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ABSTRACT 

     In today's world, alternative clean methods of energy are needed to meet growing energy 

demands. Concentrating solar thermal power, more commonly referred to as CSP, is unique 

among renewable energy generators because even though it is variable, like solar 

photovoltaic and wind, it can easily be coupled with thermal energy storage as well as 

conventional fuels, making it highly dispatchable. One challenge with concentrated solar 

power (CSP) systems is the potential corrosion of the alloys in the receivers and heat 

exchangers at high-temperature (700-1000 °C), which leads to a reduction of heat transfer 

efficiency and influences the systems durability. The objective of this dissertation is to 

create a comprehensive mathematical model including thermal gradients and fluid flow to 

predict corrosion rates and mechanisms observed in state of the art molten salt heat transfer 

systems.  

     The corrosion model was designed and benchmarked against a thermosiphon reactor. 

This thermosiphon reactor exposed the alloy coupons to non-isothermal conditions 

expected in CSP plants. Cathodic protection was also added to the model as a mitigation 

strategy for corrosion of metal surfaces. The model compared the corrosion rates for the 

cases with and without cathodic protection under different operational conditions for 

different high-temperature alloys (e.g., Haynes 230, Haynes NS-163, and Incoloy 800H). 

The model is capable of considering the effects of kinetic and mass transfer on the 

corrosion rate under high temperature fluid flow systems. 
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The results reveal that temperature has an important effect on the corrosion rate of high-

temperature alloys in molten salt systems. For the case with the higher temperature range 

800-950 ℃, the corrosion rate is almost twice that of the case with the low temperature 

range 650-800 ℃. Another important factor is dissolved metal ions (e.g., Cr3+) that diffuse 

to the surface of the alloy as a result of disproportionation reaction at the more 

electropositive metals and cause the oxidation\reduction reactions on the surface of the 

alloy.
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CHAPTER 1. INTRODUCTION 

1.1  Clean Energy Technologies 

    The increasing the demand for energy, energy security and the need to minimize the 

impact on the environment related to energy production are all major incentives for the 

research and development of alternative energy technologies. There are several clean 

energy sources that can alleviate fossil fuel shortages and environmental pollutant. 

Examples of clean energy technologies that, one can refer to are concentrating solar power 

(CSP) plants, and polymer electrolyte membrane fuel cells (PEMFCs).  

     For electricity generation on a large commercial scale, CSP has the potential to be a 

highly economical conversion process. The conversion of sunlight to electricity, is one of 

the leading candidates among clean energy technologies. Solar energy has enormous 

advantages over other sources of energy because it is free, abundant, inexhaustible and 

clean. Another important alternative source of clean energy is the use of hydrogen in 

PEMFC fuel cells for both transportation and stationary applications. The extraordinary 

environmental quality and high efficiency of PEMFCs make them a potential alternative 

energy source. 

     Despite fundamental innovations that have advanced commercialization of these two 

technologies, , many technical hurdles still need to be overcome to lower cost and achieve 

wide commercial adoption.
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     Many clean energy programs have integrated a strong focus on electrochemistry due to 

the high efficiencies that can be achieved by electrochemical reactions. The high 

efficiencies of electrochemical processes are due to the direct relationship between 

electrochemical energy and Gibbs energy from fundamental thermodynamics. Mechanical 

systems used in energy applications such as turbines are limited by Carnot efficiency, 

where electrochemical systems are only limited by the kinetics of the electrochemical 

reaction and ohmic losses in the electrolyte. Corrosion mechanisms are also an 

electrochemical phenomena that are important to understand and mitigate to prolong the 

lifetime for clean energy systems. All of these aspects make electrochemical engineering 

vital to further development of clean energy technologies [1].  

     In this work electrochemistry is used to improve the lifetime of these two clean energy 

technologies.  In the first part of this dissertation the corrosion problem in the CSP plant 

are discussed, followed by a mathematical model development that include thermal 

gradients and fluid flow to predict corrosion rates and mechanisms observed in the state of 

the art molten salt heat transfer systems of CSP plants. The second part of the study is 

devoted to identify the performance loss and recovery of a PEM fuel cell due to Balance 

of Plant (BOP) materials contaminations via a combination of experimental data and 

mathematical models. 

1.2  Concentrated Solar Power (CSP) Systems  

    Diminishing fossil fuel reserves and increasing effects of anthropogenic climate change 

due to greenhouse gas emissions have led to an unprecedented global interest in renewable 

sources of energy [2]. Among different types of renewable power generation, the CSP 
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system has become one of the emerging technologies in the world. The defining aspect of 

CSP is that it captures and concentrates solar radiation to provide the heat required to 

generate electricity, rather than using fossil fuels or nuclear reactions. Another attribute of 

CSP plants is that they can be equipped with a thermal energy storage system in order to 

generate electricity even when the sky is cloudy or after sunset. 

     In general, CSP systems convert solar radiation into thermal energy by focusing the 

sun's rays onto a central area called a receiver. The heat transfer fluid (HTF) inside the 

receiver is heated by absorption of the radiation and is pumped through the receiver pipes to 

deliver the thermal energy to a heat exchanger integrated with a steam turbine to generate 

power. The processes occurring in CSP systems is illustrated in Figure 1.1. CSP systems 

are early in their adoption, but have already begun commercialization. Today, there are 80 

operational CSP plants around the world, mainly in the United States and Spain, with 1.9 

GW of total capacity. Another 23 are under construction in India, China, Australia, and 

South Africa, among other places [3]. As experience is gained with CSP systems and as 

R&D advances, plants will get bigger, mass production of components will occur and costs 

will come down with increased competition between CSP integrators.[4]. The U.S. 

Department of Energy (DOE) target is to make unsubsidized solar energy cost competitive 

with other forms of energy on the grid by the end of the decade. Figure 1.2 shows the 

breakdown of CSP systems cost.  It is projected that CSP systems need to be able to produce 

energy with a cost of $0.06/kWh when they are scaled up and implemented on a large scale. 

To reach these targets, it is generally believed that temperatures of the HTFs will need to 

be high enough to drive an advanced Brayton cycle or Rankine cycle with superheated 

steam. Higher operating temperatures will allow an increase in the electrical efficiency of 
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CSP plants, reduce the cost of the thermal storage system (as a smaller storage volume is 

needed for a given amount of energy storage) and achieve higher thermal-to-electric 

efficiencies. 

     It is projected that average operating temperatures near 750°C with local hot spots up 

to 850 °C would be needed to make these systems viable and achieve energy price goals. 

To make this system feasible, HTFs that can operate at these temperatures for long periods 

of time without significant degradation reaction of either the HFT or the materials of 

construction for the system are required.  

 

Figure 1.1. Schematic of a CSP plant [5]. 

 

     A variety of HTFs which may be used in CSP systems have been considered and 

researched, including six groups: gases (air, helium and super critical CO2), water/steam, 

thermal oils, organic fluids, molten salts and liquid metals. Table 1.1 summarizes the 

respective advantages and drawbacks of the different groups of HTFs that can be employed 

in CSP systems [6]. 
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Table 1.1. Advantages and disadvantages of the different groups of HTFs for CSP systems [6]. 

 Air, helium and 

super critical 

Water/steam Thermal oils Organic fluids Molten salts Liquid metals 

 

Thermophysical 

properties 

Low dynamic 

viscosity and high 

efficiencies. High 

operating 

temperatures 

(above 700 °C). 

Impossibility of 

thermal storage, 

high pumping 

power and low 

thermal 

conductivity. 

Low dynamic 

viscosity 

(similar to air), 

non-expensive 

Rankine direct 

cycle. Limited 

operating 

temperatures 

(600 °C), 

impossibility of 

thermal storage 

and high 

pressure 

required. 

Constant 

thermal 

conductivity 

over a wide 

range of 

temperatures 

and high 

efficiencies at 

small scales. 

Thermal 

stability only up 

to 400 °C, low 

heat capacity, 

high pumping 

power 

Low viscosity 

and high heat 

capacity. Low 

thermal 

conductivity 

and limited 

temperature 

range (up to 

393 °C). 

Good thermal 

stability up to 600 

°C, low viscosity 

and vapour 

pressure. Possibility 

of direct thermal 

storage. With new 

mixtures 

temperatures of 800 

e900 °C could be 

achieved, but with 

the drawback of a 

too high melting 

point (400 °C). 

Large temperature 

range (above 1000 

°C for most of the 

candidates) and 

thermal stability at 

high temperatures, 

high thermal 

conductivities, heat 

fluxes and 

efficiencies. 

Possibility of 

thermal storage 

with some 

candidates. 

Corrosion rate High oxidation 

rates at high 

temperatures, 

better 

compatibility with 

less noble metals. 

Corrosion starts 

at 300 °C and 

increases at 

high 

temperatures. 

No information 

regarding 

compatibility 

with materials is 

available in the 

literature. 

No information 

regarding 

compatibility 

with materials 

is available in 

the literature. 

Big corrosion issues 

at temperatures 

higher than 600 °C. 

Better compatibility 

with LiNaK 

mixtures. 

Big corrosion issues 

at high 

temperatures for the 

heavy metals and 

fusible metals 

group 

Cost and 

availability 

High 

availability and 

zero costs. 

 

Low 

availability in 

regions 

characterized 

by high solar 

radiation rates. 

Relatively high 

costs (between 3 

and 5 USD/Kg). 

High costs (100 

USD/Kg). 

Low costs but 

problems for 

meeting the demand 

of nitrate/nitrite 

based salts 

High costs varying 

for the different 

candidates. 
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Air and water are no longer considered as viable options.  Air increases in volume when 

heated and requires larger heat exchanger sizes for efficient heat transfer, which also 

greatly increases the capital cost of the heat exchanger [7]. Water also can prove unstable 

and difficult to manage at high temperature/high pressure situations. Thermal oils have 

been a preferred heat transfer fluid for CSP developers designing low to intermediate 

temperature CSP systems to get around the high pressure issue. The problem with thermal 

oils is that the hydrocarbons break down when heated to 400 °C. and limit the maximum 

operating temperature for parabolic troughs [8]. Liquid metals have been used as heat 

transfer fluids in nuclear reactors since the 1940s and are currently being studied for use in 

solar thermal systems as HTFs and thermal energy storage media. Although liquid metals 

have not been used in commercial CSP applications until now, they have several promising 

properties including extensive operating temperature range, low viscosity and efficient heat 

transfer characteristics. The issue with liquid metal is that the cost is higher than that of 

molten-salt or water/steam HTFs. Also, heat capacities of liquid metals are low relative to 

commercial nitrate/nitrite based salts and hence they are less favorable to be used as 

thermal energy storage media [9]. 

    Molten salts proposed for use with high temperature Brayton and superheated Rankine 

cycles are usually molten halides due to their good heat transfer properties. They can make 

excellent heat transfer fluids in high temperature applications (260°C - 1400°C) because 

of their high melting points, stability at high temperatures, and low viscosities. The size of 

pipes and other equipment used for molten salts together with the pumping power required 

is much smaller than if gases were employed in the same high temperature applications.
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      The wall thicknesses required in using molten salts are also much smaller than those 

required in high-pressure steam systems operating near the same temperatures [10].  

 

Figure 1.2. The breakdown of CSP systems cost [11]. 

     Certain molten salts can serve as energy storage mediums. Their high melting 

temperatures and high thermal capacitances make it so they retain heat for periods longer 

than 24 hours. They also have high energy densities which reduces the amount of molten 

salt needed in applications normally carried out by traditional working fluids. Their ability 

to store this heat energy allows electric energy at any time of the day [12].  

     The main disadvantage to using molten salts is that they can be highly corrosive, 

especially at high temperatures. Therefore, piping, heat exchangers, pump heads, and other 

components in CSP systems that come in contact with the molten salt are expected to face 

more severe degradation [13]. 



 

8 

 

1.3 Polymer Electrolyte Membrane Fuel Cell (PEMFC) 

     Proton exchange membrane fuel cells (PEMFCs) are considered to be a promising 

technology for clean and efficient power generation in the twenty-first century. Their high 

efficiency and zero emission have made them a prime candidate for powering the next 

generation of electric vehicles [14]. Typical fuel cells operate at a voltage ranging from 0.6 

– 0.8 V, and produce a current per active area (current density) of 0.2 to 1.0 A/cm2. A 

PEMFC consists of a negatively charged electrode (anode), a positively charged electrode 

(cathode), and an electrolyte membrane. Hydrogen is oxidized on the anode and oxygen is 

reduced on the cathode. Protons are transported from the anode to the cathode through the 

electrolyte membrane, and the electrons are carried to the cathode over the external circuit. 

The electrons are transported through conductive materials to travel to the load when 

needed. On the cathode-side, oxygen reacts with protons and electrons forming water and 

producing heat. Both, the anode and cathode, contain a catalyst to create electricity from 

the electrochemical process as shown in Figure 1.3. 

 

Figure 1.3 Schematic of a single PEM fuel cell [15]. 
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     The conversion of the chemical energy of the reactants to electrical energy, heat and 

liquid water occurs in the catalyst layers, which have a thickness in the range of 5 to 30 

microns (μm). A typical PEM fuel cell has the following reactions: 

Anode: H2 → 2H+ + 2e− 

Cathode : 
1

2
O2 + 2H+ + 2e− → H2O 

Overall: H2 + 
1

2
O2 → H2O 

                                          1-1 

1-2 

1-3 

     Within the fuel cell, in addition to this chemical reaction, several coupled processes take 

place at the same time, including the diffusion of reactants across the electrodes, diffusion 

of protons across the membrane, heat generation and removal, water production at the 

cathode, and water transport through and out of the fuel cell. The rates of the reaction and 

these transport processes determine the dynamics of the fuel cell. These processes are 

dependent on the quality of the membrane-electrode assembly (MEA), flow field designs, 

and operating conditions (reactant flow rates, temperature, pressure etc.), all of which 

affect the overall performance of the fuel cell and thus are important aspects to consider in 

fuel cell design and operation. 

     In order to make fuel cell systems as commercially competitive as possible, as much 

cost as possible needs to be removed from system components without sacrificing 

performance and durability. Fuel cell durability requirements limit the performance loss to 

a few tens of mVs over required lifetimes (1000s of hours). As fuel cell systems suffer 

from performance loss due to factors such as potential cycling, start/stop and idling 

conditions, there is very little tolerance for additional losses such as those due to 

contaminants. Intelligently selecting low cost materials for specific application in PEMFC 
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systems requires a level of understanding of potential contaminants from system 

components that does not currently exist. 

1.4 Dissertation Outline 

     As mentioned earlier, this dissertation is focused on two projects. The first six chapters 

are focused on the first project and the last chapter addresses the second project. The 

objective of first project is to create a comprehensive mathematical model including 

thermal gradients and fluid flow to predict corrosion rates and mechanisms observed in 

state of the art molten salt heat transfer systems. Chapter 1 introduces the importance of 

the dissertation. It is generally believed that temperatures of heat transfer fluids (HTFs) 

will need to be higher than 750 °C to drive an advanced Bryton cycle or Rankine cycle 

with superheated steam to reach this target. To make this system technically feasible, HTFs 

need to be developed that can operate at these temperatures for long periods of time without 

significant degradation of either the HTFs or materials of construction for the system. 

Decreasing materials’ corrosion will lower system maintenance costs due to less frequent 

component failure and replacement. Improvements in materials’ durability will be 

achieved by creating a comprehensive model that will allow identification of critical 

parameters of corrosion mechanisms. While material durability studies have been 

conducted for lower temperature HTFs that are common in industry, detailed 

characterizations of molten salt systems capable of high temperature operation at 

temperatures routinely exceeding 750°C have either not been performed or not been 

extensive. The corrosion management strategies employed with higher temperature salts is 

often drastically different when compared to those for the lower temperature nitrate salts 

that can utilize well known oxide passivation layers for corrosion prevention. Whereas at 
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higher temperatures, activity gradient driven mass transfer and thermal gradient driven 

mass transfer are often dominant, especially in many chloride and fluoride salt systems that 

are among the most promising HOT HTFs. This research will characterize corrosion and 

material degradation at these conditions and compare corrosion rates and mechanisms with 

state-of-the-art systems. 

     Chapter 2 presents a literature review of the corrosion, specifically current research in 

corrosion at high temperature molten salt systems and cathodic protection. Chapter 3 

develops a corrosion model that allows reliable simulation of the processes under realistic 

conditions that can help to identify the critical parameters of corrosion and improve the 

material durability. Finally in Chapter 4, the previously reported corrosion model is 

developed under magnesium (Mg) cathodic protection.  

     For the second project of the dissertation, the purpose is to identify the performance loss 

and recovery of a fuel cell due to contaminants arising from Balance of Plant (BOP) 

components via a combination of experimental data and mathematical models. An analysis 

procedure was developed to quantify the various potential losses caused by contaminants 

during both fuel cell contamination and recovery operations. These important impacts of 

contamination are considered, which are the adsorption onto the Pt surface (kinetic losses) 

and ion exchange with the membrane and ionomer in the catalyst layer. Chapter 5 presents 

a literature review in addition to the experimental procedure and model development for 

the second project.
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CHAPTER 2. LITERATURE REVIEW 

2.1  Concentrated Solar Power Plant (CSP) 

      The first CSP plant (1982-1988) in California, US used water/steam systems as a heat 

transfer fluid. Its six-year test and power production program proved that the technology 

operates reliably and has both very low environmental impact and high public acceptance. 

There were, however, two key disadvantages to the water/steam system at this plant. First, 

the receiver was directly coupled with the turbine, causing the turbine to drop offline each 

time a cloud came by, and second, the oil/rock thermal storage system was not efficient 

because of thermodynamic losses. In parallel with testing of this plant, a series of studies 

funded by the U.S. Department of Energy and industry examined advanced power tower 

concepts using single-phase receiver fluids [16]. Molten salts have been studied for their 

possibility of high working temperatures, low melting points, moderate density, high heat 

capacity, and high thermal conductivity, in addition to long term thermal stability (or 

chemical stability with less corrosion to containers) and low cost [17].  

2.2 Molten Salt Applications in CSP Plant 

     The primary molten salt candidate was a binary mixture of 60% sodium nitrate and 40% 

potassium nitrate (Solar Salt). The primary advantages of molten nitrate salt as the heat 

transfer fluid for a solar power tower plant include a lower operating pressure and better 

heat transfer (and thus higher allowable incident flux) than a water/steam receiver. 
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     This translates into a smaller, more efficient, and lower cost receiver and support tower 

[16]. Solar Salt has a thermal stability (below 600 °C) and a relatively high melting point 

(220 °C). A new heat transfer fluid called Hitec, which is a ternary salt mixture of 53% 

KNO3, 7 % NaNO3 and 40% NaNO2, has been considered to replace the Solar Salt because 

of its low freezing point of 142 °C [18]. Hitec is thermally stable at temperatures up to 454 

°C, and may be used at temperature up to 538 °C for a short period [19]. A modified 

version, Hitec XL, is a mixture of 48 % Ca (NO3)2, 7% NaNO3 and 45% KNO3 which 

melts at about 133 °C and may be used at a temperature up to 500 °C [18]. Different 

compositions of Ca(NO3)2/ NaNO3/ KNO3 have been identified in the open literature as 

eutectic salts [18, 20]. The ternary eutectic salt with composition of 44% Ca(NO3)2/ 12% 

NaNO3, 44% KNO3 melts at 127.6 °C and its thermal stability is good at up to 622 °C [20]. 

     It is proposed to replace molten-nitrate-salt coolant systems with molten-fluoride-salt 

coolant systems and thus make it possible to increase peak salt coolant temperatures from 

565 °C to between 700 °C and 850 °C. Increasing the peak coolant temperatures and using 

a higher temperature closed-Brayton-power cycle have the potential to increase heat-to-

electricity efficiency by 20–30% with an equivalent reduction in capital costs [21]. 

     Molten fluoride salts have been used on a large industrial scale for a century. Since the 

1890s, essentially all aluminum has been produced by the Hall process which used sodium-

aluminum-fluoride-salt at 1000°C in a graphite-lined bath. In the 1950s, the United States 

launched a large program to develop a nuclear-powered aircraft by using molten salt 

reactors (MSRs) were to provide the very high- temperature heat source, with the heat 

transferred to a jet engine via an intermediate heat-transport loop. In the 1960s and 1970s, 

the MSR was investigated as a thermal-neutron breeder reactor. Fluoride salts were chosen 
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for these applications because of their high-temperature heat transfer and nuclear 

characteristics [21]. Several types of molten fluoride and chloride salts, including LiF-BeF2 

(also known as FLiBe [67-33 mol%]), LiF-NaF-KF (also known as FLiNaK [46.5-11.5-42 

mol%]), and KCl-MgCl2 (67-33 mol%), have been investigated recently by several 

Japanese and U. S. groups (LiF-BeF2 and LiF-NaF-KF) and by the University of Wisconsin 

(LiF-NaF-KF and KCl-MgCl2) in support of fusion reactor and VHTR reactor concepts, 

respectively. At operating temperatures, these salts have heat transfer properties similar to 

those of water. However, the boiling points are above 1000 °C, which allows low-pressure 

operations [22]. Table 2.1 presents a summary of the properties of molten halide salts for 

using in CSP plants. Certain factors in this table, such as melting point and vapor pressure, 

can be viewed as stand-alone parameters for screening candidates [23]. In the area of 

nuclear energy systems, molten choloride salts are also being considered as heat transport 

fluids to transfer high temperature process that from nuclear reactors to power chemical 

plants. Electrochemical reprocessing of used metallic fuel is performed routinely in molten 

LiCl-KCl electrolyte. Molten NaCl-KCl-MgCl2 salt was used in reprocessing of the liquid 

metal fuel at Brookhaven National Laboratory in the 1950s as part of the Liquid Metal 

Reactor Experiment. Free energy of formation vs temperature diagrams constructed for 

chlorides show that alkali chlorides and alkaline earth chlorides are more 

thermodynamically favored than the transition metal chlorides [24]. Williams discussed 

the influence of the price of the components with different salt mixtures [23]. His 

conclusions determined that magnesium chlorides are the least expensive of all, while 

fluorides, fluoroborates and Li-containing mixtures increase the price of the coolant. Table 

2.2 shows the estimated raw material costs for various salt mixtures [23]. From the 
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standpoint of the CSP plant, it is important to select a salt that possesses good heat transfer 

characteristics, is relatively easy to handle, and not prohibitively expensive. Based on the 

above issues it was decided that most of the experiments be performed for this project using 

68%KCl-32%MgCl2 (mol%), with a couple tests utilizing FLiNaK salt for comparison 

purposes. KCl-MgCl2 has less heat transfer properties, in comparison to the FLiNaK 

molten salt, but it is one of the most inexpensive molten halide salts. 

2.3 Super-alloys for CSP Plants 

     The development of the CSP plant much depends on the progress in creating such 

structural materials that should meet a number of special requirements:  

- A high corrosion resistance of molten salt melts; 

- Adequate high-temperature strength; 

- Good manufacturability (ability to be deformed, machined, welded, etc.). 

     The corrosive impact on these factors is significant in most situations, and may be 

critical in some. In general, for structural materials, corrosion resistance is not the primary 

criterion for selection. In most cases, for the applications described above, the mechanical 

properties are the major needs. Obviously, this usually means strength (rupture strength, 

creep strength, toughness) at the required service temperature. Since in all cases the 

systems have to be fabricated at ambient temperature, and in normal operation will need to 

be cooled to ambient temperature several times during their service lives, there will also be 

some mechanical property requirements for low temperatures: the usual minimum 

requirement is adequate fracture toughness. 
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Table 2.1 Thermophysical properties of some molten salts compositions [23]. 

 Heat-transfer properties at 700 ºC 

Salt Formul

a 

Weight 

(g/mol) 

Melting 

point 

(ºC) 

900ºC vapor 

pressure 

(mm Hg) 

ρ, density 

(g/cm3) 

ρ Cp, 

volumetric 

heat capacity 

(cal/cm3 ºC) 

μ, viscosity 

(cP) 

k, thermal 

conductivity 

(W/m K) 

LiF-NaF-KF 41.3 454 ~ 0.7 2.02 0.91 2.9 0.92 

NaF-ZrF4 92.7 500 5 3.14 0.88 5.1 0.49 

KF-ZrF4 103.9 390 1.2 2.80 0.70 < 5.1 0.45 

LiF-NaF-ZrF4 84.2 436 ~ 5 2.92 0.86 6.9 0.53 

LiCl-KCl 55.5 355 5.8 1.52 0.435 1.15 0.42 

LiCl-RbCl 75.4 313 -- 1.88 0.40 1.30 0.36 

NaCl-MgCl2 73.7 445 < 2.5 1.68 0.44 1.36 0.50 

KCl-MgCl2 81.4 426 < 2.0 1.66 0.46 1.4 0.4 

NaF-NaBF4 104.4 385 9500 1.75 0.63 0.9 0.4 

KF-KBF4 109.0 460 100 1.70 0.53 0.9 0.38 

RbF-RbF4 151.3 442 < 100 2.21 0.48 0.9 0.28 
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Table 2.2 Estimated raw material costs for various salt mixtures [23]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Salt Composition 

(mol %) 

Composition 

(wt %) 

Raw material cost 

($/kg–salt mixture) 

Cost/volume 

($/L at 700ºC) 

KCl-MgCl2 68-32 62-38 0.21 0.35 

NaCl-MgCl2 58-42 46-54 0.25 0.42 

NaCl-KCl-MgCl2 20-20-60 14-18-68 0.28 0.50 

LiCl-KCl-MgCl2 9-63-28 5-61-34 0.74 1.13 

KF-KBF4 25-75 13-87 3.68 6.26 

LiCl-KCl-MgCl2 55-40-5 40.5-51.5-8 4.52 7.01 

LiCl-KCl 59.5-40.5 45.5-54.5 5.07 7.71 

NaF-NaBF4 8-92 3-97 4.88 8.55 

NaF-ZrF4 59.5-40.5 27-73 4.02 12.63 

KF-ZrF4 58-42 32.5-67.5 4.85 13.58 

LiF-NaF-KF 46.5-11.5-42 29-12-59 7.82 15.79 
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     The selected materials must be fabricable to the extent required to manufacture the 

system; but there is often a further requirement in the fabricability of the materials since it 

is likely that during service repairs and replacements may be necessary.  

      For higher temperature applications, it is necessary to produce alloys with higher 

intrinsic oxidation resistance. Developments along these lines had begun for quite different 

reasons in the late 1920s, when a series of alloys were developed, primarily for electric 

resistance heater applications, which relied on the growth of a protective Cr2O3 ‘chromia’ 

scale. These alloys were nickel or cobalt based, and when the first gas turbines were 

developed for aviation purposes these were selected for the hot components [25].  

    A National Aeronautic and Space Administration (NASA) study determined that the 

tendency for common alloying constituents to corrode in molten fluoride salts increased in 

the following order: Ni, Co, Fe, Cr, Al. This is supported by Gibb’s free energy of 

formation of various fluorides [26]. 

    The present-day corrosion-resistant nickel alloys, which can be well deformed and 

welded, belong to three main alloying systems: Ni-Mo, Ni-Cr, Ni-Cr-Mo. Simultaneous 

alloying of nickel with chromium and molybdenum makes it possible to create ultrahigh-

resistance alloys in a wide range of corrosive active media of oxidation/reduction character. 

Along with a high corrosion resistance, the alloys show an exceptional resistance to local 

types of corrosion. Besides, these alloys are heat-resistant at high temperatures. They 

combine high strength and plasticity from temperatures below zero to 1200°C. The effect 

of mutual effect of chromium and molybdenum on the corrosion resistance of the alloy is 

determined by the properties of aggressive medium [27].
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     Haynes Alloy N was developed in the 1950s for molten salt service in the Aircraft 

Nuclear Propulsion program. Conventional high temperature alloys containing about 20% 

chromium proved susceptible to corrosion by the proposed molten salt heat transfer 

medium. It was successfully used in the ORNL Molten Salt Reactor Experiment in the 

1960s. Some variations of Alloy N, for example, adding titanium, (McCoy, et al., 1970) 

were developed for easier weldability and better performance in the high radiation 

environments of reactors [28].  

     The primary materials used while investigating corrosion in high temperature CSP 

applications are: Haynes-230, Incoloy 800H, and Haynes NS 163. These alloys were 

chosen over continued testing of different alloys because their mechanical properties are 

much more suitable to sustained high temperature operation. Table 2.3 shows the 

compositions of these different alloys. 

Table 2.3. Compositions of super-alloys. 

Alloy (wt%) Cr Mo W Al Ti Fe C Co Ni Mn V Si 

Incoloy 800H 20.82 - - 0.54 0.52 46.3 0.07 0.04 30.69 0.49 - 0.33 

Haynes 230 22.08 1.23 14.17 0.37 0.01 1.02 0.10 0.21 59.98 0.52 - 0.31 

Haynes NS 163 27.71 0.27 - 0.17 1.33 21.24 0.092 40.66 8.06 0.22 0.05 0.20 

 

      As it is shown in Table 2.3 these super-alloys have a large Al and Cr component to aid 

in the prevention of high temperature oxidation. As discussed earlier both Al and Cr are 

soluble in molten halide salts. 
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2.4  Corrosion of Super-alloys in Molten Salt 

     Compatibility of molten salts with structural alloys centers on the potential for oxidation 

of the structural metal from the elemental state to the corresponding fluorides or chlorides 

with corresponding reduction of the oxidizing agent. Electrochemically, the molten 

salt/metal surface interface is very similar to the aqueous solution/metal surface interface. 

Many of the principles that apply to aqueous corrosion also apply to molten salt corrosion 

such as anodic reactions leading to metal dissolution and cathodic reduction of an oxidant 

[22]. The laws of electrochemistry and mechanisms of corrosion are comparable for 

aqueous solutions and molten salts. According to Joseph R. Davis [29] the most common 

mechanism is the oxidation of the metal to ions, similar to aqueous corrosion. For this 

reason, molten salt corrosion has been identified as an intermediate from of corrosion 

between molten metals and aqueous corrosion.  

     The corrosion of metals in molten salt can be well explained by a combination of anodic 

dissolution of metal (𝑖𝑎) and cathodic reduction of oxidants (𝑖𝑐) under a mixed potential as 

well as in aqueous solution. The polarization curve is schematically illustrated in Figure 

2.1. The partial anodic current 𝑖𝑎 and cathodic current 𝑖𝑐 correspond to the metal 

dissolution and the reduction of oxidants respectively in corrosion processes. They are 

represented by broken curves in Figure 2.1.  The rates of anodic reaction and cathodic 

reaction must become equal at a corrosion potential 𝐸𝑐𝑜𝑟𝑟. That is to say, the partial anodic 

current and the partial cathodic current become equal in magnitude and opposite in 

direction. And the value is designated the corrosion current, 𝑖𝑐𝑜𝑟𝑟:  

𝑖𝑎 = 𝑖𝑐 = 𝑖𝑐𝑜𝑟𝑟 2-1 
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      Generally, the anodic reaction of corrosion in a molten salt corresponds to the 

dissolution of metals followed by the formation of metal oxides or salt films in the same 

way in aqueous solution. On the contrary, the cathodic reaction of corrosion differs with 

each molten salt and is much more complicated than the aqueous solution system [30].      

The oxidation-reduction (corrosion) can occur by several processes in molten salt, 

including: Uniform surface corrosion, differential solubility due to thermal gradients, and 

galvanic corrosion.  

     Intrinsic corrosion (uniform surface corrosion) with molten salt as the reactant; this 

mechanism pertains primarily to nitrates and nitrites, not to fluorides or chlorides [29]. 

According Ozeryanaya [31] the oxidation of metals by molten chlorides is an 

electrochemical process of ion exchange between the metal and the salt: 

𝑀 → 𝑀𝑛+ + 𝑛𝑒− 

𝑜𝑥 + 𝑛𝑒− →  𝑟𝑒𝑑 

2-2 

2-3 

     These reactions take under conditions close to equilibrium with respect to the salt 

adjacent to the electrode. Even in the absence of oxidizing contaminants (oxygen, water, 

etc.) the salt cations which can be reduced to the elemental state, or to a lower state, can 

act as metal-depolarizers. 

     Corrosion by oxidizing contaminants in the molten salts (such as HF, HCl, H2O), 

residual oxides of metals, or easily reducible ions, especially some polyvalent metal ions. 

Impurities in the melt or in the gas phase control the corrosion/oxidation potential of the 

melt, increase the anodic reaction rate, or change the acidic or basic nature of the melt.  
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Figure 2.1 Schematic polarization curves for the metallic corrosion system. 𝑖𝑎 and 𝑖𝑐 

indicate the partial anodic and cathodic currents respectively [30].  

 

     Differential solubility due to thermal gradients (between hot and cold zones) in the 

molten salt system with formation of a metal ion concentration cell that drives corrosion. 

Thermal gradient in the melt can cause dissolution of metal at hot spots and metal 

deposition at cooler spots. The result is very similar to aqueous galvanic corrosion [29].  

     Galvanic corrosion, wherein alloys with differing electromotive potentials are 

maintained in electrical contact by the molten salt, is driving the oxidation of the anodic 

material. According to Ozeryanaya [31] at high temperatures, not only the salt components 

but also the container material can act as metal oxidizers. He showed the formation of metal 

alloys through molten salts goes in a strictly defined direction: the more chemically active 

metal M1 (electronegative) corrodes in the molten bath: 

M1  →  M1
m+ + me 2-4 

The low-oxidizing-level ions M1
m+ of that metal transfer by convection towards the more 

electropositive metal M2. On the surface of that metal they disproportionate: 
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                                        nM1
m+ ↔ (n − m)M1 + m M1

n+            at n >  m 2-5 

The atoms of the active metal M1 formed in this way produce an alloy M1-M2 while the 

M1
n+ ions, reaching the surface of M1, accelerate its corrosion: 

(n − m)M1 + m M1
n+ ↔ n M1

m+ 2-6 

     For instance, the corrosion rate of a Cr specimen in molten NaCl at 900°C increases 30 

times if an alundum crucible (inert with respect to the salt) is replaced by an iron crucible. 

In the latter case Cr corrodes as: 

Cr → Cr2+ + 2𝑒− 2-7 

while on the crucible surface the following reaction takes place: 

3Cr2+ ↔ 2 Cr3+ + Cr𝑎𝑙𝑙𝑜𝑦 2-8 

     High temperature corrosion in molten salts often exhibits selective attack and internal 

oxidation. As an example chromium depletion in iron-chromium-nickel alloy systems can 

occur by the formation of a chromium compound at the surface and by the subsequent 

removal of chromium from the matrix, leaving a depleted zone. Thus, the selectivity 

removed species moved out, while vacancies moved inward and eventually form voids. 

The voids tend to form at grain boundaries in most chromium- containing metals [29]. 

Figure 2.2 compares alloys high in nickel and chromium with and without exposure to 

FLiNaK salt, held at 850°C for 500 hours.  The images demonstrate coupons exposed to 

the salt have significant weight loss along grain boundaries. 

     Corrosion of metals in fluoride salts was investigated for MSRs development as early 

as 1950. Various alloys were tested in mixtures of LiF, BeF2, NaF, ZrF4, ThF4, NaBF4, etc., 

up to about 1088 K using static experiments, convection loops and in-pile surveillance 

specimens; nickel alloys appeared to be more suitable than iron steels [32].  
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Figure 2.2 a) 10,000 magnification SEM image of Incoloy 800H held at 850˚C for 500 

hours, no salt exposure, b) 250 magnification of Incoloy 800H held at 850˚C for 500 hours, 

FLiNaK exposure. 

 

 

     In most high temperature environments corrosion can be controlled by one of the 

following mechanisms, (i) by the formation of a protective film, or [33] by the 

establishment of a thermodynamic equilibrium between the material and the environment 

[4]. Elements such as Cr, Al, and Si are added to alloys to promote the formation of self-

healing protective oxide films that act as diffusion barriers and prevent further rapid 

oxidation in oxidizing environments such as air. Prevention of hot corrosion (sulfidation 

and oxidation from molten salt deposits left from fuel impurities) in fossil fueled boilers 

and turbines also rely on passive films of Cr and Al oxides present at the alloy surface [32]. 

Additionally, chemical additions to the fuel aid in removal corrosive salt slags [32]. Gas 

turbines and boilers that burn fossil fuels use these corrosion prevention methods 

extensively. Molten fluoride salt corrosion of most high temperature alloys however, is 

fundamentally different from air oxidation and hot corrosion [6]. Unlike conventional 

air/aqueous oxidation, the protective oxide films are soluble in molten fluoride salts or 

otherwise unprotective [15]. The corrosion rate therefore depends on the thermodynamic 

driving force and the kinetics of the various corrosion reactions [15]. In general, there are 
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three driving forces for corrosion in molten fluorides: impurities, temperature gradients, 

and activity gradients [34]. 

     Several high temperature Fe-Ni-Cr and Ni-Cr alloys: Hastelloy-N, Hastelloy-X, 

Haynes-230, Inconel-617, and Incoloy 800H, and a C/SiSiC ceramic were exposed to 

molten FLiNaK with the goal of understanding the corrosion mechanisms and ranking 

these materials for their suitability for molten fluoride salt heat exchanger and thermal 

storage applications. The tests were performed at 850°C for 500 h in sealed graphite 

crucibles under an argon cover gas. Corrosion was noted to occur predominantly from 

dealloying of Cr from the alloys, an effect that was particularly pronounced at the grain 

boundaries [34].  

     Inconel alloy 600 and certain stainless steels become magnetic after exposure to molten 

fluoride salt. This magnetism is caused by the selective removal of the chromium and the 

formation of a magnetic iron-nickel alloy covering the surface.  

Molten salts consisting of chlorides are important but they have been studied less than 

fluoride system. In general chloride salts attack steels very rapidly, with preferential attack 

of the carbides. In chloride salts no protective oxide scale is formed on the nickel base 

alloys. The attack of metal surfaces in pure sodium chloride has been observed at 

temperatures above 600 °C.  

     In most cases with iron-nickel-chromium alloys, the corrosion takes the form of 

intergranular attack. An increase of chromium in the alloy from 10% to 30% increases the 

corrosion rate by a factor of seven. Thus, the intergranular attack is probably selective with 

respect to chromium. The chromium removal begins at the grain boundary and continues 
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with diffusion of chromium from within the grain to the boundary layer, gradually 

enlarging the cavity in the metal. The gross corrosive attack is probably caused by the free 

chlorine, which is highly oxidizing material, attacking the highly active structure-sensitive 

sites, such as dislocations and grain boundaries. Figure 2.3 shows an example of 

intergranular corrosion of Ni-Cr-Fe alloy by molten chloride salt after 6 months at 870°C 

[29]. 

 

 

 

 

 

 

Figure 2.3 An example of intergranular corrosion of Ni-Cr-Fe alloy by molten chloride salt 

after 6 months at 870°C [29]. 

 

 

 

2.5  Cathodic Protection  

     It is well known that cathodic protection (CP) can inhibit metal corrosion [35, 36]. 

Among the various corrosion control methods available, cathodic protection is a widely 

used technique adopted to control the corrosion of the alloy by effecting a change in 

potential from the natural corrosion potential (𝐸𝑐𝑜𝑟𝑟) to a protective potential in the 

immunity region. In principle, it can reduce or prevent the corrosion of any metal or alloy 
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exposed to any electrolyte. Corrosion can be reduced to virtually zero, and a properly 

maintained system will provide protection indefinitely. The first application of CP can be 

traced back to 1824, when Sir Humphrey Davy, in a project financed by the British Navy, 

succeeded in protecting copper sheathing against corrosion from seawater by the use of 

iron anodes [37]. CP reduces the corrosion rate by cathodic polarization of a corroding 

metal surface. Cathodic polarization reduces the rate of the half-cell reaction with an excess 

of electrons. Metal structure can be cathodically protected by connection to a second metal, 

called a sacrificial anode, which has a more active corrosion potential. The noblest structure 

in this galvanic couple is cathodically polarized, while the active metal is anodically 

dissolved. Magnesium, zinc and aluminum sacrificial anodes, provide long-term cathodic 

protection [38]. Matson et.al [39] developed the experiments to determine the feasibility of 

using cathodic protection to reduce the attack in the fluoride volatility process for recovery 

of nuclear fuel at 650 °C. Their results show that CP would reduce the corrosion of 

submerged Inor-8 components in fused fluoride salt systems by factor of 10. For the KCl-

MgCl2 molten salt system, metallic Mg was identified as a potential corrosion inhibitor 

[40]. As it is the most electrochemically active metal, which corrodes so readily in some 

environments that Mg and Mg alloys are purposely utilized as sacrificial anodes in 

engineering applications [41]. Figure 2.4 shows the electrochemical equilibrium potential 

for Mg going to MgCl2 and compares that to the potentials for other alloy components 

going to their molten chlorides. This shows that the equilibrium potential is well below the 

equilibrium potentials of the Cr that is selectively oxidized. 



 

28 

 

 

Figure 2.4 Electrochemical potential for alloy components and Mg corrosion inhibitor [40]. 

 

2.6 Modeling of High Temperature Corrosion 

     Corrosion predictive models are a very useful tool that can be used to determine 

corrosion allowances, make predictions of facilities remaining life, and provide guidance 

in corrosion management. For high temperature molten salt systems, it has been found that 

Cr will be dealloyed primarily in high temperature regions where selective attack results in 

the formation of voids [42]. If the chromium content in the depleted-zone is lower than a 

critical level, it is then vulnerable to environmental corrosion, leading to inter-granular 

attack [43], or intergranular stress corrosion cracking (IGSCC) [44]. For these reasons, 

many studies have been devoted to correlating IGSCC to grain boundary characteristics 

and to a quantitative evaluation of the dechromised zones by experimental analysis and 

empirical or analytical computer modelling [44-46]. Thrvaldsson et al. [45] used the error 

function solution of Fick’s second law for Cr diffusion, for Cr depleted zones adjacent to 

the grain boundaries of stainless steel. They used the error function solution, to give a good 
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approximation of the depleted zone morphology in the early stages of aging. A three 

dimensional (3-D) modeling technique has been also developed to predict the Cr depletion 

from grain boundaries in a Ni-Cr-Fe alloy (Inconel 690) [44]. In Anderko et al. [46] a grain 

boundary microchemistry model has been developed that calculate the chromium and 

molybdenum depletion profiles in the vicinity of grain boundaries. Their model could relate 

the repassivation potential to the microchemistry and environmental conditions. The 

literature models have been successful in predicting the Cr depletion profiles. However, 

the corrosion model developed for nickel-based alloys in molten salts that considers the 

fluid flows in the non-isothermal condition of CSP plants has not been fully defined. A 

corrosion model reliably simulating the corrosion processes under realistic CSP plant 

conditions can help identify critical corrosion parameters that can lead to improved 

material durability. Combined CFD and electrochemical analysis of CSP plant heat transfer 

systems can lead to predictions and insights on the interplay of thermal and concentration 

gradients under convection. The coupling of the corrosion model with CFD can allow 

predictions of local corrosion rates as functions of heat and mass transport in the local 

environment of the heat transfer systems. 
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CHAPTER 3. MULTIDIMENSIONAL MODELING OF 

NICKEL ALLOY CORROSION INSIDE HIGH 

TEMPERATURE MOLTEN SALT SYSTEMS 

 

     One challenge with concentrated solar power (CSP) systems is the potential corrosion 

of the alloys in the receivers and heat exchangers at high-temperature (700-1000 °C), which 

leads to a reduction of heat transfer efficiency and influences the systems durability. In this 

work, a corrosion model has been developed to predict the rates and mechanisms for 

corrosion of a nickel-based alloy that is in contact with a molten salt heat transfer system. 

In addition to accounting for heat and mass transfer effects on the corrosion, the model 

takes into account the electrochemical kinetics. Coupled with computational fluid 

dynamics (CFD), the local electrochemical environment and corrosion rates in a high 

temperature molten salt system can be predicted. The kinetic and heat and mass transfer 

parameters used in the model are based on experimental studies conducted in a 

thermosiphon.  The immersion cell was designed to expose coupons to the molten salt at 

isothermal or non-isothermal conditions between 700-1000 °C.  The model can predict the 

effect of thermal gradients between the top and the bottom of the reactor which induce 

natural convection of the molten salt. The model has been validated against experimental 

results at different isothermal and non-isothermal conditions and good agreement has been 

achieved between the model predictions of the corrosion rates and corrosion potentials with 

the experimental observations.
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3.1 Introduction 

     Concentrated solar power (CSP) is a promising technology for large-scale, dispatchable 

renewable electricity generation. These systems provide an environmentally-friendly 

source of energy, producing almost no pollution and requiring only sunlight and occasional 

maintenance once built. Molten salts have been proposed for use with high-temperature 

Brayton and superheated Rankine cycles in some of these systems. These molten salts are 

usually molten halides above ~550 °C due to their relatively low melting points, very high 

boiling points, and good heat transfer properties [47, 48]. Superalloys have been developed 

that are able to withstand high temperatures (700-1000 °C) because of properties such as: 

high strength, good oxidation resistance on the air side, and creep-rupture resistance. 

However, a drawback with using high-temperature molten halide salts is the potential 

material degradation if specific alloys/salt systems are paired together [49]. Decreasing 

corrosion of the alloys where they are in contact with the molten salt will lower system 

maintenance costs due to less frequent component failures and replacement. The corrosion 

management strategies employed with high-temperature halide salts are often drastically 

different compared to those of lower temperature nitrate salts that have well-known oxide 

passivation layers for corrosion prevention. Activity gradient-driven mass transfer and 

thermal gradient-driven mass transfer are often dominant in many chloride and fluoride 

salt systems, which are among the most promising high operating temperature heat transfer 

fluids [50]. A number of experimental studies on the corrosion behavior of nickel-based 

alloys in molten halides have been performed at high temperatures [13, 26, 51-55]. Several 

different literatures [13, 26, 34, 51-56] have shown that the corrosion in molten salts mainly 

occurs through the dissolution of alloying elements into the melt. Olson et al. [34] found 
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that corrosion mainly occurred at the grain boundaries of nickel-based alloys and the 

corrosion rate were dependent on the initial Cr-content of these alloys. In another work 

Olson et al. [51] described the effects of crucible material choice on nickel-based alloy 

corrosion rates in immersion tests in high-temperature molten salt systems. Their 

experimental work demonstrated that graphite and nickel crucibles can promote the 

dissolution of Cr from nickel-based alloys, while the pyrolytic boron nitride (PyBN) 

crucible had almost negligible interaction with the alloys. Ludwig et al. [56] measured the 

dissolved Cr concentration in the high-temperature molten salt system exposed to Cr 

containing structural materials. Their results showed that there is a linear correlation 

between the integrated currents from the anodic curve and the Cr content of the salt. The 

work by Wang et al [53] showed the galvanic corrosion behavior of pure metals in high-

temperature molten salt systems. Several studies have also demonstrated that the corrosion 

behaviors are highly affected by the presence of impurities and humidity in molten salts 

[13].  

     Some studies also focused on the modeling of the chromium depletion of nickel-based 

alloys from grain boundaries [45]. Thrvaldsson et al. [45] used the error function solution 

of Fick’s second law for Cr diffusion, within Cr-depleted zones adjacent to the grain 

boundaries of stainless steel. They used the error function solution, to give a good 

approximation of the depleted zone morphology in the early stages of aging. A three 

dimensional (3D) modeling technique has also been developed to predict the Cr depletion 

from grain boundaries in a Ni-Cr-Fe alloy (Inconel 690) [44]. However, the corrosion 

model developed for nickel-based alloys in molten salts, which considers the fluid flows 

in the non-isothermal condition of CSP plants has not been fully defined. A corrosion 
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model reliably simulating the corrosion processes under realistic CSP plant conditions can 

help identify critical corrosion parameters that can lead to improved material durability. 

Combined CFD and electrochemical analysis of CSP plant heat transfer systems can lead 

to predictions and insights on the interplay of thermal and concentration gradients under 

convection. The coupling of the corrosion model with CFD can allow predictions of local 

corrosion rates as functions of heat and mass transport in the local environment of the heat 

transfer systems. In our previous work [57] a high temperature corrosion model was 

developed that accounts for the impact of thermal gradients and fluid flow on the corrosion 

rate for the selective oxidation of chromium. Dimensionless parameters were utilized in 

that model to characterize the heat and mass transfer in the system. Dimensionless analyses 

of Sherwood number led to prediction of the limiting currents (i.e., corrosion rates) 

assuming zero surface concentration of chromium. The model could predict the average 

corrosion rate, although it only considered the effect of mass transfer and could not evaluate 

the local electrochemical environment.  

      In order to understand the corrosion phenomena in CSP plants, it is important to 

determine not only the average corrosion rate but also the distribution of the corrosion at 

the surface of the alloys that are used in CSP plants.  As evidenced by recent experiments, 

corrosion happens in a layer of finite thickness, possibly microns to hundreds of microns 

thick at the surface of the alloys (i.e. the studies by the National Aeronautics and Space 

Administration (NASA) [58] showed that  the depth of reaction can change from 8 µm to 

270 µm for different alloys). The effect of critical parameters like the diffusion of metal 

cations in this layer is critical and it cannot be fully understood with only experimentation. 

A modeling approach can not only help to calculate the uniformity of the corrosion at the 
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surface of the alloys but can also help to identify the correlation between the critical 

corrosion parameters and the corrosion rate at the high-temperature conditions of CSP 

plants. This paper develops a high-temperature corrosion model that couples 

electrochemical kinetics with heat and mass transfer. A CFD model is used to calculate the 

temperature gradient and fluid flow, then, the corrosion potential and corrosion rate are 

calculated by adding user defined subroutines in the system to account the electrochemistry 

of the reactions. The corrosion mechanisms of KCl-MgCl2 salt and Haynes 230 alloy were 

considered which are of interest in CSP plants. The KCl-MgCl2 salt used in this work is 

composed of 32 mol% MgCl2 and 68 mol% KCl.  The main compositions of Haynes 230 

are Ni (59.98 wt%) and Cr (22.08 wt%). The kinetic, heat and mass transfer parameters 

used in the model are based on experimental coupon studies conducted between 700-

1000°C within KCl-MgCl2 molten salt in crucibles and thermosiphon that exposed coupons 

to the isothermal and non-isothermal conditions, respectively [57]. This corrosion model 

coupled with CFD provides enhanced evaluations of corrosion as a function of heat and 

mass transport to the local electrochemical environment in the heat transfer systems. 

 

3.2 Experimental Procedures 

     Since the experimental procedure has been reported in detail in Appendix A, they will 

only be briefly discussed here. A thermosiphon was designed to test the exposure of metal 

coupons to both the isothermal and the non-isothermal conditions. There were three 

isothermal cases in which the temperature was kept constant in the system at 750, 850, and 

950 °C. Due to the constant temperature, there was no fluid flow in the system. There were 

also two non-isothermal conditions where there were temperature gradients inside the 
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thermosiphon (i.e., non-isothermal conditions with temperature gradients of 600-850 °C 

and 800-950 °C around the coupons). In these conditions, the fluid flow circulated by 

natural convection due to changes in the molten salt properties between the top and bottom 

of the thermosiphon. Figure 3.1 shows a sketch of the thermosiphon used for corrosion 

measurements. The thermosiphon had four coupons placed in both the bottom and the top 

that were called the hot and cold zones respectively for the non-isothermal conditions. They 

are also shown in Figure 3.1.  For the non-isothermal conditions, hot and cold zones were 

attained by inserting the bottom of the thermosiphon into a furnace, with the top either in 

an insulated region or partially out of the furnace. After the entire salt media was added to 

the thermosiphon, the thermosiphon was brought to the final temperature and the 

experiment began. At the end of the exposure period, the reactor heating was turned off 

and the contents were allowed to cool to room temperature. Afterwards, the samples were 

broken out of the condensed salt media and cleaned for analysis. A sample of the salt was 

saved as well for analysis by using inductively coupled plasma atomic emission 

spectroscopy (ICP-AES) to examine trace elemental impurities. The primary post-

experimental measurements were the mass loss and change in physical dimensions using 

the analytical balance and caliper measurements, respectively. These measurements were 

made using the analytical balance and caliper measurements, respectively. 

 

3.3 Model Development 

3.3.1 Model Geometry 

     The model geometry was based on the thermosiphon that was designed to test the effect 

of exposure of metal coupons to both the isothermal and the non-isothermal conditions 
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(i.e., Experimental Procedures). Figure 3.2 shows the model geometry and computational 

mesh of the thermosiphon that was created by CATIA® and HyperMesh®, respectively to 

represent the experimental system. The cylindrical geometry and symmetry in the 

thermosiphon design allows for simplification of the computational domain as shown in 

Figure 3.2. Symmetric boundary conditions were applied to a 90° section of the model for 

the CFD study. The thermosiphon consists of the Ni crucible and a Ni crucible insert, the 

Haynes 230 coupons, which are located at the top and bottom of the thermosiphon, and 

eutectic KCl-MgCl2.  

 

 

Figure 3.1 Thermosiphon reactor for non-isothermal corrosion experiments. Assembled 

reactor shown within well of furnace (left), reactor showing thermocouple locations for 

thermal profile experiments (center), and internal corrosion vessel shown with sample 

locations in upper cold zone and lower hot zone (right) [57]. 
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Figure 3.2 The model geometry of the thermosiphon consists of a Ni crucible, a Ni crucible 

insert, coupons and the salt [57]. 

 

     Table 3.1 shows the KCl-MgCl2 properties used for the model predictions.  The 

temperature boundary conditions at the surface of the thermosiphon were applied to match 

the formerly-used experimental measurements for non-isothermal conditions. Equations 3-

1a and 3-1b calculate the temperature boundary conditions as a function of height for the 

low temperature (600-850 ℃) and high temperature (800-950 ℃) non-isothermal cases, 

respectively.  

𝑇 = 820 + 200 𝑧          0 ≤ 𝑧 ≤ 0.05𝑚 
                869 − 781 𝑧         0.05 ≤ 𝑧 ≤ 0.242𝑚 

    2163 − 6129 𝑧          0.242 ≤ 𝑧 
 

                       

3-1a 

 

𝑇 = 1000(1 − 𝑧)        0 ≤ 𝑧 ≤ 0.05𝑚 
                976 − 521 𝑧         0.05 ≤ 𝑧 ≤ 0.242𝑚 

    2997 − 8871 𝑧          0.242 ≤ 𝑧 

                       

3-1b 
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Table 3.1. Equations for KCl-MgCl2 salt properties as inputs to the model 

Property Unit Equation Temperature 
Remar

k 

Density (kg m-3) ρ = 2000.7 − 0.4571T 1030-1140K 
Ref. 

[57] 

Dynamic 

viscosity 
(kg m-1s-1) μ = 1.46 × 10−4exp (

2230

T
) 873-1073K 

Ref. 

[57] 

Thermal 

conductivity 
(W m-1 K-1) κ = 0.0005T + 32.0

73.7⁄ − 0.34  
Ref. 

[57] 

Specific heat 

capacity 
(J kg-1  K-1) 1150 

No 

correlation 

Ref. 

[57] 

Vapor 

pressure 
(mmHg) < 2 1173K 

Ref. 

[57] 

Melting point (oC) 435   

Boiling point (oC) >1418   

3.3.2 Governing equations and electrochemical kinetics 

     Figure 3.3 shows the SEM/EDS images of nickel-based alloy (Haynes 230) in contact 

with KCl-MgCl2 salt. EDS results show that the Cr depletion at the surface and along the 

grain boundaries are the most important corrosion phenomena [57]. The electronegative 

metals (i.e., Cr) corrodes into the salt with a low oxidation state (i.e., CrCl2) and can transfer 

to electropositive metals in the container alloys (i.e., Ni) by a simultaneous oxidation 

(CrCl3) and reduction [16] reactions. The following oxidation and reduction reactions of 

Haynes 230 in the KCl-MgCl2 salt are assumed and used in the model:  

          Oxidation reaction: Cr + 2Cl- → CrCl2 + 2e-                                                          3-2 

         Reduction reaction: 2CrCl3 + 2e- → 2CrCl2 + 2Cl-                                                      3-3 

where CrCl3 results from disproportionation reaction of CrCl2 at the Ni crucible: 
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           Oxidation reaction: 2CrCl2 + 2Cl- → 2CrCl3 + 2e-                                                3-4 

            Reduction reaction: Ni + CrCl2 + 2e- → NiCr + 2Cl-                                                  3-5 

      

 

Figure 3.3. EDS X-ray mapping of Cr of Haynes 230 after 100 h exposure in KCl-MgCl2 

at 850 °C [57].  

 

          At high temperatures, not only the salt components but also the container material 

(i.e. Ni crucible in this paper) can act as a metal oxidizers [31], which means that there is a 

galvanic coupling between the Haynes-230 and the Ni crucible. As a result, the 

disproportionation product, Cr3+, can facilitate the oxidation of the structural alloy [53]. 

The presence of Cr2+ and Cr3+ in molten salt are considered as an effect of Reactions 3-4 

and 3-5 at the Ni crucible.  

     Reactions 3-2 and 3-3 can be rewritten as a simplified format of Equations 6 and 7 [53]:  

                      Oxidation reaction: Cr → Cr2+ + 2e-                                                         3-6 

                       Reduction reaction: 2Cr3+ + 2e- → 2Cr2+                                               3-7    

     For the oxidation and reduction reactions (i.e. reactions 3-6 and 3-7), the kinetics for 

anodic and cathodic reactions are described respectively by: 
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                                ia = i0,a

C
Cr2+
∗

C
Cr2+
ref exp [

(1−αa)n1F

RT
(ηa)]                                                  3-8                                

                                       ic =  i0,𝒄

C
Cr3+
∗

C
Cr3+
ref exp [

−αcncF

RT
(ηc)]                                               3-9                                     

                                                        η = E − Eeq                                                            3-10 

where subscripts a and c refer to oxidation and reduction reactions, respectively, i is the 

current density, η is overpotential, E is surface potential, Eeq is equilibrium potential, and 

i0 is exchange current density. C𝑖
∗ is the concentration of species i adjacent to the surface. 

The concentration reaction expressions has been assumed to be first order as the 

experimental results showed a linear increase in the corrosion rate with chromium species 

in the salt.  The equilibrium potentials of the oxidation and reduction reactions are 

determined by Nernst equations: 

                                      Ea
eq

= Ea
0 −

RT

naF
ln(CCr2+)                                           3-11 

                                     Ec
eq

= Ec
0 −

RT

ncF
ln (

C
Cr3+

CCr2+
)                                                 3-12 

where C𝑖 is the concentration of species i in the bulk, and Ea
0 and Ec

0 are the anodic and 

cathodic standard potential vs Li/LiCl, calculated from the standard Gibbs energy of each 

corrosion product. The calculated E0 values which are functions of temperature for 

oxidation and reduction reactions are shown in Table 3.2, respectively [57].  These 

potentials assume all species have an activity of 1 and the potentials are referenced with 

respect to the Li/LiCl reaction (LiCl + e- = Li+ Cl-).  The Li/LiCl reaction was chosen as a 

reference for the molten salt potentials since there is less variation with temperature when 

compared to using the hydrogen electrode.   
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     The corrosion potential is calculated by applying the mixed-potential theory. The 

convention that anodic current densities are positive and cathodic current densities are 

negative has been applied [59].  

                                                        −ic =  ia =  icorr                                                   3-13 

 

Table 3.2. Standard potentials for main corrosion reactions of Haynes 230 in KCl-MgCl2 

as inputs to the model [57]. 

Electrochemical reactions Temperature (K) E (V) vs Li/LiCl 

CrCl2 + 2e- = Cr + 2Cl- T ≤ 900  E0 = −0.0002T + 2.198 

 900 < T ≤ 1150   E0 = −0.0001T + 2.112 

 1150 < T    E0 = −0.0004T + 2.485 

CrCl2 + Cl- = CrCl3 + e- T ≤ 900 E0 = 0.0002T + 2.561 

 850 < T ≤ 1150 E0 = 0.0004T + 2.438 

 1150 < T  E0 = 0.0001T + 2.729 

 

     Once the corrosion potential is obtained by solving Equation 3-13, the corrosion 

current density is also computed.  

     Kinetic parameters were obtained from fitting the values to the polarization data at the 

isothermal conditions (i.e., 750 ℃, 850 ℃, and 950 ℃) under condition that 
𝜀1.5

𝛿
 is small 

(i.e., 0.16 (m-1)) where the kinetic effects are dominant and mass transfer effects can be 

neglected. The parameters then can be used for non-isothermal conditions where both 

kinetic and mass transfer effects are important. Kinetic parameters that were put in to the 

model are listed in Table 3.3 (i.e., the calculations are shown in Appendix B). 
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Table 3.3. Kinetic parameters used for the prediction of Haynes 230 corrosion in KCl-

MgCl2 salt as inputs to the model. 

Electrochemical 

reactions 

Temperature 

T (oC) 
Kinetic parameters 

i0 (A cm-2) αa,c [60] n  

CrCl2 + 2e- = Cr + 2Cl- 
750 

2.9×10-5 0.5 2  

CrCl2 + Cl- = CrCl3 + e- 4.9×10-7 0.5 1  

CrCl2 + 2e- = Cr + 2Cl- 
 

2.3×10-4 0.5 2  
850 

CrCl2 + Cl- = CrCl3 + e-  1.6×10-6 0.5 1  

CrCl2 + 2e- = Cr + 2Cl- 
950 

1.5×10-3 0.5 2  

CrCl2 + Cl- = CrCl3 + e- 4.8×10-6 0.5 1  

 

3.3.3 Transport of ionic species 

     As evidenced by the SEM results and the energy dispersive X-ray spectroscopy (EDS) 

mapping, there is a layer near the surface of the alloy which is hundreds of microns thick 

that participates in the corrosion reaction. Experiments have showed that the selective 

depletion of Cr in this layer forms a porous microstructure that is open to the salt (see 

Figure 3-3). This can be concluded from the X-ray maps of the cross-section of the 

corroded alloy, which indicates a gradient in the metal concentration, showing that the 

metal diffuses out from this layer. The Cr depletion at this layer mostly occurred at the 

grain boundaries of the alloy [57].  The experimental data [57] for Haynes 230 showed a 

64 micron average grain size which is proportional to the 0.1% of the volume fraction. 

From this evidence, the grain boundary layer at the surface of the alloy is assumed to be of 

a constant thickness of δ and acts as a porous layer and diffusion of the ionic species takes 

place in this region.  

     Cr3+, as a result of disproportionation reaction of CrCl2 at the Ni crucible (reactions 3-4 

and 3-5) can diffuse through this porous layer to the surface of the alloy and Cr2+ ions can 
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diffuse back to the salt as products of oxidation\reduction reactions on the surface of the 

alloy (reactions 3-2 and 3-3). Figure 3-4 shows the cross-section of the coupon and the 

region prone to porous layer attack with thickness of δ (yellow region). The part of the 

coupon that was used as a connection to the Ni crucible and a Ni crucible insert was 

neglected to simplify the geometry. The diffusion of different species through this porous 

layer is shown schematically in Figure 3.4 as well. 

 

 

Figure 3.4. The coupon cross section by considering the area of the sample surface that is 

covered by grain boundaries. 

  

   The complete mass and momentum equations (Navier-Stokes flow) and heat equations 

were solved, with the inclusion of the gravity effect (i.e., the details described in our 

previous publication [57]). As a result, the concentrations of species (i.e., Cr3+ and Cr2+) 

inside the salt are attained. Due to the small value of the diffusion coefficient, the 

concentration of species differs significantly from their bulk values at the surface of the 

alloy. In comparison to the bulk of the molten salt where both diffusion and convection are 

important, inside the porous layer, the velocity is small, and the diffusion is of primary 

importance to the transport process. In addition as explained by Newman et al [61] , for the 
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reactions of minor ionic species in the solution containing excess supporting electrolyte, it 

should be permissible to neglect the contribution of ionic migration to the flux of the 

reacting ions. As a result, the potential field equation in this study is neglected  (i.e., the 

amount of Cr2+ and Cr3+ was at most 1000 ppm measured by ICP-AES  which means this 

assumption is reasonable). So for the flux of ionic species i, inside the porous layer we 

have:  

                                                            𝐍𝑖 = −D𝑖
eff[

∂C𝑖

∂x
]cx=0                                        3-14 

where D𝑖
eff is the effective diffusion coefficient of the species i that can be expressed as 

[62]: 

                                                                D𝑖
eff =

εD𝑖

τ
                                                    3-15 

Di is the diffusion coefficient of species i in the salt, and the values of pre-exponential 

factor for Di are listed in Table 3.4 [57]. In this paper the ε (porosity) is defined as the 

volume fraction of grain boundaries which is a function of grain boundary size [63] as 

discussed earlier. In the absence of information about the grain boundaries’ tortuosity, it is 

taken to be inversely proportional to the square root of porosity, in an analogy with the 

theory of porous electrodes [64]. 

                                                              τ = ε−0.5                                                  3-16 

Table 3.4. Pre-exponential factor for the diffusion coefficients of various species as inputs 

to the model: T [=] K 

 Pre-exponential factor (cm2 s-1) 

Cr2+ in KCl-NaCl [57] log D = -2.43 – 2118/T±0.03 

Cr3+ in KCl-NaCl [57] log D = -2.44 – 2294/T±0.03 
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    A single reaction can be written in symbolic form as [65]: 

                                                         n𝑗𝑒
− ↔ ∑ 𝑠𝑖,𝑗𝑆

𝑧𝑖𝑛
𝑖=1                                             3-17 

where si,j is the stoichiometric coefficient and S is the ith species with a charge 𝑧𝑖 and the 

sum is over all the species for a given reaction at one electrode. For any species, the 

influx at the surface can be determined from: 

𝑁𝑖 = − ∑
𝑠𝑖,𝑗𝑖𝑗

𝑛𝑗𝐹

𝑟

𝑗=1

 
   3-18  

  

The flux of ionic species of Cr2+ and Cr3+ at the surface of the alloy can be determined by: 

 

                                                      𝐍Cr2+ =
 ia

naF
−

2 ic

ncF
        3-19 

 

                                                             𝐍Cr3+ =
2 ic

ncF
               3-20 

By considering Equation 3-13 and the equality of na and nc, the equation 3-19 can be 

simplified as: 

𝐍Cr2+ =
3 ia

naF
                  3-21 

3.3.4 Numerical procedure 

     The numerical model is three-dimensional, steady state, and non-isothermal. The 

process of corrosion is in general a time dependent event, however since the time scale of 

the corrosion process is substantially larger than most other transport process, a quasi- 

steady state can be assumed [66]. The coupled heat, mass and momentum transfer of the 

flow inside the thermosiphon was solved by using a commercial CFD code STAR-CD 
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4.18. The detailed equations and boundary conditions have been described in our previous 

publication [57]. The total grid size of this model geometry is 208,033 hybrid grid cells 

consisting of structured and unstructured grids (i.e. Figure 3.2). The equations are solved 

by using the SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm 

and the calculations are carried out with double precision accuracy. The convergence 

criteria for the species transport for all residuals was set for less than 1 × 10−12. In this 

paper, additional models have been developed for solving corrosion rates and corrosion 

potentials at the surface of the coupons (i.e., Equations 3-8 through 3-21). The additional 

models are incorporated via user defined function modules linked to the CFD code.  

3.4 Results and Discussions 

     The local temperature in the thermosiphon is the main factor controlling the corrosion 

rates on the surface of the coupons because it directly influences the transport of chromium 

cations, the properties of the salt, and the kinetic parameters. The temperature boundary 

conditions on the wall surface correspond to the experimental setup parameters (i.e., 

Equations 3-1a and 3-1b) and using these boundary conditions, CFD calculations were 

performed to predict the thermal gradients inside the thermosiphon and at the surfaces of 

the coupons at both the top (cold zone) and the bottom (hot zone). The temperature profile 

calculation is discussed in detail in our previous study and is in good agreement with 

reported experimental data with only 1.0% error [57]. In this paper the calculations are 

carried out in the same temperature ranges of 650–800 ℃ and 800-950 ℃ [57]. Figures 3.5 

(a) and 3.5 (b) show the temperature gradient at the surfaces of the coupons by applying 

Equations 3-1a and 3-1b as boundary conditions. The temperature distribution is fairly 

uniform around the coupons in both temperature ranges (i.e., 650–800 ℃ and 800-950 ℃). 
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Due to the temperature profiles, naturally convective flow occurs inside the thermosiphon 

where the flow moves from the cold zone to the hot zone (bottom) as a downward flow in 

the center tube. The localized regions close to the coupon surfaces have more mixing with 

fewer gradients compared to the side wall regions. In addition to the temperature profile 

Figures 3.5 (a) and 3.5 (b) show the velocity streamlines for temperature ranges of 650–

800 ℃ and 800-950 ℃, respectively. The model predicted a small magnitude of flow 

moving around the coupons which is shown in Figures 3.5 (a) and 3.5 (b). By comparing 

the flow profiles of molten salt for the lower temperature range (650-800 ℃) with those of 

the higher temperature range, one finds that the differences in the flow profiles are caused 

by the variation of density at different points in the thermosiphon.  

     To study the effect of temperature on the corrosion rate, experiments were performed 

for the corrosion rates of Haynes 230 coupons in KCl-MgCl2 for three different isothermal 

conditions and two different non-isothermal conditions with different temperature ranges 

and fluid flow. Table 3.5 shows the different operational conditions in addition to the 

corrosion rate predictions by model. The calculations were carried out in the temperature 

range of 600–950 ℃ for the non-isothermal, and 750 ℃, 850 ℃, and 950 ℃ for the 

isothermal conditions. By comparing the corrosion currents and potentials for different 

isothermal temperatures conditions, it can be concluded that the model shows higher 

corrosion rates and potentials with increasing temperature. Figures 3.6 (a) and 3.6 (b) show 

these effects respectively and compare the model with experimental results. The predicted 

average corrosion currents and corrosion potentials agree reasonably well with 

experimental data by less than 10% difference.  
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     The effect of temperature gradient on the corrosion rate at the surface of the coupons 

for non-isothermal conditions are shown in Figure 3.7. Figures 3.7 (a) and 3.7 (b) show the 

influence of temperature on the corrosion rate occurring at the surface of the coupons for 

the temperature range of 650–800 ℃ and 800-950 ℃ inside the thermosiphon, respectively. 

     The comparison of predicted corrosion current densities for both cold zone and hot zone 

(bottom) inside the non-isothermal thermosiphon shows higher corrosion rates than the 

rates shown in isothermal conditions for similar average reactor temperatures. Therefore, 

thermally driven fluid flow accelerates the corrosion rates. Since the flow velocity governs 

the Cr3+ concentration on the alloy surface, the corrosion rate increases. As expected, the 

corrosion rate is higher in the hot zone of the reactor. Comparisons of the experimental and 

predicted local corrosion rates for Haynes 230 coupons in KCl-MgCl2 for the thermosiphon 

at 800-950 ℃ are shown in Table 3.6. The conditions that are chosen for corrosion rate 

calculations are also listed in Table 3.7.  

     Figure 3.8 shows the effect of the porosity (volume fraction) on the system corrosion 

distribution for the temperature range of 800-950 ℃. Selective depletion of Cr forms a 

porous microstructure layer at the surface of the alloy. The volume fraction of this surface 

for Haynes 230 is around 0.1% [62]. 
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Figure 3.5. Distributions of velocity streamline of the thermosiphon and temperature 

distributions at the surface and around the coupons (a) at 650-800 °C and (b) at 800-950 

°C. 

  

(a) 

(b) 
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Figure 3.6. Prediction of average corrosion rate (current density) (Am-2) (a) and average 

corrosion potential (V) (b) for Haynes 230 coupons for stagnant conditions at three 

different temperature.  

 

 

 

 

 

(a) 

(b) 



 

51 

 

Table 3.5. Comparison of corrosion rates for Haynes 230 in KCl-MgCl2 at different 

operational conditions. 
 

 

 

 

 

 

 

 

 

Table 3.6. Comparison of corrosion rates for Haynes 230 in KCl-MgCl2 with experimental 

data at 800-950 ℃. 
 

 

 

 

 

 

 

Table 3.7. Parameters used for the prediction of Haynes 230 corrosion in KCl-MgCl2 salt 

as inputs to the model for thermosiphon at 650-800 ℃ and 800-950 ℃.  

Parameters  Cold zone Hot zone 

δ (μm) 50 50 

ɛ (%) 0.1 0.5 

YCr3+ 0.001 0.001 

 

Temperature [°C]               

                                                Average (°C) 

Predictions 

𝑖𝑎𝑣𝑔 (A m-2) 

750 750 0.31 

850 850 0.46 

950 950 0.68 

690-800 (Cold zone) 738 1.27 

690-800 (Hot zone) 760 1.34 

800-950 (Cold zone) 908 1.82 

800-950 (Hot zone) 926 2.18 

iavg (A m-2) Cold zone Hot zone 

Model prediction 1.70 2.18 

Experiment 1.82 2.20 

Error% 6.0 1.0 
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Figure 3.7. Prediction of local and average corrosion rate (current density) for Haynes 230 

coupons in KCl-MgCl2 with fluid flows (a)  at 600-850 ℃,  (b) at 800-950 ℃ for both cold 
zone and hot zone.  

 

    As selective depletion of Cr at this layer causes the increase in porosity, three different 

porosities of 0.1, 0.3 and 0.5 percent were chosen for comparison. The results show almost 

uniform distribution of corrosion at the surface of the coupons with slightly higher 

corrosion rates at the edges rather than in the middle part for all cases. This is due to the 

fact that the corrosion rate distribution is influenced by the temperature gradient and fluid 

flow around the coupons. Figure 3.5 shows the temperature distribution is very uniform 

and the flow moving around the coupons has a small magnitude of 10-3 ms-1 [57]. Figure 

(a) (b) 
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3.8 shows that lower porosity, which naturally corresponds to a lower area of the alloy 

exposed to the molten salt, gives a lower corrosion rate. As the pores are interconnected 

and open to the environment, lower porosity hinders diffusion of species toward and away 

from the surface and as a result the corrosion rate is reduced These results show that any 

possible changes in the grain boundary size or morphology that could increase the 

porosities from 0.1 to 0.5 percent could increase the average corrosion rate, by a factor of 

four.  

      Figure 3.9 shows the comparison of four different thicknesses of the porous layer. As 

described earlier, the corrosion happens in a layer of finite thickness at the surface of the 

coupons (i.e., the thickness can be changed from 8 µm to 270 µm for different alloys in 

contact with the molten salt [58]).  In the model described, if the corrosion rate in this 

porous layer is to be calculated, the user has to specify this layer thickness.  The volume 

fraction (porosity) of 0.5 percent was picked for the CFD run.  The results show that the 

corrosion rate is decreased by increasing the thickness of the porous layer. As an example, 

increasing the thickness by 10 times reduces the corrosion rate by 6%.  That is caused by 

the fact that a thicker layer has a higher corrosion resistance as the species should diffuse 

a longer distance to react with the alloy surface. 

     To better understanding of the effect of mass transfer parameters on the corrosion rate 

(i.e, porosity and the thickness of the porous layer), the parameter 
𝜀1.5

𝛿
  has been defined. 

Figure 3.10 shows the effect of this parameter on the corrosion rate. The results show that 

increasing the parameter 
𝜀1.5

𝛿
 from 0.16 (m-1) to 1.77 (m-1) can increase the corrosion rate 

by 10% at both the cold zone and the hot zone. These results showing increasing the 

diffusion of species at the surface of the coupons can accelerate the corrosion rate. 
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Figure 3.8. The comparison of the corrosion rate distribution at cold zone (left side) and 

hot zone (right side) for three different porosities at 800-950 ℃.  
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Figure 3.9. The comparison of the average corrosion rate at the coupon surfaces at both 

hot zone and cold zone for different porous layer thicknesses at 800-950 ℃. 

 

     As reactions 3-4 and 3-5 show, the creation of Cr3+ from the oxidation of Cr2+ creates 

an oxidizing agent that goes back to the alloy surface of the coupon and accelerates the Cr 

dissolution. Figure 3.11 shows the effect of different mass fractions of Cr3+ in the molten 

salt on the corrosion rate of the coupons at both hot and cold zones for the temperature 

range of 800-950 ℃. The corrosion rate is much higher for the case of larger Cr3+ 

concentration. As the concentration gradient of Cr3+ between the salt and the alloy surfaces 

increases, it can force more diffusion of species into the grain boundaries. These results are 

consistent with the experimental results provided by Wang et al. [53] that showed the 

presence of substantial concentrations of Cr3+ in the melt accelerates the dissolution of Cr 

from the alloy, and thus, accelerates corrosion. It is clear that reducing the impurity levels 

is imperative to reducing the corrosion of materials in molten chloride salts, which is 

consistent with the literature [67].  
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Figure 3.10. The comparison of the average corrosion rate at the coupon surfaces at both 

hot zone and cold zone for different 
𝜀1.5

𝛿
 (m-1) at 800-950°C. 

 

 

 

Figure 3.11. The comparison of the average corrosion rate at the coupon surfaces at both 

hot zone and cold zone for different Cr3+ mass fraction at 800-950°C. 
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3.5 Summary 

     A steady state 3D model has been developed which accounts for the corrosion 

mechanisms of nickel-based alloy in KCl-MgCl2 with thermal gradients for concentrated 

solar power (CSP) systems. The model couples electrochemical kinetics with heat and mass 

transfer. It considers the effect of the critical corrosion parameters on the corrosion rate 

(e.g. temperature, grain boundaries properties) and can calculate the distribution of the 

corrosion rates at the surface of the coupons at the high temperature conditions of the CSP. 

The corrosion rates obtained by the model are in good agreement with experimental results 

with less than a 5% difference. The results reveal that temperature has an important effect 

on the corrosion rate of nickel-based alloys in molten salt. For the case with the higher 

temperature range 800-950 ℃, the corrosion rate is almost twice that of the case with the 

low temperature range 650-800 ℃. For all of the cases of non-isothermal conditions similar 

corrosion rates are predicted for both coupons at the hot and cold zones with slightly higher 

corrosion rates in the hot zone, and with slightly higher corrosion rates at the edges of the 

coupons for both cases. It was also shown that the porosity and thickness of the porous 

layer has an effect on the corrosion rate as it can influence the species diffusivity.  Another 

important factor is the concentration of Cr3+, the concentration affects the mass transfer 

rate which can in turn affect the corrosion rate of the system. The model is capable of 

considering the effects of kinetic and mass transfer on the corrosion rate under high-

temperature fluid flow systems. 
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CHAPTER 4. MODELING THE EFFECT OF CATHODIC 

PROTECTION ON HIGH-TEMPERATURE ALLOYS 

INSIDE HIGH TEMPERATURE MOLTEN SALT SYSTEMS 

 

     One way to potentially reduce the costs of concentrated solar power (CSP) systems is 

to operate the central receiver at high temperatures which allow for more efficient 

thermodynamic power conversion cycles. Molten salts are one potential heat transfer fluid 

that can operate efficiently at these temperatures, but their use will introduce other 

technological challenges, such as corrosion reactions.  The corrosion of alloys at high-

temperatures (700-1000°C) in the receivers and heat exchangers cause a reduction in the 

heat transfer efficiency and durability of the alloy. Cathodic protection may mitigate 

corrosion of metal surfaces by shifting the potential of the alloy below its oxidation 

potential. The behavior of molten salt concentrated solar power (CSP) systems under 

cathodic protection can be obtained by developing a 3D model. A corrosion model was 

designed for and benchmarked against a thermosiphon reactor. This thermosiphon reactor 

exposed the alloy coupons to isothermal and non-isothermal conditions expected in 

concentrated solar power (CSP) plants. The model compared the corrosion rates for the 

cases with and without cathodic protection.  

     For the cathodic protection case Magnesium (Mg) was added to the salt which changed 

the potential from the natural corrosion potential (Ecorr) to a protective potential in the 
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immunity region, then the model calculated the corrosion rate at the surface of the coupons. 

Results were in good agreement with experimental values for the runs with and without the 

cathodic protection and at isothermal and non-isothermal conditions with less than 3% 

difference. 

 

4.1 Introduction 

     Concentrated solar power (CSP) plants  are considered one of the best candidates for 

providing  the majority of renewable energy by converting sunlight to heat as an 

intermediate step to generate electricity [68]. In these systems molten salts, specifically 

molten halides, are widely applied as the heat transfer medium due to their good thermal 

conductivity, large specific heat, low melting point, and relatively good chemical inertness 

[47, 48]. However, the molten halide salts are highly corrosive, especially at high 

temperatures (700-1000 °C) [54]. Although super-alloys have been developed for high-

temperature applications, they are not able to meet both the high-temperature strength and 

the high temperature corrosion resistance simultaneously. To increase the lifetime 

operation of the system, it is of utmost importance to prevent the corrosion of the super-

alloys in contact with molten salts. One of the most commonly used methods of retarding 

corrosion and extending the life of the structure is cathodic protection.  

Cathodic protection is a well-known method to prevent the corrosion of the alloy at 

aqueous solution by shifting the potential of the alloy to the least probable range for 

corrosion [69]. However, cathodic protection has rarely been applied at high-temperature 

molten salt systems. The only example thus far has been in the nuclear industry, where 

reactor materials were protected from the attack of fluoride salts. Matson et.al [39]  
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developed the experiments to determine the feasibility of using cathodic protection to 

reduce the attack in the fluoride volatility process for recovery of nuclear fuel at 650 °C. 

Their results show that CP would reduce the corrosion of submerged Inor-8 components in 

fused fluoride salt systems by a factor of 10. Recent studies by Garcia-Diaz et al. [1]  

showed that metallic Mg can use as a corrosion inhibitor for the KCl-MgCl2 molten salt 

systems at high operational temperatures (700-1000 °C).  

          As evidenced by recent experimental studies [40, 53, 54], for super-alloys the 

principle corrosion mechanism at high-temperature molten salt systems is the selective 

oxidation of Cr that occurs preferentially at the surface of the alloys along the grain 

boundaries.. Adding the cathodic species to the system such as Mg can hold the redox 

potential of the salt at a point where Cr dissolution from super-alloys into the molten salt 

and transport of Cr from the alloys is suppressed [1]. This would result in the corrosion 

rate distribution at the surface of the alloys be a function of the corrosion environment, 

ionic diffusivity in the salt, and the reaction kinetics at the metal-salt interfaces. In addition, 

the effect of environmental conditions on these processes should be taken into account, 

including the temperature gradient and fluid flow.  

     A modeling approach can help to identify the relationship between these processes and 

the performance of cathodic protection in molten salt systems. Numerical techniques that 

incorporate the nonlinear boundary conditions can describe the reaction kinetics and 

provide the reliable estimation of corrosion rate at the surface of the alloys under cathodic 

protection.  In this study, a corrosion model was developed that considers the cathodic 

protection of super-alloys Haynes-230, Haynes NS-163, and Incoloy 800H under the 

realistic conditions of CSP plants. The model is based on  experimental coupon studies 
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which were conducted between 700-1000°C within KCl-MgCl2 molten salt in a 

thermosiphon reactor that was designed previously [57, 70] to allow exposure of the 

coupons to the isothermal and non-isothermal conditions. The model was developed to 

predict the corrosion rates associated with cathodic protection in non-isothermal systems 

with fluid flow and heat transfer, which is coupled to a computational fluid dynamic (CFD) 

component to calculate the temperature gradient and fluid flow. The Mg cathodic 

protection of super-alloys in KCl-MgCl2 salt was considered because of their interest in 

use in CSP plants [1].  It is expected from the thermodynamic equilibrium potentials of the 

metals that the corrosion potential of the samples in contact with Mg will have a lower 

corrosion potential than samples that have no contact with Mg. This indicates that the Mg 

is working to decrease the corrosion potential of the sample and, as a result, the corrosion 

current. The polarization method was used to determine the corrosion potential and the 

corrosion current. The rate of Mg consumption, the corrosion potential, and the corrosion 

current are dependent on several studied variables such as temperature, fluid flow, Mg 

concentration, and the alloy’s grain boundaries, which are all examined in detail in this 

work.   

 

4.2 Model Development 

4.2.1 Model Geometry 

     Figure 4.1 shows a sketch of a thermosiphon reactor that was designed for the 

experimental set up.  Due to the temperature gradient in the system the upper and lower 

portions of the thermosiphon are designated as the cold and hot zone, respectively. The 

thermosiphon contains four coupons at the bottom and four coupons at the top. The 
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temperature boundary conditions were put into the model according to the temperature 

gradients were attained by inserting the thermosiphon into a furnace, as described before 

[57, 71]. The geometry mesh that represents the experimental system of the thermosiphon 

was created by using CATIA® and HyperMesh® software. Since the model geometry and 

computational mesh has been reported in detail in our previous publication [57], they will 

only be briefly discussed here. The computational domain of the thermosiphon is shown in 

Figure 4.1 (a) which is composed of:  Ni crucible, Ni crucible insert, super-alloys coupons 

(which are located at the top and bottom of the thermosiphon, and eutectic KCl-MgCl2 salt. 

The cross section of the coupon is shown in Figure 4.1 (b). Figure 4.1 (c) shows the thin 

layer at the surface of the coupon where the electrochemical reactions happen. The 

cylindrical geometry and symmetry in the thermosiphon design allows simplification of 

the computational domain when performing CFD. Symmetric boundary conditions were 

applied to a 90° section of the model for the CFD study. The total grid size of this model 

geometry is composed of 208,033 hybrid grid cells made up of structured and unstructured 

grids. For cathodic protection case, different amounts of Mg from 0 to 1.15 mol% 

considered in KCl-MgCl2 as it has a non-negligible solubility in KCl-MgCl2. Table 3.1 is 

showing the KCl-MgCl2 properties that were used for the model prediction. 

 

4.2.2 Governing Equations 

     Our previous study [57] showed that  immersing  Haynes 230 in KCl-MgCl2 salt for 

100 hours at 850℃ had caused Cr depletion at the surface and along the grain boundaries.   

Cr is selectively attacked in alloys immersed in molten chlorides by oxidation of Cr at the 

alloy surface, followed by dissolution of the chloride from the alloy surface into the salt. 

The electrochemical oxidation and reduction reactions for Haynes 230, Haynes NS-163, 
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and Incoloy 800H in the KCl-MgCl2 salt are assumed to be a chromium oxidation reaction 

and CrCl3 reduction reaction as explained in detail before [57].  

                Oxidation reaction: Cr + 2Cl- → CrCl2 + 2e-                                                  4-1 

               Reduction reaction: 2CrCl3 + 2e- → 2CrCl2 + 2Cl-                                           4-2 

     By introducing the magnesium (Mg) species in the salt solution in this work, an 

undesirable reaction of oxidation of chromium (i.e. reaction 4-1) is replaced by a more 

desirable reaction of oxidation of Mg (i.e. reaction 4-3). As by using Mg, all other metals 

that are more noble (higher reduction potential than Mg) will tend to stay in the metallic 

state until all Mg is oxidized. The new oxidation and reduction reaction that were 

introduced to the system are: 

Oxidation reaction: Mg + 2Cl- → MgCl2 + 2e-                                                    4-3 

            Reduction reaction: 2CrCl3+ 2e- → 2CrCl2 + 2Cl-                                               4-4 

 

 

Figure 4.1. (a) The model geometry of the thermosiphon consists of a Ni crucible, a Ni 

crucible insert (blue), coupons (green) and the molten salt , (b) The coupon cross section 

(c) considering the area of the sample surface that is considered as porous layer  [57]. 

 

Cold zone 

Hot zone 

(a) (b) (c) 
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     It is expected from the thermodynamic equilibrium potentials of the metals that the 

corrosion potential of samples in contact with Mg will have a lower corrosion potential 

than the samples that have no contact with Mg. This indicates that the Mg is working to 

decrease the corrosion potential of the sample and as a result the corrosion current [40]. 

The polarization method was used to determine the corrosion potential and corrosion 

current without Mg and with Mg. An Evans diagram (Figure 4.2) was constructed for 

Haynes 230 in KCl-MgCl2 with and without Mg as an example by using such parameters 

as Tafel slopes, exchange current densities, and equilibrium potentials to describe the 

electrochemical corrosion system virtually. The parameters that were used are shown in 

Table 4.1.  

    The construction of the Evans diagram allows for predictions and explanations of the 

effects that were observed experimentally. Figure 4.2 shows that for Cr oxidation reaction 

and CrCl3 reduction reaction of Haynes 230 in KCl-MgCl2 (i.e., without Mg), the corrosion 

current, icorr
′′ , and the corrosion potential, Ecorr

′′  occur at the point of intersection of the 

oxidation  and reduction curve (dotted line).   

    Adding Mg to the system caused the cathodic polarization of the structure, thereby 

controlling the kinetics of the reactions occurring on the metal-electrolyte interface. As 

shown in Figure 4.2, polarization of the oxidation reaction in a negative direction from the 

corrosion potential decreases the corrosion rate. Polarizing the system from Ecorr
′′  from 

reactions 4-1 and 4-2 to the sacrificial potential of  Ecorr from reactions 4-3 and 4-4 causes 

the corrosion current density to decrease from icorr
′′  from reactions 4-1 and 4-2 to a new 

smaller value of current density, icorr. This Evans diagram applied for all of the cells at the 

surface of the coupons (i.e., Figure 4.1(b)).  
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Figure 4.2. Evans diagram-principle of cathodic protection. 

Table 4.1. Kinetic parameters used for the prediction of Haynes 230 corrosion in KCl-

MgCl2 salt as inputs to the model. 

Electrochemical reactions T (oC) 

Kinetic parameters 

              Haynes 230     Haynes NS-163  Incoloy 800H 

αa,c,a’,c’ 

[60] 
n i0 (A/cm2) i0 (A/cm2) i0 (A/cm2) 

CrCl2 + 2e- = Cr + 2Cl- 

850 

0.5 2 3.5×10-4 5.2×10-4 4.9×10-4 

CrCl2 + Cl- = CrCl3 + e- 0.5 1 1.6×10-6 1.8×10-6 2.5×10-6 

MgCl2 + 2e- = Mg + 2Cl- 0.5 2 5.5×10-6 1.5×10-6 8.5×10-7 

      

     Introducing Mg to the system caused the Mg to oxidize to Mg2+ by reducing CrCl3 to 

CrCl2 (i.e., reactions 4-3 and 4-4) according to the experimental data. According to Butler-

Volmer kinetics, in the present model, kinetics of these oxidation and reduction reactions 

(i.e. reactions 4-3 and 4-4) can be estimated from: 

 ia =  i0,a

CMg
∗

CMg
ref

exp [
(1 − αa)naF

RT
(ηa)] 

4-5 
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 ic = − i0,c

CCr3+
∗

CCr3+
ref

exp [
−αcncF

RT
(ηc)] 

   4-6 

η = Eeq − E 4-7 

where subscripts a and c refer to reactions 4-3 and 4-4 respectively, i is the current density, 

η is overpotential, E is surface potential, Eeq is equilibrium potential, and i0 is the exchange 

current density. C𝑖
∗ is the concentration of species i adjacent to the surface. The equilibrium 

potentials of oxidation and reduction reactions are determined by the Nernst equation: 

Ea
eq

= Ea
0 −

RT

naF
ln (

CMg2+

CMg
) 

4-8 

Ec
eq

= Ec
0 −

RT

ncF
ln (

CCr3+

CCr2+
) 

4-9 

where C𝑖 is the concentration of species i in the bulk, and Ea
0 and Ec

0 are the oxidation and 

reduction standard potentials calculated from the standard Gibbs energy of each corrosion 

product. The calculated E0 values which are functions of temperature for oxidation and 

reduction reactions are shown in Table 4.2, respectively. The calculated E0 values versus 

Li/LiCl reaction (LiCl + e- = Li+ Cl-) which are functions of temperature for oxidation and 

reduction reactions are shown in Table 4, respectively.  The details of calculation have been 

described in our previous studies 

    Kinetic parameters were obtained from fitting the values to the polarization data at the 

isothermal condition (i.e., 850 ℃) by considering 
ε1.5

𝛿
 has a small amount (i.e., 0.16 (m-1)) 

where the kinetic effects are dominant and mass transfer effects can be neglected. (i.e., the 

calculations are shown in Appendix B) so that mass transfer effects can be neglected. 

Variables that were input in to the model are listed in Table 4.1. 
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     Mixed potential theory and kinetic equations were used to explain Mg dissolution. As a 

result of the reaction of Mg, an equilibrium state is established. The free corrosion 

condition for Mg requires the reactions 4-3 and 4-4 currents to be equal and opposite. 

Where the convention that anodic current densities are positive and cathodic current 

densities are negative has been applied [59].   

 

−ic =  ia = i′ 4-10 

    Where i′ is the reaction current (see Figure 4.2). Once the corrosion potential, E𝑐𝑜𝑟𝑟 for 

Mg reaction is obtained by solving Equation 4-10, the corrosion current density is also 

computed.  

    This reaction potential, E𝑐𝑜𝑟𝑟 can be applied for the Cr depletion reaction (i.e. reaction 

4-2) at the surface of the alloy and allows us to be able to predict corrosion rate, icorr, for 

the alloy in contact with molten salt.  

 icorr =  i0,a′

CCr3+
∗

CCr3+
ref

exp [
(1 − αa′)na′F

RT
(E

a′
eq

− Ecorr)] 
4-11 

 

     Where subscripts a′ refers to the Chromium depletion reaction (i.e. reaction 4-1) at the 

surface and along the grain boundaries. The reaction potential, Ecorr is much lower than 

the corrosion potential that was calculated from reactions 4-1 and 4-2 (i.e., Ecorr
′′ ) which 

causes the lower corrosion rate.  

4.2.3 Transport of ionic species under cathodic protection 

     The experimental results from SEM and the energy dispersive X-ray spectroscopy 

(EDS) mapping without cathodic protection [57] showed the selective depletion of Cr in 

the alloy that formed a porous microstructure near the surface which is open to the salt (i.e. 
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Figure 4.1c). This can be concluded from the X-ray maps of the cross-section of the 

corroded alloy, which indicates a gradient in the metal concentration, showing that metal 

diffuses out from this layer. The Cr depletion at this layer mostly occurred at the grain 

boundaries of the alloy [57]. The grain boundaries layer at the surface of the alloy is 

assumed to be of a constant thickness of δ and acts as a porous layer with constant porosity 

of ε , that diffusion of the ionic species takes place in this region. 

Table 4.2. Equilibrium potentials for main corrosion reactions of Haynes 230 in KCl-

MgCl2 as inputs to the model 

Electrochemical reactions Temperature ([K) E (V) 

CrCl2 + 2e- = Cr + 2Cl- T ≤ 900   E = −0.0002T + 2.198 

 900 < T ≤ 1150   E = −0.0001T + 2.112 
 1150 < T    E = −0.0004T + 2.485 

CrCl2 + Cl- = CrCl3 + e- T ≤ 900 E = 0.0002T + 2.561 

 850 < T ≤ 1150 E = 0.0004T + 2.438 
 1150 < T E = 0.0001T + 2.729 

MgCl2 + 2e- = Mg + 2Cl- T ≤ 900      E = −0.00006T + 0.927 

 900 < T ≤ 1000             E = 0.0002T + 0.703 
 1000 < T               E = 0.00003T + 0.873 

 

     For the case of cathodic protection, Mg and Mg2+ ions in addition to Cr3+ and Cr2+can 

diffuse and diffuse back through this porous layer and react with Cr3+ ions at the surface. 

The flux of each dissolved species, through the electrolyte in the pores of the porous layer 

is given by: 

𝐍𝑖 = −D𝑖
eff[

∂C𝑖

∂x
]x=0 

 4-12 

Di
effis the effective diffusion coefficient of species i that that can be expressed as [62]: 

D𝑖
eff =

εD𝑖

τ
                                                             4-13 
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D𝑖 is the diffusion coefficient of species i in the salt which is listed in Table 4.3. In this 

paper the ε (porosity) is defined as the volume fraction of grain boundaries which is a 

function of the grain boundary size [63]. In the absence of information of the grain 

boundaries’ tortuosity, it is taken to be inversely proportional to the square root of porosity, 

in an analogy with the theory of porous electrodes [64].  

 

τ = ε−0.5 4-14 

The flux of ionic species at the surface of the alloy can be determine by: 

 

𝐍Mg2+ =
 ia
naF

 
4-15 

𝐍Mg =
−ia
naF

 
4-16 

𝐍Cr2+ =
 ia′

na′F
−

2 ic
ncF

−
2 ic′

nc′F
 

4-17 

𝐍Cr3+ =
2 ic′

nc′F
+

2 ic
ncF

 
 4-18 

where subscripts a and c refer to reactions 4-1 and 4-2 and subscripts a′ and c′ refer to 

reactions 4-3 and 4-4 respectively. 

4.2.4 Numerical Procedure 

     The numerical model is three-dimensional, steady state, and non-isothermal. The 

conservation of mass and energy along with the Navier-Stokes equations were all solved 

in the three-dimensional commercial CFD software, STAR-CD 4.18. The process of 
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corrosion is in general a time dependent event, however since the time scale of the 

corrosion process is substantially larger than most other transport process, a quasi- steady 

state can be assumed. The CFD code is modified to include the electrochemical corrosion 

reactions under cathodic protection. The additional models are incorporated via the user 

defined functions modules linked to the CFD code. This numerical model predicts the 

three-dimensional effect of heat transfer and fluid flow on the corrosion rates at the surface 

of the coupons under cathodic protection. The equations are solved by using 

the SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm and the 

calculations are carried out with double precision accuracy. The convergence criteria for 

the species transport were set for all residuals less than 1 × 10−12. The detailed equations 

and boundary conditions have been described in our previous publication [57] and will not 

be repeated here in detail. Two different kinds of boundary conditions were applied for 

isothermal (850 ℃) and non-isothermal condition that are matched with the experimental 

measurements. For the non-isothermal case (T~800-950 ℃) there is a temperature gradient 

inside the thermosiphon which causes the temperature gradient around the coupons at the 

bottom to be different from the temperature around the coupons at the top. For convenience 

we called the upper and lower side of the thermosiphon, the cold and hot zones 

respectively, as are shown in Figure 4.1 (a).  

4.3 Results and Discussions 

4.3.1 Isothermal Conditions 

     For the study on the effect of Mg on the corrosion rate, experimental results were 

performed for the local corrosion rates of Haynes 230, Haynes NS-163, and Incoloy 800H 

coupons in KCl-MgCl2 for 100 hours in isothermal condition of 850 °C without Mg and 
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with different concentrations of Mg. The results show that Haynes 230 has the lowest 

corrosion rate without cathodic protection and can be the best candidate for high 

temperature KCl-MgCl2 molten salt system. Figures 4.3 (a), 4.3 (b), and 4.4 (c) compare 

the corrosion rates at the surface of the alloy with varying Mg content in the salt for Haynes 

230, Haynes NS-163, and Incoloy 800H respectively. These results show that even by 

adding a small amount of Mg to the salt, the corrosion rate fell rapidly to a small value and 

then changed slowly as a function of Mg concentration. The experimental corrosion test 

results for the coupons in the salt were also obtained by a number of investigations and the 

results are also shown in Figures 4.3 (a)-4.3 (c). The results proved that the models 

calculated corrosion rate matches the experimental values with less than a 1% difference. 

     Figure 4.4 shows the corrosion rate predictions by the model at different temperatures 

for the isothermal case without Mg and with 1.15 mol% Mg for Haynes 230. The 

temperature of thermosiphon was varied between 650°C and 1050°C in the model while 

keeping constant all other parameters. The results show that increasing the salt temperature 

increases the corrosion rate for both cases with and without Mg. These results also show 

that adding the Mg to the salt caused significant reductions in the corrosion rates for all of 

the temperatures.  

As discussed on previous chapter the creation of Cr3+ from the oxidation of Cr2+ at the 

surface of the Ni crucible creates an oxidizing agent that can diffuse to the alloy surface of 

the coupon and accelerates the Cr dissolution. Figure 4.6 shows the effect of different 

mol% of Cr3+ in the salt on the corrosion rate of the coupons for Haynes 230, Haynes NS-

163, and Incoloy 800H at isothermal condition of 850°C. The linear relationship are shown 

in Figure 4.5 (a)-4.5 (c) between the amount of Cr3+ and the corrosion rate for all cases. 
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    It is extremely evident that decreasing the amount of Cr3+ is imperative to decreasing the 

corrosion rate of materials in molten chloride salts.  Although Cr3+ can diffuse through the 

porous layer, when there is Mg in the salt, the Cr3+ first is depleted due to cathodic 

protection reactions (i.e., reactions 4-3 and 4-4) and then the rest of  Cr3+ consumed by the 

Cr in the alloy (i.e., reactions 4-1 and 4-2). The results also show that increasing the Cr3+ 

concentration causes a more rapid increase in the corrosion rate of Incoloy 800H when 

compared to Haynes 230 and Haynes NS-163 which is shown by experimental data.  

4.3.2 Non-isothermal Condition 

     For the non-isothermal condition, the model’s temperature distribution at the surface of 

the coupons and around the coupons for Haynes 230 are shown in Figure 4.6 (a) and 4.6 

(b) for both cases without and with 1.15% Mg respectively. Figure 4.7 shows the 

temperature gradient for the case with Mg is slightly higher than the case without Mg. The 

average temperature around the coupons for the hot and cold zones respectively are 905.5 

°C and 926.5 °C for the case of without Mg, and are 911.5 °C and 929.6 °C for the case of 

with Mg. This difference is due to the fact that the physical properties of the KCl-MgCl2 

salt have changed by adding Mg to the salt. From the experimental results the change in 

density and viscosity of salt mixture was negligible, but significant increase in thermal 

conductivity of the salt mixture was observed with addition of just 1% Mg (i.e., Table 4.1). 

The data showed that the thermal conductivity of KCl-MgCl2 salt increased with increasing 

the amount of Mg linearly.  

This increase is mainly because of the thermal conductivity of Mg which is much greater 

than that of KCl-MgCl2 salt. Addition of Mg to the MgCl2 salt promotes the thermal 

conductivity and as a result the average temperature at the surface of the coupons. Figure 
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4.7 shows the corrosion current density distribution at the coupon surfaces without and 

with 1.15 mol% Mg introduced into the salt for the non-isothermal condition. The average 

corrosion rate and corrosion potential are also shown in Figure 4.8. The overall results 

show that after introducing Mg into the salt solution, the corrosion current and corrosion 

potential were reduced around 99% and 20% respectively. The local distribution of 

corrosion current looks more uniform with the addition of Mg from the case without Mg. 

This could be because of the effect of mass transfer of ionic species in the porous layer 

which is more important for the case without Mg, as in that case the corrosion rate is 

influenced more by the temperature gradient and fluid flow rather than just kinetic 

parameters as the case with Mg. 

      The effect of Mg concentrations in the salt on the corrosion rate at the surface of the 

coupons for non-isothermal case of Haynes 230 are also considered. The results in Figure 

4.8 shows that for this case like the isothermal case (i.e. Figure 4.3) adding even small 

amounts of Mg reduces the corrosion rate significantly. This reduction is seen at both the 

cold and hot zones. In this case there is a convective flow moving inside the thermosiphon. 

More rapid movement of the solution causes Mg to be brought into the metal surface at an 

increased rate. As a result the rate of Mg reactions are increased (i.e. Reactions 4-3 and 4-

4) which causes more reduction in corrosion rate in comparison to the isothermal case.  

     For the non-isothermal condition, the distribution of corrosion rates at the surface of the 

coupons for Haynes 230 for different porous layer porosity are shown in Figure 4.9. The 

results show that there is almost a uniform distribution of corrosion rates at the surface for 

all cases. The comparison of corrosion rate for different porosity for the cases without Mg 

and with 1.15% Mg are also showed in Figures 4.10 (a) and 4.10 (b) respectively. 
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Figure 4.3. The comparison of corrosion rates at the surface of the alloy with varying Mg 

content in the salt for isothermal condition 850 °C (a) Haynes 230, (b) Haynes NS-163, 

and (c) Incoloy 800H. 
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Figure 4.4. Prediction of average corrosion rate (current density) for Haynes 230 coupons 

for stagnant conditions at different temperature for the case with and without cathodic 

protection.  

 

Figure 4.5. The effect of Cr3+ mol% at 850 ℃ on the average corrosion rate at the coupon 

surfaces with cathodic protection. 
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     The corrosion rate seemed to be hardly affected by porosity for the cathodic protection 

case, as increasing the porosity from 0.1% to 0.5% only increased the corrosion rate by 

2.0% and 5.0% at the cold and hot zones respectively, while increasing the porosity from 

0.1% to 0.5% for the case without Mg, changes the corrosion rate by 70.0% and 30.0% at 

the cold and hot zones, respectively. This can be due to the fact that the mass transfer 

parameters have more effect on the corrosion rate for the case without Mg, as the kinetic 

effect is more than the mass transfer effect when Mg was added to the system.  

     SEM results of exposed Haynes 230 sample to KCl-MgCl2 at 850 ℃ for 100 hours [57] 

showed that the corrosion happens in a layer of finite thickness, possibly microns to 

hundreds of microns thick. As described earlier this layer was considered as a porous 

microstructure that is open to the salt. The corrosion rate distributions at the surface of the 

coupons at cold and hot zones are shown in Figure 4.11. The results show that the thickness 

of the porous layer has an effect on the corrosion rate at both the cold and hot zones.The 

corrosion rate is decreased by increasing the thickness of the porous layer, as increasing 

the thickness by 10 times reduces the corrosion rate around 6.0% at the cold and hot zones 

for the case of with Mg and without Mg.  That is caused by the fact that a thicker layer has 

a higher corrosion resistance, as the species should diffuse a longer distance to react with 

the alloy surface.  

4.4 Summary 

     A 3D corrosion model has been developed that accounts for the corrosion mechanisms 

of super-alloys in KCl-MgCl2 molten halide salts under cathodic protection. The 

electrochemical kinetics were incorporated into the CFD model, and both isothermal and 

non-isothermal conditions were considered. The model results well reproduce the 
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experimental data that was performed in the in-house SRNL thermosiphon reactor. The 

results were compared with the model was in good agreement with experimental results, 

showing less than a 1% difference. The effect of Mg concentration was considered in the 

model and the results showed adding even small amounts of Mg into the salt can rapidly 

reduce the corrosion rate at the surface of the coupons for both isothermal and non-

isothermal conditions. The predicted results also showed that the thermal driven fluid flows 

in the non-isothermal condition could accelerate the corrosion rates reduction due to the 

more rapid movement of Mg to the metal surface. The results of cathodic protection 

showed that the corrosion rate of Haynes 230 in KCl-MgCl2 containing 1.15 mol% Mg 

showed 35 times lower corrosion than baseline tests with no cathodic protection and met 

the DOE SunShot target.  

 

 

 

 

 

 

 

 

 

 



 

78 

 

 

 

 

               

Figure 4.6. The model’s temperature distribution at the surface of the coupons and around 

the coupons for the case of without cathodic protection (a) and with cathodic protection (b) 

at non-isothermal condition of 800-950 ℃. 
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Figure 4.7. The corrosion current density distribution at the coupons without (a) and with 

Mg (b) introduced into the salt solution at the control temperature of 800-950°C and the 

amount of Mg of 1.15 mol%. 
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Figure 4.8. The predicted corrosion rates at the surface of the alloy with varying Mg content 

in the salt for both cold zone and hot zone at non-isothermal case (800-950 ℃).  
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Figure 4.9. The effect of porous layer porosity on the corrosion rate distributions at both 

cold and hot zones for the case with 1.15% Mg at non-isothermal condition (800-950 ℃). 
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Figure 4.10. The effect of porous layer porosity on the corrosion rate at both cold zone and 

hot zone for the cases (a) without Mg and (b) with 1.15% Mg at non-isothermal case (800-

950 ℃). 

0.358

0.928

1.27

0.372

0.969

1.34

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

ε=0.1% ε=0.3% ε=0.5%

i av
g(

A
 m

-2
)

Cold zoneWithout Mg

0.015
0.016

0.0170.017
0.018

0.019

0.000

0.004

0.008

0.012

0.016

0.020

0.024

ε=0.1% ε=0.3% ε=0.5%

i av
g(

A
 m

-2
)

Cold zone Hot zoneWith Mg

(a) 

(b) 



 

83 

 

 

  

 

Figure 4.11. The effect of porous layer thickness on the corrosion rate at both cold zone 

and hot zone for the cases (a) without Mg and (b) with 1.15% Mg at non-isothermal case 

(800-950 ℃).
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CHAPTER 5. EFFECT OF SYSTEM CONTAMINANTS ON 

THE PERFORMANCE OF A PROTON EXCHANGE 

MEMBRANE FUEL CELL 

     The performance loss and recovery of the fuel cell due to Balance of Plant (BOP) 

contaminants was identified via a combination of experimental data and a mathematical 

model. The experiments were designed to study the influence of organic contaminants (e.g. 

those from BOP materials) on the resistance of the catalyst, ionomer and membrane, and a 

mathematical model was developed that allowed us to separate these competing resistances 

from the data collected on an operating fuel cell. For this reason, based on the functional 

groups, four organic contaminants found in BOP materials, diethylene glycol monoethyl 

ether (DGMEE), diethylene glycol monoethyl ether acetate (DGMEA), benzyl alcohol 

(BzOH) and 2,6-diaminotoluene (2,6-DAT) were infused separately to the cathode side of 

the fuel cell. The cell voltage and high frequency impedance resistance was measured as a 

function of time. The contaminant feed was then discontinued and voltage recovery was 

measured. It was determined that compounds with ion exchange properties like 2,6-DAT 

can cause voltage loss with non-reversible recovery, so this compound was studied in more 

detail. The degree of voltage loss increased with an increase in concentration, and/or 

infusion time, and increased with a decrease in catalyst loadings. 
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5.1 Introduction 

     The major technical challenges for polymer electrolyte membrane fuel cells (PEMFCs) 

in general are performance, reliability, durability and cost. There is an opportunity to 

reduce overall system cost by choosing lower cost balance of plant (BOP) materials for 

PEMFC systems. However, choosing any new system BOP material (e.g., assembly aids, 

structural plastics, and hoses) without compromising function, fuel cell performance, or 

life requires understanding the effects of the contaminants that leach from these materials. 

The contaminants in a fuel cell system originate from the fuel, air, and the different 

component materials used in construction. 

      Previous studies [72-93] have reported on the effect of contamination on PEMFCs by 

impurities found in the fuel, fuel-cell components, or the external environment such as 

carbon monoxide (CO) ) [79], hydrogen sulfide (H2S) [81, 94], and ammonia (NH3) [82, 

84, 95].  Works have also been reported on the effects of air contaminants, such as nitrous 

oxides (NOx) [85, 86], sulfur oxides (SOx) [77, 87, 88], and volatile organic compounds 

present in the atmosphere (toluene) [89] . It has been demonstrated that even trace amounts 

of impurities in the fuel or air stream can severely poison the anode, membrane, and 

cathode, particularly at low-temperature operation [75]. These contaminants impact 

PEMFC performance by hindering kinetics (e.g. CO and H2S) or reducing membrane 

conductivity (e.g. NH3 and metal cations) [79, 96, 97]. Several models are available that 

capture kinetic [85, 90, 91] and ohmic overpotentials [92, 93] during the contamination 

and recovery studies.  

     Although there has been a lot of research on contamination caused by fuel and air side 

impurities, the effect of contamination originating from system components have only 
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recently been briefly studied [98-104]. These results showed that despite the contamination 

caused by fuel and air side impurities that can effect only the catalyst (e.g., CO) or the 

membrane (e.g. metal cations), organic contaminants (e.g., those from BOP materials) can 

have severe effects on the catalyst, ionomer and membrane at the same time. Opu et al. 

[105] selected twenty assembly aids BOP materials and categorized them according to their 

intended use and chemical composition. Their data indicated three different phenomena 

affect the cell: adsorption of contaminant species on the Pt catalyst, ion exchange with the 

sulfonate sites in the membrane and ion exchange with the ionomer of the catalyst layer. 

Their studies also showed the effect of individual functional groups in poisoning the fuel 

cell. The effects of contamination by some organic model compounds derived from the 

fuel cell BOP on performance in PEMFCs were examined by Cho et al. [99]. Their results 

revealed severe impacts on performance in PEMFCs depending on functionalities which 

allowed multiple contamination mechanisms. In another work Cho et al. [106] developed 

a mathematical model for organic contaminants that come from BOP materials by 

considering the effect of contamination on the catalyst, electrode ionomers and membrane. 

However they looked at the limited conditions and their derivation did not extend to the 

case of the cell performance after recovery from a contamination period. They also 

included mass transport phenomena in the model, which is not necessary to achieve model 

accuracy [89], resulting in computational inefficiencies.  

     The purpose of the work reported here is to identify the causes for performance loss and 

recovery of a fuel cell due to BOP contaminants via a combination of experimental data 

and a mathematical model. An analysis procedure was developed to quantify the various 

voltage losses caused by contaminants during both fuel cell contamination and recovery 
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operations. The impacts of contamination examined are the adsorption onto the Pt surface 

(kinetic losses) and ion exchange with the membrane and ionomer in the catalyst layer. The 

ion exchange with acidic sites in the catalyst layer ionomer results in both a loss in 

conductivity (ohmic loss); and loss in proton activity (kinetic loss).   

     Based on the functional groups examined in previous studies, four organic contaminants 

were chosen as these compounds have been identified in leachates from BOP materials 

[107]. They are listed as: diethylene glycol monomethyl ether (DGMEE), diethylene glycol 

monoethyl ether acetate (DGMEA), benzyl alcohol (BzOH) and 2,6-diaminotoluene (2,6-

DAT). Their chemical structures are shown in Figure 5.1. The effect on performance of 

2,6-DAT was the more complex and irreversible, and so more detailed analysis was 

performed under a variety of concentration, infusion times, and cathode catalyst loadings. 

The experimental data was then used with the model to correlate cell voltage to 

contamination levels and cathode catalyst loadings. This analysis provides insight into the 

effect of contaminant on fuel cell performance.  

 

Figure 5.1. Chemical structures of DGMEA, BA, DMGEE and 2,6-DAT.  
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5.2 Experimental 

     Experiments discussed in this work were tested on a Model 850e test station made by 

Scribner Associates Inc. High purity hydrogen and compressed air were used as the fuel 

and reactant. The temperature of the cell was controlled at 80°C with heating by cartridge 

rods and cooling with a fan controller system. The same operating temperature was used 

for all experiments. The back pressure was 150 kpa. Our experimental MEAs with 50 cm2 

membrane active area are prepared by General Motors Electrochemical Energy Research 

Lab using a DuPont Nafion 211 membrane, a 0.05 mg/cm2 Pt-C (Tanaka carbon) loading 

on anode, and different loading of 0.1 and 0.4 mg/cm2 Pt-C (Tanaka carbon) on cathode 

side. The infusion experiment was run at 0.2 A/cm2 constant current. 

     After the MEA was conditioned, a few beginning of test (BOT) diagnostics were 

performed. The BOT diagnostics included a dry (32% relative humidity) polarization curve 

and cathode hydrogen adsorption CV scans at 80°C. Following the BOT diagnostics, a 

micro-nebulizer (ES-4040 Polypro ST Nebulizer) was attached between the outlet of the 

test stand and the cathode inlet of the cell.  The micro-nebulizer was used to deliver the 

contaminant solution to the test cell in an aerosol form. The anode side was humidified 

from the test stand to 32% RH and the nebulizer delivered the cathode humidity. After 

attaching the nebulizer to the cell through the cathode inlet, the infusion experiment was 

started. The experiment were run around 20 hours with DI water to make a stable baseline 

before introducing the contaminant leachate solution. Following this 20 hours, the leachate 

solution was infused through the nebulizer to the cathode inlet at the same rate as before. 

After the contaminant solution infusion was stopped, air was humidified with deionized 

(DI) water via infusion for certain length of time, to determine if any voltage loss induced 



 

89 

 

from the contaminants in the solution was recoverable with normal operation. This is the 

self-induced recovery (SIR) period. The cell voltage and high frequency resistance (HFR) 

were monitored continuously during the infusion time. 

     Four assembly aids system materials, Diethylene glycol monoethyl ether (DGMEE), 

Diethylene glycol monoethyl ether acetate (DGMEA), Benzyl alcohol (BzOH) and 2,6-

Diaminotoluene (2,6-DAT) with total organic carbon of 64 ppm are compared. In addition, 

six different concentration of 2,6-DAT with total organic carbon (TOC) amount of 10 ppm, 

25 ppm, 64 ppm, 128 ppm, 200 ppm and 256 ppm at three different infusion times of 30, 

50, and 90-hour are examined.  

     Figure 5.2 shows a typical IRm corrected cell voltage Em, in response to exposure to 64 

ppm 2,6-DAT. The experiment is divided into three distinct phases, which are labeled in 

Figure 5.2. Phase 1 is the pre-poisoning period conducted with clean H2/air. Extrapolation 

of the Phase 1 value serves as the baseline (dashed line). Phase 2 (i.e. t=0) begins with the 

introduction of contaminant into the cathode feed stream. In the experiments reported in 

this work, contaminant concentration was held constant throughout Phase 2. In Phase 3 

(i.e., t = t1) the self-induced recovery (SIR) period begins when the flow of the contaminant 

is stopped and operation of clean H2/air is resumed.  During these phases we bypass the 

cathode humidifier and the humidity is maintained with contaminant solution flowing 

through the nebulizer. 
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Figure 5.2. Example of IRm corrected cell voltage (Em) vs. time for a 50-hour infusion of 

64 ppm 2,6-DAT at 0.2 A/cm2 into a 0.4 mg/cm2 Pt/C cathode catalyst loading. 

 

5.3 Model Description 

     In developing the model below, we assume the contaminants affect performance in three 

primary ways: (1) adsorption onto the Pt surface, (2) ion exchange with the membrane, and 

(3) ion exchange with the ionomer in the catalyst layer. The latter effect has two 

contributions to the voltage losses. One is the ionomeric resistance increase (ohmic losses) 

from the reduction in acidic sites and the other is the kinetic losses due to the proton 

concentration changes in the catalyst layer. We ignore secondary effects such as changes 

in transport rates of reactants through the catalyst layer [108, 109], increase in peroxide 

production [108-110] or changes in Tafel slopes [111-113] as has been reported previously.  

Also, ion exchange with the membrane can lead to highly non-linear effects at high currents 

or significant cation exchange [96, 97].  These effects have been ignored due to the 
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relatively low current densities (current density = 0.2 A/cm2) and mild contamination 

conditions (contaminant concentration < 256 ppm) investigated here. 

     As a result the total voltage change by contamination can be written as follows: 

                                             Vcell = Eeq − ηa − ηc − IRi − IRm   5-1 

where the variables are defined in the list of symbols. IRi represents the overpotential 

arising from the resistance of the ionomer in the electrode and IRm is the ohmic loss across 

the membrane. As we want to isolate the effect of contamination on the electrode from the 

effect of contamination on the membrane, we measured the membrane resistance using 

high frequency resistance (HFR). The HFR value was then used to determine the IRm 

corrected voltage, Em as is given below: 

                                             Em = Vcell + IRm = Eeq − ηa − ηc − IRi   5-2 

We assumed the anodic overpotential is negligible and the oxygen reduction reaction 

follows Tafel kinetics: 

ηc =
1

β
ln [(

𝐼

𝛿𝑎𝑖0
) (

𝐶𝑂2

𝐶𝑂2,0
)(

C𝐻+

C𝐻+,0
)

−1.5

] =
1

β
ln [(

I

δ𝑎i0
) (1 − y)−1.5] 

 

5-3 

where 𝑦 is the fraction of contamination in the ionomer at the catalyst layer (i.e.,𝑦 = 1 −

C
𝐻+

C𝐻+,0

 ), and 1/ β is the Tafel slope that we set to 0.060 V/decade [114]. The concentration 

of O2 in the catalyst layer is eliminated in Equation 5-3, as it was assumed constant through 

the experiment. The reaction rate is assumed to be a 1.5 order with respect to the proton 

concentration as proposed previously [115]. δ  is the catalyst layer thickness assumed equal 

to 2.5 and 10 µm for 0.1 and 0.4 mg/cm2 respectively. The active surface area of the catalyst 
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per unit volume, 𝑎, changes with time due to contamination of the Pt particles. The fraction 

of active platinum sites loss during contamination, θ, is related to 𝑎 by: 

θ = (1 −
𝑎

𝑎0
) 5-4 

where 𝑎0 is the active surface area of the catalyst per volume before contamination.  

     Substituting Equations 5-3 and 5-4 into the Equation 5-2 and writing it relative to the 

baseline (see dashed line in Figure 5.2) gives: 

∆Em = ∆ηc + ∆IRi = −
1

β
ln[(1 − θ)(1 − y)−1.5] −

δI

 σ0
[1 −

σ0

σ
] 

5-5 

where ∆ηc is kinetic loss and ∆IRi is ohmic loss. Two contributions on ionomer voltage 

losses are considered in Equation 5-5. One is from proton concentration changes by 

ionomer contamination y, and the other is ohmic loss due to the inomer cation composition 

has changed, σ. The fraction of active platinum sites loss changes exponentially with time 

during both contamination and recovery as given by Pierre [85] and Zhang et al. [107], 

resulting in the  following expressions.  

θ = θ1(1 − e−γcct)            for   0 ≤ t ≤ t1              5-6 

                                     θ = [θ1 − (θ1 − θ2)(1 − e−γcr(t−t1))]     for   t1 < t            5-7 

where θ1 is the fractional loss of catalyst sites after steady-state contamination, and θ2 is 

the fractional loss of catalyst sites after steady-state recovery. The parameters γcc and γcr 

are the rates of catalyst poisoning and recovery, respectively.  

     The second contribution to the kinetic loss in Equation 5-5 is the change in proton 

concentration in the ionomer, 𝑦. The level of poisoning in the ionomer during 
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contamination and recovery is also expected to follow an exponential relationship similar 

to Equations 5-6 and 5-7 [92, 93]. However, the rate of ionomer poisoning during 

contamination is observed to be very small relative to complete ionomer poisoning. 

Therefore, the exponential relationship is linearized during contamination (Equation 5-8) 

but the full exponential form is used during the recovery step (Equation 5-9), to predict the 

change in proton concentration in the ionomer.   

 

                                                       𝑦 = γict                         for   0 ≤ t ≤ t1               5-8 

                                𝑦 = y1 − (y1 − 𝑦2)[1 − 𝑒(−γir(t−t1))]           for   t1 < t               5-9 

where γic and γir are the rates of ionomer poisoning and recovery, respectively, and y1is the 

fraction of contamination in the ionomer at t = t1, and 𝑦2 is the fraction of contamination 

in the ionomer after steady state recovery (i.e., t → ∞). 

   The proton concentration in the ionomer not only affects the kinetics, but it also impacts 

the ionic conductivity. The ionomer conductivity,  σ0, is the effective ionic conductivity of 

the catalyst layer which can be obtained by Equation 5-10 [116]. 

                                                                σ0 = 0.167 σ𝑚                                               5-10 

where σ𝑚 is the pure ionomer conductivity without any carbon, catalyst, contamination, etc. 

which is equivalent to the uncontaminant polymer membrane conductivity and equal to 10 

mS/cm for Nafion 211 at 80 °C and 30% humidity [116].  
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     The ion exchange reaction of 2,6-DAT in the membrane is similar to aniline and 

ammonia [99]. The ionomer conductivity is exponentially related to the proton 

concentration [93] and can be related to 𝑦 by:  

                                   σ =  σ0[1 − 1.33(1 − 𝑒−1.4𝑦)]                          5-11 

The parameters 1.33 and 1.4 are obtained by using experimental data provided by 

Hongsirikan [117]  for NH4
+

 exchange membrane at 30% RH and 80°C for Nafion 211. 

Although the 2,6-DAT cation is much bigger than NH4
+, the mechanism for ion conductivity 

loss is similar [99]. 

     The parameters θ1, γcc  and γic  are obtained by fitting Equations 5-5, 5-6, 5-8, 5-10 and 

5-11 to the experimental data by the method of least squares. The parameter 𝑦1 is then 

obtained by setting t = t1 in Equation 5-8. For recovery, the parameters θ2, γcr  , γir and 𝑦2 

are obtained by fitting Equations 5-5, 5-7 and 5-9 through 5-11 to the data. Finally, the 

parameters are correlated to operating conditions (e.g., contaminant concentrations, infusion 

times, and catalyst loading) as presented below.  

 

5.4 Results and Discussions 

     Figure 5.3 shows the IRm-corrected cell voltage difference (ΔEm) in response to two 

aliphatic compounds and two aromatic compounds at 64 ppm. The aliphatic being 

diethylene glycol monoethyl ether (DGMEE) and diethylene glycol monoethyl ether 

acetate (DGMEA), and two aromatic compounds named, benzyl alcohol (BzOH) and 2,6-

diaminotoluene (2,6-DAT). The model fits to these data are also shown as lines in Figure 

5.3 (Equations 5-5 through 5-11). Three parameters are used to fit the contamination part: 
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the fractional loss of catalyst sites after steady state contamination, θ1, the rate of catalyst 

poisoning, γcc, and the rate of ionomer poisoning, γi,c. The proton concentration at the start 

of recovery (𝑦1) is then obtained from Equation 8. Finally, four parameters are used to fit 

recovery: the fractional loss of catalyst sites after steady state recovery θ2, the rate of 

catalyst recovery,γcr, the rate of ionomer recovery, γi,r, and the fraction of contamination 

in the ionomer after steady state recovery, 𝑦2. 

 

5.4.1 Effect of Different Organic Compound Functional Groups 

     Figure 5.3 shows that the voltage response of DGMEE, DGMEA, and BzOH are 

qualitatively different from the voltage response of the compound 2,6-DAT.  The voltage 

difference reached steady state very quickly with the infusion of compounds DGMEE, 

DGMEA, and BzOH; and near complete (reversible) performance recovery was observed 

in these three cases after switching back to the normal operating conditions during the self-

induced recovery (SIR) period. The results from previous studies  [118]  for similar 

molecules such chlorobenzene[118] and toluene [119] has also shown similar effects. As 

these contaminants mainly affected the catalyst and there was little coupled phenomena of 

catalyst and ionomer poisoning. For these compounds a similar fit would be obtained if 

using the model presented by St-Pierre et al. [90, 91]. In contrast, poisoning with 2,6-DAT 

was more gradual and complete recovery was not observed with this compound 

(irreversible).  

     The main reason for irreversible poisoning of 2,6-DAT could be due to the fact that it 

has the capability of ion-exchange with the proton sites of the ionomer, while the 
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compounds BzOH, DEGMEA and DGMEE have no protonated functionalities in their 

chemical structures and have dominant interactions with the catalyst rather than the 

ionomer. As a result, the parameters associated with the ionomer poisoning and recovery 

(γic , γir , and 𝑦2) are negligibly small, and the rate parameters associated with catalyst 

poisoning and recovery (γcc , γcr) are larger for these three compounds (see Figure 5.4a). 

For example, γcc is nearly 4 times larger (poisons 4 times faster), and  γcr is almost 20 

times larger (recovers 20 times faster) for BzOH compared to 2,6-DAT. This is due to the 

fact that BzOH does not interact with the ionomer and immediately poisons the catalyst 

during the contamination and recovery, respectively. According to Cho et al. [120] the 

difficult removal of 2,6-DAT is due to the strong electrostatic interaction (i.e., ion- 

exchange reaction) between hydrolyzed amines of 2,6-DAT and the sulfonic acid groups 

of the ionomer, so the absorbed 2,6-DAT can be difficult to remove from the catalyst layer. 

If the poison cannot leave the ionomer, a portion will remain adsorbed on to the catalyst. 

Figure 5.4 (b) shows that the catalyst surface coverage during the contamination (θ1) is 

almost identical for DGMEE, DGMEA, and 2,6-DAT (θ1~0.8) and slightly larger for 

BzOH (θ1~0.95). However the catalyst almost completely recovers for DGMEE, 

DGMEA and BzOH (θ2 ≤ 0.10), where 37% of the Pt sites poisoned during the 

contamination step are unrecoverable after 2,6-DAT is stopped (θ2 = 0.30). Again, this 

could be due to the fact that the poison remains trapped in the catalyst layer during the 

recovery for 2,6-DAT.  

     Although three parameters (θ1, γcc  and γic ) were fit simultaneously during the 

contamination (and four parameters, θ2, γcr  , γir and 𝑦2, during recovery), some of their 

values can be confirmed by examining various regions of the voltage-loss curves. For 
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example, the initial voltage lose is dominated by catalyst contamination such that the initial 

slope in Figure 5.3 is directly related to the rate of catalyst poisoning, γcc . Also the more 

gradual linear portion of the voltage loss at longer times (e.g., between 20 and 30 hours in 

Figure 3) is dominated by the rate of ionomer poisoning. Similar, the initial voltage 

recovery at t1 < t is dominated by the recovery of the catalyst site (i.e., γcr ).This analysis 

gives us confidence that we are extracting a unique set of parameters values from our least-

squares fit. 

 

 

Figure 5.3. Corrected cell voltage, ΔEm, for different model compounds (64 ppm) for 0.4 

mg/cm2 catalyst loading. The symbols are the experimental data and the lines are the model 

prediction. 
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Figure 5.4. Parameters obtained by fitting the model to the experimental data at 30-hour, 

0.4 mg/cm2 cathode catalyst loading at 64 ppm for four organic compounds (a) the rate of 

catalyst poisoning and recovery during contamination (γcc) and recovery (γcr), (b) the 

fraction of sites poisoned during contamination (1) and recovery (2). 

 

 

5.4.2 Effect of Concentration and Infusion Time 

     Since 2,6-DAT is the only contaminant that interacts with the ionomer and catalyst, the 

effect of the 2,6-DAT concentration, infusion time, and catalyst loading on voltage loss 

and recovery was examined in detail. Figure 5.4 (a) shows ΔEm in response to 128 ppm 
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2,6-DAT at 30 and 50 hour infusion times and 64, 128 and 256 ppm at a 30 hour infusion 

time. Comparing the effects of infusion time, the voltage losses are nearly identical during 

contamination with parameters values of θ1 = 0.86, γcc = 0.51 (h−1) and γic =

0.01 (h−1). As expected the parameters during contamination are not influenced by when 

the infusion of contaminant is stopped. Recovery though is effected because the loss of 

ion-exchange sites in the ionomer at the end of infusion, 𝑦1, is a function of infusion time. 

That is from Equation 5-8, 𝑦1 increases from 0.24 to 0.40 as infusion time is increased from 

30 to 50 hours. The resulting recovery parameters θ2, γcr , γir and 𝑦2 are changed from 

0.45 to 0.52 , 0.09 (h−1) to 0.14 (h−1) ,  0.60 (h−1) to 0.50 (h−1) , and  0.08 to 0.09 , 

respectively. The results show the parameters θ2, γcr, and y2 are increased by increasing 

𝑦1 and the parameter γir is decreased by increasing 𝑦1. Hence a higher level of ionomer 

contamination affects the eventual recovery of both the ionomer and the catalysts.  

     Figure 5.5 (a) also shows a higher voltage loss for 128 and 256 ppm compared to 64 

ppm. The parameters obtained by fitting of the model to the experimental data show that 

θ1 increases from 0.79 to 0.87 by increasing the concentration of the contaminant from 64 

to 256 ppm. The values for θ2 also increased from 0.30 to 0.70 by increasing the 

concentrations from 64 to 256 ppm. From these results, the parameters in the model are not 

a function of contamination dosage but rather the feed concentrations.  

     To gain more insight into the voltage loss, ∆Em at 256 ppm is divided into kinetic (∆ηc) 

and ohmic (∆IRi) contributions in Figure 5.4 (b) (i.e., Equation 5-5). As Figure 5.4 (b) 

shows the ohmic contribution to the voltage loss (∆IRi) is small in the beginning since 

kinetic losses dominant at low concentrations and short infusion times. The ohmic 
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contribution to the voltage loss increases exponentially with time due to the exponential 

dependence of ionomer conductivity with proton concentration (Equation 5-11).     

 

Figure 5.5. a) ΔEm for different concentrations and infusion times of 2,6-DAT. The 

symbols are the experimental data and the lines are the model prediction. b) The 

contribution of kinetic and ohmic loss during the contamination and the recovery for the 

case of 256 ppm. The inset shows the contribution from each of the kinetic contamination 

(i.e., catalyst, and ionomer) to the voltage loss for the case of 256 ppm for 0.4 mg/cm2 

catalyst loading. 



 

101 

 

The kinetic losses can be further divided into losses from the catalyst (θ) and the ionomer 

(𝑦), which are shown in the inset. The inset shows the voltage loss due to catalyst poisoning 

rises rapidly and levels off after approximately 10 hours via Equation 5-6. The voltage loss 

by contamination of the ionomer is small at the beginning but continues to increase as 𝑦 

increases with time (Equation 5-8). The data in Figure 5.5 (b) also indicates that at 256 

ppm the voltage loss after 10 hours deviates from linearity in comparison to 64 and 128 

ppm in Figure 5.5 (a). This nonlinearity is caused by the nonlinearity in ohmic resistance, 

which is caused by the nonlinear relationship between 𝑦 and the conductivity (Equation 5-

11).  

5.4.3 Effect of Catalyst Loading 

     The plot in Figure 5.6 shows ΔEm in response to 64 ppm 2,6-DAT contamination at two 

different cathode catalyst loadings of 0.4 and 0.1 mg/cm2. As expected, lower catalyst 

loading resulted in a stronger response to an identical contaminant concentration. The ΔEm 

for the catalyst loading of 0.1 mg/cm2  also shows the deviation from linearity after 10 hours 

in comparison to 0.4 mg/cm2. This result has the similar trend to what was observed for the 

higher concentration of 256 ppm at catalyst loading of 0.4 mg/cm2 (Figure 5.5). The 

comparison of  model parameters for these two cathode catalyst loadings show that 

decreasing the cathode catalyst loading by a factor of four, change the values of θ1 and θ2 

from 0.80 and 0.30 to 0.90 and 0.80 respectively. A similar change in parameter values 

occurs when the catalyst loading is held constant at 0.4 mg/cm2 but the concentration of 

2,6-DAT is increased by a factor of four from 64 to 256 ppm. Therefore, we do not need 

to correlate the model parameters to the concentration and catalyst loadings separately. 
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Rather we can correlate them to the ratio, φ (ppm/mgPt), which is defined as the ratio of 

contaminant concentration to the amount of Pt.  

 

Figure 5.6. ΔEm for different catalyst loadings at 30-hour infusion time and 64 ppm 2,6-

DAT. 

 

    The effects of all of the experimental conditions, (i.e., concentrations, infusion times and 

cathode catalyst loadings) on model parameters (i.e., θ1, γcc, and γic)  during the 

contamination were evaluated and plotted in Figures 5.7-5.9, respectively. The 

experimental conditions for these data are shown in Table 5.1 along with the symbol used 

in Figures 5.7-5.13. Figure 5.7 shows the fraction of sites poisoned during contamination 

(θ1) obtained by fitting the model to the experimental data at different conditions as a 

function of φ. For example, the value of θ1 from Figure 5.5 (a) increased from 0.79 to 0.87 

as the concentration of 2,6-DAT increased from 64 to 256 ppm. Also θ1 increased from 
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0.79 to 0.90 as the catalyst loading decreased from 0.4 to 0.1 mg/cm2. The parameter values 

are fit to the following empirical expression, and shown as the dotted line in Figure 5.7.   

 

                                                    θ1 = 0.873(1 − 𝑒−1.21φ)                                                  5-12 

 

Table 5.1. Different experimental conditions and symbols correspond to these experimental 

conditions. 

Time (h) TOC 

(ppm) 

Catalyst loading 

(mgPt/cm2) 
φ(TOC/mgPt) 𝑦1 Symbol 

30 10 0.4 0.5 0.024  

30 25 0.4 1.3 0.060  

30 64 0.4 3.2 0.120  

30 128 0.4 6.4 0.240  

30 200 0.4 10.0 0.405  

30 256 0.4 12.8 0.609  

50 25 0.4 1.3 0.100  

50 64 0.4 3.2 0.200  

50 128 0.4 6.4 0.400  

90 25 0.4 1.3 0.180  

90 64 0.4 6.4 0.360  

30 64 0.1 12.8 0.630  

 

     The results show that the fraction of sites poisoned increase with increasing contaminant 

concentration or decreasing Pt loading in the catalyst layer, and then it levels off at θ1 =

0.87. These results have the same trends as ex-situ adsorption isotherm of 2,6-DAT 

reported by Cho et al [106]. The maximum value for 1 reported in Figure 5.7 and Equation 

5-12 is 0.873. This corresponds to maximum voltage loss of 60 mV due to catalyst 

poisoning or 8% of the initial voltage of 780 mV.  To keep the voltage loss due to catalyst 

poisoning less than to 1%, 1 would need to stay below 0.4, which means the contaminant 

concentration needs to stay below 10 ppm at 0.4 mg/cm2. However, the total voltage loss 

will continue to increase due to ionomer poisoning.  
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     Figure 5.8 shows the rate of catalyst site poisoning during contamination (γcc), 

obtained by fitting the model to the experimental data as a function of φ. The results show 

that γcc increases with increasing contaminant concentration or decreasing Pt loading in 

the catalyst layer. As an example, the value of γcc increased from 0.35 to 0.73 as the 

concentration of 2,6-DAT increased from 64 to 256 ppm. Also γcc increased from 0.35 to 

0.71 as the catalyst loading decreased from 0.4 to 0.1 mg/cm2. The parameter values are 

fit to the following empirical expression, and shown as the dotted line in Figure 5.8.   

   γcc = 0.762(1 − 𝑒−0.202φ)                                                              5-13 

 

Figure 5.7. The fraction of sites poisoned during the contamination time (1) for 2,6-DAT. 

The symbols correspond to the experimental conditions, given in Table 5.1 and the dotted 

line is the empirical fit to these parameter values (Equation 5-12). 
 

     It can be seen that γcc is higher for higher φ that suggests that the time required to 

reach steady state is shorter during contamination time for higher values of φ . Good 
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agreement was found with results of St-Pierre et al. [85] for their NO2 contamination 

model.   

 
Figure 5.8. The rate of catalyst poisoning during the contamination time for 2,6-DAT. The 

symbols correspond to the experimental conditions, given in Table 5.1 and the dotted line 

is the empirical fit to these parameter values (Equation 5-13). 

 

     Figure 5.9 depicts the rate of ionomer poisoning in the catalyst layer during 

contamination (γic) obtained by fitting the model to the experimental data as a function 

of φ.  The data in Figure 5.9 is fit to the following linear relationship and shown as a dotted 

line in this figure.  

 

                     γic = 1.95 × 10−3φ                                     5-14 

 

     The parameter γi,c increases as a function of φ, indicating an ion-exchange affinity of 

2,6-DAT that is even more than observed for NH4
+  [120]. As the sulfonic sites present in 

Nafion have a higher affinity for foreign cations than H+, the presence of the impurity 
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cations decrease the proton concentration and in turn the conductivity of the polymer 

electrolyte [92].  

 

Figure 5.9. The rate of ionomer poisoning during contamination γ𝑖𝑐 with 2,6-DAT. The 

symbols correspond to the experimental conditions, given in Table 5.1 and the dotted line 

is the empirical fit to these parameter values (Equation 5-14). 

 

     The effect of all experimental conditions (i.e., concentrations, infusion times and cathode 

catalyst loadings) on model parameters (i.e., θ2, γcr, γir, and 𝑦2) during the recovery are 

shown in Figures 5.10-5.13, respectively. The parameter values are fit to empirical 

expressions, resulting in Equations 5-15-5-18 and the dotted lines in Figures 5.10-5.13.  

                                               θ2 = 0.82(1 − 𝑒−3.92𝑦1)                                                 5-15 

 

                                                γ𝑐𝑟 = 0.032𝑒3.74𝑦1                                                        5-16 
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γir = −1.34𝑦1 + 0.98                                                5-17   

 

                                                     𝑦2 = 0.010𝑒5.82𝑦1                                                  5-18 

      As discussed earlier, the only experimental condition that varies during recovery from 

Equation 5-8 is 𝑦1, the fraction of contamination in the ionomer at catalyst layer at t = t1. It 

is not surprising that we have more scattered for the correlation to 𝑦1, as 𝑦1 is an unknown 

parameter that is calculated after fitting the experimental data to the model equations. The 

amount of  𝑦1 at different experimental conditions is shown in Table 5.1. For small values of 

𝑦1, most parts of the ionomer is recovered, therefore as 𝑦1 is increased a lower percentage of 

recovery is observed. For example, for 𝑦1 = 0.024 , 90% of the contaminant in the ionomer 

is recovered while for 𝑦1 = 0.63 less than 40% of 𝑦1 is recovered. This low level of recovery 

(irreversibility) are consistent with previous studies [93, 121, 122], who showed the effect of 

NH3 recovery can be both reversible and irreversible, depending on the NH3 concentration 

and exposure time.  

 
Figure 5.10. The fraction of sites poisoned during recovery (θ2) with 2,6-DAT. The 

symbols correspond to the experimental conditions, given in Table 5.1 and the dotted line 

is the empirical fit to these parameter values (Equation 5.15). 
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Figure 5.11. The rate of catalyst recovery during the recovery with 2,6-DAT. The symbols 

correspond to the experimental conditions, given in Table 5.1 and the dotted line is the 

empirical fit to these parameter values (Equation 5-16). 
 

 

 

 

Figure 5.12. The rate of ionomer recovery during recovery (γ𝑖𝑟) with 2,6-DAT. The 

symbols correspond to the experimental conditions, given in Table 5.1 and the dotted line 

is the empirical fit to these parameter values (Equation 5-17). 
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Figure 5-13. The fraction of contamination in the ionomer at steady state (𝑦2) for 2,6-DAT. 

The symbols correspond to the experimental conditions, given in Table 5.1 and the dotted 

line is the empirical fit to these parameter values (Equation 5-18). 
 

 

     Equations 5-12 through 5-18 show that for any concentration, infusion time and cathode 

catalyst loading, model parameters are obtainable and can be used to quantify the voltage 

loss and recovery of the fuel cell. Although the model parameters are assumed to be 

independent of current, the voltage loss and recovery are a function of current via Equation 

5-5. Hence, the equation given here can be used to estimate the voltage loss as a function 

of current. It is cautioned through that the predicted parameters may change at high currents 

when large quantities of water are generated on the cathode side, influencing both 

contamination and recovery, and also a change in current density/cell voltage can also 

induce oxidation or reduction reactions. 

5.5 Summary 

          The performance loss and recovery of a fuel cell due to BOP contaminants was 

identified via a combination of experimental data and a mathematical model. The impact 
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of parameters such concentration, infusion time, and catalyst loading of different 

compounds was studied. The model was designed to capture the effect of contamination 

adsorption onto the catalyst, and kinetic and ohmic losses caused by ion exchange with the 

ionomer. It was determined that the degree of contamination increased with an increase in 

both concentration and infusion time. The recovery tests revealed that cell performance 

was partially recoverable for 2,6-DAT, and for the other three compounds it was fully 

recoverable. This shows that the compounds with ion exchange properties have more of an 

effect on the non-reversible performance degradation. The parameters obtained by fitting 

the model to the data shows that the parameters are functions of the ratio of contaminant 

concentration to cathode catalyst loading during the contamination. The parameters during 

the recovery are functions of the fraction of contamination in the ionomer at the end of 

infusion (i.e.𝑦1 at t = t1). Model parameters can be used to predict the various potential 

losses caused by contaminants during both fuel cell contamination and recovery operations.  
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APPENDIX A. EXPERIMENTAL SETUP 

A.1 Thermosiphon Experiments 

     The geometry that are used in this thesis is according to the thermosiphon apparatus 

designed at SRNL for studying the transports and corrosion phenomenon inside high 

temperature molten salt systems. This thermosiphon unit mainly consists of Nickel crucible 

(housing), Nickel crucible insert for holding the samples, Stainless steel thermal mass to 

product temperature gradient for the system, and 4 coupons, which are located at the top 

and bottom of the thermosiphon.  Figure A.1 shows the detail component of the 

thermosiphon. Figure A.1 (b) shows a sketch of the corrosion cells used for the molten salt 

immersion experiments [123].  

                  

Figure A.1 (a) Major components of thermosiphon, (b) a sketch of the corrosion 

cells [123].

Ni crucible 
assembly 

Coupons 

(a) (b) 
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      The set of six-thermocouple probe was placed at near wall of the Ni vessel and in the 

center of Ni Crucible insert. Therefore there are twelve thermocouples measured in the 

experiment. For heating the thermosiphon, a three zone PID controlled tube furnace are 

used. Screw jack are used to raise or lower the thermosiphon vessel into or out of furnace, 

large thermal mass on top that was water cooled.  

 

 

 

 

Figure A.2 Schematic of a thermosiphon equipped in a furnace [123]. 

 

     Samples for the thermosiphon were cut from sheet procured from the metal vendor 

(Haynes International for the N06230) that was delivered in a 16 gauge sheet (∼1.5 mm 

(a) 
(b) 



 

121 

 

thick) nominally 30.48 cm × 30.48 cm, ASTM grain size of 5. These samples were cut to 

the size of 1.19 cm × 2.61 cm × 0.15 cm, and were polished to a 1-μm finish with diamond 

paste slurry. The samples were cleaned and degreased using deionized water followed by 

ethanol and dried under compressed air, after which they were stored in a vacuum 

desiccator until they were used. The nominal physical dimensions of the samples were 

measured using standard calipers, and the masses were measured using a Sartorius 

laboratory analytical balance. The samples were hung in the thermosiphon reactor at the 

locations indicated in Figures A.2 (b), and the temperature measurements of the salt in 

various positions of the reactor are shown in Figure A.2 (b). The molten salt mixture was 

added sequentially to the reactor so that it could be melted down into a continuous 

electrolyte media from the discrete pieces that were added to the reactor. When the entire 

salt media was added to the reactor, the reactor was brought to the final temperature and 

the experiment was begun. At the end of the exposure period, the reactor heating was turned 

off and the contents were allowed to cool to room temperature. Afterward, the samples 

were broken out of the condensed salt media and cleaned for analysis. A sample of the salt 

was saved for analysis as well. The primary post-experimental measurements were the 

mass loss and change in physical dimensions using the analytical balance and calipers 

measurements, respectively. These measurements were used to calculate the corrosion rate 

as described in Equations (A-1) through (A-3). Selected samples were also subjected to 

SEM and EDS analysis. 

 

𝑖𝑐𝑜𝑟𝑟 =
𝑊𝐿

𝐴𝑎𝑡

𝑛𝐹

𝑀𝑊𝐴𝑙𝑙𝑜𝑦
 

    A-1 
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The average molecular weight is the weighted average of the oxidized species. 

𝑀𝑊𝐴𝑙𝑙𝑜𝑦 = ∑ 𝑥𝑗𝑀𝑊𝑗

𝑗

 
      A-2 

Corrosion rate in terms of corrosion current density is expressed as: 

 𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 [
𝑔

𝑐𝑚2. 𝑠
] =

𝑊𝐿

𝐴𝑎𝑡
=

𝑀𝑊𝐴𝑙𝑙𝑜𝑦

𝑛𝐹
𝑖𝑐𝑜𝑟𝑟  

   A-3 

     As an example Table A.1 shows the dimension and mass of the coupons for three 

different alloys (i.e., Haynes 230, Haynes NS-163 and Incoloy 800H) at high temperature 

thermosiphon for 100 hours test. Figure A.3 and A.4 show the SEM analysis of Haynes 

230 before and after 100 hours corrosion tests and Table A.2 and A.3 show EDS analysis 

of Haynes 230 before and after 100 hours corrosion tests respectively [123]. 

 

Table A.1. The dimension and mass of the coupons for three different alloys (i.e., Haynes 

230, Haynes NS-163 and Incoloy 800H) at high temperature thermosiphon for 100 hours 

test.   

   Before After 

    Dimensions [59]     Dimensions [59]     

Description 

Sample 

ID L W T 

area 

(mm2) 

mass 

(g) L W T 

area 

(mm2) 

mass 

(g) 

800H H5 29.51 12.09 1.22 8.05 3.28 29.51 11.98 1.20 7.97 3.04 

 H6 29.67 12.08 1.18 8.05 3.18 29.64 11.99 1.27 8.07 2.92 

 H7 29.87 12.1 1.19 8.13 3.28 29.78 11.98 1.27 8.10 3.20 

 H8 29.51 12.06 1.24 8.05 3.32 29.51 12.03 1.26 8.05 3.25 

NS-163 NS5 29.98 12.11 1.28 8.25 3.61 30.02 12.03 1.28 8.21 3.50 

 NS6 30 12.05 1.31 8.25 3.62 30.07 11.98 1.27 8.18 3.49 

 NS7 30.01 12.01 1.31 8.22 3.60 30.03 12.02 1.33 8.25 3.57 

 NS8 30.09 12.06 1.28 8.25 3.62 30.09 12.08 1.36 8.34 3.59 

Haynes 

230 S5 30.06 12.04 1.52 8.46 4.72 29.97 12.00 1.51 8.40 4.69 

 S6 30 11.97 1.5 8.38 4.71 29.99 12.02 1.52 8.43 4.68 

 S7 30.09 11.98 1.49 8.40 4.74 30.05 12.00 1.55 8.46 4.73 

 S8 30.08 12.14 1.49 8.50 4.72 30.01 12.03 1.54 8.46 4.70 
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Table A.2 EDS analysis of Haynes 230 before corrosion testing. 

Element Weight% Atomic% 

Al  0.26 0.60 

Si  0.13 0.29 

Cr  22.67 27.55 

Mn  0.55 0.63 

Fe  1.19 1.34 

Co  0.45 0.48 

Ni  58.74 63.22 

Mo  1.23 0.81 

W  14.79 5.08 

Totals 100.00   

 

 

 

 

  

Table A.3. EDS analysis of Haynes 230 after 100 hours corrosion testing. 

  

 

 

 

 

 

 

 

Element Weight% Atomic% 

Al  1.31 3.00 

Cr  2.14 2.54 

Fe  1.04 1.15 

Ni  85.55 89.97 

W  9.95 3.34 

Totals 100.00   
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Figure A.3 (a) SEM analysis of Haynes 230 before corrosion testing, and (b) after 100 

hours corrosion testing [123]. 

 

     The sample showed significant erosion at the grain boundaries.  The regions that were 

not eroded have a high Ni content.  These areas also have Cr contents around 6-8% that are 

significantly lower than the 27% in the alloy before the corrosion testing.  The selective 

depletion of Cr in the alloy has been cited in other studies as the principle mechanism of 

corrosion in alloys with molten salts. A cross-sectional SEM of the corroded sample was 

used to visualize the corrosion beneath the sample surface along with an EDS line scan to 

see the change in composition from the bulk of the material into the corroded region at the 

sample surface Figure A.4 (a) shows the subsurface microstructure of the corroded sample.  

The corrosion appears to occur first at grain boundaries in the alloy and appears to penetrate 

the deepest along these grain boundaries.  At the surface the corrosion appears to have 

corroded a large portion of the material even from the bulk of the material.  Figure A.4 (b) 

shows the concentration of the elements along the EDS line scan [123].   

     The area with significant corrosion showed a decrease in the Cr concentration and a 

corresponding increase in the Ni concentration. At the surface of the sample, the 

concentration of Ni was above 80% and appeared to approach being 100% Ni.  To better 

(a) (b) 
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illustrate the erosion of Cr from the sample surface, EDS maps of Ni and Cr were made 

and overlaid in different colors to illustrate the selective depletion of Cr [123]. 

 

Figure A.4 (a) SEM cross-section image of Haynes 230 after 100 hours in KCl-MgCl2 at 

850°C and (b) results of EDS linescan (the last 2 - 4 EDS points of the linescans may be of 

the mounting material) [123]. 

 

A.2 Temperature Conditions 

    A thermosiphon was designed to test the exposure of metal coupons to both the 

isothermal and the non-isothermal conditions. There are three isothermal cases where the 

temperatures were kept constant in the system at 750, 850, and 950 °C and due to the 

(a)

Surface

Mount

Affected zone

EDS
linescan

path

(b)
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constant temperature, there is no fluid flow in the system. There are also two non-

isothermal conditions where there are temperature gradients inside the thermosiphon (i.e., 

non-isothermal conditions with temperature gradient of 600-850 °C and 800-950 °C around 

the coupons) which the fluid flow circulates by natural convection due to changes in the 

molten salt’s properties between the top and bottom of the thermosiphon. Figure A.4 shows 

a sketch of the thermosiphon used for corrosion measurements. The thermosiphon has four 

coupons placed in both the bottom and the top that were called the hot and cold zones 

respectively for the non-isothermal conditions. These regions are shown in Figure A.4.  For 

the non-isothermal conditions, hot and cold zones were attained by inserting the bottom of 

the thermosiphon into a furnace, with the top either in an insulated region or partially out 

of the furnace. Table A.4 shows the different operational conditions for the experimental 

measurements. 

Table A.4. Different operational conditions for the experimental measurements. 
 

 

 

 

 

 

 

 

 

 

 

 

 

A.3 Corrosion Reactions  

     For corrosion modeling, a diffusion-limited corrosion mechanism that was identified in 

previous electrochemical analyses coupled with SEM/EDS studies of the Ni alloy (Haynes 

230) [124] is incorporated into the model. The SEM/EDS images in Figure A.4 show the 

Temperature (°C) Average temperature (°C) 

750 750 

850 850 

950 950 

650-800 
(Cold zone) 738 

(Hot zone) 760 

800-950  
(Cold zone) 908 

(Hot zone) 926 
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effect of immersing Haynes 230 in KCl-MgCl2 for 100 h at 850°C. These image showed 

Cr depletion at the surface and along grain boundaries, and other studies have also reported 

the chromium selective oxidation along grain boundaries [125-128]. The corrosion model 

developed in this study includes the Cr oxidation reactions at the surface and along with 

grain boundaries.  

     The following initiation reactions and the reduction reaction of the propagation are 

assumed and used in the model: 

Initial reactions: 

    Oxidation reaction:Cr23C6 +  69Cl−  →  23CrCl3  +  6C + 69𝑒−                              A-4 

     Reduction reaction: 34.5MgCl2 +  34.5H2O + 

             69𝑒− →  34.5H2  +  34.5MgO + 69Cl−                       A-5 

Propagation (alloy and salts) 

        Oxidation reaction:Cr +  2Cl−  →  CrCl2  +  2𝑒−                                                   A-6 

         Reduction reaction: 2CrCl3 + 2𝑒− →  2CrCl2  +  2Cl−                                        A-7 

Disproportionation (Crucible) 

         Oxidation reaction:2CrCl2  +  2Cl−  →  2CrCl3  +  2𝑒−                                        A-8 

         Reduction reaction: Ni + CrCl2 + 2𝑒− →  NiCr +  2Cl−                                       A-9 

     Note that the Cr (22.08 wt%) oxidation reaction was chosen mainly for the model 

prediction resulting from the lower Mn (0.52 wt%) composition of the Haynes 230 (i.e., 

Table A.3)
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APPENDIX B.  MODEL PARAMETERS 

B.1 Introduction 

     Some of the parameters in the model were adjusted to fit the experimental data. This 

appendix shows the calculation of the kinetic parameters as a function of temperature.  

For the redox reaction as: 

O + ne− ⇋ R B-1 

the macroscopic relationship between the current density and the surface overpotential and 

the composition adjacent to the electrode can be written as Equation B-2.  

i = f(ηs, ci) B-2 

The current-overpotential equation can be used for this relationship as is shown in Equation 

A-3:  

i =  i0 [
CO(0, t)

CO
∗ exp (

−αnF

RT
(η)) −

CR(0, t)

CR
∗ exp (

(1 − α)nF

RT
(η))] 

B-3 

where 𝐶𝑂
∗

 and 𝐶𝑅
∗

 are the bulk concentrations, and  𝑖0 is the exchange current density can be 

represent as:  

 i0 = nFkCO
∗ (1−α)

CR
∗ α

 B-4 

k is the rate constant would expected to show an Arrhenius dependence on temperature.
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     For an electrode reaction, equilibrium is characterized by the Nernst equation, which 

links the electrode potential to the bulk concentrations of participants. 

Eeq = E0 +
RT

nF
ln

CO
∗

CR
∗  

 B-6 

η = Eeq − E B-7 

Approximate forms of the 𝒊 − 𝜼 equation 

No mass transfer effect.    

    If the solution is well stirred or currents are kept so low that the surface concentrations 

do not differ appreciably from the bulk values. 

i =  i0 [exp (
−αnF

RT
(η)) − exp (

(1 − α)nF

RT
(η))] 

B-8 

Tafel behavior at large 𝜂 

    For large values of 𝜂, one of the bracketed terms became negligible.  

η =
RT

αnF
ln i0 −

RT

αnF
lni 

B-9 

Very facile kinetics  

    The case in which the electrode kinetics require no driving force at all. The case 

corresponds to a very large exchange current. 

 

k = k0(Tref)exp [
Ea

R
(

1

Tref

−
1

T
)] 

B-5 
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E = E0 +
RT

nF
ln

CO(0, t)

CR(0, t)
 

B-10 

     No kinetic parameters are present because the kinetics are so facile that no 

experimental manifestations can be seen. In effect, the potential and the surface 

concentrations are always kept in equilibrium with each other by the fast charge transfer 

processes.  

B.2 Calculation of Model Parameters 

The oxidation and reduction reactions can be written as B-11 and B-12 respectively, as 

described by detail in chapter 3.   

              Oxidation reaction: Cr + 2Cl- → CrCl2 + 2e-                                                   B-11 

     Reduction reaction: 2CrCl3 + 2e- → 2CrCl2 + 2Cl-                                                         B-12 

There were some assumption to calculate the kinetic parameters, are described below: 

 Tafel equation is included to explain the polarization near the surface of the 

alloy.  

 The small value of 
𝜀1.5

𝛿
 were used (i.e., ∼ 0.08 𝑚−1) that caused the mass 

transfer effect at the surface of the coupons were negligible and for the 

thermosiphon with isothermal conditions, we had the case similar to the case 

with no mass transfer effect.   

 

     As a result, Tafel equations were written as: 

 ia =  i0,a exp [
(1 − αa)naF

RT
(Ea

eq
− Ea)] 

B-13 
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 ic =  i0,c exp [
αcncF

RT
(Ec − Ec

eq
)] 

B-14 

     The free corrosion condition requires the anodic and cathodic currents to be equal and 

opposite. The convention that anodic current densities are positive and cathodic current 

densities are negative has been applied.   

 

−ic =  ia =  icorr B-15 

     The corrosion potential at the metal surface, E, can be found from the current (charge) 

balance equation at the alloy surface: 

 

Ec =  Ea = Ecorr B-16 

 

    By the experimental results for three different isothermal conditions of 750, 850 and 950 

°C,  𝑖𝑐𝑜𝑟𝑟,  𝐸𝑐𝑜𝑟𝑟, are known. The equilibrium potential were found by equations B-17 and 

A-18 for given bulk concentrations of Cr2+ and Cr3+ (i.e., 300 and 1500 ppm respectively).  

 

                                      Ea
eq

= Ea
0 −

RT

naF
ln(CCr2+)                                           B-17 

                                     Ec
eq

= Ec
0 −

RT

ncF
ln (

C
Cr3+

CCr2+
)                                                 B-18 

 

     Then the exchange current densities could be found by solving equations B-13 and B-

14 at different temperatures for αa = αc = 0.5 [60].  Table B.1 shows the experimental 

results for  icorr, and  Ecorr, in addition to the calculated standard potentials and equilibrium 

potentials at different temperatures. The exchange current densities results are then shown 

in Table B.2.  
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Table B.1. Experimental parameters. 

T(°C)  
icorr(Experiment)    

(A m-2) 

Ecorr(Experiment) 

(V) E0
 a(V) E0

 c(V) Eeq
 a(V) Eeq

 c(V) 

750 0.34 2.12 2.08 2.85 2.09 2.91 

850 0.45 2.26 2.04 2.89 2.06 2.95 

950 0.68 2.39 1.99 2.93 2.02 3.00 

 

Table B.2. Calculated exchange current densities. 

T(°C)   𝑖0,𝑎 (A cm-2)  𝑖0,𝑐 (A cm-2) 

750 2.88E-05 4.96E-07 

850 2.34E-04 1.59E-06 

950 1.47E-03 4.80E-06 

 

    Exchange current densities calculated using Equations B-13 and B-14 were plotted 

against the reciprocal of temperature, as shown in Figure B.1 and B.2. The curves fitted 

to the data in Figures B.1and B.2 were created with Excel’s Trend Line fitting feature and 

are representative of the Arrhenius relation for reaction kinetics. The resulting 

expressions allow the calculation of the activation energy of oxidation and reduction 

reactions.  

 

 
Figure. B.1. Anodic exchange current density as a function of temperature. 

i0a = 772724e-24580/T

R² = 0.99982

0.00E+00

4.00E-04
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i 0
a

(A
 c

m
-2

)

1/T(K-1)
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Figure. B.2. Cathodic exchange current density as a function of temperature. 

 

B.3 Calculation of Parameters for the Mg Reaction: 

    As mentioned in chapter 4, adding Mg to the salt caused two more reactions: 

                              Oxidation reaction: Mg + 2Cl- → MgCl2 + 2e-                           B-19 

                      Reduction reaction: 2CrCl3 + 2e- → 2CrCl2 + 2Cl-                               B-20 

     By using the exchange current densities of oxidation, reduction reactions of B-19 and 

B-20 from previous part and by knowing the experimental data of corrosion potential and 

corrosion rate under cathodic protection at 850 °C, for Haynes 230, the exchange current 

density of Mg reaction were calculated.  

     Assuming the activation energy of Mg reaction is as same as the activation energy of 

oxidation reaction (B-12), we are able to calculate the pre-exponential factor for Mg 

reaction. The exchange current density of Mg reaction as a function of temperature is 

shown in Figure B.3. 

 

i0c= 0.5023e-14169/T
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Figure. B.3. Mg exchange current density for Haynes 230 as a function of temperature. 
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APPENDIX C. NUMERICAL TECHNIQUES 

C.1 Solution Procedure 

A commercial computational fluid dynamics (CFD) code, STAR-CD, was used as the 

backbone for the implementation of the model. The STAR-CD system consists of two 

components (see Figure C.1): the analysis module STAR and the pre- and post-processing 

module pro-STAR. External links also exist to enable user programming of certain features 

and to communicate with other computer-aided engineering (CAE) systems for the 

purposes of, for example, importing grids or performing other kinds of analysis.  

 

 

Figure C.1. Overall STAR-CD system structure [129]. 
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     The codes solves for the standard thermo-fluid transport equations, and user defined 

subroutines were developed for the parts of the model specific to the corrosion reactions. 

The differential equations governing the conservation of mass, momentum, energy, etc. 

within fluid and solid systems, presented in Table C.1 discretized by the finite volume (FV) 

method. The equations then can be solved by an iterative SIMPLE algorithm.  

     The momentum, heat, mass and species conservation equations show in Table C.1. 

Equation C-5 shows there are some source and sink terms, Si, which the exact form of these 

terms depend on the corrosion current (i.e., Equation C-6). User input of such source/sink 

terms is called for and can be provided via user coding. 

Table C.1. Governing equations 

Governing equations Mathematical expressions  

Conservation of Mass  
𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑢)

𝜕𝑥
+

𝜕(𝜌𝑣)

𝜕𝑦
+

𝜕(𝜌𝑤)

𝜕𝑧
= 0 C-1 

Conservation of 

Momentum  

𝜕𝜌𝑢

𝜕𝑡
+ 𝑢

𝜕(𝜌𝑢)

𝜕𝑥
+ 𝑣

𝜕(𝜌𝑢)

𝜕𝑦
+ 𝑤

𝜕(𝜌𝑢)

𝜕𝑧

= −
𝜕𝑃

𝜕𝑥
+ 

𝜕

𝜕𝑥
(𝜇

𝜕𝑢

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜇

𝜕𝑢

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝜇

𝜕𝑢

𝜕𝑧
) + 𝑆𝑃𝑥 

𝜕𝜌𝑣

𝜕𝑡
+ 𝑢

𝜕(𝜌𝑣)

𝜕𝑥
+ 𝑣

𝜕(𝜌𝑣)

𝜕𝑦
+ 𝑤

𝜕(𝜌𝑣)

𝜕𝑧

= −
𝜕𝑃

𝜕𝑦
+ 

𝜕

𝜕𝑥
(𝜇

𝜕𝑣

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜇

𝜕𝑣

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝜇

𝜕𝑣

𝜕𝑧
) + 𝑆𝑃𝑦 

𝜕𝜌𝑤

𝜕𝑡
+ 𝑢

𝜕(𝜌𝑤)

𝜕𝑥
+ 𝑣

𝜕(𝜌𝑤)

𝜕𝑦
+ 𝑤

𝜕(𝜌𝑤)

𝜕𝑧

= −
𝜕𝑃

𝜕𝑧
+ 

𝜕

𝜕𝑥
(𝜇

𝜕𝑤

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜇

𝜕𝑤

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝜇

𝜕𝑤

𝜕𝑧
)

+ 𝑆𝑃𝑧 

C-2 

Conservation of Energy 
𝜕𝜌ℎ

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝜌ℎ𝑢𝑗 + 𝐹ℎ,𝑗) =

𝜕𝑃

𝜕𝑡
+𝑢𝑗  

𝜕𝑃

𝜕𝑥𝑗
+ 𝜏𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
+ 𝑆ℎ C-3 

Conduction heat 

transfer  

𝜕(𝜌𝑒)

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝑘𝑗𝑖

𝜕𝑇

𝜕𝑥𝑗
) +𝑆𝑒 C-4 

Species transport 

𝜕(𝜌𝑚𝑖)

𝜕𝑡
+ 𝑢

𝜕(𝜌𝑚𝑖)

𝜕𝑥
+ 𝑣

𝜕(𝜌𝑚𝑖)

𝜕𝑦
+ 𝑤

𝜕(𝜌𝑚𝑖)

𝜕𝑧
 

=
𝜕(𝐽𝑥,𝑖)

𝜕𝑥
+

𝜕(𝐽𝑦,𝑖)

𝜕𝑦
+

𝜕(𝐽𝑧,𝑖)

𝜕𝑧
+ 𝑆𝑖 

C-5 

Species source/sink 

term at the coupon 

surface. (𝑖𝑗 is the 

current density of the jth 

reaction) 

𝑆𝑖 =  − ∑
𝑠𝑖,𝑗𝑖𝑗

𝑛𝑗𝐹

𝑟

𝑗=1

 C-6 
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     The algorithm developed in this model is unique in the way of predicting cell corrosion 

current density. The solution begins by guessing a corrosion rate (CR) to use for calculating 

the species concentrations at the surface of the coupons. Then follows by computing the 

equilibrium potentials for the anodic and cathodic reactions. Once the equilibrium 

potentials are obtained, the local current densities are solved based on the Butler-Volmer 

equation. Convergence criteria are then performed on each variable and the procedure is 

repeated until convergence. The algorithm of the false position method has been used to find 

the corrosion rates at the surface of the coupons. The algorithm flowchart is shown in Figure 

C.2. 

 

 

 

 

 

 

 

 

 

 

Figure C.2. Algorithm flowchart. 

 

 

 

 

End 

Compute 𝑬𝒄, 𝑬𝒂 
By Butler-Volmer 

equations 

 𝑬𝒄𝟏 − 𝑬𝐚𝟏 
< 𝟏𝟎−𝟒 
 𝑬𝒄𝟐 − 𝑬𝐚𝟐 
< 𝟏𝟎−𝟒 
 𝐂𝐑𝟏 − 𝐂𝐑𝟐 
< 𝟏𝟎−𝟒

𝐂𝐑𝟑 = 𝑪𝑹𝟐 −
(𝑬𝒄𝟏 ∗ (𝑪𝑹𝟏 − 𝑪𝑹𝟐))

(𝑬𝒄𝟏-𝑬𝒄𝟐)
 

CR1=CR2 
CR2=CR3 

Initialization 
Guess  →  CR

1
 

CR
2
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