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ABSTRACT 

 The models with constant coefficients of the covariates across space and time are 

commonly used in spatio-temporal analyses. However, the associations between risk 

factors and the outcome could have locally differential temporal trends in many cases. In 

this study, a Bayesian latent cluster modeling strategy is employed to identify potential 

spatial clusters in which locally specific sets of temporally varying coefficients of 

covariates are allowed. A state-level panel data of police officers occupational fatal 

victimization for the years 1979-2010 is used. To accommodate overdisperson and excess 

zeros, a negative binomial model and zero-inflated Poisson/negative binomial models are 

also utilized. A series of alternative models are also applied to this data. The model 

comparison shows that the proposed latent clusters Zero-Inflated Poisson model is 

superior to the other models. The analysis using the proposed model illustrates the 

heterogeneity in the associations between police fatal victimization outcome and specific 

risk factors across the latent spatial clusters. 
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CHAPTER 1 

INTRODUCTION 

There has been growing interest in examining the distribution and the factors that 

affect the variations of incidents of health outcomes involving both spatial and temporal 

related information. The advantage of a spatial-temporal analysis over a pure 

geographical analysis is that it can illustrate the trend patterns over time and spatial 

pattern across regions simultaneously. It not only helps us accurately estimate the risks of 

outcome incidents and depict the clear relationship between the response variable and 

related risk factors, but also discern certain patterns from residuals due to unmeasured or 

unobservable covariates after taking into account  the heterogeneity resulting from the 

variations in space and time. A common assumption used in the existing research is that 

the effects of risk factors are fixed over time and space. Such an assumption may be too 

restrictive in many cases. Motivated by a study exploring the relationship between 

occupational fatal violence victimization of police officers in the USA and related risk 

factors, I apply a space-time latent component model to identify potential spatial clusters 

in which locally specific sets of temporally varying coefficients of covariates are allowed.  

Occupational violent victimization is a serious concern for law enforcement 

officers, because they are more likely to come into contact with the unstable elements of 

the population, face high levels of criminal violence, and work in more unpredictable 

situations than common people. Warchol (1998) and Duhart (2001) report that working 

as a police officer has the highest violence victimization risk in the work place among all 
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occupations. Felonious murder is the most serious consequence of violence against police. 

National Institute for Occupational Safety and Health (NIOSH, 2002) research ranks law 

enforcement officers as second in terms of probability of being murdered during the work 

time, which is only lower than that of taxicab drivers. Besides the extremely traumatic 

experience it brought to victims’ families, the loss of police officers has substantial 

adverse impacts to agencies and local communities. It could lower the morale of other 

colleagues or trigger unnecessary aggressive policing strategies, which, in turn, may 

damage the trust between police and the public. Therefore, the research on the related risk 

factors of fatal victimization of law enforcement officers draws scholars’ attention 

considerably.  

However, some methodological obstacles exist in incident level research. The 

measurement of police-citizen interactions and related contextual variables suffers from 

substantial reporting or recording biases. For example, there could be highly varied 

measurement errors regarding officers’ dispositions in police-citizen contacts (Johnson, 

2011). Also, the information regarding related situational factors during confrontations 

could be distorted, depending on whether it was gathered from officer-reported data or 

arrestee-reported data (Rojek, Alpert, & Smith, 2012). Employing observers to document 

police-citizen encounters could provide more detailed and accurate information, but 

because officers are aware of being observed, they may alter their routine practices and 

demonstrate more socially desirable behaviors than usual (reactivity bias, Spano, 2005).  

Since the measurement issues make incident level research very difficult, most 

studies on the murder risk for officers were conducted at aggregate level. Extant research 

examined the relationship between victimization risks of police and a wide range of 
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variables, i.e., negative social economic structures, mentally impaired population (people 

with mental illness and/or substance abuse), agency practice policy, firearm accessibility, 

first-aid availability, and political factors, etc. However, the findings of the research in 

this field are disparate. There has not been a single covariate identified as significant or 

with the same sign across existing studies (Kaminski, 2008). One reason for the lack of 

consistency is the heterogeneity of spatial and temporal variations of the data analyzed. 

Researchers agree that the felonious killings of officers are very rare incidents (Kaminski, 

et al, 2004; Kesic, et al., 2013). The rarity of observations of fatal victimization of police 

often makes the meaningful statistics analysis impractical. A common solution to this 

situation is to combine the rare event incidents across space and over time so as to yield 

enough observations, which also introduces substantial spatial and temporal variations 

into the data. The association between the victimization outcome and related risk factors 

may be influenced by such variations. For example, research shows that some negative 

social structural factors (i.e., poverty, unemployment, racial heterogeneity, etc.) could 

constitute a criminogenic environment in which police officers are close to the pool of 

potential offenders. Thus, it is expected that there are positive associations between these 

factors and the fatal victimization of officers. However, such associations may not be 

consistent across all the jurisdictions and the whole time period. The impacts of these 

factors on the outcome incidents could be subject to the local economic environments, the 

changes in social welfare policies, the evolution of policing ideology, and even the local 

cultures. These elements have striking variations in terms of space and time (Department 

of Justice, DOJ), but are usually difficult to measure or to observe.  
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Conventional modelling strategies often simply assume that the coefficients of the 

covariates are fixed. However, heterogeneity caused by massive space and time 

variations in the police occupational victimization study strongly challenges this 

assumption (Bailey, 1982; Bailey & Peterson, 1987, 1994; Fridell, et al., 2009; Jacobs & 

Carmichael, 2002; Kaminski, 2002, 2008; Kent, 2010; Moody, Marvell, & Kaminski, 

2002; Mustard, 2001; Kaminski, 2002). Given this circumstance, a more practical 

assumption is that the effects of covariates on the fatal occupational violence 

victimization of police may vary across space and time units. In the proposed approach, I 

adopt a Bayesian space-time latent cluster model (Choi, et al. 2012) to explore the roles 

of the covariates in explaining occupational murders of police officers. This model allows 

detection of spatial clusters in which the associations between the outcome and covariates 

are homogeneous due to their similarity. It also enables the estimation of the varying 

temporal patterns within the clusters. To address overdispersion and large numbers of 

zero values in the respondent variable, two common problems in health data, negative 

binomial and zero-inflated Poisson/negative binomial models are applied. The model 

with the best fit is selected by using model comparison measures. This model is also 

compared to various models without considering spatial dependence and conventional 

spatio-temporal models to evaluate its performance. 

This thesis proposal proceeds as follows. Chapter 2 provides a brief literature 

review of the Bayesian spatio-temporal analysis. Chapter 3 describes the proposed data 

collection and analytic strategy for this research. Chapter 4 explains the proposed 

Bayesian spatio-temporal latent model. Chapter 5 reports the results from the analysis. 

Chapter 6 ends the paper with discussions and conclusions.
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CHAPTER 2 

LITERATURE REVIEW 

In the analysis of health data with spatial and temporal dimensions, some 

statistical approaches need to be applied to deal with the issues of dependences and the 

variations in space and time. The geographical or time-series dependences (i.e., 

autocorrelation) might exist because the values of outcome in any given region or time 

point could be impacted by its neighboring areas or time periods. One possible cause of 

such impacts could result from the similar characteristics, which are usually unobservable 

or unmeasurable, in these adjacent areas and time periods (Wakefield & Elliot, 1999). If 

an analysis fails to control for the heterogeneity introduced by spatial and temporal 

autocorrelations, it could yield misleading risk assessments and unstable coefficient 

estimates. Also, when the incident is rare, zero and low counts usually dominate the data. 

A raw mapping of incident risk rates is not an accurate reflection of the risk estimates, i.e., 

zero counts do not mean zero risks. Moreover, individual extreme values could distort the 

risk estimates markedly in rare event cases, especially for those areas with small sample 

sizes. Such “noise” covers the “true patterns of underlying risk” (Richardson, Abellan, & 

Best, 2006). Therefore, some type of smoothing, which means borrowing the information 

from the neighboring observed units, should be considered to take these issues into 

account (Knorr-Held & Besag, 1998). 

Over the last few decades, hierarchical Bayesian modelling has been frequently 

applied in the analysis of spatio-temporal referenced epidemiological data. Briefly, while 
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traditional frequentists view the parameters of the examined distributions as fixed, 

Bayesians believe these parameters also have their own distributions. The likelihood of 

observed data combined with researcher’s prior beliefs can be used to compute the 

posterior distribution of these parameters (Greenland, 2006). In the analysis of space-time 

referenced data, the distinct advantage of Bayesian hierarchical modeling over the 

traditional frequentist approach is that it can easily combine certain spatial or temporal 

priors and hyperprior beliefs (distributions) in a hierarchical manner to incorporate 

geographical and time series information into the model (Waller, Carlin, Xia, & Gelfand, 

1997, Carlin & Louis, 2000).  

For a spatio-temporal referenced rare event data, a general Bayesian hierarchical 

model is given as below: 

Let Yit denote the observed counts of outcome for region i at year t. It is usually 

assumed that the outcome follows a Poisson distribution as Yit ~Pois(𝐸𝑖𝑡𝜃𝑖𝑡), where 𝐸𝑖𝑡 is 

the expected count and 𝜃𝑖𝑡 is the relative risk in the ith region and tth year. Typically, the 

log relative risk can be written as 

𝑙𝑛(𝜃𝑖𝑡) = 𝑥′𝑖𝑡𝛽 + 𝑢𝑖 + 𝑣𝑖 + 𝛿𝑡    (1) 

where 𝑥′𝑖𝑡 is the vector of covariates of state i at year t, 𝛽 denotes the vector of the 

corresponding coefficients, ui represents the unstructured spatial random effect for state i, 

𝑣𝑖 is a structured spatial element for state i, and 𝛿𝑡 denotes the excess variation coming 

from temporal autocorrelation. Therefore, this model captures the heterogeneity due to 

random sampling effects in states, the spatial dependence among adjacent regions, and 

the temporal autocorrelation between the values of outcome in the current and previous 

time period. Usually, a conditional autoregressive (CAR) distribution is assigned to 𝑣𝑖, 
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[𝑣𝑖|𝑣𝑗,𝑗 ≠ 𝑖 , 𝜎𝑣
2]~Normal(

1

𝑛𝑖
∑𝑤𝑖𝑗𝑣𝑗 ,

𝑗≠𝑖

 
1

𝑛𝑖
𝜎𝑣
2) 

where 𝑛𝑖 denotes the number of the neighbor states of state i, 𝑤𝑖𝑗=1 if i and j are adjacent 

states and 𝑤𝑖𝑗=0 otherwise, and 𝜎𝑣
2 is the variation parameter. To consider the temporal 

autocorrelations between the outcome value in the current time period and the one in the 

previous time period, an autoregressive prior, i.e., a random walk process, is typically 

considered to 𝛿𝑡 (Cai, et al., 2013; Knorr-Held, 2000).  

More complex models are developed when the effect of space-time interaction is 

considered. Bernardinelli (1995) suggests an approach that treats interaction effect as a 

linear time trend. Waller et al. (1997) develop a model in which spatial random effects 

are nested within a time period. Knorr-Held (2000) presents a set of models for four 

different types of inseparable space-time interactions. Richardson et al. (2006) focus on a 

model which can be used to analyze the risks of two related diseases, considering their 

shared and unique spatio-temporal components. Hossain and Lawson (2010) propose a 

spatial-temporal mixture model to detect clusters. The studies mentioned above mainly 

focus on the global space-time effect on the outcome. They assume the coefficients of the 

covariates are the same across the regions and over time, which may not be the case in 

practice. The roles of risk factors explaining the outcome can be influenced by the 

varying contexts across time and space, such as the changes in other unmeasurable 

confounders, newly emerging local health hazard or protective factors, or even the 

variations in the data collecting process. To examine the effect of covariates on the 

response variable, Gamerman et. al. (2003) and Gelfand, et. al. (2003) work on models 

considering geographical varied coefficients. Dreasii, et al. (2005) and Catelan, et al. 

(2005) propose models incorporating time dependent covariates. Some models have been 
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developed to examine the space-time varied effect of risk factors on response variables. 

Lawson, et al. (2010) present a spatio-temporal mixture model to detect spatially varied 

temporal patterns. Cai, et al. (2012) apply a semiparametric approach to develop a non-

linear time-space dependent coefficients model. Choi, et al. (2012), provide a latent 

model to discover spatial components each of which has a homogeneous temporal trend 

in the effects of covariates on the outcome. This model assumes that temporal patterns of 

the associations between outcomes and predictors are different across spatial clusters, 

while the patterns in the regions which belong to the same spatial cluster are alike. This 

model is flexible and convenient to use, but it does not consider two problems often 

encountered in health data. First, overdispersion, a situation in which the conditional 

variance of the response variable is greater than the mean, is very common in count data. 

Second, an overabundance of zero values in the outcome variable is a usual situation in 

the analysis. If either or both of these two problems exist, then using the Poisson 

distribution will not be appropriate and its use may result in lack of fit. Therefore, 

developing appropriate models to deal with the problems mentioned above is necessary. 

The proposed research is aimed to fill this gap in the literature by employing zero-inflated 

Poisson and Negative Binomial (ZIP and ZINB) models to improve the performance of 

Choi et al.’s spatio-temporal latent cluster model. As discussed in the previous section, a 

state level pooled time-series data for occupational violence victimization of police 

officers is an ideal data set for the purpose of our methodological evaluation, as the 

effects of the covariates on the fatal occupational violence victimization of police are 

logically believed to vary across space and time units.
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CHAPTER 3 

DATA DESCRIPTION  

The data is comprised of state level aggregated summaries across 48 continental 

states for years 1979 to 2010.  

3.1 Outcome measure 

Data for the dependent variable, the number of occupational fatal victimization of 

law enforcement officers, is from Kaminski and Marvell (2002), and the Law 

Enforcement Officers Killed and Assaulted (LEOKA, 1997-2010) reports from the 

Federal Bureau of Investigation (FBI). The annual death tolls include all local, state, and 

federal law enforcement officers with arrest power murdered in each state. Officers who 

died during the September 11, 2001 terrorist attacks are excluded. Because District of 

Columbia is unique in terms of region size and agency structures, it is excluded from the 

analysis. Due to their distinctive spatial characteristics, the states of Alaska and Hawaii 

are excluded too. Since the data of total employed police officers in each state is not 

reliable (Kaminski, 2002), following Kaminski and Marvell, the total population in each 

state is used as a proxy to adjust for unequal exposure (offset). As estimates of relative 

risks (Lawson, et al., 2003, p. 4), the standardized mortality ratios (SMR) for each state at 

each time period are calculated. SMR is defined as the counts of murdered police within 

each state divided by the expected number of homicide of police. The expected number 

of homicide of police is calculated as the total police homicide numbers divided by
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total US population (excluding those in Alaska, Hawaii, and D.C.), and multiplied by this 

state’s population at time period t. 

The data is grouped into four-year periods to make it easy to illustrate spatial and 

temporal trends. Since four years is a relatively short time span, it is reasonable to assume 

homogeneity of the effects of the risk factors over this time period within each spatial 

unit. There are a total of 384 observations, the minimum value is 0, the maximum value 

is 33, the mean count 5.154, and the standard deviation 6.004. The standardized mortality 

ratios (SMRs) for police officers’ fatal occupational violence victimization are mapped in 

Figure 3.1. The distribution of the number of law enforcement officers murdered is 

illustrated in Figure 3.2. 

According to Figure 3.1, the risks for police of being murdered indicate some 

spatio-temporal variations. For instance, it appears that the states on the west coast and 

northeast on average had the lower SMR for police murder than other states across time. 

The temporal profiles of the police homicide risk in some mid-west states varied 

dramatically from 1979-2010, making it hard to assess the general risk trend for police 

officers. This is probably due to the extreme values in these states at some individual time 

points. Take Montana, for an example: the murder risk for police in this state ranked very 

low during 1979-1982, but rapidly climbed to the top level during 1983-1990, then 

dropped again and remained low in the 1990s. The South tended to be more dangerous to 

law enforcement officers over the entire time interval from 1979-2010, where several 

southeast states kept staying in the high risk levels (SMR>1.5) most of the time. 

Although Florida is located in the South, it has a large variation in police homicide risks  
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Figure 3.1 Standardized mortality ratios for police fatal occupational 

victimization in each time period 
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over time. In the period 1999-2002, Florida was actually one of the safest states for police 

officers. 

 

Figure 3.2. Distribution of the number of law enforcement officers murdered, 1979 - 

2010 

From Figure 3.2, we can see there are still many instances with 0 observed 

homicices even after grouping the data into four-year time periods. Moreover, the 

distribution shown in Figure 3.1 suggests two different types of zeroes exist. For certain 

states, there were no police murders at all across most time periods (i.e., Delaware, 

Rhode Island, Vermont, etc.). For other states, the zero observations can be only seen in 

few time units. As will be discussed later, zero-inflated models may help to explore the 

nature of these zeros and better explain the data observed. 
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3.2 Covariates 

Following the convention used in law enforcement officer murders research, a 

number of eco-social structural factors including poverty rate, unemployment rate, the 

percentage of female-headed households with related children, and the percentage of 

African-Americans in the population are included in the model (Kaminski & Marvell, 

2002; Kaminski, 2008; Fridell, et al., 2009).  

Poverty rate and unemployment rate reflect the extent of economic disadvantages. 

The percentage of female householders living with related children represents the degree 

of family disintegration. The percentage of African-Americans in the population is 

chosen as the indicator of racial heterogeneity. Data source: Bureau of the Census. 

The crime rate, which includes murder and non-negligent homicides, aggravated 

assaults, and robberies, is added in the model to control the level of risk exposure. This 

factor is assumed to be correlated to the proximity of officers to motivated offenders, thus 

being expected to have impacts on the felonious killings of officers. The data on crime 

rates is from the FBI’s (1979-2010) Uniform Crime Reports (UCR). 

Incarceration rate is included in the analysis as a confounder. Incarceration is 

assumed to be an indicator of formal social control and examined in many civilian 

homicide studies. It could affect the number of police killings due to the effect of 

incapacitation or deterrence. The data on incarceration is collected from Bureau of Justice 

Statistics annual report. 

To make sure the estimation of the effect of violent crime rate and incarceration 

rate, are minimally affected by the collinearity between other covariates, the residuals of 

these two variables obtained by regressing them on other covariates are used in the model. 
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The residuals represent the variations in these variables unexplained by other predictors 

(Roncek, 1997).   

All the annual data are grouped into four-year periods. The averages for each time 

period then are calculated. Summary statistics for the dependent and independent 

variables appear in Table 3.1. The unconditional variance of the outcome variable 

(36.048) is much larger than its unconditional mean (5.154), implying the possibility of 

overdispersion. An overdispersion test is then conducted through AER package in R after 

fitting the outcome with covariates in a generalized linear model (glm) regression. The 

result provides the evidence of overdispersion (alpha=3.315, p<.0001)1. 

Table 3.1 Summary statistics for variables used in the analysis (N=384) 

Variables Min Max Mean SD 

Officers murdered 0 33 5.154 6.004 

Poverty rate  4.875 25.925 13.163 3.651 

Unemployment rate  2.65 14.5 5.943 1.793 

% of American Africa population 0.208 37.155 10.009 9.372 

Population density 4.720 1186.337 177.172 243.863 

Incarceration rates  30.859 863.975 292.865 158.95 

Crime rates 40.674 1131.9 420.774 223.316 

 

                                                           
1
 When use “trafo=1” option in AER, a value of alpha much larger than zero (especially greater than 1) 

indicates overdispersion  
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CHAPTER 4 

SPATIO-TEMPORAL LATENT CLUSTER MODELS  

In the proposed study, I consider four models. They are spatio-temporal Poisson 

model, Negative Binomial model, zero-inflated Poisson model, and zero-inflated 

Negative Binomial model. 

4.1 Spatio-temporal Poisson model with latent clusters (Model 1)  

First, I consider a spatio-temporal Poisson model with latent clusters. As 

introduced in the Chapter 2, the occupational homicide of police is assumed to follow a 

Poisson distribution as Yit ~Pois(𝐸𝑖𝑡𝜃𝑖𝑡), where 𝐸𝑖𝑡 is the expected count and 𝜃𝑖𝑡 is the 

relative risk in the i
th

 state and t
th

 year. 𝜃𝑖𝑡  is modeled by 

𝑙𝑛(𝜃𝑖𝑡) = 𝒙′𝑖𝑡𝜷𝑖𝑡 

where 𝑥′𝑖𝑡 represents the vector of covariates (including intercept) of state i at year t, and 

𝛽𝑖𝑡 denotes the vector of the corresponding coefficients. In the proposed research, I 

assume that the temporal trends of the associations between outcomes and covariates are 

different across spatial domains. But such trends in the regions which belong to the same 

spatial cluster are alike. In other words, the time-dependent coefficients of the covariates 

are homogeneous within the domain of a spatial cluster. Thus, I specify the vector of 

covariates’ coefficients, 𝜷𝑖𝑡, as 

𝜷𝑖𝑡 = 𝜷𝑆(𝑚)𝑡 

where m is the indicators of spatial clusters and 𝑆(𝑚) shows which spatial cluster the



16 

observed state belong to. I consider 𝑆(𝑚) follows a categorical distribution 

𝑆(𝑚)~Categorical(qi1,…, qiM) 

where 𝑞𝑖𝑚 is the probability of state i belongs to cluster m. Hence, the 𝑞𝑖𝑚 has two 

conditions:  𝑞𝑖𝑚>0 and ∑ 𝑞𝑖𝑚 = 1𝑀
1 . Next, I model the 𝑞𝑖𝑚 as 

𝑞𝑖𝑚 =
𝑤𝑖𝑚

∑ 𝑤𝑖𝑚
𝑀
𝑚=1

 

where 𝑤𝑖𝑚 is un-normalized weights. Following Choi, et al., I assume 𝑤𝑖𝑚 , which are 

non-negative weights, has a lognormal distribution, 

𝑤𝑖𝑚~LN(𝜂𝑖𝑚, 𝜎𝑚
2 )   

where 𝜂𝑖𝑚 is spatially dependent mean, and 𝜎𝑚
2  is the variance of 𝜂𝑖𝑚. 

To add a spatial dependency structure, I assign a conditional autoregressive (CAR) 

distribution to 𝜂𝑖𝑚 

𝜂𝑖𝑚|𝜂𝑗𝑚,𝑖≠𝑗~𝑁(
1

𝑛𝑖
∑ 𝜑𝑖𝑗𝜂𝑗𝑚𝑗≠𝑖 ,

𝜎𝜂𝑚 
2

 

𝑛𝑖
), 

where 𝑛𝑖 is the number of the neighboring states which are also in the same cluster of 

state i, 𝜑𝑖𝑗=1 if i and j are adjacent states and 𝜑𝑖𝑗=0 otherwise. Hence, assuming an CAR, 

the mean of state i is smoothed as the average of the means of its neighbor states of a 

same cluster, and the variance is the variance of 𝜎𝜂𝑚 
2  divided by 𝑛𝑖. This model is 

denoted as Model 1. 

4.2 Spatio-temporal negative binomial model with latent clusters (Model 2) 

As illustrated in the end of previous Chapter, there is an overdispersion issue in 

current data (See Table 3.1 and related overdispersion test). A space-time negative 

binomial latent cluster model is then considered to see if it improves the fitness in 



17 

comparison to a Poisson distribution. Using this model, the distribution of an observed 

count Yit is  

Yit ~NegBin(𝐸𝑖𝑡𝜃𝑖𝑡 , 𝛼 ), 

where 𝐸𝑖𝑡 is the expected count, 𝜃𝑖𝑡 is the relative risk in the i
th

 state and t
th

 year, and 𝛼 is 

the overdispersion parameter. The mean of the distribution is 𝐸𝑖𝑡𝜃𝑖𝑡, and the variance is 

𝐸𝑖𝑡𝜃𝑖𝑡 (1 +
𝐸𝑖𝑡𝜃𝑖𝑡

𝛼
). Note if 𝛼 → ∞ then the distribution reduces to a regular Poisson. The 

parameter 𝜃𝑖𝑡 is modeled the same way as in the previous Poisson model. A Gamma prior 

is assigned to 𝛼. This model is denoted as Model 2. 

4.3 Spatio-temporal Zero-Inflated models with latent clusters  

As indicated in the histogram of the respondent variable (Figure 3.2), there were a 

large number of zero outcome observations in the data. The previous count models may 

not fit well in zero-dominated data. Therefore, it is worthy to consider zero-inflated count 

models to account for excess zeros issue. Instead of assuming all the zeros come from the 

same data-generating process in which the nonzero observations were produced, zero-

inflated models assume that these zero counts could have been generated through two 

different processes: only part of zeros (sampling zeros) comes from the count model 

which also produced all other positive observations, and another process yields structural 

zeros (true zeros). Whether a zero observation belongs to structural zeros or sampling 

zeros is determined by a Bernoulli process (Lambert, 1992; Greene, 1994). Hence, a 

general structure of a zero-inflated count model is  

{

Pr(y = 0) = (1 −  𝑝) +  𝑝 ∗ 𝑓(𝑦 = 0 ), if count is zero.            

Pr(y = 𝑘) = 𝑝 ∗ 𝑓(𝑦 = 𝑘 ), if count is any positive integer 𝑘.
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where 𝑝 is the probability of the zero observation is a sampling zero,  and 𝑓(𝑦 ) could be 

a Poisson or a Negative Binomial model. 

4.3.1 Spatio-temporal Zero-Inflated Poisson model with latent clusters (Model 3) 

For a zero-inflated spatio-temporal Poisson model, the model can be expressed as 

{
 

 
Pr(𝑌𝑖𝑡  = 0) = (1 − 𝑝𝑖𝑡) + 𝑝𝑖𝑡 ∗ 𝑒

−𝐸𝑖𝑡𝜃𝑖𝑡

Pr(𝑌𝑖𝑡  = 𝑘) = 𝑝𝑖𝑡 ∗
(𝐸𝑖𝑡𝜃𝑖𝑡)

𝑘𝑒−𝐸𝑖𝑡𝜃𝑖𝑡

𝑘!
       

 

The relative risk, 𝜃𝑖𝑡, can be modeled as introduced in the previous Poisson model  

𝑙𝑛(𝜃𝑖𝑡) = 𝒙′𝑖𝑡𝜷𝑖𝑡 

where 𝒙′𝑖𝑡 represents the vector of covariates (including intercept) of state i at year t, and 

𝜷𝑖𝑡 denotes the vector of the corresponding coefficients. The probability of a zero counts 

belongs to sampling zeros can be modeled as 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑡) = 𝒄′𝑖𝑡𝜸𝑖𝑡 

where 𝒄′𝑖𝑡 represents the vector of covariates (including intercept) of state i at year t, and 

𝜸𝑖𝑡 denotes the vector of the corresponding coefficients. Theoretically, 𝒄′𝑖𝑡 could use the 

same sets of predictors which are used in the Poisson model, but adding too many 

predictors into the model may cause difficulty in the model’s convergence. Since the 

population density is probably the most influential factor for getting zero observations, 

the proposed ZIP model only includes the intercept and population density into the 

logistic model to predict whether a zero is a sampling zero. 

As introduced in the previous Poisson model, I assume that there are several latent 

clusters exist across all the spatial units, and the temporal pattern of the effect of 

predictors is unique in each cluster. Accordingly, I specify the vector of covariates’ 

coefficients for the count model, 𝜷𝑖𝑡, as 𝜷𝑖𝑡 = 𝜷𝑆(𝑚)𝑡, and the vector of covariates’ 
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coefficients for the probability of a zero being sampling zeros, 𝜸𝑖𝑡, as 𝜸𝑖𝑡 = 𝜸𝑆(𝑚)𝑡, 

where m is the indicators of spatial clusters and 𝑆(𝑚) shows which spatial cluster the 

observed state belong to. Again, S(m) follows a categorical distribution 

𝑆(𝑚)~Categorical(qi1,…, qiM) 

where qim is the probability of state i belongs to cluster m. The modelling of qim and 

following parameters (𝑤𝑖𝑚) just follow the same steps as in the Model 1. 

4.3.2 Spatio-temporal Zero-Inflated negative binomial model with latent clusters (Model 

4) 

The last model considered is a zero-inflated spatio-temporal negative binomial 

model with latent clusters, 

{
 
 

 
 Pr(Yit = 0) = (1 − 𝑝𝑖𝑡) + 𝑝𝑖𝑡 ∗ (

𝛼

𝐸𝑖𝑡𝜃𝑖𝑡 + 𝛼
)𝛼

Pr(Yit = 𝑘) = 𝑝𝑖𝑡 ∗
𝛼𝛼(𝐸𝑖𝑡𝜃𝑖𝑡)

𝑘Γ(𝑘 + 𝛼)

𝑘! Γ(𝛼)(𝐸𝑖𝑡𝜃𝑖𝑡 + 𝛼)𝑘+𝛼
      

 

where 𝐸𝑖𝑡 is the expected count, 𝜃𝑖𝑡 is the relative risk in the i
th

 state and t
th

 year, and 𝛼 is 

the overdispersion parameter. The parameter 𝜃𝑖𝑡 and 𝑝𝑖𝑡 are modeled the same way as in 

the Model 3. A Gamma prior is assigned to 𝛼.   

To detect the number of the latent clusters, Dirichlet process mixture model could 

be used. But this approach requires intensive computations. Since the range of the 

number of possible spatial clusters cannot be very large based on the limited numbers of 

observed spatial units (48 states), I adopt a simpler way: Several models with different 

numbers of spatial domains are estimated and the best one is chosen by using model 

diagnosis criterions, i.e., DIC and NLLK.  
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For the vector of coefficients within a spatial cluster 𝜷𝑚𝑡𝑘=(𝛽𝑚𝑡0, 𝛽𝑚𝑡1, … , 𝛽𝑚𝑡𝑘)’, 

a random walk process as 𝜷𝑚𝑡𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(𝜷𝑚,𝑡−1,𝑘, 𝜎𝑚𝑘
2 ) is chosen to represent the 

temporal autocorrelations structure in spatial cluster m. By using this prior, I assume the 

current value of the outcome follows a normal distribution centered at the value of the 

coefficients at the previous time period and with variance 𝜎𝑚𝑘
2 . For 𝜎𝑚

2 , 𝜎𝜂𝑚 
2 , 𝑎𝑛𝑑 𝜎𝑚𝑘

2 , 

since they have to be positive and there is no prior knowledge about them, a hyper-prior 

distribution Inverse-Gamma (0.025, 0.025), which allows wide variations in these 

parameters (Spiegelhalter, 2002), is used. The WinBUGS codes for these four models are 

attached in the Appendix A1-4. 

4.4 Model computation and comparison 

Four Bayesian hierarchical latent cluster models (Model 1-4) adopting Poisson or 

Negative Binomial distribution with or without zero-inflated structures are to be 

estimated respectively. As a comparison, a simple Bayesian Poisson model, a negative 

binomial model, a zero-inflated Poisson model, and a zero-inflated negative binomial 

model, which do not incorporate spatial and temporal structures, are fitted (Model 5-8) as 

baseline models. A generalized linear mixed model (GLMM) formulation (Laird & Ware, 

1982), commonly employed in longitudinal studies, is used to estimate these four models 

as  

𝜼𝒊 = 𝑿𝒊𝜷 + 𝒁𝒊𝒃𝒊, 

where 𝜼𝒊 is the linear predictor which combines the fixed effect (𝑿𝒊𝜷) and random effect 

(𝒁𝒊𝒃𝒊). A log link function is used to relate the count outcomes to the linear predictor 𝜼𝒊. 

Random slopes could be possible, but the proposed study just focuses on the random 

intercept model. In this case, the fixed-effect design matrix 𝑿𝒊 includes columns for the 
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globe intercept and other fixed effect covariates, 𝜷 denotes the vector of the 

corresponding coefficients, the random effect design matrix Z only contains one column 

of 1s, and b only includes the intercept as a random effect. An equivalent expression in a 

composite multi-level model form is  

𝜼𝒊 = 𝒙′
𝑖𝑡
𝜷 + 𝑟0𝑖,   𝑟0𝑖 ~N(0, 𝜎𝑟

2) 

where 𝒙′𝑖𝑡 represents the vector of covariates of state i at year t, 𝜷 denotes the vector of 

the corresponding coefficients, and 𝑟0𝑖 is the subject specific intercept for state i.  

Also, conventional spatio-temporal models (Eq. (1)) discussed in Chapter 2, using 

Poisson or Negative Binomial with or without zero-inflated structures (Model 7-10), are 

estimated. Posterior computation can be processed by WinBUGS software via the 

Markov Chain Monte Carlo (MCMC) algorithm. The labels of the spatial-temporal 

clusters can switch when using multiple chains to conduct MCMC simulations in 

Bayesian mixture modelling, which could cause the problem of identifiability (Stephens, 

2000; Choi, et al., 2011). To avoid this issue, each model runs only one single chain to 

draw the samples. MCMC convergence can be diagnosed by trace plots, autocorrelations 

plots, and Geweke’s z-test. A randomly scattered trace plot of the draws of a parameter 

surrounding a stable mean value indicates that the convergence point is reached. Upon 

convergence, the autocorrelation between the drawn samples should decrease rapidly. 

Additionally, the convergence can be diagnosed by the Geweke test. The Geweke 

diagnostic compares the means of the beginning part (i.e., the first 10%) and the last part 

(i.e., the second half) of the draws. The test statistic is a standard Z-score, with which a 

value between |Za| (i.e., |Z0.05 |=1.96) shows convergence of the draws (2002).  
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After fitting these models, deviance information criterion (DIC), proposed by 

Spiegelhlter et al, (2002), can be used to evaluate which one best fits the data. DIC is 

defined as  

DIC=𝐷̅ + 𝑃𝐷 , 

which is a combination of 𝐷̅, a summarized measure of the current model fit, and 𝑃𝐷, a 

penalty of the model complexity. Smaller values of DIC indicate better fittings of the 

model. 𝑃𝐷 is calculated as  

𝑃𝐷 = 𝐸𝜃|𝑦(𝐷) − 𝐷 (𝐸𝜃|𝑦(𝜃)) = 𝐷̅ − 𝐷(𝜃̅), 

where 𝐷̅ = 𝐸𝜃|𝑦(𝐷) and D(θ) = −2 log 𝑝(𝑦|𝜃) + 2 log 𝑓(𝑦). The DICs of ordinary 

models can be provided by WinBUGS. However, WinBUGS does not yield DICs for 

mixture models, such as zero-inflated Poisson and zero-inflated negative binomial 

models. In such cases, an approach suggested by Neelon, et al (2010) is adopted. Dbar 

(𝐷̅), the posterior mean of the deviance, is directly read from WinBUGS output. The 

average of the values of the parameters at stochastic parent nodes are calculated, and then 

are used to compute the deviance at the posterior means of these parameters, Dhat (𝐷(𝜃̅)). 

This step is completed by retrieving each draw from WinBUGS and processing in R 

afterward.  

Also, the negative cross-validatory predictive log-likelihood (NLLK) based on the 

Conditional Predictive Ordinate (CPO) (Gelfand &Dey, 1994; Gesser, 1993; Dey, et al., 

1997; Spiegelhalter et al., 1996) is considered to compare the prediction performance 

among these models. The CPO is the density of the posterior predictive distribution 

evaluated at an observation, given the data excluding the information of this observation. 
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Hence, the CPO is a cross-validation measure. The CPO for state i and time interval t is 

defined as  

CPOit=𝑓(𝑌𝑖𝑡|𝒀−𝑖𝑡) = ∫𝑓(𝑌𝑖𝑡|𝜽, 𝒀−𝑖𝑡)𝑓(𝜽|𝒀−𝑖𝑡)𝑑𝜽=(∫
1

𝑃(𝑌𝑖𝑡|𝜽)
𝑃(𝜽|𝒀)𝑑𝜽)

−1
 

where 𝒀−𝑖𝑡 denotes the vector of the police murder observations excluding 𝑌𝑖𝑡 and 𝜽 is 

the vector of unknown parameters. The cross-validation likelihood as a summary measure 

is then calculated as 

Lcv=∏ ∏ CPO𝑖𝑡𝑇
𝑡=1

𝑛
𝑖=1 . 

A larger Lcv implies better fit. Usually, the values of Lcvs are very close to zero. Therefore, 

the negative cross-validatory log-likelihood can be used for model comparison: 

NLLKcv=−∑ ∑ logCPO𝑖𝑡
𝑇
𝑡=1

𝑛
𝑖=1 . 

Thus, a less NLLKcv indicates a better fit, which is consistent with other main model 

comparison criterions. The estimate of the CPOit can be obtained by 

CPO𝑖𝑡̂ =
1

1
𝑇
∑ [𝑃(𝑌𝑖𝑡|𝜃(𝑡))]−1
𝑇
𝑡=1

 

where T is the number of samples drawn from the MCMC chain, and 𝜃(𝑡) is the number t 

MCMC sample. 𝑃(𝑌𝑖𝑡|𝜃
(𝑡)) of each draw of the MCMC simulations is computed within 

WinBUGS, and then is exported to R to calculate the CPO and NLLKcv. The related R 

codes for calculating DICs and NLLKcv are attached in the Appendix. 
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CHAPTER 5 

RESULTS 

I apply the aforementioned models to the police occupational fatal victimization 

(POFV) data. For each model, 80,000 MCMC iterations are performed, and the first 

30,000 samples are discarded as burn-in. To reduce the autocorrelations between the 

sampled parameters, only every 20th sample is kept. Hence, 2,500 final samples are 

collected to summarize the parameters of interest. Based on visual inspection of trace 

plots, autocorrelation plots, and the result of the Geweke test, convergence is reached for 

all the models. Some trace plots and autocorrelation plots of the parameters of interest are 

illustrated in Figure 5.1. In order to decide the best number of the spatial clusters in the 

models 1-4, the models with a range of the number of clusters are estimated. Because the 

total number of spatial units (48 states) is not large, a reasonable estimation of the 

number of clusters is between two to eight. The final number of the spatial clusters is 

determined by the model with the best comparison measures (DIC and NLLK) by 

estimating models with different numbers of clusters. The plots of DIC and NLLK values 

for model 1-4 fitted with different numbers of spatial groups are displayed in Figure 5.2. 

Table 5.1 provides detailed information about the DIC and NLLK values for each model.  

From Figure 5.2, it can be found that there is no uniform pattern in terms of the 

changes of DICs and NLLKs with different numbers of clusters across four models. 

However, the changes of DICs are similar to that of NLLKs within each model, 
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illustrating the consistence between these two comparison criterions. The results show 

that Model 3 (ZIP model) with four spatial clusters has the smallest DIC (1218.4) and 

NLLK (778.5). Model 1 (Poisson model) with four spatial clusters comes next with a 

DIC of 1226.5 and a NLLK of 783.6. Although the likelihood ratio test shows the sign of 

overdispersion in the POFV data, the negative binomial model (Model 2) does not 

perform better than the Poisson model with respect to DIC (1937.7) and NLLK (964.4). 

Theoretically, both unobserved heterogeneity among subjects and excess zeroes due to 

different zero generating mechanisms could produce an overdispersion in the raw data 

(Long, 1997). A negative binomial model should be more appropriate when the 

overdispersion is only a result of the subjects’ heterogeneity, but may not fit well if the 

overdispersion is actually a reflection of the zero inflation. In this analysis, the ZIP model 

outperformed the negative binomial model, suggesting that the overdispersion may 

mainly come from the high proportion of zeroes. The ZINB model (Model 4) produces 

the highest DIC and NLLK (2711.3 and 2429.9 respectively), indicating that no extra 

overdispersion needs to be adjusted after applying a zero-inflated structure model (i.e., a 

ZIP model).  

 

 

 

 

 

 

 
 

Figure 5.1. The trace plots and the autocorrelation plots of selected parameters 
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Figure 5.2 The DICs and NLLKs of Model 1-4 using different number of clusters 
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Table 5.1 Latent cluster models comparison using DIC and NLLK 

 

Model # Clusters Dbar Dhat 𝑃𝐷 DIC NLLK 

Model 1  2 1468.4 1502.3 -33.9 1434.5 805.0 

(cluster Poisson) 3 1482.7 1493.9 -11.2 1471.4 808.4 

 4 1395.5 1564.5 -169.0 1226.5 783.6 

 5 1404.4 1575.3 -170.9 1233.5 784.4 

 6 1421.9 1553.7 -131.8 1290.0 796.2 

 7 1474.8 1660.6 -185.9 1288.9 796.1 

 8 1488.0 1484.0 4.0 1492.0 808.5 

Model 2 2 1820.6 1703.4 117.2 1937.7 964.4 

(cluster NB) 3 1821.7 1703.7 118.0 1939.7 968.0 

 4 1822.4 1704.2 118.2 1940.6 972.5 

 5 1821.4 1703.7 117.7 1939.1 972.6 

 6 1821.0 1703.1 117.8 1938.8 977.5 

 7 1841.2 1675.0 166.2 2007.4 979.4 

 8 1841.5 1679.6 161.9 2003.4 981.8 

Model 3  2 1504.4 1616.5 -112.1 1392.4 809.7 

(cluster ZIP) 3 1482.6 1640.6 -158.0 1324.6 801.3 

 4 1400.4 1582.5 -182.1 1218.4 778.5 

 5 1403.8 1582.9 -179.1 1224.8 780.9 

 6 1455.5 1690.5 -235.0 1220.5 785.3 

 7 1457.2 1564.3 -107.1 1350.0 796.1 

 8 1459.2 1534.3 -75.1 1384.1 809.2 

Model 4 2 1833.9 1676.4 157.5 1991.4 979.7 

(cluster ZINB) 3 1832.5 1677.1 155.43 1987.9 977.2 

 4 1831.3 1677.7 153.6 1985.0 978.3 

 5 1831.4 1677.8 153.6 1985.0 978.1 

 6 1832.9 1678.9 154.0 1986.9 981.9 

 7 1830.5 1678.4 152.1 1982.6 980.0 

 8 1832.5 1678.6 153.9 1986.3 983.3 

 

Next, a comparison is made between this model (Model 3) and the models 

without spatial structured variation (Model 5-8), as well as the models applying 

conventional spatio-temporal variation structures (Model 9-12). Table 5.2 reports the 

comparison measures of these models. In general, the negative binomial model and the 

ZINB model have higher DIC and NLLK values than the Poisson model and the ZIP 
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model in each subgroup. This result, again, suggests that the overdispersion in the current 

data may mainly be due to excess zeroes rather than the heterogeneity among subjects. 

As expected, Models 5 and 7 have the largest DIC and NLLK values in comparison to 

their counterpart models considering spatio-temporal autocorrelations. This suggests that 

the models incorporating spatial and temporal autocorrelations are more appropriate for 

the analysis of this POFV data than the models which do not have space and time 

components. However, this finding does not appear in the negative binomial models and 

the ZINB models, implying that incorporating space and time information cannot 

improve the fitness if an improper model is chosen. When comparing the conventional 

spatio-temporal models with proposed latent cluster models, the latent cluster ZIP model 

(Model 3) with four spatial clusters still has the smallest DIC and NLLK. Therefore, the 

ZIP cluster model provides the best performance. All the ensuing analyses are based on 

the results of this model. 

Table 5.2. Models comparison using DIC and NLLK 

 

Model Dbar Dhat 𝑃𝐷 DIC NLLK 

Model 3 (Latent cluster, ZIP) 1400.4 1582.5 -182.1 1218.4 778.5 

Model 5 (Poisson, no spatial variation)  1493.6 1441.0 52.6 1546.2 816.4 

Model 6 (NB, no spatial variation) 1809.0 1693.0 116.0 1925.0 937.0 

Model 7 (ZIP, no spatial variation) 1544.1 1508.7 35.4 1579.5 810.9 

Model 8 (ZINB, no spatial variation) 1816.8 1694.7 122.1 1938.9 942.4 

Model 9 (Conventional Poisson) 1484.6 1430.0 54.6 1539.2 801.7 

Model 10 (Conventional NB)  1822.4 1642.0 180.4 2002.8 980.3 

Model 11 (Conventional ZIP) 1487.8 1434.5 53.3 1541.1 802.2 

Model 12 (Conventional ZINB) 1818.0 1621.7 196.3 2014.3 987.3 

 

The spatial clusters identified through Model 3 with four groups are mapped in 

Figure 5.3. The assignment of spatial clusters for each state is determined by the posterior 

mean of the conditional weight, qim, which represents the probability of state i belonging 



29 

to cluster m. A state is assigned to cluster k if qik is the largest one among all the qims 

(k∈m, m={1,2,3,4}). The names of the states in each cluster are listed in Table 5.3. The 

numbers of states by spatial cluster are also presented. Cluster two has the largest number 

of member states (34 states in this group). This cluster includes the states from all the 

regions across the country, and does not show apparent spatial patterns. Most southern 

states and midwestern states are assigned into this cluster. Next comes cluster four with 

11 states. Three southern states (Texas, Florida, and Virginia) and several northern states 

are allocated to this group. Also, Washington, Idaho, Utah, and Arizona in this cluster 

constitute a corridor in the south-north direction in the West. The remaining three states 

are classified into two clusters: Iowa and Vermont in cluster one and Maine in cluster 

three respectively. These states reported zero count observations in most time periods.  

 

Figure 5.3 The distribution of the member states in each spatial cluster  
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Table 5.3 The distribution of the states in four spatial clusters 

 Cluster1 Cluster2 Cluster3 Cluster4 

States names Iowa Alabama Maine  Arizona 

 Vermont Arkansas  Florida 

  California  Idaho 

  Colorado  Michigan 

  Connecticut  Nebraska 

  Delaware  New York 

  Georgia  Rhode Island 

  Illinois  Texas 

  Indiana  Utah 

  Kansas  Virginia 

  Kentucky  Washington 

  Louisiana   

  Maryland   

  Massachusetts   

  Minnesota   

  Mississippi   

  Missouri   

  Montana   

  Nevada   

 
 

New 

Hampshire 

  

  New Jersey   

  New Mexico   

 
 

North 

Carolina 

  

  North Dakota   

  Ohio   

  Oklahoma   

  Oregon   

  Pennsylvania   

 
 

South 

Carolina 

  

  South Dakota   

  Tennessee   

  West Virginia   

  Wisconsin   

  Wyoming   

Number of 

states 

2 34 1 11 
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The estimated risks of law enforcement officers being killed is mapped in Figure 

5.4, after controlling for the effect of population density, unemployment rate, poverty rate, 

racial heterogeneity, crime level, and incarceration rate. Compared to the raw SMRs of 

police murder mapped in Figure 3.1, the estimated risks reflect more stable temporal and 

spatial patterns. Also, these patterns can be more easily detected than using raw SMRs. 

According to Figure 5.4, the lower risks of police killings in the Pacific states and the 

states in the Northeast region are more obvious. This pattern remained stable and did not 

suffer from the influence of extreme observations over time. In general, most states in the 

Midwest and the West stayed at the low and average risk level, with the exception of 

Montana, Idaho, and Nevada at several time points. It is more evident that most southern 

states plus several southwest states (i.e., New Mexico, Arizona) had heightened fatal 

threats to police over time. Several southeastern states constitute a core high risk region 

for police safety. Among these states, Mississippi and Louisiana remained the most 

dangerous places to law enforcement officers across almost all the time periods.  

Because the number of the coefficients is large (288 coefficients), the estimated 

means and the 95% credible intervals of these parameters from the posterior samples are 

reported in the form of caterpillar plots (Figure 5.5). A rough idea from this figure is that 

the locations of the estimated means and the range of the credible intervals varied across 

four spatial clusters. To take a closer look at such variations, a further inspection of these 

estimates is needed. Therefore, Table 5.4 collects the detailed information of the 

parameters which have significant estimates. The results shows that poverty rates, the 

proportion of the black population, and incarceration rates had positive relationships with 

police murders in cluster two during 1979-1986, 1995-2010, and 1995-1998, respectively.   
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Figure 5.4 The estimated mortality risk for police in the U.S., 1979-2010 
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Contrary to common belief, unemployment rates were negatively associated with the 

police fatal victimization in cluster two during 1983-1986. The possible causes of this 

relationship deserve further investigation.  

It is also found that the temporal trends of the coefficients for some covariates 

varied across four spatial groups. For example, Figure 5.6 illustrates the different 

temporal profiles of the effects of the percentage of the population that was African-

American on the fatal victimization risk for police across four spatial clusters. While 

cluster one showed a near flat trend over time, cluster three indicated a slightly increasing 

temporal pattern of the coefficients of the covariate. The temporal changes in the effect of 

the proportion of black population on murders of police in cluster two and cluster four 

displayed totally different profiles. Overall, the corresponding coefficient in cluster two 

increased over time and became significant after 1995. In contrast, although the estimates 

of this coefficient in cluster four were not significant, they showed an apparent downward 

pattern after 1983 and dropped to zero gradually. This indicates that the positive 

association between the percentages of the black population (which represents racial 

heterogeneity) and the killings of officers became stronger over time in cluster two, while 

such an association diminished in cluster four. Compared to cluster two and cluster four, 

the effect of the percentage of the black population did not show any obvious temporal 

variations in cluster one and cluster three. Since cluster two has the largest number of 

member states, this positive association between the proportion of the black population 

and killings of police may have a heavier influence on the general association estimate 

than that of any other spatial group. It is possible that a positive relationship between 

these two variables is found if no latent cluster analysis is considered, while in fact such 
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relationships do not hold in all the states. The temporal profiles of the coefficients 

corresponding to other covariates are displayed in Appendix B. 
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Intercept (logit, alpha0) Population (logit, alpha1) Intercept (Poisson, beta0) 

   

Poverty (beta1) Unemployment (beta2) Proportion of black (beta3) 

   
Violent crime (beta4) Incarceration (beta5) Population density (beta6) 

   
 

Figure 5.5 The caterpillar plots of the coefficient estimates from the posterior samples in 

Model 3 (The first number in the square bracket after the coefficient name denotes the 

order of the time periods, and the second number denotes the spatial cluster to which the 

coefficient belongs.) 
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Table 5.4 Parameter estimates from the posterior distribution in Model 3 (Posterior mean, 

standard deviation and 95% credible interval are shown. The first number in the square 

bracket after the coefficient name denotes the order of the time periods, and the second 

number denotes the spatial cluster to which the coefficient belongs.) 

 

 
Time period median sd MC error 2.50% mean 97.50% 

(logit)Intercept[1,2] 1979-1982 -5.86 1.86 0.03 -10.04 -6.05 -3.02 

(logit)Intercept[2,2] 1983-1986 -8.68 2.75 0.06 -14.85 -8.95 -4.40 

(logit)Intercept[3,2] 1987-1990 -10.59 3.35 0.08 -18.19 -10.85 -5.14 

(logit)Intercept[4,2] 1991-1994 -12.18 3.76 0.08 -20.82 -12.48 -5.94 

(logit)Intercept[5,2] 1995-1998 -13.34 4.16 0.09 -22.76 -13.64 -6.56 

(logit)Intercept[6,2] 1999-2002 -14.06 4.67 0.12 -24.55 -14.47 -6.42 

(logit)Intercept[7,2] 2003-2006 -14.6 5.21 0.11 -26.64 -15.09 -6.34 

(logit)Intercept[8,2] 2007-2010 -14.99 5.64 0.13 -27.8 -15.55 -6.08 

(logit)Intercept[1,4] 1979-1982 -4.96 1.98 0.04 -9.70 -5.20 -1.88 

(logit)Intercept[2,4] 1983-1986 -7.54 2.88 0.06 -13.72 -7.73 -2.72 

(logit)Intercept[3,4] 1987-1990 -9.47 3.40 0.07 -16.99 -9.69 -3.63 

(logit)Intercept[4,4] 1991-1994 -10.82 3.77 0.08 -19.39 -11.14 -4.70 

(logit)Intercept[5,4] 1995-1998 -11.81 4.25 0.10 -21.57 -12.18 -4.92 

(logit)Intercept[6,4] 1999-2002 -12.41 4.67 0.11 -23.24 -12.92 -4.89 

(logit)Intercept[7,4] 2003-2006 -12.96 5.15 0.12 -25.1 -13.57 -5.26 

(logit)Intercept[8,4] 2007-2010 -13.18 5.69 0.12 -26.31 -13.75 -4.41 

(ln(mu))Poverty[1,2] 1979-1982 0.39 0.14 0.01 0.11 0.39 0.64 

(ln(mu))Poverty[2,2] 1983-1986 0.63 0.19 0.01 0.24 0.63 1.01 

(ln(mu))Unemployment[2,2] 1983-1986 -0.45 0.18 0.01 -0.80 -0.45 -0.09 

(ln(mu))BlackPct[5,2] 1995-1998 0.19 0.09 0.01 0.00 0.19 0.37 

(ln(mu))BlackPct[6,2] 1999-2002 0.45 0.10 0.01 0.27 0.46 0.66 

(ln(mu))BlackPct [7,2] 2003-2006 0.28 0.11 0.01 0.06 0.28 0.52 

(ln(mu))BlackPct [8,2] 2007-2010 0.32 0.12 0.01 0.08 0.32 0.56 

(ln(mu))Incarceration[5,2] 1995-1998 0.22 0.10 0.01 0.01 0.22 0.41 
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Cluster one Cluster two 

  
Cluster Three Cluster Four 

  
 

Figure 5.6 Temporal profiles of the effects of the proportion of blacks (beta3) on the fatal 

victimization risk for police in four spatial clusters (The solid lines denote the posterior 

means of the parameter and the dotted lines mark the 95% confidence intervals) 
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CHAPTER 6 

DISCUSSION 

This paper applies a series of latent cluster models for the spatio-temporal 

analysis of the POFV data. Overall, the latent cluster Poisson and ZIP models provide 

better fits than their conventional spatio-temporal analysis counterparts, proving their 

values in analyzing the data in which the effects of the covariates on the outcomes are 

believed to vary spatially and temporally. This paper illustrates the heterogeneity in the 

associations between police fatal victimization outcome and specific risk factors (i.e., the 

proportion of the black population) across the latent clusters. If such heterogeneity is not 

fully considered, it could lead to inaccurate and misleading conclusions. The proposed 

latent cluster models are superior to conventional models in that they incorporate spatial 

and temporal information to estimate the coefficients of the covariates instead of only 

considering the space and time variations in the global effects. On the other hand, unlike 

estimating the coefficients of covariates for each time or space unit, this approach only 

focuses on detecting spatial groups in which the association between the outcome and 

exposures have unique temporal trend, thus providing a relative parsimonious model. 

The present study reveals that the positive association between the percentages of 

the black population and the killings of officers became stronger over time in the states 

belonging to cluster two. Such a increasing trend should gain the attention of policy 

makers. Although there are different theories explaining the positive association between 

percent black and police homicides (i.e., social disorgnization theory and racial threat 



39 

theory )2, racial inequality is generally recognized as the fundamental cause of such an 

association (Jacobs & Carmichael, 2002; Kaminski, 2002).Therefore efforts should be 

made to identify the factors aggravating racial inequality in these states. Resources 

should be allocated to eliminate these hazard factors.  

Note that although overdispersion exists in the POFV data, the model fit does not 

benefit from the negative binomial model. However, the zero-inflated Poisson (ZIP) 

model does help improve the fitness of the estimations. This result suggests that the 

overdispersion in the raw data could come from the same process that also leads to zero-

inflations. A negative binomial model may not fit well in such a situation. In contrast, a 

ZIP model could account for the overdispersion if it is actually a result of excess zeroes. 

If a ZIP model has fully addressed the overdisperson issue by modeling excess zeroes, a 

more complicated ZINB model may not be necessary, which is the case in this analysis. 

This finding suggests that the choice of the analysis model should be carefully considered 

in terms of specific fitness criterions, rather than being determined only by the existences 

of conditional dispersion and/or excess zeroes. 

This study provides a flexible latent cluster model for analyzing spatial-temporal 

health data with excess zeros and overdispersion issues. However, some limitations have 

to be pointed out. First, the performance of other models handling excess zeros and 

overdispersions, such as hurdle models or zero-altered models, is not examined. These 

models have different explanations for the generation of excess zeros. Further research on 

these models may improve our understanding of the nature of excess zero observations. 

                                                           
2 The social capital/collective efficacy framework rooted in social disorganization theory argues that high racial heterogeneity could 

impede a community to nurture mutual trust and support, thus resulting in reduced the willingness and capability to control disorder 
behaviors (Parker, McCall, and Land, 1999; Sampson and Groves, 1989; Sampson and Laub, 1993; 2005), which in turn increase the 

proximity of police to potential offenders. In contrast, the political explanation based on conflict theory and racial threat theory 

(Blalock, 1967; Eitle, D’Alessio, & Stolzenberg, 2002; Jackson, 1989) posits that the elevated violence against police has reflected 
suppressed minority groups’ inarticulate protest or primitive rebellion toward the state’s control force (Jacobs & Carmichael, 2002). 
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Second, the proposed approach does not consider the modelling of multivariate outcomes, 

which may improve inference. Extant studies suggest that general homicides and police 

homicides are correlated and have similar sets of predictors. Modeling general homicides 

and police homicides simultaneously, employing a multivariate CAR structure, could 

provide a clearer picture of the effects of related covariates across time and space. 
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APPENDIX A –THE WINBUGS CODES FOR SELECTED MODELS 

APPENDIX A.1The WinBUGS codes for the spatio-temporal latent cluster Possion 

model (Model 2) 

# OBSERVED[i,j], is the observed murdered cop count in i th time interval and state j.  

# EXPECTED[i,j], is the expected murdered cop count in i th time interval and state j.  

model {     

 for (i in 1:T){  # T= 8 time periods.  

  for (j in 1: N){  # T= 8 time intervals.     

   OBSERVED[i,j]  ~ dpois(muf[i,j]) 

   log(mu[i,j])<-log(EXPECTED[i,j])+beta0[i,cluster[j]]+beta1[i,cluster[j]]*(POV[i,j]-

mean(POV[i,]))/sd(POV[i,])+beta2[i,cluster[j]]*(UNEMPLY[i,j]-

mean(UNEMPLY[i,]))/sd(UNEMPLY[i,])+beta3[i,cluster[j]]*(BLACKPCT[i,j]-

mean(BLACKPCT[i,]))/sd(BLACKPCT[i,])+beta4[i,cluster[j]]*(CRIMErs[i,j]-

mean(CRIMErs[i,]))/sd(CRIMErs[i,])+beta5[i,cluster[j]]*(INCARrs[i,j]-

mean(INCARrs[i,]))/sd(INCARrs[i,])+beta6[i,cluster[j]]*(POPDENSITY[i,j]-mean(POPDENSITY[i,]))/sd(POPDENSITY[i,]) 

   

   muf[i,j]<-min(2.0E+3,max(1.0E-20,mu[i,j])) # Prevent error message    

   # Likelihood 

   L[i,j]<-exp(-muf[i,j])*pow(muf[i,j],OBSERVED[i,j])/exp(loggam(OBSERVED[i,j]+1))    

   Lf[i,j]<-max(1.0E-20,L[i,j]) # Prevent error message. 

   LogL[i,j]<-log(Lf[i,j]) 

   D[i,j]<--2*LogL[i,j]  #Deviance       

   ci[i,j]<-1/exp(LogL[i,j])   #  will be used to calculate CPO. The average of ci[i,j]s will be the 

posterior mean of the inverse of CPO[i,j]   

  } 

   DevI[i]<-sum(D[i,])    

  } 

   Dev<-sum(DevI[ ])    

  #Prior distributions 

  for (j in 1:N){  

      for (c in 1: NumCluster){
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              w[j,c]~dnorm(spatial[j], taum)     # w[j,c] is the unstandardized weight, a log norm prior is assigned. 

      wb[j,c]<-max(-80,min(80,w[j,c]))  # Put a limit to prevent error message. 

      we[j,c]<-exp(wb[j,c])  

                } 

                for (c in 1: NumCluster){ 

          q[j,c]<-(we[j,c])/sum(we[j,])  # q[j,c] is the standardized weight, 

                } 

                cluster[j]~dcat(q[j,]) # Assign each state into one cluster 

  }   

  #Random walk for betas 

  for (c in 1: NumCluster) { 

      beta0[1,c]~dnorm(0, taub) 

      beta1[1,c]~dnorm(0, taub) 

      beta2[1,c]~dnorm(0, taub) 

      beta3[1,c]~dnorm(0, taub) 

      beta4[1,c]~dnorm(0, taub) 

      beta5[1,c]~dnorm(0, taub) 

      beta6[1,c]~dnorm(0, taub)            

      for (t in 2 : T) {   

          beta0[t, c]~dnorm(beta1[t-1, c], taub) 

          beta1[t, c]~dnorm(beta1[t-1, c], taub) 

          beta2[t, c]~dnorm(beta2[t-1, c], taub) 

          beta3[t, c]~dnorm(beta3[t-1, c], taub) 

          beta4[t, c]~dnorm(beta4[t-1, c], taub) 

       beta5[t, c]~dnorm(beta3[t-1, c], taub) 

          beta6[t, c]~dnorm(beta4[t-1, c], taub)      

         } 

  }     
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  #CAR   

  spatial[1:N] ~ car.normal(adj[], weights[], num[], tau)   

  for(k in 1:sumNumNeigh) {weights[k] <- 1}   

  #Other Priors 

  taum~ dgamma(0.025,0.025)  # prior on precision for the unstandardized weights 

  tau  ~ dgamma(0.01,0.01) # prior on precision for CAR 

  taub<-1/pow(tem1,2.0) # prior on precision for betas.  

  tem1~dunif(1,6)   

  } 

APPENDIX A.2 The WinBUGS codes for the spatio-temporal latent cluster negative 

binomial model (Model 2) 

model { 

for (i in 1:T){  # T= 8 time periods.  

 for (j in 1: N){ # N=48 states.   

  OBSERVED[i,j]~dnegbin(p[i,j],r1[i,j])   

  p[i,j]<-r1[i,j]/(r1[i,j]+muf[i,j]) 

  r1[i,j]~dgamma(alpha[i,cluster[j]], alpha[i,cluster[j]])    mu[i,j]<-

exp(log(EXPECTED[i,j])+beta0[i,cluster[j]]+beta1[i,cluster[j]]*(POV[i,j]-

mean(POV[i,]))/sd(POV[i,])+beta2[i,cluster[j]]*(UNEMPLY[i,j]-

mean(UNEMPLY[i,]))/sd(UNEMPLY[i,])+beta3[i,cluster[j]]*(BLACKPCT[i,j]-

mean(BLACKPCT[i,]))/sd(BLACKPCT[i,])+beta4[i,cluster[j]]*(CRIMErs[i,j]-

mean(CRIMErs[i,]))/sd(CRIMErs[i,])+beta5[i,cluster[j]]*(INCARrs[i,j]-

mean(INCARrs[i,]))/sd(INCARrs[i,])+beta6[i,cluster[j]]*(POPDENSITY[i,j]-mean(POPDENSITY[i,]))/sd(POPDENSITY[i,])) 

  

  muf[i,j]<-min(2.0E+3,max(1.0E-20,mu[i,j]))  # Prevent error message   

  #Log of Likelihood 

  LogL[i,j]<- loggam( OBSERVED[i,j]+r1[i,j] ) - loggam( r1[i,j] ) - loggam( OBSERVED[i,j]+1 ) + 

r1[i,j]*log( p[i,j] ) + OBSERVED[i,j]*log( 1-p[i,j] )   

   D[i,j]<--2*LogL[i,j] #Deviance        

   ci[i,j]<-1/exp(LogL[i,j])   #  will be used to calculate CPO. The average of c[i,j]s will be the 

posterior mean of the inverse of CPO[i,j]    

   } 
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   DevI[i] <-sum(D[i,])    

} 

   Dev<-sum(DevI[ ])   

  for (j in 1:N){  

      for (c in 1: NumCluster){               

   w[j,c]~dnorm(spatial[j], taum)      # w[j,c] is the unstandardized weight, a log norm prior is assigned. 

   wb[j,c]<-max(-80,min(80,w[j,c]))    # Put a limit to prevent error message. 

   we[j,c]<-exp(wb[j,c]) 

    } 

                for (c in 1: NumCluster){ 

           q[j,c]<-(we[j,c])/sum(we[j,])   # q[j,c] is the standardized weight, 

                }                

    cluster[j]~dcat(q[j,]) # Assign each state into one cluster (four clusters)   

  

  } 

     

   for (i in 1:T){ 

    for (c in 1: NumCluster){       

     alpha[i,c]~dunif(0.25,1) # too small low bounary will cause error message. 

     

    } 

    }   

#The other priors are the same as in the Model 1. 

APPENDIX A.3 The WinBUGS codes for the spatio-temporal latent cluster ZIP model 

(Model 3) 

model { 

 for (i in 1:T){  # T= 8 time periods.  

  for (j in 1: N){ # N=48 states 

  OBSERVED[i,j]~dpois(muzip[i,j])   
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  u[i,j]~dbern(p0[i,j])   #p0 is the prob. of the zero is a structural zero. 

  muzip[i,j]<-(1-u[i,j])*muf[i,j]  # if not an excess zero, follows a Pois(mu),  

  p0[i,j]<-exp(alpha0[i,cluster[j]]+alpha1[i,cluster[j]]*(POPDENSITY[i,j]-

mean(POPDENSITY[i,]))/sd(POPDENSITY[i,]))/(1+exp(alpha0[i,cluster[j]]+alpha1[i,cluster[j]]*(POPDENSITY[i,j]-

mean(POPDENSITY[i,]))/sd(POPDENSITY[i,])))  #logit part 

  log(mu[i,j])<-log(EXPECTED[i,j])+beta0[i,cluster[j]]+beta1[i,cluster[j]]*(POV[i,j]-

mean(POV[i,]))/sd(POV[i,])+beta2[i,cluster[j]]*(UNEMPLY[i,j]-

mean(UNEMPLY[i,]))/sd(UNEMPLY[i,])+beta3[i,cluster[j]]*(BLACKPCT[i,j]-

mean(BLACKPCT[i,]))/sd(BLACKPCT[i,])+beta4[i,cluster[j]]*(CRIMErs[i,j]-

mean(CRIMErs[i,]))/sd(CRIMErs[i,])+beta5[i,cluster[j]]*(INCARrs[i,j]-

mean(INCARrs[i,]))/sd(INCARrs[i,])+beta6[i,cluster[j]]*(POPDENSITY[i,j]-mean(POPDENSITY[i,]))/sd(POPDENSITY[i,]) 

 #Poisson part 

  # likelihood of the Poisson part 

  muf[i,j]<-max(1.0E-20,min(2.0E+3,mu[i,j])) # to prevent WinBUGS errors. 

  fd[i,j]<-exp(-muf[i,j]+OBSERVED[i,j]*log(muf[i,j])-(loggam(OBSERVED[i,j]+1)) )   

  # Likelihood 

   L[i,j]<-p0[i,j]*equals(OBSERVED[i,j],0)+(1-p0[i,j])*fd[i,j]  

   Lf[i,j]<-max(1.0E-20,L[i,j]) # to prevent WinBUGS errors. 

   LogL[i,j]<-log(Lf[i,j])  

   D[i,j]<--2*LogL[i,j] #Deviance 

   ci[i,j]<-1/exp(LogL[i,j])   #  will be used to calculate CPO. The average of c[i,j]s will be the 

posterior mean of the inverse of CPO[i,j] 

} 

  DevI[i]<-sum(D[i,]) 

} 

  Dev<-sum(DevI[ ]) 

#Prior distributions 

  for (z in 1:N){  

      for (c in 1: NumCluster){ 

                    w[z,c]~dnorm(spatial[z], taum)    # w[j,c] is the unstandardized weight, a log norm prior is assigned. 

    wb[z,c]<-max(-80,min(80,w[z,c])) # put a limit to prevent error messages 

    we[z,c]<-exp(wb[z,c]) 
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      } 

                for (c in 1: NumCluster){ 

           q[z,c]<-(we[z,c])/sum(we[z,]) # q[j,c] is the standardized weight, 

                } 

    cluster[z]~dcat(q[z,]) # Assign each state into one cluster  

  } 

  #Random walk for betas 

  for (c in 1: NumCluster) { 

      beta0[1,c]~dnorm(0, taub) 

      beta1[1,c]~dnorm(0, taub) 

      beta2[1,c]~dnorm(0, taub) 

      beta3[1,c]~dnorm(0, taub) 

      beta4[1,c]~dnorm(0, taub) 

      beta5[1,c]~dnorm(0, taub) 

      beta6[1,c]~dnorm(0, taub) 

      alpha0[1,c]~dnorm(0, 1.0E-1) 

      alpha1[1,c]~dnorm(0, 1.0E-1)      

       for (t in 2 : T) {   

          beta0[t, c]~dnorm(beta1[t-1, c], taub) 

          beta1[t, c]~dnorm(beta1[t-1, c], taub) 

          beta2[t, c]~dnorm(beta2[t-1, c], taub) 

          beta3[t, c]~dnorm(beta3[t-1, c], taub) 

          beta4[t, c]~dnorm(beta4[t-1, c], taub) 

       beta5[t, c]~dnorm(beta3[t-1, c], taub) 

          beta6[t, c]~dnorm(beta4[t-1, c], taub) 

      alpha0[t, c]~dnorm(alpha0[t-1, c], 1.0E-1) 

          alpha1[t, c]~dnorm(alpha1[t-1, c], 1.0E-1) 

         } 
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  } 

#The other priors are the same as in the Model 1. 

APPENDIX A.4 The WinBUGS codes for the spatio-temporal latent cluster ZINB model 

(Model 4) 

model { 

Con<-10000 #set a large constant 

 for (i in 1:T){  # T= 8 time intervals.  

  for (j in 1: N){ # N=48 states 

  zeros[i,j]<-0  #zeros trick 

  zeros[i,j]~dpois(zeros.means[i,j]) 

  zeros.means[i,j]<--LogL[i,j]+Con 

  LogL[i,j]<-log(p0[i,j]*equals(OBSERVED[i,j],0)+(1-p0[i,j])*fd[i,j] ) 

  r1[i,j]~dgamma(alpha[i,cluster[j]], alpha[i,cluster[j]])     

  p0[i,j]<-exp(alpha0[i,cluster[j]]+alpha1[i,cluster[j]]*(POPDENSITY[i,j]-

mean(POPDENSITY[i,]))/sd(POPDENSITY[i,]))/(1+exp(alpha0[i,cluster[j]]+alpha1[i,cluster[j]]*(POPDENSITY[i,j]-

mean(POPDENSITY[i,]))/sd(POPDENSITY[i,])))   #logit part 

  log(mu[i,j])<-log(EXPECTED[i,j])+beta0[i,cluster[j]]+beta1[i,cluster[j]]*(POV[i,j]-

mean(POV[i,]))/sd(POV[i,])+beta2[i,cluster[j]]*(UNEMPLY[i,j]-

mean(UNEMPLY[i,]))/sd(UNEMPLY[i,])+beta3[i,cluster[j]]*(BLACKPCT[i,j]-

mean(BLACKPCT[i,]))/sd(BLACKPCT[i,])+beta4[i,cluster[j]]*(CRIMErs[i,j]-

mean(CRIMErs[i,]))/sd(CRIMErs[i,])+beta5[i,cluster[j]]*(INCARrs[i,j]-

mean(INCARrs[i,]))/sd(INCARrs[i,])+beta6[i,cluster[j]]*(POPDENSITY[i,j]-

mean(POPDENSITY[i,]))/sd(POPDENSITY[i,])  #NB part 

  muf[i,j]<-max(1.0E-20,min(2.0E+3,mu[i,j])) # in case mu too large or too small. 

  # likelihood of the NB part 

  lfd[i,j]<-loggam( OBSERVED[i,j]+r1[i,j] ) - loggam( r1[i,j] ) - loggam( OBSERVED[i,j]+1 ) + 

r1[i,j]*log( p1[i,j] ) + OBSERVED[i,j]*log( 1-p1[i,j] ) 

   

     fd[i,j] <- exp( lfd[i,j] ) 

 

  p1[i,j]<-r1[i,j]/(r1[i,j]+muf[i,j]) 
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  D[i,j]<--2*LogL[i,j] #Deviance 

  ci[i,j]<-1/exp(LogL[i,j])   #  will be used to calculate CPO. The average of c[i,j]s will be the 

posterior mean of the inverse of CPO[i,j] 

} 

  DevI[i]<-sum(D[i,]) 

  } 

  Dev<-sum(DevI[ ]) 

 

#Prior distributions 

  for (j in 1:N){  

      for (c in 1: NumCluster){ 

            w[j,c]~dnorm(spatial[j], taum)     # w[j,c] is the unstandardized weight, a log norm prior is assigned. 

    wb[j,c]<-max(-60,min(60,w[j,c]))  # put limit to prevent error messages 

    we[j,c]<-exp(wb[j,c])     

   #w[j,c]~dlnorm(spatial[j], taum)  

                } 

                for (c in 1: NumCluster){ 

           q[j,c]<-(we[j,c])/sum(we[j,])  # q[j,c] is the standardized weight, 

                } 

    cluster[j]~dcat(q[j,]) # Assign each state into one cluster (four clusters)  

  } 

     

   for (i in 1:T){ 

    for (c in 1: NumCluster){  

      alpha[i,c]~dunif(0.25,1) # too small low bounary will 

cause error message. 

     } 

    }  
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  }#The other priors are the same as in the Model 1 and Model 3. 

APPENDIX A.5 The WinBUGS codes for the mixed effect Poisson model (Model 5) 

model { 

 # Likelihood 

 for (i in 1:N){  # N= 384 

  ncopskill[i] ~dpois(mu[i])   

  log(mu[i])<-log(EXPECTEDs[i]) 

+beta0+beta1*POVERTYs[i]+beta2*UNEMPLYs[i]+beta3*BLACKPCTs[i]+beta4*CRIMEs[i]+beta5*INCARs[i]+beta6*POPDEN

SITYs[i]+alpha0[stateid[i]] 

  muf[i]<-min(2.0E+3, max(1.0E-20,mu[i])) #Prevent WinBUGS error message 

  # alpha0[] within state random effect    

  L[i]<-exp(-muf[i]+ncopskill[i]*log(muf[i])-loggam(ncopskill[i]+1))   #Likelihood 

   LogL[i]<-log(L[i]) 

   D[i]<--2*LogL[i] #Deviance    

   c[i]<-1/exp(LogL[i])  #  will be used to calculate CPO. The average of c[i]s will be the posterior 

mean of the inverse of CPO[i] 

  } 

   Dev<-sum(D[])    

 #Prior distributions  

  #Priors for alpha   

    for (i in 1: 48){       

     alpha0[i]~dnorm(0, 1.0E-2) 

    }     

  #CAR   

  spatial[1:48] ~ car.normal(adj[], weights[], num[], tau)   

  for(k in 1:sumNumNeigh) { 

  weights[k] <- 1 

  }   

  #Other Priors   
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       beta0 ~ dflat() 

       beta1~dnorm(0, taum) 

   beta2~dnorm(0, taum) 

   beta3~dnorm(0, taum) 

   beta4~dnorm(0, taum) 

   beta5~dnorm(0, taum) 

   beta6~dnorm(0, taum) 

   tau  ~ dgamma(0.01,0.01) # prior on precision for CAR 

   taum<-1/pow(tem1,2.0) # prior on precision for betas.  

   tem1~dunif(1,6)   

} 

APPENDIX A.6 The WinBUGS codes for the conventional spatio-temporal Poisson 

model (Model 9) 

 

model { 

 # Likelihood 

 for (i in 1:T){  # T= 8 

  for (j in 1: N){ # N=48 states  

  OBSERVED[i,j]  ~ dpois(muf[i,j])  log(mu[i,j])<-

log(EXPECTED[i,j])+beta0+beta1*(POV[i,j]-mean(POV[i,]))/sd(POV[i,])+beta2*(UNEMPLY[i,j]-

mean(UNEMPLY[i,]))/sd(UNEMPLY[i,])+beta3*(BLACKPCT[i,j]-

mean(BLACKPCT[i,]))/sd(BLACKPCT[i,])+beta4*(CRIMErs[i,j]-mean(CRIMErs[i,]))/sd(CRIMErs[i,])+beta5*(INCARrs[i,j]-

mean(INCARrs[i,]))/sd(INCARrs[i,])+beta6*(POPDENSITY[i,j]-

mean(POPDENSITY[i,]))/sd(POPDENSITY[i,])+alpha0[j]+spatial[j]+temp[i,j]   

  muf[i,j]<-min(2.0E+3, max(1.0E-20,mu[i,j])) # prevent WinBUGS error message  

  # spatial[] represent spatial structured variation (CAR). temp[] represent random walk temporal autocorrelation. 

  # alpha0[] unstructured spatial random effect.   

   L[i,j]<-exp(-muf[i,j]+OBSERVED[i,j]*log(muf[i,j])-loggam(OBSERVED[i,j]+1))   #Likelihood 

   LogL[i,j]<-log(L[i,j]) 

   D[i,j]<--2*LogL[i,j] #Deviance    
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   Lf[i,j]<-max(1.0E-20,L[i,j])   

   c[i,j]<-1/exp(LogL[i,j]) #  will be used to calculate CPO. The average of c[i,j]s will be the posterior 

mean of the inverse of CPO[i,j] 

   cf[i,j]<-1/Lf[i,j]  #in case L is zero       

  } 

   DevI[i]<-sum(D[i,]) 

  } 

   Dev<-sum(DevI[ ])       

 #Prior distributions  

   #Random walk   

  for (p in 1: N) { 

  temp[1,p]~dnorm(0, taum) 

  for (t in 2 : T) {   

  temp[t, p]~dnorm(temp[t-1, p], taum) 

  } 

    }     

  #CAR   

  spatial[1:N] ~ car.normal(adj[], weights[], num[], tau)   

  for(k in 1:sumNumNeigh) { 

  weights[k] <- 1 

  }   

  #Other Priors 

  for (s in 1:N){ 

  alpha0[s] ~ dnorm(0.0, 1.0E-3)   

  } 

       beta0 ~ dflat()        

       beta1~dnorm(0, taum) 

   beta2~dnorm(0, taum) 

   beta3~dnorm(0, taum) 
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   beta4~dnorm(0, taum) 

   beta5~dnorm(0, taum) 

   beta6~dnorm(0, taum) 

   taum ~dgamma(0.025,0.025) 

   tau  ~ dgamma(0.01,0.01) # prior on precision for CAR  

} 

APPENDIX A.7 The R codes for calculating DIC and NLLK for Model 3. 

Q=4 # number of clusters. Can be changed if the number of clusters changed. 

#read raw data 

data <- readRDS("newdata.rds") 

N = 48 

T=8 

attach(data) 

# The following are the dependent variable and covariates. 

OBSERVED<-(array(ncopskill,dim=c(8,48))) 

EXPECTED<-(array(exp4yearstatecopskill,dim=c(8,48))) 

BLACKPCT<-(array(BLACKPCT,dim=c(8,48))) 

POPDENSITY<-(array(POPDENSITY,dim=c(8,48))) 

POV<-(array(POVERTY,dim=c(8,48))) 

UNEMPLY<-(array(UNEMPLY,dim=c(8,48))) 

INCARrs<-(array(residincarrbs,dim=c(8,48))) 

CRIMErs<-(array(residcrimebs,dim=c(8,48))) 

# attach BUGS object 

library(R2WinBUGS) 

attach.bugs(res.sim) 

# Calculate Dhat and NLLK 

# Preparing work 

r<-rep(NA,384) 
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rhohat<-(array(r,dim=c(8,48))) 

muhat<-(array(r,dim=c(8,48))) 

spatialhat<-rep(NA, 48) 

alpha0hat<-rep(NA, 48) 

temphat<-(array(r,dim=c(8,48))) 

mustarhat<-(array(r,dim=c(8,48))) 

fdhat<-(array(r,dim=c(8,48))) 

p0hat<-(array(r,dim=c(8,Q))) 

L.hat<-(array(r,dim=c(8,48))) 

LogL.hat<-(array(r,dim=c(8,48))) 

LogL1.hat<-(array(r,dim=c(8,48))) 

D.hat<-(array(r,dim=c(8,48))) 

DevI.hat<-rep(NA,8) 

Dev.hat<-NULL 

ic<-(array(r,dim=c(8,48))) 

cpo<-(array(r,dim=c(8,48))) 

lgcpo<-(array(r,dim=c(8,48))) 

DvI.hat<-rep(NA,8) 

lgcpoi<-rep(NA,8) 

Dv.hat<-NULL 

NLLK<-NULL 

beta0hat<-(array(r,dim=c(8,Q))) 

beta1hat<-(array(r,dim=c(8,Q))) 

beta2hat<-(array(r,dim=c(8,Q))) 

beta3hat<-(array(r,dim=c(8,Q))) 

beta4hat<-(array(r,dim=c(8,Q))) 

beta5hat<-(array(r,dim=c(8,Q))) 

beta6hat<-(array(r,dim=c(8,Q))) 
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ind<-(array(r,dim=c(8,48))) 

#obtain posterior means of the parameters 

for (i in 1:T){   

 for (j in 1:Q){ 

   beta0hat[i,j]<-mean(beta0[,i,j])  

   beta1hat[i,j]<-mean(beta1[,i,j])  

   beta2hat[i,j]<-mean(beta2[,i,j])  

   beta3hat[i,j]<-mean(beta3[,i,j])  

   beta4hat[i,j]<-mean(beta4[,i,j])  

   beta5hat[i,j]<-mean(beta5[,i,j])  

   beta6hat[i,j]<-mean(beta6[,i,j])    

}} 

 for (i in 1:T){   

 for (j in 1:N){  

   #NLLK 

   ic[i,j]<-mean(ci[,i,j]) # posterior mean of the inverse of CPO_it 

   cpo[i,j]<-1/ic[i,j]  

   lgcpo[i,j]<-log(cpo[i,j])    

   #Dhat 

   # compute the mu in the Poisson part by the posterior means of the parameters 

   muhat[i,j]<-exp(log(EXPECTED[i,j])+beta0hat[i,cluster[j]]+ 

   beta1hat[i,cluster[j]]*(POV[i,j]-mean(POV[i,]))/sd(POV[i,])+ 

   beta2hat[i,cluster[j]]*(UNEMPLY[i,j]-mean(UNEMPLY[i,]))/sd(UNEMPLY[i,])+ 

   beta3hat[i,cluster[j]]*(BLACKPCT[i,j]-mean(BLACKPCT[i,]))/sd(BLACKPCT[i,])+ 

   beta4hat[i,cluster[j]]*(CRIMErs[i,j]-mean(CRIMErs[i,]))/sd(CRIMErs[i,])+ 

   beta5hat[i,cluster[j]]*(INCARrs[i,j]-mean(INCARrs[i,]))/sd(INCARrs[i,])+ 

   beta6hat[i,cluster[j]]*(POPDENSITY[i,j]-mean(POPDENSITY[i,]))/sd(POPDENSITY[i,])) 

   if (OBSERVED[i,j]==0) {ind[i,j]=1 } else {ind[i,j]=0} 
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   p0hat[i,cluster[j]]<-mean(p0[,i,cluster[j]])    

   #likelihood of Poisson part 

   fdhat[i,j]<-exp(-muhat[i,j]+OBSERVED[i,j]*log(muhat[i,j])-log(factorial(OBSERVED[i,j])))  

   #likelihood  

   LogL.hat[i,j]<-log(p0hat[i,cluster[j]]*ind[i,j]+(1-p0hat[i,cluster[j]])*fdhat[i,j])   

  

   } 

   DvI.hat[i]<-sum(LogL.hat[i,])    

   lgcpoi[i]<-sum(lgcpo[i,]) 

  } 

  Dv.hat<--2*sum(DvI.hat[]) 

  Dhat<-Dv.hat 

  NLLK<--sum(lgcpoi[])  

DIC<-2*mean(Dev)-Dv.hat 

pD<-mean(Dev)-Dv.hat 

Dhat<-Dv.hat 

Dbar<-mean(Dev) 

Dbar 

Dhat 

pD 

DIC 

NLLK 
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APPENDIX B TEMPORAL PROFILES OF THE COEFFICIENTS IN 

MODEL 3 

Cluster one Cluster two 

  

Cluster Three Cluster Four 

  

Figure B.1 Temporal profiles of the effects of population density (alpha1)
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Cluster one Cluster two 

  

Cluster Three Cluster Four 

  

Figure B.2 Temporal profiles of the effects of poverty (beta1)  

Cluster one Cluster two 

  

Cluster Three Cluster Four 

  

Figure B.3 Temporal profiles of the effects of unemployment rates (beta2)  
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Cluster one Cluster two 

  

Cluster Three Cluster Four 

  

Figure B.4 Temporal profiles of the effects of violent crime rates (beta4)  

 

Cluster one Cluster two 

  

Cluster Three Cluster Four 

  

Figure B.5 Temporal profiles of the effects of incarceration rates (beta5)  
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Cluster one Cluster two 

  

Cluster Three Cluster Four 

  

Figure B.6 Temporal profiles of the effects of population density (beta6) 
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