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ABSTRACT 

The complexity of cellular environments presents a challenge to efforts at studying 

and elucidating biomolecules in cells. Covalent ligation of biomolecules with fluorescent 

molecules that have a reactive functional group that can react with a complementary 

functional group on biomolecules is one way that has been utilized to study biomolecules. 

It enables visualization and tracking of ligation and transportation of molecules within the 

cell. However, the myriad of functional groups within the cell makes achieving selectivity 

difficult. To circumvent this problem, reactions that do not interfere with biology have been 

developed. These reactions, referred to as bioorthogonal reactions must be rapid, selective 

to the reactive species in the cellular environment and non-toxic to the cells. In Chapter 1 

of this work, we discussed some of the key reactions developed to date and their 

applications in bioconjugation. 

In Chapter 2, we investigated the regioselectivity of secondary amine-catalyzed 

inverse electron demand Diels-Alder reaction (iDA) of unsymmetrical tetrazines with 

aldehyde or ketones. Only one regioisomer was observed for the reactions of the 

unsymmetrical tetrazines with aldehydes and ketones. In addition, fluorogenic dyes were 

developed with tetrazine as the “triggering group”. The reaction was amenable to aqueous 

environment and hence was used to label aldehydes in cells.
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In Chapter 3, a quartz crystal microbalance (QCM)-based sensor for detecting 

aldehydes was developed. By immobilizing graphene followed by 1,8-diaminonapthalene 

(DAN) on a QCM chip, a sensitive and facile aldehyde and ketone sensor was developed. 

The binding of the aldehydes to the DAN on the QCM chip resulted in a decrease in the 

fundamental resonant frequency of the functionalized QCM chips. The magnitude of the 

frequency change is directly proportional to the mass added. The utility of the probe for 

labeling biomolecules was demonstrated by using as a sensor for sialic acids pretreated 

with sodium periodate at mild conditions. In addition, the sensor was used to detect sialic 

acid on a sialoprotein and on bone marrow mesenchymal stem cells. 

In Chapter 4, pyrene-anchored boronic acids were designed, synthesized and 

subsequently used to label glycans on cells. The boronic acids bound to the diols of glycans 

whiles pyrenes allowed for fluorescence imaging and tracking of the molecule in the cell. 

We observed the binding of the boronic acids to the glycans allowed for transport of the 

pyrene-anchored boronic acids into the cytoplasm of the cell. 
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CHAPTER 1 

INTRODUCTION TO BIOCONJUGATION REACTIONS 

1.1 Bioconjugation and Click Chemistry 

Bioconjugation is the process of forming a stable covalent linkage between two or 

more molecules of which at least one is a biomolecule, or an engineered biomolecule.1 

However, the complex nature of biological environments, such as in the cell, makes 

selectively targeting a biomolecule for conjugation to another molecule daunting. To 

achieve selective bioconjugation in cells, the chemistry for linking a biomolecule to 

another, or to an organic molecule, ought to be inert to the myriad of reactive species within 

the cellular environment. Therefore, only very few known reactions have proved adaptable 

for such purpose.2,3 

Since functional groups required for selective or bioorthogonal reactions are mostly 

not in the list of functionalities found in biomolecules, the method of biolabeling requires 

the introduction of a functional group into the biomolecule. This is often achieved by 

metabolic incorporation of an unnatural substrates. The modified substrates can 

subsequently be ligated using their complimentary functional groups. 

 In 2001, Sharpless introduced the term “Click Chemistry”, and defined a set of 

stringent criteria that reactions must meet to be included in the scope 4 He averred that such 

reactions must be modular, wide in scope, give very high yields, generate only inoffensive
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 by products that can be removed by nonchromatographic methods, and be stereospecific. 

In addition, the reaction must proceed in no solvents or easily removable and benign 

solvents, including water; and must be compatible with physiological conditions.4 The 

quintessential click reaction, the copper (I)-catalyzed azide-alkyne reaction, was 

discovered concurrently and independently by the groups of Sharpless/Fokin and 

Mendel.5,6 The reaction was a modification and an improvement of the Huisgen 1,3-dipolar 

cycloaddition reaction discovered in the early 1960s.7 Whereas the original Huisgen’s 

reaction requires high temperatures to occur and affords both 1,4- and 1,5-disubstituted-

1,2,3-triazole,7,8 the copper(I)-catalyzed azide-alkyne reaction, proceeds at room 

temperature and gives only the 1,4-disubstituted-1,2,3-triazole However, the 

thermodynamic instability of Cu(I) was a major drawback for the reaction as its easily 

oxidizes to Cu(II) or disproportionates to Cu (0), limiting the reaction to inert environments 

and anhydrous solvents for optimal yield. To circumvent this, copper(I)-stabilizing ligands 

were developed to improve the process. Fokin, Sharpless and coworkers designed 

oligotriazole ligands for stabilizing the Cu(I), and tested them using a model reaction 

between phenylacetylene and benzyl azide with 1 mol% Cu(I) and 1 mol% ligand in 2:1 t-

BuOH:H2O (Scheme 1). Improved reactivity was observed for the ligand-stabilized Cu(I) 

reactions, with tris((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)amine (TBTA) being the best 

ligand. The TBTA appeared to tightly bind Cu(I), thereby stabilizing it from oxidation to 

Cu(II) as confirmed by cyclic voltammetry.9 

The excellent reaction profiles of the ligand-stabilized Cu(I) mediated azide-alkyne 

reaction has made the reaction an important tool in bioconjugation. Many elegant “click” 

ligation of biomolecules in vitro and in cell lysates have been reported, but the toxicity of 
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copper-ligand complexes have for most part precluded the applications in vivo. For 

example, E coli cells that incorporated azidohomoalanine in their outer membrane protein 

opmC were labeled using 100 µM CuBr for 16 h and survived, but were no longer able to 

divide afterwards.10,11 Similarly, mammalian cells survived treatment with 500 µM of 

Cu(I) for 1 h, but greater than 90% of the cells underwent apoptosis when Cu(I) 

concentration was increased to 1 mM under optimized conditions.1,12 Zebra fish embryos 

also displayed similar sensitivity to Cu(I). All the embryos were dead within 15 minutes 

after treatment with 1 mM CuSO4, 1.5 mM sodium ascorbate and 0.1 mM TBTA ligand.1 

.Although copper-binding ligands were later discovered, such as the BTTES by Wu and 

coworkers,13 and L-Histidine by Pezacki and coworkers,14 which render the copper benign 

to cells, a lot more researchers prefer metal-free methods for bioconjugation  

(a) 

 

 

(b) 

 

 
 

Scheme 1.1. (a) Copper(I)-catalyzed azide-alkyne cyclization (CuAAC) reaction. (b) 

Ligands of CuAAC reactions.
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1.2 Strained alkynes 

The strain-promoted azide-alkyne cycloaddition (SPAAC) reaction was developed 

to meet the demand for a metal-free alternative to the CuAAC reaction. This became 

imperative at the time when the existing copper-ligand complexes were considered toxic 

to cells. Inspired by the work of Wittig and Krebs who reported that cyclooctyne, the 

smallest stable cycloalkyne reacted “like an explosive” with phenyl azides (Scheme 1.2a).15 

Bertozzi and coworkers synthesized biotin conjugates with cyclooctynes and reported that 

it labeled azides efficiently within cell-surface glycans without any apparent toxicity to the 

cells.16 The improved reactivity of the azide with cyclooctyne over that of linear alkynes is 

due to the release of ~ 18 kcal/mol ring strain associated with the cyclooctyne in the 

transition state of the cycloaddition. However, the second order reaction rate of the strain-

promoted azide-alkyne [3+2] cycloaddition of this first generation cyclooctyne was only 

0.0024 M-1 s-1, which is lower than that of normal CuAAC reaction.17 Additionally, the 

compound also had limited water solubility. 

The lowest unoccupied orbital (LUMO) of the cyclooctyne is lower in energy 

relative to the linear alkynes due to the intrinsic ring strain of the former. This leads to a 

better overlap between the LUMO of the alkyne and the highest occupied molecular orbital 

(HOMO) of the azide.18,19 To further lower the LUMO of the alkynes and improve the 

reaction rates, Bertozzi and coworkers synthesized and investigated the reactivity of 

cyclooctynes substituted with electron-withdrawing fluorines on the propargyl carbon 

(Scheme 1.2b). Relative to the first generation unsubstituted cyclooctynes, 

monofluorinated cyclooctyne (MOFO) demonstrated a 4-fold increase in reactivity with 

azides,18 whiles the gem-difluorinated (DIFO) had a dramatic 60-fold increase.19 The gem-
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difluorinated DIFO also has a good water solubility and a second order rate constant similar 

to CuAAC reaction in biomolecule labeling, earning it the name “Copper-free click 

reaction”.19 

These findings inspired investigations into other substituted cyclooctynes. Boons 

and co-workers reported that fusing two aryl rings  to the cyclooctyne core resulted in a 

highly strained cyclooctyne (DIBO,) with a rate constant similar to that of DIFO,20 whiles 

Bertozzi group reported another magnitude increase in the reaction rate by addition of 

amide bond to the DIBO scaffold to afford biarylazacyclooctyne (BARAC k = 0.96 M-1s-

1).21 Other substituted cyclooctynes developed with remarkable second order rate constants 

include, DIBAC or ADIBO,22,23 photocaged DIBO (PDIBO)24 and tetramethoxy versions 

of DIBO (TMDIBO).25 

The excellent reactivity of SPAAC and its nontoxicity spurred its application in 

vivo.  Bertozzi and coworkers employed DIFO-Alexa Fluor conjugates to label azido 

sugars on cell surface of developing embryos26 and Caenorhabditis elegans.27 This was 

achieved by first metabolically incorporating peracylated N-azidoacetylgalactosamine 

(Ac4GalNAZ) into the zebra fish embryo or the C. elegans’ glycans. The peracylated 

glycans passively diffused into the cells where they were deacylated by cellular esterases. 

Consequently, the free sugars were processed and incorporated into newly synthesized 

glycans, some of which were displayed on cell-surface glycoconjugates. The azido sugars 

on the cell surface were then imaged by SPAAC chemistry using the cyclooctyne probes, 

enabling visualization of the glycans in vivo. The developing zebra fish embryos were 

imaged between 60 to 73 hpf, and dynamic labeling was monitored in the pectoral fins, 

olfactory pit, and jaw. Glycan trafficking between 60 and 73 h was also analyzed through 
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pulse-chase experiments with spectrally distinct glycoconjugates. Similar labeling was 

observed in the pharynx, vulva, and anus when C. elegance were treated with DIFO-Alexa 

Fluor conjugates after the incorporation of azido-glycans.27 Comparative study of a number 

of cyclooctynes in vivo showed that the reactivity of the cyclooctynes in vivo depends on 

the combined influence of intrinsic reactivity and bioavailability.28  

(a)  

 

(b) 

 

Scheme 1.2. (a) Strained-promoted azide-alkyne reaction. (b) Typical strained 

cyclooctynes and their second order rate constants for reaction with azides
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1.3 Reaction of azides with alkenes 

Alkenes react with azides in a similar way as alkynes. However, the reactions of 

azides with alkenes produce triazolines, which unlike the triazoles are unstable. The azide-

alkene reaction dates back to the 1930s when Alder and Stein reported that strain alkenes 

such as norbornene and dicyclopentadiene reacted over hundred times faster than 

unstrained alkenes.29,30 As expected, the low stability of the product, the triazolines, 

precludes most strained alkenes from being used in bioorthogonal reactions with azides. 

Nonetheless, Rutjes and coworkers reported that the use of oxanorbornadiene to 

react with the azides produced stable aromatic triazoles (Scheme 1.3), and were able to 

apply the reaction to selectively label an oxanorbornadiene-functionalized protein that had 

been incorporated into a hen egg white lysoszyme. The reaction between azides and 

oxanorbornadiene occured at the electron poor double bond to form a triazoline, which 

further underwent a retro-Diels-Alder reaction to extrude furan, to produce a stable 

aromatic triazole. 

 

 

 

Scheme 1.3. Reaction of azide with oxanorbornadiene. 
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1.4 Staudinger ligation 

Staudinger ligation is a modification of an earlier discovered reaction, the 

Staudinger reduction, which involves the reduction of azides with triphenylphosphine to 

obtain amines and triphenylphosphine oxides (Schemes 1.4a).31 In Staudinger ligation, an 

ester groups is strategically placed on an arylphosphine or phosphoniothioester to allow an 

aza-ylide formed to undergo intramolecular reaction with the ester to form an amide bond 

(Scheme 1.4b). The reaction of the aza-ylide with the ester is critical; otherwise, the aza-

ylide would hydrolyze to form the corresponding amine and triaryllphosphine.32 

The reaction has been successfully used in labeling biomolecules in vitro and in 

vivo with no adverse effects.33-35 However, the Staudinger ligation suffers from slow 

reaction kinetics and limited water solubility,32,36 which limits the scope of its application. 

1.5 Photoinduced reaction of tetrazoles with alkenes 

The photoinduced cycloaddition reaction between tetrazole and alkenes to form 

pyrazolines takes advantage of the nitrile imine dipole generated during reverse-

cycloaddition of diaryltetrazole to form a [3+2] cycloadduct with alkenes (Scheme 1.5). 

This phenomenon was also first reported by Huisgen and coworkers. They observed that 

2,5-diphenyltetrazole reacted with methylcrotonate under photoactivation to form a 

pyrazoline.37 However, Lin and coworkers were the first to apply this reaction in 

bioconjugation by incorporating o-ally tyrosine into a protein in E. coli and “clicking” with 

tetrazole under 302 nm of light.38 The small size of the alkenes relative to norbornene or 

cyclooctynes is the advantage of this method, but the irradiations at 302 nm is toxic to cells. 

To circumvent this, new diaryltetrazoles were developed that can be activated by 365 nm 

of UV light,39 and 405 nm laser light.40 
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 (a) 

 

 

(b)  

 

 

 

Scheme 1.4. (a) Mechanism of Classical Staudinger reaction. (b) Mechanism of Staudinger 

ligation of azides with triarylphosphine. 
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Scheme 1.5. Photoinduced reaction of diaryltetrazole with alkene. 

 

1.6 Reactions of ketones and aldehyde 

Aldehydes and ketones are, as a matter of fact, not exogenous to cells, as aldehydes 

can be found in glucose and intracellular metabolites, and ketones in mammalian 

hormones. Nonetheless, they have found utility in bioconjugation, and remain functional 

groups of choice for bioconjugation reactions.2,41 They are absent from endogenous 

biopolymers and are unreactive to functional groups found in protein, lipids and glycans. 

The reaction of aldehydes or ketones with amines produces Schiff base. In aqueous 

medium, the reaction is reversible, and in the case of primary amines the equilibrium favors 

the carbonyl.35 To avoid rapid hydrolysis of the Schiff base, researchers have used α-effect 

amines – hydrazines and aminoxy compounds – to ligate biomolecules tagged with 

aldehydes or ketones.42,43 The reactions of hydrazines and aminoxy (also called 

hydroxylamines) produce hydrazones and oximes respectively (Scheme 1.6a). Although 

these are more stable than imines, they still have limitations as far as applications in vivo 

is concerned. The reactions of the α-effect nitrogen with aldehydes or ketones is optimum 

at slightly acid conditions (pH 5-6) due to the protonation of the carbonyl step involved 

before the reaction with the amines. But lowering of the pH of the reaction mixture also 

protonates the amines, rendering them less nucleophilic. High concentrations of the amines 

have been used to circumvent the reactivity problem but quantitative labeling could not be 



 

11 

achieved.  Other researchers have used aniline as the catalyst to improve the reactivity via 

transamination.44-46 The aniline reacts with the protonated carbonyls to form imines, which 

remains protonated at the pH of the reaction, and consequently reacting with the aminoxy 

or hydrazine reagent to form an oxime or hydrazone (Scheme 1.6b). 

  Another method of bioconjugation involving aldehydes is based on the Pictet-

Spengler reaction between aldehydes and tryptamines.47 This method, which forms an 

irreversible C-C bond between tryptamine and an aldehyde or a ketone was recently applied 

to the ligation of biomolecules by Bertozzi and coworkers.47 In order to increase the rate 

of the reaction, an alkoxyamine (α-effect amine) was used to react with an aldehyde to 

form an intermediate oxyiminium ion, which subsequently underwent intramolecular 

reaction with indole nucleophiles to form a stable oxacarboline product (Scheme 1.6c). 

1.7 Diels-Alder reactions 

Diels-Alder reaction is one of the methods that has been extensively used in 

bioconjugation due to its efficiency, selectivity and compatibility with water. It typically 

involves reacting an alkene (or a dienophile) with a diene. Alkenes and dienes are absent 

from biological systems, except in lipids, and few hormones. Electron poor alkenes such 

as maleimides have been used in bioconjugation reactions with dienes.48-50 However, this 

reaction is not bioorthogonal since bio-thiols can react with maleimide via Michael 

addition.51,52 Protection of thiol groups is therefore required to achieve selectivity with 

these reactions. For example, Walder and his coworkers have used Ellman’s reagent to 

protect cysteine of Rab 7 before ligating the dienes on the Rab 7 protein with a maleimide 

via Diels-Alder reaction.53 The kinetics of Diels-Alder reaction is, however, slow and  
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 (a) 

 

(b) 

 

(c) 

 
 

Scheme 1.6. Reactions of aldehydes/ketones with α-effect amines. (a) Reactions of 

aldehydes/ketones with hydroxylamine or hydrazine to produce oximes or hydrazine 

respectively. (b) Aniline-catalyzed oxime ligation. The aniline reacts with the carbonyl to 

form imine, which subsequently reacts with the α-effect amine to form an oxime. (c) Pictet–

Spengler ligation of aldehydes with a modified tryptamine. The alkoxyamine reacted with 

the carbonyl to form an imine, which subsequently underwent intramolecular reaction with 

indole to form a stable product. 
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generally requires high concentration of the substrates (greater than 1 mM) for successful 

ligation.54 

Another type of Diels-Alder reaction, the inverse electron demand Diels-Alder 

reaction (iDA) with tetrazines as the diene, and alkenes or alkynes as the dienophiles has 

been extensively used in bioconjugation recently.1,55 The kinetics of Diels-Alder reaction 

of tetrazines with different alkenes and alkynes was extensively studied by Sauer and 

coworkers in 1998.56 However, it was not until 2008 that Fox and coworkers reported the 

first applications of iDA reaction in bioconjugation.57 By functionalizing the protein, 

thioredoxin (Trx) with trans-cyclooctene, and reacting with dipyridyltetrazine in aqueous 

medium, the iDA ligation product was obtained within 5 minutes. Subsequently Weisleder 

and coworkers demonstrated the utility of the reaction in live cell imaging by pretargeting 

cells with trans-cyclooctene bearing anti-EGFR antibody and labeling them with tetrazine 

tethered to a fluorophore.58 They reported that the labeling was specific for cells treated 

with trans-cyclooctene bearing anti-EGFR antibody and occurred primarily on the surface 

of the cells where EGFR concentration is the highest. 

In contrast to Diels-Alder reactions involving maleimides and dienes, the reaction 

of tetrazines with trans-cyclooctene is exceptionally fast, with a rate constant of 2000 to 

22000 M.s-1, which is far faster than SPAAC reactions.59,60 Other strained alkenes that have 

since been used in bioconjugation reactions with tetrazines include norbornene,61 and 

cyclopropane.62 However, the kinetics of these cycloalkenes are many orders of magnitude 

lower than that of trans-cyclooctene.63  

The Diels-Alder reactions of tetrazines, or other electron poor heteroatom dienes 

with alkenes is known as inverse electron demand Diels- Alder reaction (iDA) because the 
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dominant orbital interactions in the transition state (TS) of Diels-Alder reaction is reversed 

for reactions involving electron poor dienes such as tetrazines. For normal Diels-Alder 

reactions, the dominant interaction is between the HOMO of the diene and the LUMO of 

the dienophiles. But for tetrazines and other electron poor dienes, it is the HOMO of the 

dienophile (i.e. alkene) that interacts with the LUMO of the diene (i.e. tetrazine) Figure 

(1.1).64,65 The iDA reaction with tetrazines proceeds in two steps: an inverse electron-

demand Diels- Alder reaction, followed by a retro Diels-Alder reaction, which extrude 

nitrogen to give the product (Scheme 1.7). 

1.8 Conclusion 

The reactions discussed herein represent key chemical transformations that have 

been applied in bioconjugation. They have been used in direct labeling of biomolecules 

such as nucleic acids, proteins, carbohydrates and lipids inside cells, and also in target 

identification of bioactive small molecules, leading to great insights and fundamental 

discoveries. Nonetheless, the biocompatibility of these chemical tags, such as toxicity, 

selectivity, sensitivity and stability when they are present in biological environment still 

needs further improvement. For example, the use of Cu(I) catalyst in CuAAC makes the 

reaction unsuitable for animal studies and SPAAC was developed to meet the needs for 

catalyst-free labeling. However, the size of the cyclooctynes used in SPAAC could lead to 

perturbation of certain biomolecules. Tetrazine ligation with strained alkenes is also 

achieved without catalyst, but the stability of the most reactive strained alkenes, trans-

cyclooctene in biological media is not good enough. There is therefore a need to develop 

new bioorthogonal reactions with improved reactivity and stability in biological media to 
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add to the tool kit of reactions available for bioconjugation. This thesis discusses my efforts 

in developing new reactions and methods for labeling biomolecules in cells. 

 

(a) Normal Diels-Alder reaction  (b) Inverse Demand Diels-Alder reaction  

 

 

Figure 1.1. Schematic of the dominant transition state interaction of orbitals of dienes and 

dienophiles (up) and their representative energy levels (down) during Diels-Alder reactions 

(a) Normal Diels-Alder reaction. The HOMO of the diene interacts with the LUMO of the 

dienophile (b) Inverse Diels-Alder reaction. The HOMO of the dienophile interacts with 

the LUMO of the diene. 
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Scheme 1.7. The inverse electron demand Diels-Alder reaction of tetrazines with alkenes. 

The reaction proceeds in two steps: an inverse electron-demand Diels-Alder reaction, 

followed by a retro Diels-Alder reaction, which extrude nitrogen to give the product. 
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CHAPTER 2 

REGIOSELECTIVE INVERSE DIELS-ALDER REACTION OF 

UNSYMMETRICAL TETRAZINES WITH ALDEHYDES AND 

KETONES 

2.1. INTRODUCTION 

The reactivity of tetrazines and alkenes in inverse electron demand Diels-Alder 

reactions (iDA) depends on the differences in energies between the lowest unoccupied 

molecular orbital of the diene (HOMOdiene) and the highest occupied molecular orbital of 

the dienophile (LUMOdienophile).
1,2 Thus, one can easily improve the kinetics of the reaction 

by either placing electron withdrawing groups on the 3,6-position of the tetrazine, or having 

electron donating groups on the α-position of the dienophile. Most of the bioconjugation 

reactions performed to date using iDA reactions have relied on strained alkenes or alkynes 

since angle straines increase the HOMO energy level of the dienophiles and consequently 

improve the kinetics of the iDA reactions.3-5 6 Each of the strained alkenes or alkynes used 

for the reaction has it’s unique advantages, but trans-cyclooctene remains the most used 

dienophile for iDA ligations due to its exceptional reactivity.1 

Although trans-cyclooctene is very reactive and could easily react with most 

tetrazines at room temperature with kinetics fast enough for biolabeling, it is unstable and 

thus requires storage at subzero temperatures.7 Other strained alkenes such as norbornene, 

cis-cyclooctene and cyclooctyne are more stable at room temperature but have low 

reactivity relative to trans-cyclooctene, and in some instances do not react with some 



 

26 

tetrazines at mild conditions needed for bioconjugation.8 There is therefore the need to 

develop more reactive dienophiles for tetrazines ligation using reagents that are both stable 

and having reactivity that is fast enough for bioconjugation 

Sauer and coworkers studied the reaction of 1,2,4,5-tetrazine and electron rich 

dienophiles, such as enamines, ynamines and enol ethers and found that enamines display 

the fastest kinetics among non-strained dienophiles.2 However, the low stability of 

enamines, especially in water greatly compromises their reactivity and potential 

applications in bioconjugation. To circumvent this, Wang and coworkers used proline as a 

catalyst to promote direct iDA reactions of ketones with tetrazines via the in situ formation 

of the enamine intermediate (Scheme 2.1).9 The enamines underwent iDA reaction with 

tetrazine followed by retro Diels-Alder reaction, which resulted in the loss of nitrogen 

molecules.  However, only symmetric tetrazines were tested in that study. In this work, we 

report the regioselectivity of the direct iDA reaction of aldehydes and ketones with 

unsymmetrical tetrazines as well as the potential application of the reaction in bioimaging. 

 
 

Scheme 2.1. Reaction Pathway of secondary amine-catalyzed iDA reaction between 

ketones/aldehydes and tetrazines. 

  



 

27 

2.2 RESULTS AND DISCUSSION 

2.2.0 Reactivity of tetrazines with in situ generated enamines. 

Tetrazines, 2.1 - 2.4, (Figure 2.1) were synthesized according to the method by 

Deveraj and coworkers with little modifications.10 whiles tetrazine 2.5 was synthesized by 

first making dichlorotetrazine using procedure by Clavier and coworkers,11 followed by 

reaction of the dichlorotetrazine with n-butylamine to obtain compound 2.5.12  Initial 

screening of the iDA reaction of the tetrazines with in situ generated enamines using 

hexanaldehyde and pyrrolidine showed that whiles tetrazines, 2.1, 2.2 and 2.4 reacted 

easily leading to the disappearance of the purple color of the tetrazines, tetrazines 2.3 and 

2.5 remained unreactive, even after stirring at 100 oC for 24 hours. 

 

.  

Figure 2.1. Tetrazines tested for iDA reactions. 
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To further investigate the reactivity and regioselectivity of the secondary amine-

catalyzed iDA reactions of unsymmetrical tetrazines with aldehydes and ketones, a 

selection of secondary amines (A-D) was screened as catalysts for the reaction of 3-methyl-

6-phenyl-1,2,4,5-tetrazine (2.1) with hexanaldehyde (2.6). All the reactions proceeded 

smoothly at room temperature to produce a single cycloadduct 2.7, in 45-95% yield. The 

use of pyrrolidine or morpholine in acetonitrile or dichloromethane furnished the product 

in 89-95% yield within 5 minutes (Table 2.1, Entries 1, 2, 4); whereas using diethylamine 

took 15 minutes (Entry 5). When we replaced the secondary amines with proline, similar 

yields were observed in DMSO (Entry 9-10), but no products were observed when other 

solvents were used, even with heating. The use of acetonitrile and water (1:1) resulted in a 

45% yield (Entry 3), and a significant amount of unidentified by-products. As control 

reactions, by mixing the tetrazine with secondary amines in the absence of aldehydes or 

ketones, we observed no product formation, but a gradual degradation of the starting 

material over 24 hours. This was also confirmed by NMR, and by observing the 

disappearance of the purple color of the tetrazine. 

Using pyrrolidine as the catalyst, we studied the reactivity and regioselectivity of a 

number of aldehydes and ketones with asymmetric tetrazines (2.1). NMR analysis of the 

crude products taken after each reaction unambiguously confirmed the formation of a sole 

isomeric product in each case (Table 2.2). Upon purification, single crystal analysis of 

some of the products were obtained to further confirm their regioselectivity. Figure 2.2 

shows the NMR spectra of the sole products obtained by reaction of the tetrazine with (a) 

acetone and (b) propionaldehyde. Figure 2.3 shows the crystal structure of the product 
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obtained by the reaction of the tetrazine with 3-phenylpropionaldehyde (Table 2.2, Entry 

6).  

Table 2.1. Regioselectivity of secondary amine-catalyzed iDA reaction of hexanaldehyde 

with an unsymmetrical tetrazine. 

 

 

Entry R2NH Solvent Temperature Time Yield (%) 

1 A CH2Cl2 rt 5 min 95 

2 A CH3CN rt 5 min 89 

3 A CH3CN:H2O  

(1:1) 

100 oC 24 h 45 

4 B CH2Cl2 rt 5 min 95 

5 C CH2Cl2 rt 15 min 94 

6 

7 

D 

D 

CH2Cl2 

CH3CN 

rt 

rt 

24 h 

24 h 

0 

0 

8 D toluene 100 oC 24 h 0 

9 D DMSO rt 24 h 94 

10 D DMSO 100 oC 10 min 95 
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Table 2.2. Pyrrolidine-catalyzed regioselective reaction of 

3-methyl-6-phenyl-1,2,4,5-tetrazine (2.1) with aldehydes/ketones 

 

Entry Aldehyde/Ketone Product Yield (%) 

 

1 

 

 

 

 

 

 

99 

 

2 
 

 

 

99 

 

3  

 

 

94 

 

4  

 

 

98 

 

 

5  

 

 

95 

 

 

6 

 

 

 

89 

 

7 

 

 

No reaction 

 

ND 
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Figure 2.2. NMR spectra showing regioselectivity in iDA reaction of 3-methyl-6-phenyl-

1,2,4,5-tetrazine with acetone (a) and propionaldehye (b).  

  

b

b

a
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Figure 2.3. (a) The amine-catalyzed iDA reaction of 3-methyl-6-phenyl-1,2,4,5-tetrazine 

with phenylpropionaldehyde (b) Single crystal structures of the sole product obtained.  

 

The regioselectivity of the products formed were consistent with what one would 

expect according to the zwitterionic models of alignment of dienophiles with 

unsymmetrical dienes during the Diels-Alder reaction.13 In this case, the transition state of 

the intermediate favors placement of the secondary amine and the phenyl substituent of the 

tetrazine on the same side (Scheme 2.2). 

2.2.1 Oxidation of diols to aldehydes, enamine formation and iDA reaction in one pot 

Since aldehydes can be generated from diols by oxidation with sodium periodate.14-

16 We envisaged that the iDA reactions of tetrazines could be extended to vicinal diols, by 

first treating a mixture of tetrazine and a vicinal diol with sodium periodate, and 

immediately adding a secondary amine to the reaction mixture. This would generate an 

enamine that could subsequently undergo iDA reaction with the tetrazine. We selected two 
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Scheme 2.2. Proposed mechanism of the regioselective reaction of unsymmetrical tetrazine with aldehydes/ketones. 



 

34 

diols for the initial screening; 2,3-butanediol and 1,2-cyclohexanediol, and the reaction was 

carried out in 50% acetonitrile in water. The reaction with 1,2-butanediol proceeded 

smoothly to afford the desired pyridazine 2.8 in 80% yield after 18 hours of stirring at room 

temperature, whereas the reaction with 1,2-cyclohexanediol afforded the desired product 

2.9 in 33% after 48 hours of stirring (Scheme 2.3). However, the reaction did not work 

with sialic acid and estriol, two known biomolecules containing diols. 

 

 

 

 

Scheme 2.3. One pot oxidation of diols to aldehydes, enamine formation and iDA reactions.  

 

2.2.3 Screening for stability of tetrazine and the reactivity of the amine-catalyzed iDA 

reaction in water 

Having advanced our standing on the reactivity of the tetrazines in base-catalyzed 

iDA reactions, we proceeded to test the compatibility of our reactants in aqueous media. 

Methylphenyltetrazine (2.1) was dissolved in 1-5 mM solutions of pyrrolidine in 

DMSO:H2O (10%). After 48 hours, the purple color of tetrazines in pyrrolidine solution of 
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3 mM or more disappeared while those in 1-2 mM solutions of tetrazine did not show any 

change. This shows that the methylphenyltetrazine degrades in solutions at pyrrolidine 

concentrations higher than 2 mM.  

We further proceeded to screen the iDA reaction of the tetrazine with a number of 

aldehydes or ketones, and different amines as shown in Figure 2.4. After 24 hours, the 

wells with diethylamine or pyrrolidine showed complete conversion whereas morpholine 

did not show any conversion when mixed with glucose and galactose. The iDA reactions 

catalyzed by proline only showed conversion for hexanaldehyde and propionaldehyde, but 

not the ketones, glucose or galactose. We therefore concluded that proline is the least 

reactive of the secondary amines. We were however unable to characterize the product of 

the reactions involving glucose and galactose. 

2.2.4 Synthesis of fluorogenic tetrazines for bioimaging 

Tetrazines are chromophores with absorption wavelengths between 500 and 600 

nm.17 However, upon reaction with dienophiles, the absorption band within this 

wavelength disapperars.17 This unique property, coupled with it exceptional reactivity 

makes tetrazine both a quencher and a bioorthogonal reacter. Weisleder and coworkers 

have demonstrated that this ability of a tetrazine to modulate fluorescence of dyes is due 

mainly to Föster resonance energy transfer (FRET) between the fluorophore and tetrazine, 

as only green- and red- emitting dyes show significant fluorescence quenching when 

functionalized with tetrazines.18 The quenching effect is truncated once the tetrazine 

undergoes iDA reaction to furnish the desired product, leading to restoration of the 

fluorescence.19,20 
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Figure 2.4. Combinatorial screening of amine-catalyzed iDA reaction of tetrazine with aldehydes and ketones. Aldehyde (K-1 and K-4) 

worked better than ketone. Concentration of bases higher than 2 mM causes destruction of tetrazine. 
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To choose the appropriate dye for our fluorogenic tetrazines, the absorption spectra 

for the tetrazine to be outfitted on a fluorophore were measured. Compound 2.4 showed 

maximum absorption at 534 nm (Figure 2.5a) whereas compound 2.5 showed a maximum 

absorption at 514 nm (Figure 2.5b). We therefore chose to synthesize naphthalimide-

tetrazine conjugates as our bioorthogonal fluorogenic reactors since naphthalimide dyes 

have maximum emissions at wavelengths within the range of our tetrazines (Figure 2.5c). 

They also have large Stokes shifts, and high photostability, making them fluorophores of 

choice for biolabeling experiments.21 

Fluorogenic naphthalimide-tetrazine dyes 2.11 and 2.13 were therefore prepared. 

Naphthalimide-tetrazine, 2.11 was synthesized by addition of dichlorotetrazine to the 

amine terminal of naphthalimide dye 2.10 (scheme 2.4a) whiles 2.13 was synthesized by 

EDCI and NHS mediated coupling of 2.4 to the amine terminal of 2.10 (Scheme 2.4b). 

Significant quenching of the naphthalimide dye was observed after functionalization with 

each of the tetrazine compounds.  

Upon addition of stoichiometric amounts of phenylpropionaldehyde and 

diethylamine to each dye in dichloromethane, the naphthalimide-tetrazine dyes underwent 

iDA reactions to furnish fluorescent compounds. The fluorescence turn on ratios for 2.11 

was 600 folds, whiles that of 2.13 was only 18 folds (Figure 2.5). This observation is most 

likely due to the fact that, the n-butylchlorotetrazine dye’s (.2.5) maximum absorption 

wavelength of 514 nm is closer to the naphthalimide dye’s maximum emission wavelength 

of 507 nm than the tetrazine benzoic acid (2.4). Another factor that could have influenced 

the quenching efficiency of the dyes by the tetrazines is the distance between the 

naphthalimide and tetrazines linked together. Since the distance between the dye and 
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tetrazine for 2.11 is shorter than that of 2.13, it is expected that a more effective quenching 

effect, and a higher turn on ratio would be observed for 2.11 than 2.13. 

NMR and MS analysis of the product of the iDA reaction of 

phenylpropionaldehyde with 2.11 showed the elimination of the amine to produce 

pyradizine did not occur in this instant, which could be due to relative stability of the 

dihydropyridazine of 2.12 over that of 2.14 and the methylphenyltetrazine (2.1). 

2.2.5 Application of the fluorogenic naphthalimide-tetrazine dye in bioimaging 

To evaluate the utility of the fluorogenic naphthalimide-tetrazine dyes in imaging 

aldehyde containing biomolecules in cells, biotin aldehyde (50 µM), base (proline or 

pyrrolidne) (100 µM) were incubated with bone marrow stroma cells (BMSCs) in primary 

media for 2 hours, after which the cells were washed and the dye, 2.13 (10 µM) added to 

the cells in a new media. After 1 hour, the cells were washed again to remove non-binding 

dyes and visualized under fluorescence microscope. Scheme 2.5 shows the expected iDA 

reaction of the naphthalimide tetrazine (2.13) and biotin-aldehyde (2.18) 

Nonspecific binding of the dye to the cells, leading to high fluorescence images 

were observed in the cells, including those without biotin and a base. Nonetheless, 

comparing the fluorescence intensity of the six different wells containing different 

combinations of the dye 2.13, a base and a biotin aldehyde (2.18) showed the wells with 

all the three reagents (Figure 2.7, Exp 2 and Exp 3) showed 30-35% increase in 

fluorescence intensity relative to the wells with 2.13 but lacking either the base or the biotin 

aldehyde 2.18. The increase in the fluorescence intensity is a confirmation of ligation of 

2.13 to the biotin aldehyde. It is expected that an appropriate dye, and a longer reaction 

time will show a higher turn on ratio for the amine-catalyzed iDA ligation. 
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Figure 2.5. (a, b) Absorption spectra of tetrazines 2.5 showing maximum absorption at 514 

nm, (a), and 2.4 showing maximum absorption at 534 nm (b). (c) The fluorescence 

emission spectrum of naphthalimide dye 2.10. 
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(a) 

 

.  

 
(b) 

 
Scheme 2.4. Synthesis of fluorogenic naphthalimide-tetrazine dyes 2.11 and 2.13. 
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 (a) 

 

(b) 

 

 

Figure 2.6. (a) Emission spectra of naphthalimide-tetrazine 2.11 (10 µM) (black) and the 

corresponding iDA product, 2.12 (red) in CH2Cl2 (b) Emission spectra of naphthalimide-

amide tetrazine 2.13 (10 µM) (black) and the corresponding iDA product 2.14 (red). 
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. 

 

Scheme 2.5. Expected reaction of biotin-aldehyde (2.18) with tetrazine 2.13. 
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Figure 2.7. Application of fluorogenic tetrazine 2.13 in imaging aldehyde-containing molecules in cells.(a) Cells incubated with biotin 

aldehyde (50 µM) and/or an amine (100 µM); (b) Fluorescent confocal micrograph of cells after addition of dye, 2.13 (10 µM) (c) 

Corresponding fluorescent intensity of cells after treatment with 2.13. Cells incubated with biotin aldehyde and proline (Exp 2); and 

biotin aldehyde with pyrrolidine (Exp 3) showed higher fluorescent intensity than cells incubated with only biotin (Exp 1), proline (Exp 

4) or pyrrolidine (Exp 5). Cells in Exp 6 were incubated without biotin or base prior to addition of 2.13. 
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2.3 CONCLUSION 

We have established the regioselectivity of secondary amine-catalyzed iDA reaction with 

unsymmetrical tetrazines such as 3-methyl-6-phenyl-1,2,4,5-tetrazine. The mechanism for 

the regioselectivity was established to be directed by the alignment of the tetrazine and the 

enamine formed in-situ at the transition state of the iDA reaction; a model which could be 

used to predict the regioselectivity of the reaction with other unsymmetrical tetrazines. The 

IDA reaction of tetrazines with vicinal diols was also demonstrated, but this reaction was 

slow and may not be applicable in cells. The application of the reaction in tuning the 

fluorescence of fluorogenic dyes having a tetrazine motif was demonstrated, as well as the 

potential for bioconjugation and imaging molecules containing aldehydes or ketones. The 

labeling of aldehyde in cells resulted in high background fluorescence. We surmised that 

this could be due to the hydrophobicity of the dye. It is expected that the use of a 

hydrophilic dye will result in very low or no unspecific labeling, which will make the 

reaction more suitable for cell imaging. 

2.4 EXPERIMENTAL SECTION 

General. Unless otherwise specified all reagents and solvents were of commercial grade. 

NMR spectra were recorded on Bruker 300 or 400 instruments. Flash column 

chromatography was performed with silica gel (32-63 μm). High resolution mass 

spectrometry (HRMS) was obtained using a magnetic sector mass spectrometer. 
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To a 10 mL sealed tube equipped with a stir bar was added Nickel(II) 

trifluoromethanesulfonate  (100 mg, 0.3 mmol), benzo nitrile (103 mg, 1.0 mmol), 

acetonitrile (0.52 mL, 10.0 mmol) and anhydrous hydrazine (1.6 mL, 50 mmol). The vessel 

was sealed and the mixture was stirred in an oil bath at 60° C for 24 hours. After reaction, 

the mixture was cooled to room temperature and the seal was removed. Sodium nitrite (1.3 

g, 20 mmol) in water (10 mL) was slowly added to the solution and followed by slow 

addition of 1 N HCl during which the solution turned bright red in color and gas evolved. 

Addition of 1 N HCl continued until gas evolution ceased and pH ~ 3. The mixture was 

extracted with ethyl acetate (20 x 2) and the organic phase dried over sodium sulfate. The 

solvent was removed using rotary evaporation and the residue purified using silica column 

chromatography with dichloromethane:hexane (1:1) as eluent to obtain 3-methyl-6-

phenyltetrazine (2.1) (85mg, 49%) and a trace amount of dimethyltetrazine (2.3) (<5%) 

3-Methyl-6-phenyltetrazine (2.1). 1H NMR (300 MHz, CDCl3): δ 8.70–8.45 (m, 2H), 

7.73–7.50 (m, 3H), 3.10 (s, 3H). 13C NMR NMR (75 MHz, CDCl3): 167.2, 164.2, 132.5, 

131.7, 129.2, 127.8, 21.1 

3,6-Dimethyltetrazine (2.3). 1H NMR (300 MHz, CDCl3): δ 3.04 (s, 6H) 
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 To a 10 mL sealed tube equipped with a stir bar was added Nickel(II) 

trifluoromethanesulfonate  (100 mg, 0.3 mmol), 3-cyanobenzoic acid (103 mg, 1.0 mmol), 

acetonitrile (0.52 mL, 10.0 mmol) and anhydrous hydrazine (1.6 mL, 50 mmol). The vessel 

was sealed and the mixture was stirred in an oil bath at 60 °C for 24 hours. After reaction, 

the mixture was cooled to room temperature and the seal was removed. Sodium nitrite (1.3 

g, 20 mmol) in water 10 mL was slowly added to the solution and followed by slow addition 

of 1N HCl during which the solution turned bright red in color and gas evolved. Addition 

of 1 N HCl continued until gas evolution ceased and pH ~ 3. The mixture was extracted 

with ethyl acetate (20 x 2) and the organic phase dried over sodium sulfate. The solvent 

was removed using rotary evaporation and the residue purified using silica column 

chromatography to obtain titled compound 2.4 (200 mg, 46%)  

1H NMR (400 MHz, DMSO): δ 13.34 (s, 1H), 9.00 (d, J = 12.5 Hz, 1H), 8.68 (d, J = 7.9 

Hz, 1H), 8.22 (d, J = 7.9 Hz, 1H), 7.93–7.71 (m, 1H), 3.11–2.90 (m, 2H). 13C NMR (101 

MHz, DMSO): δ 167.84, 167.07, 133.30, 132.84, 132.34, 131.87, 130.40, 128.47, 21.33. 
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To a 10 mL sealed tube equipped with a stir bar was added Nickel(II) 

trifluoromethanesulfonate (100 mg, 0.3 mmol), benzo nitrile (103 mg, 1.0 mmol), 

anhydrous hydrazine (1.6 mL, 50 mmol). The vessel was sealed and the mixture was stirred 

in an oil bath at 60° C for 24 hours. After reaction, the mixture was cooled to room 

temperature and the seal was removed. Sodium nitrite (1.3 g, 20 mmol) in water 10 mL 

was slowly added to the solution and followed by slow addition of 1N HCl during which 

the solution turned bright red in color and gas evolved. Addition of 1 N HCl continued 

until gas evolution ceased and pH ~ 3. The mixture was extracted with ethyl acetate (20 x 

2) and the organic phase dried over sodium sulfate. The solvent was removed using rotary 

evaporation and the residue purified on silica column chromatography using 

dichloromethane:hexane (1:1) as eluent to obtain to obtain compound 2.2 (95 mg, 41%) 1H 

NMR (300 MHz, CDCl3): δ 8.85–8.6 (m, 2H), 7.78–7.58 (m, 3H). 13C NMR (75 MHz, 

CDCl3): 163.9, 132.7, 131.8, 129.3, 127.9. 
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Synthesis of dichlorotetrazine11 

 

Triaminoguanidine hydrochloride (2.19). To a slurry of guanidine hydrochloride (19.1g, 

0.20mol) in 1,4-dioxane (100mL) was added hydrazine monohydrate (34.1g, 0.68mol) 

with stirring. The mixture was heated under reflux for 2 hours. After the mixture cooled to 

ambient temperature, the product was collected by filtration, washed with 1,4-dioxane, and 

dried to give (27 g, quantitative) of pure triaminoguanidine monohydrochloride. 13C NMR 

(D2O, 75MHz) δ= 160.5 ppm. 

 3,6-Bis(3,5-dimethyl-1-H-pyrazol-1-yl)-1,2-dihydro-s-tetrazine (2.20). To a solution of 

triaminoguanidine monohydrochloride (27.0g, 0.19 mol) in water (150 mL) was added 2,4-

pentanedione (39.4 mL, 0.38 mol) dropwise with stirring at room temperature for 0.5 h. 

The mixture is then heated to 70 °C and stirred for 4 hours, during which time solid 

precipitated from solution. The mixture was cooled to room temperature, filtered, washed 

with cold water and dried to obtain the product as a yellow solid  (10.1 g, 20%)  3,6-Bis(3,5- 

dimethylpyrazol-1-yl)-1,2-dihydro-s-tetrazine. 1H NMR (300 MHz, CDCl3): δ 8.09 (br s, 

2H), 5.95 (s, 2H), 2.47 (s, 6H), 2.21 (s, 6H). 13C NMR (75MHz, CDCl3): δ 14.9, 148.5, 1, 

142.3, 109.8, 13.7, 13.4. 
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3,6-Bis(3,5-dimethyl1H-pyrazol-1-yl)-s-tetrazine (2.21). Sodium nitrite (7.1 g, 0.1 mol) 

was dissolve in of water (100 mL) and CH2Cl2 (20 mL) was added. The mixture was kept 

on ice and 3,6-bis(3,5-dimethylpyrazol-1-yl)-1,2-dihydro-s-tetrazine (10.1g, 0.036 mol) 

was added batches. Acetic acid (9.3 mL, 0.16 mol) was added dropwise. Gas evolution 

occurred, after which the organic layer was separated and the aqueous layer was extracted 

with CH2Cl2 (3 x 20mL). The organic layers were combined, washed to neutrality with a 

5% aqueous solution of potassium carbonate, dried over anhydrous sodium sulfate and 

filtered. The solvent was removed in vacuo to obtain a dark red solid, which was washed 

several times with diethyl ether time to obtain a brick red solid (8.2g  82%) as the titled 

compound 1 H NMR (300 MHz, CDCl3): δ 2.39 (s, 6H), 2.72 (s, 6H), 6.20 (s, 2H). 13C 

NMR (75 MHz, CDCl3): δ 13.9, 14.7, 111.9, 143.8, 154.5, 159.3.  

3,6-Dihydrazinyl-s-tetrazine (2.22).  To a slurry of 3,6-bis(3,5-dimethylpyrazol-1-yl)-s-

tetrazine (8.2 g, 0.03 mole) in acetonitrile (50 mL), was added hydrazine monohydrate (2.4 

mL, 0.06 mol) dropwise at room temperature. The mixture was refluxed for 30 minutes 

and cooled to room temperature. The mixture was filtered and washed with acetonitrile to 

provide a black powder, 4 g, which was used for the next step without further purification  

3,6-Dichloro-s-tetrazine (2.23). To a slurry of 3,6-di(hydrazino)-1,2,4,5-tetrazine (3.5 g, 

0.025 mol) in acetonitrile (100 mL) at 0 oC was added in batches trichloroisocyanuric acid 

(11.4 g, 0.05 mol) over 30 minutes. After the addition, the mixture was allowed to warm 

to room temperature and stirred further for 30 minutes. White insoluble precipitate formed 

was removed by filtration and the solvent removed in vacuo to give crude 3,6-dichloro-s-

tetrazine which was purified on silica column using hexane  to obtain orange crystals (1.05 

g, ). 13C NMR (75MHz, CDCl3): δ 168.1. 
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6-Butylamino-3-chlorotetrazine (2.5).12 Dichlorotetrazine (442.5 mg, 2.95 mmol) was 

dissolved in CH2Cl2 (30 mL) and stirred before N-butylamine (0.5 mL, 5.06 mmol) was 

added dropwise over 2 h. The resultant mixture was stirred at room temperature for another 

2 h. The solvent was removed and the residue purified on flash column using 

CH2Cl2:hexane (1:2-2:1) gradient to obtain a red product (425 mg, 77%). 1H NMR 

(300MHz, CDCl3): 3.60 (q, J = 6.0 Hz, 2H), 1.77-1.63 (m, 2H), 1.52-1.38 (m, 2H) 0.97 (t, 

J = 7.5, 3H) 13C NMR (CDCl3, 300MHz): 161.1, 160.0, 41.4, 30.9, 19.9, 13.6. 

Typical procedure for secondary amine catalyzed inverse electron-demand Diels-Alder 

reactions with aldehyde or ketones (Table 2.2). 

A mixture of 3-methyl-6-phenyl-1,2,4,5-tetrazine (20 mg, 0.12 mmol), aldehyde or ketone 

(0.24 mmol) and pyrrolidine (0.6 mg, 0.12 mmol) in CH2Cl2 (5 mL) was stirred at room 

temperature for 30 minutes. After removal of the solvent in vacuo, the crude product was 

purified by chromatography on silica to afford the desired product. 

3-Methyl-6-phenylpyridazine (1).26 1H NMR (400 MHz, CDCl3): δ 8.06 – 8.04 (m, 2H), 

7.75 (d, J = 8.7 Hz, 1H), 7.53–7.46 (m, 3H), 7.38 (d, J = 8.7 Hz, 1H), 2.73 (s, 1H). 13C 

NMR (100 MHz, CDCl3): δ 158.6, 157.2, 136.5, 129.8, 128.9, 127.2, 126.9, 123.9, 22.1; 

HRMS (EI): m/z calcd for C11H10N2: 170.0846; found: 170.0844. 

1-Methyl-4-phenyl-6,7-dihydro-5H-cyclopenta(d)pyridazine (2). Oil. 1H NMR (300 

MHz, CDCl3): δ7.81 (d, J = 7.3, 2H), 7.52-7.39 (m, 3H), 3.13 (t, J = 7.2, 2H), 2.96 (t, J = 

7.2, 2H), 2.6 (s, 3H), 2.21-2.07 (m, 2H). 13C NMR (100 MHz, CDCl3): δ 156.4, 155.7, 
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143.9, 141.6, 137.3, 128.9, 128.5, 128.4, 32.9, 31.0, 29.7, 23.9, 19.9. HRMS (EI): calcd 

for C14H14N2: 211.1235; found: 211.1231. 

4,6-Dimethyl-3-phenylpyridazine (3). Off white solid. mp 80-82 oC. 1H NMR (400 MHz, 

CDCl3): δ 7.57-7.53 (m, 2 H), 7.50-7.42 (m, 2H), 7.21 (s, 1H), 2.70 (s, 1H), 2.31 (s, 1H).13C 

NMR (100 MHz, CDCl3): δ 160.1, 158.3, 137.1, 135.7, 219.1, 128.6, 128.4, 128.3, 21.8, 

19.6; HRMS (EI): m/z calcd for C12H12N2: 184.100; found: 184.0995. 

3,6-Dimethyl-6-phenylpyridazine (4).27 1H NMR (300 MHz, CDCl3): δ 8.04 (dd, J = 7.0, 

0.6 Hz, 2H), 7.57 (s, 1H), 7.53-7.44 (m, 3H), 2.70 (s, 3H), 2.36 (s, 3H). 13C NMR (100 

MHz, CDCl3): δ 160.1, 158.2, 137.2, 135.7, 129.1, 128.7, 128.5, 128.3, 21.8, 19.6;  

HRMS(EI): m/z calcd for C12H12N2: 184.100; found: 184.0995. 

4-Butyl-3-methyl-6-phenylpyridazine (5). Light yellow oil. 1H NMR (400 MHz, CDCl3): 

δ 8.04 (dd, J = 7.2, 0.7 Hz, 2H), 7.54 (s, 1H), 7.51-7.42 (m, 3H), 2.71 (s, 3H), 2.64 (t, J = 

7.0 Hz, 2H), 1.68-1.58 (m, 2H), 1.50-1.38 (m, 2H), 0.98 (t, 7.3 Hz, 3H).13C NMR (100 

MHz, CDCl3): δ 158.1, 157.7, 140.9, 136.7, 129.5, 128.9, 126.9, 123.1, 31.8, 30.6, 22.5, 

19.7, 13.9; HRMS (EI): m/z calcd for C12H12N2: 226.1470; found: 226.1466. 

4-Benzyl-3-methyl-6-phenylpyridazine (6). Off white solid. mp 128-133 oC. 1H NMR 

(400 MHz, CDCl3): δ 7.99 (d, J = 6.3 Hz, 2H), 7.52-7.42 (m, 4H), 7.38-7.29 (m, 3H), 7.15 

(d, J = 7.2, 2H), 4.02 (s, 2H), 2.7 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 158.2, 157.7, 

140.89, 136.7, 129.5, 128.8, 126.9, 123.1, 31.7, 30.6, 22.5, 19.74, 13.9; HRMS (EI): m/z 

calcd for C18H16N2: 260.1316; found: 260.1313. 
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General procedure oxidation of the diols to aldehydes, enamine formation and IDA 

reaction in one pot. 

To a mixture of 3-methyl-6-phenyl-1,2,4,5-tetrazine (40.0 mg, 0.24 mmol), a 1,2-diol (0.24 

mmol) in CH3CN:H2O was added NaIO4 (1 M, 300 µL). The mixture was stirred at room 

temperature for 5 minutes, and pyrrolidine (0.6 mg, 0.12 mmol) was added. The mixture 

was further stirred for 24 hours, diluted with water and extract into dichloromethane. The 

organic layer was dried over sodium sulfate anhydrous and the solvent removed in vacuo. 

The crude was purified by chromatography on silica to afford the desired product. 

2.9 1H NMR (300 MHz, CDCl3): δ 8.14–7.93 (m, 4H), 7.58–7.44 (m, 8H), 3.03 (s, 6H), 

2.87–2.72 (m, 4H). HRMS (EI): m/z calcd for C24H22N4: 366.1844; found: 366.1837. 

Synthesis of naphthalimide dye 2.10 

 

2.10. Following the literature procedure,22,23 a mixture of naphthalimide anhydride (1.0 g, 

3.6 mmol) in ethanol (10 mL) and n-butylamine (1 mL, excess) was stirred at room 

temperature overnight. A precipitate was formed, which was filtered, washed with ethanol 

and dried in vacuo to obtain a white solid (725.0 mg, 60%). The intermediate (331 mg, 1.1 

mmol) was refluxed in ethylenediamine (5 mL, excess) and heated to 80 oC for 6 h. The 

mixture was cooled to room temperature, poured slowly unto ice and allowed to warm to 

room temperature. A  precipitate formed was filtered and dried to obtain a yellow solid 



 

53 

(300.5 mg, 92%). 1H NMR (300 MHz, DMSO): δ 8.68 (d, J = 8.5 Hz, 1H), 8.40 (d, J = 7.2 

Hz, 1H), 8.23 (d, J = 8.5 Hz, 1H), 7.65 (t, J = 7.8 Hz, 1H), 6.78 (d, J = 8.5 Hz, 1H), 3.99 

(t, J = 7.3 Hz, 2H), 3.39 (dd, J = 26.4, 20.0 Hz, 5H), 2.83 (dd, J = 23.5, 17.1 Hz, 3H), 1.68 

– 1.46 (m, 2H), 1.43 – 1.17 (m, 2H), 0.90 (t, J = 7.3 Hz, 3H). 

NT-tetrazine 2.11. To compound 2.10 (104.6 mg, 0.34 mmol) in acetonitrile (10 mL) 

dichlorotetrazine (50.5 mg, 0.34 mmol) and TEA (100 µL) were added. The reaction was 

stirred at room temperature for 12 h. The product was poured in water (30 mL) and filtered 

to obtain a dark red solid, which was purified by chromatography on silica using 

CH2Cl2:CH3OH (10:0.1-10:0.5) gradient to obtain 10 as dark red solid (106 mg, 75%). mp 

221-223 oC. 1H NMR (400 MHz, CDCl3): δ 8.44 (d, J = 8.0 Hz, 1H), 8.33 (d, J = 8.0 Hz, 

1H), 8.02 (d, J = 8.0 Hz, 1H), 7.51 (t, J = 8.0 Hz, 1H), 7.07 (br s, 1H), 6.66 (d, J = 8.0 Hz, 

1H), 6.63 (br s, 1H), 4.13-4.04 (m, 4H ), 3.77 (t, J = 7.1 Hz, 2H ), 1.70-1.60 (m, 2H ), 1.46-

1.35 (m, 2H), 0.94 (t, J = 7.1 Hz, 3H). 13C NMR (100 MHz, CDCl3): δ 164.5, 164.1, 161.9, 

161.1, 148.9, 134.1, 131.2, 129.5, 126.0, 125.0, 122.9, 120.2, 110.8, 104.1, 43.7, 40.6, 40.1, 

30.9, 30.2, 20.4, 13.9; HRMS (ESI): m/z (M+H) calcd for C20H20 ClN7O2: 426.1445; found: 

426.1451. 

NT-diazine (2.12). NT-tetrazine 2.11 (50.0 mg, 0.18 mmol) in dry CH2Cl2 (50.0 mg, 0.18 

mmol) was mixed with phenylpropionaldehyde (15.8 mg, 0.18 mmol) and diethylamine 

(18 µL, 0.18 mmol). The mixture was stirred at room temperature for 24 h and the solvent 

removed in vacuo. The crude green fluorescent mixture was purified on silica gel column 

with CH2Cl2:CH3OH (20:1) to obtain 2.11 as yellow solid (25 mg, 38%). mp 103-106 oC 

1H NMR (400 MHz, CDCl3): δ 8.57 (d, J = 8.3 Hz, 1H), 8.42 (d, J = 8.3 Hz, 1H), 8.32 (d, 

J = 8.3 Hz, 1H), 8.21 (br s, 1H), 7.65 (t, J = 7.7 Hz, 1H), 7.14 (d, J = 7.0 Hz, 2H), 7.11-
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7.01 (m, 3H), 6.48 (d, J = 8.3 Hz, 1H), 4.15 (t, J = 7.5 Hz, 2H), 3.87 (s, 2H), 3.50 (brs, 2H), 

3.29 (s, 1H), 3.06-2.95 (m, 1H), 2.89-2.80 (m, 1H), 2.55-2.45 (m, 2H), 2.41-2.29 (m, 2H), 

2.19-2.04 (m, 2H), 1.77-1.64 (m, 2H), 1.52-1.37 (m, 2H), 0.96 (t, J = 7.1 Hz, 3H), 0.64 (t, 

J = 8.0 Hz, 6H). 13C NMR (CDCl3, 100 MHz). δ 164.8, 164.4, 157.9, 150.4, 135.9, 134.4, 

134.1, 129.7, 129.1, 128.8, 128.0, 127.3, 124.9, 122.6, 120.4, 109.5, 102.7, 43.1, 40.8, 39.7, 

35.7, 30.1, 20.5, 13.9, 13.4; HRMS (ESI): m/z (M+H) calcd for C20H20ClN7O2: 587.2901; 

found: 587.2896. 

Naphthalimide-amidotetrazine 2.13: To tetrazine 2.4 (70.1 mg, 0.32 mmol) in CH2Cl2 (10 

mL) was added EDCI (50.2 mg, 0.32 mmol) and N-hydroxysuccinimide (37.3 mg, 0.32 

mmol). After 15 minutes of stirring, naphthalimide ethylenediamine (100.0 mg, 0.32 

mmol) was added. THF (5 mL) was added to dissolve the dye and the reaction stirred at 

room temperature for 20 h. The reaction mixture was further diluted with dichloromethane 

and washed with water. The organic layer was dried over anhydrous sodium sulfate and 

purified on silica column using dichloromethane to obtain the product (71.9 mg, 48%). 

1H NMR (400 MHz, DMSO): δ 9.0-9.03 (br s, 1H), 8.96-8.93 (br s, 1H), 8.74–8.56 (m, 

2H), 8.41 (d, J = 6.8 Hz, 1H), 8.24 (d, J = 8.4 Hz, 1H), 8.16 (d, J = 6.8 Hz, 1H), 7.95 (s, 

1H), 7.79 – 7.64  (m, 2H), 6.94 (d, J = 8.2 Hz, 1H), 4.03-3.94 (m, 2H), 3.69–3.60  (m, 4H), 

3.02 (s, 3H), 1.61–1.51 (m, 2H), 1.37–1.23 (m, 2H), 0.91 (t, J = 7.2 Hz, 3H).13C NMR (101 

MHz, DMSO): δ 167.83, 166.46, 164.14, 163.35, 151.06, 135.73, 134.57, 132.56, 131.46, 

131.14, 130.46, 130.06, 129.82, 128.86, 126.55, 124.84, 122.30, 120.60, 108.27, 104.99, 

104.23, 42.74, 38.59, 30.25, 21.35, 20.28, 14.20. HRMS (ESI): m/z calcd for C18H16N2: 

510.2248; found: 510.2248. 

Synthesis of biotin-aldehyde 
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To a suspension of biotin 2.15 (244.0 mg, 1.0 mmol) in methanol (10 mL) was added a 

drop of concentrated H2SO4. The mixture was stirred at room temperature till all the biotin 

dissolved (72 h). The methanol was removed under vacuum to obtain a white precipitate 

as the biotin ester (255 mg, quantitative). 

To the biotin ester (258.5 mg, 1.0 mmol) in 10 mL of methanol was added ethylenediamine 

(5 mL, excess) and the mixture stirred at 60 oC for 24 h. The methanol was removed under 

vacuum and the remaining diamine removed by azeotropic distillation under vacuum using 

methanol and toluene to obtain 2.16 as a yellow solid.24  1H NMR (300 MHz, CD3OD) δ 

4.57–4.42 (m, 1H), 4.38–4.24 (m, 1H), 3.7-3.30 (m, 4H), 3.04–2.96 (m, 2H), 2.71 (d, J = 

12.7 Hz, 1H), 2.39-2.14 (m, 2H), 1.84–1.55 (m, 4H), 1.52-1.34 (m, 2H). 

2.17. To compound 2.16 (230 mg, 0.76 mmol) in dioxane 10 mL was added caprolactone 

(86.6 mg, 0.7 mmol). The mixture was refluxed for 24 h and the solvent removed to obtain 

a brown oil which was precipitate in diethyl ether and filtered to obtain 2.17 as brown solid, 

which was used for the next step without further purification.  

2.18. To compound 2.17 (300.0 mg, 0.75 mmol) in CH2Cl2 (4 mL) and DMSO (1 mL) was 

added TEA (1 mL) followed by SO3.pyridine (190.0 mg, 1.5 mmol) in 4 portions over 20 
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minutes. The mixture was stirred at room temperature for 2 h, then poured into diethyl 

ether. A yellow precipitate formed was filtered, washed with diethyl ether and dried to 

obtain a brown solid (250.0 mg). 1H NMR (300 MHz, CDCl3) δ 9.39 (s, 1H), 4.36-4.01 (m, 

2H), 3.47 (d, J =6.9, 1H), 3.38-3.08 (m, 7H), 2.75 (t, J = 7.5 Hz 2H), 1.73-1.58 (m, 2H), 

1.54–1.12 (m, 12H). 
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CHAPTER 3 

QUARTZ CRYSTAL MICROBALANCE SENSOR FOR DETECTION OF 

CELLULAR SIALIC ACIDS  

3.1 INTRODUCTION  

3.1.0 Sialic acids 

Sialic acids represent a family of naturally occurring derivatives of the nine carbon 

sugar, neuraminic acids, attached to the surfaces of cells’ proteins, glycans and lipids.1-4 

They contribute to the structure and functional diversity of glycoproteins, glycolipids and 

cells; and are important for a number of vital processes such as cell-cell interaction, cell 

morphology, embryogenesis, development and in immune responses.5,6 Two classes of the 

neuraminic acids exist, the N-acylated forms called the N-acetylneuraminic acids 

(Neu5Ac), and the N-glycolated forms, known as the N-glycolylneuraminic acids 

(Neu5Gc) (Figure 3.1a). The N-acetylneuraminic acids are the most ubiquitous of the two 

groups, and almost the only ones found in humans, The N-glycolylneuraminic acids are 

common in many animal species but are not  found in humans, except  in the case of a 

particular kind of cancer. In addition to the N-substitutions, sialic acids can be O-

substituted at C-4, -7, -8, -9, linking acetyl, methyl, sulfate and phosphate groups onto the 

molecule (Figure 3.1).7 On cell surfaces, sialation and desialation of glycoproteins are 

controlled by sialytransferases and sialidases (also known as neuraminidases) respectively 

to create equilibrium for proper cell functioning.8  A shift in this equilibrium has  been 

associated with various diseases such as cancer, cardiovascular and neurological diseases.2
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 (a) 

 

 

(b) 

 

 

Figure 3.1. (a) Conformation of N-acetylneuraminic acid (Neuc5AC, left) and N-

glycolylneuraminic acid (Neu5Gc, right) (b) The family of naturally occurring sialic acids.7 

.  

3.1.1 Detection of Sialic acids 

The importance of sialic acids on cell surfaces makes development of methods for 

identify and studying them, for possible applications in clinical research and diagnosis 

attractive to chemists and biologists. Several successful methods developed rely on 

metabolic labeling of cells using analogues of glycan precursors that carry bioorthogonal 

reporters such as azides or alkynes, for ligation by fluorescent or biotin tags containing 

complementary functional groups.9-11 The metabolic incorporation of the analogues 
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containing bioorthogonal functional groups is nonetheless not trivial, and makes the 

process inadaptable for clinical purposes. 

A number of methods were therefore developed for direct detection of sialic acids 

on cell surfaces. These include the use of boronic acid containing sensors that bind to diols 

of sialic acids,12,13 lectins,14 or aptamers.15 

Another efficient approach involves exploiting the intrinsic reactivity of sialic acids 

to generate aldehydes on the surface of the cells.16 The glycerol side chain of sialic acids 

react with sodium periodate at mild conditions to form aldehydes, which could 

subsequently react with an amine to form a Schiff base. Hydrazine and hydroxylamines 

tethered to biotins or fluorescent molecules have been ligated with glycoproteins, 

glycolipids and glycopeptides containing sialic acid using this approach.17,18 Although this 

method could detect other carbohydrates, under suitably mild conditions, periodates 

selectively oxidize sialic acids to their C-7 aldehydes, while vicinal diols in the other 

carbohydrates remain intact (Scheme 3.1).16,19,20 

The absence of native aldehydes or ketones on cell surfaces makes the periodate-

promoted ligation of amines to sialic acids on cell surfaces chemoselective. However, low 

reactivity of the α-effect amines makes its applications in vivo almost impractical. To 

circumvent that, aniline was used as a nucleophilic catalyst to catalyze the reaction of the 

α-effect amines to the sialic acids via transamination.21-23 The introduction of aniline as a 

catalyst was observed not only to increase the kinetics of the reaction, but allowed the 

ligation to be carried out at neutral pH instead of the slightly acidic medium that only works 

for the non-catalyzed reactions. 
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Scheme 3.1. Covalent labeling of sialic acids on cell surface with α-effect amines. Mild periodate treatment selectively 

oxidizes the terminal glycol of sialic acids to aldehyde for oxime or hydrazine ligation by aminoxy reagents or hydrazine 

reagent respectively. 
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In light of the above discoveries, we envisioned that 1,8-diaminonapthalene (DAN) 

could be assembled on a Quartz Crystal Microbalance (QCM) chip coated with a graphene 

and successfully used to detect sialic acids in solution and cell surfaces. 

3.1.1 Quartz crystal microbalance 

Quartz crystal microbalances (QCM) are ultrasensitive devices that utilize converse 

piezoelectric effect to determine the mass change from a change in frequency of a quartz 

crystal resonator.24,25 They are capable of measuring masses down to 1 ng/cm2. The 

relationship between the frequency of the quartz crystal and the change in mass was first 

reported by Sauerbrey.26 He observed that when a voltage is applied to a quartz crystal, it 

oscillates at a specific frequency. An increase in an elastic mass bound to the quartz surface 

causes the crystal’s oscillation frequency to decrease, and vice versa. The relationship 

between the change in the mass (∆m) and the corresponding change in the frequency (∆f) 

was given by the Sauerbrey equation. 

(∆f) = -2∆mf 2/A (µρq) 
0.5 = - Cf ∆m                              (1)                                        

Where ∆f is the measured frequency decrease in Hz, f is the intrinsic crystal frequency and 

∆m is the elastic mass in g. A is the electrode area cm2, ρq is the density of quartz in g/cm3, 

µ is the shear modulus in dyn/cm2 and Cf is the integrated QCM sensitivity in Hz/ng. The 

Sauerbrey equation is only valid for small elastic masses added to the crystal surface. When 

the change in mass is greater than 2% of the crystal mass, the equation becomes invalid.  

The QCM chip is a shear mode device consisting of a thin quartz disk with coated 

electrodes. The electrodes can be made of a number of metals (e.g. gold, silver, platinum 

etc), and are connected by wires for transmitting the oscillatory signals to a transducer. The 
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quartz crystal plate must be cut to a specific orientation with respect to the crystal axes (i.e. 

AT or BT) so that acoustic wave propagates perpendicular to the crystal axes. The AT cuts 

(35o, 15') from the Z axis of the crystal are the most widely used.27,28 The sensitivity of the 

QCM is inversely proportional to thickness of the crystal: the thinner the crystal, the higher 

its resonance frequency and sensitivity. Quartz crystals are therefore polished to a hair-thin 

disc that supports resonance of 1-30 MHz. The diameter of the crystal usually is in the 

range of 0.3 – 0.5 inches. The temperature dependence of the AT cut is zero at room 

temperature.28 

To make the QCM sensitive and specific to a particular analyte, a recognition motif 

is first adsorbed onto the electrode, followed by introduction of the analyte to the electrode-

modified crystal chip. Binding of the analyte onto it recognition motif adsorbed on the 

quartz chip causes a change in mass, resulting in a change the quartz vibration frequency. 

This procedure has found utility in the detection and quantifying of a number of important 

analytes, spanning volatile organic compounds, inorganic molecules, biomolecules, cells 

and pathogens.29,30 

3.2 RESULTS AND DISCUSION 

2.2.0 Development of QCM sensors for sialic acid 

The ability of graphene to assemble on QCM and subsequent adsorption of 

aromatic compounds onto graphene surfaces via π-π stacking has been previously 

reported.31,32 Since amines could react with sialic acids after treatment of the sialic acid 

with sodium periodate, which converts the terminal diols of the sialic acid into an aldehyde, 

we anticipated that, immobilizing 1,8-diaminonaphthalene (DAN) onto a QCM coated with 

graphenes could serve as a sensitive and facile method for detection of sialic acids in 
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solutions and on cell surfaces. Scheme 3.2 shows the proposed reaction scheme between 

DAN and sialic acid pretreated with sodium periodate. To this end, graphene was 

immobilized onto silver-coated QCM chips, followed by assembling of DAN on the 

graphene surfaces (Figure 3.2). The extent of addition of new materials onto the surface of 

the chip was determined by the change in the frequency of the QCM chip when the chip 

was connected to a QCM transducer. When a mass was added a decrease in frequency was 

observed. 

 

 

Scheme 3.2. Reaction of 1,8-diaminonapthalene (DAN) with sialic acid pretreated with 

sodium periodate. 

 

Figure 3.3a shows the QCM responses for graphene adsorption, DAN assembly, 

and subsequent binding of sialic acid pretreated with sodium periodate to the functionalized 

QCM chip. The initial measurement of the QCM chip, which is about 9 MHz was taken 

after thoroughly washing the chip with ethanol, followed by water and blow-drying with 

nitrogen. A decrease in the QCM frequency was observed when the chip was later 

introduced into a suspension of graphenes in ethyl acetate for an hour. To ensure that the 

change in frequency is only due to the graphenes adsorbed onto the silver surface, the QCM 

chip was introduced into the graphene solution vertically, and afterwards, washed 

thoroughly with water and blow-dried with nitrogen to remove any non-binding graphenes 



 

67 

on the QCM surface. This process was repeated for DAN, dissolved in 50% acetonitrile in 

water, and resulted in further decrease in the frequency of the QCM chip. Subsequently, 

the QCM chip functionalized with layers of graphene and DAN was used as a sensing 

platform for sialic acids.  As expected, binding of sialic acid, or any analyte resulted in a 

further decrease in the frequency, whiles in the cases where no binding occurred, no 

significant change in the QCM frequency was observed. 

Contrary to previous reports that ligation of hydrazines and hydroxylamines to 

aldehydes only occur, or are at optimum in acidic buffers. The binding of DAN to sialic 

acid was equally significant at pH = 7.4, and also in deionized water, according to the 

change in frequencies we observed for the same concentration of sialic acids in three 

solutions (deionized water, sodium phosphate buffer, pH = 7.4 and sodium acetate buffer 

pH = 4.6). We therefore chose pH 7.4 for all our subsequent sensing experiments. No 

changes in frequency was observed when the experiment was repeated for sialic acids that 

had not been pretreated with sodium periodate. To establish that this method is selective 

for sensing sialic acids, the experiment was carried out on glucose, with or without 

treatment with sodium periodate. No frequency change was observed in both treated and 

untreated glucose as shown in (Figure 3.3 b)  

When the binding of sialic acid (1 mg/mL) pretreated with sodium peridodate (0.1 

M, 300 µM) to the modified QCM chip was measured with time, an increase in frequency 

was observed with time for up to about 50 minutes after which no significant change in the 

frequency was observed (Figure 3.4a). This was due to the fact that all the amines on the 

QCM surface had reacted with the aldehydes in solution. We further prepared different 

concentrations of the sialic acid, ranging from 1 mg/mL to 10-6 mg/mL and treated them 
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with sodium periodate for sensing with our QCM chips modified with DAN. Sensitivity of 

the QCM chips for sialic acid was observed down to 10 -5 mg/mL. No significant frequency 

shift was observed for sialic acid concentrations below this concentration after introducing 

the sensors into the solutions for up to 20 minutes. As anticipated, above this critical 

sensing concentration, a decrease in frequency was observed with increasing concentration 

of the sialic acid (Figure 3.4b). 

 

 

 

Figure 3.2. (a) Schematic of QCM chip showing one of its two same sides (b) Assembly 

of DAN on graphene via µ-µ interaction. The graphene is first adsorb onto the silver 

electrode on both sides of the QCM chip before the DAN assembly. 
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Figure 3.3. Frequency shift in response to sequential binding of graphene, DAN and sialic 

acid to QCM chip. (b) Frequency shift in response to sequential binding of graphene, DAN 

and glucose. No frequency change was observed for binding of glucose to DAN. 
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Figure 3.4 (a) Plot of frequency shift with time for binding of sialic acid (1mg/mL) 

pretreated with sodium periodate (0.1 M, 300 µL) to QCM-DAN sensing platform. A 

steady decrease in frequency with time up to 50 minutes observed after which there was 

no significant change in the frequency. (b) Frequency shifts observed for introducing 

QCM-DAN chips into different concentrations of sialic acid pretreated with sodium 

periodate. The chips are immersed in the sialic acid solution for 20 minutes, rinsed with 

deionized water, blow-dried with nitrogen and the frequency measured on a transducer. 

 

Having established the effectiveness of our probe for sensing sialic acids, we moved 

on to detect sialic acids on a sialo protein, fetuin from fetal bovine serum. Two different 

samples of the proteins were prepared in a sodium phosphate buffer (0.5 mg/mL, pH 7.4). 

One was treated with a neuraminidase and the other solution remained untreated. 

Neuraminidase are sialic acid cleaving enzymes. When a sialoprotein is treated with 

neuraminidase, the sialic acids on the proteins are expected to be cleaved from the protein. 

Sodium periodate solutions (0.1 M, 300 µL) was later added to the two sialoprotein 

solutions at 0 oC and the solutions kept at the same temperature for 30 minutes. The QCM-

modified chips that was introduced into the untreated sialo protein for 30 minutes showed 

an averaged frequency decrease of almost 270 Hz after three trials whiles the chips 
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introduced into proteins treated with the enzyme had only about 50 Hz of frequency shift 

(Figure 3.5). We surmise that there was more decrease in frequency for the untreated 

sialoprotein because the sialic acids are attached to a higher molecular weight proteins, 

whereas the treated sialoproteins had mostly free and low molecular weight sialic acid in 

solution. 

 

 
 

Figure 3.5 QCM response for fetunin from bovine serum after treatment with sodium 

periodate. The fetunin solution without neuraminidase showed a higher frequency shift 

than the one treated with neuraminidase. 

 

3.2.1 Labeling of bone marrow stem cell sialic acids 

We subsequently applied the method we have developed in detecting sialic acids 

on bone marrow stem cells that have been incubated and allowed to divide over 21 days. 

Stem cells are undifferentiated cells that have the ability divide, self-renew and 

differentiate into other types of cells. The differentiation of stem cells is associated with 
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antigens on the cell surface, which are made of glycoproteins or glycolipids.33-35 The 

terminal sugar residues of these glycoproteins or glycolipids are usually sialic acids and 

thus can be detected using the method developed above. To this end, cells that were 

incubated in a medium and allowed to divide were tested for the presence of sialic acids on 

their surfaces at 0,7,14 and 21 days.  Using the procedure reported earlier for detecting 

sialic acids, the cells were subjected to mild periodate oxidation to selectively introduce 

aldehyde to the terminal sialic acids and subsequently tested for their ability to bind to our 

DAN-modified QCM chips. As shown in Fig. 3.5, no frequency shifts were observed at 

day zero, but frequency shift were observed in the subsequent measurements, increasing 

with the number of days of incubation. Also, the 40 k cells had higher frequency shifts that 

the 20 k cells for each measurement. Control reactions for the stem cell not treated with 

sodium periodate did not show any frequency shifts, indicating the binding was due to the 

introduction of aldehydes on the cell surface. 

 
 

Figure 3.6 Frequency shifts in response to binding of cell surface sialic acid to QCM chips 

modified with DAN for 20 k cells (black) and 40k (cells) red, at 0, 7, 14 and 21 days. 
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3.3 CONCLUSION 

A novel QCM-based method for detection of sialic acids in solutions and on cell 

surfaces has been developed. The method involves selective oxidation of the glycerol side 

chain of sialic acids to form an aldehyde and subsequent reaction with amines immobilized 

on QCM surface. A successful reaction of the amine with the oxidized sialic acid causes a 

decrease in the QCM’s resonance frequency. The magnitude of the frequency shift is 

directly proportional to the mass of sialic acid that binds to the QCM surface. Unlike 

previous amine-based sialic acid sensors developed, which are effective only at slightly 

acid pH, the QCM-DAN sensor developed is effective at physiological pH and thus can be 

easily adapted for live cell sialic acid sensing. 

3.4 EXPERIMENTAL SECTION 

3.4.0 Materials  

Proteck C3100 2.4 GHz programmable Universal Counter Quartz crystal microbalance 

was used for all measurements. Graphene dispersion in butyl acetate was purchased from 

Graphene Supermarket. All other reagents were of commercial grade and used without 

further purification. Stem cells were supplied by our group member, Panita 

Maturavongsadit. 

Preparation of QCM sensors 

The QCM chip were extensively cleaned with ethanol and water before being introduced 

into graphene solution (1 mg/mL) in ethyl acetate to allow for deposition of graphene onto 

the surface of the QCM chip. The chip was subsequently rinsed with water to allow, non-

binding graphenes on the surface of the chip to be removed. After measuring the frequency 
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of the graphene-modified chip, the chip was introduced into a solution of 1,8-

diaminonaphthalene (DAN) in acetonitrile and water (1:1), (0.5 mg/mL) for 30 minutes. 

The frequency of the QCM chip is again measured after rinsing the chip with water to 

remove non-binding DAN on the surface and blow-dried with nitrogen. Unless otherwise 

stated, sialic acid solutions were prepared in sodium phosphate buffer, pH 7.4., and 

experiments conducted in triplicates.  

3.4.1 Measurement process 

QCM measurement were carried out on a Protek C3100 2.4 GHz Programmable Universal 

Counter. The QCM chip was an AT-cut quartz crystal coated with silver on each side with 

a fundamental resonance frequency of 9 MHz. The principle of the QCM sensor is based 

on changes in the oscillating frequency of the QCM chip upon an analyte binding onto the 

silver-coated surface. For a small elastic object, there is a linear relationship between the 

amount of mass adsorbed onto the crystal surface (usually in the 1 ng cm-2 range) and the 

frequency shift of the crystal in air or vacuum according to the Sauerbrey equation.36,37  

Δm = − CΔfn /n 

Where Δm is the mass change, C is the instrument constant, n is the vibrational mode 

number and Δfn is the resonant frequency change for mode n. The instrument reports Δfn 

/n in Hz. 

Cell isolation and culture 

BMSCs were isolated from the bone marrow of young adult 160-180 g male Sprague- 

Dawley rats (Charles River Laboratories) as described in our previous reports.38,39
 The 

procedures were performed in accordance with the guidelines for animal experimentation 



 

75 

by the Institutional Animal Care and Use Committee, School of Medicine, University of 

South Carolina. The cells were passaged no more than seven times after isolation and 

maintained in complete primary media (Dulbecco’s Modified Eagle’s Medium (DMEM) 

supplemented with 10% fetal bovine serum (FBS)), kept at 37 °C in a CO2 incubator with 

5% CO2 : 95% air. The medium was replaced every 3-4 days. 

Osteogenic differentiation of BMSCs 

BMSCs were harvested from 80% confluent culture flask using 0.25% 

trypsin/EDTA for 5 min and counted and resuspended in complete primary media. A total 

of 20 or 40 × 103 BMSCs were seeded per well. After 6 hours of an initial incubation, 

primary media were replaced with osteogenic media consisting of DMEM supplemented 

with 10% FBS, penicillin (100 U mL−1), streptomycin (100 μg mL−1), and amphotericin B 

(250 ng mL−1), 10 × 10−3 M sodium β-glycerolphosphate, L –ascorbic acid 2-phosphate 

(50 μg mL−1), and 10−8 M dexamethasone. Media were replenished every 3 days. 

Detection of sialic acid on cell surfaces 

After incubation, the cells were treated with sodium periodate (0.1 M, 300 µM) at 

0 oC for 30 minutes to selectively introduce aldehyde to the terminal sialic acids  This was 

followed by introduction of DAN-modified QCM chips into the cell culture. The QCM 

chips were removed after 30 minutes, washed with water, blow-dried with nitrogen and the 

frequencies measured on the Protek C3100 2.4 GHz Programmable Universal Counter. The 

measurement were conducted in triplicates with separate DAN-modified QCM chip for 

each set of cells. 
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CHAPTER 4 

PYRENE-FUNCTIONALIZED BORONIC ACID SENSORS FOR 

LABELING GLYCANS ON CELLS 

4.1 INTRODUCTION 

Glycans are one of the most abundant biomolecules found in cells.1. They are 

involved in a wide array of biological processes, including cell-cell recognition, cell 

differentiation, growth, immune response and modulation.2,3 Changes in glycan 

expressions in cells have been linked to different cancers, and have been reported to 

regulate different aspects of tumor progression, including proliferation, invasion and 

metastasis.4-6 For example, overexpression of sialic acids have been linked to various 

disease states such as cancers,4 cardiovascular diseases7 and neurological diseases.8 

Moreover, overexpression of mannose sugar has also been reported in breast cancer 

progression,9 and the overall level of fucose has been reported to be higher in ovarian and 

pancreatic cancer cells compared to their corresponding normal cells.10 

Existing methods for detecting and analyzing glycans include, mass 

spectrometry,11-13 nuclear magnetic resonance14,15 and high performance liquid 

chromatography.16 However, these methods involve first treating the cells with enzymes to 

release the saccharides from the protein before analysis, either with or without 

derivatization.11 Another approach is based on metabolic incorporation of a bioorthogonal 

reporter into the cell by introducing synthetic analogues of natural monosaccharides 
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bearing the biorthogonal reporters into the cell.17-21 The unnatural sugars are utilized in the 

biosynthesis of glycans bearing the incorporated bioorthogonal reporters, which can be 

subsequently conjugated with a various kinds of probes. The reaction between the 

functionalized glycan and fluorescent probes allows visualization and monitoring of 

glycans in living cells by means of fluorescence microscopy, or other analytical methods, 

which is vital for elucidating protein glycosylation in the cell. Reporter groups such as 

azides, alkynes alkenes and ketones are some of the functional groups that are suitable for 

metabolic incorporation into the cell’s glycans and subsequent labeling with affinity 

probes.20,22 However, bulky groups such as cyclooctynes could lead to perturbation of the 

pathways, and consequently, a dysregulation of the cellular activities. 

Another method relies on the recognition and affinity binding of the polyhydroxy 

functional groups of the glycans in situ using lectins23 or boronic acids24. Lectins are class 

of carbohydrate binding proteins. Different lectins exist that are specific for different 

oligosaccharide sequences.25 However, this method suffers from limited tissue penetration 

and toxicity.  Boronic acids are synthetic recognition motif for glycans. They react rapidly 

and reversibly with 1,2 and 1,3-diols of the glycans to form five- and six-membered ring 

cyclic boronate esters respectively (Figure 4.1).26-28 The binding to glycans occurs at, or 

near physiological pH, and both the boronic acids and their boronate ester products are 

benign to cells, making this reaction suitable for biolabeling. The binding of boronic acid 

to cell surface glycans also enhances transport of molecules attached to the boronic acid 

into the cell. They are therefore employed in the delivery of polar molecules and drugs to 

cells. In this work, we synthesized a number of pyrene- and naphthalimide-derivatized 

boronic acids for glycan sensing. Pyrene is a versatile blue-fluorophore with high 



 

83 

fluorescence quantum yields,29-31 and naphthalimide on the other hand are green-

fluorescent emitting dyes.32 The spacers between pyrenes and boronic acids were varied to 

obtain the optimum spacing needed for higher fluorescence intensity. 

4.2 RESULTS AND DISCUSSION 

Figure 4.1 shows different pyrene-derivatized boronic acids that were synthesized 

for labeling glycans on cells. The boronic acid parts are the recognition motifs, whiles the 

pyrenes are the fluorescent parts, for visualization and tracking of the molecules in cells. 

The spacer length, and polarity of the sensors were varied to obtain the best design for 

imaging cellular glycans. Pyrene boronic acids (8 µM) in 10% DMSO/H2O were prepared 

and incubated with bone marrow stroma cells (BMSCs) in primary media at 37 oC for 30 

minutes. The cells were subsequently washed three times with primary media, and fixed 

with 4% paraformaldehyde for 15 minutes at room temperature. Finally, images of the 

stained samples were collected using Olympus I×81 epi-flour mode under 10× and 20× 

lens, exposure times 300 ms for DAPI and 700 ms for FITC channel. The cell imaging was 

performed by our group member, Panita Maturavongsadit. 

Different fluorescence intensities were observed for the different dyes, 4.1-4.7 

under a fluorescence microscope (Figure 4.2). Dyes 4.1 and 4.2, which have ethyl and butyl 

spacers respectively, linking a pyrene and 3-amidophenylboronic acid showed the highest 

fluorescent labeling. When the amide in 4.2 was replaced by an amine to obtain 4.3, no 

labeling was observed. The amphiphilic dyes 4.4 and 4.5 showed some labeling, but not as 

effective as those of 4.1, and 4.2; whereas 4.6, which has a pentaethylene (PEG) linker  
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Figure 4.1Structure of pyrene-derivatized boronic acid dyes for imaging cell surface glycans. 
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 Figure 4.2 Fluorescence images of BMSCs labeled with different pyrene-derivatized boronic acids (4.1-4.7) and pyrene (4.8). 
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Figure 4.3.Fluorescence images of BMSCs labeled with dyes 4.1,4 2 and 4.8 and the corresponding fluorescent intensities.
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separating the pyrene and the pyridinium boronic acid did not show any staining. However, 

pyrene (8), which was not functionalized with boronic acid showed staining comparable to 

4.1 and 4.2 (Figure 4.3). We thus concluded that pyrene-boronic acids with short alkyl 

group separating them and linked by amide groups were more suitable for labeling the 

glycans than those with polyethylene linkers and the amphiphiles. Internalization of the 

dyes was also observed, which is consistent with the boronate ester-aided transport of 

molecules across the cell membrane. However, pyrene (8), which has no boronic acid 

attached was also internalized; thus the hydrophobicity pyrene moiety could also have 

contributed to the internalization of the dyes. 

To further establish the mechanism of the labeling and the internalization of the 

dyes, two naphthalimide boronic acid dyes 4.9 and 4.10 were synthesized. After incubating 

the dyes with BMSCs and collecting the images of the stained samples, we observed that 

both dyes showed labeling and internalization, but the fluorescent intensity of 4.10 was 

higher than that of the amphiphilic dye 4.9. (Figure 4.4).  

4.3 CONCLUSION 

Pyrene- and naphthalimide-derivatized boronic acid dyes were synthesized for 

labeling cell surface glycans. The pyrenes, separated by alkyl chains and linked to the 

boronic acids by amide bonds showed the highest fluorescent intensity. The amphiphilic 

dyes showed lower fluorescence intensity than the hydrophobic dyes. After the surface 

binding, via the reaction of the boronic motifs with the diols to form boronate esters, the 

dyes entered the cytoplasm. This is evident by the labeling of the cytoplasm by the dye. 

However, the incubation of the cells with a pyrene without boronic acid attached showed 

the hydrophobicity of the pyrene might have also contributed significantly to the 
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permeating of the dyes through the cell membrane to label the cytoplasm. We therefore 

concluded that the pyrenes-derivatized boronic acid were not suitable for selectively 

labeling glycans on cells. A suitable dye that is less hydrophobic, is therefore required to 

carry the boronic acid motif for the selective labeling of cellular glycans. 

 

 

 

 

 

Figure 4.4 Fluorescence images of BMSCs labeled with naphthalimide-derivatized boronic 

acid dyes 4.9 and 4.10. 
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4.4 EXPERIMENTAL SECTION 

General. Unless otherwise specified all reagents and solvents were of commercial grade. 

NMR spectra were recorded on Bruker 300 or 400 instruments. Flash column 

chromatography was performed with silica gel (32-63 μm). High resolution mass 

spectrometry (HRMS) was obtained using a magnetic sector mass spectrometer. 

 

(3-(2-Pyrene-1-yl)acetamido)phenyl)boronic acid (4.1). Pyrene-1-acetic acid (50.0 mg, 

0.19 mmol) in DMF (5 mL) was added EDCI (53.0 mg, 0.34 mmol) and DMAP (2.0 mg, 

0.0017 mmol) at room temperature and stirred for 10 minutes, followed by addition of 3-

aminophenylboronic acid.monohydrate (31.0 mg, 0.20 mmol). The mixture was further 

stirred at room temperature for 18 h. After the reaction was completed, the mixture was 

diluted with ethyl acetate (20 mL) and washed with 1 N HCl and water. The organic layer 

was dried over anhydrous sodium sulfate and concentrated in vacuo to obtain a light yellow 

solid (60.0 mg, 81%). 1H NMR (400 MHz, DMSO) δ 10.41–10.39  (br s, 1H), 8.39 (t, J = 

23.1 Hz, 1H), 8.30 – 8.19 (m, 4H), 8.17 – 8.00 (m, 7H), 7.89 (d, J = 15.5 Hz, 1H), 7.70 (d, 

J = 8.1 Hz, 1H), 7.46 (d, J = 7.2 Hz, 1H), 7.26 (t, J = 7.7 Hz, 1H), 4.42 (s, 2H). 13C NMR 

(101 MHz, DMSO) δ 169.67, 138.70, 131.24, 130.99, 130.76, 130.31, 129.69, 129.51, 

129.22, 128.34, 127.89, 127.86, 127.43, 126.77, 125.75, 125.68, 125.50, 125.30, 124.55, 

124.38, 124.32, 121.85, 41.30. HRMS (ESI): m/z (M-H) calcd for C24H18BNO3: 377.1338; 

Found: 377.1347 
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(3-(4-(Pyren-1-yl)butanamido)phenyl)boronic acid (4.2). Pyrene-1-butyric acid (100.0 

mg, 0.34 mmol) in DMF (5 mL) was added EDCI (105.0 mg, 0.68 mmol) and DMAP (4.0 

mg, 0.0034 mmol) at room temperature and stirred for 10 minutes, followed by addition of 

3-aminophenylboronic acid.monohydrate (47.4 mg, 0.34 mmol). The mixture was further 

stirred at room temperature for 18 h. The mixture was diluted with ethyl acetate and washed 

with 1 N HCl (20 mL) and water (2 x 20 mL). The organic layer was dried over anhydrous 

sodium sulfate and concentrated in vacuo to obtain a yellow solid (123.0 mg, 89%). 1H 

NMR (400 MHz, DMSO) δ 9.93 (s, 1H), 8.35 (t, J = 10.0 Hz, 1H), 8.24 (dd, J = 7.6, 2.7 

Hz, 2H), 8.19 (dd, J = 8.4, 6.8 Hz, 2H), 8.09 (d, J = 1.9 Hz, 1H), 8.03 (t, J = 7.6 Hz, 1H), 

7.92 (t, J = 8.2 Hz, 1H), 7.87 (s, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.48 (d, J = 7.3 Hz, 1H), 

3.43–3.29 (m, 2H), 2.47 (t, J = 7.2 Hz, 1H), 2.10 (dd, J = 14.7, 7.2 Hz, 2H). 13C NMR (101 

MHz, DMSO) δ 171.77, 138.73, 136.88, 131.30, 130.83, 129.77, 129.50, 128.58, 128.28, 

128.02, 127.90, 127.74, 126.99, 126.65, 125.77, 125.43, 125.28, 124.67, 124.56, 123.87, 

121.97, 36.39, 32.63, 27.86. HRMS (ESI-H): m/z (M-H) calcd for C26H22BNO3: 405.1649; 

found: 405.1651.  
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Pyrene-1-butanaldehyde. To a solution of pyrenbutanol (274.0 mg, 1.0 mmol) in CH2Cl2 

(4 mL) and DMSO (830 µL) was added Et3N (572 µL, 4.0 mmol) followed by addition of 

SO3.pyridine (326.0 mg, 2.06 mmol) in 3 portions over 20 minutes. The mixture was stirred 

for another 2 hours, diluted with ethyl acetate (10 mL) and washed with 1 N HCl and water. 

The organic layer was concentrated in vacuo to afford a white solid, which was further 

washed with diethyl ether to obtain pyrenebutanaldehyde (220.0 mg, 80%). 1H NMR (300 

MHz, CDCl3) δ 9.82 (t, J = 1.4 Hz 1H), 8.30 (d, J = 9.3 Hz, 1H), 8.23-8.10 (m, 4H), 8.09 

– 7.94 (m 3H), 7.86 (d, J = 7.8 Hz, 1H), 3.45 –3.34 (t, J = 7.5 Hz, 2H), 2.62-2.56 (m 2H), 

2.33–2.13 (m, 2H). 

4.3. To a solution of pyrene-1-butanaldehdye (214.0 mg, 0.78 mmol) in THF (10 mL) was 

added a drop of acetic acid and 3-aminophenylboronic acid.monohydrate (120 mg, 0.78 

mmol). After stirring for 5 minutes, NaBH(OAc)3 (330.0 mg, 1.57 mmol) was added. The 

mixture was left to stir at room temperature overnight (18 h). The mixture was diluted with 

ethyl acetate and washed with sodium bicarbonate. The organic layer wad dried over 

anhydrous sodium sulfate, concentrated and dried in vacuo to obtain a white solid (280.0 

mg, 91%). 1H NMR (400 MHz, DMSO) δ 8.36 (d, J = 9.3 Hz, 1H), 8.30-8.18 (m, 5H), 

8.17–8.00 (m, 5H), 7.96 (d, J = 7.8 Hz, 1H), 7.90–7.74 (m, 1H), 7.69 (s, 2H), 7.50–7.25 
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(m, 2H), 1.88 (d, J = 29.5 Hz, 4H). * 4 Protons under DMSO water peak. 13C NMR (101 

MHz, DMSO) δ 136.97, 131.36, 130.89, 129.76, 129.15, 128.56, 127.96, 127.91, 127.71, 

127.00, 126.62, 125.39, 125.26, 124.70, 124.61, 123.98, 32.59, 28.93. HRMS (ESI): m/z 

(M+H) calcd for C24H25NO2: 394.2007; found: 394.2009. 

 

4-(pyrene-1yl)-butyl methanesulfonate (4.4a). To pyrne-1-butanol (300.0 mg, 1.05 mL) 

in CH2Cl2 (10 mL) was added Mscl (89 µL, 1.15 mmol) and TEA (417 µL, 3.0 mmol). The 

mixture was stirred at room temperature overnight (18 h) and partitioned between 1 N HCl 

and CH2Cl2. The organic layer was washed with water, dried over anhydrous sodium 

sulfate, concentrated  and dried in vacuo to obtain a light yellow liquid  (360 mg, quant) as 

the intermediate.1H NMR (300 MHz, CDCl3) δ  8.27 (d, J = 9.3 Hz, 1H), 8.22–8.09 (m, 

4H), 8.07–7.97 (m, 3H), 7.87 (d, J = 7.8 Hz, 1H), 4.26 (t, J = 6.3 Hz, , 2H), 3.41 (t, J = 7.3 

Hz, 2H), 2.96 (s, 3H), 2.51 (s, 3H), 2.14–1.81 (m, 4H). 

4.4. The intermediate, 4-(pyrene-1yl)-butyl methanesulfonate (180.0 mg, 0.48 mmol) was 

dissolved in DMF (1 mL) and 3-pyridyl boronic acid was added. The mixture was heated 

to 100 oC for 36 h. Diethyl ether (10 mL x 2) was added to the reaction mixture and the 

solvent decanted. An oily residue formed was dried in vacuo to obtain a brown solid  (120 

mg, 52%). 1H NMR (300 MHz, MeOD) δ 8.86 (d, J = 6.6 Hz, 2H), 8.12–7.84 (m, 5H), 
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7.82-7.43(m, 6H), 4.72–4.40 (m, 1H), 3.45–3.28 (m, 2H), 2.25–2.00 (m, 1H), 2.02-1.98 

(m, 1H). 13C NMR (75 MHz, MeOD) δ 145.25, 135.51, 131.37, 130.82, 130.01, 128.38, 

127.94, 127.15, 127.12, 127.09, 126.42, 125.72, 124.69, 124.57, 124.51, 122.85, 61.48, 

32.08, 30.77, 27.75. HRMS (ESI): m/z calcd for: 379.1853; found: 379.1852. 

 

 

4.5a. Pyrene-1-butyric acid (500.0 mg, 1.7 mmol) in ethyl acetate (20 mL) was added 50% 

propylphosphonic anhydride in ethyl acetate (1.07 mL, 3.6 mmol), dimethylaminoethanol 

(465 µL, 4.5 mmol) and trimethylamine (614 µL, 4.5 mmol) and stirred at room 

temperature for 1 h. The mixture was diluted with ethyl acetate and washed with saturated 

sodium bicarbonate and water. The organic layer was dried over anhydrous sodium sulfate  

and concentrated in vacuo to obtain compound 4.5a, as a dark oil (550.0 mg, 90%). 1H 

NMR (400 MHz, CDCl3) δ 8.29 (d, J = 9.2 Hz, 1H), 8.17 (dd, J = 7.2, 4.1 Hz, 2H), 8.12 

(dd,  J = 8.5, 3.3 Hz, 2H), 8.06–7.95 (m, 3H), 7.85 (d, J = 13.6, 1H), 4.30 (t, J = 5.3 Hz, 

2H), 4.28–4.09 (m, 1H), 3.41 (t, J = 7.6 Hz, 2H), 2.76 (t, J = 5.3 Hz, 2H), 2.52 (t, J = 7.2 

Hz, 2H), 2.44 (s, 6H), 2.27–2.12 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 211.35, 172.98, 

135.65, 131.41, 130.89, 130.01, 128.77, 127.50, 126.79, 125.94, 125.01, 123.31, 67.91, 
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59.54, 44.16, 38.75, 33.52, 32.52, 26.36. HRMS (ESI): m/z (M+H) calcd for C24H25NO2: 

360.1964; found: 360.1965. 

4.5. To 4.5a (440 mg, 1.2 mmol) in a mixture of THF (10 mL) and DMF (1 mL) was added 

(3-bromomethyl)phenylboronic acid (262.0 mg, 1.2 mmol) and stirred at room temperature 

for 5 h. The THF was removed and diethyl ether (20 mL) was added to precipitate the 

product. The precipitate was filtered and dried in vacuo to obtain a light yellow solid as the 

desired product  (415.1 mg, 70%). 1H NMR (300 MHz, MeOD) δ 8.34 (d, J = 9.3 Hz, 1H), 

8.18 (d, J = 7.8 Hz, 2H), 8.12 (s, 1H), 8.09 (d, J = 2.4 Hz, 1H), 8.05–8.01 (m, 2H), 7.98 (d, 

J = 7.8 Hz, 1H), 7.86 (t, J = 9.9 Hz, 2H), 4.54–4.41 (m, 4H), 3.57 (dd, J = 5.8, 3.8 Hz, 2H), 

3.45–3.35 (m, 2H), 2.98 (s, 6H), 2.54 (t, J = 7.2 Hz, 2H), 2.31–2.07 (m, 2H). 13C NMR 

(101 MHz, MeOD) δ 172.70, 135.59, 131.40, 130.00, 128.58, 127.14, 126.40, 125.67, 

124.67, 124.54, 123.02, 68.98, 62.36, 57.08, 49.43, 32.84, 32.03, 25.99. HRMS (ESI): m/z 

(M+) calcd for C31H33BNO4
+: 493.2539; found: 493.2547. 
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4.6a. To pyrene-1-butyric acid (1.4 g, 5.0 mmol) in DMF (20 mL) was added EDCI (1.05 

g, 5.5 mmol) and DMAP (0.1 g, 0.5 mmol) at 0 oC. The mixture was stirred at room 

temperature for 10 minutes followed by addition of pentaethylene glycol (2.1 mL, 10.5 

mmol). The mixture was further stirred at room temperature for 18 h. The crude was diluted 

with ethyl acetate and washed with 1N HCl and water. The organic layer was concentrated, 

dried in vacuo and purified on silica gel column using CH2Cl2:CH3OH (10:0.1–10:1) 

gradient to obtain a yellow oil. (1.3 g, 51%). 1H NMR (400 MHz, CDCl3) δ 8.26-8.20 (m, 

1H), 8.12–8.01 (m, 4H), 7.96–7.87 (m, 3H), 7.83–7.76 (m, 1H), 4.21-4.11 (m, 2H), 3.65–

3.60 (m, 4H), 3.59–3.43 (m, 14H), 3.31 (t, J = 7.6 Hz, 2H), 2.51 (s, 3H), 2.41 (t, J = 7.6 

Hz, 2H), 2.22-2.02 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 173.49, 135.77, 131.42, 

130.91, 129.98, 128.76, 127.50, 127.41, 126.72, 125.86, 125.10, 125.00, 124.92, 124.83, 

124.78, 123.37, 72.51, 70.56, 70.51, 70.28, 69.17, 63.51, 61.74, 33.81, 32.76, 26.80. 

4.6b. To compound 4.6a (800.0 mg, 1.6 mmol) in CH2Cl2 (20 mL) was added MsCl (198.4 

mg, 1.72 mmol) and TEA (445 µL, 3.2 mmol). The mixture was stirred at room temperature 

for 2 h.  The crude was washed with 1 N HCl and water. The organic layer was dried over 

anhydrous sodium sulfate, concentrated and purified on silica gel using CH2Cl2 to obtain 
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compound 4.6b as a dark oil (795 mg, 86%). 1H NMR (300 MHz, CDCl3) δ 8.24 (d, J = 

9.3 Hz, 1H), 8.13–8.01 (m, 4H), 7.97–7.95 (m, 2H), 7.92 (t, J = 7.6 Hz, 1H), 7.80 (d, J = 

7.8 Hz, 1H), 4.23–4.14 (m, 2H), 3.68–3.59 (m, 4H), 3.58–3.45 (m, 12H), 3.33 (t, J = 7.8 

Hz, 2H), 2.97 (s, 3H), 2.43 (t, J = 7.3 Hz, 2H), 2.22-2.02 (m, 2H), 1.57–1.50 (m, 2H).13C 

NMR (101 MHz, CDCl3) δ 127.50, 127.41, 126.73, 125.87, 124.93, 124.79, 123.37, 70.59, 

70.56, 70.47, 69.25, 69.18, 68.98, 63.50, 37.72, 33.82, 32.75, 26.80. HRMS (ESI): m/z 

(M+) calcd for C31H38O9S: 587.2315; found: 587.2333 

4.6. A mixture of compound 4.6b (680.0 mg, 1.16 mmol) and 3-pyridyl boronic acid (141 

mg, 1.16 mmol in DMF (5 mL) was heated to 60 oC and stirred for 18 h. The mixture was 

cooled to room temperature and diethyl ether was added. A precipitate formed was filtered 

and dried in vacuo to obtain 4.6 as a yellow solid (310 mg, 43%) 1H NMR (300 MHz, 

MeOD) δ 8.86 (d, J = 6.6 Hz, 1H), 8.12–7.84 (m, 5H), 7.82-7.43(m, 6H) δ 4.67–4.48 (m, 

2H), 4.27–4.08 (m, 2H), 3.87–3.72 (m, 2H), 3.72–3.64 (m, 2H), 3.62-3.48 (m, 4H),3.49-

3.34 (m, 10H) 2.50 (t, J = 7.1 Hz, 2H), 2.27–1.96 (m, 2H). 13C NMR (75 MHz, MeOD) δ 

175.89, 136.31, 132.03, 131.17, 130.52, 129.22, 127.26, 127.04, 126.37, 125.70, 125.15, 

124.64, 124.50, 123.12, 70.02, 69.90, 68.72, 63.17, 33.25, 32.16, 26.76. HRMS (ESI): m/z 

(M+) calcd for C25H23BNO2: 613.2916; found: 613.2972. 

 



 

97 

4.7a. To pyrene-1-butyric acid (576.0 mg, 2.0 mmol) in DMF (10 mL) was added EDCI 

(930 mg, 6.0 mmol) and DMAP (24.0 mg, 0.2 mmol) at 0 oC. The mixture was stirred at 

room temperature for 5 minutes followed by addition of triethylene glycol (818.0 mg, 6.0 

mmol). The reaction was further stirred at room temperature overnight. The mixture was 

diluted with ethyl acetate and washed with 1 N HCL and water. The organic layer was 

dried over anhydrous sodium sulfate, concentrated in vacuo, and purified on silica gel 

column using CH2Cl2: MeOH (1.0:0 to 1.0-0.05) gradient as eluent to obtain 4.7a as a light 

yellow liquid (450.0 mg, 53%). 1H NMR (400 MHz, CDCl3) δ 8.26-8.20 (m, 1H), 8.12–

8.01 (m, 4H), 7.96–7.87 (m, 3H),7.78 (d, J = 7.8 1H), 3.64–3.59 (m, 2H), 3.57–3.44 (m, 

12H), 3.35–3.25 (m, 2H), 2.88–2.72 (m, 2H), 2.40 (dt, J = 19.7, 8.6 Hz, 2H), 2.20–1.97 

(m, 2H). 13C NMR (75 MHz, MeOD) δ 173.77, 166.87, 135.75, 131.37, 130.86, 129.91, 

129.03, 128.49, 127.32, 127.12, 126.96, 126.28, 125.56, 124.76, 124.67, 124.53, 124.41, 

123.02, 70.16, 70.08, 68.72, 68.69, 63.74, 63.21, 33.17, 32.11, 26.61. 

4.7. To 3-boronobenzoic acid (100.0 mg, 0.60 mmol) in DMF (1 mL) was added EDCI 

(186 mg, 1.2 mmol) and DMAP (12.2 mg, 0.1 mmol). The mixture was stirred at room 

temperature for 30 minutes followed by addition of pyrenebutyltriethyleneglycol ester 

4.7a. (126. 0mg, 0.3 mmol) the reaction was further stirred at room temperature for 48 h. 

The mixture was diluted with ethyl acetate and washed with 1 N HCl and water. The 

organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. The 

crude was purified on silica gel column using hexane:ethyl acetate (1:3) to obtain a thick 

brown liquid (45 mg,) 1H NMR (300 MHz, MeOD) δ 8.45-8.32 (m, 1H), 8.26-8.19 (m, 

1H), 8.14-8.00 (m, 4H), 7.99–7.85 (m, 4H), 7.80 (d, J = 7.8 1H), 7.50 – 7.24 (m, 2H), 4.63-

4.50 (m, 2H), 4.39–4.25 (m, 2H), 4.21–4.07 (m, 2H), 3.71–3.56 (m, 4H), 3.54-3.51 (m, 
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4H), 3.48-3.21 (m, 1H), 2.39 (t, J = 7.2 Hz, 2H), 2.22–1.86 (m, 2H). 13C NMR (75 MHz, 

MeOD) δ 173.77, 166.87, 135.75, 131.37, 130.86, 129.91, 129.03, 128.49, 127.32, 127.12, 

126.96, 126.28, 125.56, 124.76, 124.67, 124.53, 124.41, 123.02, 70.16, 70.08, 68.72, 

68.69, 63.74, 63.21, 33.17, 32.11, 26.61. HRMS (ESI): m/z (M+Na) calcd for C33H33BO8: 

590.2202; found: 590.2197. 

 

49a. To 8-bromonapthalimide anhydride (600.0 mg, 2.2 mmol) in EtOH (5 mL) was added 

2-(2-aminoethoxy) ethan-1-ol) (1.0g, 9.5 mmol). The mixture was stirred at room 

temperature for 5 h. A precipitate formed was filtered and dried to obtain a white solid 

(660.5 mg, 83.0 mmol) 1H NMR (300 MHz, CDCl3) δ 8.68 (d, J = 7.1 Hz, 1H), 8.60 (d, J 

= 8.4 Hz, 1H), 8.44 (d, J = 7.8 Hz, 1H), 8.06 (d, J = 7.8 Hz, 1H), 7.87 (t, J = 7.9 Hz, 1H), 

4.45 (t, J = 5.3 Hz, 2H), 3.87 (t, J = 5.3 Hz, 2H), 3.76-3.21 (m, 4H). 13C NMR (101 MHz, 
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CDCl3) δ 163.97, 133.52, 132.31, 131.48, 131.18, 129.57, 128.15, 124.30, 122.38, 72.25, 

68.37, 61.86, 39.67. HRMS (ESI): m/z (M+H) calcd for C16H14BrNO4: 364.0180; found: 

364.0179. 

 

4.9b. To 4.9a (330.2 mg, 0.9 mmol) was added pyrrolidine (1 mL) and the mixture refluxed 

for 4 h. The mixture was cooled to room temperature, diluted with ethyl acetate and washed 

with 1 N HCL, concentrated sodium bicarbonate and brine The organic layer was 

concentrated and dried in vacuo to obtain an orange solid (290 mg, 90%). 1H NMR (300 

MHz, CDCl3) δ 8.64–8.54 (m, 1H), 8.42 (d, J = 8.6 Hz, 1H), 7.59–7.49 (m, 1H), 6.83 (d, J 

= 8.7 Hz, 1H), 4.44 (t, J = 5.4 Hz, 2H), 3.85 (t, J = 5.4 Hz, 2H), 3.80 (t, J = 6.3 Hz, 4H), 

3.73–3.64 (m, 4H), 2.16-2.06 (m, 4H). 13C NMR (101 Mhz, CDCl3) δ 164.32, 133.58, 

132.02, 131.40, 123.37, 122.69, 122.41, 109.12, 72.23, 68.67, 61.89, 53.49, 39.29, 26.03. 

HRMS (ESI): m/z (M+H) calcd for: C20H22N2O4 355.1649; found: 355.1652. 

4.9. To 3.27 (88.0 mg, 0.25 mmol) in DMF (2 ML) was added 90% NaH (26.0 mg, 1.0 

mmol) and stirred at room temperature for 10 minutes. 3-benzylbromide-boronic acid (44.0 

mg, 0.25 mmol) was added and the mixture left to stir at room temperature of 8 h. The 

mixture was diluted with ethyl aceate and washed with brine and water. The organic layer 

was dried over anhydrous sodium sulfate and purified on silica gel column using 

hexane:ethyl acetate (1:0 – 1:1) to obtain an orange liquid (40 mg 32%) 1H NMR (400 

MHz, MeOD) δ 8.61 (d, J = 8.5 Hz, 1H), 8.43-8.33 (m, 1H), 8.19 (d, 8.8 Hz, 1H), 7.59 (s, 

1H), 7.54–7.42 (m, 2H), 7.25-7.12 (m, 2H), 6.88-6.59 (m, 2H), 4.66-4.54 (m, 4H),4.44-

4.34 (m, 2H), 3.87–3.67 (m, 4H), 3.67–3.43 (m, 4H), 2.08 (t, J = 13.8 Hz, 4H). 13C NMR 

(101 MHz, MeOD) δ 165.28, 164.45, 164.19, 152.91, 133.21, 132.74, 130.75, 130.69, 
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122.58, 122.06, 121.43, 108.20, 72.05, 70.18, 69.18, 67.79, 67.64, 60.87, 52.89, 52.85, 

38.78, 38.66, 25.60. HRMS (ESI): m/z (M+) calcd for C27H29BN2O6: 488.2232; Found: 

488.228. 

 

 

4.10. Compound 4.9b (162.0 mg, 0.45 mmol) in CH2Cl2 was added MsCl (84 µL, 1.0 

mmol) and TEA (100 µL). The mixture was stirred at room temperature overnight (22 h). 

The mixture was afterwards diluted with ethyl acetate and washed with 1 N HCl, 

concentrated sodium bicarbonate and brine. The organic layer was dried over sodium 

sulfate anhydrous and concentrate in vacuo. The crude was redissolved in DMF (1 mL) 

and 3-pyridine boronic acid (55.0 mg, 0.45 mmol) was added and stirred at 90 oC  for 36 

h. The reaction mixture was cooled to room temperature and diethyl ether was added to the 

reaction mixture. A black oily residue was formed at the bottom. The diethyl ether was 

decanted and the oily residue further washed twice with diethyl ether and dried in vacuo to 

obtain a yellow solid (145 mg, 58%) as 4.10.1H NMR (400 MHz, MeOD) δ 8.92–8.78 (m, 

2H), 8.70 – 8.57 (m, 1H), 8.54 (d, J = 8.0 Hz, 1H), 8.40–8.24 (m, 2H), 8.15–8.01 (m, 1H), 

7.87 (t, J = 6.8 Hz, 1H), 7.48 (dd, J = 15.7, 7.8 Hz, 1H), 4.34 –4.14 (m, 2H), 4.07 –3.92 
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(m, 2H), 3.87–3.70 (m, 6H), 3.68-3.55 (m, 2H) 2.52 (s, 3H), 2.19-2.08 (m, 4H). 13C NMR 

(101 MHz, MeOD) δ 164.69, 152.78, 145.31, 145.09, 133.28, 132.79, 130.78, 127.41, 

122.57, 121.93, 121.18, 108.17, 72.07, 68.12, 67.96, 67.78, 61.35, 60.88, 52.94, 52.88, 

38.36, 38.12, 34.04, 25.63. HRMS(ESI): m/z Calcd For C25H27BN3O5: 459.2075; Found: 

459.2075 
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