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Abstract

We present results in three different arenas of discrete mathematics.

Let La(n,H) denote the cardinality of the largest family on the Boolean lattice

that does not contain H as a subposet. Denote π(H) := limn→∞
La(n,H)
( n
bn/2c)

. A crown

O2k for k ≥ 2 is a poset on 2 levels whose Hasse diagram is a cycle. Griggs and Lu

(2009) showed π(O4k) = 1 for k ≥ 2. Lu (2014) proved π(O2k) = 1 for odd k ≥ 7. We

prove that the maximum size of a O6-free family, when restricted to the middle two

levels of Bn, is no greater than 1.56
(

n
bn/2c

)
. This section is joint work with Linyuan

Lu.

The diffusion state distance (DSD) was introduced by Cao-Zhang-Park-Daniels-

Crovella-Cowen-Hescott (2013) to capture functional similarity in protein-protein in-

teraction networks. They proved the convergence of DSD for non-bipartite graphs.

We extend the DSD to bipartite graphs using lazy-random walks and consider the gen-

eral Lq-version of DSD. We discovered the connection between the DSD Lq-distance

and Green’s function, which was studied by Chung and Yau (2000). Based on that,

we computed the DSD Lq-distance for Paths, Cycles, Hypercubes, as well as random

graphs G(n, p) and G(w1, . . . , wn). We also examined the DSD distances of two bio-

logical networks. This section is joint work with Peter Chin, Linyuan Lu, and Amit

Sinha.

Motivated by the recent work on the Turán problems on non-uniform hyper-

graphs, we study when a fixed non-uniform hypergraph H occurs in random hyper-

graphs with high probability. To be more precise, for a given set of positive integers

R := {k1, k2, . . . , kr} and probabilities p = (p1, p2, . . . , pr) ∈ [0, 1]r, let GR(n,p) be

iii



the random hypergraph G on n vertices so that for 1 ≤ i ≤ r each ki-subset of vertices

appears as an edge of G with probability pi independently. We ask for what proba-

bility vector p, GR(n,p) almost surely contains a given subhypergraph H. Note that

the Erdős-Rényi model G(n, p) is the special case of GR(n,p) with R = {2}. The

question of the threshold of the occurence of a fixed graph H in G(n, p) is well-studied

in the literature. We generalize these results to non-uniform hypergraphs. Surpris-

ingly, those p for which GR(n,p) almost surely contains H, form a convex region

(depending on H) in a log-scale drawing. We also consider the associated extension

problems. This section is joint work with Linyuan Lu.
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Chapter 1

Introduction

A graph G = (V,E) is a set V of vertices together with a set E of pairs of distinct

vertices called edges. A hypergraph H = (V,E) is a set V of vertices together with

an edge set E containing nonempty subsets of V . We say H is r-uniform if every

edge e ∈ E(H) contains exactly r distinct vertices. If r = 2, we just refer to it as a

graph, or simple graph. In contrast, a non-uniform hypergraph has edges of varying

vertex cardinalities.

1.1 Posets

A partially ordered set G = (S,≤), or poset for short, is a set S with a partial ordering

≤. G contains another poset H = (S ′,≤′) as a subposet if there exists an injective

map f : S ′ → S such that for all u, v ∈ S ′, if u ≤′ v then f(u) ≤ f(v). Posets can

be represented with a Hasse diagram, a graph whose vertices are the sets, and edges

connect pairs of comparable sets, and we suppress any edges implied by transitivity.

Let [n] := {0, 1, . . . , n − 1}. The poset of concern here is the Boolean lattice, is

defined Bn := (2[n],⊆) for n ∈ N. Any family F ⊆ 2[n] will be considered a subposet

of Bn. For any poset H, we say F is H-free if H is not a subposet of F . For any

n ∈ N, La(n,H) is defined to be the cardinality of the largest family F ⊆ Bn that is

H-free. We may consider La(n,H) as the poset analog of ex(n,H) in Turán theory,

which stands for the maximum number of edges possible on a graph on n vertices

that does not contain H as a subgraph. Figure 1.1 shows the Hasse diagram of the

Boolean lattice for n = 2.
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{1}{0}

{0,1}

Figure 1.1 The Hasse diagram for B2 = (2[2],⊆), also known as the diamond.

The history of determining La(n,H) dates back to Sperner [68] in 1928, when he

proved that La(n,H) =
(
n
2

)
if H is a pair of comparable elements (P2). That is, the

maximum size of an antichain, which means no two elements of H are comparable,

is
(
n
2

)
. In particular, the bound is attained by taking the middle row of Bn, which

is the row with the most elements. If n is odd, then either of
(

n
dn/2e

)
and

(
n
bn/2c

)
will

do. For convenience, the asymptotic value of La(n,H) is abbreviated as

π(H) := lim
n→∞

La(n,H)(
n
bn/2c

) .

Griggs and Lu [44] conjectured that π(H) exists and is an integer for all finite posets

H. In Table 1.1, we summarize some of the posets for which π(H) has already been

determined.

Table 1.1 Known values of π(H) in literature.

H Name π(H) Reference
A1 ⊂ · · · ⊂ Ak chain or Pk k − 1 [34]
A ⊂ Bi for i ∈ [r] r-fork or Vr 1 [28]
A ⊂ C,D and B ⊂ C “N” 1 [42]
A ∪B ⊂ C ∩D butterfly 2 [29]
A1, . . . , As ⊂ B1, . . . , Bt Ks,t 2 [50]
A1 ⊂ · · · ⊂ Ak ⊂ B1, . . . Bs Pk(s) k [28]

A chain of length k is a sequence of sets A1 ⊂ A2 ⊂ · · · ⊂ Ak. The height of a

poset is the length of its longest chain. Bukh [11] proved that for any poset H whose

Hasse diagram is a tree with length k, that π(H) = k − 1.

While La(n,H) has been determined for some simple posets, there is still much

work to be done. Improving bounds on La(n,H) is still an active endeavor. The
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diamond (a copy of B2, see Figure 1.1) for instance, has been especially scrutinized in

recent years. Table 1.2 summarizes the improvements on its bound in recent years.

Table 1.2 The upper bound for π(B2), provided the limit exists.

Authors Bound on
π(B2) Reference

Axenovich, Manske, and Martin 2.283 [3]
Griggs, Li, and Lu 2.273 [43]
Kramer, Martin, and Young 2.25 [57]
Grósz, Methuku, and Tompkins 2.207 [45]

We can also consider problems involving induced posets. We say G contains H

as an induced subposet if for any u, v ∈ S ′, u ≤′ v if and only if f(u) ≤ f(v). Then,

La∗(n,H) represents the cardinality of the largest family that does not contain H as

an induced subposet. Also, we can define

π∗(H) := lim
n→∞

La∗(n,H)(
n
bn/2c

) .

Once can see that La(n,H) ≤ La∗(n,H) and π(H) ≤ π∗(H) for any given H. In

general, determining La∗(n,H) is a much more difficult task than La(n,H) for a

given poset H, and consequently there are not many known values of π∗(H) found

in literature. Carroll and Katona [13] showed π∗(V2) = 1; Boehnlein and Jiang [9]

proved that for H whose Hasse diagram is a tree of height k, that π∗(H) = k − 1.

Of particular interest to us, however, are crowns. A crown, notated O2k for k ≥ 2,

is a poset with height 2 whose Hasse diagram is a cycle. Often O4 is known as the

butterfly. Figure 1.1 shows an example of a crown, namely the Hasse diagram of the

6-crown, which happens to be the middle two levels of B3.

Griggs and Lu [44] showed that for k ≥ 2, π(O4k) = 1, and bounded π(O4k−2) ≤

1.707. Later, Lu [59] extended this, proving that for odd k ≥ 7, π(O2k) = 1. This

leaves only O6 and O10 as those crowns O2k for which π(O2k) remains unknown. In

chapter 2, we will present an upper bound for π(O6), that carries an extra stipulation.

3



Figure 1.2 The 6-crown, O6, or the middle two rows of B3.

An important tool used in proving many of the above results is the Lubell function,

which is defined

hn(F) :=
∑
F∈F

1(
n
|F |

) .
In practice, the Lubell function is the expected number of elements from F that fall

on a random full chain (one that contains an element of each cardinality, so having

height n + 1) in Bn. The use of this function dates back to Lubell’s [61] proof of

Sperner’s Theorem. Aside from arguments using the Lubell function, an increasingly

popular tool is with flag algebras, the method we will discuss in detail in chapter 2,

and use to prove our main result.

We exploit some linear algebra in the course of the flag algebra method. A real,

symmetric n by n matrix A is positive semidefinite if for any x ∈ Rn,

xTAx ≥ 0.

An equivalent condition is that the eigenvalues of A are all non-negative. If a, b ≥ 0,

and symmetric n by n matrix B is also positive semidefinite, then aA+ bB is positive

semidefinite as well.

1.2 Random Walks on Graphs

A walk of length k is an alternating sequence of vertices and edges v0, e1, v1, . . . , ek, vk.

We permit vertices and edges to be repeated. Let dv denote the degree, or number

of neighbors, of a vertex v ∈ V (G). A random walk of length k begins at a specified

vertex v0, and for i ∈ [k] is traversed by randomly choosing a neighbor of vi−1 (each

4



having probability 1/dvi−1 of being chosen, to be the next vertex vi in the sequence.

Fixing α ∈ (0, 1), an α-lazy random walk is walk in which we remain at our present

vertex v with probability α, or decide to step to one of its neighboring vertices with

probability (1− α)/dv.

A path is a walk where no vertex is repeated. While there is a plethora of appli-

cations for walks and paths in graph theory, here we will only concern ourselves with

their use in comparing the structures of graphs. A naïve way of comparing networks

is by looking at the distribution of the lengths of the shortest paths between all vertex

pairs. However, Cao et al [12] noted that in protein-protein interaction (PPI) net-

works, most networks have small diameters; that is, most vertices are relatively close

to all other vertices. Their solution was to employ a new metric, called the diffusion

state difference, which is based on random walks. A drawback is that their result

excludes bipartite graphs. In chapter 3, we extend the diffusion state difference to

cover all graphs using α-lazy random walks instead.

In order extend the result of Cao [12], our methods centered around Green’s

function. For a graph G, let A = (aij) denote its adjacency matrix, where aij := 1 if

vivj ∈ E(G), and aij := 0 otherwise. Define D = (dij) to be the diagonal matrix such

that dii = dvi and dij := 0 for i 6= j. Also, let I denote the n by n identity matrix

where |V (G)| = n. Then, the discrete Laplacian is defined

L := I −D−1A.

But L is not symmetric. So to achieve symmetry, the normalized Laplacian is defined

L := I −D−1/2AD−1/2.

Note that L and L have the same eigenvalues. For a full overview of spectral graph

theory refer to [15]. Then, Green’s function is defined to be the left inverse of L.

Green’s function first appeared in 1828, in a paper by George Green [41] using

partial differential equations for applications to electricity and magnetism. William

5



Thomson (Lord Kelvin) [70, 71] revisited Green’s functions years later, bringing them

more attention. Later, Chung and Yau [22] thoroughly explored the application of

Green’s function to graphs.

1.3 Hypergraphs

The questions of the average behavior and the extremal behavior are frequently asked

for many discrete objects. They are often the motivations for the growth of the

discrete areas.

For a hypergraph H = (V,E), define the edge type of H, R(H) := {|F | : F ∈

E(H)}. For a fixed set R of positive integers, we say a hypergraph H is an R-graph

if R(H) ⊆ R. We often denote by HR
n , an R-graph on n vertices.

The extremal problems of non-uniform hypergraphs are considered by Johnston

and Lu [49]. They generalized several important properties of the Turán density to

non-uniform hypergraphs: supersaturation, blow-up, suspension, etc. For a given

R-graph H, the Turán density π(H) is the smallest number α such that for any

ε > 0 and any R-graph G on n vertices with Lubell value hn(G) := ∑
F∈E(G)

1
( n
|F |)

of at least α + ε must contain a copy of H for sufficiently large n. This definition

generalizes the classical definition of Turán density of k-uniform hypergraphs. For

R = {2}, the graph case, Erdős-Stone-Simonovits proved π(G) = 1− 1
χ(G)−1 for any

graph G with chromatic number χ(G) ≥ 3. Johnston and Lu generalized Erdős-

Stone-Simonovits’ theorem to {1, 2}-graphs and determined the value of π(H) for

all {1, 2}-graph H. There are a few uniform hypergraphs whose Turán density has

been determined: the Fano plane [40, 52], expanded triangles [53], 3-books, 4-books

[39], F5 [37], extended complete graphs [62], etc. In particular, Baber and Talbot [4]

recently found the Turán density of many 3-uniform hypergraphs using flag algebra

methods. However, no single value of π(Kr
k) is known for any complete r-graph on

k-vertices with k > r ≥ 3. Turán conjectured [72] that π(K3
4) = 5/9. Erdős [33]

6



offered $500 for determining any π(Kr
k) with k > r ≥ 3 and $1000 for answering

it for all k and r. The upper bounds for π(K3
4) have been sequentially improved:

0.6213 (de Caen [30]), 0.5936 (Chung-Lu [21]), 0.56167 (Razborov [63], using the flag

algebra method.) For a more complete survey of methods and results on uniform

hypergraphs see Peter Keevash’s survey paper [51].

The question of average behavior asks when a fixed hypegraph H will occur in

a random hypergraph. For any fixed set R of positive integers, and any probability

vector p ∈ [0, 1]R, we define the random hypergraph GR(n,p) = (V,E) with V := [n],

the set of first n positive integers; and for r ∈ R, an r-set F ∈
(
V
r

)
belongs to

E independently with probabilty pr. Additionally, we write the probability that

GR(n,p) satisfies a certain property A as Pr[GR(n,p) |= A]. For R = {2}, this

definition is precisely the Erdős-Rényi model GR(n, p) of the classical random graphs,

originally described in [35]. In recent years, the same concept has been generalized

to apply to uniform hypergraphs with R = {r}, such as in [54], [24], and [31]. A

graph H on n vertices with e edges is called balanced if for every subgraph H ′ ⊂ H,

then ρ(H ′) ≤ ρ(H), where ρ(H) = e
n
. Even stronger, H is called strictly balanced if

ρ(H ′) < ρ(H) for all proper subgraphs H ′ ( H. Given a fixed graph H, the threshold

of the occurence of a strictly balanced graph H in G{2}(n, p) is given by p = cn−v/e

by Alon and Spencer [1]. In this case, for any c > 0,

lim
n→∞

Pr[G{2}(n, p) |= A] = exp (−ce/|Aut(H)|).

7



Chapter 2

6-Crowns

2.1 Flag Preliminaries

Recall that hn(F) refers to the Lubell function. Let H denote the family of all 6-

crown-free posets consisting only of sets from the middle two rows of B5. Define pH to

be the probability that a random subset of the middle two rows of B5 is isomporphic

to H. One can observe that:

hn(F) =
∑
H∈H

pHhn(H) (2.1)

≤ max
H∈H

hn(H). (2.2)

However, under specific circumstances, a careful selection of constants cH for each

set H ∈ H, we can potentially improve this bound as follows:

Proposition 2.1.

hn(F) ≤
∑
H∈H

(pHhn(H) + cHpH) (2.3)

=
∑
H∈H

(hn(H) + cH)pH (2.4)

≤ max
H∈H

(hn(H) + cH), (2.5)

where the cH come from entries in a positive semidefinite matrix.

The selection of the values of cH are far from arbitrary. We will rigorously justify

Proposition 2.1 with a stronger claim in Proposition 2.3 in the next section. For now,

we note that the bound in Proposition 2.1 leads to our main result.

8



Theorem 2.2. For a 6-crown-free set family F ⊂ Bn, whose sets are restricted to

the middle two rows of Bn,

|F| ≤ 1.56
(

n

bn/2c

)
.

Properly choosing the values of cH to use is the most difficult task here. To do

so, we employ the method of flag algebras, introduced in the next section.

2.2 Flag Algebras

The chief technique we use in the proof of Theorem 2.2 is that of flag algebras. Flag

algebras are a strategy that is presently in vogue in discrete mathematics, particularly

graph theory, that boils down to shrewd application of the Cauchy-Schwarz inequality.

The notoriety of flag algebras can be attributed to Razborov’s [64] seminal paper on

the method, in which he demonstrated their use with an abundance of applications,

in particular improving numerous results in Turán theory. Since then, flag algebras

have become increasingly popular appearing in papers from Baber and Talbot [5]

and Keevash [51] on hypergraph Turán theory, Balogh et al [7] on hypercubes with

forbidden subgraphs, and Kramer, Martin, and Young [57] on diamond-free posets,

just to name a few.

We present the flag algebra strategy in the context of a more general, graph

theoretic version of Proposition 2.1. First we introduce the appropriate, analogous

notation. We follow the setup of Baber and Talbot [5], who used flag algebras to

tackle hypergraphs. For a graph G on n vertices, the density of a graph G is given

by

d(G) := |E(G)|(
n
2

) .

This can be adapted to a k-regular hypergraph by amending the denominator to(
n
k

)
, but we stick to the classic graph for simplicity. In the poset case we use the

Lubell function instead. A graph G is said to be F -free if there is no subgraph of

9



G that is isomporphic of F . Let H be the family of graphs on ` vertices that are

F -free. Then for any graph H ∈ H, and an F -free graph G, define p(H;G) to be

the probability that the subgraph induced by a randomly chosen subset of ` vertices

from G is isomorphic to H. (Note that we used simply pH earlier instead of p(H;G)

because the size of the host graph was fixed.)

Proposition 2.3 (Baber and Talbot, [5]).

d(G) ≤
∑
H∈H

(d(H) + cH)p(H;G) + o(1).

In particular,

d(G) ≤ max
H∈H

(d(H) + cH).

Proof. We reproduce their proof for completeness, and in particular, because it high-

lights the flag algebra setup. From the definition of density, observe that

d(G) =
∑
H∈H

d(H)p(H;G). (2.6)

And so,

d(G) ≤ max
H∈H

d(H). (2.7)

Note that (2.6) and (2.7) are the analogs of (2.1) and (2.2), respectively. However

these bounds can be improved if we exploit the intersection of two subgraphs H,H ′ ∈

H, whereas the latter observation only captures information on disjoint subgraphs.

Let θ : [`] → V (H) be a bijection. Then we define a flag to be an ordered pair

F1 = (H, θ). Further, if σ is a flag, we say F1 is a σ-flag if F1 is isomorphic to σ. Next

we denote Fσm to be the set of all σ-flags, up to isomorphism, of order m ≤ (`+ |σ|)/2.

The upper bound onm is necessary for attaining subgraphs that intersect nontrivially,

namely in |σ| vertices. Next, denote Θ as the set of all injective maps θ : [|σ|]→ V (G).

Then if F ∈ Fσm and θ ∈ Θ, assign p(F, θ;G) to the probability that a random subset

V ′ with |V ′| = m and im(θ) ⊆ V ′ ⊆ V (G) induces a σ-flag isomorphic to F .

10



Now, if Fa, Fb ∈ Fσm and θ ∈ Θ, we set p(Fa, Fb, θ;G) to be the probability

that given two randomly chosen m-subsets of V (G), namely V ′a and V ′b , such that

im(θ) ⊆ V ′a and V ′a∩V ′b = im(θ), then the flags (G[V ′a], θ) and G([V ′b ], θ) are isomorphic

to Fa and Fb, respectively. While it would be rather convenient if

p(Fa, θ;G)p(Fb, θ;G) = p(Fa, Fb, θ;G), (2.8)

this is not always true because the vertices are chosen with replacement on the left

side but without replacement on the right side of (2.8). However, this is not an issue

if we assume V (G) to be sufficiently large, as Baber and Talbot proved in a a special

case of a lemma from Razborov [64]:

Lemma 2.4 (Baber and Talbot, [5]). For any Fa, Fb ∈ Fσm and θ ∈ Θ,

p(Fa, θ;G)p(Fb, θ;G) = p(Fa, Fb, θ;G) + o(1).

In particular, the o(1) term goes to zero as |V (G)| → ∞.

Consequently, if θ ∈ Θ is chosen uniformly at random,

Eθ∈Θ[p(Fa, θ;G)p(Fb, θ;G)] = Eθ∈Θ[p(Fa, Fb, θ;G)] + o(1).

However, that if we let ΘH denote the set of all injective functions θ : [|σ|]→ V (H),

then

Eθ∈Θ[p(Fa, Fb, θ;G)] =
∑
H∈H

Eθ∈ΘH [p(Fa, Fb, θ;G)]p(H;G).

Next suppose Q = (Qab) is a positive semi-definite matrix of dimension |Fσm|. Define

the vector pθ := (p(F, θ;G) : F ∈ Fσm). And so,

Eθ∈Θ[pTθQpθ] =
∑
H∈H

cH(σ,m,Q)p(H;G) + o(1),

where

cH(σ,m,Q) =
∑

Fa,Fb∈Fσm

qabEθ∈ΘH [p(Fa, Fb, θ;H)].

11



Next, suppose σi is a type, mi ≤ 1
2(`+ |σi|), and Qi is a positive semidefinite matrix

of dimension |Fσimi |. Fix t ∈ Z to be the number of choices for (σi,mi, Qi). Then, for

any H ∈ H define:

cH =
t∑
i=1

cH(σi,mi, Qi).

But exploiting that each matrix Qi is positive semidefinite, we obtain:

∑
H∈H

p(H;G) + o(1) ≥ 0.

And so,

d(G) ≤
∑
H∈H

(d(H) + cH)p(H;G) + o(1).

But since ∑H∈H p(H;G) = 1, then it follows

d(G) ≤ max
H∈H

(d(H) + cH).

Returning to the poset setting, by changing density to Lubell function, Proposition

2.3 implies Proposition 2.1.

2.3 Proof of Theorem 2.2

{0,1} {0,2} {0,3} {0,4} {1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

{0,1,2} {0,1,3} {0,1,4} {0,2,3} {0,2,4} {0,3,4} {1,2,3} {1,2,4} {1,3,4} {2,3,4}

Figure 2.1 The middle two levels of B5.

We identify H as the set of all posets that do not contain a 6-crown, and whose

members are restricted to the middle two rows of B5 (shown in Figure 2.1). For

convenience, we may refer to any H ∈ H by the graph induced by its Hasse diagram.

12



To determine the flags, using the notation established with Proposition 2.3, we

set G as the middle two levels of B5, and ` = 10. There are 8400 such graphs,

up to isomorphism, found with computer assistance. We denote these graphs as

H0, H1, . . . , H8399, sorted in increasing order of their Lubell function. A few of these

graphs appear in Figures 2.2 and 2.3.

Remark 2.5. Among these 8400 graphs, the highest Lubell value is 1.6, which is

attained only by H8399. Hence, for a 6-crown free family F on the middle two rows,

|F| ≤ 1.6
(

n
bn/2c

)
.

Now the families {{0, 1}} and {{1, 2}} are isomorphic, but neither of these are

isomorphic to {{0, 1, 2}}, as we do care to differentiate between the upper and lower

rows. The difference will also be exploited in the use of the duals of the graphs.

The dual of H ∈ H is an inverted copy of H. That is, rather than considering

H ∈ (2[n],⊆), we find the dual of H by instead considering H a member of (2[n],⊇).

In Figure 2.2, graphs H7202 is the dual of H7968, and vice versa. Also, H8399 is self

dual.

Now we can simply use pH rather than p(H;G) since G is fixed. Set also m = 4,

so the flags are composed of copies of B2. Finally, |σ| = 1, as the flags only overlap

in one element, namely {0}. The result is a total of 6 flags, shown in Figure 2.4.

Vertices that are included are shaded black, hollow vertices are excluded.

Using computer assistance, a multiplication table for all possible pairs of flags

was produced. As an example, consider the product of p1 and p2. The multiplication

process is shown in Figure 2.5. The element 0 is fixed in both flags, but we consider

p2 on the elements 0, 3, 4 rather than 0, 1, 2. Their product is the linear combination

of all subgraphs of the middle two levels of B5, that contain the sets {0, 1} (from

p1) and {0, 3, 4} (from p2) but not {0, 2}, {0, 1, 2}, {0, 3}, nor {0, 4}. Note that the

element {0} can be disregarded at this point, as it does not lie in the middle 2 rows of

B5. The Hasse diagram for this product is given in Figure 2.5, where the 14 elements

13



H7202

{0,1} {0,2} {0,3} {0,4} {1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

{0,1,2}{0,1,3}{0,1,4}{0,2,3}{0,2,4}{0,3,4}{1,2,3}{1,2,4}{1,3,4}{2,3,4}

H7968

{0,1} {0,2} {0,3} {0,4} {1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

{0,1,2}{0,1,3}{0,1,4}{0,2,3}{0,2,4}{0,3,4}{1,2,3}{1,2,4}{1,3,4}{2,3,4}

H7971

{0,1} {0,2} {0,3} {0,4} {1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

{0,1,2}{0,1,3}{0,1,4}{0,2,3}{0,2,4}{0,3,4}{1,2,3}{1,2,4}{1,3,4}{2,3,4}

H8294

{0,1} {0,2} {0,3} {0,4} {1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

{0,1,2}{0,1,3}{0,1,4}{0,2,3}{0,2,4}{0,3,4}{1,2,3}{1,2,4}{1,3,4}{2,3,4}

Figure 2.2 Some examples of the graphs Hi

that may or may not be included are shaded gray. Not counting isomorphisms, there

are 214 such graphs with this prescribed property. However, even before considering

isomorphisms, note that not all of these 214 are realizable, as many will contain a 6-

crown. However, the coefficients in this linear combination are the number of copies

of each graph from H, counting isomorphisms.

The resulting multiplication table has its columns indexed by the graphs, and its

rows organized by pairwise products of flags. An abbreviated version of the table is

provided in Table 2.1, transposed for formatting constraints. After determining the

products of all pairs of flags (which are commutative, as noted earlier), we are able
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H7977

{0,1} {0,2} {0,3} {0,4} {1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

{0,1,2}{0,1,3}{0,1,4}{0,2,3}{0,2,4}{0,3,4}{1,2,3}{1,2,4}{1,3,4}{2,3,4}

H8251

{0,1} {0,2} {0,3} {0,4} {1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

{0,1,2}{0,1,3}{0,1,4}{0,2,3}{0,2,4}{0,3,4}{1,2,3}{1,2,4}{1,3,4}{2,3,4}

H8385

{0,1} {0,2} {0,3} {0,4} {1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

{0,1,2}{0,1,3}{0,1,4}{0,2,3}{0,2,4}{0,3,4}{1,2,3}{1,2,4}{1,3,4}{2,3,4}

H8398

{0,1} {0,2} {0,3} {0,4} {1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

{0,1,2}{0,1,3}{0,1,4}{0,2,3}{0,2,4}{0,3,4}{1,2,3}{1,2,4}{1,3,4}{2,3,4}

H8399

{0,1} {0,2} {0,3} {0,4} {1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

{0,1,2}{0,1,3}{0,1,4}{0,2,3}{0,2,4}{0,3,4}{1,2,3}{1,2,4}{1,3,4}{2,3,4}

Figure 2.3 More examples of the graphs Hi

to set up a semidefinite program problem. The program has the form:

minimize v

subject to v ≥ hn(Hi) + cHi for all i ∈ [8400]

v ∈ R, Q is semidefinite.

15



{0}

{0,2}

p0

{0,1}

{0,1,2}

{0}

{0,2}

p1

{0,1}

{0,1,2}

{0}

{0,2}

p2

{0,1}

{0,1,2}

{0}

{0,2}

p3

{0,1}

{0,1,2}

{0}

{0,2}

p4

{0,1}

{0,1,2}

{0}

{0,2}

p5

{0,1}

{0,1,2}

Figure 2.4 The flags.

{0}
{0,2}

p1

{0,1}
{0,1,2}

×

{0}
{0,2}

p2

{0,1}
{0,1,2}

=
{0,1} {0,2} {0,3} {0,4}

{0,1,2} {0,3,4}

{0}

=

{0,1} {0,2} {0,3} {0,4} {1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

{0,1,2} {0,1,3} {0,1,4} {0,2,3} {0,2,4} {0,3,4} {1,2,3} {1,2,4} {1,3,4} {2,3,4}

Figure 2.5 The product of flags p1 and p2.

There are 6 flags, so a 6 by 6 semidefinite matrix will be computed, having the
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Table 2.1 Number of copies of Hk obtained from combining flags pi and pj
p2,
p2

p2,
p3

p2,
p4

p2,
p5

p3,
p3

p3,
p4

p3,
p5

p4,
p4

p4,
p5

p5,
p5

H4325 120 0 0 0 120 0 0 0 0 0
H5924 120 0 0 0 120 0 0 0 0 0
H7202 24 0 24 0 80 0 16 0 0 8
H7968 24 0 24 0 80 0 16 0 0 8
H7971 0 0 24 4 64 0 20 4 0 16
H7977 0 12 12 0 48 12 0 12 0 24
H8251 0 12 12 0 48 12 0 12 0 24
H8294 0 0 24 4 64 0 20 4 0 16
H8385 0 0 0 20 40 0 20 20 0 40
H8398 0 0 0 20 40 0 20 20 0 40
H8399 0 0 0 0 16 16 0 0 32 32

form

Q =



q11 q12 q13 q14 q15 q16

q21 q22 q23 q24 q25 q26

q31 q32 q33 q34 q15 q36

q41 q42 q43 q44 q45 q46

q51 q52 q53 q54 q55 q56

q61 q62 q63 q64 q65 q66



,

which is symmetric (qij = qji) and positive semidefinite. Now cHi is computed by

multiplying the vector

(q11, 2q12, 2q13, . . . , q22, 2q23, . . . , 2q56, q66)

with the corresponding column (transposed to row here) Hi in the multiplication

Table 2.1. So the result has the form

cHi =
∑

1≤i,j≤6
αijqij,

for some αij ∈ R.

The program was then solved using the CSDP solver [10].
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Now from Proposition 2.1,

hn(F) ≤ max
H∈H

(hn(H) + cH). (2.9)

In order to drive the bound lower, the entire process can be repeated using the duals

of the graphs instead. Figure 2.6 shows how the flags for the dual case are simply

those in Figure 2.4 turned upside down, rooted in the
(

5
4

)
level rather than the

(
5
1

)
level.

(
5
1

)
(

5
2

)
(

5
3

)
(

5
4

)

{0}

{0,2}

p0

{0,1}

{0,1,2}

{3,4}

{2,3,4} {1,3,4}

{1,2,3,4}

p′0

Figure 2.6 A comparison of the flags for the original (left) and dual (right) cases

That is, we can consider the flags being turned upside down, being rooted in the(
5
4

)
level of B5 rather than the

(
5
1

)
level. As a result, we obtain a new inequality,

hn(F) ≤ max
H∈H

(hn(H) + c′H), (2.10)

where c′H . Next, we can average the constants in (2.9) and (2.10) to obtain another

bound,

hn(F) ≤ max
H∈H

(
hn(H) + cH + c′H

2

)
. (2.11)

The resulting matrix, after rounding the entries to a reasonably close rational
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number, was

Q ≈ Q0 = 1
2400



12 12 4 0 6 −5

12 40 5 0 9 −7

4 5 9 0 3 −6

0 0 0 0 0 0

6 9 3 0 5 −4

−5 −7 −6 0 −4 5



.

With computer assistance, Q0 is confirmed to be positive semidefinite. A summary

of the results is given in Table 2.2, including only the graphs with a Lubell value of

1.5 or 1.6.

From (2.11), the bound of |F| ≤ 1.56
(

n
bn/2c

)
is attained.

Table 2.2 Relevant results for graphs H with large Lubell value.

H hn(H) cH+c′H
2 hn(H) + cH+c′H

2
H8385 1.5 0.025 1.525
H8386 1.5 0.01167 1.51167
H8387 1.5 -0.02333 1.47667
H8388 1.5 0.01 1.51
H8389 1.5 -0.08 1.42
H8390 1.5 0 1.5
H8391 1.5 -0.05667 1.44333
H8392 1.5 0 1.5
H8393 1.5 -0.05667 1.44333
H8394 1.5 -0.08 1.42
H8395 1.5 0.01 1.51
H8396 1.5 -0.02333 1.47667
H8397 1.5 0.01167 1.51167
H8398 1.5 0.025 1.525
H8399 1.6 -0.04 1.56

Remark 2.6. After finishing this proof, we discovered that a better bound has al-

ready been proven. Restricting F to 2 rows, Kramer [56] showed |F| ≤ (2
√

3 −

2)
(

n
bn/2c

)
without the use of flag algebras.
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2.4 Future Work

Maintaining the restriction to the middle 2 levels of Bn, it seems plausible that the

bound can be pushed further down. This could potentially be accomplished by using

larger flags (namely B3), though this would be more computationally intensive. Short

of gettting a bound for π(O6) outright without any restrictions, it may be worthwhile

to attempt a bound assuming a restriction to the middle 3 levels. Flag algebras seem

to be the most promising method to use.

It would also be interesting to see whether flag algebras could give us any nontrivial

bounds on O10, even if it requires another restriction to the middle 2 levels. However,

if we employed a similar setup to that presented here, the flags would consist of the

middle 2 levels of B3, of which there are 20, up to isomorphism. Then the product of

any 2 flags yields 229 possible graphs, before accounting for isomorphisms or checking

for copies of O6. Thus, this appears to be more computationally daunting.
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Chapter 3

Computing Diffusion State Distance using

Green’s Function and Heat Kernel on Graphs1

3.1 Introduction

Recently, the diffusion state distance (DSD, for short) was introduced in [12] to cap-

ture functional similarity in protein-protein interaction (PPI) networks. The diffusion

state distance is much more effective than the classical shortest-path distance for the

problem of transferring functional labels across nodes in PPI networks, based on evi-

dence presented in [12]. The definition of DSD is purely graph theoretic and is based

on random walks.

Let G = (V,E) be a simple undirected graph on the vertex set {v1, v2, . . . , vn}.

For any two vertices u and v, let He{k}(u, v) be the expected number of times that

a random walk starting at node u and proceeding for k steps, will visit node v. Let

He{k}(u) be the vector (He{k}(u, v1), . . . , He{k}(u, vn)). The diffusion state distance

(or DSD, for short) between two vertices u and v is defined as

DSD(u, v) = lim
k→∞

∥∥∥He{k}(u)−He{k}(v)
∥∥∥

1

provided the limit exists (see [12]). Here the L1-norm is not essential. Generally, for

q ≥ 1, one can define the DSD Lq-distance as

DSDq(u, v) = lim
k→∞

∥∥∥He{k}(u)−He{k}(v)
∥∥∥
q

1E. Boehnlein, P. Chin, A. Sinha, and L. Lu, Algorithms and Models for the Web Graph: 11th
International Workshop, WAW 2014, Beijing, China, December 17-18, 2014, Proceedings, Springer
International Publishing, 8882 (2014), 79–95. Reprinted here with permission of Springer.
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provided the limit exists. (We use Lq rather than Lp to avoid confusion, as p will be

used as a probability throughout the paper.)

In [12], Cowen et al. showed that the above limit always exists whenever the

random walk on G is ergodic (i.e., G is connected non-bipartite graph). They also

prove that this distance can be computed by the following formula:

DSD(u, v) = ‖(1u − 1v)(I −D−1A+W )−1‖1

where D is the diagonal degree matrix, A is the adjacency matrix, and W is the

constant matrix in which each row is a copy of π , π = 1∑n

i=1 di
(d1, . . . , dn) is the

unique steady state distribution.

A natural question is how to define the diffusion state distance for a bipartite

graph. We suggest to use the lazy random walk. For a given α ∈ (0, 1), one can

choose to stay at the current node u with probability α, and choose to move to one

of its neighbors with probability (1− α)/du. In other words, the transitive matrix of

the α-lazy random walk is

Tα = αI + (1− α)D−1A.

Similarly, let He{k}α (u, v) be the expected number of times that the α-lazy random

walk starting at node u and proceeding for k steps, will visit node v. Let He{k}α (u) be

the vector (He{k}α (u, v1), . . . , He{k}α (u, vn)). The α-diffusion state distance Lq-distance

between two vertices u and v is

DSDα
q (u, v) = lim

k→∞

∥∥∥He{k}α (u)−He{k}α (v)
∥∥∥
q
.

Theorem 3.1. For any connected graph G and α ∈ (0, 1), the DSDα
q (u, v) is always

well-defined and satisfies

DSDα
q (u, v) = (1− α)−1‖(1u − 1v)G‖q. (3.1)

Here G is the matrix of Green’s function of G.
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Observe that (1− α)DSDα
q (u, v) is independent of the choice of α. Naturally, we

define the DSD Lq-distance of any graph G as:

DSDq(u, v) := lim
α→0

(1− α)DSDα
q (u, v) = ‖(1u − 1v)G‖q.

This definition extends the original definition for non-bipartite graphs.

With properly chosen α, ‖He{k}α (u) − He{k}α (v)‖q converges faster than

‖He{k}(u) − He{k}(v)‖q. This fact leads to a faster algorithm to estimate a single

distance DSDq(u, v) using random walks. We will discuss it in Remark 3.2.

Green’s function was introduced in 1828 by George Green [41] to solve some partial

differential equations, and it has found many applications (e.g. [6], [22],[16], [32], [47],

[69]).

The Green’s function on graphs was first investigated by Chung and Yau [22]

in 2000. Given a graph G = (V,E) and a given function g : V → R, consider the

problem to find f satisfying the discrete Laplace equation

Lf =
∑
y∈V

(f(x)− f(y))pxy = g(x).

Here pxy is the transition probability of the random walk from x to y. Roughly

speaking, Green’s function is the left inverse operator of L (for the graphs with

boundary). It is closely related to the Heat kernel of the graphs (see also [27]) and

the normalized Laplacian.

In this paper, we will use Green’s function to compute the DSD Lq-distance for

various graphs. The maximum DSD Lq-distance varies from graphs to graphs. The

maximum DSD Lq-distance for paths and cycles are at the order of Θ(n1+1/q) while

the Lq-distance for some random graphs G(n, p) and G(w1, . . . , wn) are constant for

some ranges of p. The hypercubes are somehow between the two classes. The DSD

L1-distance is Ω(n) while the Lq-distance is Θ(1) for q > 1. Our method for random

graphs is based on the strong concentration of the Laplacian eigenvalues.

23



The paper is organized as follows. In Section 2, we will briefly review the termi-

nology on the Laplacian eigenvalues, Green’s Function, and heat kernel. The proof

of Theorem 3.1 will be proved in Section 3. In Section 4, we apply Green’s function

to calculate the DSD distance for various symmetric graphs like paths, cycles, and

hypercubes. We will calculate the DSD L2-distance for random graphs G(n, p) and

G(w1, w2, . . . , wn) in Section 5. In the last section, we examined two brain networks:

a cat and a Rhesus monkey. The distributions of the DSD distances are calculated.

3.2 Notation

In this paper, we only consider undirected simple graph G = (V,E) with the vertex

set V and the edge set E. For each vertex x ∈ V , the neighborhood of x, denoted

by N(x), is the set of vertices adjacent to x. The degree of x, denoted by dx, is the

cardinality of N(x). We also denote the maximum degree by ∆ and the minimum

degree by δ.

Without loss of generalization, we assume that the set of vertices is ordered

and assume V = [n] = {1, 2, . . . , n}. Let A be the adjacency matrix and D =

diag(d1, . . . , dn) be the diagonal matrix of degrees. For a given subset S, let the vol-

ume of S to be vol(S) := ∑
i∈S di. In particular, we write vol(G) = vol(V ) = ∑n

i=1 di.

Let V ∗ be the linear space of all real functions on V . The discrete Laplace operator

L : V ∗ → V ∗ is defined as

L(f)(x) =
∑

y∈N(x)

1
dx

(f(x)− f(y)).

The Laplace operator can also written as a (n× n)-matrix:

L = I −D−1A.

Here D−1A is the transition probability matrix of the (uniform) random walk on G.

Note that L is not symmetric. We consider a symmetric version

L := I −D−1/2AD−1/2 = D1/2LD−1/2,
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which is so called the normalized Laplacian. Both L and L have the same set of

eigenvalues. The eigenvalues of L can be listed as

0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn−1 ≤ 2.

The eigenvalue λ1 > 0 if and only if G is connected while λn−1 = 2 if and only if G is

a bipartite graph. Let φ0, φ1, . . . , φn−1 be a set of orthogonal unit eigenvectors. Here

φ0 = 1√
vol(G)

(
√
d1, . . . ,

√
dn) is the positive unit eigenvector for λ0 = 0 and φi is the

eigenvector for λi (1 ≤ i ≤ n− 1).

Let O = (φ0, . . . , φn−1) and Λ = diag(0, λ1, . . . , λn−1). Then O is an orthogonal

matrix and L be diagonalized as

L = OΛO′. (3.2)

Equivalently, we have

L = D−1/2OΛO′D1/2. (3.3)

The Green’s function G is the matrix with its entries, indexed by vertices x and

y, defined by a set of two equations:

GL(x, y) = I(x, y)− dy
vol(G) , (3.4)

G1 = 0. (3.5)

(This is the so-called Green’s function for graphs without boundary in [22].)

The normalized Green’s function G is defined similarly:

GL(x, y) = I(x, y)−

√
dxdy

vol(G) .

The matrices G and G are related by

G = D1/2GD−1/2.

Alternatively, G can be defined using the eigenvalues and eigenvectors of L as follows:

G = OΛ{−1}O′,
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where Λ{−1} = diag(0, λ−1
1 , . . . , λ−1

n−1). Thus, we have

G(x, y) =
n−1∑
l=1

1
λl

√
dy
dx
φl(x)φl(y). (3.6)

For any real t ≥ 0, the heat kernel Ht is defined as

Ht = e−tL.

Thus,

Ht(x, y) =
n−1∑
l=0

e−λitφl(x)φl(y).

The heat kernel Ht satisfies the heat equation

d

dt
Htf = −LHtf.

The relation of the heat kernel and Green’s function is given by

G =
∫ ∞

0
Htdt− φ′0φ0.

The heat kernel can be used to compute Green’s function for the Cartesian product

of two graphs. We will omit the details here. Readers are directed to [22] and [15]

for the further information.

3.3 Proof of Theorem 3.1

Proof. Rewrite the transition probability matrix Tα as

Tα = αI + (1− α)D−1A.

= D−1/2(αI + (1− α)D−1/2AD−1/2)D1/2

= D−1/2(αI + (1− α)(I − L))D1/2

= D−1/2(I − (1− α)L)D1/2.

For k = 0, 1, . . . , n − 1, let λ∗k = 1 − (1 − α)λk and Λ∗ = diag(λ∗0, . . . , λ∗n−1) =

I − (1− α)Λ. Applying Equation (3.3), we get

Tα = D−1/2OΛ∗O′D1/2 = (O′D1/2)−1Λ∗O′D1/2.
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Then for any t ≥ 1, the t-step transition matrix is T tα = (OD1/2)−1Λ∗tOD1/2 =

D−1/2OΛ∗tO′D1/2. Denote p{t}α (u, j) as the (u, j)th entry in T tα.

p{t}α (u, j) =
n−1∑
l=0

(λ∗l )t
√
dj
du
φl(u)φl(j)

= dj
vol(G) +

n−1∑
l=1

(λ∗l )t
√
dj
du
φl(u)φl(j).

Thus,

He{k}α (u, j)−He{k}α (v, j) =
k∑
t=0

n−1∑
l=1

(λ∗l )td
1/2
j φl(j)(d−1/2

u φl(u)− d−1/2
v φl(v)).

The limit limk→∞He
{k}
α (u, j)−He{k}α (v, j) forms the sum of n geometric series:

∞∑
t=0

n−1∑
l=1

(λ∗l )td
1/2
j φl(j)(d−1/2

u φl(u)− d−1/2
v φl(v)).

Note each geometric series converges since the common ratio λ∗l ∈ (−1, 1). Thus,

lim
k→∞

(
He{k}α (u, j)−He{k}α (v, j)

)
=
∞∑
t=0

n−1∑
l=1

(λ∗l )td
1/2
j φl(j)(d−1/2

u φl(u)− d−1/2
v φl(v))

=
n−1∑
l=1

d
1/2
j φl(j)(d−1/2

u φl(u)− d−1/2
v φl(v))

∞∑
t=0

(λ∗l )t

=
n−1∑
l=1

1
1− λ∗l

d
1/2
j φl(j)(d−1/2

u φl(u)− d−1/2
v φl(v))

= 1
1− α

n−1∑
l=1

1
λl
d

1/2
j φl(j)(d−1/2

u φl(u)− d−1/2
v φl(v))

= 1
1− α(G(u, j)−G(v, j)).

We have

lim
k→∞

He{k}α (u)−He{k}α (v) = 1
1− α(1u − 1v)G.

Remark 3.2. Observe that the convergence rate ofHe{k}α (u)−He{k}α (v) is determined

by λ̄∗ := max{1 − (1 − α)λ1, (1 − α)λn−1 − 1). It is critical that we assume α 6= 0.
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When α = 0 then λ̄∗ < 1 holds only if λn−1 < 2, i.e. G is a non-bipartite graph (see

[12]).

When λ1 + λn−1 > 2, λ̄∗ (as a function of α) achieves the minimum value λn−1−λ1
λn−1+λ1

at α = 1− 2
λ1+λn−1

. This is the best mixing rate that the α-lazy random walk on G

can achieve. Using the α-lazy random walks (with α = 1− 2
λ1+λn−1

) to approximate

the DSD Lq-distance will be faster than using regular random walks.

Equation (3.6) implies ‖G‖2 ≤ 1
λ1

√
∆
δ
. Combining with Theorem 3.1, we have

Corollary 3.3. For any connected simple graph G, and any two vertices u and v, we

have DSD2(u, v) ≤
√

2
λ1

√
∆
δ
.

Note that for any connected graph G with diameter m (Lemma 1.9, [15])

λ1 >
1

m vol(G) .

This implies a uniform bound for the DSD L2 distances on any connected graph G

on n vertices.

DSD2(u, v) ≤
√

2∆
δ
m vol(G) <

√
2n3.5.

This is a very coarse upper bound. But it does raise an interesting question “How

large can the DSD Lq-distance be?”

3.4 Some Examples of the DSD Distance

In this section, we use Green’s function to compute the DSD Lq-distance (between

two vertices of the distance reaching the diameter) for paths, cycles, and hypercubes.

The path Pn

We label the vertices of Pn as 1, 2, . . . , n, in sequential order. Chung and Yau com-

puted the Green’s function G of the weighed path with no boundary (Theorem 9,
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[22]). It implies that Green’s function of the path Pn is given by: for any u ≤ v,

G(u, v) =
√
dudv

4(n− 1)2

(∑
z<u

(d1 + . . .+ dz)2 +
∑
v≤z

(dz+1 + · · ·+ dn)2

−
∑

u≤z<v
(d1 + · · ·+ dz)(dz+1 + · · ·+ dn)

)

=
√
dudv

4(n− 1)2

(
u−1∑
z=1

(2z − 1)2 +
n−1∑
z=v

(2n− 2z − 1)2 −
v−1∑
z=u

(2z − 1)(2n− 2z − 1)
)

=
√
dudv

4(n− 1)2

(
n−1∑
z=1

(2z − 1)2 +
n−1∑
z=v

(2n− 2)(2n− 4z)−
v−1∑
z=u

(2z − 1)(2n− 2)
)

=
√
dudv(2n− 1)(2n− 3)

12(n− 1) +
√
dudv

2(n− 1)

(
n−1∑
z=v

(2n− 4z)−
v−1∑
z=u

(2z − 1)
)

=
√
dudv

2(n− 1)

(
(u− 1)2 + (n− v)2 − 2n2 − 4n+ 3

6

)
.

When u > v, we have

G(u, v) = G(v, u) =
√
dudv

2(n− 1)

(
(v − 1)2 + (n− u)2 − 2n2 − 4n+ 3

6

)
.

Applying G(u, v) =
√
dv√
du
G(u, v), we get

G(u, v) =


dv

2(n−1)

(
(u− 1)2 + (n− v)2 − 2n2−4n+3

6

)
if u ≤ v;

dv
2(n−1)

(
(v − 1)2 + (n− u)2 − 2n2−4n+3

6

)
if u > v.

We have

G(1, 1) = 4n2 − 8n+ 3
12(n− 1) ;

G(1, j) = 1
n− 1

(
(n− j)2 − 2n2 − 4n+ 3

6

)
for 2 ≤ j ≤ n− 1;

G(1, n) = −2n2 − 4n+ 3
12(n− 1) ;

G(n, 1) = −2n2 − 4n+ 3
12(n− 1) ;

G(n, j) = 1
n− 1

(
(j − 1)2 − 2n2 − 4n+ 3

6

)
for 2 ≤ j ≤ n− 1;

G(n, n) = 4n2 − 8n+ 3
12(n− 1) .
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Thus,

G(1, j)−G(n, j) =



n−1
2 if j = 1;

n+ 1− 2j if 2 ≤ j ≤ n− 1;

−n−1
2 if j = n.

(3.7)

Theorem 3.4. For any q ≥ 1, the DSD Lq-distance of the Path Pn between 1 and n

satisfies

DSDq(1, n) = (1 + q)−1/qn1+1/q +O(n1/q).

Proof.

DSDq(1, n) =
2

(
n− 1

2

)q
+

n−1∑
j=2
|n+ 1− 2j|q

1/q

=
(

1
1 + q

n1+q +O(nq)
)1/q

= (1 + q)−1/qn1+1/q +O(n1/q).

For q = 1, we have the following exact result:

DSD1(1, n) =
n∑
j=1
|G(1, j)−G(n, j)|

=


2k2 − 2k + 1 if n = 2k

2k2 if n = 2k + 1.

The cycle Cn

Now we consider Green’s function of cycle Cn. For x, y ∈ {1, 2, . . . , n}, let |x− y|c be

the graph distance of x, y in Cn. We have the following Lemma.

Lemma 3.5. For even n = 2k, Green’s function G of Cn is given by

G(x, y) = 1
2k (k − |x− y|c)2 − k

6 −
1

12k .
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For odd n = 2k + 1, Green’s function G of Cn is given by

G(x, y) = 2
2k + 1

(
k + 1− |x− y|c

2

)
− k2 + k

3(2k + 1) .

Proof. We only prove the even case here. The odd case is similar and will be left to

the readers.

For n = 2k, it suffices to verify that G satisfies Equations (3.4) and (3.5). To

verify Equation (3.4), we need show

G(x, y)− 1
2G(x, y − 1)− 1

2G(x, y + 1) =


− 1
n
if x 6= y;

1− 1
n
if x = y.

Let z = k
6 + 1

12k and i = |x− y|c. For x 6= y, we have

G(x, y)− 1
2G(x, y − 1)− 1

2G(x, y + 1)

= ( 1
2k (k − i)2 − z)− 1

2( 1
2k (k − i− 1)2 − z)− 1

2( 1
2k (k − i+ 1)2 − z)

= − 1
2k

= − 1
n
.

When x = y, we have

G(x, y)− 1
2G(x, y − 1)− 1

2G(x, y + 1)

= 1
2kk

2 − z − 1
2

( 1
2k (k − 1)2 − z

)
− 1

2

( 1
2k (k − 1)2 − z

)
= 2k − 1

2k
= 1− 1

n
.

To verify Equation (3.5), it is enough to verify

12 + 22 + · · ·+ (k − 1)2 + k2 + (k − 1)2 + · · ·+ 12 = 2k3 + k

3 = n2z.

This can be done by induction on k.
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Theorem 3.6. For any q ≥ 1, the DSD Lq-distance of the Cycle Cn between 1 and

bn2 c+ 1 satisfies

DSDq(1, b
n

2 c+ 1) =
(

4
1 + q

)1/q (
n

4

)1+1/q
+O(n1/q).

Proof. We only verify the case of even cycle here. The odd cycle is similar and will

be omitted.

For n = 2k, the difference of G(1, j) and G(1 + k, j) have a simple form:

G(1, j)−G(1 + k, j) = 1
2k ((k − i)2 − i2) = k

2 − i,

where i = |j − 1|c. Thus,

DSDq(1, 1 + k) =
(

2
k−1∑
i=0

∣∣∣∣∣k2 − i
∣∣∣∣∣
q)1/q

=
 4

1 + q

(
k

2

)1+q

+O(kq)
1/q

=
(

4
1 + q

)1/q (
n

4

)1+1/q
+O(n1/q).

The hypercube Qn

Now we consider the hypercube Qn, whose vertices are the binary strings of length

n and whose edges are pairs of vertices differing only at one coordinate. Chung and

Yau [22] computed the Green’s function of Qn: for any two vertices x and y with

distance k in Qn,

G(x, y)=2−2n

−∑
j<k

(
(
n
0

)
+ · · ·+

(
n
j

)
)(
(
n
j+1

)
+ · · ·+

(
n
n

)
)(

n−1
j

) +
∑
k≤j

(
(
n
j+1

)
+ · · ·+

(
n
n

)
)2(

n−1
j

)


= 2−2n
n∑
j=0

(
(
n
j+1

)
+ · · ·+

(
n
n

)
)2(

n−1
j

) − 2−n
∑
j<k

(
n
j+1

)
+ · · ·+

(
n
n

)
(
n−1
j

) .
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We are interested in the DSD distance between a pair of antipodal vertices. Let 0

denote the all-0-string and 1 denote the all-1-string. For any vertex x, if the distance

between 0 and x is i then the distance between 1 and x is n− i. We have

G(0, x)−G(1, x) = −2−n
∑
j<k

(
n
j+1

)
+ · · ·+

(
n
n

)
(
n−1
j

) + 2−n
∑

j<n−k

(
n
j+1

)
+ · · ·+

(
n
n

)
(
n−1
j

)
= 2−n

n−k−1∑
j=k

(
n
j+1

)
+ · · ·+

(
n
n

)
(
n−1
j

) . (3.8)

Here we use the convention that ∑a
j=b cj = −∑b

j=a cj for b > a.

Theorem 3.7. For any q ≥ 1, the DSD Lq-distance of the hypercube Qn between 0

and 1 satisfies

DSDq(0,1) =
 n∑
k=0

(
n

k

) ∣∣∣∣∣∣2−n
n−k−1∑
j=k

(
n
j+1

)
+ · · ·+

(
n
n

)
(
n−1
j

)
∣∣∣∣∣∣
q1/q

. (3.9)

In particular, DSDq(0,1) = Θ(1) when q > 1 while DSD1(0,1) = Ω(n).

Proof. Equation (3.9) follows from the definition of DSD Lq-distance and Equation

(3.8). Let

ak =
(
n

k

) ∣∣∣∣∣∣2−n
n−k−1∑
j=k

(
n
j+1

)
+ · · ·+

(
n
n

)
(
n−1
j

)
∣∣∣∣∣∣
q

.

Observe that ak = an−k, we only need to estimate ak for 0 ≤ k ≤ n/2. Also we can

throw away the terms in the second summation for j > n/2 since that part is at most

half of ak. For k ≤ j ≤ n/2,

1
2 ≤ 2−n

((
n

j + 1

)
+ · · ·+

(
n

n

))
≤ 1.

Thus ak has the same magnitude as bk :=
(
n
k

)(∑n/2
j=k

1
(n−1

j )

)q
.

For q > 1, we first bound bk by bk ≤
(
n
k

)(
n/2

(n−1
k )

)q
= O(n(1−q)k+q). When k >

q+2
q−1 , we have bk = O(n−2). The total contribution of those bk’s is O(n−1), which is

negligible. Now consider the term bk for k = 0, 1, . . . , b q+2
q−1c. We bound bk by

bk ≤
(
n

k

) 1(
n−1
k

) + n/2(
n−1
k+1

)
q = O(1).
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This implies DSDq(0,1) = O(1). The lower bound DSDq(0,1) ≥ 1 is obtained by

taking the term at k = 0. Putting together, we have DSDq(0,1) = Θ(1) for q > 1.

For q = 1, note that

bk =
n/2∑
j=k

(
n
k

)
(
n−1
j

) >
(
n
k

)
(
n−1
k

) = n

n− k
> 1.

Thus, DSD1(0,1) = Ω(n).

3.5 Random Graphs

In this section, we will calculate the DSD Lq-distance in two random graphs mod-

els. For random graphs, the non-zero Laplacian eigenvalues of a graph G are often

concentrated around 1. The following Lemma is useful to the DSD Lq-distance.

Lemma 3.8. Let λ1, . . . , λn−1 be all non-zero Laplacian eigenvalues of a graph G.

Suppose there is a small number ε ∈ (0, 1/2), so that for 1 ≤ i ≤ n− 1, |1− λi| ≤ ε.

Then for any pairs of vertices u, v, the DSD Lq-distance satisfies

|DSDq(u, v)− 21/q| ≤ ε

1− ε

√
∆
du

+ ∆
dv

if q ≥ 2, (3.10)

|DSDq(u, v)− 21/q| ≤ n
1
q
− 1

2
ε

1− ε

√
∆
du

+ ∆
dv

for 1 ≤ q < 2. (3.11)

Proof. Rewrite the normalized Green’s function G as

G = I − φ′0φ0 + Υ.

Note that the eigenvalues of Υ := G − I + φ0φ
′
0 are 0, 1

λ1
− 1, . . . , 1

λn−1
− 1. Observe

that for each i = 1, 2, . . . , n− 1, | 1
λi
− 1| ≤ ε

1−ε . We have

‖Υ‖ ≤ ε

1− ε.

Thus,

DSDq(u, v) = ‖(1u − 1v)D−1/2GD1/2‖q

= ‖(1u − 1v)D−1/2(I − φ′0φ+ Υ)D1/2‖q

≤ ‖(1u − 1v)D−1/2(I − φ′0φ)D1/2‖q + ‖(1u − 1v)D−1/2ΥD1/2‖q.
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Viewing Υ as the error term, we first calculate the main term.

‖(1u − 1v)D−1/2(I − φ′0φ)D1/2‖q

= ‖(1u − 1v)(I −W )‖q

= ‖(1u − 1v)‖q

= 21/q.

The L2-norm of the error term can be bounded by

‖(1u − 1v)D−1/2ΥD1/2‖2

≤ ‖(1u − 1v)D−1/2‖2‖Υ‖‖D1/2‖

≤
√

1
du

+ 1
dv

ε

1− ε
√

∆

= ε

1− ε

√
∆
du

+ ∆
dv
.

To get the bound of Lq-norm from L2-norm, we apply the following relation of Lq-

norm and L2-norm to the error term. For any vector x ∈ Rn,

‖x‖q ≤ ‖x‖2 for q ≥ 2.

and

‖x‖q ≤ n
1
q
− 1

2‖x‖2 for 1 ≤ q < 2.

The inequalities (3.10) and (3.11) follow from the triangular inequality of the

Lq-norm and the upper bound of the error term.

Now we consider the classical Erdős-Renyi random graphs G(n, p). For a given n

and p ∈ (0, 1), G(n, p) is a random graph on the vertex set {1, 2, . . . , n} obtained by

adding each pair (i, j) to the edges of G(n, p) with probability p independently.

There are plenty of references on the concentration of the eigenvalues of G(n, p)

(for example, [23], [26],[58], and [60]). Here we list some facts on G(n, p).

1. For p > (1+ε) logn
n

, almost surely G(n, p) is connected.
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2. For p � logn
n

, G(n, p) is “almost regular”; namely for all vertex v, dv = (1 +

on(1))np.

3. For np(1− p)� log4 n, all non-zero Laplacian eigenvalues λi’s satisfy (see [60])

|λi − 1| ≤ (3 + on(1))
√
np

. (3.12)

Apply Lemma 3.8 with ε = (3+on(1))√
np

, and note that G(n, p) is almost-regular. We

get the following theorem.

Theorem 3.9. For p(1−p)� log4 n
n

, almost surely for all pairs of vertices (u, v), the

DSD Lq-distance of G(n, p) satisfies

DSDq(u, v) = 21/q ±O
(

1
√
np

)
if q ≥ 2,

DSDq(u, v) = 21/q ±O

n 1
q
− 1

2

√
np

 if 1 ≤ q < 2.

Now we consider the random graphs with given expected degree sequence

G(w1, . . . , wn) (see [8], [18], [17], [16], [48]). It is defined as follows:

1. Each vertex i (for 1 ≤ i ≤ n) is associated with a given positive weight wi.

2. Let ρ = 1∑n

i=1 wi
. For each pair of vertices (i, j), ij is added as an edge with

probability wiwjρ independently. (i and j may be equal so loops are allowed.

Assume wiwjρ ≤ 1 for i, j.)

Let wmin be the minimum weight. There are many references on the concentration

of the eigenvalues of G(w1, . . . , wn) (see [19], [20], [23], [26], [60]). The version used

here is in [60].

1. For each vertex i, the expected degree of i is wi.

2. Almost surely for all i with wi � log n, then the degree di = (1 + o(1))wi.
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3. If wmin � log4 n, all non-zero Laplacian eigenvalues λi (for 1 ≤ i ≤ n− 1),

|1− λi| ≤
3 + on(1)
√
wmin

. (3.13)

Theorem 3.10. Suppose wmin � log4 n, almost surely for all pairs of vertices (u, v),

the DSD Lq-distance of G(w1, . . . , wn) satisfies

DSDq(u, v) = 21/q ±O
(

1
√
wmin

√
wmax
wu

+ wmax
wv

)
if q ≥ 2,

DSDq(u, v) = 21/q ±O

 n
1
q
− 1

2

√
wmin

√
wmax
wu

+ wmax
wv

 if 1 ≤ q < 2.

3.6 Examples of Biological Networks

In this section, we will examine the distribution of the DSD distances for some bio-

logical networks. The set of graphs analyzed in this section include three graphs of

brain data from the Open Connectome Project [73] and two more graphs built from

the S. cerevisiae PPI network and S. pombe PPI network used in [12]. Figure 1 and

2 serves as a visual representation of one of the two brain data graphs: the graph of

a cat and the graph of a Rhesus monkey. The network of the cat brain has 65 nodes

and 1139 edges while the network of rhesus monkey brain has 242 nodes and 4090

edges.

Each node in the Rhesus graph represents a region in the cerebral cortex originally

analyzed in [46]. Each edge represents axonal connectivity between regions and there

is no distinction between strong and weak connections in this graph [46]. The Cat

data-set follows a similar pattern where each node represents a region of the brain

and each edge represents connections between them. The Cat data-set represents

18 visual regions, 10 auditory regions, 18 somatomotor regions, and 19 frontolimbic

regions[65].

For each network above, we calculated all-pair DSD L1-distances. Divide the

possible values into many small intervals and compute the number of pairs falling
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Figure 3.1 The brain networks: (a), a Cat; (b): a Rhesus Monkey

into each interval. The results are shown in Figure 3.1. The patterns are quite

surprising to us.

Figure 3.2 The distribution of the DSD L1-distances of brain networks: (a), a Cat;
(b): a Rhesus Monkey

Both graphs have a small interval consisting of many pairs while other values are

more or less uniformly distributed. We think, that phenomenon might be caused by

the clustering of a dense core. The two graphs have many branches sticking out.

Since we are using L1-distance, it doesn’t matter the directions of these branches

sticking out when they are embedded into Rn using Green’s function.
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When we change L1-distance to L2-distance, the pattern should be broken. This

is confirmed in Figure 3.3. The actual distributions are mysterious to us.

Figure 3.3 The distribution of the DSD L2-distances of brain networks: (a), a Cat;
(b): a Rhesus Monkey
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Chapter 4

Non-uniform Hypergraphs

For each i ∈ [r], where R = {k1, . . . , kr}, define fi(H) to be the number of ki-edges

belonging to E(H). Also, for each pi ∈ [0, 1], set αi := − log pi. Let H := HR
v be an

R-graph on v vertices. Define

φ(H,p) = |V (H)| −
r∑
i=1

αifi(H),

and then,

q(H,p) := min
H′⊂H

φ(H ′,p).

We can now state the main result.

Theorem 4.1. Let G be the random hypergraph GR(n,p). For any ε > 0, for n

sufficiently large, we have:

1. If q(H,p) < −ε then GR(n,p) is almost surely H-free.

2. If q(H,p) ≥ ε, then almost surely GR(n,p) contains (1 + o(1)) 1
|Aut(H)|n

φ(H,p)

copies of H.

Using the same technique as in Theorem 4.1, we can make a claim regarding

extensions, as well. First define fSi (H) denote the number of edges from H of type

i contained in H|S. Next, define for each subhypergraph H ′ ⊂ H, φS(H ′,p) :=

v − |S| −
r∑
i=1

(αifi(H ′)− αifSi (H ′)), and qs(H,p) := minH′⊂H φS(H ′,p).

Theorem 4.2. Suppose G = GR(n,p), and let a subset S ⊂ V (G) be given. Assume

H|S ⊂ G|S almost surely. If qS(H,p) ≥ ε, then H|S can almost certainly be extended

to a copy of H in G.
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4.1 Notation, Methods, and Examples

It is not immediately clear how to extend the notions of ‘balanced’ or ‘strictly bal-

anced’ to the non-uniform case. Consider the related extremal poset problem. One

can ask what conditions are required in order to force the presence of a poset P to

appear in some set family F . A necessary condition for P to appear is that every

subposet P ′ ⊂ P appears in the family F . With this analogy in mind, for |R| > 1, we

propose a new definition for the hypergraph. Let VH′ denote the number of vertices

of a subhypergraph H ′ ⊂ H. A set of hypergraphs H1, . . . , Hk with H = ∪kj=1Hj is

balanced if for all subgraphs H ′ ⊂ H and all 1 ≤ j ≤ k, ∑r
i=1 αifi(Hj) ≤ VHj implies∑r

i=1 αifi(H ′) ≤ VH′ , where each αi ≥ 0.

As an example, we consider the hypergraph H pictured in Figure 4.1. The 1-edges

are represented with solid circles, and the 2-edges are represented in the customary

way. The set {H1, H2} constitutes the balanced subgraphs of H, which was de-

termined by plotting the half-planes α1f1(Hi) + α2f2(Hi) = VHi for each subgraph

Hi ⊂ H, as seen in Figure 4.2. Consider the intersection of these half-planes in the

first quadrant, which is shaded. The lines that compose the boundary of this inter-

section correspond to the graphs in the balanced set. Lines that did not lie on the

boundary of the image were omitted here. Now for any ordered pair (α1, α2) lying in

the shaded region of the plot, consider the probability vector p = (n−α1 , n−α2). By

Theorem 4.1, the random graph G ∼ G(n,p) almost surely contains a copy of H.

H H1 H2

Figure 4.1 A hypergraph H with R = {1, 2}, and its balanced subgraphs

Now fix any hypergraphH = HR
v on v vertices with the edge typeR = {k1, . . . , kr}.
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1

1 α1

α2

H1

H2

Figure 4.2 The probabilities for which G(n,p) almost surely contains H

The goal is to count the number of copies of H contained in the random hypergraph

G = GR(n,p). For any S ∈
(
n
v

)
, define an indicator variable

XS :=


1 if G|S ⊇ H

0 otherwise.

contained inside G|S. So set

X =
∑
S∈(nv)

XS.

Then,

E(X) =
∑
S∈(nv)

E(XS)

=
(
n

v

)
v!

|Aut(H)|

r∏
i=1

p
fi(H)
i

≈ 1
|Aut(H)|n

v−
∑r

i=1 αifi(H),

where pi = 1/nαi .

The proof depends on an inequality from Kim and Vu. First, set µ = E(X),

E ′ = max
H′

∂X

∂H ′
, and E = max{µ,E ′}.
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Theorem 4.3 ([55]). For any λ > 1, if X is polynomial, then

Pr[|X − µ| > ak
√
EE ′λk] < dke

−λnk−1

where ak = 8k
√
k! and dk = 2e2.

To illustrate our methods more clearly, we must invoke derivatives. Take any

injection ϕ : V (H) → [n]. For each F ∈ E(H), define an indicator variable tϕ(F ) to

be 1 if ϕ(F ) is an edge in G, and 0 otherwise. Hence, we can write X, the number of

copies of H in G, as the polynomial:

X =
∑
ϕ

∏
F∈E(H)

tϕ(F )

Next, we may define the partial derivatives of X as follows. Suppose H ′ ⊂ H is

subgraph spanning V (H). Let S = S(H ′) denote the set of vertices incident to an

edge in E(H ′). We then restrict our attention to considering only those subgraphs

H ′ such that H[S] ⊆ H ′ ⊆ H. Let ϕ∗ denote those maps ϕ that fix S(H ′). Then

define:
∂X

∂H ′
= ∂X∏

E∈E(H′) ∂tE
=
∑
ϕ∗

∏
F∈E(H)\E(H′)

tϕ∗(F ).

Now we examine an example hypergraph H with V (H) = {1, 2, 3, 4} and E(H) =

{1, 4, 12, 23, 234}, as shown in Figure 4.3. The shaded triangle represents the 3-edge.

2

1

3

4

Figure 4.3 A hypergraph with R = {1, 2, 3}

Say ϕ maps (1, 2, 3, 4) 7→ (i, j, k, `). So X = ∑
ϕ titjtijtjktjk`. Now consider the

(vertex spanning) subgraph H ′ given by E(H ′) = {1, 12, 23}. Then S(H ′) = {1, 2, 3}.
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Then taking the derivative of H with respect to H ′, we obtain:

∂X

∂H ′
= ∂X

∂t1∂t12∂t23
=
∑
`

t`tjk`

=
∑
ϕ∗
tϕ∗(4)tϕ∗(2)ϕ∗(3)ϕ∗(4)

with expected value

E
(
∂X

∂H ′

)
= E

(
∂X

∂t1∂t12∂t23

)
≤ np1p3 = n1−α1−α3 ,

as we have n choices for ϕ∗(4), the only vertex whose destination is not already

determined from our choice of H ′. For another example, we consider the subgraph

H ′ given by E(H ′) = {23, 234, 4}. Here, we obtain:

∂X

∂H ′
= ∂X

∂t23∂t234∂t4
=
∑
i

titij =
∑
ϕ∗
tϕ∗(1)tϕ∗(1)ϕ∗(2)

E
(

∂X

∂t23∂t234∂t4

)
= E

(
∂X

∂H ′

)
≤ np1p2 = n1−α1−α2 .

4.2 Proof of Theorem 4.1

Taking pi ∼ 1/nαi , recall that

E(X) = v!
|Aut(H)|

(
n

v

)
r∏
i=1

p
fi(H)
i

≈ 1
|Aut(H)|n

v−
∑r

i=1 αifi(H)

= 1
|Aut(H)|n

φ(H,p).

Now if q(H,p) < −ε < 0, then there exists a subgraph H ′ ⊂ H such that

φ(H ′,p) = V (H ′)−
r∑
i=1

αifi(H ′) < −ε.

Letting X(H ′) denote the number of copies of H ′ in G. Then,

E(X(H ′)) ≈ 1
|Aut(H ′)|n

φ(H′,p)

= o(1).
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That is, G almost surely does not contain a copy of H ′, and thus almost surely does

not contain H. For the other case, when φ(H ′,p) ≥ ε > 0 for all subgraphs H ′, we

require some more machinery. Recalling the definitions of our derivatives, E, and E ′,

observe that:

E ′ = 1
v!n

maxH′⊂H q(H)−φ(H′) ≤ En−ε.

Now for any subgraph H ′ ⊂ H,

E
(
∂X

∂H ′

)
= E

∑
ϕ∗

∏
F∈E(H)\E(H′)

tF


≤ E

∑
ϕ∗

∏
F∈E(H) tF∏
F∈(H′) tF


=

∑
ϕ∗

n−
∑r

i=1 αifi(H)

n−
∑r

i=1 αifi(H
′)

≈ n|S(H′)| n
−
∑r

i=1 αifi(H)

n−
∑r

i=1 αifi(H
′)

≤ n|V (H)|

n|V (H′)|
n−
∑r

i=1 αifi(H)

n−
∑r

i=1 αifi(H
′)

≤ nφ(H,p)−φ(H′,p)

≤ nφ(H,p)−q(H′,p)

≤ nφ(H,p)

nε

= (1 + o(1))|Aut(H)| µ
nε

Thus, E ′ ≤ (1 + o(1))|Aut(H)| µ
nε

.

But since µ = nq(H,p)|Aut(H)|−1, then by Theorem 4.3,

Pr
[
|X − µ| > 8v

√
v!µ|Aut(H)|µn−ελv

]
< 2e2e−λnv−1.

Now taking λ = v lnn, we obtain:

Pr
[
|X − µ| > 8v(v!|Aut(H)|)1/2µn−ε/2vv(lnn)v

]
< 2e2n−1

However, for ε > 0, note that 8v(v!|Aut(G)|)1/2µn−ε/2vv(lnn)v → 0 as n → ∞.

Therefore in this case we expect to find (1 + o(1))µ copies of H inside G.
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4.3 Proof of Theorem 4.2

Fix any subset S ⊂ V (G). We wish to determine a sufficient condition for us to

extend H|S to a copy of H contained in G for some given hypergraph H. To be more

precise, we adopt a rigorous definition similar to that for the classic graph case in [66]

and [67]. Assume H|S ⊂ G|S as subgraphs. We say H|S can be extended to a copy

of H in G if there exists a set Z ⊂ V (G) such that for each F ⊂ S ∪Z, if F ∈ E(H)

then F ∈ E(G).

Let ψ : V (G) → V (G) be an injection such that ψ|S is the identity map. Let Y

denote the number of such extensions. As before, let |V (G)| = n and |V (H)| = v.

Then,

Y =
∑
ψ

∏
F∈E(H)\E(H|S)

tψ(F )

Now recall fSi (H) denote the number of edges from H of type i contained in H|S,

φS(H ′,p) = v − |S| −
r∑
i=1

(αifi(H ′)− αifSi (H ′)) , and qS(H,p) = minH′⊂H φS(H ′,p).

Thus,

E(Y ) = E

∑
ψ

∏
F∈E(H)\E(H|S)

tψ(F )


=

(
n− |S|
v − |S|

)
(v − |S|)!
|Aut(H|Sc)|

∏
i∈R

p
fi(H)−fSi (H)
i

≈ 1
|Aut(H|Sc)|

nφS(H,p)

So set µY = E(Y ). Next we turn our attention to the partial derivatives of Y . In

light of our earlier definitions of derivatives, the event that we can extend H|S to a

copy of H given a subgraph H ′ already in place, is given by ∂Y

∂ (H|S ∪H ′)
. So since

E(X) ≈ E(Y ), we can approximate

max
H′⊂H

∂Y

∂ (H|S ∪H ′)
= max

H′⊂H

∂X

∂H ′
= E ′

So set E ′Y = E ′ and EY = max{µY , E ′Y }. Then by Theorem 4.3,

Pr
[
|Y − µY | > 8v−|S|

√
(v − |S|)!µY |Aut(H|Sc)|µyn−ελv−|S|

]
< 2e2e−λnv−|S|−1.

46



Now taking λ = (v − |S|) lnn,

Pr
[
|Y − µY | > 8v−|S|(v − |S|)!1/2|Aut(H|Sc)|1/2µY n−ε/2(v − |S|)v−|S|

]
< 2e2n−1.

However, for ε > 0, note that 8v−|S|(v−|S|)!1/2|Aut(H|Sc)|1/2µY n−ε/2v − |S|v−|S| → 0

as n→∞. Thus, we can almost certainly extend H|S into a copy of H inside G. In

particular, we expect to find (1 + o(1))µY many extensions of H|S.

4.4 Improving Theorem 4.1

In Theorem 4.1, q(H,p) ≥ ε > 0 was a sufficient condition for obtaining copies of

H in GR(n,p). It turns out that we can invoke Chebyshev’s inequality to lower this

threshold to o(1). Let ω(n) denote a function that tends slowly to ∞ as n→∞.

Theorem 4.4. If q(H,p) ≥ logω(n)
logn , then almost surely GR(n,p) contains (1 +

o(1)) 1
|Aut(H)|n

φ(H,p) copies of H.

Theorem 4.4 follows from the following lemma.

Lemma 4.5. If E(X) = Ω(ω(n)), then

Pr(|X − E(X)| ≥ λ) = o(1),

where λ = max
{

1
n
E(X),

√
E(X)ω(n)

}
.

Proof. Observe that

∑
S

Var (XS) =
∑
S

(E(X2
S)− (E(XS))2)

≤
∑
S

E(X2
S)

=
∑
S

E(XS)

= E(X).
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If |S ∩S ′| ≤ 1, then XS and XS′ are independent, in which case Covar(XS, XS′) = 0.

Hence,

∑
S 6=S′

Covar(XS, XS′) ≤
∑
S 6=S′
|S∩S′|≥2

|Covar(XS, XS′)|

=
∑
S 6=S′
|S∩S′|≥2

|E(XSXS′)− E(XS)E(XS′)|

≤
∑
S

E(XS)
∑
S′ 6=S
|S∩S′|≥2

|E(XS′|XS)− E(XS′)|

≤
∑
S

E(XS)
∑
S′ 6=S

E(XS′ |XS) +
∑
S

E(XS)
∑
S′ 6=S
|S∩S′|≥2

E(XS′)

≤
∑
S

E(XS)
∑
H′

(∣∣∣n−∑r

i=1 αifi(H
′)
∣∣∣+ ∣∣∣n−∑r

i=1 αifi(H)
∣∣∣)

≤
∑
S

E(XS)
(
nq(H,p) + 1

n2E(X)
)

≤ E(X)nq(H,p) + 1
n2 (E(X))2.

Putting these together,

Var(X) = Var
(∑

S

XS

)
(4.1)

=
∑
S

Var (XS) +
∑
S 6=S′

Covar(XS, XS′) (4.2)

≤ E(X)(1 + nq(H,p)) + 1
n2 (E(X))2. (4.3)

Now Chebyshev’s inequality states that for λ > 0,

Pr (|X − E(X)| ≥ λ) ≤ Var(X)
λ2 . (4.4)

Choose λ = max
{

1
n
E(X),

√
E(X)ω(n)

}
. Thus λ = o(E(X)). Hence, applying (4.3)

to (4.4) implies

Pr (|X − E(X)| ≥ λ) ≤ max
{

1
n2 ,

1
ω(n)

}
= o(1).
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