that Z1/2 and EH5 deep-lying defects have major 

impact in detector performance in terms of leakage current and energy resolution. 
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4.6 SPECTROSCOPY MEASUREMENTS 

The defect characterization along with electrical characterization of the fabricated 

n-type 4H-SiC epitaxial layer detector provided useful information and a quality control 

tool in selecting detectors that would be suitable for spectroscopic characterization.  

Spectroscopic characterization using 0.1 µCi 241 Am alpha sources is discussed next. 

4.6.1 Pulse Height measurements with 241Am Alpha source 

When alpha particles interact with a semiconductor, if the transferred kinetic 

energy exceeds the electron’s binding energy, ionization occurs and an electron-hole pair 

is generated which give rise to an electrical signal as generated charge carriers get 

collected at the respective electrodes under an applied bias.  This electrical signal is then 

read out by the front-end electronics to provide pulse height spectra (PHS) for the 

incident radiation.  Front-end electronics (Figure 2.23) consist of preamplifiers which 

converts charge signal to a voltage signal, shaping amplifier which filters noise, and 

multi-channel analyzers (MCA) which converts analog signals into digital information as 

pulse height spectrum. 

The analog radiation detection experiments are conducted using a 0.1 𝜇Ci 241Am 

source which provides low-energy gamma-rays at 59.6 keV or alpha particles at 5.486 

MeV.  The source and the detector were placed inside an EMI shielded aluminum box 

which was constantly evacuated using a rotary pump in order to minimize scattering of 

alpha particle with air molecules.  The source used was a broad window (2 mm) source 

kept at a distance of 1.5 cm from the detector window ensuring that the whole surface of 

the detector was illuminated.  The detector signals were collected using a Cremat CR110 
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charge sensitive pre-amplifier.  The charge pulses were shaped using an Ortec 572 

spectroscopy amplifier.  The amplified signals were then digitized and binned to obtain 

pulse-height spectra using a Canberra Multiport II ADC-MCA unit controlled by Genie 

2000 interface software.  The peaks obtained in various spectra were fitted using peak 

analyzer function of Origin 8.6.  The full width at half maxima (FWHM) of the alpha 

peak was calculated and the energy resolution of the detector was then determined using 

Equation 3.17 in Section 3.7. 

Figure 4.14 shows a pulse height spectrum obtained using a 241Am alpha source at 

zero applied bias (Va + 1.44 V = 0 V).  A symmetric and robust peak was obtained which 

indicates a substantial amount of diffusion of minority carriers. At zero applied bias, 

because of the negligible width of the depletion region, all the interactions predominantly 

take place in the neutral region (beyond the depletion region) as the range of 5.48 MeV 

alpha particles in SiC is ~ 18 𝜇m.  So, the charge transfer is dominated by the diffusion of 

holes.  Figure 4.15 shows the alpha pulse height spectrum of the same detector obtained 

at 100 V applied bias.  The percentage resolution was calculated to be 2.7 % (FWHM).  

Due to good Schottky behavior and low leakage current at high reverse bias voltage 

(~ 0.15 nA at 100 V as determined in Section 4.4.1), the fabricated detector was found to 

have high energy resolution. 
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Figure 4.14.  Pulse height spectra of 241Am (5.48 MeV) for n-type 4H-SiC epitaxial 
Schottky detector biased at 0V.  At this bias since depletion region width is negligible, all 
interactions predominantly take place beyond the depletion region and the charge transfer 

is dominated by the diffusion of minority carriers (holes). 

 

 
 

Figure 4.15.  Pulse height spectra for 5.48 MeV alpha particles obtained using the 
same n-type 4H-SiC Schottky detector at an operating voltage of 100 V.  The 

resolution of the peak was determined to be 2.58% (FWHM). 
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4.6.2 Charge Collection Efficiency with 241Am Alpha source 

Performance resolution of a nuclear doctor is a function of collected charge 

carriers generated by alpha particles traversing through the detector materials.  Critical 

assessment of detector performance when irradiated with nuclear radiation can be 

performed by evaluating charge collection efficiency (CCE).  The charge carrier 

collection efficiency could be measured using drift-diffusion model as described in the 

following equation [116].  

      𝐶𝐶𝐸𝑡ℎ𝑒𝑜𝑟𝑦  = 𝐶𝐶𝐸𝑑𝑟𝑖𝑓𝑡 + 𝐶𝐶𝐸𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 
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4.13 

where 𝐸𝑝 is the energy of the alpha particles, 𝑑 is the depletion width at the particular 

bias, 𝑑𝐸
𝑑𝑥

 is the electronic stopping power of the alpha particles calculated using SRIM 

2012 [117], 𝑥𝑟 is the projected range of the alpha particles with energy 𝐸𝑝, and 𝐿𝑑 is the 

diffusion length of the minority carriers.  The model (Equation 4.13) separately determine 

the contribution of charge carriers generated within the depletion region that drifted to 

collecting electrode, 𝐶𝐶𝐸𝑑𝑟𝑖𝑓𝑡, and the contribution of carriers generated in the neutral 

region (beyond depletion region) and diffused to the depletion region, 𝐶𝐶𝐸𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛,.  

The overall charge collection efficiency is the sum of these two.  

Charge collection efficiencies were measured using the same alpha particle source 

at different reverse bias voltages.  Experimentally, CCE is calculated as the ratio of 

energy deposited in the detector (Ev) to the actual energy of the alpha particles 
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(5.48 MeV) emitted by the source (E0); 𝐶𝐶𝐸 =  𝐸𝑣 𝐸0⁄ .  The energy deposited was 

calculated from the alpha peak position in a calibrated MCA.  The charge collection 

efficiency at zero applied bias (Figure 4.14) was calculated to be 29 %.  Such a high 

value of CCE at zero applied bias implies that the diffusion length of the holes is 

comparable to the range of the alpha particles.  Literature search indicated that even a 

higher CCE of 50 % at 0 V was reported for 26 𝜇m thick n-type 4H-SiC epilayer 

detectors for 5.39 MeV alpha particles [115].  The hole diffusion length in their case was 

reported as 13.2 𝜇m.  

Figure 4.16 shows the variation of CCE calculated using 5.48 MeV alpha particles 

as a function of reverse bias voltage.  The CCE (total CCE obtained experimentally) was 

seen to saturate after an applied reverse voltage of 180 V.  The highest CCE achieved 

was ~90 %.  Alpha particles of 5.48 MeV energy have a projected range of 18 𝜇m in SiC.  

The depletion width in the fabricated detector was calculated to be 16 𝜇m at a reverse 

bias of 250 V.  So the alpha particles did not deposit their full energy within the depletion 

region which is the active region of the detector.  This is believed to be the reason behind 

not achieving 100 % charge collection efficiency.   

To have a better perspective of the variation of CCE with applied bias, drift-

diffusion model (Equation 4.13) was used to separately calculate the charge collection 

efficiency due to drifts of charge carriers in the depletion region and due to diffusion of 

holes in the neutral region.  It can be seen from Figure 4.16 that initially (up to 5 V), the 

𝐶𝐶𝐸𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 values were higher than 𝐶𝐶𝐸𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑜𝑛 values, which implies that at lower 

biases the charge transport was dominated by hole diffusion.  On the other hand, it can be 

seen that at higher biases the 𝐶𝐶𝐸𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑜𝑛 values almost matches the experimentally 
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obtained CCE values which implies that the charge transfer is almost solely due to carrier 

drift inside the depletion region. 

 
 

 
 

Figure 4.16. Variation of experimentally obtained (♦) and theoretically calculated (solid 
black line) charge collection efficiency as a function of reverse bias voltage.  The 

theoretically calculated separate contributions to the total CCE from charge drifts in 
depletion region (●) and from hole diffusion in neutral region (▲) are also shown. 

 
 
 

Apart from the CCE, the energy resolution was also monitored as a function of 

bias voltage.  Figure 4.17 shows the variation of detector resolution measured in terms of 

FWHM as well as percentage resolution, for 5.48 MeV peak, as a function of reverse bias 

voltage.   In order to monitor any variation in the post-detector electronics, pulser spectra 

were simultaneously recorded during all the data acquisitions using a precision pulser. 

The pulser-peak FWHM essentially gives the magnitude of noise of the detection system.  

The much higher FWHM values of alpha peak compared to that of the pulser peak clearly 

indicates that the detector resolution was not limited by the overall electronic noise of the 
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system.  It can be seen from the figure that initially the resolution improved (the lower 

the value the better the resolution is) with increase in bias voltage, attained a minima at 

100 V and then started increasing with increasing bias.  Figure 4.15 shows a resolution of 

2.7% for the alpha pulse height spectrum was obtained at 100 V.   

The initial decrease in the FWHM value is a normal detector behavior and is 

generally attributed to the increase in the active volume of the detector and reduction in 

detector capacitance with increase in bias.  The reason behind the increase in the FWHM 

values beyond 100 V was not very apparent.  No variation in the pulser-peak FWHM was 

observed in this region.  Thus the effect of increasing leakage current on the detector 

resolution with applied bias can be ruled out as increase in detector leakage current 

means increase in parallel noise which would broaden the pulser peak as well.  A 

plausible reason behind the deterioration of resolution with increasing bias could be 

explained as follows. As the reverse bias increases, the depletion region extends more 

towards the epilayer-substrate interface.  So, the probability of finding threading type 

dislocation defects increases more and more.  Threading dislocations (TDs) are basically 

dislocations which propagate from the substrate to the epilayer reducing the energy 

resolution.  Inclusion of more and more TDs into the detector active volume due to the 

increase in depletion width with increase in reverse bias was considered to be a possible 

reason for the observed higher FWHM values at higher reverse bias voltages.   
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Figure 4.17.  Variation of 5.48 MeV alpha peak FWHM (■), pulser peak FWHM (▲) and 
alpha peak percentage resolution (●) as a function of detector bias voltage.  

 

4.7 CONCLUSION 

In conclusion, in this study Schottky barrier detectors in planar configuration have 

been fabricated on 50 𝜇m n-type 4H-SiC epitaxial layers grown on 360 𝜇m SiC 

substrates by depositing ~10 nm nickel contact. Current-voltage (I-V), capacitance-

voltage (C-V), and alpha ray spectroscopic measurements were carried out to investigate 

and evaluate the Schottky barrier detector properties.  The room temperature I-V 

measurements revealed a very low leakage current of ~ 0.78 nA at 250 V reverse bias.  

The barrier height for Ni/4H-SiC Schottky contact was found to be ~1.4 eV by forward 

I-V measurement and ~1.5 eV by C-V measurements.  The diode ideality factor was 

measured to be of 1.4, which is slightly higher the unity showing the presence of deep 

levels as traps and recombination centers.  Capacitance mode deep level transient 

spectroscopy (DLTS) revealed the presence of the deep levels along with two shallow 
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level defects related to titanium impurities (Ti(h) and Ti(c)) and an unidentified deep 

electron trap located at 2.42 eV below the conduction band minimum which is being 

reported for the first time.  The concentration of the lifetime killer Z1/2 defects was found 

to be 1.6× 1013 cm-3.  The detectors’ performances were evaluated for alpha particle 

detection using a 241Am alpha source.  An energy resolution of ~ 2.5 % was obtained with 

a reverse bias of 100 V for 5.48 MeV alpha particles.  The measured charge collection 

efficiency (CCE) was seen to vary as a function of bias voltage.  With increased reverse 

bias, the detector active volume increases with the increase in depletion layer width 

accommodating more number threading type dislocations at the epilayer/substrate 

interface resulting in higher FWHM values as observed experimentally. 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 
 

5.1 CONCLUSION 

Radioactive materials, as it decays, generate different high-frequency 

electromagnetic radiation such as alpha particles, beta, x-ray, gamma-ray and neutrons.  

Nuclear detectors could stop these high-energy ionizing radiations, collect and transport 

the charges generated to an external circuit, and produce an electrical signal which is 

amplified by readout electronics to measure the energy of nuclear interaction.  Thus, 

nuclear detectors are important tools for accounting of radioactive materials and have 

widespread applications in nuclear power plants, nuclear waste management, in national 

security, in medical imaging such as x-ray, mammography, CT scan, and in high energy 

astronomy for NASA space exploration.  

In this dissertation three different types of wide bandgap (WBG) radiation 

detectors were studied: (1) amorphous selenium (a-Se), (2) cadmium zinc telluride 

(CZT), and (3) silicon carbide (SiC).  All three semiconductors have attractive electrical 

properties such as wide bandgap (≥ 1.5 eV) facilitating room temperature operation, high 

resistivity (≥ 1010 Ω-cm) contributing to low thermal noise for high-resolution, and high 

charge carrier mobility-lifetime product offering high charge collection efficiency.   

However, these semiconductors have distinct characteristics that set them apart 

from one another.  For example, high Z (atomic numbers of constituent elements, Cd=48, 

Zn=30, Te=52) and high density of CZT offering high stopping power to absorb high 
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energy x-rays and gamma-rays so CZT could be used for high energy x- and gamma ray 

spectrometer at room temperature.  On the other hand, SiC has low Z value (Si=14, C=6) 

appropriate for detection of alpha particles and low energy x-ray (<10 keV) regime.  

Furthermore, high bandgap energy (~3.27 eV at 300 K) of 4H-SiC allows detector 

operation well above room temperature (~773 K) as required for nuclear fuel processing 

environment in nuclear power plants. Amorphous Se alloy with enriched boron (10B) has 

high thermal neutron cross-section (3840 barns) due to boron and high radiation tolerance 

due to its amorphous structure, making it a favorable candidate for solid-state neutron 

detectors. 

In this study, semiconductors were grown from in-house zone-refined ultra-pure 

precursor materials using specialized growth furnaces, which were modified, re-coded 

and optimized to obtain high quality detector materials.  Experiments were carried out to 

optimize elemental composition of these compound semiconductors.  Different metal-

semiconductor contacts with metals of various work functions and metal-semiconductor-

metal (MSM) devices with planar, pixilated, guard-ring and large area thin-film 

structures have been studied to ensure good charge transport properties and opto-

electronic device performances.  A series of characterization were carried out including 

scanning electron microscopy (SEM), x-ray diffraction (XRD), glow discharge mass 

spectroscopy (GDMS), optical absorption study, thermally stimulated current (TSC), 

deep-level transient spectroscopy (DLTS), and current-voltage (I-V) measurements.  

These extensive characterizations provided information on stoichiometry, morphology, 

purity, bandgap energy, resistivity, leakage current and presence of any performance-

limiting electrical defect.  Finally, to determine detection specificity, sensitivity and 
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energy resolution, fabricated detector devices were evaluated with radiation sources, such 

as 241Am (5.5 MeV) for alpha, 137Cs (662 keV) for gamma, and 252Cf for neutron source.   

High quality boron (10B) doped a-Se (As, Cl) alloy was synthesized in a specially 

designed alloying reactor.  Alloy films were deposited using thermal evaporation, a low-

cost technique which can be scaled up for larger detector production.  The films used for 

detector fabrication had smooth, defect-free amorphous structure as determined by SEM 

and XRD.  The bandgap and resistivity of 10B-doped a-Se (As, Cl) alloy was determined 

to be 2.21 eV and ≥1012 Ω-cm, respectively, at 300 K.  Single layer planer MSM (4″ × 4″ 

and 300 micron thick) detectors were fabricated on ITO glass and oxidized aluminum 

substrates.  Current-voltage (I-V) characteristics showed very low leakage (~-10 nA at 

-1000 V); by using Al2O3 as blocking layer, leakage current was reduced to pA to a 

fraction of nA at -1000 V.  Nuclear testing with high energy alpha particles (241Am) and 

neutron (252Cf) sources showed specific signature of thermal neutron detection.  The data 

confirms that 10B-doped a-Se (As, Cl) alloy films can be used to construct high 

performance compact neutron detectors.   

The CZT crystals were grown at a stoichiometry of Cd0.9Zn0.1Te from zone 

refined ultra-pure precursor materials with 50% excess Te using modified multi-pass 

vertical furnace.  The bandgap energy was determined to be 1.56 eV.  The electrical 

resistivity was estimated to be 6 × 1010 Ω-cm, which is high enough to fabricate a 

functional CZT radiation detector.  The CZT detectors showed very low leakage current 

at a high bias (below 5 nA at – 1000V) due to their high resistivity, which are beneficial 

for high resolution detectors.  The drift mobility and mobility-lifetime product of 

electrons were estimated to be 1186 cm2/V.s and 5.9 × 10-3 cm2/V, respectively.  An 
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energy resolution of 6.2% was obtained for CZT planar detector when irradiated with 

60 keV low-energy gamma radiations (241Am).  The peaks were sharper and better 

resolution was observed for the CZT detector with guard ring geometry.  An energy 

radiation of 2.6% was observed for detector with guard-ring structure irradiated with high 

energy 662  keV gamma radiations using 137Cs source.   

Schottky barrier detectors in planar configuration have been fabricated on 50 𝜇m 

n-type 4H-SiC epitaxial layers grown on 360 𝜇m SiC substrates by depositing ~10 nm 

nickel contact. Current-voltage (I-V), capacitance-voltage (C-V), and alpha ray 

spectroscopic measurements were carried out to evaluate the Schottky barrier detector 

properties.  Room temperature I-V measurement revealed a very low leakage current of 

~ 0.78 nA at 250 V reverse bias.  The barrier height for Ni/4H-SiC Schottky contact was 

found to be ~1.4 eV and the diode ideality factor was measured to be 1.4, which is 

slightly higher than unity showing the presence of deep levels as traps and recombination 

centers.  Capacitance mode deep level transient spectroscopy (DLTS) revealed the 

presence of the deep levels along with two shallow level defects related to titanium 

impurities (Ti(h) and Ti(c)) and an unidentified deep electron trap located at 2.42 eV 

below the conduction band minimum which is being reported for the first time.  The 

concentration of the lifetime killer Z1/2 defects was found to be 1.6× 1013 cm-3.  The 

detectors’ performances were evaluated for alpha particle detection using a 241Am alpha 

source.  An energy resolution of ~ 2.58 % was obtained with a reverse bias of 100 V for 

5.48 MeV alpha particles.  The measured charge collection efficiency (CCE) was seen to 

vary as a function of bias voltage.  With increased reverse bias, the detector active 

volume increases with the increase in depletion layer width accommodating more number 
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threading type dislocations at the epilayer/substrate interface resulting in higher FWHM 

values as observed experimentally. 

5.2 FUTURE WORK 

5.2.1 Recommended for Amorphous Selenium Detectors 

Future recommended work for a-Se detectors: 

 We have investigated enriched boron (B-10) doped a-Se detectors for thermal 

neutron detection. It has been learnt that better performance may be achieved with 

6Li doped a-Se alloy detector and the reasons for the better performance with 6Li 

devices are multiple, including: (1) 6Li reaction products have longer ranges 

(tritium - 32 μm, 4He - 7 μm) than 10B reaction products (α - 4.2 μm, 7Li - 2.1 

μm); 6Li as factor of ~4 lower thermal neutron cross section, but ~7 times longer 

range of the reaction products in Se. In principle it could outperform 10B provided 

similar concentrations can be achieved and depletion region for 10B case cannot 

be extended to benefit from full detection of the reaction products. (2) The 

energies for 6Li reaction products are much higher than that of 10B, thereby, 

allowing for easier discrimination of background radiations. So, it would 

interesting to investigate 6Li-doped a-Se (As, Cl) bulk alloy detectors for thermal 

neutron detectors in our future studies. We’ll plan to carry out comparative study 

with two dopants (Li and B) with similar concentrations and select the best 

performing detector for further development. 

 Different contact structures were studied to reduce the leakage current of a-Se 

devices by controlling carrier transport inside the devices for better detection 

signals.  We have used Al/Al2O3 layers as an electron blocking layer in the 
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device.  The high resistivity of ~1012 Ω-cm was observed with Al/Al2O3 electron 

blocking layers and the detectors showed a higher signal to noise ratio by 

comparing counts between no source and with 241Am source. We haven’t tested 

an impact on the leakage current and the energy resolution of a hole-blocking 

layer such as Sb2S3/Au layer and we’ll test and evaluate a-Se detectors with and 

without this hole blocking layer. 

 We have standardized deep level transient spectroscopy (DLTS) measurements on 

4H-SiC alpha, low energy x-ray, and gamma-ray detectors. This DLTS 

measurements in capacitance (C-DLTS) and current mode (I-DLTS) will be 

highly useful to evaluate, characterize, and to optimize the performance of the 

fabricated a-Se detectors. Some of the fabricated a-Se detectors showed structural 

defects and induced crystallization (resulting to low resistivity) at the interface 

and within the bulk. This was mainly due to the strain induced during the slow 

deposition and cooling of the deposited a-Se films and non-uniform temperature 

distribution. These shallow and deep lying defects due to inclusions/precipitates, 

imperfections, point defects, and localized polycrystallinity (grain boundaries) 

will be evaluated through DLTS measurements. 

5.2.2 Recommended for CZT Detectors 

Future recommended work for CZT detectors: 

 Future efforts on CZT detectors will be concentrated to increase production yield 

of large volume larger diameter detector grade CZT crystal ingots with increased 

resistivity and enhanced charge transport properties such as µτ products 

specifically µτe for single charge carrier devices of Frisch grid detectors. 
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 In CZT the electron mobility is much higher the hole mobility, so a polarization 

effect is much more pronounced even at a high bias voltage.  In order to 

compensate for poor hole transport properties, specialized detector geometries, 

such as a co planar, multiple small pixel, and Frisch grid detector structure, can be 

applied to CZT.  For this dissertation, only the planar and guard-ring detector 

structures were studied.  For future effort it would be interesting to study multiple 

pixel, co-planar or Frisch grid detector structures and compare performance 

evaluation to the planar detector in order to achieve highest efficiency gamma ray 

detectors. 

 Deep-level transient spectroscopy (DLTS) can be applied to the solvent-grown 

CZT crystals for further defect analysis. DLTS is a very sensitive technique for 

determining defects present in the space-charge region of a semiconductor 

material using voltage pulses. By using this spectroscopy technique, further 

information about the deep-level defects can be determined, which may assist 

future endeavors in reducing defects in the solvent-grown CZT crystals. 

5.2.3 Recommended for SiC Detectors 

Future recommended work for SiC detectors: 

 A future research will be undertaken to focus on electronic noise analysis of the 

front-end readout electronics in terms of equivalent noise charge (ENC) to study 

the effect of various noise components that contribute to the total electronic noise 

in the detector and the detection system. We will carry out research on lowering 

detector capacitance without reducing the detector active area by increasing the 

detector active thickness, i.e. by using a thicker epitaxial layer. An electronic 
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noise analysis of the detection system will reveal the possibility of achieving 

better energy resolution by lowering the detector capacitance. This will reveal the 

white series noise due to the total input capacitance which may have substantial 

effect on detector performance. 

 The development of passivation and edge termination by depositing thin SiO2 and 

Si3N4 films on 4H-SiC epilayer will be highly interesting for improving radiation 

detector’s performance. In our preliminary studies we have shown that the edge 

termination method is very effective for improving the detectors’ leakage current 

resulting the energy resolutions compared with that of a conventional detector 

fabricated from the same parent wafer. This work will be carried out in our future 

research. We will also continue to investigate radiation detection performance in 

terms of alpha spectroscopy measurements prior and subsequent to SiO2 and 

Si3N4 passivation and edge termination. Continuation of our studies on deep level 

transient spectroscopy (DLTS) will reveal changes in life-time killing deep level 

defects of detectors with and without passivation and edge termination which 

could be correlated to the observed changes in radiation detection performance. 

 To observe the impact of deep lying point and/or extended defects in the active 

region (in the width of the depletion region), Schottky barrier radiation detectors 

will be fabricated on <20 µm thick 4H-SiC epilayers and will be evaluated for 

radiation detection performance. The energy resolution for 5.486 MeV alpha 

particles will be measured with charge collection efficiency. We’ll also 

investigate the nature and type of crystallographic defects through defect 

delineating KOH etching and the results will be analyzed and correlated. 
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