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Abstract

Left censoring is generally a rare type of censoring in time-to-event data, however

there are some fields such as HIV related studies where it commonly occurs. Cur-

rently, there is no clear recommendation in the literature on the optimal model and

distribution to analyze left-censored data. Recommendations can help researchers

apply more accurate models for this type of censoring. This study derives the Para-

metric Reversed Hazards (PRH) Model for a variety of distributions which may be

appropriate for left censored data. The performance of these derived PRH models to

analyze HIV viral load data are compared using extensive simulations and a guide-

line is established for which distribution/s are most appropriate. Each simulation

setup is varied by sample size and proportion of censoring to find a consistently high

performance distribution. The best distribution is determined using the information

criteria: AIC, AICC, HQIC, and CAIC. The South Carolina Enhanced HIV/AIDS

Reporting Surveillance System (SC eHARS) data were utilized and a bootstrap study

provided further insights towards appropriateness of the distributions in analyzing

HIV viral load data. Results from simulation studies point to the Generalized In-

verse Weibull distribution to outperform all others across censoring rates and sample

sizes. The bootstrap study, however, contradicts this and suggests the Marshal-Olkin

distribution to be the superior performer. This disagreement may have resulted from

the special heavy tail nature of viral load data that demands further attention. Appli-

cation of the best performing models on the SC eHARS database revealed important

effects explaining trends of viral load over time.
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Chapter 1

Introduction

1.1 Background

Analysis of survival data is used in various fields such as social science (event his-

tory), economics (duration analysis), engineering (reliability analysis), and medicine

(survival analysis). For consistency, we will refer to this type of analysis as survival

analysis, although techniques mentioned here can be applied in any field. Survival

analysis focuses on measuring time to event data, for example, time to death or time

to recovery. One of the issues with survival analysis is censoring. This occurs when

the time to the event of interest is not available for all subjects in the study due to

loss of follow-up, the event does not occur within the study period, or death occurs

from reasons not related to the research. There are three types of censoring; right

censoring, interval censoring, and left censoring. Right censoring is when the event

of interest is not observed in the study period, for example, if the subject drops out

before the end of the study. Interval censoring is when we know the event of interest

occurs in a certain time interval but the exact time of occurrence is unknown. This

commonly occurs in medical research and epidemiological studies with periodic mon-

itoring. Left censoring is when the event of interest has occurred before enrollment

into the study, but it is not known exactly when. For example, consider that the

event is the age at which children are able to learn the alphabet at school. There

may be some children who are able to recite the alphabet before starting school, these

subjects are left censored. Compared to the other types of censoring, left censoring
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less frequently occurs. As a result, it is often overlooked and understudied. In this

study, we focus on survival data which have left censored observations.

It is important to differentiate between censoring and truncation. When data is

truncated, there is a cut point beyond which observations cannot occur. For example,

age is naturally truncated since it cannot take on values less than zero. When data is

censored, the censored observations take on a range of values as they are only known

to be equal to or more extreme than a certain point. With respect to modeling,

censoring requires making probability calculations on a wide range of values whereas

truncation requires making probability calculations after rescaling the distribution to

reflect the truncated data.

If censoring is ignored when analyzing data, it can lead to underestimation of

the survival probability or mean, and inconsistent covariate effects.1 Additionally,

the impact of ignoring censoring increases as the proportion of censored observations

increases.2 The most frequently used approaches to deal with censoring is to replace

the censored value with an arbitrary value such as the detection limit value or half

of the limit value.3,4 This arbitrary replacement method usually results in overesti-

mation because the predicted values based on the arbitrary value would be higher

than the predicted values based on the unknown true values. These approaches also

underestimate the variability in the data because the same value is imputed several

times. Another potential approach developed by Paxton et al.5 is a two-stage im-

putation procedure which is used to predict the censored values by first substituting

half of the lower detection limit and then refitting the model by imputing the new

estimated values. This method is a slight improvement from the arbitrary replace-

ment methods since it removes much of the bias in the parameter estimates, but the

effect on the variability is less predictable.5 There is one major disadvantage to utiliz-

ing these convenient techniques: they ignore the correlated structure of longitudinal

data and do not adjust for the variability of the parameter estimates due to the loss
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of information from censoring. Ganser and Hewett6 developed a more sophisticated

substitution method they termed the β-substitution method which calculates a β

factor depending on the uncensored data and replaces the limit of detection with the

β factor multiplied by the limit of detection. This approach has been shown to be

less biased than the simpler substitution methods.6

An alternative to crude imputation methods is a maximum likelihood (ML) ap-

proach in which the censored data is incorporated into the log-likelihood functions of

the observed data.7,8 Although censored data lack information on the event of inter-

est, incorporating them in this way can provide valuable information to the model.

Hughes7 modified the usual mixed effects model by using a likelihood-based Monte

Carlo Expectation-Maximization (MCEM) algorithm to account for censoring. This

method removes the bias in the parameter estimates and the within-person variability

but there is some bias in the between-person variability which is mostly due to the

variability in the ML estimates of the uncensored data.7 Jacqmin-Gadda et al.8 used

a general likelihood with cumulative distribution function (CDF) to account for left-

censored observations. The formulation of the likelihood is conditioned on observed

measures and the marginal likelihood is used to make inferences about the unknown

parameters. The approach by Lyles, Lyles, and Taylor9 is based on a hierarchical

formulation of the likelihood where the estimation is carried out by direct maximiza-

tion of the likelihood. These likelihood approaches correct for the bias obtained when

an arbitrary value is assigned to the censored data.7–9 One disadvantage is it makes

stringent Gaussian distribution assumptions and is not easy to implement in standard

software.10

Traditional regression models are not able to handle censored data directly, and as

a result a wide class of non-parametric, semi-parametric and parametric survival mod-

els have been developed to handle data with censored observations. These models all

explore the relationship between the hazard rate of a subject and several independent
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variables. The commonly used form of these models can be written as

λ(t) = λ0(t)exiβ

where λ0(t) is the baseline hazard function, xi is the set of covariates, and β are

parameters estimating covariate effects on hazard. This proportional hazards (PH)

model assumes that the survival curves for any two subjects have hazard functions

which are proportional over time, i.e., they have a relative constant hazard. This

assumption can be checked by confirming that the complementary log-log survival

curves for the two subjects are parallel.

In semi-parametric models, the regression coefficients are estimated leaving the

baseline hazard unspecified. For example, the Cox Proportional Hazards model11 in-

troduced the use of the partial-likelihood function to estimate the coefficients without

needing to characterize the baseline hazard rate. There are several studies which use

non-parametric methods to correct for left-censoring.12–15 An advantage of using this

type of method is that distributional assumptions about the baseline hazard do not

have to be made. However, this can also be disadvantageous.

In a parametric regression model, a particular shape or distribution is specified for

the baseline hazard rate. These models let the parameters of the assumed distribution

depend on the covariates. An advantage of using parametric regression models is

that they naturally smooth the data by assuming an underlying distribution so that

censoring has less effect on parameter estimates than for semi-parametric methods.

If the characterization of the underlying time-dependency is accurate, i.e., if someone

chooses the correct distribution, then parameter estimates are generally more precise

than estimates from semi-parametric models where the underlying time-dependency

is left unspecified. However, problems can arise if the incorrect parametric form is

selected.

Determining which distribution to assume in the presence of left censoring is dif-

ficult as the existing literature on this is scarce and inconsistent due to the lack of
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guidelines. Many studies assume specific underlying distributions based on guide-

lines for right censored data or the shape of the data being analyzed. Thompson,

Voit, and Scott16 compared different distributions recommended for right censored

data using probability plots to find which one best fits their left censored data, prior

to running survival models. Annan, Liu, and Zhang17 compared various estimators

for left censored data using simulation studies in which they assume the underly-

ing distribution is exponential. They selected the exponential distribution reasoning

that common distributions usually associated with left/right censored data such as

the normal, lognormal and gamma distribution all belong to the exponential family.

Pajek et al.18 simulated data from a log-normal distribution to compare various esti-

mators for left censored data on trace element concentrations since this distribution

was experimentally validated in a prior study.19 Another study by Luczynska et al.20

assumed a Normal distribution with no validation as to why this distribution was used

in the analyses. Some survival studies16,21–23 assumed a Weibull distribution for the

left censored data simply because it is commonly used in survival analysis, especially

in the field of medicine, and approximately fits the data. Gupta and Kundu24 pro-

posed a new family of distributions, the generalized exponential distribution, which

is very similar to the corresponding shape of a gamma or Weibull distribution. The

probability density function (pdf) is of the form:

f(x;α, λ) = αλ(1− e−λx)α−1e−λx

where α and λ are the shape and scale parameters, respectively. Since these distribu-

tions are often used for censored data in survival analysis, the generalized exponential

distribution is a possible alternative to use in survival models. Expanding on this,

Mitra and Kundu25 derived the maximum likelihood estimator for data with left

censored observations from a generalized exponential distribution:

α̂(λ) = − n− r
rln(1− e−λx(r+1) +∑n

i=r+1 ln(1− e−λx(i))
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1.2 Motivating Example

Human immunodeficiency virus (HIV) is a chronic disease which weakens the im-

mune system, leading to increased susceptibility to a wide range of infections and

some types of cancer. HIV RNA or viral load (VL) measures the number of actively

replicating HIV virus in a subject and is an important biomarker for HIV disease

progression.26 There is no cure for HIV, but the success of highly active antiretro-

viral therapy (ART) to suppress VL to undetectable levels for prolonged periods of

time has transformed HIV into a manageable chronic disease.26 Suppression of VL to

undetectable levels improves physical functioning, reduces opportunistic infections,

reduces HIV related mortality, and is associated with a substantial decrease in the

probability of transmitting HIV to others.27–29 By CDC guideline, VL is detectable

if > 200 copies/mL and undetectable if ≤ 200 copies/mL. Not only is suppressing

VL important on an individual level, it also has the potential to decrease HIV in-

cidence rates in a community because of reduced infectivity.29,30 Consequently, the

focus of care has shifted from survival to improving health outcomes among people

with HIV.26

The HIV endemic disproportionately impacts the Southern states in the US in

terms of the overall number of people living with HIV/AIDS (PLWHA), and survival

rates after HIV/AIDS diagnosis.31 South Carolina (SC), like many Southern states,

ranks high for poverty, unemployment, and low educational completion which are all

characteristics that may promote disease transmission. The number of PLWHA in

SC has increased from 12,089 in 2004 to 16,311 in 2014.32 Recent studies on retention

in HIV care found that a large proportion of PLWHA in SC failed to remain in

care on a regular basis.33,34 Given the HIV burden in SC and the need to focus on

retention in HIV care within the context of the National HIV/AIDS Strategy goals,

it is important to identify factors which suppress VL. Identifying these factors will

assist in developing targeted strategies to reduce the HIV burden in SC.
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To provide insight into the HIV endemic in SC, survival models of time to unde-

tectable levels of VL should be analyzed. These models can also be used to assess the

effect of various drugs on the VL. Some subjects may have undetectable VL at the

beginning of the study, in which case the first point at which they reach detectable

level will be the start of their observations. Thus, these subjects are not censored.

However, this dataset is complicated with many left censored subjects where the time

of infection, i.e., the exact time VL reaches detectable levels is unknown. Further-

more, the distribution of VL patterns from detectable to undetectable levels varies

from person to person so there is a need to establish a baseline distribution which

can be used when analyzing this data.

In the literature on HIV datasets with left censoring, the most common approach

is to use a PH model because of its relative simplicity.35–39 One study showed the

consistency and asymptotic normality for the maximum likelihood estimator of the

PH model for doubly censored HIV data, i.e., data with both left and right censoring

present.39 An advantage of using the PH model is the ability to fit survival models

without knowing (or assuming) the underlying distribution. However, as explained

above in section 1.1, if the distribution is known or an appropriate distribution can

be assumed, then the maximum likelihood estimates from a parametric model are

more accurate than this simple approach. One study used a log logistic Accelerated

Failure Time (AFT) model to estimate the effect of age on time to VL suppression.40

However, the use of AFT models is very rare in cases where the data are left cen-

sored. Parametric regression models are more commonly applied to HIV data with

left censoring present.23,41–43 Studies by Zaba et al.41 and Isingo et al.23 used a para-

metric regression model based on the Weibull distribution to assess survival after HIV

infection. The authors from these studies selected a Weibull distribution as it more

closely fit the data, but no results of this comparison was provided in either article.

More specifically considering studies measuring time to HIV VL suppression,
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Thiébaut et al.42 applied a lognormal survival model using a full parametric approach

to take into account the left censored HIV VL and CD4+ counts. The lognormal dis-

tribution was utilized in their study as suggested by Henderson, Diggle, and Dobson44

because the estimated lognormal survival distribution function was contained within

the 95% confidence interval of non-parametric Kaplan Meier estimate. The authors

did further sensitivity analysis by comparing the lognormal survival model to a uni-

variate mixed model and a Cox PH model. However, other survival distributions were

not considered in their sensitivity analysis.

A study by Cole et al.43 applied a parametric likelihood-based approach to han-

dle left-censoring of HIV VL measurements assuming it follows a standard Normal

distribution. They defined the marginal likelihood for participant i and visit j as:

Lij =
[
φ

(
Y ?
ij − µij
σ

)]wij(1−dij) [ 1√
2πσ2

exp
(
−(Yij − µij)2

2σ2

)]wijdij
where φ is the cumulative distribution function (CDF) of a standard normal random

variable. Detectable VL measurements contribute the second term, while undetected

(censored) VL measurements contribute to the first term in the likelihood.

While there have been studies comparing the fit of various distributions to right-

censored and interval-censored data,45–47 there are no recommendations in the liter-

ature on optimal distributions to use for left-censored data. Recommendations can

help researchers apply more accurate models for this type of censoring, specifically in

HIV related studies where it is a common occurrence.

1.3 Objectives

The objectives of this study are to:

1. review the non-parametric, semi-parametric, and parametric statistical methods

for analyzing survival data in the presence of left censored data, outlined in

Chapter 2.
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2. derive the Proportional Reverse Hazards (PRH) model for a variety of distri-

butions which may be appropriate for left censored data. These include the

Exponential, Log-normal, Inverse Gaussian, Log-logistic, Gompertz-Makeham,

Gamma, Generalized Gamma, Inverse Gamma, Generalized Inverse Gamma,

Weibull, Inverse Weibull, Generalized Inverse Weibull, Modified Weibull, Flex-

ible Weibull, Power Generalized Weibull, and the Marshal-Olkin distributions.

These derivations are outlined in Chapter 3.

3. conduct simulation studies to assess performance of the derived PRH models

and compare these to establish a guideline for which distribution/s would "best"

fit left censored HIV viral load data. Sample sizes and the proportion of cen-

sored observations will be varied for each distribution to simulate different data

conditions. Details of the simulation setup are provided in Chapter 4. Then,

using a bootstrapping technique, determine which distribution under the PRH

model is best suited for analyzing the VL of HIV infected individuals using the

SC eHARS database.

4. apply the selected best performing models to the SC eHARS database to explain

effects of different demographic, social, and treatment factors on patients’ viral

load transition from detectable to undetectable levels.

9



Chapter 2

Methods for Analyzing Left Censored Data

In this chapter, we will review the statistical methods which have been developed to

analyze time to event data with a focus on methods applied to left censored data.

2.1 Non-Parametric Methods

Non-parametric methods use related data to estimate survival rate instead of assum-

ing a distributional shape for the data. The well-known Kaplan-Meier (KM)48 esti-

mator is a non-parametric approach originally developed for handling right-censored

data, which estimates the survivor function, or 1 − F (t), where F (t) is the CDF. It

is defined as

Ŝ(t) =
∏
ti<t

ni − di
ni

where ni is the number of survivors (persons at risk prior to time ti minus the number

of censored observations) and di is the number of deaths at time ti.

The KM method can be used for left censored data in two ways. The first way

involves converting the left censored data to right censored, calculating the survival

probabilities using the KM method, then flipping it back to the original scale.49

The second way deals directly with the left censored data and has been termed

the Reverse Kaplan-Meier (RKM) estimator50, or equivalently, Turnbull’s method,51

which generalizes the KM estimator to include both left and right censoring. The

RKM estimator is calculated similarly to the above formula but with the censoring

indicator reversed, i.e., it estimates the CDF, F (t), rather than 1 − F (t). It can be
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denoted as

Ŝ(t) =
∏
t>ti

ni − di
ni

These KM and RKM estimators are mainly used to describe the survivorship

patterns of a population or compare the survivorship patterns of two populations.

While it may be advantageous not to assume a distributional shape, especially in cases

where the data do not follow a standard distribution, there are many disadvantages.

Note that these methods are descriptive in nature and do not have the ability to

control for time-invariant or time-dependent covariates.

2.2 Semi-Parametric Methods

Semi-parametric methods are termed as such as they have parametric and non-

parametric components. The most common semi-parametric method used in survival

analysis which can account for covariates, is the Cox Proportional Hazards Model,11

denoted as

λ(t) = λ0(t)exiβ

where λ0(t) is the baseline hazard function, xi is the set of covariates, and β are

parameters estimating covariate effects on hazard. This model is classed as semi-

parametric since no assumptions are made on the baseline hazard function (non-

parametric component) but the effect of the covariates on the hazard rate assumes

a parametric form. This is advantageous in settings where the distribution of the

underlying hazard is not known or it is not of interest to know the distribution of the

baseline hazard rate for the research question. In these cases, the risk of incorrectly

specifying the baseline hazard is more detrimental than not knowing the shape of the

hazard function.

Covariate effects are estimated by maximizing the partial likelihood as opposed
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to the likelihood. The partial likelihood function can be written concisely as

PL =
n∏
i=1

[
exiβ∑n

j=1 Yij e
xjβ

]δi

where Yij = 1 if tj ≥ ti; 0 otherwise, and δi is the censoring indicator.

2.3 Parametric Methods

Parametric models involve assuming a specific distribution for the baseline Hazard

Rate (HR). Let T be a non-negative random variable denoting time to some event.

Then the HR of T is the instantaneous rate of the event occurring in the interval

[t, t+ ∆t) given that the event has not yet occurred. It is defined in notation as

λ(t) = lim
∆t→0

P (t ≤ T < t+ ∆t|T ≥ t)
∆t

2.3.1 Parametric Reversed Hazards Model

For left censored data, the Parametric Reversed Hazard (PRH) model,52 which is a

fully parametric model based on the Reversed Hazard Rate (RHR) has been devel-

oped. In the case of analyzing survival data in the presence of left censoring, reversed

hazard rates are more appropriate to use since estimators of hazard rates tend to be

unstable.52 The RHR53 of T is the instantaneous rate of the event occurring in an

infinitesimal time width, ∆t, preceding t, given that the event occurred before time

t. It is defined as

λ(t) = lim
∆t→0

P (t−∆t ≤ T |T ≤ t)
∆t

In terms of the distribution function, F (t), and probability density function, f(t),

this can be written as

λ(t) = f(t)
F (t)

Let X be a p× 1 vector of covariates. We can now define the PRH model by

λ(t|X) = λ0(t)g(β;X)
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where λ0(t) is the baseline RHR, g(.) is a nonnegative function of X and β (a p× 1

vector of regression parameters). λ(t|X) is the RHR of T given the covariates X.

The PRH model can be expressed in terms of the distribution function as

F (t|X) = F0(t)g(β;X)

where F (t|X) is the distribution function of T given X and F0(t) is the baseline

distribution function in the absence of covariates.

Suppose that the lifetime random variable T is randomly left censored by Z. In

practice, we may observe the vectors (Y, δ,X), where Y = max(T, Z) and δ = I(T =

Y ) with I(.) being the indicator function. The likelihood function can then be written

as

L(β, y) =
n∏
i=1

f(yi|xi)δiF (yi|xi)1−δi

Using the method of maximum likelihood, we can then derive estimates for the

parameters in this model. This general notation can be applied to any distribution

where the specifications of the PRH model is derived for the distributions used in

this study (shown in Chapter 4).

2.4 Bayesian Methods

Bayesian inference starts with the likelihood distribution of the data given the model

parameters, p(Y |θ), and the prior information on the distribution of the model pa-

rameters, p(θ). Then, using Bayes’ Theorem, inference is made based on the posterior

distribution:

p(θ|Y ) = p(Y |θ)p(θ)
p(Y )

= p(Y |θ)p(θ)∫
p(Y |θ)p(θ)dθ

∝ p(Y |θ)p(θ)

13



Using this approach, Huynh et al.54 developed a Bayesian model for analyzing left

censored data. In this model, the censored observations, Yi,cen, are treated as missing

values. The posterior distribution of these censored values, in addition to the model

parameters, θ, are obtained based on the observed data, Yi,obs.

p(θ, Ycen|Yobs) ∝ p(θ) ×
∏

observed

[p(Yi,obs|θ)I(Yi,obs > LODi)]

×
∏

censored

[p(Yi,cen|θ)I(Yi,cen ≤ LODi)]

where p(θ) is the prior distribution, LODi is the limit of detection for each obser-

vation, and I(.) denotes an indicator function which will ensure that each imputed

censored value is not greater than its’ respective limit of detection. This model can

use either the PDF or CDF for the censored values since theoretically they would be

equivalent.54
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Chapter 3

Derivation of Parametric Reversed Hazards

Model

In this chapter, we extend the work done by Variyath and Sankaran52 on developing a

PRH model using an Inverse Weibull distribution. Using the same technique, we will

derive the PRH model for the Exponential, Generalized Exponential, Log-normal,

Inverse Gaussian, Log-logistic, Gompertz-Makeham, Gamma, Generalized Gamma,

Inverse Gamma, Generalized Inverse Gamma, Weibull, Generalized Inverse Weibull,

Modified Weibull, Flexible Weibull, Power Generalized Weibull, and the Marshal-

Olkin distribution.

3.1 Inverse Weibull Distribution

When the lifetime random variable follows an inverted Weibull distribution, the base-

line distribution function is given by

F0(t) = e−γ/t
α

, t > 0;α, γ > 0

The baseline Reversed Hazard Rate of T is then obtained as

λ0(t) = γα

tα+1

Note that the baseline Reversed Hazard Rate is decreasing as t increases. In the

presence of the covariates X and assuming that g(β;X) = exp(xiβ) (see Section 2.3),

we have the following

λ(t|X) = γα

tα+1 exp(xiβ)
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F (t|X) = e−(γ/tα) exp(xiβ)

f(t|X) = γα exp(xiβ)
tα+1 e−(γ/tα) exp(xiβ)

From these, the likelihood function for the inverted Weibull is obtained as

L(β, α, γ, y) =
n∏
i=1

[
γα exp(xiβ)

yα+1
i

e−(γ/yαi ) exp(xiβ)
]δi [

e−(γ/yαi ) exp(xiβ)
]1−δi

so that the log likelihood function is

l(β, α, γ, y) =
n∑
i=1

δixiβ +
n∑
i=1

δi(ln γ + lnα)− (α + 1)
n∑
i=1

δi ln yi − γ
n∑
i=1

exp(xiβ)
yαi

3.2 Exponential Distribution

When the lifetime random variable follows an Exponential distribution, the baseline

distribution function is given by

F0(t) = 1− e−t/γ, t > 0; γ > 0

The baseline Reversed Hazard Rate of T is then obtained as

λ0(t) = e−t/γ

γ(1− e−t/γ)

In the presence of the covariates X, we have the following

λ(t|X) = e−t/γ

γ(1− e−t/γ) exp(xiβ)

F (t|X) = (1− e−t/γ)exp(xiβ)

f(t|X) = e−t/γ

γ
exp(xiβ)(1− e−t/γ)exp(xiβ)−1

From these, the likelihood function for the Exponential distribution is obtained as

L(β, γ, t) =
n∏
i=1

[
e−ti/γ

γ
exp(xiβ)(1− e−ti/γ)exp(xiβ)−1

]δi [
(1− e−ti/γ)exp(xiβ)

]1−δi
so that the log likelihood function is

l(β, γ, t) =
n∑
i=1

δixiβ −
1
γ

n∑
i=1

δiti −
n∑
i=1

δi ln γ +
n∑
i=1

(exiβ − δi) ln(1− e−ti/γ)
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3.3 Log-normal Distribution

When the lifetime random variable follows a Log-normal distribution, the baseline

distribution function is given by

F0(t) = Φ
(

ln(t)− µ
σ

)
, t > 0;µ, σ > 0

The baseline Reversed Hazard Rate of T is then obtained as

λ0(t) =
1√

2πσt exp
(
− [ln(t)−µ]2

2σ2

)
Φ
(

ln(t)−µ
σ

)
In the presence of the covariates X, we have the following

λ(t|X) =
exp

(
− [ln(t)−µ]2

2σ2

)
√

2πσt Φ
(

ln(t)−µ
σ

) exp(xiβ)

F (t|X) =
[
Φ
(

ln(t)− µ
σ

)]exp(xiβ)

f(t|X) = 1√
2πσt

exp
(
− [ln(t)− µ]2

2σ2 + xiβ

)[
Φ
(

ln(t)− µ
σ

)]exp(xiβ)−1

From these, the likelihood function for the Log-normal distribution is obtained as

L(µ, σ, t) =
n∏
i=1

 1√
2πσt

exp
(
− [ln(t)− µ]2

2σ2 + xiβ

)[
Φ
(

ln(t)− µ
σ

)]exp(xiβ)−1
δi

×
[
Φ
(

ln(t)− µ
σ

)](1−δi) exp(xiβ)

so that the log likelihood function is

l(µ, σ, t) =
n∑
i=1

δixiβ −
n∑
i=1

δi ln(
√

2πσti) +
n∑
i=1

δi
[ln(t)− µ]2

2σ2

+
n∑
i=1

(exiβ − δi) ln
[
Φ
(

ln(t)− µ
σ

)]
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3.4 Inverse Gaussian Distribution

When the lifetime random variable follows a Inverse Gaussian distribution, the base-

line distribution function is given by

F0(t) = Φ
[
−
√
γ

t

(
t

α
− 1

)]
− exp

(2γ
α

)
Φ
[
−
√
γ

t

(
t

α
+ 1

)]
, t > 0;α, γ > 0

The baseline Reversed Hazard Rate of T is then obtained as

λ0(t) =

√
γ

2πt3 exp
[
−γ(t−α)2

2α2t

]
Φ
[
−
√

γ
t

(
t
α
− 1

)]
− exp

(
2γ
α

)
Φ
[
−
√

γ
t

(
t
α

+ 1
)]

In the presence of the covariates X, we have the following

λ(t|X) =

√
γ

2πt3 exp
[
−γ(t−α)2

2α2t
+ xiβ

]
Φ
[
−
√

γ
t

(
t
α
− 1

)]
− exp

(
2γ
α

)
Φ
[
−
√

γ
t

(
t
α

+ 1
)]

F (t|X) =
{

Φ
[
−
√
γ

t

(
t

α
− 1

)]
− exp

(2γ
α

)
Φ
[
−
√
γ

t

(
t

α
+ 1

)]}exp(xiβ)

f(t|X) =
√

γ

2πt3 exp
[
−γ(t− α)2

2α2t
+ xiβ

]

×
{

Φ
[
−
√
γ

t

(
t

α
− 1

)]
− exp

(2γ
α

)
Φ
[
−
√
γ

t

(
t

α
+ 1

)]}exp(xiβ)−1

From these, the likelihood function for the Inverse Gaussian distribution is obtained

as

L(α, γ, t) =
n∏
i=1

{√
γ

2πt3i
exp

[
−γ(ti − α)2

2α2ti
+ xiβ

]}δi

×
{

Φ
[
−
√
γ

ti

(
ti
α
− 1

)]
− exp

(2γ
α

)
Φ
[
−
√
γ

ti

(
ti
α

+ 1
)]}exp(xiβ)−δi

so that the log likelihood function is

l(α, γ, t) =
n∑
i=1

δixiβ + 1
2

n∑
i=1

δi ln
(

γ

2πt3i

)
−

n∑
i=1

[
δiγ(ti − α)2

2α2ti

]

+
n∑
i=1

[
exiβ − δi

]
ln
{

Φ
[
−
√
γ

ti

(
ti
α

+ 1
)]}

+
n∑
i=1

[
exiβ − δi

]
ln
[
1− exp

(2γ
α

)]
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3.5 Log-logistic Distribution

When the lifetime random variable follows a Log-logistic distribution, the baseline

distribution function is given by

F0(t) = 1
1 +

(
t
α

)−ω , t > 0;α, ω > 0

The baseline Reversed Hazard Rate of T is then obtained as

λ0(t) =
ω
t

1 +
(
t
α

)ω
In the presence of the covariates X, we have the following

λ(t|X) =
ω
t

exp(xiβ)
1 +

(
t
α

)ω

F (t|X) =

 1
1 +

(
t
α

)−ω


exp(xiβ)

f(t|X) =
 ω
t

exp(xiβ)
1 +

(
t
α

)ω

 1

1 +
(
t
α

)−ω


exp(xiβ)

From these, the likelihood function for the Log-logistic distribution is obtained as

L(α, ω, t) =
n∏
i=1

 ω
ti

exp(xiβ)
1 +

(
ti
α

)ω
δi

 1
1 +

(
ti
α

)−ω


exp(xiβ)

so that the log likelihood function is

l(α, ω, t) =
n∑
i=1

δixiβ +
n∑
i=1

δi ln
(
ω

ti

)
−

n∑
i=1

δi ln
[
1 +

(
ti
α

)ω]
+

n∑
i=1

exiβ ln
[
1 +

(
ti
α

)−ω]

3.6 Gompertz-Makeham Distribution

When the lifetime random variable follows a Gompertz-Makeham distribution, the

baseline distribution function is given by

F0(t) = 1− exp
[
−α
γ

(
eγt − 1

)]
, t > 0;α, γ > 0
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The baseline Reversed Hazard Rate of T is then obtained as

λ0(t) =
αeγt exp

[
−α
γ

(eγt − 1)
]

1− exp
[
−α
γ

(eγt − 1)
]

In the presence of the covariates X, we have the following

λ(t|X) =
αeγt exp

[
−α
γ

(eγt − 1)
]

exp(xiβ)
1− exp

[
−α
γ

(eγt − 1)
]

F (t|X) =
{

1− exp
[
−α
γ

(
eγt − 1

)]}exp(xiβ)

f(t|X) = αeγt exp
[
−α
γ

(
eγt − 1

)]
exiβ

{
1− exp

[
−α
γ

(
eγt − 1

)]}exp(xiβ)−1

From these, the likelihood function for the Gompertz-Makeham distribution is

obtained as

L(α, γ, t) =
n∏
i=1

{
αeγti exp

[
−α
γ

(
eγti − 1

)]
exiβ

}δi

×
{

1− exp
[
−α
γ

(
eγti − 1

)]}exp(xiβ)−δi

so that the log likelihood function is

l(α, γ, t) =
n∑
i=1

δixiβ +
n∑
i=1

δi lnα +
n∑
i=1

δiγti −
n∑
i=1

δiα

γ

(
eγti − 1

)

+
n∑
i=1

(
exiβ − δi

)
ln
{

1− exp
[
−α
γ

(
eγti − 1

)]}

3.7 Gamma Distribution

When the lifetime random variable follows a Gamma distribution, the baseline dis-

tribution function is given by

F0(t) = γ(α, ωt)
Γ(α) , t > 0;α, ω > 0

where γ(α, t) is the incomplete Gamma function and Γ(α) is the complete Gamma

function. The baseline Reversed Hazard Rate of T is then obtained as

λ0(t) = ωαtα−1e−ωt

γ(α, ωt)
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In the presence of the covariates X, we have the following

λ(t|X) = ωαtα−1 exp(−ωt+ xiβ)
γ(α, ωt)

F (t|X) =
[
γ(α, ωt)

Γ(α)

]exp(xiβ)

f(t|X) = ωαtα−1 exp(−ωt+ xiβ)
γ(α, ωt)

[
γ(α, ωt)

Γ(α)

]exp(xiβ)

From these, the likelihood function for the Gamma distribution is obtained as

L(α, ω, t) =
n∏
i=1

[
ωαtα−1

i exp(−ωti + xiβ)
γ(α, ωti)

]δi [γ(α, ωti)
Γ(α)

]exp(xiβ)

so that the log likelihood function is

l(α, ω, t) =
n∑
i=1

δixiβ +
n∑
i=1

δiα lnω + (α− 1)
n∑
i=1

δi ln ti −
n∑
i=1

δiωti

+
n∑
i=1

(
exiβ − δi

)
ln [γ(α, ωti)]−

n∑
i=1

exiβ ln [Γ(α)]

Note that the exponential distribution is a special case of this result.

3.8 Generalized Gamma Distribution

When the lifetime random variable follows a Generalized Gamma distribution, the

baseline distribution function is given by

F0(t) =
γ
[
α
ω
, (λt)ω

]
Γ
(
α
ω

) , t > 0;α, ω, λ > 0

where γ(α, t) is the incomplete Gamma function and Γ(α) is the complete Gamma

function. The baseline Reversed Hazard Rate of T is then obtained as

λ0(t) = ωλαtα−1e−(λt)ω

γ
[
α
ω
, (λt)ω

]
In the presence of the covariates X, we have the following

λ(t|X) = ωλαtα−1e−(λt)ω+xiβ

γ
[
α
ω
, (λt)ω

]
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F (t|X) =
γ

[
α
ω
, (λt)ω

]
Γ
(
α
ω

)
exp(xiβ)

f(t|X) = ωλαtα−1e−(λt)ω+xiβ

γ
[
α
ω
, (λt)ω

]
γ

[
α
ω
, (λt)ω

]
Γ
(
α
ω

)
exp(xiβ)

From these, the likelihood function for the Generalized Gamma distribution is

obtained as

L(α, ω, λ, t) =
n∏
i=1

ωλαtα−1
i e−(λti)ω+xiβ

γ
[
α
ω
, (λti)ω

]
δi γ

[
α
ω
, (λti)ω

]
Γ
(
α
ω

)
exp(xiβ)

so that the log likelihood function is

l(α, ω, λ, t) =
n∑
i=1

δixiβ +
n∑
i=1

δiα ln(ωλ) + (α− 1)
n∑
i=1

δi ln ti −
n∑
i=1

δi(λti)ω

+
n∑
i=1

(exiβ − δi) ln
[
γ
[
α

ω
, (λti)ω

]]
−

n∑
i=1

exiβ ln
[
Γ
(
α

ω

)]

3.9 Inverse Gamma Distribution

When the lifetime random variable follows a Inverse Gamma distribution, the baseline

distribution function is given by

F0(t) = γ(α, t)
Γ(α) , t > 0;α, ω > 0

where γ(α, t) is the incomplete Gamma function and Γ(α) is the complete Gamma

function. The baseline Reversed Hazard Rate of T is then obtained as

λ0(t) = ωαt−α−1e−ω/t

γ(α, t)

In the presence of the covariates X, we have the following

λ(t|X) = ωαt−α−1e−ω/t

γ(α, t) exp(xiβ)

F (t|X) =
[
γ(α, t)
Γ(α)

]exp(xiβ)
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f(t|X) = ωαt−α−1e−ω/t

γ(α, t) exp(xiβ)
[
γ(α, t)
Γ(α)

]exp(xiβ)

From these, the likelihood function for the Inverse Gamma distribution is obtained

as

L(α, ω, t) =
n∏
i=1

[
ωαt−α−1e−ω/t+xiβ

γ(α, t)

]δi [γ(α, t)
Γ(α)

]exp(xiβ)

so that the log likelihood function is

l(α, ω, t) =
n∑
i=1

δixiβ +
n∑
i=1

δiα lnω − (α + 1)
n∑
i=1

δi ln ti −
n∑
i=1

δiω

ti

+
n∑
i=1

(
exiβ − δi

)
ln [γ(α, ti)]−

n∑
i=1

exiβ ln [Γ(α)]

3.10 Weibull Distribution

When the lifetime random variable follows a Weibull distribution, the baseline distri-

bution function is given by

F0(t) = 1− e−( tγ )α , t > 0;α, γ > 0

The baseline Reversed Hazard Rate of T is then obtained as

λ0(t) =

(
α
γ

) (
t
γ

)α−1
e−( tγ )α

1− e−( tγ )α

In the presence of the covariates X, we have the following

λ(t|X) =

(
α
γ

) (
t
γ

)α−1
e−( tγ )α+xiβ

1− e−( tγ )α

F (t|X) =
[
1− e−( tγ )α

]exp(xiβ)

f(t|X) =
(α

γ

)(
t

γ

)α−1

e−( tγ )α+xiβ

 [1− e−( tγ )α
]exp(xiβ)−1

From these, the likelihood function for the Weibull distribution is obtained as

L(α, γ, t) =
n∏
i=1

(α
γ

)(
ti
γ

)α−1

e−( tiγ )α+xiβ

δi [1− e−( tiγ )α
]exp(xiβ)−δi

23



so that the log likelihood function is

l(α, γ, t) =
n∑
i=1

δixiβ +
n∑
i=1

δi lnα−
n∑
i=1

δiα ln γ + (α− 1)
n∑
i=1

δi ln ti

−
n∑
i=1

δi

(
ti
γ

)α
+

n∑
i=1

(
exiβ − δi

)
ln
[
1− e−( tγ )α

]

3.11 Generalized Inverse Weibull Distribution

When the lifetime random variable follows a Generalized Inverse Weibull distribution,

the baseline distribution function is given by

F0(t) = e−γ(
λ
t )
α

, t > 0;α, γ, λ > 0

The baseline Reversed Hazard Rate of T is then obtained as

λ0(t) = αγλαt−(α−1)

In the presence of the covariates X, we have the following

λ(t|X) = αγλαt−(α−1)exiβ

F (t|X) =
[
e−γ(

λ
t )
α
]exp(xiβ)

f(t|X) = αγλαt−(α−1)exiβ
[
e−γ(

λ
t )
α
]exp(xiβ)

From these, the likelihood function for the Generalized Inverse Weibull distribu-

tion is obtained as

L(α, γ, λ, t) =
n∏
i=1

[
αγλαt

−(α−1)
i exiβ

]δi [
e
−γ
(
λ
ti

)α]exp(xiβ)

so that the log likelihood function is

l(α, γ, λ, t) =
n∑
i=1

δixiβ +
n∑
i=1

δi lnα +
n∑
i=1

δi ln γ +
n∑
i=1

δiα ln λ

−(α− 1)
n∑
i=1

δi ln ti −
n∑
i=1

γ

(
λ

ti

)α
exiβ
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3.12 Modified Weibull Distribution

When the lifetime random variable follows a Modified Weibull distribution55, the

baseline distribution function is given by

F0(t) = 1− exp(−γtαeλt), t > 0;α, γ, λ > 0

The baseline Reversed Hazard Rate of T is then obtained as

λ0(t) = γ(α + λt)tα−1 exp(λt) exp(−γtαeλt)
1− exp(−γtαeλt)

In the presence of the covariates X, we have the following

λ(t|X) = γ(α + λt)tα−1 exp(λt) exp(−γtαeλt) exp(xiβ)
1− exp(−γtαeλt)

F (t|X) =
[
1− exp

(
−γtαeλt

)]exp(xiβ)

f(t|X) = γ(α + λt)tα−1 exp(λt) exp(−γtαeλt) exp(xiβ)
[
1− exp(−γtαeλt)

]exp(xiβ)−1

From these, the likelihood function for the Modified Weibull distribution is ob-

tained as

L(α, γ, λ, t) =
n∏
i=1

[
γ(α + λti)tα−1

i exp(λti) exp(−γtαi eλti) exp(xiβ)
]δi

×
[
1− exp(−γtαi eλti)

]exp(xiβ)−δi

so that the log likelihood function is

l(α, γ, λ, t) =
n∑
i=1

δixiβ +
n∑
i=1

δi ln γ +
n∑
i=1

δi ln(α + λti) + (α− 1)
n∑
i=1

δi ln ti +
n∑
i=1

δiλti

−
n∑
i=1

δiγt
α
i e

λti +
n∑
i=1

(
exiβ − δi

)
ln
[
1− exp(−γtαi eλti)

]
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3.13 Flexible Weibull Distribution

When the lifetime random variable follows a Flexible Weibull distribution56, the base-

line distribution function is given by

F0(t) = 1− exp
(
−eαt−

γ
t

)
, t > 0;α, γ > 0

The baseline Reversed Hazard Rate of T is then obtained as

λ0(t) =

(
α + γ

t2

)
exp

(
αt− γ

t

)
exp

(
−eαt− γt

)
1− exp

(
−eαt− γt

)
In the presence of the covariates X, we have the following

λ(t|X) =

(
α + γ

t2

)
exp

(
αt− γ

t

)
exp

(
−eαt− γt

)
exp(xiβ)

1− exp
(
−eαt− γt

)
F (t|X) =

[
1− exp

(
−eαt−

γ
t

)]exp(xiβ)

f(t|X) =
(
α + γ

t2

)
exp

(
αt− γ

t

)
exp

(
−eαt−

γ
t

)
exiβ

[
1− exp

(
−eαt−

γ
t

)]exp(xiβ)−1

From these, the likelihood function for the Flexible Weibull distribution is ob-

tained as

L(α, γ, t) =
n∏
i=1

[(
α + γ

t2i

)
exp

(
αti −

γ

ti

)
exp

(
−eαti−

γ
ti

)
exp(xiβ)

]δi

×
[
1− exp

(
−eαti−

γ
ti

)]exp(xiβ)−δi

so that the log likelihood function is

l(α, γ, t) =
n∑
i=1

δixiβ +
n∑
i=1

δi ln
(
α + γ

t2i

)
+

n∑
i=1

δi

(
αti −

γ

ti

)
−

n∑
i=1

δie
αti− γ

ti

+
n∑
i=1

(
exiβ − δi

)
ln
[
1− exp

(
−eαti−

γ
ti

)]
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3.14 Power Generalized Weibull Distribution

When the lifetime random variable follows a Power Generalized Weibull distribu-

tion57, the baseline distribution function is given by

F0(t) = 1− exp
1−

(
1 +

(
t

λ

)α) 1
γ

 , t > 0;α, γ, λ > 0

The baseline Reversed Hazard Rate of T is then obtained as

λ0(t) =
α
γλα

tα−1
[
1 +

(
t
λ

)α] 1
γ
−1

exp
[
1−

(
1 +

(
t
λ

)α) 1
γ

]
1− exp

[
1−

(
1 +

(
t
λ

)α) 1
γ

]
In the presence of the covariates X, we have the following

λ(t|X) =
α
γλα

tα−1
[
1 +

(
t
λ

)α] 1
γ
−1

exp
[
1−

(
1 +

(
t
λ

)α) 1
γ

]
exp(xiβ)

1− exp
[
1−

(
1 +

(
t
λ

)α) 1
γ

]

F (t|X) =

1− exp
1−

(
1 +

(
t

λ

)α) 1
γ


exp(xiβ)

f(t|X) = α

γλα
tα−1

[
1 +

(
t

λ

)α] 1
γ
−1

exp
1−

(
1 +

(
t

λ

)α) 1
γ

 exp(xiβ)

×

1− exp
1−

(
1 +

(
t

λ

)α) 1
γ


exp(xiβ)−1

From these, the likelihood function for the Power Generalized Weibull distribution

is obtained as

L(α, γ, λ, t) =
n∏
i=1

 α

γλα
tα−1
i

[
1 +

(
ti
λ

)α] 1
γ
−1

exp
1−

(
1 +

(
ti
λ

)α) 1
γ

 exp(xiβ)


δi

×

1− exp
1−

(
1 +

(
ti
λ

)α) 1
γ


exp(xiβ)−δi

so that the log likelihood function is

l(α, γ, λ, t) =
n∑
i=1

δixiβ +
n∑
i=1

δi lnα−
n∑
i=1

δi ln γ −
n∑
i=1

δiα ln λ+ (α− 1)
n∑
i=1

δi ln ti
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+
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3.15 Marshal-Olkin Distribution

When the lifetime random variable follows a Marshal-Olkin distribution58, the base-

line distribution function is given by

F0(t) = 1− e−(λt)α

1− (1− γ)e−(λt)α , t > 0;α, γ, λ > 0

The baseline Reversed Hazard Rate of T is then obtained as

λ0(t) = γαλ(λt)α−1e−(λt)α

[1− (1− γ)e−(λt)α ] [1− e−(λt)α ]

In the presence of the covariates X, we have the following

λ(t|X) = γαλ(λt)α−1e−(λt)αexiβ

[1− (1− γ)e−(λt)α ] [1− e−(λt)α ]

F (t|X) =
[

1− e−(λt)α

1− (1− γ)e−(λt)α

]exp(xiβ)

f(t|X) =
γαλ(λt)α−1e−(λt)αexiβ

[
1− e−(λt)α

]exp(xiβ)−1

[1− (1− γ)e−(λt)α ]exp(xiβ)+1

From these, the likelihood function for the Marshal-Olkin distribution is obtained

as

L(α, γ, λ, t) =
n∏
i=1


γαλ(λti)α−1e−(λti)αexiβ

[
1− e−(λti)α

]exp(xiβ)−1

[1− (1− γ)e−(λti)α ]exp(xiβ)+1


δi

×
{

1− e−(λti)α

1− (1− γ)e−(λti)α

}(1−δi) exp(xiβ)

so that the log likelihood function is

l(α, γ, λ, t) =
n∑
i=1

δixiβ +
n∑
i=1

δi ln γ +
n∑
i=1

δi lnα +
n∑
i=1

δiα ln λ+ (α− 1)
n∑
i=1

δi ln ti
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−
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δi (λti)α +
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(
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)
ln
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]

−
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(
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)
ln
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]
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Chapter 4

Simulation Study

In this chapter, we will perform a simulation study to determine if the derived distri-

butions from the previous chapter are adaptable for use in a PRH model and compare

these distributions to establish a guideline for which distribution/s would best fit left

censored HIV VL data.

4.1 Simulation Setup

We generated the simulated data from a Skewed Normal distribution using the sn

package in R as we expected that this would most closely match the left censored

HIV VL data. Different parameters were tested under the Skewed Normal distribu-

tion until the closest matching simulated data could be generated. The final param-

eters chosen were 5 (location), 30 (scale), and 50 (shape) with 100000 observations

randomly generated. The distribution of the simulated data can be seen in Figure

4.1.

From the simulated data, we randomly generated samples of size 1000, 2000, and

3000. The percentage of censored observations was 20, 30, and 40 percent. The

censoring rate was ensured by creating a censoring indicator where 0 represents a

censored observation, 1 otherwise. The indicator was then randomly assigned to the

corresponding proportion of observations. Each of the simulation setups was repeated

5000 times to ensure reliability. To assess which distribution model fits best, we used

4 information criteria:

30



Figure 4.1 Distribution of Simulated Data

• Akaike Information Criterion (AIC) rewards goodness of fit but penalizes the

model for increasing the number of estimated parameters.

AIC = 2k − 2 ln(L)

• Corrected Akaike Information Criterion (AICC) corrects the AIC for overfitting

of the data in cases where the sample size is relatively small compared to the

number of parameters in the model.

AICC = AIC + 2k(k + 1)
n− k − 1

• Hannan-Quinn Information Criterion (HQIC) is often cited in the literature

but, unlike AIC, it is not asymptotically efficient.

HQIC = 2k ln(ln(n))− 2 ln(L)
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• Bozdogan’s Consistent Akaike Information Criterion (CAIC) is another ad-

justed form of AIC which is consistent.

CAIC = k(ln(n) + 1)− 2 ln(L)

where k is the number of parameters to be estimated, L is the maximum value of the

likelihood function, and n is the number of observations. The model with the smallest

average AIC, AICC, HQIC, and CAIC value was determined to be the model with

the best fit. This simulation study was conducted using the Statistical Computing

Software, R version 3.2.559 with summary results presented in the following section.

4.2 Simulation Results

Results of the simulation study are summarized in Tables 4.1-4.3. Table 4.1 summa-

rizes the results for the simulated data with a censoring rate of 20%, Table 4.2 for data

with censoring rate of 30%, and Table 4.3 for data with censoring rate 40%. From

these tables, it is clear that the Generalized Inverse Weibull distribution performs

the best, having the lowest average AIC, AICC, HQIC, and CAIC values. Following

closely behind in performance are the Log-Logistic, Log-Normal, Inverse Gaussian,

and Gamma distributions, respectively. This is consistent across all censoring rates

and sample sizes. The consistently worst performing distributions are the Modified

Weibull, Inverse Weibull, Inverse Gamma, Power Generalized Weibull, and Exponen-

tial distributions, respectively.
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Table 4.1 Average summary measures across 5000 simulations from simulation study with censoring rate 20%

Sample Sizes
Distribution 1000 2000 3000

AIC AICC HQIC CAIC AIC AICC HQIC CAIC AIC AICC HQIC CAIC
Exponential 8753.05 8753.06 8754.92 8758.96 17504.19 17504.20 17506.25 17510.79 26255.36 26255.36 26257.52 26262.37
Log-Normal 6162.11 6162.12 6165.84 6173.92 12323.86 12323.87 12327.97 12337.06 18485.63 18485.64 18489.96 18499.65
Inverse Gaussian 6163.50 6163.51 6167.23 6175.31 12326.67 12326.68 12330.79 12339.88 18489.88 18489.89 18494.20 18503.90
Gamma 6199.30 6199.31 6203.03 6211.12 12398.14 12398.14 12402.25 12411.34 18597.16 18597.16 18601.48 18611.17
Generalized Gamma 6206.54 6206.57 6212.14 6224.27 12410.79 12410.80 12416.96 12430.60 18615.33 18615.34 18621.82 18636.35
Inverse Gamma 10622.02 10622.03 10625.75 10633.83 21240.12 21240.13 21244.24 21253.32 31858.19 31858.19 31862.51 31872.20
Log-Logistic 6115.87 6115.88 6119.60 6127.68 12230.91 12230.92 12235.03 12244.12 18346.09 18346.09 18350.41 18360.10
Weibull 6502.31 6502.32 6506.04 6514.13 13007.93 13007.94 13012.05 13021.14 19515.02 19515.03 19519.34 19529.04
Inverse Weibull 13992.74 13992.75 13996.47 14004.55 27981.55 27981.56 27985.66 27994.75 41970.35 41970.35 41974.67 41984.36
Generalized Inverse Weibull 5959.85 5959.87 5965.44 5977.57 11916.55 11916.56 11922.72 11936.35 17873.49 17873.50 17879.97 17894.51
Flexible Weibull 7768.04 7768.05 7771.77 7779.86 15488.38 15488.39 15492.50 15501.59 23311.80 23311.80 23316.12 23325.81
Marshal-Olkin 7532.91 7532.94 7538.51 7550.63 15059.88 15059.90 15066.05 15079.69 22586.86 22586.87 22593.34 22607.88
Power Generalized Weibull 10492.37 10492.38 10496.10 10504.19 20980.81 20980.82 20984.92 20994.01 31469.28 31469.28 31473.60 31483.29
Modified Weibull 2.97e63 2.97e63 2.97e63 2.97e63 1.27e68 1.27e68 1.27e68 1.27e68 1.00e68 1.00e68 1.00e68 1.00e68
Gompertz 8177.79 8177.80 8181.52 8189.60 16177.93 16177.94 16182.05 16191.13 24099.00 24099.01 24103.32 24113.01
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Table 4.2 Average summary measures across 5000 simulations from simulation study with censoring rate 30%

Sample Sizes
Distribution 1000 2000 3000

AIC AICC HQIC CAIC AIC AICC HQIC CAIC AIC AICC HQIC CAIC
Exponential 7752.73 7752.74 7754.60 7758.64 15503.37 15503.37 15505.43 15509.97 23254.14 23254.14 23256.30 23261.15
Log-Normal 5571.09 5571.10 5574.82 5582.91 11141.41 11141.41 11145.52 11154.61 16711.43 16711.43 16715.75 16725.44
Inverse Gaussian 5572.56 5572.57 5576.29 5584.38 11144.38 11144.39 11148.49 11157.58 16715.90 16715.90 16720.22 16729.91
Gamma 5603.77 5603.78 5607.50 5615.58 11206.68 11206.68 11210.79 11219.88 16809.04 16809.04 16813.36 16823.05
Generalized Gamma 5611.47 5611.50 5617.07 5629.20 11219.82 11219.84 11225.99 11239.63 16828.00 16828.01 16834.48 16849.02
Inverse Gamma 9731.22 9731.23 9734.95 9743.04 19458.34 19458.34 19462.45 19471.54 29185.65 29185.66 29189.97 29199.67
Log-Logistic 5521.91 5521.92 5525.64 5533.73 11042.28 11042.28 11046.39 11055.48 16562.88 16562.88 16567.20 16576.89
Weibull 5848.74 5848.75 5852.47 5860.55 11700.72 11700.73 11704.83 11713.92 17551.99 17552.00 17556.31 17566.01
Inverse Weibull 12430.99 12431.01 12434.72 12442.81 24857.86 24857.87 24861.98 24871.07 37284.93 37284.94 37289.25 37298.95
Generalized Inverse Weibull 5401.80 5401.83 5407.40 5419.53 10799.21 10799.22 10805.38 10819.01 16197.20 16197.20 16203.68 16218.22
Flexible Weibull 6843.80 6843.81 6847.53 6855.61 13628.37 13628.37 13632.48 13641.57 20402.93 20402.93 20407.25 20416.94
Marshal-Olkin 7118.74 7118.77 7124.34 7136.47 14231.37 14231.38 14237.54 14251.17 21344.14 21344.15 21350.62 21365.16
Power Generalized Weibull 9251.89 9251.90 9255.62 9263.70 18499.64 18499.64 18503.75 18512.84 27747.57 27747.58 27751.89 27761.59
Modified Weibull 6.15e63 6.15e63 6.15e63 6.15e63 1.95e63 1.95e63 1.95e63 1.95e63 5.20e64 5.20e64 5.20e64 5.20e64
Gompertz 7117.94 7117.95 7121.67 7129.76 14424.68 14424.68 14428.79 14437.88 21422.25 21422.25 21426.57 21436.26
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Table 4.3 Average summary measures across 5000 simulations from simulation study with censoring rate 40%

Sample Sizes
Distribution 1000 2000 3000

AIC AICC HQIC CAIC AIC AICC HQIC CAIC AIC AICC HQIC CAIC
Exponential 6741.30 6741.31 6743.17 6747.21 13480.48 13480.48 13482.54 13487.08 20220.29 20220.29 20222.45 20227.30
Log-Normal 4953.90 4953.91 4957.63 4965.71 9905.84 9905.85 9909.95 9919.04 14861.39 14861.39 14865.71 14875.40
Inverse Gaussian 4955.39 4955.40 4959.12 4967.20 9908.88 9908.88 9912.99 9922.08 14865.96 14865.97 14870.29 14879.98
Gamma 4982.80 4982.82 4986.53 4994.62 9964.45 9964.46 9968.56 9977.65 14948.26 14948.26 14952.58 14962.27
Generalized Gamma 4986.95 4986.98 4992.55 5004.68 9972.46 9972.47 9978.63 9992.26 14961.84 14961.85 14968.33 14982.86
Inverse Gamma 8650.96 8650.97 8654.69 8662.77 17297.85 17297.85 17301.96 17311.05 25945.08 25945.09 25949.41 25959.10
Log-Logistic 4905.78 4905.79 4909.51 4917.59 9809.98 9809.99 9814.09 9823.18 14716.61 14716.62 14720.93 14730.62
Weibull 5174.16 5174.17 5177.89 5185.97 10349.18 10349.19 10353.29 10362.38 15527.55 15527.55 15531.87 15541.56
Inverse Weibull 10840.67 10840.68 10844.40 10852.48 21677.25 21677.26 21681.37 21690.46 32514.24 32514.24 32518.56 32528.25
Generalized Inverse Weibull 4815.45 4815.48 4821.05 4833.18 9626.12 9626.13 9632.29 9645.92 14440.87 14440.88 14447.35 14461.89
Flexible Weibull 5926.41 5926.42 5930.14 5938.23 11890.95 11890.96 11895.07 11904.15 17877.73 17877.73 17882.05 17891.74
Marshal-Olkin 6704.64 6704.66 6710.23 6722.36 13403.17 13403.18 13409.34 13422.97 20102.14 20102.15 20108.62 20123.16
Power Generalized Weibull 8003.90 8003.91 8007.63 8015.72 16003.69 16003.69 16007.80 16016.89 24003.98 24003.98 24008.31 24018.00
Modified Weibull 4.60e63 4.60e63 4.60e63 4.60e63 2.09e62 2.09e62 2.09e62 2.09e62 9.34e65 9.34e65 9.34e65 9.34e65
Gompertz 6218.98 6218.99 6222.71 6230.79 12435.16 12435.17 12439.27 12448.36 18726.64 18726.65 18730.97 18740.66
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Chapter 5

Real Data Application: SC eHARS Database

In this chapter, we apply the PRH model to the South Carolina Enhanced HIV/AIDS

Reporting Surveillance System (SC eHARS) database using the distribution which

was found to be the best fit from our simulation study.

5.1 Background

Since January 2004, all health care providers, hospitals, and laboratories are legally

mandated to report all CD4 count and VL measurements to the SC Department of

Health and Environmental Control (DHEC).60 This data is stored in the SC eHARS

database along with the patient’s socio-demographic characteristics. The quality

rating of the SC eHARS database exceeds the CDC minimum standards of reporting

timeliness with 95% of new cases being reported within 6 months of HIV diagnosis

and 98% of all HIV cases reported.61 Our sample was reduced based on the following

selection criteria (summarized in Figure 5.1):

• aged ≥ 13 years or older

• diagnosed or living with HIV infection between January 1, 2005 and December

31, 2013

• having detectable VL at the start of the study period

• had at least two reported VL values during the study period
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Initial Sample, N=18,618

Patients who met selec-
tion criteria, N=13,134

Patients who started with
detectable viral load, N=9,242

Patients where event occurred
or are left censored, N=7,972

Patients who did not have 0 or
missing CD4 count, N=6,221

Patients who did not have miss-
ing drug information, N=3,293

Figure 5.1 Flowchart of analytic sample selection procedure and exclusion criteria

The aim of applying the PRH model to this dataset is to explain the risk behavior

of transitioning from detectable VL to undetectable VL. Patients with undetectable

VL at the beginning of the study were defined as being left censored. Covariates that

were assessed include gender (male or female), race (White, Black, or other), HIV

risk exposure group (heterosexual, men who have sex with men, or other), place of

residence (rural or urban), age at baseline, initial treatment regimen (single tablet

regimen, multiple tablet regimen, or neither), and baseline log CD4 count. Note that

HIV risk exposure group refers to how the patient was first exposed to HIV with

options including heterosexual HIV infected partner, men who have sex with other

men, injecting drug user, no identifiable risk, and no risk reported. Results from the
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Table 5.1 Characteristics of persons living with HIV in South Carolina, 2005-2013

Characteristics Frequency (%)/Summary statistics
Gender

Female 2564 (41.22%)
Male 3657 (58.78%)

Race
Black 4966 (79.83%)
White 1086 (17.46%)
Others 169 (2.72%)

Risk of Exposure
Heterosexual 2295 (36.89%)
Men who have Sex with Men (MSM) 1911 (30.72%)
Others 2015 (32.39%)

Place of Residence
Urban 4208 (67.64%)
Rural 2013 (32.36%)

Starting Treatment Regimen
Single Tablet Regimen (STR) 1056 (16.97%)
Multiple Tablet Regimen (MTR) 2237 (35.96%)
N/A 2928 (47.07%)

Baseline Age (in years) Range = 14.84-81.58; Mean = 39.99; SD = 11.46
Log Baseline CD4 Count (cell/mm3) Range = 0.00-3.56; Mean = 2.34; SD = 0.57
Outcome

Event (Det VL to Undet VL) 4518 (72.62%)
Left censored 1703 (27.38%)

Abbreviations: SD = standard deviation; Det = detectable; VL = viral load; Undet = unde-
tectable.

PRH model are presented and discussed in the next section.

Of the individuals in our sample, 1703 (27%) were classified as being left censored

(Table 5.1). Mean age of the sample at baseline was 40.0 years (range = 14.8 - 81.6).

The majority of subjects were male (n=3657, 58.8%), Black (n=4966, 79.8%), and

lived in an urban county when diagnosed with HIV (n=4208, 67.6%). The mean

log CD4 count at the beginning of the study was 2.34 cells/mm3 (range = 0.00 -

3.56 cells/mm3). Almost half of the sample had missing drug information (n=2928,

47.1%).

Comparing the SC eHARS database and the simulated data, you can see that they

match up well on the left tail (Figure 5.2). However, the right tail of the simulated

data is heavier than the right tail of the observed data. This may be a reason for

concern when selecting the best model from the simulation study which led to us to

conduct a bootstrap study. We used a bootstrapping sampling technique to generate
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samples of size 1000, 2000, and 3000 from the observed data i.e. the SC eHARS

database. We used 5000 bootstraps for each setup. Results of this are provided in

the following section.

Figure 5.2 Observed vs Simulated Data

5.2 Results and Discussion

Table 5.2 presents the results from the bootstrap study. From this study, the best per-

forming distributions were found to be the Marshal-Olkin, Modified Weibull, General-

ized Gamma, Gamma, and Flexible Weibull distribution, respectively. This conflicts

with the results from the simulation study, and it’s most likely that this discrepancy is

due to the heavy tail nature of the simulation study data as compared to the observed

data from the SC eHARS database.

Both the Generalized Inverse Weibull and Marshal-Olkin distributions are applied
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to the SC eHARS database. Table 5.3 shows the results of the estimated reverse haz-

ard model using a Generalized Inverse Weibull distribution for persons living with

HIV and Table 5.4 shows the results using the Marshal-Olkin distribution. Informa-

tion on treatment regimen is a very important variable to use in our model. However,

this information is missing in almost 50% of the subjects in our sample. Thus we fit

the model without this variable first (Model 1) and then we fit a second model with

reduced sample size after including the treatment variable in model (Model 2). It

should be noted that if there was not such a large proportion of missing values in the

treatment variable, we would fit only one model, Model 2.

While several covariates have been shown to have an effect on the time from

detectable to undetectable VL level, the significant change in behavior of some of

these covariates comparing the model incorporating the treatment variable compared

to the model without this important factor suggests that an interaction may be

present. Note that Models 1 and 2 cannot be compared using AIC, AICC, HQIC,

and CAIC due to the large difference in sample size. Additional models were run

testing interactions between drug regimen and each of the other covariates. The only

significant interaction found was between drug regimen and age, the results of which

are shown in Table 5.5.

Comparing the two models in Table 5.5, we can see that the Generalized Inverse

Weibull based PRH model fits the data better than the Marshal-Olkin based PRH

model in terms of the information criteria. Hence, the best model applied to the

SC eHARS database is the Generalized Inverse Weibull based PRH model with all

covariates including an interaction of drug regimen and age. Note here how estimates

of the reversed hazard rate and significance differs in these two models, particularly

the interaction between drug and age which changes in direction and maintains sig-

nificance leading to opposing conclusions. This reflects the importance of selecting

the appropriate distribution in a parametric model to analyze left censored data.
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Table 5.2 Average summary measures from bootstrap study

Sample Sizes
Distribution 1000 2000 3000

AIC AICC HQIC CAIC AIC AICC HQIC CAIC AIC AICC HQIC CAIC
Exponential 9873.81 9873.82 9875.68 9879.72 19744.94 19744.94 19747.00 19751.54 29608.05 29608.05 29610.21 29615.06
Log-Normal 8309.58 8309.59 8313.31 8321.39 16613.97 16613.98 16618.09 16627.17 24922.77 24922.77 24927.09 24936.78
Inverse Gaussian 10452.75 10452.76 10456.48 10464.56 20899.89 20899.90 20904.01 20913.10 31353.79 31353.79 31358.11 31367.80
Gamma 7592.29 7592.30 7596.02 7604.11 15179.62 15179.63 15183.73 15192.82 22770.88 22770.88 22775.20 22784.89
Generalized Gamma 7475.02 7475.04 7480.62 7492.74 14944.71 14944.73 14950.88 14964.52 22418.40 22418.40 22424.88 22439.41
Log-Logistic 8309.85 8309.87 8313.59 8321.67 16614.53 16614.54 16618.64 16627.73 24922.87 24955.87 24927.19 24936.88
Weibull 7919.79 7919.80 7923.52 7931.60 15834.46 15834.46 15838.57 15847.66 23752.54 23752.54 23756.86 23766.55
Inverse Weibull 8857.13 8857.14 8860.86 8868.94 17708.94 17708.94 17713.05 17722.14 26570.04 26570.04 26574.36 26584.05
Generalized Inverse Weibull 8657.62 8657.64 8663.22 8675.34 17308.05 17308.06 17314.22 17327.85 25963.86 25963.87 25970.34 25984.88
Flexible Weibull 7772.01 7772.02 7775.74 7783.83 15541.72 15541.72 15545.83 15554.92 23319.71 23319.71 23324.03 23333.72
Marshal-Olkin 5029.27 5029.29 5034.87 5046.99 10051.39 10051.40 10057.56 10071.19 15068.73 15068.73 15075.21 15089.74
Power Generalized Weibull 7998.86 7998.87 8002.59 8010.67 15992.53 15992.53 15996.64 16005.73 23990.21 23990.21 23994.53 24004.22
Modified Weibull 7372.54 7372.56 7378.13 7390.26 14741.53 14741.54 14747.69 14761.33 22115.79 22115.80 22122.27 22136.81
Gompertz 9869.09 9869.10 9872.82 9880.90 19742.41 19742.42 19746.53 19755.62 29601.23 29601.24 29605.56 29615.25
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Table 5.3 Estimated Reverse Hazard Rates (HR) using Generalized Inverse Weibull
Reverse Hazard model of SC adult HIV patients

Characteristics Model 1 Model 2
Reverse HR (95% CI) Reverse HR (95% CI)

Drug Regimen
Single Tablet Regimen (STR) — Ref
Multiple Tablet Regimen (MTR) — 1.56 (1.37, 1.77)

Gender
Female Ref Ref
Male 0.81 (0.75, 0.87) 1.11 (0.99, 1.25)

Race
Black Ref Ref
White 0.60 (0.55, 0.66) 1.44 (1.30, 1.59)
Others 3.60 (3.26, 4.00) 1.64 (1.29, 2.08)

Risk of Exposure
Heterosexual Ref Ref
Men who have Sex with Men (MSM) 2.08 (1.88, 2.32) 1.73 (1.52, 1.97)
Others 1.96 (1.81, 2.14) 1.20 (1.07, 1.34)

Place of Residence
Rural Ref Ref
Urban 2.35 (2.16, 2.56) 0.47 (0.43, 0.51)

Baseline Age (in years) 1.02 (1.01, 1.03) 1.03 (1.03, 1.04)
Log Baseline CD4 Count(cell/mm3) 0.30 (0.29, 0.31) 0.37 (0.35, 0.39)
AIC 56332.53 31807.20
AICC 56332.57 31807.29
HQIC 56358.21 31833.40
CAIC 56417.62 31892.39

Table 5.4 Estimated Reverse Hazard Rates (HR) using Marshal-Olkin Reverse Hazard
model of SC adult HIV patients

Characteristics Model 1 Model 2
Reverse HR (95% CI) Reverse HR (95% CI)

Drug Regimen
Single Tablet Regimen (STR) — Ref
Multiple Tablet Regimen (MTR) — 1.00 (0.91, 1.10)

Gender
Female Ref Ref
Male 0.72 (0.67, 0.78) 1.17 (1.05, 1.30)

Race
Black Ref Ref
White 2.32 (2.16, 2.49) 1.21 (1.09, 1.34)
Others 1.23 (1.03, 1.48) 0.94 (0.74, 1.21)

Risk of Exposure
Heterosexual Ref Ref
Men who have Sex with Men (MSM) 0.75 (0.67, 0.84) 0.98 (0.86, 1.11)
Others 1.67 (1.55, 1.80) 1.32 (1.19, 1.46)

Place of Residence
Rural Ref Ref
Urban 1.22 (1.14, 1.31) 1.01 (0.93, 1.11)

Baseline Age (in years) 1.04 (1.04, 1.04) 1.02 (1.02, 1.03)
Log Baseline CD4 Count(cell/mm3) 0.81 (0.79, 0.84) 0.93 (0.88, 0.97)
AIC 46170.84 25552.72
AICC 46170.88 25552.82
HQIC 46196.52 25578.92
CAIC 46255.93 25637.92
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Table 5.5 Estimated Reverse Hazard Rates using Generalized Inverse Weibull and
Marshal-Olkin Reverse Hazard model of SC adult HIV patients

Characteristics Generalized Inverse Weibull Marshal-Olkin
Reverse HR (95% CI) Reverse HR (95% CI)

Drug Regimen
Single Tablet Regimen (STR) Ref Ref
Multiple Tablet Regimen (MTR) 0.88 (0.70, 1.10) 0.89 (0.62, 1.29)

Gender
Female Ref Ref
Male 1.35 (1.23, 1.47) 0.86 (0.73, 1.01)

Race
Black Ref Ref
White 1.25 (1.16, 1.34) 1.04 (0.87, 1.24)
Others 0.40 (0.29, 0.55) 1.01 (0.70, 1.44)

Risk of Exposure
Heterosexual Ref Ref
Men who have Sex with Men (MSM) 1.28 (1.16, 1.42) 0.90 (0.72, 1.12)
Others 1.37 (1.26, 1.49) 1.39 (1.19, 1.63)

Place of Residence
Rural Ref Ref
Urban 1.11 (1.04, 1.19) 1.20 (1.04, 1.39)

Baseline Age (in years) 0.99 (0.99, 1.00) 0.91 (0.88, 0.94)
Log Baseline CD4 Count(cell/mm3) 0.88 (0.81, 0.95) 0.96 (0.88, 1.06)
Interaction of drug by age 0.97 (0.97, 0.98) 1.14 (1.10, 1.18)
AIC 35038.08 37409.31
AICC 35038.19 37409.43
HQIC 35066.47 37437.70
CAIC 35130.38 37501.61

From this final model, we can make the following conclusions on the behavior of

transitioning from detectable VL to undetectable VL level. Males are more likely to

reach undetectable levels faster than females (RHR:1.35; CI:1.23, 1.47). This trend

is also evident in several recent studies62,63. A possible reason for this disparity may

be higher rates of treatment adherence among males compared to females. Though

some studies did not find an association between gender and treatment adherence,

a meta-analysis64 of 207 studies concluded that males adhere more to ART than

females.

Individuals who classify as White are more likely to reach undetectable levels

faster than Black individuals (RHR:1.25; CI:1.16, 1.34). This is supported by previ-

ous studies which highlight that Black individuals are disproportionately affected

by HIV/AIDS as they tend to have poorer access to health care, are less likely

to receive treatment, less likely to adhere to treatment, and less likely to survive

HIV/AIDS.62,65–67

43



People with high risk of exposure such as men who have sex with men (RHR:1.28;

CI:1.16, 1.42) and other high risk groups (RHR:1.37; CI:1.26, 1.49) are more likely to

reach undetectable levels faster than heterosexual men. It is unclear why this trend

is evident in higher risk groups but another study has shown similar results.60

People who live in urban areas are more likely to reach undetectable levels faster

than those who live in rural areas at the time of diagnosis (RHR:1.11; CI:1.04, 1.19).

A possible reason for this effect may be due to the typically increased access to health

care and higher range of specialists available to people living with HIV/AIDS in urban

areas. This is supported by a study which does an in depth analysis on the effect of

place of residence on the timing of diagnosis and stage of disease at diagnosis.61

Individuals with higher CD4 count at baseline are less likely to reach undetectable

levels faster than those with lower levels of log CD4 count (RHR:0.88; CI:0.81, 0.95).

The literature on the association between changes in viral load and CD4 is inconclu-

sive. Some studies68 support our finding, while others highlight an opposing trend69.

It has been suggested that those with higher CD4 count may be less adherent due to

the absence of symptoms and hence patients do not complete the treatment regimen

as they feel better.

Finally, the interaction between drug regimen and age highlights that older people

who are on a multiple treatment regimen are likely to reach undetectable levels slower

than their younger counterparts (RHR:0.97; CI:0.97, 0.98). There are mixed findings

on this is the literature. Young people with HIV tend to have delayed diagnosis and

thus higher VL at baseline. One study [60] suggests that this along with underuti-

lization of health care due to HIV-related stigma explains their finding that younger

people with HIV reach undetectable levels slower than their older counterparts. A

possible explanation of our result may be that older people are not as adherent to

treatment [64] or perhaps they have a co-existing morbidity which effects the rate at

which they reach undetectable levels.
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Chapter 6

Conclusions

The current study derived several extensions of the PRH model and conducted ex-

tensive simulation studies to evaluate the usefulness of parametric regression models

based on the reversed hazard rate for analyzing left censored HIV viral load data.

Simulation studies suggests the best distribution to use under the PRH model is the

Generalized Inverse Weibull distribution with the Log-Logistic, Log-Normal, Inverse

Gaussian, and Gamma distribution following next in ranking of performance, respec-

tively. The bootstrap analysis suggested the Marshal-Olkin distribution to be the

superior performer with the Modified Weibull, Generalized Gamma, Gamma, and

Flexible Weibull distributions following behind. Although the bootstrap study was

conducted to support the guidelines established in the simulation study, our results

are inconsistent. This disagreement may be a result of the characteristic heavy tail

nature of VL data that requires further attention and more research. However, when

both the top performers of the simulation study and the boostrap study are applied

to the SC eHARS database, the Generalized Inverse Weibull based PRH model out-

performs the Marshal-Olkin based PRH model. Application of this best performing

model on the SC eHARS data revealed important factors on the time to transition

from detectable to undetectable viral load levels.

There are several limitations of the SC eHARS database. One limitation is that

almost 50% of drug related information is missing which creates complications in

estimating hazard rates. Future research using this data should attempt to account

for this missingness to make meaningful conclusions on the population. Data on VL
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and CD4 count measurements were not available for those who dropped out of medical

care after initial diagnosis - this includes those who passed away, moved to a different

state, etc. Additionally, persons living with HIV/AIDS who have not been diagnosed

were not captured in this database. The database also does not include information on

morbidities which may be co-existing with HIV/AIDS which can impact the effect of

drug regimens, especially in older people. Since the interaction between age and drug

regimen is significant, co-existing conditions warrant further exploration. Regardless

of these limitations, the application to the SC eHARS database provides important

information on the trajectories of viral load in SC over time.

In conclusion, we recommend that the Generalized Inverse Weibull PRH model

be used for analyses involving skewed, heavy tailed left censored HIV VL data.
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