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ABSTRACT 

Ultrasonic guided waves are very attractive for the inspection of large structures using 

nondestructive evaluation (NDE) and structural health monitoring (SHM) technique. 

Combined analytical and finite element analysis (CAFA) has been introduced for the 

detection of butterfly cracks in the rivet hole of the aerospace lap joint. Finite element 

analyses have been performed on the local damage area in spite of the whole large 

structure. Fundamental Lamb wave modes (S0 and A0) have been strike on the local 

damage from multiple directions to analyze the cracks of multiple-rivet-hole lap joint. 

The rivet hole cracks (damage) in the plate structure gives rise to the non-axisymmetric 

scattering of Lamb wave as well as shear horizontal (SH) wave although the incident 

Lamb wave source (primary source) is axisymmetric. Hence, the damage in the plate acts 

as a non-axisymmetric secondary source of Lamb wave and SH wave. The non-

axisymmetric scattering of Lamb and SH waves are described using the wave damage 

interaction coefficient (WDIC). The WDIC of scattered Lamb and SH waves depends on 

the azimuth directions of the rivet hole as well as the frequencies of excitation.  

The WDIC involves scattering and mode conversion of Lamb waves occurred due 

to local damage. WDIC is captured around the damage for each direction of incidence 

over the frequency domain and “scatter cube” is formed for each incident Lamb mode. 

By analyzing the scattered cube of WDICs over the frequency domain and azimuth 

directions, the optimum parameters (frequency and location of sensor) can be determined 

for each angle of incidence. The scatter cubes are fed into the exact analytical framework 
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to produce the time domain signal. This analysis enables us to obtain the optimum design 

parameters for better detection of the cracks in the rivet holes. The optimum parameters 

can be obtained for all possible cases of incident Lamb waves that would help to analyze 

the multiple-rivet-hole problem. Some examples of obtaining the optimum parameters are 

illustrated based on the most prominent time domain signal. The optimum parameters 

provide the guideline of the design of the sensor installation to obtain the most noticeable 

signals that represent the presence of cracks in the rivet hole. 

The thesis finishes with conclusions, and suggestions for future work. 
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CHAPTER 1  
INTRODUCTION 

Structural Health Monitoring (SHM) is an emerging multi-disciplinary field which aims 

at detecting/characterizing structural damage and providing diagnosis/prognosis of 

structural health status in a real-time or on-demand manner. With the advancement of 

SHM technology, the industry can reduce the maintenance cost, shorten the machine 

service down time, and improve the safety and reliability of engineering structures. It has 

shown great potential in both the health management of aging structures and the 

development of novel self-sensing smart structures. This chapter serves as the 

introduction to the entire thesis by addressing the motivation and importance of 

conducting the research, discussing research goal, scope, and objectives will be discussed, 

and introducing the organization of the thesis. 

1.1 MOTIVATION 

The detection of various types of defects in the structures, for example, corrosion, 

cracks, impact, disbands etc is an important research area of SHM and NDE. Corrosion 

and fatigue cracks development at the rivet holes and fasteners in the aircraft structures is 

the most frequent problem of the aircraft maintenance. The aircraft structural integrity 

program (ASIP) allows having some type of internal damage in all in-service aircraft 

structures (a.k.a., airframes) which is undetectable with the existing nondestructive 

inspection methods (NDI) [1][2]. However, the airframes should be damage tolerant and 

hence safe to fly with such ‘initial flaws” The consistent application of the requirements 
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of ASIP has prevented structural failures due to fatigue, stress corrosion, and corrosion-

fatigue. However, during the operation cycle of an aircraft, the cracks in the structure can 

grow to a critical size and jeopardize the structural integrity if they remain undetected. 

1.1.1 COST OF UNDETECTED FATIGUE CRACK 

In 1989, the united airlines flight 232 (DC-10) crash landed in the airport due to 

one of the engines failure (Figure 1.1). The failed stage 1 fan disk came out of the engine 

nacelle during inflight in the air and damaged the three hydraulics situated next to the 

engine. The subsequent catastrophic disintegration of the disk resulted in the liberation of 

debris in a pattern of distribution The debris of the failed engine also damaged the 

horizontal stabilizer as shown in Figure 1.2. The main reason of the catastrophic failure 

of the fan disk was the fatigue crack of 13 mm that occurred during its 17 years of service 

and remained undetected due to the human factors limitaions in the nondestructive 

inspection (NDI) [3]. 

Ultrasonic guided wave methods can be employed instead of the laborious point 

by point inspection method for fast, accurate and efficient detection of the crack 

inauguration in the riveted holes and/or from any manufacturing flaws. 

1.1.2 LAP JOINTS IN AIRCRAFT STRUCTURES 

A section of the fuselage lap joints of a Boeing 737-200 is shown in Figure 1.3. It 

shows that along a lap joint there are thousands of rivets. Any crack initiating form any 

one of the rivets can ruin the integrity of the metal along the entire aircraft lap joint. The 

Federal Aviation Administration (FAA) recently grounded three passenger jets due to 

"scribe marks" and has identified 32 more Boeing planes with damaging box cutter-type 

cuts along the lap joint. The investigators discovered cracks, corrosion and weakened  
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Figure 1.1: Engine failure of UA flight 232 due to a fatigue crack in the fan disk [4] 

 

Figure 1.2: The debris of the failed fan disk came out of the engine nacelle [4] 

metal hidden inside a growing number of Boeing passenger jets. A big new problem for 

Boeing is centered on "lap-joint metal fatigue" also called "scoring". Spotting the fatigue 

cracks in the lap joints on the outside of an aircraft, through the paint, is nearly 

impossible for the usual NDI. 

Failed engine 

Fan disk with 13 
mm fatigue crack 

Debris of the 
cracked fan disk 
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Figure 1.3: Riveted lap joints on the fuselage of Boeing B737 (Courtesy: Boeing 
Company) 

1.1.3 POSSIBLE DAMAGES IN THE LAP JOINTS 

The riveted lap joint of an aircraft fuselage in the manufacturing stage is shown in 

Figure 1.4a. Under critical loading condition the cracks are initiated from the rivets and 

sometimes widespread fatigue damage (WFD) could happen as shown in Figure 1.4b 

WFD in an airplane’s structure is defined as the simultaneous presence of cracks at 

multiple locations that are of sufficient size and density that the structure will no longer 

meet required damage tolerance and will not maintain required residual strength after 

partial structural failure. The risk of WFD onset increases as airplanes are operated well 

past their original design objectives in flight cycles or flight hours. 
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Figure 1.4: (a) Riveted lap joint of a fuselage (b) Widespread fatigue cracks from the 
rivet holes [5] 

As part of rule compliance, Boeing is required to identify WFD-susceptible areas 

for both the as-delivered structure and any structure that required modification by an 

airworthiness directive (AD). Boeing also must predict which of the identified WFD-

susceptible areas will develop WFD prior to when the limits of validity (LOV) is reached 

and provide service bulletin actions to prevent that development (Figure 1.5b). These 

service actions would be in the form of service bulletins that would require inspection, 

modification, or both. The FAA issued an AD to make these service bulletins 

mandatory[5]. 

1.1.4 PIONEER RESEARCHES ON CRACKS IN THE RIVET HOLES 

Over the topical years, the detection of cracks around the rivet hole has become 

an important topic of the NDE reasearch field. In 2009, the probability of detection (POD) 

by model-assisted approach has been demonstrated for the fatigue crack growth in wing 

lap joint, wing skin fastener holes, airframe fastener holes [6]. In 2012, the use of the 

transfer function approach to model-assisted POD is investigated by Bode et al.[7] 

(a) Riveted section of a fuselage 

(b) Widespread fatigue crack 
from the rivet holes 

Fatigue crack 
Rivets 

Lap joint 
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through the inspection of a specimen of aircraft lap joint. However, the researches 

emphasized the detection of fastener hole cracks mainly based on nondestructive 

inspection (NDI) technique. 

 

Figure 1.5: Example of multiple-rivet-hole lap joint structure susceptible to WFD [5]  

In 2015, the SHM based POD was obtained for the fatigue crack initiation in the 

lug with a wing attachment which acted as a representative airplane component [8]. The 

excitation signals of 200 kHz to 1000 kHz center frequency were used to analyze the 

guided waves within fundamental Lamb wave modes. In 2014, Fu-Kuo Chang group [9] 

used ultrasonic SHM techniques to detect the damage and showed the variation of 

damage index with crack size. They determined the most influencing parameters to the 

sensitivity of damage detection and compared the SHM and NDE techniques. A set of 

transmitter and receiver sensors were used around the cracked rivet hole. However, the 

study of the proper location of the installed sensors around the damage was not described. 

The motivation and importance of the present research work has been derived from these 

researches. 
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1.2 RESEARCH GOAL, SCOPE, AND OBJECTIVES 

The development of computational models for Lamb wave propagation and 

interaction with damage is of great importance for both SHM system design and signal 

interpretation purposes. Effective design of SHM systems requires the exploration of a 

wide range of parameters (transducer size, sensor-damage relative locations, interrogating 

wave characteristics, etc.) to achieve the best detection and quantification of certain types 

of damage. On the other hand, active sensing signals using Lamb waves are usually 

difficult to interpret due to the multi-mode and dispersive nature of Lamb waves. Their 

interaction with damage involves even more complex scattering and mode conversion 

phenomena. 

Practical applications have imposed three main requirements on computational 

models: (1) accuracy for high frequency, short wavelength, and long propagation distance 

waves; (2) efficiency in terms of computational time and computer resources; and (3) 

versatility with a wide range of parameter exploration capabilities. However, these 

requirements have not been satisfied with conventional analytical methods or 

commercially available finite element software. Thus, it is of great importance to develop 

accurate, efficient, and versatile computational techniques for the simulation of guided 

wave based active sensing procedures. 

In this thesis, the problem of Lamb wave scattering is explored more in the 

perspective of analyzing multiple-rivet-hole lap joint cracks. The detection of cracks in a 

multiple-rivet-hole lap joint is considered by analytical-FEM simulation which is an 

effective tool for the analysis in contrast to costly experimental investigation. Harmonic 

analysis is performed to the small-size 3-D model of the local damage using FEM. Both 
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symmetric and anti-symmetric Lamb wave modes incident from multiple driections on 

the damage are analyzed and scattered coefficients are calculated around the damage 

corresponding to each incident direction. Wave-damage interaction coefficients (WDICs) 

are used to describe the scattering behaviour of the damage and “scatter cubes” are 

formed for both Lamb wave modes. The transfer function based on exact analytical 

model accompanied by “scatter cube” is used to find out the optimum center frequency of 

the toneburst signal from the actuator and the most damage sensitive location in the 

structure where the sensor can be installed. The most sensitive signal that contain the 

prominent damage signature is obtained analytically. Some simplified cases of the real 

problem has been demostrated through the simulated signals obtained using the combined 

analytical and FEM method. 

1.3 ORGANIZATION OF THE THESIS 

To achieve the objectives set forth in the preceding section, the thesis is organized 

in six chapters. 

The motivation and importance of the research work is discussed in Chapter 1. It 

also introduces the scope, goal and contents of each chapter. 

In Chapter 2, fundamentals of the guided wave theory are briefly reviewed, 

guided wave application to SHM is discussed, and fundamentals of the piezoelectric 

wafer active sensors (PWAS), tuning effect of the bonded PWAS on the structure are 

introduced. 

In Chapter 3, SHM of a multiple-rivet-hole is described, a simplified 

representation of the multiple-rivet-hole is discussed, the concept of wave damage 
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interaction coefficient (WDIC) is illustrated, analytical formulation of WDIC is 

developed for a simple case, the analytical and FEM results are compared. 

In Chapter 4, the local FEM simulation of the combined FEM-analytical approach 

is discussed. The geometric information of the local damage model, modeling of the 

cracks, meshing, boundary conditions and loadings are discussed. The FEM results are 

discussed, the formation of scatter cube from the FEM results are illustrated. The scatter 

cubes of complex-valued WDICs are analyzed using both linear and polar plots. 

In Chapter 5, the overview of the combined FEM-analytical approach is discussed 

and mainly focuses on the analytical part of this approach. It also discusses the coupling 

of the scatter cube into the analytical framework. The chapter presents some simulated 

signals corresponding to some cases of the multiple-rivet-hole problem and provides the 

optimum frequency of excitation and locations of the actuator and sensor. 

In Chapter 6, the conclusions and future work are presented. 
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CHAPTER 2  
FUNDAMENTAL STUDY OF GUIDED WAVES AND PIEZOELECTRIC WAFER 

ACTIVE SENSORS FOR STRUCTURAL HEALTH MONITORING 

Structural health monitoring methods based on elastic waves propagation are very 

diverse and a vast area of study. In order to use ultrasonic elastic waves in nondestructive 

evaluation (NDE) and structural health monitoring (SHM), different types of waves must 

be studied to understand the underlying physical phenomena. This chapter deals with 

fundamentals of elastic waves and then an important class of elastic waves (guided waves) 

that have widespread applications in SHM. Guided waves are especially important for 

SHM because they can travel at large distances in structures with only little energy loss. 

Thus, they enable the SHM of large areas from a single location. Guided waves have the 

important property that they remain confined inside the walls of a thin–wall structure, and 

hence can travel over large distances. In addition, guided waves can also travel inside 

curved walls. These properties make them well suited for the ultrasonic inspection of 

aircraft, missiles, pressure vessels, oil tanks, pipelines, etc. This study will also serve as 

the theoretical prerequisite for the wave modeling and simulation tasks. This chapter also 

introduces fundamental study of Piezoelectric Wafer Active Sensors (PWAS) including 

their working principle, their coupling with guided waves and tuning effect, and their 

operation modes. 
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2.1 GENERAL THEORY OF ELASTIC WAVES  

The fundamentals of guided elastic waves are sited in the study of elastodynamics. The 

backbone of classical elastodynamics is the Navier-Lame equations that represent the the 

equations of motion for homogeneous isotropic lineraly elastic solids [10], i.e.,  

 
2

( ( )u u uλ µ µ ρ+ )∇ ∇⋅ + ∇ =
 

  

  (2.1) 

where, u  is the displacement vector, ρ  is the density, λ  and µ  are the Lame constants.  

2.1.1 WAVE EQUATIONS FOR POTENTIALS 

To construct the solutions of Navier-Lame equations, the displacement fields can be 

considered as the superposition of the gradient of scalar potential Φ  and the curl of the 

vector potential H


. Use the Helmholtz theorem (mentioned originally in ref. [11] and 

then in its translated version [12]) to write 

 u grad curlH H= Φ + = ∇Φ +∇×
dddd  

d  (2.2) 

Substitute Eq. (2.2) into Eq. (2.1) to get 

 { } 2( ( ) ( ) ( )H H Hλ µ µ ρ+ )∇ ∇⋅ ∇Φ +∇× + ∇ ∇Φ+∇× = ∇Φ +∇×
          



  (2.3) 

Upon rearrangement, 

 { }2 2( 2 ( ) ( ) ( ( ) ( )H H Hλ µ µ λ µ ρ+ )∇ ∇ Φ + ∇× ∇ + + )∇ ∇⋅ ∇× = ∇Φ +∇×
         



  (2.4) 

Applying the general vector property ( ) 0H∇⋅ ∇× =
  

 (divergence of any curl is zero), the 

second term drops out. Then, Eq.(2.4) yields 

 2 2( 2 ( ) ( ) ( )H Hλ µ µ ρ+ )∇ ∇ Φ + ∇× ∇ = ∇Φ +∇×
     



  (2.5) 

Combining the similar potentials, Eq. (2.5) can be written as 

 { }2 2( 2 ( ) 0H Hλ µ ρ µ ρ∇ + )∇ Φ − Φ +∇× ∇ − =
   



  (2.6) 

0

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Eq.(2.6) holds true for any space and time, and can be separated into two equations as 

follows 

 2( 2 0λ µ ρ+ )∇ Φ − Φ =  (2.7) 

 2 0H Hµ ρ∇ − =
 

  (2.8) 

Assuming harmonic time variation with circular frequency ω  and defining 

( 2 ) /pc λ µ ρ= +  , /sc µ ρ=  , Eq. (2.7) and (2.8) become 

 
2

2
2 0
pc

ω
∇ Φ+ Φ =   (scalar wave equation) (2.9) 

 
2

2
2 0
s

H H
c
ω

∇ + =
 

  (vector wave equation) (2.10) 

Eq. (2.9) indicates that the scalar potential Φ  propagates with the pressure 

wavespeed pc , whereas Eq. (2.10) indicates that the vector potential H


 propagates with 

the shear wavespeed sc . It can be shown that the pressure waves are irrotational waves 

i.e., have zero rotation, whereas the shear waves are equivolume waves, i.e., they have 

zero dilatation and are known as distortional waves [10]. From now on, we call the scalar 

potential Φ  as pressure potential and the vector potential H


 as shear potential. 

The pressure waves are also known as P waves and shear waves can be divided 

into SV waves and SH waves depending on the polarization of the displacement. SV 

waves have vertically polarized displacement whereas SH waves have horizontally 

polarized displacement. 

2.2 GUIDED WAVES  

Under certain assumptions and boundary conditions the general elastic waves 

turns into guided waves. Ultrasonic guided waves are sensitive to changes in the 
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propagating medium, such as plastic zone, fatigue zone, cracks, delamination, disbonds, 

discontinuity. This sensitivity exists for both surface damage and cross thickness/interior 

damage, because guided waves have various mode shapes throughout the cross section of 

the waveguides.  

The assumption of straight crested wave or circular crested waves make the 

elastic wave problem to be split into two separate cases, (1) SH waves; and (2) P+SV 

waves. The P+SV waves in a plate give rise to the Lamb waves through multiple 

reflections on the plate’s lower and upper surfaces, and through constructive and 

destructive interference. The Lamb waves consists of a pattern of standing waves in the 

thickness direction also known as Lamb wave modes. 

2.2.1 SHEAR HORIZONTAL PLATE WAVES 

Shear horizontal (SH) plate waves have a shear-type particle motion contained in 

the horizontal plane. Figure 2.1 shows the coordinate definition and particle motion of 

SH plate waves. According to the coordinate defined, an SH wave has the particle motion 

along the z  axis, whereas the wave propagation takes place along the x  axis. The 

particle motion has only the zu  component.  

The phase velocity dispersion curve of the SH plate wave can be calculated as 

 
2

2

( )

1 ( )

S

S

cc
cd

d

ω

η
ω

=
 −  
 

 (2.11) 

where η  is given in Eq. (2.12) and d  is the half plate thickness. 

 
2 2

2
2 2
Sc c

ω ωη = −  (2.12) 
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By substituting the appropriate eigenvalue, one may obtain an analytical expression for 

the wave-speed dispersion curve of each SH wave mode. For detailed expressions, the 

readers are referred to ref.[18]. 

 

Figure 2.1: Coordinate definition and particle motion of SH plate waves[18]. 

 

Figure 2.2: (a) SH plate wave-speed dispersion curves; (b) symmetric mode shapes; (c) 
antisymmetric mode shapes[18]. 

(b) 

(a) 

(c) 
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Figure 2.2 shows the wave-speed dispersion curve of SH plate waves and the 

mode shapes. It can be noticed that the fundamental symmetric mode (S0) wave is non-

dispersive and always exists starting from low frequency-thickness product values. This 

nice property makes it a good candidate as the interrogating waves in SHM systems. 

Recently, considerable research has been carried out on the transmission and reception of 

SH plate wave for SHM [19][20]. Higher wave modes only appear beyond the 

corresponding cut-off frequencies, showing dispersive characteristics, i.e., their phase 

velocity changes with frequency. For dispersive waves, group velocity is usually used to 

evaluate the propagation of wave packets. The definition of group velocity is given in Eq. 

(2.13). 

 g
dc
d
ω
ξ

=  (2.13) 

2.2.2 INCEPTION OF GAUGE CONDITION 

It can be noted from Eq. (2.2) that three components of displacement are 

represented by the four components of potential functions. Hence, the new system of 

potential formulation needs additional condition to mitigate the requirement of additional 

unknown. This additional condition may be derived from the Navier-Lame equations. 

Now let’s take a look at the dropped out term in Eq.(2.4), i.e., 

 { }( ( ) 0Hλ µ+ )∇ ∇⋅ ∇× =
   

 (2.14) 

Using the vector property { } { }( ) ( )H H∇ ∇⋅ ∇× = ∇× ∇ ∇⋅
       

, Eq. (2.14) can be written as 

 { }( ( ) 0Hλ µ+ )∇× ∇ ∇⋅ =
   

 (2.15) 

But ( 0λ µ+ ) ≠ , hence, Eq. (2.15) can be written as 
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 { }( ) 0H∇× ∇ ∇⋅ =
   

 (2.16) 

Letting, H∇⋅ = Γ
 

, a scalar quantity, Eq. (2.16) becomes 

 { }) 0∇× ∇Γ =
 

 (2.17) 

Eq. (2.17) represents the vector property that curl of any gradient field is zero. 

Thus, Γ  can be chosen arbitrarily without affecting the generality of the solution; this is 

called gauge invariance. This is similar to the gauge invariance used in solving the 

Maxwell’s equations in electrodynamics through the potential approach (see section 2.5 

of chapter 2 of ref. [13]). Owing to the uniqueness of the physical problem, any solution 

that satisfies the Navier-Lame equations be the unique solution to the problem, regardless 

of the value assumed by Γ . 

The selection of the gauge depends on the nature of the problem. The simplest gauge 

condition may be selected as 

 Γ = ∇⋅Η = 0
 

 (2.18) 

 However, the formula given in Eq.(2.18) is not the only possible form of the 

gauge condition; in fact, a multitude of alternative forms exist [13] as used in 

elastodynamics [10](pg. 465 )[14], and electrodynamics [15] [16] [17]. 

2.2.3 STRAIGHT CRESTED LAMB WAVES 

Lamb waves are a type of ultrasonic waves that are guided between two parallel 

free surfaces, such as the upper and lower surfaces of a plate. Lamb waves can exist in 

two basic types, symmetric and antisymmetric. Figure 2.3 shows the particle motion of 

symmetric and antisymmetric Lamb waves. The Lamb wave motion has asymptotic 

behavior at low frequency and high frequency. At low frequency, the symmetric mode 
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resembles axial waves, while the antisymmetric mode resembles flexural waves. At high 

frequency, both symmetric and antisymmetric wave approaches Rayleigh waves, because 

the particle motion is strong at the surfaces and decays rapidly across the thickness. The 

axial wave and flexural wave, by their nature, are only low frequency approximations of 

Lamb waves. The plate structure cannot really sustain pure axial and flexural motion at 

large frequency-thickness product values. 

 

Figure 2.3: Particle motion of Lamb wave modes: (a) symmetric mode and (b) 
antisymmetric mode [18]. 

The straight crested Lamb wave equations are derived under z-invariant 

assumptions using pressure wave and shear vertical wave (P+SV) waves in a plate. 

Through multiple reflections on the plate’s lower and upper surfaces, and through 

constructive and destructive interference, the pressure waves and shear vertical waves 

give rise to the Lamb–waves, which consist of a pattern of standing waves in the 

thickness y–direction (Lamb–wave modes) behaving like traveling waves in the x–

(a) 

Symmetric Lamb wave mode 

(b) 

Antisymmetric Lamb wave mode 
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direction. For detailed derivation of Lamb wave equations, readers are referred to ref. 

[10][18][21]. The Rayleigh-Lamb equation has been obtained as characteristic equation 

of the wavenumbers, i.e., 

 
( )

1
2

22 2

tan 4
tan

S P S

P S

d
d

η η η ξ
η ξ η

±
 − =
 − 

 (2.19) 

where +1 exponent corresponds to symmetric Lamb wave modes and -1 exponent 

corresponds to antisymmetric Lamb wave modes. d  is the half plate thickness, and ξ  is 

the frequency dependent wavenumber. Pη  and Sη  are given in Eq. (2.20). λ  and µ  are 

Lame’s constants of the material, and ρ  is the material density. 

 
2 2

2 2 2 2
2 2

2; ; ; ;P S p s
p s

c c
c c
ω ω λ µ µη ξ η ξ

ρ ρ
+

= − = − = =  (2.20) 

 

Figure 2.4: (a) Wave speed dispersion curve; (b) wavenumber dispersion curve [22] 

Figure 2.4 shows the dispersion curves of aluminum plates calculated from the 

Rayleigh-Lamb equations. It can be noticed at least two wave modes (the fundamental 

0 1000 2000 3000 4000 5000
0

2

4

6

8

10
Wave Speed Dispersion Curve

fd (Hzm)

P
ha

se
 v

el
oc

ity
 (

km
/s

)

 

 

0 1000 2000 3000 4000 5000
0

2

4

6

8

10
Frequency Wavenumber Dispersion Curve

fd (Hzm)

W
av

en
um

be
r 

(r
ad

/m
m

m
)

 

 

A0 

S0 

A1 A2S2S1 S3

 

A3

 

A4

 

S4

 

A0

 

S0 

A1 S1

S2 A2

A3

 

S3

 A4 S4 

Wave speed dispersion curve Wavenumber dispersion curve 

 (Hz·m)  (Hz·m) 

Ph
as

e 
ve

lo
ci

ty
 (k

m
/s

) 

W
av

en
um

be
r (

ra
d/

m
m

) 

(a) (b) 

18 



 

symmetric mode: S0; the fundamental antisymmetric mode: A0) exist simultaneously. 

Beyond the corresponding cut-off frequencies, higher Lamb modes will participate in the 

propagation. At small frequency-thickness product values, the S0 mode is less dispersive 

than A0 mode, and all the Lamb wave modes converge to non-dispersive Rayleigh waves 

at large frequency-thickness product values. The dispersive and multi-mode nature of 

Lamb waves adds complexity in both Lamb wave propagation modeling and SHM 

application. 

In their multi-modal and dispersive nature, Lamb waves also have complicated 

frequency dependent mode shapes associated with particle motion across the plate 

thickness. Even for certain Lamb modes, the mode shape changes under different 

frequencies. The displacement mode shapes can be calculated using Eq. (2.21) and Eq. 

(2.22)[18]. 

For symmetric Lamb modes: 

( )

( )

2 2 2

2 2

( , , ) 2 cos cos ( )cos cos

( , , ) 2 cos sin ( ) cos sin

i x tS S
x S S P S S P S

i x tS S
y P S S P S P S

u x y t iC d y d y e

u x y t C d y d y e

x ω

x ω

x η η η η x η η η

xη η η η xx  η η η

−

−

 = − + − 
 = + − 

 (2.21) 

For antisymmetric Lamb modes: 

( )

( )

2 2 2

2 2

( , , ) 2 sin sin ( )sin sin

( , , ) 2 sin cos ( )sin cos

i x tA A
x S S P S S P S

i x tA A
y P S S P S P S

u x y t iC d y d y e

u x y t C d y d y e

x ω

x ω

x η η η η x η η η

xη η η η xx  η η η

−

−

 = − − 
 = + − 

 (2.22) 

where SC  and AC  determine the mode shape amplitudes; y  is the location of interested 

point across the plate thickness; i  is the imaginary unit; x is the coordinate along 

propagation direction. 

Figure 2.5 shows the mode shapes of fundamental S0 and A0 Lamb waves in a 2-

mm aluminum plate under various frequencies. It can be observed that for certain Lamb 
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mode, the mode shapes vary a lot with frequency. Within low frequency range, the mode 

shapes show that S0 and A0 Lamb modes could be approximated by axial and flexural 

wave motion. However, within high frequency range, the mode shapes become more 

complicated and deviate from the axial-flexural approximation. And, at even higher 

frequency, e.g. at 10 MHz, the particle motions are mainly near the top and bottom 

surfaces of the plate, while the particles in the middle of the plate undergo very small 

oscillation. This shows that at high frequency range, Lamb modes converge to Rayleigh 

waves. 

 

Figure 2.5: Mode shapes of S0 and A0 Lamb waves in a 2-mm thick aluminum plate[22] 
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2.2.4 CIRCULAR CRESTED LAMB WAVES 

In their practical applications, the interrogating Lamb waves generated by a 

transmitter will propagate out in a circular crested wave front instead of a straight crested 

wave front, because the transmitter can be considered as a point source compared with 

the large inspection area. With the wave propagating outward, this amount energy is 

distributed on a larger area. Thus, the amplitude of the interrogating wave is strong near 

the wave source and decays along the propagation direction. The circular crested Lamb 

wave solution can capture these effects due to outward propagation pattern. 

A detailed and rigorous derivation of circular crested Lamb waves is well 

documented in[18]. The derivation of circular crested Lamb waves is found to be more 

appropriate in a cylindrical coordinate system shown in Figure 2.6a. The derivation 

arrives at the same Rayleigh-Lamb equation as Eq. (2.19), which means the circular 

crested Lamb waves propagate with the same wave speed as the straight crested Lamb 

waves. 

 

Figure 2.6: (a) Cylindrical coordinate for problem derivation[18]; (b) circular crested 
wave pattern. 
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The propagation pattern of circular Lamb waves admits the Bessel and Hankel 

function family solution. The Bessel functions 0J  and 1J  is appropriate for standing 

waves, and the Hankel functions ( )1
0H  and ( )1

1H  are appropriate for propagating waves. 

The first kind Hankel functions ( ( )1
0H  and ( )1

1H ) describes an outward propagating wave 

field, when i te ω−  is chosen as the convention for the derivation. While, the second kind 

Hankel functions ( ( )2
0H  and ( )2

1H ) describes an outward propagating wave field, when 

i te ω  is chosen as the convention for the derivation. The mode shape solutions for the 

circular crested Lamb waves are given below for outward propagating wave fields. 

Symmetric Lamb modes: 

 
( )

( )

2 2 2 (1)
1

2 2 (1)
0

( , , ) 2 cos cos cos cos ( )

( , , ) 2 cos sin cos sin ( )

S S i t
r S S P S S P S

S S i t
z P S S P S P S

u r z t C d z d z H r e

u r z t C d z d z H r e

ω

ω

ξ z z z z ξ z z z ξ

ξ z z z z ξ z z z ξ

−

−

 = − − 
 = + − 

 

  (2.23) 

Antisymmetric Lamb modes: 

 
( )
( )

2 2 2 (1)
1

2 2 (1)
0

( , , ) 2 sin sin sin sin ( )

( , , ) 2 sin cos sin cos ( )

A A i t
r S S P S P S

A A i t
z P S S P S P S

u r z t C d z d z H r e

u r z t C d z d z H r e

ω

ω

z ξ z z ξ z z z ξ

ξ z z z z ξ z z z ξ

−

−

 = − − − 
 = + − 

 

  (2.24) 

where SC  and AC  are the amplitude factor for symmetric mode and antisymmetric mode, 

and can be determined from the wave generation calculation. ,P Sζζ   are defined as 

 
2 2

2 2 2 2
2 2;P S
P Sc c
ω ωζ ξ ζ ξ= − = −  (2.25) 
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It can be observed from Eq. (2.23) and Eq. (2.24), that the in-plane radian direction 

motion accepts the solution of the first kind Hankel function of order one ( (1)
1H ), while 

the out-of-plane direction motion accepts the solution of the first kind Hankel function of 

order zero( (1)
0H ). Figure 2.6b shows a typical outward propagation wave pattern 

calculated using Hankel function (1)
0H , describing an out-of-plane wave motion. It can be 

noticed that the wave amplitude at the wave source (coordinate center) is strong, and it 

decays as it propagates out. Figure 2.7 shows the plots of Hankel functions of order zero 

and order one. It can be noticed that the amplitude is high near the origin of R , and 

beyond certain distance, the amplitude becomes stable and changes more gradually 

compared with the origin range of R. 

 

Figure 2.7: Hankel function of order zero ( ( ) ( )1
0H R ) and order one ( ( ) ( )1

1H R ). 

Lamb wave field eradiating from a point source takes the following solution[18][23]: 

 ( ) ( ) ( )1
1

1

i t
r n n

n
u a z H r e ωξ

∞
−

=

=∑  (2.26) 

0 10 20 30 40 50
-1.5

-1

-0.5

0

0.5

1

1.5

0 10 20 30 40 50
-1.5

-1

-0.5

0

0.5

1

1.5
  

A
m

pl
itu

de
 

  

 

 

 

 

23 



 

where ru  is the radial displacement, ( )na z  is the thickness dependent modeshape 

of wave mode number n , and ( )1
1H  is the first kind Hankel function of order one. 

2.2.5 CIRCULAR CRESTED SH WAVES 

For circular crested SH waves axisymmetry ( / θ∂ ∂ ≡ 0 ) applies. Shear horizontal 

(SH) waves irradiating from a point source can be derived starting from the governing 

equation under axisymmetric assumption. 

 
2

2
2 2 2

1

S

u uu
r c t
θ θ

θ
∂

∇ − =
∂

 (2.27) 

Where uθ  is the tangential displacement, Sc  is the shear wavespeed. 

In polar coordinate system, Eq. (2.27) becomes 

 
2 2

2 2 2 2

1 1

S

u u u u
r r r r c t
θ θ θ θ∂ ∂ ∂
+ − =

∂ ∂ ∂
 (2.28) 

Assuming a harmonic wave field 

 
2

2
2;i t uu Ue u

t
ω θ

θ θω− ∂
= = −

∂
 (2.29) 

Substitution of Eq. (2.29) into Eq. (2.28) yields 

 ( )
( )

( ) ( ) ( )
22 2

2 ( ) 1 0SH SH SH
SHSH

u ur r r u
rr

θ θ
θξ ξ ξ

ξξ

∂ ∂
+ + − =

∂∂
 (2.30) 

where /SH
scξ ω=  is the wavenumber of SH waves. Letting SHx rx= , y uθ= , and ν =1 , 

Eq. (2.30) can be cast into the Bessel equation of order ν . 

 ( )
2

2 2 2
2 0d y dyx x x y

dx dx
ν+ + − =  (2.31) 

Eq. (2.30) can be immediately recognized as the Bessel equation of order one and accepts 

the following solution for outward propagating waves. 
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 ( ) ( ) ( )1
1

1

SH i t
n n

n
u b z H r e ω
θ ξ

∞
−

=

=∑  (2.32) 

where ( )nb z  is the modeshape of the nth SH mode, and ( )1
1H  is the first kind Hankel 

function of order one. 

2.3 STRUCTURAL HEALTH MONITORING USING GUIDED WAVES 

Structural Health Monitoring (SHM) is an area of growing multi-disciplinary field 

with wide applications. This technology evolves from the conventional nondestructive 

evaluation (NDE) and conditional based maintenance (CBM), where the damage 

detection and evaluation are done in a schedule based or conditional based manner. In 

contrast with NDE and CBM, SHM aims at developing real-time or on-demand damage 

detection and characterization systems for evaluation of structural health status. Within 

the scope of SHM, guided wave techniques are favorable for their capability of 

interrogating large areas of structure from a single location. In this section, fundamental 

SHM concepts are introduced, prevalent guided wave techniques are covered, and key 

points in guided wave based SHM are discussed. 

2.3.1 STRUCTURAL HEALTH MONITORING CONCEPTS 

General sensing technology can be cast into two methodological categories: (1) 

active sensing and (2) passive sensing. Active sensing procedure has three main 

advantages for SHM applications: (1) it allows the real-time and on-demand inspection of 

the structures; (2) the excitation can be optimized for the most sensitive and effective 

response for damage detection; (3) the active sensing procedure is repeatable, which 

allows the comparison between two independent interrogations (a baseline data and a 

current status data). Passive sensing systems only passively record events which 

happened during an interested period of time. By analyzing the recorded signal, diagnosis 
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can be made on the health status of the structure. Examples of passive sensing SHM can 

be found in the acoustic emission (AE) monitoring and impact detection, where passive 

sensors are triggered by crack advancing or impact events. By analyzing the AE or 

impact signal, location of the AE or impact source can be identified. In contrast to 

passive sensing, active sensing methods interrogate the structures with defined 

excitations, and record the corresponding response. By analyzing the response, diagnosis 

can be made. 

A schematic representation of a generic SHM system is shown in Figure 2.8. The 

active sensors clusters are implemented on the critical areas of high monitoring interest, 

such as airplane wines, engine turbines, fuselage, and fuel tank. Permanently bounded on 

the host structures, the sensors can actively interrogate large areas from local cluster 

zones in a real-time or on-demand manner, gathering sensing data to the data 

concentrators. These data concentrators will transmit the data to the SHM processing unit, 

where the data will be processed and diagnosis will be made. 

 

Figure 2.8: Schematic representation of a generic SHM system, consisting of active 
sensors, data concentrators, wireless communication, and SHM central unit[24]. 
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2.3.2 GUIDED WAVE TECHNIQUES 

The guided wave techniques include pitch-catch, pulse-echo, electro-mechanical 

impedance spectroscopy (EMIS), phased array, and sparse array time-reversal imaging 

method. There are some nonlinear techniques as well that deal with the higher harmonic 

generation, subharmonic generation, and mixed frequency response [22]. 

The pitch-catch active sensing method in SHM is shown in Figure 2.9. One 

transducer (sensor 1) acts as the transmitter and radiates the guided waves, and another 

transducer acts as the receiver and pick up the sensing signal. In the pristine case 

(baseline), the interrogating waves are generated by the transmitter, propagate along the 

structure, and are picked up by the receiver. In the damaged case, the interrogating waves 

generated by the transmitter, propagate along the structure, interact with the damage, 

carry the damage information with them, and are finally picked up by the receiver. The 

subtraction between these two states reveals the damage scattering response, which may 

indicate the presence and severity of the damage. 

 

Figure 2.9: Pitch-catch active sensing: (a) baseline response; (b) response with damage; 
(c) scattered response [25] 

(a) (b) (c) 

27 



 

Several sensors may work together in a systematically designed manner forming a 

sensor network and achieve more complicated diagnostic approaches. Advanced damage 

imaging techniques have been developed using phased array and sparse array. Giurgiutiu 

and Bao[26] investigated the embedded-ultrasonics structural radar (EUSR) for in situ 

monitoring of thin-wall structures. Figure 2.10a shows the 1-D phased array EUSR and 

its imaging result of a crack. Yu and Giurgiutiu [27] further extended the EUSR principle 

to 2-D phased array using 64 sensors. Wang et al.[28] proposed the synthetic time-

reversal imaging method for structural health monitoring. Figure 2.10b shows the sparse 

array with four sensors and its imaging result using time-reversal method. 

 

Figure 2.10: (a) Phased array imaging using EUSR [26]; (b) sparse array imaging using 
time-reversal method[28]. 

(a) Phased array (EUSR) (b) Sparse array (time-reversal) 
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Figure 2.11: (a) Electro-mechanical coupling between the PZT active sensor and the 
structure[29]; (b) EMIS spectrum[30]. 

In addition to traveling wave techniques, the EMIS is a standing guided wave 

SHM method. The continuous harmonic excitation of a transducer will excite the 

structure with guided waves, which will be reflected by structural boundaries and damage, 

forming standing waves between the wave source and the reflectors. This standing wave 

formation will result in local mechanical resonance, which will be shown in the electrical 

response through the electro-mechanical coupling. Figure 2.11a shows the electro-

mechanical coupling between the transducer and the structure. Figure 2.11b is a typical 

EMIS spectrum, showing that the damaged case spectrum deviates from the pristine case. 

2.4 PIEZOELECTRIC WAFER ACTIVE SENSORS 

Recently emerged piezoelectric wafer active sensors (PWAS) have the potential 

to improve the SHM technology significantly. PWAS are small, lightweight, inexpensive, 

and can be produced in different geometries. They are convenient enablers for generating 

and receiving guided waves. A PWAS mounted on the structure is shown in Figure 2.12.  

(a) (b) 
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Figure 2.12: Piezoelectric wafer active sensors (PWAS). 

They can be permanently bonded on host structures in large quantities and 

achieve real-time monitoring of the structural health status. They couple with the 

structure through in-plane motion and generate Lamb waves, which makes them suitable 

for inspection large areas of interest. 

2.4.1 PWAS PRINCIPLES AND OPERATION MODES 

Piezoelectric wafer active sensors (PWAS) couple the electrical and mechanical 

effects (mechanical strain, ijS , mechanical stress, klT , electrical field, kE , and electrical 

displacement, jD ). The piezoelectric constitutive equations in tensor notations can be 

written as 

 
E

ij ijkl kl kij k

T
j klj kl jk k

S s T d E

D d T Eε

= +

= +
 (2.33) 

where E
ijkls  is the mechanical compliance of the material measured at zero electric field 

( 0E = ), T
jkε  is the dielectric permittivity measured at zero mechanical stress ( 0T = ), and 

kljd  represents the piezoelectric coupling effect. PWAS utilize the 31d  coupling between 

in-plane strains, 1 2,S S  and transverse electric field 3E . 

PWAS transducers can be used as both transmitters and receivers. Their modes of 

operation are shown Figure 2.13. PWAS can serve several purposes[18]: (a) high-

PWAS 
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bandwidth strain sensors; (b) high-bandwidth wave exciters and receivers; (c) resonators; 

(d) embedded modal sensors with the electromechanical (E/M) impedance method. By 

application types, PWAS transducers can be used for (i) active sensing of far-field 

damage using pulse-echo, pitch-catch, and phased-array methods, (ii) active sensing of 

near field damage using high-frequency E/M impedance method and thickness gage 

mode, and (iii) passive sensing of damage-generating events through detection of low-

velocity impacts and acoustic emission at the tip of advancing cracks (Figure 2.13). The 

main advantage of PWAS over conventional ultrasonic probes is in their lightweight, low 

profile, and low cost. In spite of their small size, PWAS are able to replicate many of the 

functions performed by conventional ultrasonic probes. 

 

Figure 2.13: Schematic of PWAS application modes [18]. 

2.4.2 PWAS COUPLED GUIDED WAVES AND TUNING EFFECT 

Figure 2.14 shows the coupling between PWAS and the host structure, and 

illustrates how PWAS transducers generate Lamb waves. When an oscillatory electric 
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voltage at ultrasonic frequencies is applied on PWAS, due to the piezoelectric effect, a 

oscillatory strain is induced to the transducer. Since the structure constrains the motion of 

PWAS, the reacting force from the bonding layer will act as shear stress on the host 

structure and generate wave motion. 

 

Figure 2.14: Lamb wave generation using PWAS transducers[18]  

The Lamb wave amplitude excited by PWAS depends on the PWAS size, plate 

thickness, and excitation frequency. For a given PWAS and plate geometry, the 

amplitudes of Lamb modes changes with frequency. It was found that tuning possibility 

exists for generating single Lamb mode with PWAS transducers. The tuning effect is 

important because it overcomes the multimode difficulty for Lamb wave applications. 

The analytical expression on tuning effect was first developed by Giurgiutiu[31] as 

( ) ( )
( )

( ) ( )
( )

( )0
' '

, (sin ) (sin )
S A

S A

S A
i x t i x tS AS A

x S A
S A

N Nax t i a e a e
D D

x ω x ω

xx

xx texx 
µ xx

− − − −  = − + 
  
∑ ∑  (2.34) 

Figure 2.15 shows the tuning curve for 7 mm PWAS and 1.6 mm thick aluminum 

plate situation. It is apparent that the amplitudes of S0 and A0 Lamb modes excited by 

the PWAS transducer change with frequency. Around 300 kHz, A0 Lamb mode reaches 

 

h =
 2d

 

λ/2 

PWAS  ~ V(t) 

S0 Lamb mode A0 Lamb mode 
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the rejecting point where no A0 mode Lamb wave will be excited. This is a sweet spot for 

generating only S0 wave mode for structural inspection. 

 

Figure 2.15: (a) Strain Lamb wave tuning results from analytical solution; (b) 
Experimental results from PWAS response[31]. 

(a) (b) 
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CHAPTER 3  
SCATTERING OF GUIDED WAVES FROM RIVET HOLE WITH BUTTERFLY 

CRACKS 

Scattering of guided waves retain a central function in the development of structural 

health monitoring (SHM) systems. This study focuses on guided plate waves, i.e. Lamb 

waves, which are guided and propagate in thin wall structures. The modeling of Lamb 

waves is challenging, because Lamb waves propagate in structures with multi-mode 

dispersive characteristics. At a certain value of the plate thickness-frequency product, 

several Lamb modes may exist simultaneously, and their phase velocities vary with 

frequency [10][18]. When Lamb waves interact with damage, they will be transmitted, 

reflected, scattered and mode converted. This chapter presents the theory behind the 

guided wave scattering from the damage in the thin plate structures. 

 

3.1 DESCRIPTION OF THE SHM OF MULTIPLE-RIVET-HOLE LAP JOINT  

A multiple-rivet-hole lap joint with active transmitting-sensing sensors of an 

SHM system is illustrated in Figure 3.1. When electrical voltage is supplied to the 

piezoelectric transmitter (actuator), it generates mechanical excitation in the structure and 

produces Lamb waves that propagate in the structure. The Lamb waves interact with the 

damages that act as the secondary sources of guided waves. The scattered guided waves 

propagate in the structures and received by the piezoelectric sensor. Actuator dispatches 

Lamb waves to each of the rivet holes at a certain angle that can be calculated from the
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standoff distance (L) and pitch (P) of each rivet hole (Figure 3.1). The scattering 

phenomenon depends on the direction (θ ) of incident Lamb waves as well as the azimuth 

direction (Φ ) around the damage (the azimuth direction Φ  corresponds to the sensor 

placement direction). 

 

Figure 3.1: Illustration of the multiple-rivet-hole lap joint 

The secondary source (cracked rivet hole) is asymmetric for a certain angle of 

incident Lamb waves, hence, it acts as a non-axisymmetric secondary source of scattered 
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waves. The scattered waves contain scattered Lamb waves and SH waves Understanding 

the non-axisymmetric scattered waves around the damage provides the ability to better 

detect the emanating cracks in the rivet holes. The actuator and sensor installment as well 

as the excitation frequency depend on the non-axisymmetric behavior of the scattered 

guided waves. The design of proper transducer installation and selection of the center 

frequency of excitation enable capturing the better damage signature originating from the 

cracks of the rivet holes. 

Since no closed form solution exists for the non-axisymmetric scattered waves, a 

combined analytical and finite element modeling has been introduced in the present study. 

Exact closed form analytical formulation has been used for the propagation of Lamb 

waves from the actuator up to the damage in the structure. The interaction of the Lamb 

waves with the local damage is modeled using finite element analysis and the non-

axisymmetric behaviors of the scattered waves is captured through the wave damage 

interaction coefficients (WDICs) and scatter cubes. The concept of WDIC is discussed in 

Section 3.3. 

3.2 INTERACTIONS OF LAMB WAVES FROM MULTIPLE DIRECTIONS  

In order to solve the problem of multiple-rivet-hole splice joint, it is important to 

understand the scattering phenomenon of Lamb waves incident on the damage from 

multiple directions. Figure 3.2 shows that Lamb waves are incident on an arbitrary 

damage (rivet hole with cracks in the present study) from multiple directions. The 

incident direction of Lamb wave is denoted as θ . After hitting the damage the scattered 

waves are generated and directed azimuthally for each incident direction.  The azimuth 

direction is denoted as Φ  . The transmitter PWASs are located around the damage and 
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transmitting signals from various directions that simulate the Lamb wave incident from 

multiple directions.  The scattered coefficients for the scattered waves are to be recorded 

at different sensing angles (Φ ) around the sensing boundary for each transmitting angle 

(θ ). The scattered coefficient needs to be recorded for the frequencies of interest. The 

corresponding complex-valued WDICs can form a form a “scatter cube” as shown in 

Figure 3.2(b). The three dimensions of the “scatter cube” contain the WDICs for the 

variation of frequencies, angles of transmitting PWASs, and angles of sensors. These 

WDICs can describe complicated 3-D interaction between the interrogating waves and 

damage, i.e., scattering and mode conversion. Two scatter cubes are needed for analyzing 

the interaction of two Lamb wave modes (S0 and A0). 

 

Figure 3.2: (a) Azimuthally scattering of Lamb waves incident from multiple directions 
(b) “Scatter cube” of WDICs 

The representation in Figure 3.2a gives the building block of analyzing the 

problem as shown in Figure 3.1.  However, it does not consider the interactions of 

scattered waves among the adjacent rivet holes and with the edge of the riveted plates as 
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shown in Figure 3.1. The incorporation of these two effects would invite more 

complexities in the scattered waveform. These two effects are not considered in the 

present study and would be focus of a future study. 

3.3 CONCEPT OF WAVE DAMAGE INTERACTION COEFFICIENT (WDIC) 

Several researchers have studied the interaction between guided waves and 

damage analytically using normal-mode expansion and boundary-condition matching 

[32][33][34]. Damage interaction coefficients were derived to quantify the guided-wave 

transmission, reflection, mode conversion, and scatter at the damage site. Due to their 

mathematical complexity, these analytical solutions are restricted to simple damage 

geometries: notches, holes, or partial through holes. Wave damage interaction coefficient 

(WDIC) may describe the 3D interactions of the incoming waves and the scattered waves. 

To clarify the idea of WDIC, let us consider an incoming wave of displacement field 

( INu ) is striking an arbitrary damage at an incident angle θ  as shown in Figure 3.3. The 

damage located at the center of the segment generate scattered waves are in multiple 

azimuth directions Φ . The scattered displacement fields ( SCu ) are recorded at the sensing 

boundary located at radius r .  The incident displacement field coming towards the center 

of the damage and the scattered displacement field recorded at the sensing boundary 

follows a certain relation [35], i.e., 

 ( ) ( ) ( ) ( ) ( ) ( )φ φ ω,θ,Φ 1 φ ω,θ,Φω,θ,Φ ξ ω,θ,Φ
A B
IN SCi i iA B B

IN AB m SCu e C e H r u eAB− − −=  (3.1) 

where φ INi

INu e
Α

−Α  represents any incident mode A at the center of the damage; 

( ) ( )φ ω,θ,Φω,θ,Φ AB
i

AB
C e−  represents the amplitude ( )ω,θ,Φ

AB
C  and phase ( )φ ω,θ,ΦABie−  of WDIC; r  is 

the radius of sensing boundary; ( ) ( )1 ξ B

m
H r  is the Hankel function of 2-D scattered wave 
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field ( B ) propagates in outward direction with m = 1. AB
C  stands for the incident A wave 

mode to the scattered B wave mode that depends on the direction of incident Lamb wave, 

azimuthal direction of the damage and the circular frequency. On the right side 

( ) ( )φ ω,θ,Φω,θ,Φ
B
SCiB

SCu e−  represents the scattered displacement field along the sensing boundary 

of radius r . 

 

Figure 3.3: Extraction of WDIC from a damaged segment 

Upon rearrangement Equation (14) yields 

 ( ) ( ) ( )
( ) ( )

( )φ ω,θ,Φ φ ω,θ,Φ
1

ω,θ,Φ 1
ω,θ,Φ

ξ
AB AB

B
i iSC

AB A B
IN m

u
C e e

u H r
− − ∆=  (3.2) 

where, ( ) ( )φ ω,θ,Φ φ ω,θ,Φ φB A
SC INAB∆ = − . From Equation (15) the amplitude and 

phase may be separated as 
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u H r
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For instance, when incident symmetric Lamb wave mode (S0 mode) causes 

scattered S0 mode then both A and B corresponds to the parameters of S0 mode. When 

incident S0 mode causes scattered symmetric SH mode then A corresponds to the 

parameters of S0 mode but B corresponds to the SH wave mode. Similarly when incident 

A0 mode causes scattered symmetric A0 mode then A corresponds to the parameters of 

A0 mode and B corresponds to the A0 wave mode. 

3.4 SEPARATION OF SCATTTERED WAVE MODES 

The wave fields of the local damage model can be solved using finite element 

method (The detail will be discussed in Chapter 4) and the displacement wave fields can 

be obtained throughout the local damage model. To identify the scattered wave modes 

two sensing boundaries can be used: one on the top surface of the plate and the other on 

the bottom surface of the plate. The sensing boundary located on the top surface of the 

plate gives the radial and tangential displacement components at each sensing node 

denoted as T
ru and Tuθ . The sensing boundary located on the bottom surface of the plate 

gives the radial and tangential displacement components at each sensing node denoted as 

B
ru and Buθ   The radial and tangential displacement components of the top and bottom 

sensing nodes are used to selectively separate each wave mode, as follows: 

 0 00 0; ; ;  
2 2 2 2

S A

T B T BT B T B
SH SHS Ar r r r

SC SC SC SC
u u u uu u u uu u u uθ θ θ θ+ −+ −

= = = =  (3.5) 

It should be clearly noted that in this study we focused on the fundamental Lamb 

wave modes (S0 and A0) and fundamental shear horizontal mode (SH0). The frequency 

range of our analysis is below the cut off frequencies of the higher Lamb and SH wave 

modes. We denote fundamental 0SSH  mode as SH  mode. The extension of our approach 

to higher modes will be done in a future study. 
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3.5 ANALYTICAL DERIVATION OF WDIC FOR A SIMPLE CASE  

In this section we explain a simple case for better understanding of the concept of 

WDIC. We choose a simple pristine plate (Figure 3.4) to demonstrate the analytical 

WDIC. For the pristine plate it may be possible to derive the analytical expression of the 

WDIC.  

 

Figure 3.4: Equivalent source of a straight-crested Lamb wave 

Let us consider a plane wave front Lamb waves travel in the x+  direction in an 

infinite plate. It generates a uniform wave field all over the pristine plate. At any sensing 

circle (red) of radius r , the wave fields are shown in Figure 3.4a that can be replaced by 

an equivalent source in Figure 3.4b,c. The equivalent source (ES) can be considered as 

the superposition of the two circular crested Lamb and SH wave point sources located at 

origin O. The circular crested Lamb wave takes care of the radial component of the wave 

field as shown in Figure 3.4b and the circular crested SH wave takes care of the 

tangential component of the wave field as shown in Figure 3.4c. Thus we may write,  

 StarightLW CircularLW CircularSHψ ψ ψ= +  (3.6) 
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3.5.1 ANALYTICAL DERIVATION OF WDIC  

Let us consider the displacement field iu  as incident wave field for the straight-

crested Lamb wave. Thus, iu  can be written as 

 0

IN
x

i
IN
z

u
u

u

 
 =  
  

 (Cartesian coordinates) (3.7) 

 
cos( )
sin( )

IN
x

IN
i x

IN
z

u
u u

u

 Φ
 = − Φ 
  

 (cylindrical coordinates) (3.8) 

The displacement field ESu  of the equivalent source placed at the origin O  

equalize the incident displacement field iu , i.e., 

 i ESu u=
   (3.9) 

The equivalent displacement is the vector sum of Lamb and SH wave 

displacements as  

 LW SH
ES ES ESu u u= +
    (3.10) 

The Lamb wave displacement field has components in the radial and thickness 

direction only whereas the SH wave displacement field has component in the tangential 

direction only, i.e., 

 

(1)
1

(1)
1

( ) 0
0 ;    ( )

0

ES
r LW

LW SH ES
ES ES SH

IN
z

u H r
u u u H r

u

ξ
ξΦ

   
   = =   
     

   (3.11) 

where, ES
ru  and ESuΦ  represent the amplitude of the circular crested Lamb and SH 

wave displacement fields; (1)
1H  is the first kind first order Hankel function. 
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Substituting Eq. (3.11) into Eq. (3.10) yields 

 

(1)
1
(1)
1

( )
( )

ES
r LW
ES

ES SH
IN
z

u H r
u u H r

u

ξ
ξΦ

 
 =  
  

  (3.12) 

Substituting Eq.(3.8) and Eq. (3.12) into Eq.(3.9), then comparing the components 

yields 

 (1)
1 ( . ) cos( )ES IN

r LW xu H r ux = Φ  (3.13) 

 (1)
1 ( . ) sin( )ES IN

SH xu H r uxΦ = − Φ  (3.14) 

 

Normalizing Eq.(3.13) and Eq.(3.14) by the incident displacement ( IN
xu ) and 

taking magnitude, WDICs of the Lamb and SH waves can be obtained as 

 cosLW LWWDIC C= Φ  (3.15) 

 sinSH SHWDIC C= Φ  (3.16) 

where, (1)
1

1
( . )LW

LW
C H rξ=  and (1)

1

1
( . )SH

SH
C H rξ=  depend on frequency 

dependent wave number ξ  and sensing circle radius r . Hence, the expressions of the 

WDICs are much simpler for the pristine plate. For a certain frequency and sensing circle, 

the magnitude of WDICs of Lamb wave and SH wave depend on the azimuth direction 

Φ , i.e., 

 cosLWWDIC ∝ Φ  (3.17) 

 sinSHWDIC ∝ Φ  (3.18) 

The polar plot of the WDICs can be shown in Figure 3.5. Both of them have the 

ideal double circle shape. The WDIC for the Lamb wave is a horizontal double circle that 
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indicates that the Lamb wave energy is mostly directed to the forward and backward 

azimuth directions. The WDIC for the SH wave is a vertical double circle that indicates 

that the SH wave energy is mostly directed to the upward and downward azimuth 

directions. It can be noted that both of the WDIC profiles are symmetric about the 

horizontal and vertical lines drawn though the origin. 

 

Figure 3.5: Polar plot of analytically derived (a) WDICLW_LW (b) WDICLW_SH 

3.5.2 COMPARISON BETWEEN ANALYTICAL AND FEM RESULT 

When the Lamb wave incident at 9θ = °  to the horizontal line (Figure 3.6), the 

double-circle 0 _ 0S SWDIC  and 0 _ 0S SHWDIC  also tilted by the same amount of inclination. 

The ideal shapes maintain symmetry about the incident line and its perpendicular line 

drawn through the origin. The polar plot of the analytically derived WDIC profiles 

overlap the WDIC profiles from the FEM as shown in Figure 3.6 for both Lamb wave 

and SH wave. Hence, the analytical and FEM results follow a very good agreement.  

30

210

60

240

90

270

120

300

150

330

1800

30

210

60

240

90

270

120

300

150

330

1800

(a) (b) 

 
 

LW LW 

(1)
1

1
( . )LWH rξ

 

(1)
1

1
( . )SHH rξ

 

44 



 

 

Figure 3.6: analytical and FEM comparison of (a) WDICLW_LW (b) WDICLW_SH, (
0,  ,  486 kHzLW S fθ→ = 9° = ) 
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CHAPTER 4  
LOCAL FINITE ELEMENT SIMULATION 

This chapter presents the Finite Element analysis of the local damage for efficient 

simulation of guided Lamb wave propagation and interaction with damage. The 

development of computation models for Lamb wave propagation and interaction with 

damage is of great importance for both Structural Health Monitoring (SHM) system 

design and signal interpretation. Effective design of SHM systems requires the 

exploration of a wide range of parameters (frequency of excitation, sensor-damage 

relative locations, actuator position, transducer size, interrogating wave characteristics, 

etc.) to achieve the best detection and quantification of certain types of damage. On the 

other hand, active sensing signals using Lamb waves are usually difficult to interpret due 

to the multi-mode, dispersive nature of Lamb waves, and their interaction with damage, 

which involves complicated scattering and mode conversion phenomena. The advantage 

of numerical methods is that they can simulate wave damage interaction phenomena in 

very complicated structures; however, these methods usually require the discretization of 

the analyzed domain and the frequency/time marching procedure. 

 

4.1 STATE OF THE ART 

SHM techniques are increasingly being used for the damage detection and 

characterization in the aerospace structures[36][37][38]. The scattering of Lamb wave 

from the various types of damages were analyzed by many researchers[39][40][33][41]. 
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Norris et al.[32] studied scattering of flexural waves on thin plates and used 

optical theorem to obtain far field scattering from a circular hole. They showed the 

azimuthal variation of the scattered flexural wave amplitude. A statistical approach to 

optimal sensor placement for SHM had been studied by Eric et al.[42] and their approach 

in the active sensing methods to three different types of plates had been demostrated. 

Bayes risk minimization implemented through the genetic algorithm (GA) had been used 

to find out the optimal arrangement of the transducers[43] The statistical model 

parameters were determined experimentally to avoid the difficulty in modeling the 

mechanical behavoiur of the individual transducers. However, artificial surface damages 

were generated at different locations of the plate to implement their statistical approach. 

Paul Fromme et al. [44] used analytical-Finite difference method (FDM) simulation to 

obtain the scattered field around the cracks at rivet holes and presented results at two 

different center frequencies for excitation and compared with the experimental results. 

Lamb waves propagating in an infinite plate containing a circular hole, with or without 

edge cracks, were investigated by Chang and Mal [25] using a hybrid method called the 

global local FEM. However, the research work was limited to the symmetric Lamb 

modes and the incident Lamb wave mode was perpendicular to the crack. Recent 

researches have put emphasis on the simulated results using fast and efficient numerical 

techniques to understand the Lamb wave behaviour prior to implementation of the results 

in the physical structures[34]. Recently, semi-analytical method and small-size numerical 

methods, such as semi-analytical finite element (SAFE) method and distributed point 

source method (DPSM) have been developed to make the computation load 

manageable[45]–[47]. The SAFE method has been used to combine with local finite 
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element models to simulate wave interaction with damage in 1-D wave propagation 

problems, but 2-D wave propagation models have not been achieved. For DPSM method, 

1-D wave propagation and mode conversion at damage have been reported. 2-D wave 

propagation interaction with through thickness damage has been simulated, but 2-D wave 

interaction with rivet hole with butterfly cracks  and Lamb wave directionality effect has 

not been reported using DPSM. Yunju et al.[48] used a hybrid global matrix/local 

interaction simulation approach for modeling wave propagation in composites. The 

formulation uses a finite difference technique and requires time marching procedure. 

Numerical methodes are becoming a popular tool for understanding the complex Lamb 

wave interaction with complicated boundary conditions[49][50]. The scatter field of a 

single rivet hole cracks with single directed (incident) Lamb wave has been described 

introducing the wave damage interaction coefficient(WDIC) and the non-reflective 

boundary (NRB) was implemented to the simulate the infinite plate in a successful 

manner[51]. 

In the present study the interaction of Lamb waves with the cracked rivet hole 

from multiple directions is considered. Both symmetric and antisymmetric Lamb wave 

modes are incident from multiple directions and scattered coefficients are calculated 

around the damage corresponding to each incident direction. The 3D local damage is 

modeled and analyzed using finite element package (ANSYS15) while the Lamb wave 

generation, propagation, damage interaction insertion and detection are modeled using 

the exact analytical expressions. This chapter dedicates to the description of the local 

FEM modeling and results. 
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4.2 DESCRIPTION OF THE FEM MODELING  

Considering the long standoff distance in the multiple-rivet-hole i.e. the excitation 

source (T-PWAS) is far away from the damage (rivet hole with butterfly cracks) as 

shown in Figure 4.1. The actuator (T-PWAS) is dispatching circular crested Lamb waves 

toward the damage. At large distances from the actuator, the behavior of circular-crested 

Lamb waves approaches asymptotically that of straight-crested Lamb waves, but the 

amplitude is affected by the factor which captures the geometric spreading of the circular 

wave front[18]. Considering the long standoff distance in the multiple-rivet-hole, thus, 

it’s a good approximation to use straight crested Lamb modes as incident waves in the 

small local damage region during the nodal load calculations of FEM. 

 

Figure 4.1: Small-size local damage in a large structure 

4.2.5 MODEL GEOMETRY 

A 3D local damage in the plate is modeled for the finite element analysis as 

shown in Figure 4.2. The dimension of the top view of the model is 40 mm x 40 mm  
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with 1.6 mm thickness. A non-reflective boundary (NRB) of 20 mm wide at each side of 

the model is used. The crack length ( 2a ) to diameter ( d ) of the hole ratio of 0.5 is used. 

For example, when the rivet hole diameter is 6.4 mm then the crack length is 1.6 mm on 

each side of the hole. The crack length to diameter ratio is kept low (0.5) so that it 

remains in the crack initiation stage of the crack growth during fatigue loading. The plate 

material is an aircraft grade aluminum-2024-T3. The density and poison’s ratio of the 

plate material is 2700 kg/m3 and 0.33 respectively. 

 

Figure 4.2: Geometric information of the local damage model 

4.2.6 MODELING OF THE CRACKS OF THE RIVET HOLE  

Cracks in the rivet hole are modeled using the discontinuity at the adjacent pair of 

nodes along the cracks. Through thickness crack of crack length to diameter ratio of 0.5 

is modeled. Hence, there are two crack faces along a crack in the rivet hole. In modeling, 

there are two sets of nodes along the crack faces and each set is representing the nodes on 

each face and the nodes are discontinuous along the crack faces. Two sets of nodes are 

adjacent to each other unlike the modeling of notch where there is a small gap between 

those sets of nodes. Like the nodes, the solid elements are also disbanded along the crack 

 
(b) Top view of the model with NRB (a) 3D local damage model 
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faces. The modeling of the cracks in finite element using the above approach is fair 

enough to model the actual cracks of rivet holes in the plate like structure [52]. 

4.2.7 MESHING OF THE MODEL 

Eight node structural elements (SOLID45) are used to mesh the plate in a mapped 

meshing of “O” topology. The spring-damper elements (COMBIN14) are used to 

construct the NRB around the local model. In the thickness direction 0.4 mm mesh size is 

used which is fair enough to capture the thickness modeshapes. The scattered waves 

propagates in-plane directions (local ,x y  directions as shown in Figure 4.2b) and thus 

more denser mesh is required to capture the information in the in-plane directions. At 

least twenty elements per wavelength ( 20ell / ≥  ) are used to capture the detail of the 

propagating scattered waves. Finer meshing is used in the crack region to accommodate 

the high stress gradient and coarser meshing is used away from the crack and outside the 

sensing boundary. 

4.2.8 IMPOSING THE NODAL POINT LOAD 

The 3D view of the local FEM model is shown in Figure 4.3a. Incoming Lamb 

waves are shown as three red signal signs on one face of the model. Lamb mode 

excitation is imposed through nodal forces by evaluating integrals of stress mode shape 

components on the loading nodes. The stress mode shapes are calculated analytically [18] 

and converted into nodal forces through boundary integration on each element along the 

loading line. The element nodal force can be evaluated by using Eq.(4.1) [53]. 

 ( ) ( ) ( ) ( )
0 0

;
e eL L

e e e e e e
ix xx i iy xy iF s N s ds F s N s dss s= =∫ ∫  (4.1) 
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where subscript and superscript e  stands for element, eL  represents the element size, e
ixF  

and e
iyF  are nodal forces in x  and y  direction, i  is the element node number, ( )e

iN s is the 

shape function of selected element type, e
xxσ  and e

xyσ  are the normal and shear stresses 

respectively. In this study, SOLID45 3D eight-node structural elements are used, which 

utilize linear shape function ( ), ,e
iN x y z . Along the thickness direction, it becomes ( )e

iN s , 

which is 1-D interpolation function along the line. 

 ( ) ( )1 21 ;e e

element element

s sN s N s
L L

= − =  (4.2) 

An assembly process enables to obtain the global nodal forces after all the nodal 

forces are obtained. The nodal forces are updated for each calculation step, imposing 

Lamb mode excitation for each excitation frequency. The stress modeshapes and loading 

line along a single line on that face is shown in Figure 4.3b. The Lamb wave modeshapes 

depend on the frequency of excitation. The stress modeshapes of S0 and A0 Lamb wave 

corresponding to a frequency of 250 kHz is shown in Figure 4.3c,d. The stress 

modeshapes for symmetric and antisymmetric Lamb wave are given by the equations 

Eqs.(4.3)-(4.4)  

For symmetric modes: 

( ) ( )

( )( ) ( )

( ) ( )

2 2 2 2 2

2 2

22 2 2

( , , ) 2 2 cos cos ( )cos cos

( , , ) 2 cos cos cos cos

( , , ) 4 cos sin cos sin

i x tS S
xx S S P S P S P S

i x tS S
yy S S S P P S

i x tS S
xy P S S P S P S

x y t C d y d y e

x y t C d y d y e

x y t iC d y d y e

x ω

x ω

x ω

s µxη x η η η η x η η η

s µxη x η η η η η

s µ x η η η η x η η η

−

−

−

 = + − − − 

= − − −

 = + −  

(4.3) 
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Figure 4.3: Imposing nodal forces and the stress modeshapes of incident Lamb waves 

For antisymmetric modes: 

( ) ( )

( )( ) ( )

( ) ( )

2 2 2 2 2

2 2

22 2 2

( , , ) 2 2 sin sin ( )sin sin

( , , ) 2 sin sin sin sin

( , , ) 4 sin cos sin cos

i x tA A
xx S S P S P S P S

i x tA A
yy S S S P P S

i x tA A
xy P S S P S P S

x y t C d y d y e

x y t C d y d y e

x y t iC d y d y e

x ω

x ω

x ω

s µxη x η η η η x η η η

s µxη x η η η η η

s µ x η η η η x η η η

−

−

−

= − + − − −

= − −

= + −

  

 
  

     (4.4) 

4.2.9 IMPOSING NRB AROUND THE MODEL 

Non-reflective boundaries (NRB) can eliminate reflections from the edge of the 

plates, and thus allow for simulation of wave propagation in infinite medium with small-
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size models. In commercial FEM codes, such as ANSYS LS-DYNA solver with NRB 

option and ABAQUS using “solid infinite elements”, non-reflective viscous boundary 

condition has been realized by matching reacting forces at the defined NRB. Lysmer et. 

al [54] found that the matching normal and shear stresses should satisfy 

 P
uc
t

σ ρ ∂
=

∂
 (4.5) 

 S
vc
t

t ρ ∂
=

∂
 (4.6) 

where the reacting stresses on the artificial boundary depends on the normal and 

tangential velocities 
u
t

∂
∂

 and 
v
t
∂
∂

. COMBIN14 spring-damper elements have been used to 

construct a viscoelastic boundary condition for wave propagation problems in seismic 

engineering, and a viscous boundary condition for wave propagation in honeycomb 

plates[55]–[57]. This NRB works well for bulk waves, and in the case of plate guided 

Lamb waves, it works well for S0 mode, but noticeable reflections occur when A0 mode 

interacts with the NRB. 

Shen et al.[51] improved the NRB, making it effective for both symmetric and 

antisymmetric Lamb modes, in 3D FEM using COMBIN14 spring-damper elements. 

Figure 4.4a shows the schematic of COMBIN14 in ANSYS, and Figure 4.4b illustrates 

the method of constructing NRB in a 3D FEM mesh, where each node is connected with 

three COMBIN14 elements in three directions: one normal direction, and two tangential 

directions. To better absorb the boundary reflections, COMBIN14 elements are 

distributed along the target vertical plate surface, the top and bottom surfaces in the 

vicinity of the target boundary. Figure 4.4c illustrates the variation of the damping 

parameter along the NRB portion of the 3D FEM mesh. 
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Figure 4.4: (a) COMBIN14 spring-damper element (ANSYS); (b) 3D NRB construction 
using COMBIN14; (c) COMBIN14 parameter distribution of NRB for Lamb waves[22] 

According to Eqs. (4.5) and (4.6), the spring damper coefficients can be found 

 
0;
0;

N N P Y Z

T T S Y Z

K C c L L
K C c L L

ρ
ρ

= =
= =

 (4.7) 

Besides, when waves interact with the NRB, the sudden change in FEM matrices 

will cause reflections. After a series of numerical experiments, a linear transition 

distribution from zero up to 20%  of the full coefficients (given in Eq.(4.7)) was chosen 

for top and bottom surface COMBIN14 element parameters. This transient distribution 

should cover at least two A0 wavelengths along the propagation direction. The vertical 

plate end was implemented with COMBIN14 elements with full coefficients calculated 

from Eq.(4.7). The effectiveness of this kind of NRB in FEM simulation in ANSYS  is 

discussed in ref.[51]. In this study, the NRB is implemented following the ref.[51]. 

4.2.10 SELECTION OF FREQUENCY DOMAIN FOR THE HARMONIC ANALYSIS  

The frequency domain of harmonic analysis was selected based on dispersion 

curves as shown in Figure 4.5. The frequency range corresponding to the fundamental 

Lamb and SH wave modes is selected in the present study. It enables us to avoid the 

complexities associated with higher Lamb and SH wave modes. However, at very low 

(a) (b) (c) 
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frequencies (<40 kHz), the wavelength of the Lamb modes are very high (Figure 4.6) and 

requires very wide NRB, hence, requires more computation resources in FEM. When 

incident fundamental Lamb wave modes (S0/A0) interact with the damage there could be 

presence of non-propagating (evanescent) A1 modes that die out at a certain distance 

from the source. It requires longer distance to die out the non-propagating A1 mode of 

Lamb wave at very low and very high frequencies as shown in Figure 4.7. At higher 

frequencies (>900 kHz), the wavelength becomes very small and requires very fine mesh 

to capture the damage feature, thus, require more computation efforts. At higher 

frequencies, the higher modes (S1, A1, S2, A2 etc.) of Lamb and SH waves can appear 

and make the analysis more complex. Considering these reasons, the frequency domain 

of 40 to 900 kHz with a frequency step of 2 kHz is selected for the harmonic analysis. 

  

Figure 4.5: Dispersion curves for (a) Lamb wave and (b) SH wave for 1.6 mm thick 
aluminum plate 
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Figure 4.6: S0 and A0 Lamb mode wavelength variation with frequencies for 1.6 mm 
thick aluminum plate 

 

Figure 4.7: Die-out distance required for the non-propagating A1 mode 

The sensing boundary is located sufficiently far away from the crack so that all 

non-propagating Lamb and SH scattered wave modes die out before they reach to the 
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sensing locations. Thus, the wave fields at the sensing locations around the rivet hole 

with cracks are the contributions of propagating Lamb and SH wave modes.  

4.2.11 VALIDATION OF THE FE MODEL 

The finite element results are validated with the results obtained for Lamb wave 

incident at 0°  in ref.[35]. Since no closed form solution is available for the type of 

damage that we are considering in the study, the final FEM result cannot be compared. 

However, a simple case in which analytical results are available can be used to validate 

our FEM results. The analytical WDIC profiles for the Lamb wave and SH wave for a 

pristine plate has been derived by Bhuiyan et al.[58] and shows that WDIC profiles 

follow ideal double-circled shape. The FEM result is compared with the analytical result 

as shown in Figure 4.8. The FEM results show very good agreement with the analytical 

results. 

 

Figure 4.8: Comparison between analytical and FEM results (a) WDICLW_LW (b) 
WDICLW_SH in polar coordinates (pristine plate) 
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4.3 DISCUSSION OF THE SIMULATION RESULTS  

Three sets of FEM simulations were carried out to find the contribution of the 

butterfly cracks into the WDICs: (a) Lamb wave interaction with rivet hole with butterfly 

cracks, (b) Lamb wave interaction with rivet hole, and (c) Lamb wave interaction with a 

pristine plate. In order to get the wave field at the sensing boundary due to the presence 

of butterfly cracks in a rivet hole, the wave field of hole was subtracted from the 

combined wave field of rivet hole with butterfly cracks. The wave field of the pristine 

model provides the required direct incident wave fields at the center of the damage and 

used for the normalization purpose. The WDICs provides the indication of getting strong 

or weak signals around the damage. In order to readily identify those locations, the 

WDICs are plotted in polar coordinate system. 

4.3.1 FORMATION OF SCATTER CUBE 

For each transmitting angle (θ ), the WDICs are recorded at azimuth sensing 

angles (Φ ) around the sensing boundary over the frequency domain. The results of the 

harmonic analyses of the 3D FEM model facilitate forming a “scatter cube” of complex-

valued WDICs. The three dimensions of the scatter cube contain the WDICs for various 

frequencies, angles of transmitting PWASs, and angles of sensing PWASs. These WDICs 

can describe complicated 3-D interaction between the interrogating waves and damage, 

i.e., scattering and mode conversion. Since the problem of rivet hole with cracks is 

symmetric with respect to the midplane of the thickness direction, no antisymmetric wave 

mode generates for symmetric Lamb wave incident and vice versa. 
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4.3.2 DISTORTION OF WDIC PROFILE DUE TO THE PRESENCE OF CRACKS  

The polar plot of WDIC (WDIC profile) of the scattered S0 Lamb mode and SH 

mode due to incident S0 Lamb mode at 9θ = °  is shown in Figure 4.9. An arbitrary 

frequency 486 kHzf =  is selected for the illustration purpose only. When there is no 

damage (pristine) in the plate, there is no scattered wave field and the WDIC profile is an 

ideal double-circled shape. When there is a rivet hole in the plate, the presence of 

scattered field makes distortion of the ideal shape of WDIC profile as shown in Figure 

4.9b and the profile is symmetric about the line of incidence since the rivet hole is 

symmetric about the line of incidence. When there is damage (butterfly cracks) in the 

rivet hole, the additional scattered waves due to damage provides additional distortion to 

the WDIC profile. The WDIC profile for hole+crack is no more symmetric (Figure 4.9c) 

since the damaged rivet hole (hole+crack) is not symmetric about the line of incidence. In 

order to clearly identify the effect of damage in the plate, the scattered fields can be 

separated from the total fields.  

To find out the scattered field due to the presence of hole, incident wave fields 

(wave fields due to pristine) needs to be subtracted from the total wave field (incident + 

scattered) and the corresponding WDIC profile of hole (only) is plotted in Figure 4.10a. 

Similarly, to find out the scattered field due to the presence of crack (only), the scattered 

wave field of hole (only) and the incident wave fields needs to be subtracted from the 

total wave fields ( due to hole with crack + incident). The corresponding WDIC profile of 

scattered S0 Lamb mode and SH wave for crack (only) is plotted in Figure 4.10b. The 

WDIC profiles indicate that the magnitude of WDIC reaches to larger value at certain 

azimuth angles Φ . 
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Figure 4.9: Alteration of WDIC profiles of scattered Lamb and SH wave with different 
damage conditions 
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Figure 4.10: Subtracted WDIC profiles of scattered Lamb and SH wave to account the 
damage effect only 

4.3.3 FREQUENCY DOMAIN VARIATION OF WDIC AT DIFFERENT AZIMUTHAL POSITIONS  

For a certain Lamb wave mode (S0 mode) incident from a particular direction 

( 9θ = ° ) to the cracked rivet hole is shown in Figure 4.11 Five different azimuthal 

locations are picked arbitrarily to show the frequency domain variation of the WDICs. It 

can be noticed that at a certain location, a certain frequency of excitation provides the 

largest magnitude of WDIC. This frequency may be termed as sensitive frequency of that 
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location. However, at a certain sensitive frequency, not all the azimuthal locations are 

necessarily equally sensitive. Thus the selection of frequency of excitation as well as the 

location is important to capture the damage signature. By comparing all azimuthal 

location, it is possible to select a certain frequency that corresponds to the highest 

magnitude of the WDIC, for example, in this particular case, the star marked frequency 

( 538 kHzf = ) can be the most sensitive excitation frequency at location 5 (“most 

sensitive location”). 

 

Figure 4.11: Frequency domain variation of WDICS0_S0 at different azimuthal positions (
9θ = ° ) 
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Figure 4.12: Frequency domain variation of WDICS0_S0 for multiple incident directions 

 

4.3.4 FREQUENCY DOMAIN VARIATION OF WDIC FOR MULTIPLE INCIDENT DIRECTIONS 

The frequency domain variation of WDIC can be extended at the most sensitive 

locations for different directions of incident Lamb waves. Figure 4.12 illustrates all 

possible directions of incident Lamb waves for the multiple-rivet hole lap joint. This plot 

can be used to find out the optimum center frequency of excitation for a particular 

incident direction of Lamb waves. For example, when S0 Lamb wave mode hit the 

cracked rivet hole at 27θ = ° , the excitation center frequency 610 kHzf = corresponds 

the highest WDIC. Later, we will show how the magnitude of WDIC affects the physical 

signal in Chapter 6. 
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Figure 4.13: Frequency domain variation of WDICA0_A0 for multiple incident directions 

The similar frequency domain plots for scattered A0 mode can be produced from 

the scatter cube of A0 Lamb wave mode incident and has shown in Figure 4.13. 

4.3.5 AZIMUTHAL VARIATION OF WDIC  

The polar plot refers to the azimuthal variation of WDIC and can be used to 

identify the locations where WDIC reaches to maximum. The azimuthal variation of 

WDIC for symmetric and antisymmetric Lamb wave incident at 27°  to the rivet hole 

cracks are shown in Figure 4.14. As the frequency changes, the WDIC profile for both 

symmetric and antisymmetric Lamb wave changes. It is possible to get multiple sensitive 

locations around the damage for a certain frequency of transmitting signal. 
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Figure 4.14: Azimuthal variation of (a) S0 _S0WDIC  (b) A0 _ A0WDIC  at different 
frequencies 
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Sometimes, it may be important to classify the sensitive locations into two zones 

(forward and backward) because depending on applications there could be space 

limitations to install the sensors in a certain zone. In the problem of lap joint in real life 

structure it is convenient to install the PWASs in the forward zone only and thus, the 

most sensitive locations in the forward zone will come into play for optimum design of 

the sensors. 

4.3.6 POLAR PLOTS OF WDIC FOR MULTIPLE INCIDENT DIRECTIONS  

Figure 4.15 shows the variations of WDIC profiles for different angles of incident 

S0 Lamb wave modes. For each angle of incident most sensitive frequency is selected for 

these polar plots and the most sensitive locations can be obtained based on the highest 

magnitude of WDIC of scattered S0 modes for each angle of incident. Those sensitive 

locations can be used to optimize the installation of the sensors around the multiple-rivet-

hole lap joints. It shows the polar plots for incident directions from 0°  to 90° . The 

results for 0°  to 90− °  would be the same because of symmetry with respect to the line of 

incidence. Thus the all possible location of the actuator with respect to the rivet hole is 

considered in this analysis. It can be noticed that as the inclination increases, the 

magnitude of WDIC decreases. When the incident Lamb wave is in line with the cracks 

(θ = 90° ), the damage becomes symmetric with respect to the line of wave incidence. 

Hence, the WDIC profile for θ = 90°  is symmetric about the line of incidence as shown 

in Figure 4.15. Though Figure 4.15 shows the WDIC for incident S0 mode only, the 

similar plots can be generated for A0 mode using the scatter cube of incident A0 mode. 
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Figure 4.15: WDICS0_S0 for various incident angles at most sensitive frequencies 
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CHAPTER 5  
ANALYTICAL FRAMEWORK FOR GUIDED WAVE SENSING 

This chapter focuses on the analytical part of the present study. It also illustrates the 

interfacing of the local FEM results with the global analytical framework. The overall 

process is termed as combined analytical and FEM approach (CAFA). This fundamentals 

of this approach was developed by Shen and Giurgiutiu[35] and showed the 

implementation of CAFA on a dent type damage in the structure. This is an efficient 

approach to simulate the signals corresponding to the detection of damage through Lamb 

wave interaction. An analytical predictive tool for the simulation of PWAS-generated 

guided waves called WFR-2D was developed[59] based on CAFA. However, WFR-2D is 

an interface that can simulate the wave propagation in the structure without any damage. 

To analyze the wave propagation in damages structure, it requires the wave damage 

interaction coefficients which act as the heart of the damage structure. In this study, we 

developed the scatter cube of wave damage interaction coefficients to analyze the cracked 

rivet hole problem and used WFR-2D as a useful tool to obtain the simulated signal.  

5.1 OVERVIEW OF COMBINED ANALYTICAL AND FEM APPROACH 

The overview of the combined analytical and FEM approach (CAFA) is 

illustrated in the schematic diagram as shown in Figure 5.1. It shows that the actuator 

excites the structure to generate the Lamb waves that propagate into the structure. Then 

the Lamb waves interact with the damage and undergo scattering and mode conversion. 
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The scattered wave also propagates into the structure and finally picked up by a sensor. In 

CAFA, the Lamb wave generation, propagation, damage interaction, and detection are 

modeled using the exact analytical expressions, while the wave damage interaction 

coefficients (WDICs) are extracted as a scatter cube from the small-size local FEM 

analysis  

 

 

Figure 5.1: Overview of the combined analytical and FEM approach  
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5.2 DESCRIPTION OF THE ANALYTICAL MODEL 

This section illustrates the SAFE formulation for plate structures. Details of the 

mathematical derivation and finite element implementation are shown. 

5.2.5 LAMB WAVE GENERATION FROM THE ACTUATOR 

Lamb waves are generated in the plate by a circular actuator and propagate 

toward the local damage. For outward propagating waves from the actuator, the radial 

displacement ( )ru r on the top surface of the plate at any distance r  from the actuator is 

given by Giurgiutiu[18], i.e., 

(1) (1)
1 1

0 0

( ) ( ) ( ) ( )
( ) ( ) ( )

2 2( ) ( )

S A
S S A AJ J
j S j j A jS i t A i t

r j jz d S A
j jS j A j

N Ni i
u r H r e H r e

D D
ω ωt ξ ξ t ξ ξπ π

ξ ξ
µ µξ ξ

− −
=

= =

= − −
′ ′∑ ∑

 

 (5.1) 

   

where Gµ = , is the shear modulus of the plate, a is the radius of actuator and the 

components , , ,S A S AN N D D  can be defined as 

 

( ) ( ) ( ) ( )
( )
( )

2 2 2 2

22 2 2

22 2 2

cos cos   ;   sin sin

cos sin 4 sin cos

sin cos 4 cos sin

S S S P S A S S P S

S S P S P S P S

A S P S P S P S

N d d N d d

D d d d d

D d d d d

ξ ξη ξ η η η ξ ξη ξ η η η

ξ η η η ξ η η η η

ξ η η η ξ η η η η

= + = − +

= − +

= − +

(5.2) 

where, 2d  is the thickness of the plate; Pη , Sη  can be defined as 

 
2 2

2 2 2 2
2 2;P S
P Sc c

ω ωη ξ η ξ= − = −  (5.3) 

The wavespeed 2 /Pc λ µ ρ= +  and Sc µ ρ= /  depend on the plate material 

properties (Lame constants λ , µ  and density ρ ). The wavenumber ξ  depends on the 

frequency and is the roots of the Rayleigh-Lamb equation [10], i.e.,  
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 (5.4) 

where, +1 and -1 is for symmetric and antisymmetric Lamb wave modes 

respectively. 

Considering the actuator is ideally bonded to the plate of thickness= 2d , and aτ  

be the shear stress between the plate and the transducer, the 1J  Hankel transform of the 

radial shear stress can be written as 

 
1

2
1( ) ( )J aa J aτ ξ τ ξ=  (5.5) 

where, 1J  is the first order Bessel function. 

Substituting Eq.(5.5) into Eq.(5.1) yields 
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 (5.6) 

The first kind Hankel function of order one ( )1
1H  represents an outgoing 

propagating waves. The wavenumber ξ  depends on the frequency and is the roots of the 

Rayleigh-Lamb equation [10]. 

5.2.6 ACTUATOR TRANSFER FUNCTION 

The PWAS acts as an actuator which is supplied with a voltage input. The PWAS 

transfer function ( )PWASg ω  relates the applied voltage ( )TV ω  to shear stress aτ  and 

defined as 

 ( ) ( )a a PWAS TF a g Vτ ω ω= =   (5.7) 
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where aF  is the reaction force per unit length from the structure due to the 

expansion of PWAS mounted on the surface of the structure, a  is the radius of actuator, 

( )TV ω  can be obtained by the Fourier transform of the time-domain excitation signal 

( )TV t . The transfer function ( )PWASg ω of the actuator can be derived as in Eq.(5.8). The 

detail derivation can be found in ref. [60]. 

 ( ) ( )
( )

31

11 1PWAS E

rdg
s r

ω
ω

ω
=

−
 (5.8) 

where ( ) ( ) /str PWASr k kω ω=  is the stiffness ratio between host structure and 

actuator, 31d  is piezoelectric strain coefficient, 11
Es  is the mechanical compliance of the 

actuator material measured at zero electric field ( 0E = )[60]. 

The WDIC obtained from the FEM analysis depends on the material properties of 

host structure while the final signal received depends on both the transducer material 

properties and host structure properties. 

5.2.7 STRUCTURE TRANSFER FUNCTION  

The roots of the Rayleigh-Lamb equation Eq. (5.4) provide numerous symmetric 

and antisymmetric wavenumbers Sξ , Aξ  for a certain excitation frequency ω . These 

wavenumbers are used in the summation process in Eq.(5.6). In general, the structural 

transfer function ( )G rω,  may be defined as the conversion of the frequency domain 

voltage ( )TV ω  and the displacement ( )ru rω,  induced in the host structure given by 

Eq.(5.9) 

 ( )( ) , ( )r Tu r G r Vω ω ω, =   (5.9) 
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The structural transfer function ( )G rω,  can be obtained by substituting Eq. (5.7) 

into Eq.(5.6) and dividing by i te ω− . For convenience, the symmetric (S) and 

antisymmetric (A)  part of the structure transfer function may be separated as 

 ( ) ( ) (1)1
1

( ) ( ), ( )
2 ( )S

S S
PWASS SS

S
S

ag J a NG r i H r
Dξ

ω ξ ξω π ξ
µ ξ

= −
′∑  (5.10) 

 ( ) ( ) (1)1
1

( ) ( ), ( )
2 ( )A

A A
PWASA AS

A
S

ag J a NG r i H r
Dξ

ω ξ ξω π ξ
µ ξ

= −
′∑  (5.11) 

5.2.8 DIRECT INCIDENT SIGNAL 

The structure transfer function can be multiplied by the frequency-domain 

excitation signal ( )TV ω  to obtain the direct incident waves at the sensing location, i.e., 

 ( ) ( ) ( ), ( ) , ,S A
IN IN T IN INu R V G R G Rω ω ω ω = + 

  (5.12) 

where the distance INR  from actuator up to sensing location is used. 

Similarly, the structure transfer function can be multiplied by ( )TV ω  up to the 

damage location to obtain the interrogating waves arriving at the damage, i.e., 

 ( ) ( ) ( ), ( ) , ,S A
D D T D Du R V G R G Rω ω ω ω = + 

  (5.13) 

where the distance DR  from actuator up to the damage location is used  

It can be noticed that the Lamb modes propagate independently and direct 

incident wave field is the superposition of symmetric and antisymmetric wave modes. 

5.2.9 INSERTING THE SCATTER CUBE OF WDICS FOR THE SCATTERED WAVEMODES  

The scatter cube obtained from the local FE analysis provides the scattered 

coefficients for the scattered wave modes ( , , , , ,SS AS SA AA SSH ASHC C C C C C ) following Eq. 
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(5.14). The detail has been discussed in Chapter 3 and 4. Each scattered mode forms a 

scatter cube considering the multiple incident directions of Lamb wave.  

 ( ) ( )

( )(1)

ω,θ,Φ 1ω,θ,Φ
ξ

A
IN m

B

AB B
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u H r
=  (5.14) 
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AB AB BH r Hm m

 
 
 
 
  

= ∆ − ∠ −∠
+

 (5.15) 

Scattered wave source at the damage location is obtained by modifying incident 

waves at the damage with WDICs  

 ( ) ( ) ( ) ( ), , , ,, , , ,SS ASi iS S A
N SS D AS Du C e u C e uϕ ω θ ϕ ω θω θ ω θ− Φ − Φ= Φ + Φ  (5.16) 

 ( ) ( ) ( ) ( ), , , ,, , , ,SA AAi iA S A
N SA D AA Du C e u C e uϕ ω θ ϕ ω θω θ ω θ− Φ − Φ= Φ + Φ  (5.17) 

 ( ) ( ) ( ) ( ), , , ,, , , ,SSH ASHi iSH S A
N SSH D ASH Du C e u C e uϕ ω θ ϕ ω θω θ ω θ− Φ − Φ= Φ + Φ  (5.18) 

where S
Nu , A

Nu , and SH
Nu  represent the damage scattered S0, A0, and SH0 wave 

source respectively. The new wave source (damage) irradiates the scattered waves that 

propagate to the sensing location. The 2-D Lamb wave irradiating from a point source 

accepts the following solution in the cylindrical coordinate system with reference to the 

new wave source location [18][23]. 

 ( ) ( ) ( )1
1

1

LW LW i t
r n n

n
u a z H r e ωξ

∞
−

=

=∑  (5.19) 

 ( ) ( ) ( )1
1

1

SH SH i t
n n

n
u b z H r e ω
θ ξ

∞
−

=

=∑  (5.20) 

where ( )LW
na z  and ( )SH

nb z are the thickness dependent modeshapes for Lamb and 

SH waves of nth wave mode. 
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5.2.10 SCATTERED SENSING SIGNALS 

Since the amplitude relationship between the interrogating waves and the 

scattered waves is enclosed in the WDICs, the transfer function from the damage up to 

the sensing location is simply ( ) ( )1
1 SCH Rξ , where SCR  is the distance from the damage up 

to the sensing location. Thus, the scattered waves arriving at the sensing point can be 

calculated. 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 1
1 1 1; ;S S S A A A SH SH SH

SC N SC SC N SC SC N SCu u H R u u H R u u H Rξ ξ ξ= = =  (5.21) 

It should be noted that the scattered wave fields in Eq.(5.21) are the in-plane wave 

displacements. The symmetric and antisymmetric scattered wave displacements ( S
SCu , 

A
SCu ) can be detected by the PWAS transducers and the scattered SH waves can be 

detected by the horizontally polarized transducers. To detect the scattered waves using 

laser vibrometer measurement, one needs to convert the in-plane wave motion into out-

of-plane wave motion since laser vibrometer measures the out-of-plane particle velocity  

The out-of-plane displacement wave field may be obtained through the 

multiplication of the in-plane displacements by the modeshape component ratio as in Eq. 

(5.22)[18]. 

 ( )
( )

( )
( )

, ,
;

, ,

S A
z zS S A A

z r z rS A
r r

U f d U f d
u u u u

U f d U f d
= =  (5.22) 

where , , ,S S A A
r z r zU U U U  are Lamb wave modeshape displacement components 

evaluated at the top surface of the structure. The modeshape solutions can be found in 

ref.[18]. The out-of-plane velocity would be the time derivative of the out-of-plane 

displacement as in Eq.(5.23). 
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 ( ), , ,z D SC zu R R i uω θ ω= −  (5.23) 

The time domain signal can be obtained by operating the inverse Fourier 

Transform of the Eq. (5.23) 

 ( ) ( ), , , , , , , ,z D SC z D SCu t R R IFFT u R Rθ ω θ F = F    (5.24) 

The simulated time domain signal carries the damage information that is 

introduced in the next Section. 

5.3 SIMULATED TIME DOMAIN SIGNALS 

In this section we will show how the time domain signals vary with the selection 

of the frequency and locations of the sensors. Three count tone burst signal is excited 

from the actuator. A 7 mm diameter PWAS is used as an actuator. The actuator is located 

at 100 mm away from the damage (rivet hole with butterfly cracks). The position of the 

sensor is varied around the damage. The radial distance from the damage to the sensor is 

kept 30 mm. 

5.3.1 ILLUSTRATION OF THE SIGNAL EXTRACTION DUE TO CRACKS ONLY 

The signal extraction process is illustrated in Figure 5.2. When there is hole in the 

plate the signal in the sensor is shown in Figure 5.2a, and in presence of cracks in the 

rivet holes, the sensor signal changes as shown in Figure 5.2b. By subtracting two signals, 

the signals due to the cracks can be obtained as Figure 5.2c. This illustration is shown for 

a particular frequency of 538 kHz and when Lamb waves incident horizontally to the 

rivet hole with cracks. 
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(a)  

(b)  

(c)  

Figure 5.2: (a) The base line reference signal for the hole. (b) The signal due to Hole + 
Crack (c) Signal due to the crack only ( 538 kHzf = ,θ = 0° ) 

5.3.2 DETERMINATION OF THE OPTIMUM PARAMETER FOR A SIMPLIFIED CASE 

In this present research, we consider a simplified case of the multiple-rivet-hole 

problem as shown in Figure 5.3 where the actuator is located at θ . Later, some specific 

values of θ  are taken ( 9° , 18° , 27° ) for the illustration A single rivet hole is considered 

for determining the optimum location of the sensor and the optimum frequency of 

excitation. Furthermore, the rivet hole is considered located at sufficiently far away from 

the edge of the plate (the length, B, is large) so that: (1) the reflection from the edge dies 

out sufficiently before it reaches the sensor (2) the very low amplitude reflected signal if 

any would be seen in the trailing part of the main signal and can be easily discarded. 

When there are multiple rivet holes, there will be mutual the interactions of the scattered 
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waves among the rivet holes. When the plate edge is located close to the rivet holes, the 

plate boundary would act as a secondary source of the scattered waves and distance B 

would have an effect on the overall result. These complexities have not been included in 

this present study and will be focused in our future research. 

 

Figure 5.3: A simplified case of the multiple-rivet-hole problem 

5.3.3 OPTIMUM PARAMETER FOR LAMB WAVE INCIDENT AT 9θ = °  

Now we consider a case when the Lamb wave (S0 mode) incident on the damage 

at 9θ = ° . The sensing signal for the cracks (in the rivet hole) only is illustrated as shown 

in Figure 5.4. Four different sets of parameters (frequency and location) are considered 

based on the analysis of scatter cube of complex-valued WDICs. (The analysis of the 

scatter cube is discussed in Chapter 4) 
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(a) Set 1: 328 kHz, 355.5f = Φ = ° - correspond to the low magnitude of WDIC 

(b) Set 2: 538 kHz, 355.5f = Φ = ° - correspond to the highest magnitude of WDIC 

(c) Set 3: 728 kHz, 355.5f = Φ = ° - correspond to the moderate magnitude of WDIC 

(d) Set 4: 538 kHz, 340f = Φ = ° - correspond to the low magnitude of WDIC 

In the first three parameter sets 1, 2, 3, the frequencies are changing while the 

location of the sensor is same. In set 4, the frequency is corresponding to the highest 

magnitude of WDIC while bad location of sensor corresponds to the low magnitude of 

WDIC. It can be easily noticed from the Figure 5.4 that, the parameter set 2 

( 538 kHz, 355.5f = Φ = ° ) provides the most noticeable signal picked up by the sensor  

Thus the right frequency as well as right location of the sensor is important to harness the 

damage information in the structure. Thus, for the Lamb wave incident at 9θ = ° , set 2 is 

the optimum parameter and is the best choice for the NDE/SHM engineers. 
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Figure 5.4: Sensing signals for different sets of frequency-location (θ = 9° ) 

5.3.4 OPTIMUM PARAMETER FOR LAMB WAVE INCIDENT AT θ =18°  

Another case may be illustrated when the Lamb wave (S0 mode) hit the rivet hole 

at θ =18°  which corresponds to one of the situations of the multiple-rivet-hole problem. 

The real time domain signals are shown in Figure 5.5 for four different sets of parameter. 

These parameter sets are selected based on the scatter cube analysis that has been 

discussed in Chapter 4.  

(a) Set 1: 320 kHz, 350f = Φ = ° - correspond to the low magnitude of WDIC 

(b) Set 2: 486 kHz, 350f = Φ = ° - correspond to the highest magnitude of WDIC 

(c) Set 3: 618 kHz, 350f = Φ = ° - correspond to the moderate magnitude of WDIC 

(d) Set 4: 618 kHz, 75f = Φ = ° - correspond to the low magnitude of WDIC 

By observing the time domain signal of, the obvious selection of Figure 5.5, 

parameter is either (b) or (c), because both of them correspond to the most sensible signal. 

Thus the excitation frequency of 486~618 kHz at the transmitter and the receiver sensor 

at Φ = 350°  is the optimum design parameter for detecting the cracks in that rivet hole. 
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Figure 5.5: Sensing signals for different sets of frequency-location ( 18θ = ° ) 

5.3.5 OPTIMUM PARAMETER FOR LAMB WAVE INCIDENT AT 27θ = °  

When the Lamb wave (S0 mode) incident at 27θ = °  i.e. the actuator is located at 

θ = 27°  , we may choose four different sets of parameters (frequency and location) based 

on the analysis of scatter cube of complex-valued WDICs. 

(e) Set 1: 320 kHz, 348f = Φ = ° - correspond to the low magnitude of WDIC 

(f) Set 2: 610 kHz, 348f = Φ = ° - correspond to the highest magnitude of WDIC 

(g) Set 3: 710 kHz, 348f = Φ = ° - correspond to the moderate magnitude of WDIC 

(h) Set 4: 610 kHz, 292f = Φ = ° - correspond to the low magnitude of WDIC 
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In the first three parameter sets 1, 2, 3, the frequencies are changing while the 

location of the sensor is same. In set 4, the frequency is corresponding to the highest 

magnitude of WDIC while bad location of sensor corresponds to the low magnitude of 

WDIC. It can be easily noticed from the Figure 5.6 that, the parameter set 2 

( 610 kHz, 348f = Φ = ° ) provides the most noticeable signal picked up by the sensor  

Thus the right frequency as well as right location of the sensor is important to harness the 

damage information in the structure. Thus, for the Lamb wave incident at 27θ = ° , set 2 

is the optimum parameter and is the best choice for the NDE/SHM engineers. 
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Figure 5.6: Sensing signals for different sets of frequency-location (θ = 27° ) 

In this present study, the generalize procedure is illustrated followed by some 

specific examples. We may do the similar analysis for each of the rivet hole of the 

multiple-rivet-hole problem and determine the optimum positions of the actuator and 

sensors. We can also optimize the required number of actuators and sensors that demands 

future study. 
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CHAPTER 6  
CONCLUSIONS AND FUTURE WORK 

This thesis has presented the development of accurate, efficient, and versatile modeling 

techniques for guided wave based active sensing procedures for the crack monitoring in 

the rivet hole. The main conclusions and future work are mentioned below. 

6.1 CONCLUSION 

Exact analytical formulation has been used throughout the structure except the 

local damage area and the local damage is analyzed using the finite element method. In 

order to analyze some simplified case of the multiple-rivet-hole lap joint cracks, the 

Lamb waves have been impinging to the damage from all possible directions. Interactions 

of Lamb waves with rivet hole cracks from multiple directions have been described by 

the complex-valued wave damage interaction coefficients. Finite element analyses have 

been used to determine the wave damage interaction coefficients (WDICs) that involve 

scattering and mode conversion. SH waves appear in the scattered waves besides the 

Lamb waves because of the mode conversion. Local small-size damage model with 

proper non-reflective boundary is analyzed for efficient FE analysis. The scatter cubes 

are produced for the scattered waves to accommodate the 3D interaction (frequency-

incident direction-azimuth direction) of Lamb waves with the rivet hole cracks. 

WDIC profiles for pristine case are developed analytically and comparison with 

the finite element results shows very good agreement. The scattered fields for the 

presence of cracks are obtained through the subtraction process and corresponding WDIC 
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shows the frequency of excitation and azimuthal location dependency. The higher 

magnitude of WDIC gives the better signal in the sensor. Scatter cubes of WDICs are 

obtained that contain the scatter field information over the frequency domain, around the 

damage and all possible directions of incident Lamb wave modes. Both symmetric and 

antisymmetric fundamental Lamb wave modes (S0 and A0) are used as the incident 

waves for the analyses. Frequency domain analyses of the WDICs have been performed 

that provides the optimum frequency of most sensitive signal and the azimuth variations 

in the polar plots confirm the optimum location for installing the sensor. The selection of 

optimum frequency and location can capture the damage information better than any 

arbitrary selection of frequency and location. 

The local FEM results are fed into the exact analytical formulations of the guided 

wave propagation through the insertion of the scatter cube. The simulated signals 

corresponding to the presence of the cracks are produced. At the end, some example 

cases of multiple-rivet-hole cracks is addressed and optimum parameters (optimum 

frequency of actuator and location of the actuator-sensor) are obtained for each case. The 

time domain signals corresponding to the optimum parameters are produced to confirm 

the cracks detection in the rivet hole using the scatter cube and exact analytical 

framework. The optimum parameters can be used for making an algorithm of NDE/SHM 

unit for inspecting the multiple-rivet-hole lap joint. 

6.2 RECOMMENDATION FOR FUTURE WORK 

This dissertation has presented various modeling techniques for the simulation of 

guided wave propagation and interaction with damage. This work has laid the foundation 
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for future investigations to extend the methodologies to more complicated structures. The 

suggestions for future work are listed below: 

1. An experiment may be designed based on the simulated results to detect the 

cracks in the rivet holes with Lamb wave incident from multiple directions. 

2. The design may be extended for making an algorithm for the multiple-rivet-

hole lap joint and detecting the cracks in any of the rivet holes. The research 

may be further extended by considering the interactions among the rivet holes 

and the boundary reflections from the edges. 

3. In the bonded section of the plate, there may occur some wave leakages 

through the bonded rivet, thus, the thickness of the bonded plate will come 

into play. The wave leakages may be considered while obtaining the optimum 

parameters. 

4. Higher frequencies may be considered and the extension to more than the 

basic S0, A0, and SH0 modes should be made. 

5. Inclusion of nonlinear effects in the analytical-FEM approach should be 

attempted.  

6. FEM simulation could be performed for different crack to rivet hole diameter 

ratios.
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