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Abstract

In the simplest form of group testing, pools are formed by compositing a fixed num-

ber of individual specimens (e.g., blood, urine, swab, etc.) and then the pools are

tested for a binary characteristic, such as presence or absence of a disease. Group

testing is commonly used to screen for a variety of sexually transmitted diseases in

epidemiological applications where the main goal is to increase testing efficiency. In

this dissertation, we study three estimation problems that are motivated by real-life

applications. We propose new methods to model group testing data for both single

and multiple infections. In the first problem, we propose a Bayesian approach to es-

timate the prevalence of multiple infections. This relaxes the unreliable assumption

that diagnostic accuracies are constant. Also, when historical data are taken into

account, our method provides more efficient estimation than do existing approaches.

In the second problem, we propose a regression method to capture dilution effects

due to pooling. In addition to offering reliable inference, our parametric approach

enables one to perform a hypothesis test for dilution. In the third problem, we pro-

pose Bayesian measurement error models. Our approach provides flexibility to the

structural modeling approach which requires the availability of a known probability

distribution for true (unobserved) covariates. This work generalizes existing regres-

sion methods to account for covariate measurement error. We also discuss several

problems for future research.
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Chapter 1

Introduction

1.1 Literature review

We start with a brief literature review of group testing classification (case identifica-

tion) and estimation problems. Before starting our main discussion, we define two

accuracy measures of a diagnostic assay that are associated with group testing. The

sensitivity is the probability that a positive sample is diagnosed as positive, and the

specificity is the probability that a negative sample is diagnosed as negative. In a

multiple-infection problem, we define these accuracy measures for each infection sep-

arately (see Chapter 2). To capture pooled dilution effects, we model the sensitivity

in Chapter 3 as an increasing function of the number of true positives within a pool.

Background

With the goal of minimizing testing costs, Dorfman (1943) introduced the idea of

group testing to screen US soldiers for syphilis during the Second World War. Dorf-

man’s method, which is commonly referred to as “Dorfman testing,” is a two-stage

hierarchical algorithm where initial (non-overlapping) master pools are tested in stage

1 and then individual retesting is performed in stage 2. If a pool is diagnosed as neg-

ative, all individuals in the pool are declared negative; on the other hand, if a pool is

diagnosed as positive, all individuals in the pool are retested one-by-one. As demon-

strated by Dorfman, this simple two-stage algorithm can offer substantial savings in

testing costs when the infection rate is small. Since Dorfman’s seminal work, group
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testing has been widely accepted as a cost-effective alternative to individual testing

in many applications, including public health, genetics, animal disease testing, drug

discovery, and pollution detection.

Classification

The use of Dorfman’s two-stage procedure has been well regarded by both practi-

tioners and researchers. The popularity of this method can likely be explained by

the fact that it is simple to implement. Many variations of Dorfman’s algorithm are

currently available. For example, Pilcher et al. (2005) uses a three-stage algorithm

which involves a second stage of testing subpools if the master pool tests positively.

Halving algorithm (Litvak et al., 1994) involves multiple stages in which each pool

that tests positively is split further into two halves before testing is performed in

subsequent stages. The final stage of halving involves individual testing.

Unlike hierarchical algorithms, non-hierarchical algorithms use overlapping pools.

An example of a non-hierarchical algorithm is square array testing (Phatarfod and

Sudbury, 1994; Kim et al., 2007). Before performing initial tests, n2 specimens are

placed in an n× n matrix. Then n pools are formed by taking samples from n rows

and, similarly, another n pools are created from samples of n columns. These 2n

pools are then tested. Specimens at the intersection of a positive row and a positive

column are tested individually. A more generalized square array testing algorithm

allows for the possibility of testing errors. Kim et al. (2007) summarizes the operating

characteristics (i.e., classification efficiency and accuracy) of hierarchical and square

array testing algorithms in the presence of testing error.

Sterrett (1957) proposed an extension of Dorfman’s procedure whereby individuals

from positive pools are retested in multiple stages. According to this procedure,

individuals in a positive pool are tested one-by-one with random selection until the

first positive individual is identified. The remaining individuals are then used to form
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a new pool. If the new pool tests negatively, all individuals are declared negative;

however, if the new pool tests positively, individuals in the new pool are again tested

randomly until the first positive one is identified. This procedure is repeated until all

subjects are classified as positive or negative. Sterrett’s decoding procedure can be

more efficient than Dorfman’s when the probability of infection is small.

Sterrett’s procedure has been improved upon by Bilder et al. (2010) who used

individuals’ covariate information to perform informative retesting. In this approach,

each individual’s likelihood of disease positivity is first estimated using covariate in-

formation. When individuals from positive pools are to be retested, an individual who

is most likely to be positive is tested first. Motivated by this informative approach,

McMahan et al. (2012a) generalized array testing to account for the heterogeneity

among individuals. McMahan et al. (2012b) suggested an informative version of

Dorfman decoding in which pools are formed based on individuals’ risk probabili-

ties. Informative approaches can be significantly more efficient when compared to

the corresponding non-informative approaches; i.e., those that do not account for

heterogeneity among individuals.

As testing for multiple infections is becoming more common, group testing re-

search is also shifting. This is because recently developed assays can accurately detect

multiple infections simultaneously from a single specimen. Tebbs et al. (2013) first

studied a two-stage Dorfman-type testing protocol adopted by the Infertility Preven-

tion Project (IPP) for chlamydia and gonorrhea testing. These authors demonstrated

that efficiency can be increased dramatically when pool testing involves multiple in-

fections. The findings presented in Tebbs et al. (2013) serve as motivation to extend

existing classification algorithms from single to multiple infections. Further advance-

ments can be possible when exploiting heterogeneity among individuals as proposed

by Bilder et al. (2010) for single infections.

3



Estimation

While group testing research for classification has flourished over the past decades,

estimation has also received substantial attention. Testing data obtained from any

group testing protocol, such as Dorfman decoding, halving, and array testing, can be

modeled to estimate either an overall disease prevalence or individual-level disease

probabilities using covariates. For a rare disease, inference based on group testing

can be as efficient as that for individual testing at only a fraction of the testing cost.

Even though retesting individuals from positive pools is necessary for classification

purposes, retesting is not crucial for estimation. This can be explained heuristically as

follows. If a disease is rare, pools that test positively may not contain more than one

positive case; hence, retesting individuals from positive pools provides little additional

information. Therefore, the majority of group testing papers that proposed estimation

methods used testing responses from only initial master pools. The advantages of

this approach include simplicity in statistical modeling and additional reductions in

testing costs.

Most researchers in group testing, until the late 1990’s, focused only on estimating

the proportion (overall prevalence) of a rare binary trait. The first such estimation

paper is Thompson (1962), who took a maximum likelihood (ML) approach to esti-

mate the proportion of insect vectors capable of transmitting aster-yellow virus in a

population of aphids. Thompson’s work proceeded under the assumption that testing

results are perfect and that insects’ infection statuses are independent. In addition

to using master pool responses as in Thompson (1962), Sobel and Elashoff (1975) al-

lowed the statistical model to incorporate retest information. Hwang (1976) proposed

a maximum likelihood estimator (MLE) in the presence of dilution effects. Burrows

(1987) took an alternative ML approach which can improve estimation in terms of

bias and efficiency. Robustness of estimation has been studied by several authors

including Chen and Swallow (1990) and Hung and Swallow (1999). A number of
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authors have studied group testing optimality; among others, see Tu et al. (1995)

and Liu et al. (2012).

Group testing estimation from within a Bayesian paradigm has also been studied.

Chaubey and Li (1995) presented a Bayesian method for estimation and showed that

Bayesian estimators can be preferred to ML estimators. Mendoza-Blanco et al. (1996)

presented a general Bayesian framework that models data resulting from a variety of

sampling strategies. Bilder and Tebbs (2005) proposed an empirical Bayes method

for estimation using master pools only. Johnson and Pearson (1999) developed a

Bayesian methodology for a two-stage testing where individuals from pools that test

negatively are re-pooled. This technique was originally proposed by Gastwirth and

Johnson (1994) who took a frequentist approach. A similar method was proposed

by Hanson et al. (2006), who acknowledge heterogeneity among populations due to

regional differences and allow the model to incorporate varying prevalences.

With the exception of Hanson et al. (2006), all of the estimation methods discussed

above aim at estimating a single proportion without accounting for heterogeneity

among individuals. Recent work has focused on developing regression methodology

using covariates, such as age, gender, and disease symptoms, to obtain individual-

level estimates. Farrington (1992) first proposed a regression method for a specific

generalized linear model with the stringent assumption that each individual within

a pool shares identical covariates. Vansteelandt et al. (2000) extended this work to

allow for any type of covariate structure. Xie (2001) presented a general expectation-

maximization methodology which can incorporate retest results. Bilder and Tebbs

(2009) studied estimation bias and efficiency for regression estimates using the model

introduced by Vansteelandt et al. (2000). Huang and Tebbs (2009) and Huang (2009)

developed diagnostic methods to identify latent model misspecification for structural

measurement error models using group testing responses. McMahan et al. (2013)

proposed a regression approach that accounts for pooled dilution effects. Wang et al.
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(2015) generalized the regression method of McMahan et al. (2013) to be applicable

for any group testing algorithm.

A number of papers have presented nonparametric regression estimation meth-

ods for group testing data. The seminal work in Delaigle and Meister (2011) used

test results from randomly formed pools. Delaigle and Hall (2012) later presented

a nonparametric approach for pools formed homogeneously. Wang et al. (2014b)

presented a general semiparametric approach to model data from any group testing

algorithm. Delaigle and Zhou (2015) presented a nonparametric extension of the

dilution methods in McMahan et al. (2013).

Switching gears to multiple infections, Hughes-Oliver and Rosenberger (2000) first

proposed a method to estimate the prevalence of multiple diseases with the assump-

tion that a perfect assay test is available to detect all diseases simultaneously. Tebbs

et al. (2013) extended this work to allow for imperfect testing and to incorporate in-

dividual retest results. Zhang et al. (2013) proposed a regression method for multiple

diseases. The research direction of group testing with multiple diseases is becoming

popular because of its additional cost savings and also because of the availability of

multiple-infection assays.

Subsequent chapters of this dissertation are organized as follows. In Chapter 2,

we present a Bayesian model to estimate the prevalence of multiple infections. In

Chapter 3, we present a regression method for single traits that accounts for dilution.

In Chapter 4, we propose a Bayesian framework that corrects for measurement errors

in covariates. Finally, we describe future research ideas in Chapter 5. Supplementary

materials from Chapters 2 and 3 are provided in Appendices A and B.
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Chapter 2

Estimating the prevalence of multiple diseases

from two-stage hierarchical pooling1

The material in this chapter and Appendix A are taken from the manuscript, “Esti-

mating the prevalence of multiple diseases from two-stage hierarchical pooling,” by

M. Warasi, J. Tebbs, C. McMahan, and C. Bilder. This manuscript was accepted at

Statistics in Medicine on 03/17/2016. Permission to reprint is shown in Appendix C.

Summary: Testing protocols in large-scale sexually transmitted disease screening

applications often involve pooling biospecimens (e.g., blood, urine, swabs, etc.) to

lower costs and to increase the number of individuals who can be tested. With the

recent development of assays that detect multiple diseases, it is now common to test

biospecimen pools for multiple infections simultaneously. Recent work has developed

an expectation-maximization algorithm to estimate the prevalence of two infections

using a two-stage, Dorfman-type testing algorithm motivated by current screening

practices for chlamydia and gonorrhea in the United States. In this article, we have

the same goal but instead take a more flexible Bayesian approach. Doing so allows

us to incorporate information about assay uncertainty during the testing process,

which involves testing both pools and individuals, and also to update information as

individuals are tested. Overall, our approach provides reliable inference for disease

probabilities and accurately estimates assay sensitivity and specificity even when little

1Warasi, M., Tebbs, J., McMahan, C., and Bilder, C. (2016). Estimating the prevalence
of multiple diseases from two-stage hierarchical pooling. Statistics in Medicine, in press. DOI:
10.1002/sim.6964. Reprinted here with permission of John Wiley and Sons.
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or no information is provided in the prior distributions. We illustrate the performance

of our estimation methods using simulation and by applying them to chlamydia and

gonorrhea data collected in Nebraska.

2.1 Introduction

Testing biospecimens in pools, which is known as group testing (or pooled testing),

is a cost-effective alternative to individual testing in a variety of disease screening

applications. Originally proposed by Dorfman (1943) to screen World War II soldiers

for syphilis, group testing is now widely used to screen human populations for sexually

transmitted diseases, including HIV (Pilcher et al., 2005), HBV and HCV (Hourfar

et al., 2008; Stramer et al., 2013), and chlamydia and gonorrhea (Lindan et al., 2005),

and for other infectious diseases including West Nile virus (Busch et al., 2005), malaria

(Wang et al., 2014a), and influenza (Van et al., 2012). Group testing also arises in

other applications, including drug discovery (Remlinger et al., 2006), genetics (Chi

et al., 2009), animal disease testing (Dhand et al., 2010), and food safety (Fahey

et al., 2006).

Because pooling has become so widespread, statistical research in group testing

has also flourished. This research has generally followed two different paths. In

the classification (case identification) problem, the goal is to classify each individ-

ual as positive or negative. This involves retesting individuals in pools that test

positively; see Kim et al. (2007) for a review. In the estimation problem, responses

from pools provide enough information to estimate a population prevalence, at times,

more efficiently than when individual testing is used (Liu et al., 2012; Zhang et al.,

2013). Recent work has focused on the development of regression methods to esti-

mate subject-specific probabilities, either parametrically (Vansteelandt et al., 2000;

Chen et al., 2009), semi-parametrically (Wang et al., 2014b), or non-parametrically

(Delaigle and Meister, 2011).
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This article is motivated by screening practices for chlamydia and gonorrhea

(CT/NG) in the United States as part of a national program formerly known as

the Infertility Prevention Project (IPP). Chlamydia and gonorrhea are two of the

most common sexually transmitted diseases; together, there are approximately 1.5

million new infections reported each year in the United States (Gaydos et al., 2010).

The IPP was a federally funded program managed by the Centers for Disease Control

and Prevention (CDC) and implemented in each of the 50 states during 1988-2013.

After the Affordable Care Act (ACA) was passed in 2010 and implemented in 2014,

screening for CT/NG has continued in each state but now testing centers rely on

other sources of funding (e.g., federal health care plans, private insurance, etc.). To

reduce costs while still screening the same number of individuals for CT/NG, Iowa’s

IPP program switched from individual testing to group testing in 1999. Doing so has

led to millions of dollars in savings (Jirsa, 2008), and other states (Lewis et al., 2012)

have since adopted group testing as well. In light of new funding uncertainties created

by the ACA (JSI Research & Training Institute, 2015), Iowa’s application of group

testing might serve as a model for how to perform CT/NG screening nationwide.

Estimating the prevalence of a single disease has received a large amount of at-

tention in the group testing literature. However, testing procedures for CT/NG and

other infections are now moving towards the use of assays which detect multiple infec-

tions at once (Gaydos et al., 2010). In these instances, pools of individuals are tested

for multiple infections using a single assay, and then pools are resolved (decoded)

for each infection. Estimation in this situation is challenging, because the true infec-

tion statuses on the same individual are latent (due to inherent assay error) and are

also correlated. Recently, Tebbs et al. (2013) developed an expectation-maximization

(EM) algorithm to jointly estimate the prevalence of CT/NG, motivated by screening

practices in Iowa which use group testing (see Section 2.2). Their work, in the two-

infection case, generalized the estimation approach in Hughes-Oliver and Rosenberger

9



(2000) to allow for assay error and also for the inclusion of retesting information on

positive pools.

In this article, we have the same estimation goals as in Tebbs et al. (2013), but

we take a Bayesian approach instead. Doing so confers important advantages. First,

it allows us to relax the potentially untrustworthy assumption that diagnostic test

accuracy rates (i.e., sensitivity and specificity) are fixed and known. In practice, these

rates are usually estimated on the basis of small pilot studies that manufacturers

publish in their product literature. Ignoring the variability in these estimates could

compromise inference, especially if the estimates deviate substantially from the true

accuracy rates and/or if assay performance varies according to other factors (CDC,

2015). Second, a Bayesian approach is natural given the sequential manner in which

screening data amass over time. For example, the State Hygienic Laboratory (SHL)

in Iowa City has screened thousands of Iowa residents each year for CT/NG, dating

back to 1992. This affords investigators ample information to construct sensible prior

distributions as well as to periodically update information on disease prevalence and

assay performance. Our work extends previous Bayesian group testing estimation

approaches for single diseases (Johnson and Pearson, 1999; Hanson et al., 2006).

Subsequent sections of this article are organized as follows. In Section 2.2, we

describe the screening algorithm for CT/NG used in Iowa. This two-stage algorithm

was described in detail in Tebbs et al. (2013), so we herein summarize only the salient

aspects. In Section 2.3, we present our estimation methods and discuss prior model

selection. In Section 2.4, we use simulation to assess estimation performance under a

variety of prior models, including models which incorporate little or no information

about disease prevalence and assay accuracy. In Section 2.5, we analyze IPP data in

the same manner as in Tebbs et al. (2013) to illustrate the advantages of estimation

from a Bayesian point of view. In Section 2.6, we conclude with a brief summary

discussion. We use Appendix A to show how one could generalize our work to estimate
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probabilities for more than two infections if needed.

2.2 Two-stage pooling algorithm

The estimation methods we develop in this article are motivated by the two-stage

pooling algorithm described below. This algorithm is used to complete CT/NG test-

ing at the SHL in Iowa City and is potentially applicable in other situations.

POOLING ALGORITHM

Stage 1: Individuals are randomly assigned to master pools. Each pool is tested for

both infections using a single assay. A single assay detects both infections simulta-

neously.

Stage 2: Individuals in pools that

• test negatively for both infections are diagnosed as negative for both infections.

• test positively for either infection are retested (individually) for both infections

using the same assay in Stage 1. Diagnoses for both infections are made from

the outcomes of the individual tests.

Tebbs et al. (2013) describe various logistical issues of this pooling procedure (as it

relates to implementation at the SHL) that we do not repeat here. The point worth

emphasizing is that, for simplicity, the SHL uses one assay, the Aptima Combo 2

Assay (Hologic/Gen-Probe, Inc., San Diego) nucleic acid amplification test, for its

CT/NG testing. This assay detects both infections simultaneously when it is applied

to pools (in Stage 1) and to individuals (in Stage 2). In the infectious disease testing

literature, such an assay is said to discriminate because it elicits a diagnosis for each

infection separately. In this article, we assume that a discriminating assay is available

and that it can be applied to both pooled and individual specimens. The literature is

replete with examples of multiple-infection assays that are discriminating in nature.
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For example, most assays based on nucleic acid amplification technology used for

CT/NG detection discriminate between the two infections in both urine and swab

specimens (Gaydos et al., 2010; CDC, 2015). Furthermore, the CDC recommends

that nucleic acid amplification testing be used for laboratory-based CT/NG detection

(CDC, 2015).

2.3 Bayesian estimation

Model formulation and inference

Suppose N individuals are to be tested for two infections (e.g., CT/NG, etc.) using

the algorithm described in Section 2.2. Let Ỹik = (Ỹi1k, Ỹi2k)′ denote the vector

of true individual binary statuses, for i = 1, 2, ..., ck and k = 1, 2, ..., K, where N =∑K
k=1 ck. We call ck the pool size for the kth master pool. The number of master pools

formed at Stage 1 is K. We assume the Ỹik’s, conditional on p = (p00, p10, p01, p11)′,

are independent and identically distributed random vectors with probability mass

function

pr(Ỹi1k = ỹ1, Ỹi2k = ỹ2|p) = p
(1−ỹ1)(1−ỹ2)
00 p

ỹ1(1−ỹ2)
10 p

(1−ỹ1)ỹ2
01 pỹ1ỹ2

11 ,

where ỹ1, ỹ2 ∈ {0, 1} and p00 + p10 + p01 + p11 = 1. Note that because of inherent

assay error, the Ỹik’s are best regarded as latent.

Let Z̃k = (Z̃1k, Z̃2k)′ denote the vector of true binary statuses for the kth master

pool, where Z̃jk = I(∑ck
i=1 Ỹijk > 0), for j = 1, 2, and I(·) is the indicator function. In

other words, Z̃jk = 1 if at least one individual in the kth master pool is truly positive

for the jth infection, Z̃jk = 0 otherwise. Let Zk = (Z1k, Z2k)′ denote the vector of

testing responses observed for the kth master pool in Stage 1, where Zjk = 1 if the

kth master pool tests positively for the jth infection, Zjk = 0 otherwise. If the kth

master pool tests positively for at least one infection in Stage 1, let Yik = (Yi1k, Yi2k)′

denote the vector of individual testing responses observed for the ith individual,
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i = 1, 2, ..., ck, in Stage 2. We allow for pools (in Stage 1) and individuals (in Stage

2) to be misclassified and denote the assay sensitivity and specificity by

Se:j = pr(Zjk = 1|Z̃jk = 1) = pr(Yijk = 1|Ỹijk = 1)

Sp:j = pr(Zjk = 0|Z̃jk = 0) = pr(Yijk = 0|Ỹijk = 0),

respectively, for j = 1, 2. We assume Se:j and Sp:j do not depend on the pool size ck in

Stage 1 so that these probabilities also apply for individual tests performed in Stage

2. This assumption is common in group testing research for single infections (Kim

et al., 2007). For this to be reasonable in practice, assay detection thresholds and/or

dilution ratios may need to be changed to accommodate both pooled and individual

specimens; see McMahan et al. (2013) and the references therein.

The observed data from the pooling algorithm in Section 2.2 consist of (a) the test-

ing responses Zk = (Z1k, Z2k)′ from the K master pools in Stage 1 and (b) the addi-

tional ck individual testing responses Yik = (Yi1k, Yi2k)′ from those pools which tested

positively for either infection in Stage 1. For notational purposes, we aggregate all

master pool testing responses into a vector denoted by Z and all individual testing re-

sponses into a vector denoted by Y. Let θ = (p′, δ′)′, where δ = (Se:1, Se:2, Sp:1, Sp:2)′.

Although it is possible to write out the observed data likelihood π(Z,Y|θ), its form is

not easily amenable to performing a Bayesian analysis. Therefore, we use a data aug-

mentation step that introduces the individuals’ true infection statuses Ỹijk as latent

random variables. Let Ỹ denote the vector that aggregates all of the latent Ỹijk’s.

The joint distribution of the observed data {Z,Y} and the latent data Ỹ, conditional
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on θ, can be expressed as

π(Z,Y, Ỹ|θ) =
K∏
k=1

ck∏
i=1

p
(1−Ỹi1k)(1−Ỹi2k)
00 p

Ỹi1k(1−Ỹi2k)
10 p

(1−Ỹi1k)Ỹi2k
01 pỸi1kỸi2k

11

×

 2∏
j=1

K∏
k=1

(
S
Zjk

e:j S
1−Zjk

e:j

)I(∑ck
i=1 Ỹijk>0) (

S
1−Zjk

p:j S
Zjk

p:j

)I(∑ck
i=1 Ỹijk=0)

×
{
ck∏
i=1

S
YijkỸijk

e:j S
(1−Yijk)Ỹijk

e:j S
(1−Yijk)(1−Ỹijk)
p:j S

Yijk(1−Ỹijk)
p:j

}I(Z+k>0)
, (2.1)

where Z+k = Z1k + Z2k, Se:j = 1 − Se:j, and Sp:j = 1 − Sp:j. The first line in

Equation (2.1) represents the contribution of the individual latent statuses, while the

part within the brackets describes the contributions from Stage 1 (master pool test

results; second line) and Stage 2 (individual test results; third line). Note that if δ

were known, Equation (2.1) would be the same as the complete data likelihood in

Tebbs et al. (2013). For further discussion on additional assumptions underpinning

the construction of π(Z,Y, Ỹ|θ) in Equation (2.1), see Section 2.6.

To complete our Bayesian model specification, we elicit independent beta prior

distributions for the assay test accuracies; i.e., Se:j ∼ beta(aSe:j , bSe:j ) and Sp:j ∼

beta(aSp:j , bSp:j ), for j = 1, 2, where all hyperparameters are known. For the vector

of infection status probabilities, we specify a Dirichlet prior; i.e.,

p ∼ π(p) = B(α)pα00−1
00 pα10−1

10 pα01−1
01 pα11−1

11 ,

where B(α) is a normalizing constant and α = (α00, α10, α01, α11)′ is a vector of known

hyperparameters. We assume the test accuracies Se:j and Sp:j are both independent

of p, for j = 1, 2. These assumptions are analogous to the assumptions made in

Johnson and Pearson (1999) and Hanson et al. (2006) for single infections.
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With these prior choices and assumptions, the “full conditional” distributions can

be easily derived from the augmented likelihood function π(Z,Y, Ỹ|θ). For the assay

accuracies, these distributions are given by

Se:j|Z,Y, Ỹ ∼ beta(a∗Se:j
, b∗Se:j

)

Sp:j|Z,Y, Ỹ ∼ beta(a∗Sp:j
, b∗Sp:j

),

for j = 1, 2, where

a∗Se:j
= aSe:j +

K∑
k=1

{
ZjkZ̃jk + I(Z+k > 0)

ck∑
i=1

YijkỸijk

}

b∗Se:j
= bSe:j +

K∑
k=1

{
(1− Zjk)Z̃jk + I(Z+k > 0)

ck∑
i=1

(1− Yijk)Ỹijk
}

a∗Sp:j
= aSp:j +

K∑
k=1

{
(1− Zjk)(1− Z̃jk) + I(Z+k > 0)

ck∑
i=1

(1− Yijk)(1− Ỹijk)
}

b∗Sp:j
= bSp:j +

K∑
k=1

{
Zjk(1− Z̃jk) + I(Z+k > 0)

ck∑
i=1

Yijk(1− Ỹijk)
}

and Z̃jk = I(∑ck
i=1 Ỹijk > 0). For the prevalence parameter p, the full conditional

distribution is again Dirichlet; i.e., p|Ỹ ∼ Dirichlet(Ψ), where

Ψ =
α00 +

K∑
k=1

ck∑
i=1

Ṽ(00)ik, α10 +
K∑
k=1

ck∑
i=1

Ṽ(10)ik,

α01 +
K∑
k=1

ck∑
i=1

Ṽ(01)ik, α11 +
K∑
k=1

ck∑
i=1

Ṽ(11)ik

′

and the latent random variables Ṽ(uv)ik = Ỹ u
i1k(1− Ỹi1k)1−uỸ v

i2k(1− Ỹi2k)1−v, for u, v ∈

{0, 1}.

If the latent data Ỹ were observed, the posterior distributions for the prevalence

parameters in p and the test accuracies in δ would be fully determined. However,

because the true individual statuses in Ỹ are not observed, we develop a Gibbs

sampler to enable posterior inference. Let Ỹk(i) = (Ỹ′1k, ..., Ỹ′i−1,k, Ỹ′i+1,k, ..., Ỹ′ckk
)′

denote the vector of latent responses in the kth group for all individuals except the

ith one. The conditional distribution of Ṽik = (Ṽ(00)ik, Ṽ(10)ik, Ṽ(01)ik, Ṽ(11)ik)′ given
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{Ỹk(i),p, δ,Y,Z} is multinomial with cell probabilities ζ ik00/ζ
ik, ζ ik10/ζ

ik, ζ ik01/ζ
ik, and

ζ ik11/ζ
ik, where

ζ ik00 = p00

2∏
j=1

(
S
Zjk

e:j S
1−Zjk

e:j

)γijk
(
S

1−Zjk

p:j S
Zjk

p:j

)1−γijk
(
S

1−Yijk

p:j S
Yijk

p:j

)I(Z+k>0)

ζ ik10 = p10S
Z1k
e:1 S

1−Z1k

e:1

(
SZ2k
e:2 S

1−Z2k

e:2

)γi2k
(
S1−Z2k
p:2 S

Z2k

p:2

)1−γi2k

×
(
SYi1k
e:1 S

1−Yi1k

e:1 S1−Yi2k
p:2 S

Yi2k

p:2

)I(Z+k>0)

ζ ik01 = p01S
Z2k
e:2 S

1−Z2k

e:2

(
SZ1k
e:1 S

1−Z1k

e:1

)γi1k
(
S1−Z1k
p:1 S

Z1k

p:1

)1−γi1k

×
(
SYi2k
e:2 S

1−Yi2k

e:2 S1−Yi1k
p:1 S

Yi1k

p:1

)I(Z+k>0)

ζ ik11 = p11

2∏
j=1

S
Zjk

e:j S
1−Zjk

e:j

(
S
Yijk

e:j S
1−Yijk

e:j

)I(Z+k>0)
,

ζ ik = ∑1
u=0

∑1
v=0 ζ

ik
uv, and γijk = I(∑i′ 6=i Ỹi′jk > 0). Note that by sampling Ṽik from

this conditional distribution, Ỹik = (Ṽ(10)ik + Ṽ(11)ik, Ṽ(01)ik + Ṽ(11)ik)′; in other words,

the true individual statuses in Ỹik are uniquely determined.

Using the full conditional distributions of p, δ, and Ṽik described above, we now

outline our Gibbs sampler to implement a Bayesian analysis with the observed data

from the pooling algorithm described in Section 2.2:

GIBBS SAMPLER

1. Initialize Ỹ(0)
ik = (Ỹ (0)

i1k , Ỹ
(0)
i2k )′, for i = 1, 2, ..., ck and k = 1, 2, ..., K. Set d = 1.

2. Sample p(d) from p|Ỹ(d−1) ∼ Dirichlet(Ψ), where Ỹ(d−1) is the collection of all

Ỹ(d−1)
ik ’s.

3. Sample S
(d)
e:j from Se:j|Z,Y, Ỹ(d−1) ∼ beta(a∗Se:j

, b∗Se:j
) and sample S

(d)
p:j from

Sp:j|Z,Y, Ỹ(d−1) ∼ beta(a∗Sp:j
, b∗Sp:j

) for j = 1, 2. Set δ(d) = (S(d)
e:1 , S

(d)
e:2 , S

(d)
p:1 , S

(d)
p:2)′.

4. For i = 1, ..., ck and k = 1, 2, ..., K, sample Ṽ(d)
ik = (Ṽ (d)

(00)ik, Ṽ
(d)

(10)ik, Ṽ
(d)

(01)ik, Ṽ
(d)

(11)ik)′

from

Ṽik|Ỹ(d)
k(i),p

(d), δ(d),Y,Z ∼ multinomial
{

1, (ζ ik00/ζ
ik, ζ ik10/ζ

ik, ζ ik01/ζ
ik, ζ ik11/ζ

ik)′
}
,
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where Ỹ(d)
k(i) = (Ỹ(d)′

1k , ..., Ỹ
(d)′
i−1,k, Ỹ

(d−1)′
i+1,k , ..., Ỹ

(d−1)′
ckk

)′.

Set Ỹ(d)
ik = (Ṽ (d)

(10)ik + Ṽ
(d)

(11)ik, Ṽ
(d)

(01)ik + Ṽ
(d)

(11)ik)′.

5. Set d = d+ 1.

6. Repeat steps 2-5 while d < G, the number of Gibbs iterates.

Prior elicitation

We now discuss prior model specification for the assay accuracies Se:j and Sp:j and the

prevalence parameter p. A noninformative approach might specify flat priors for all

parameters; i.e., Se:j ∼ beta(1, 1), Sp:j ∼ beta(1, 1), and p ∼ Dirichlet(14). In fact,

we demonstrate in Section 2.4 that posterior estimates of p and δ are close to the

true values even when these priors are used. Of course, properly chosen informative

prior models should increase posterior precision.

In most screening situations, there will be information readily available for re-

searchers to formulate informative priors for Se:j and Sp:j. Before a diagnostic assay

is introduced for commercial use, its performance is assessed in pilot studies involving

known positive and known negative specimens. Data from these studies can be used

to elicit sensible beta hyperparameters. For example, the most recent product litera-

ture for the Aptima Combo 2 Assay, which is available at http://www.hologic.com,

summarizes a pilot study describing the assay’s performance with urine and swab

specimens from females and males. This literature documents that among 127 known

NG-positive female urine samples, 116 tested positively with the assay, giving an es-

timated sensitivity of 0.913. Note that in the absence of additional information, the

estimation methods in Tebbs et al. (2013) might require one to essentially treat 0.913

as the “true” sensitivity, disregarding the fact that this is only an estimate. In prac-

tice, it is important to acknowledge that assay performance may depend on a variety

of factors, including those related to implementation and perhaps even the population

17



being tested (CDC, 2015). As we show in Appendix A, a beta(117,12) distribution

is consistent with the pilot data described above.

To model the prevalence parameter p, we use a class of distributions motivated

by the power prior class described in Ibrahim et al. (2015). This class assumes the

availability of “historical data” and amalgamates their likelihood function with a

prior distribution assumed for them. Applying this idea to our problem, we specify

p ∼ Dirichlet(14 + a0N0p0) as a prior distribution. The value a0 ∈ [0, 1] controls the

amount of weight given to the historical data (the so-called “precision parameter”),

N0 is the historical data sample size, and p0 is an estimate of p obtained from the

historical data. This family of priors is ideal for the large-scale screening applications

we consider, where, for example, previous years’ testing outcomes can be treated as

historical data; see Section 2.5. Note that choosing a0 = 0 gives p ∼ Dirichlet(14).

As a0 increases, the amount of weight given to the historical data increases.

2.4 Simulation evidence

We performed simulation studies to assess the characteristics of our estimation proce-

dure. We used different values of the prevalence parameter p, different prior models

for Se:j and Sp:j, and prior models for p which incorporate various levels of historical

information. A subset of the results is given herein; complete results are in Appendix

A.

Simulation description

We generated individual true statuses from a multinomial distribution with cell prob-

abilities in p = (p00, p10, p01, p11)′. We took p = (0.80, 0.10, 0.09, 0.01) to consider

moderate-level infections and p = (0.95, 0.03, 0.01, 0.01) to allow for rarer infections.

Note that the marginal infection probabilities are 11 and 10 percent for the first case

and 4 and 2 percent for the second case. These probabilities are representative of our
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CT/NG data application in Section 2.5. In all cases, we used N = 1000 individuals.

This sample size is much smaller than our application in Section 2.5 but is sufficient

to illustrate our main findings.

To simulate the observed diagnoses from the algorithm in Section 2.2, we took

the individual true statuses Ỹik and randomly assigned them to pools of size c∗k,

where c∗k is the pool size that minimizes the expected number of tests needed to

diagnose each individual using the algorithm in Section 2.2 (i.e., it is the most “cost-

effective” choice); see Tebbs et al. (2013). Testing responses for pools in Stage 1

were then determined by simulating Zjk ∼ Bernoulli{Se:jZ̃jk + Sp:j(1− Z̃jk)}, where

Z̃jk = I(∑c∗k
i=1 Ỹijk > 0). In Stage 2, individual testing responses for those pools testing

positively in Stage 1 (for either infection) were simulated as Yijk ∼ Bernoulli{Se:jỸijk+

Sp:j(1− Ỹijk)}. Throughout our investigation, we took Se:j = 0.95 and Sp:j = 0.99, for

j = 1, 2. At each parameter configuration, this entire process was repeated B = 500

times.

We used different prior distributions for p and δ = (Se:1, Se:2, Sp:1, Sp:2)′, including

those which incorporated no information (i.e., flat priors) and those which were highly

informative. For the prevalence parameter, we took p ∼ Dirichlet(14 + a0N0p0),

where N0 = 1000 is the size of the historical data set, p0 is the historical estimate,

and a0 ∈ {0, 0.1, 0.2, ..., 1}. For the assay accuracies, we used

• Flat priors: Se:j ∼ beta(1, 1) and Sp:j ∼ beta(1, 1), for j = 1, 2

• Informative priors: Se:j ∼ beta(109.0, 6.7) and Sp:j ∼ beta(55.2, 1.6), for j =

1, 2.

The informative distributions have modes located at the true Se:j = 0.95 and Sp:j =

0.99, 5th percentiles of 0.903 and 0.929, and 95th percentiles of 0.973 and 0.996, re-

spectively. Posterior sampling was done using the Gibbs sampler described in Section

2.3. In the initialization step, we specified the individual true statuses to be the di-
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agnosed statuses; i.e., Ỹ (0)
ijk = I(Zi1k +Zi2k > 0, Yijk = 1), for j = 1, 2, and later noted

that the performance of our methods was invariant to the choice of initialization. At

each configuration, we took G = 10000 Gibbs iterates after discarding the first 500.

Posterior estimates were calculated from the full set of 10000 Gibbs iterates in each

simulation setting (i.e., we did not thin the posterior samples).

Simulation results

We present results for the moderate-level infection case p = (0.80, 0.10, 0.09, 0.01)

using flat priors for Se:j and Sp:j in Figures 2.1 and 2.2; complete results for all

settings described in Section 2.4 are given in Appendix A.

Figure 2.1 provides a summary of the point estimates for p for all a0 ∈ {0, 0.1, ..., 1};

specifically, the figure shows 5th, 25th, 50th, 75th, and 95th percentiles of the B = 500

posterior median estimates of p. Figure 2.2 shows the same summary, but for esti-

mates of the assay accuracy parameters in δ = (Se:1, Se:2, Sp:1, Sp:2)′. Recall that when

a0 = 0, the prior distribution for p is Dirichlet(14); i.e., no historical information is

used. Even in this situation with flat priors for Se:j and Sp:j, median estimates for all

prevalence parameters (Figure 2.1) and assay accuracies (Figure 2.2) are on target.

In other words, providing no information in the prior distributions still allows for

accurate inference on all model parameters. We find this phenomenon to be quite

remarkable; not only can one estimate the prevalence parameter p but one can also

accurately estimate the sensitivity and specificity parameters in δ. This desirable

feature of our approach is clearly a byproduct of using a single discriminating assay

in both stages; retesting individuals in Stage 2−whenever a master pool in Stage 1

tests positively for one infection or both−provides an abundance of information on

the assay’s accuracy for both infections. In single-infection group testing applications,

assay accuracy parameters cannot be identified without retesting or making use of

historical data (Johnson and Pearson, 1999; Hanson et al., 2006; Zhang et al., 2014).
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Figure 2.1: Simulation results with p = (0.80, 0.10, 0.09, 0.01), N = 1000 individuals,
Se:j = 0.95, and Sp:j = 0.99, for j = 1, 2. The 5th (bottom), 25th, 50th (median), 75th,
and 95th (top) percentiles of the B = 500 posterior median estimates of p are provided.
Flat priors for Se:j and Sp:j are used; i.e., Se:j ∼ beta(1, 1) and Sp:j ∼ beta(1, 1). The
precision parameter a0 increases from 0 (no historical information about p provided) to 1
by increments of 0.1.
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Figure 2.2: Simulation results with p = (0.80, 0.10, 0.09, 0.01), N = 1000 individuals,
Se:j = 0.95, and Sp:j = 0.99, for j = 1, 2. The 5th (bottom), 25th, 50th (median), 75th,
and 95th (top) percentiles of the B = 500 posterior median estimates of Se:j and Sp:j are
provided. Flat priors for Se:j and Sp:j are used; i.e., Se:j ∼ beta(1, 1) and Sp:j ∼ beta(1, 1).
The precision parameter a0 increases from 0 (no historical information about p provided)
to 1 by increments of 0.1.
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Figures 2.1 and 2.2 also show the impact of adding historical information in the

Dirichlet(14 + a0N0p0) prior distribution for p. For the prevalence parameters in

Figure 2.1, posterior distributions tighten noticeably as more information is added

(i.e., as a0 increases), while for the assay accuracies in Figure 2.2, posterior variability

is largely unaffected. Figures 2.1 and 2.2 were constructed assuming that the histor-

ical estimate p0 matched the true value of p. However, we obtained nearly identical

results when p0 was misspecified, especially in situations with larger N like our data

application in Section 2.5. Of course, the fact that prevalence parameters in p are

estimated well in the absence of prior information (a0 = 0) should comfort the re-

searcher unwilling to place too much faith in a historical prevalence estimate or when

no historical data are available. Following the recommendation of an anonymous ref-

eree, we also examined how misspecified prior distributions for the assay accuracies

Se:j and Sp:j could impact our Bayesian estimates and, simultaneously, how using

incorrect values of Se:j and Sp:j could affect the maximum likelihood estimates in

Tebbs et al. (2013). Simulation results summarizing this examination are provided

in Appendix A. When applied to N = 1000 individuals as before, Bayesian estimates

for both p and δ remain generally on target even under severe prior model misspecif-

cation, whereas the estimates of p from Tebbs et al. (2013) calculated using incorrect

values of Se:j and Sp:j can be severely biased.

Simulation results for the other settings; i.e., for (i) moderate-level infections, in-

formative assay priors; (ii) rare infections, flat assay priors; and (iii) rare infections,

informative assay priors, are given in Appendix A. Not surprisingly, posterior distri-

butions for assay accuracies tighten when informative priors are used. However, one

observation does warrant a remark. When the marginal disease probabilities p10 +p11

and p01 + p11 are both small, fewer pools will be resolved in Stage 2 and the sen-

sitivity parameters can be underestimated. Naturally, fewer retests will curtail the

information needed to estimate both Se:j and Sp:j accurately, but this will have a
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more pronounced effect on assay sensitivity because fewer individuals will be truly

positive. At the same time, it should be noted that this “underestimation behav-

ior” disappeared completely when we increased the sample size in our simulation to

N = 10000 individuals (results not shown), a sample size more in line with our data

application in Section 2.5.

2.5 Infertility Prevention Project data

To illustrate our methodology with real data, we use CT/NG testing outcomes col-

lected by the Nebraska Public Health Laboratory (NPHL) during 2008 and 2009. As

part of their IPP screening program, there were 23,146 individuals tested in 2008

and 27,551 individuals tested in 2009. Our data set consists of individual diagnoses

for each infection for both 2008 and 2009. We implement our Bayesian group testing

estimation methods for the 2009 individuals, using the 2008 results as historical data.

To perform the 2009 analysis, we first cross-classified individuals in both years

according to their gender and specimen type (swab or urine). This was done because

operating characteristics for assays commonly used for CT/NG detection depend

on these factors (Gaydos et al., 2010). Within each of the four gender/specimen

type strata, we analyzed the 2008 individual testing results to formulate a historical

estimate p0 that accounts for potential misclassification. These historical estimates

are shown in Table 2.1; for more details on how these were computed, see Appendix

A. Also given in Table 2.1 are informative beta prior distributions for Se:j and Sp:j

(j = 1 for CT; j = 2 for NG), which, for purposes of illustration, were chosen to be

consistent with the pilot studies presented in the Aptima Combo 2 Assay product

literature. We use Appendix A to provide precise details on how these informative

prior distributions were chosen. Finally, for the prevalence parameter p in each

stratum, we took p ∼ Dirichlet(14 +a0N0p0), where N0 is the 2008 stratum size, and

examined the a0 = 0, a0 = 0.5, and a0 = 1 cases separately. Note that taking a0 = 0
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ignores the 2008 information about the prevalence whereas the a0 = 1 case weighs the

2008 information heavily. One might view taking a0 = 0.5 as a compromise between

the two extremes.

To emulate the use of group testing with the 2009 individuals, we assigned them

to pools of size c∗k which was determined using the 2008 historical information in

Table 2.1. This was done within each gender/specimen type stratum and chronolog-

ically based on the individual specimen’s arrival date at the NPHL. Using the 2009

individual testing results, acknowledging that these are potentially incorrect, we first

simulated the individual true responses Ỹik = (Ỹi1k, Ỹi2k)′; a description of how this

was done is given in Appendix A. Observed diagnoses from the pooling algorithm in

Section 2.2 were then simulated using Zjk ∼ Bernoulli{Se:jZ̃jk + Sp:j(1 − Z̃jk)} and

Yijk ∼ Bernoulli{Se:jỸijk + Sp:j(1 − Ỹijk)} using the Aptima Combo 2 Assay pilot

study point estimates for Se:j and Sp:j. To average over the effect of simulation error,

we repeated this exercise B = 500 times, leaving us with 500 simulated group testing

data sets for each gender/specimen type stratum in 2009.

For each stratum and for each choice of a0 ∈ {0, 0.5, 1}, Table 2.2 shows the 2009

estimation results for the population-level parameters

p00 = proportion of individuals negative for both CT and NG

p10 = proportion of individuals positive for CT, but negative for NG

p01 = proportion of individuals negative for CT, but positive for NG

p11 = proportion of individuals positive for both CT and NG.
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Table 2.1: Nebraska 2008 historical information for CT/NG. The historical estimate p0 = (p00(0), p10(0), p01(0), p11(0))′ was calculated
using the 2008 individual diagnoses (accounting for possible misclassification; see Appendix A). Stratum sample sizes N0 are given. Priors
for Se:j and Sp:j were determined using pilot data from the Aptima Combo 2 Assay product literature (see Appendix A). The master
pool size c∗k minimizes the expected number of tests per individual as described in Tebbs et al. (2013).

Stratum CT NG p0 Prior for Se Prior for Sp Pool size
− − p00(0) = 0.929

c∗k = 4Male/Urine + − p10(0) = 0.061 CT: beta(277, 7) CT: beta(802, 13)
N0 = 3541 − + p01(0) = 0.005 NG: beta(325, 6) NG: beta(803, 4)

+ + p11(0) = 0.004

− − p00(0) = 0.848

c∗k = 3Male/Swab + − p10(0) = 0.103 CT: beta(261, 12) CT: beta(775, 21)
N0 = 2826 − + p01(0) = 0.032 NG: beta(320, 4) NG: beta(765, 18)

+ + p11(0) = 0.016

− − p00(0) = 0.907

c∗k = 4Female/Urine + − p10(0) = 0.074 CT: beta(198, 12) CT: beta(1171, 14)
N0 = 2338 − + p01(0) = 0.006 NG: beta(117, 12) NG: beta(1348, 11)

+ + p11(0) = 0.013

− − p00(0) = 0.948

c∗k = 5Female/Swab + − p10(0) = 0.047 CT: beta(196, 13) CT: beta(1155, 29)
N0 = 14441 − + p01(0) = 0.001 NG: beta(127, 2) NG: beta(1336, 18)

+ + p11(0) = 0.005
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Table 2.2: Nebraska CT/NG prevalence estimation results for 2009. Bayesian estimates (Bayes) are posterior medians averaged over
B = 500 data sets; BSE is the average of the standard deviations calculated from posterior samples of the B = 500 data sets. Values of
a0 = 0, a0 = 0.5, and a0 = 1 are used to incorporate different amounts of historical information for p as described in Section 2.5. Prior
distributions for Se:j and Sp:j , where j = 1 for CT and j = 2 for NG, are given in Table 2.1. Maximum likelihood estimates, calculated
from Tebbs et al. (2013), are averaged over the same 500 data sets; the entries under SE are the averaged standard errors. Stratum
sample sizes N are given.

Maximum likelihood Bayes (a0 = 0) Bayes (a0 = 0.5) Bayes (a0 = 1)
Stratum CT NG Estimate SE Estimate BSE Estimate BSE Estimate BSE

− − p̂00 = 0.924 0.0035 p̂00 = 0.923 0.0037 p̂00 = 0.926 0.0029 p̂00 = 0.927 0.0025
Male/Urine + − p̂10 = 0.061 0.0032 p̂10 = 0.061 0.0034 p̂10 = 0.061 0.0027 p̂10 = 0.061 0.0023
N = 6139 − + p̂01 = 0.008 0.0012 p̂01 = 0.008 0.0012 p̂01 = 0.007 0.0009 p̂01 = 0.006 0.0007

+ + p̂11 = 0.007 0.0011 p̂11 = 0.007 0.0011 p̂11 = 0.006 0.0008 p̂11 = 0.006 0.0007
− − p̂00 = 0.831 0.0091 p̂00 = 0.831 0.0096 p̂00 = 0.837 0.0074 p̂00 = 0.841 0.0062

Male/Swab + − p̂10 = 0.119 0.0079 p̂10 = 0.119 0.0085 p̂10 = 0.113 0.0064 p̂10 = 0.111 0.0054
N = 1910 − + p̂01 = 0.034 0.0043 p̂01 = 0.034 0.0044 p̂01 = 0.033 0.0035 p̂01 = 0.033 0.0030

+ + p̂11 = 0.015 0.0029 p̂11 = 0.015 0.0030 p̂11 = 0.016 0.0024 p̂11 = 0.016 0.0021
− − p̂00 = 0.920 0.0041 p̂00 = 0.919 0.0044 p̂00 = 0.915 0.0035 p̂00 = 0.913 0.0030

Female/Urine + − p̂10 = 0.066 0.0038 p̂10 = 0.067 0.0041 p̂10 = 0.069 0.0032 p̂10 = 0.071 0.0028
N = 4972 − + p̂01 = 0.004 0.0010 p̂01 = 0.004 0.0011 p̂01 = 0.005 0.0009 p̂01 = 0.005 0.0008

+ + p̂11 = 0.009 0.0014 p̂11 = 0.009 0.0015 p̂11 = 0.011 0.0012 p̂11 = 0.011 0.0011
− − p̂00 = 0.949 0.0019 p̂00 = 0.949 0.0023 p̂00 = 0.949 0.0017 p̂00 = 0.948 0.0015

Female/Swab + − p̂10 = 0.045 0.0019 p̂10 = 0.045 0.0023 p̂10 = 0.046 0.0017 p̂10 = 0.047 0.0014
N = 14530 − + p̂01 = 0.001 0.0001 p̂01 = 0.001 0.0002 p̂01 = 0.001 0.0001 p̂01 = 0.001 0.0001

+ + p̂11 = 0.005 0.0006 p̂11 = 0.005 0.0006 p̂11 = 0.005 0.0005 p̂11 = 0.005 0.0004
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Table 2.3: Bayesian assay accuracy estimates from 2009. Bayesian estimates (Bayes) are posterior medians averaged over B = 500 data
sets; BSE is the average of the standard deviations calculated from posterior samples of the B = 500 data sets. Values of a0 = 0, a0 = 0.5,
and a0 = 1 are used to incorporate different amounts of historical information for p as described in Section 2.5. Prior distributions for
Se:j and Sp:j , where j = 1 for CT and j = 2 for NG, are given in Table 2.1. Stratum sample sizes N are given.

Bayes (a0 = 0) Bayes (a0 = 0.5) Bayes (a0 = 1)
Stratum Accuracy Estimate BSE Estimate BSE Estimate BSE

Se:1 = 0.979 Ŝe:1 = 0.977 0.0076 Ŝe:1 = 0.978 0.0074 Ŝe:1 = 0.978 0.0073
Male/Urine Se:2 = 0.985 Ŝe:2 = 0.983 0.0069 Ŝe:2 = 0.984 0.0066 Ŝe:2 = 0.984 0.0065
N = 6139 Sp:1 = 0.985 Ŝp:1 = 0.985 0.0030 Ŝp:1 = 0.985 0.0030 Ŝp:1 = 0.984 0.0030

Sp:2 = 0.996 Ŝp:2 = 0.996 0.0012 Ŝp:2 = 0.996 0.0012 Ŝp:2 = 0.996 0.0012
Se:1 = 0.959 Ŝe:1 = 0.958 0.0107 Ŝe:1 = 0.960 0.0102 Ŝe:1 = 0.961 0.0099

Male/Swab Se:2 = 0.991 Ŝe:2 = 0.989 0.0061 Ŝe:2 = 0.989 0.0060 Ŝe:2 = 0.989 0.0060
N = 1910 Sp:1 = 0.975 Ŝp:1 = 0.974 0.0048 Ŝp:1 = 0.973 0.0049 Ŝp:1 = 0.973 0.0049

Sp:2 = 0.978 Ŝp:2 = 0.979 0.0034 Ŝp:2 = 0.979 0.0035 Ŝp:2 = 0.979 0.0035
Se:1 = 0.947 Ŝe:1 = 0.946 0.0115 Ŝe:1 = 0.944 0.0114 Ŝe:1 = 0.942 0.0115

Female/Urine Se:2 = 0.913 Ŝe:2 = 0.909 0.0217 Ŝe:2 = 0.905 0.0220 Ŝe:2 = 0.904 0.0222
N = 4972 Sp:1 = 0.989 Ŝp:1 = 0.989 0.0026 Ŝp:1 = 0.989 0.0025 Ŝp:1 = 0.989 0.0025

Sp:2 = 0.993 Ŝp:2 = 0.993 0.0016 Ŝp:2 = 0.993 0.0015 Ŝp:2 = 0.993 0.0015
Se:1 = 0.942 Ŝe:1 = 0.941 0.0112 Ŝe:1 = 0.939 0.0107 Ŝe:1 = 0.938 0.0106

Female/Swab Se:2 = 0.992 Ŝe:2 = 0.986 0.0104 Ŝe:2 = 0.987 0.0098 Ŝe:2 = 0.987 0.0097
N = 14530 Sp:1 = 0.976 Ŝp:1 = 0.976 0.0029 Ŝp:1 = 0.976 0.0028 Ŝp:1 = 0.976 0.0028

Sp:2 = 0.987 Ŝp:2 = 0.987 0.0013 Ŝp:2 = 0.987 0.0014 Ŝp:2 = 0.987 0.0013
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We used our estimation approach in Section 2.3 to calculate posterior medians

for each of the 500 data sets; the results shown in Table 2.2 are averages across the

data sets. For comparison purposes, we also show the maximum likelihood (ML)

results averaged over the same 500 data sets. Table 2.3 shows the 2009 (Bayesian)

estimation results for δ = (Se:1, Se:2, Sp:1, Sp:2)′ under the same settings. Recall that

for each data set, our Bayesian approach estimates p and δ simultaneously whereas

the ML approach from Tebbs et al. (2013) regards δ as fixed and known.

Table 2.2 shows that the averaged ML estimates and the averaged Bayesian pos-

terior median estimates are very similar in most settings. For the male/swab and

female/urine cohorts, the average posterior median estimates are slightly different

than the average ML estimates when the 2008 historical information (Table 2.1) is

weighed more heavily; i.e., the posterior estimates are more strongly attracted to the

historical estimates when a0 increases. The column in Table 2.2 labeled “SE” is the

averaged standard error of the 500 ML estimates, and the column labeled “BSE” is

the analogous Bayesian measure of variability which we calculated as follows. For

each data set, the entire Gibbs chain included 3500 iterates; the first 500 were dis-

carded (as in Section 2.4) and the sample standard deviation was calculated using

every 6th iterate from the last 3000. Thinning was used to remove autocorrelation

from the successive iterates and left us with a within-data set measure of variation

based on 500 posterior draws. BSE was then calculated as the average of these stan-

dard deviations across the B = 500 data sets, a measure that can be compared with

SE.

One of the surprising discoveries from Tebbs et al. (2013) was that, despite the

reduction in the number of tests needed, ML estimates of p from using group test-

ing were more efficient than those from individual testing; see Liu et al. (2012) for

discussion on this same phenomenon in single disease settings. Comparing the SE

and BSE columns in Table 2.2, one notes that further efficiency gains are possible
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using our Bayesian approach when historical information on the prevalence param-

eter is utilized (i.e., when a0 = 0.5 and when a0 = 1). When the 2008 information

is ignored (a0 = 0), it is not surprising that the Bayesian estimates are less precise

than the ML estimates. However, they are nearly as precise and this is despite the

fact that the assay accuracy parameters in δ are estimated simultaneously along with

the prevalence parameters in p (see Table 2.3). One might conjecture that the infor-

mative priors we used for δ in Table 2.1 may be partly responsible for the increased

efficiency in estimation when historical information about p is incorporated. How-

ever, we have repeated this same analysis using flat priors for Se:j and Sp:j and have

discovered largely the same findings. The tables summarizing this analysis are shown

in Appendix A.

2.6 Discussion

We have presented a Bayesian approach to estimate the prevalence of multiple dis-

eases from group testing data, motivated by nationwide CT/NG screening activities

to identify infected individuals and to estimate the prevalence of each infection. Our

methods allow researchers to incorporate uncertainty in diagnostic assays and also

information from previous periods of screening. When compared to the estimation

methods in Tebbs et al. (2013), our approach is more flexible; one can obtain esti-

mates of the prevalence parameters while simultaneously estimating assay accuracy.

Furthermore, our Bayesian estimates are nearly as precise as ML estimates when no

historical information is provided and are potentially more precise otherwise. The

web site www.chrisbilder.com/grouptesting contains R programs that implement

our estimation techniques for the algorithm in Section 2.2. Our programs determine

appropriate beta prior distributions for δ based on pilot studies like those described

in Section 2.3. Appendix A shows explicitly how these prior distributions can be

constructed.
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Our augmented likelihood function π(Z,Y, Ỹ|θ) in Equation (2.1) is constructed

by making two simplifying assumptions. First, we assume that all testing outcomes

associated with the same master pool (including any individual retest responses from

it) are conditionally independent given the true individual statuses in the pool. This

assumption is pervasive in the group testing literature for single infections and may be

reasonable when misclassification is driven primarily by factors related to test imple-

mentation. Second, at both the master pool (Stage 1) and individual testing (Stage 2)

levels, we assume that Se:j and Sp:j for one infection do not depend on the true status

of the other infection. Future research in group testing could investigate ways to avoid

making either or both assumptions. For single infections, Wang et al. (2015) relax the

conditional independence assumption by relating binary testing outcomes to latent

biomarker levels. Relaxing the second assumption with multiple infections might be

possible by borrowing ideas from the recent causal inference literature (Hudgens and

Halloran, 2008).

Although we have focused on screening for CT/NG, the group testing algorithm

in Section 2.2 could be implemented in other situations when a discriminating assay

is used to test for two or more infections. For example, the CDC has recently pro-

posed that a discriminating assay for HIV-1 and HIV-2 replace the more traditional

Western Blot-type assay to improve the detection of acute HIV infections (Branson

and Mermin, 2011; Krajden et al., 2014). Furthermore, discriminating multiplex as-

says, such as the Procleix Ultrio Plus Assay (Hologic/Gen-Probe, Inc., San Diego),

are currently available to simultaneously detect HBV, HCV, and HIV in pooled and

individual specimens. Generalizing our techniques to estimate the joint prevalence

of more than two infections using the algorithm in Section 2.2 is straightforward; see

Appendix A.
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Our work has assumed that a discriminating multiplex assay is available and that

it can be applied to both pools of specimens and individual specimens. In other

situations, especially those involving screening donated blood for HBV, HCV, and

HIV (Stramer et al., 2013; O’Brien et al., 2012; Schmidt et al., 2010; Stramer et al.,

2011), a non-discriminating multiplex assay (i.e., an assay whose result indicates the

presence of at least one infection or the absence of all infections) is typically used to

test pools in the first stage. Positive pools are resolved in the next stage by applying

the same multiplex assay to individuals (to determine which individuals are positive

for at least one infection) and then confirmatory, infection-specific assays to positive

individuals to diagnose the presence/absence of each infection. In our review of the

infectious disease testing literature, we have found that there are numerous testing

algorithms currently used with multiplex assays−discriminating and not−for two or

more infections. An advantage of the Bayesian framework outlined in Section 2.3

is that it can be suitably adapted to handle different algorithms with little added

difficulty.
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Chapter 3

Group testing regression models with dilution

submodels

Summary: Group testing, where subjects are tested initially in pools, is commonly

used to screen individuals for infectious diseases. When testing is performed for a

rare disease, group testing may increase the number of false negative test results

due to pooled dilution effects. If testing results are used to estimate individual-level

disease probabilities in a regression context, estimates of the regression parameters

can be severely biased when the dilution effect is ignored. Most existing regression

approaches for pooled binary responses assume that assay sensitivity is a known

constant and is independent of the pool size. We propose a new regression method

that adjusts for a potential dilution effect. We augment existing regression models

that have been proposed in the group testing literature with a secondary parametric

dilution model for pooled-level sensitivity and estimate all parameters using maximum

likelihood. Our approach provides reliable inference for regression parameters in the

presence of dilution. Furthermore, we propose a formal hypothesis test that detects

dilution in group testing. We illustrate our method using HBV data collected from a

prison population in Ireland.
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3.1 Introduction

Group testing involves testing pooled biospecimens (e.g., blood, urine, swab, etc.)

for a binary characteristic, such as the presence or absence of a sexually transmitted

disease. Dorfman (1943) introduced the idea of group testing to screen United States

soldiers during World War II and demonstrated that its use can be far more efficient

than individual testing. Since then, group testing has been recommended for various

large-scale screening applications, for example, to detect HIV (Pilcher et al., 2005),

chlamydia and gonorrhea (Lewis et al., 2012), HBV and HCV (Hourfar et al., 2008;

Stramer et al., 2013), and herpes simplex virus (Hanson et al., 2007). Group testing is

also used in other applications including animal testing (Dhand et al., 2010), genetics

(Chi et al., 2009), pollution detection (Wahed et al., 2006), food safety (Fahey et al.,

2006), and drug discovery (Remlinger et al., 2006).

Statistical research in group testing can be categorized into two primary areas:

classification and estimation. While the goal of classification research is to develop

screening methods that reduce the number of tests needed (Kim et al., 2007; McMa-

han et al., 2012a), the latter aims to estimate either an overall prevalence for a

homogeneous population or individual-level probabilities using covariates in a hetero-

geneous population. If the disease prevalence is rare, pooled testing results provide

a sufficient amount of information for estimation without sacrificing large amounts

of efficiency. If additional retest results are available, estimation from using group

testing can actually be more efficient than individual testing (Liu et al., 2012; Tebbs

et al., 2013; Zhang et al., 2013). In recent years, group testing research has explored

regression problems where the goal is to estimate individual-level disease probability.

For example, Vansteelandt et al. (2000) and Xie (2001) have proposed parametric

methods, Wang et al. (2014b) have adopted a semiparametric approach, and Delaigle

and Meister (2011) have presented nonparametric regression techniques.
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A concern associated with group testing is the so-called “dilution effect.” If tests

are performed on large pools, positive individuals can be diluted by negative ones,

leading to false negative results. Failure to acknowledge such errors may seriously

compromise inference in disease screening (Wein and Zenios, 1996) and in estimation

(Hung and Swallow, 1999; McMahan et al., 2013). Previous research in the context

of a homogeneous population has addressed this issue. Hwang (1976) studied the

screening algorithm of Dorfman (1943) in the presence of dilution. Zenios and Wein

(1998) proposed hierarchical models for HIV that make use of continuous biomarker

responses and (latent) antibody biomarker concentrations. Hung and Swallow (1999)

studied group testing robustness to estimate a population proportion. When individ-

ual covariate information is available, McMahan et al. (2013), Wang et al. (2015), and

Delaigle and Hall (2015) proposed regression methods under the tenuous assumptions

that (i) continuous biomarker information is available, and (ii) disease concentration

(e.g., optical density readings for HIV) for a pool is the average of the individuals’ dis-

ease concentrations within the pool. These assumptions might limit the usefulness of

these methods in seroprevalence studies where, typically, knowledge of an underlying

biomarker distribution is absent.

In this paper, we take a different approach to account for dilution in a group

testing regression setting. We specify a parametric function (submodel) for pool-

specific sensitivity, similar to the approach taken by Hung and Swallow (1999) for a

homogeneous population. Our approach offers two attractive features. First, it does

not require information about underlying continuous biomarker distributions. One

can easily construct a dilution submodel using any cumulative distribution function

even in the absence of information on an assay’s pool testing sensitivity. Second,

using the information in the regression model covariates, one can within our frame-

work actually perform a hypothesis test to detect dilution. Furthermore, our method

estimates pooled-level sensitivity along with the underlying regression function for
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disease positivity. To illustrate our method, we consider two commonly used data

collection methods for estimation: (i) master pool testing and (ii) Dorfman (1943)

decoding. Master pool testing uses test results from the initial master pools only.

Dorfman decoding incorporates additional retest results from those pools that test

positively.

This paper is organized as follows. In Section 3.2, we describe our model formu-

lation and maximum likelihood estimation techniques. In Section 3.3, we develop a

hypothesis test to detect dilution. We perform an extensive simulation study in Sec-

tion 3.4. We analyze HBV data collected from Irish prisoners in Section 3.5. Finally,

we briefly summarize our findings and discuss future research ideas in Section 3.6.

Supplementary materials are provided in Appendix B.

3.2 Estimation

A general methodology is proposed for regression analysis of data observed from mas-

ter pool testing and Dorfman decoding. The initial stage for both of these algorithms

involves assigning each of the N individuals to exactly one of J master pools. Let

Ỹij = 1 if the ith individual assigned to the jth pool is truly positive, Ỹij = 0 oth-

erwise, for i = 1, 2, ..., cj and j = 1, 2, ..., J . Herein it is assumed that the Ỹij’s are

independent random variables with

pr(Ỹij = 1) = g−1(x′ijβ) = pij,

where xij = (1, xij1, ..., xijr)′ is an (r+ 1)× 1 vector of covariates, β = (β0, β1, ..., βr)′

is the corresponding vector of regression coefficients, and g(·) is a monotone and

differentiable link function. Let Z̃j = 1 if the jth pool is comprised of at least one

infected individual, Z̃j = 0 otherwise; i.e., Z̃j = I(∑cj

i=1 Ỹij > 0). Consequently, the

Z̃j’s are independent random variables with

pr(Z̃j = 1) = 1−
cj∏
i=1

(1− pij) = 1−
cj∏
i=1
{1− g−1(x′ijβ)}.
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For notational convenience, let Ỹ, Z̃, and X denote the aggregated collection of indi-

vidual true statuses, the true statuses of the pools, and the individual level covariate

information, respectively. In the presence of imperfect testing, the true statuses of

the individuals and pools are unobserved for both master pool testing and Dorfman

testing; i.e., the Ỹij’s and Z̃j’s are latent random variables.

Let Zj denote the testing for the jth master pool; i.e., Zj = 1 if the jth pool

tests positively, Zj = 0 otherwise. The data observed from implementing master

pool testing consists of DM = {Z,X}, where Z = {Z1, Z2..., ZJ}. Dorfman decoding

resolves positive master pools by retesting each contributing individual separately.

Let Yij denote the testing response observed for the ith individual in the jth pool, if

this individual is tested separately, where Yij = 1 if the individual tested positively,

Yij = 0 otherwise. The data observed from completing Dorfman decoding is given by

DD = {Z,Y,X}, where Y denotes the collection of all individual testing responses.

To perform the regression analysis, one is left to relate the observed testing data

to the individuals’ true latent statuses. To accomplish this task, previously proposed

regression techniques (e.g., Vansteelandt et al., 2000; Wang et al., 2014) proceed under

the assumption that the sensitivity of the assay Se is a known constant, which does

not depend on the size of the pool; i.e., Se = pr(Zj = 1|Z̃j = 1) = pr(Zj′ = 1|Z̃j′ = 1),

for all j and j′, even if cj 6= cj′ . This assumption also implies pr(Yij = 1|Ỹij = 1) = Se

for individual testing. From Bayes’ theorem and the Law of Total Probability, one

may express the probability that a pool tests positively, given it is truly positive, as

Se = pr(Zj = 1|Z̃j = 1)

= {pr(Z̃j = 1)}−1
cj∑
k=1

pr
(
Zj = 1

∣∣∣∣∣
cj∑
i=1

Ỹij = k

)
pr
( cj∑
i=1

Ỹij = k

)
,

for j = 1, 2, ..., J . In general, for the constant sensitivity assumption to be valid

one would have to have Se = pr(Zj = 1|∑cj

i=1 Ỹij = k), for all k = 1, 2, ..., cj; i.e., a

pool consisting of one truly positive individual would have the same probability of

testing positively as a pool comprised of all positive individuals. In low prevalence
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settings, the probability a pool consists of more than one positive is negligible, thus

by recalibrating assay thresholds and/or dilution ratios such that Se = pr(Zj =

1|∑cj

i=1 Ỹij = 1), for all j, could provide a setting in which this traditional assumption

is reasonable. In contrast, after considering how diagnostic assays render diagnoses,

it would typically be more reasonable to assume that

pr
(
Zj = 1

∣∣∣∣∣
cj∑
i=1

Ỹij = k

)
≤ pr

(
Zj = 1

∣∣∣∣∣
cj∑
i=1

Ỹij = k′
)
, for all k < k′, (3.1)

pr
(
Zj = 1

∣∣∣∣∣
cj∑
i=1

Ỹij = k

)
≤ pr

Zj′ = 1
∣∣∣∣∣
cj′∑
i=1

Ỹij′ = k

 , for all cj > cj′ . (3.2)

These two characteristics embody what is commonly referred to as the “dilution

effect,” and herein a general modeling technique is proposed that accounts for both

(3.1) and (3.2).

Dilution submodel

To develop submodels which accurately account for the dilution effect, three primary

assumptions are made. First, the assay’s sensitivity for individual level testing is

known and henceforth is denoted by Se; i.e., pr(Yij = 1|Ỹij = 1) = Se. Second, a

pool comprised of all positives will be diagnosed as such with probability Se; i.e.,

Se = pr(Zj = 1|∑cj

i=1 Ỹij = cj) for all j. Lastly, the probability a pool tests positively

is monotonically increasing in the number of positive individuals assigned to it. These

general assumptions emit a large class of candidate models which can account for a

dilution effect. Although when one couples the monotonicity assumption with the fact

that a probability is being modeled, it is natural to consider a cumulative distribution

function as a basis for the development of a dilution submodel.

38



Parametrically modeling the dilution effect is tantamount to modeling the prob-

ability that a pool tests positively given that it contains k infected individuals; i.e.,

specifying

h(k, cj, λ) = pr
(
Zj = 1

∣∣∣∣∣
cj∑
i=1

Ỹij = k

)
,

where the form of h is known up to the parameter λ, and also h is monotone and

differentiable with respect to λ. Through estimating the unknown parameter λ, these

models can account for a dramatic (minor) dilution effect, corresponding to λ being

large (small), or even no effect when λ = 0. See Section 3.4 and Appendix B.4 for

functions that meet these requirements.

Master pool testing

The data available for modeling when master pool testing is implemented consists of

DM = {Z,X}. In order to relate the observed testing data to the individuals’ latent

statuses, it is assumed that the assay’s specificity, denoted as Sp, is a known fixed

constant which does not depend on the size of the pool; i.e., Sp = pr(Zj = 0|Z̃j = 0)

for all j. In practice, after recalibrating assay thresholds and/or diltuion ratios it

should be reasonable to proceed under this assumption, because the event {Z̃j = 0}

can only occur if all contributing individuals are truly negative. We continue to make

this assumption for Sp throughout the paper. Using a dilution submodel h as defined

in Section 3.2, it follows that

pr(Zj = 1) = pj = (1− Sp)
cj∏
i=1

(1− pij) +
cj∑
k=1

h(k, cj, λ) pr
( cj∑
i=1

Ỹij = k

)
,

where the probability pr(∑cj

i=1 Ỹij = k) involves the sum of independent but non-

identically distributed Bernoulli random variables. This probability can be calculated

using the approach outlined in Wang (1993).

39



The observed data likelihood, based on the responses observed from master pool

testing and individual level covariates, is given by

L(θ|DM) =
J∏
j=1

p
Zj

j (1− pj)1−Zj , (3.3)

where θ = (β′, λ)′. The maximum likelihood estimator (MLE) of θ, denoted as θ̂, is

obtained by maximizing L(θ|DM). To conduct large-sample inference, the negative

inverse Hessian of the logarithm of (3.3), evaluated at θ̂, can be used to approximate

the large-sample covariance matrix of θ̂. The likelihood presented in (3.3) along

with the proposed methods of estimation and inference are similar to the techniques

outlined in Vansteelandt et al. (2000) and McMahan et al. (2013) with a few marked

differences. In particular, through the dilution submodel h the proposed approach

allows the sensitivity of the test to change from pool to pool, unlike Vansteelandt et

al. (2000) which proceeds under the more traditional assumption that Se is the same

for all pools. By modeling the dilution effect, one can evaluate (3.3) based solely on

the observed testing data, unlike the approach presented in McMahan et al. (2013)

which requires additional a priori information on biomarkers to develop pool-specific

testing accuracies.

Dorfman decoding

When classification is completed through Dorfman decoding, the observed data con-

sist of DD = {Z,Y,X}; i.e., the master pool responses, the individual retesting data

observed from resolving positive pools, and the individual level covariates. To ac-

commodate data of this structure into a regression analysis, it is assumed that the

observed testing responses are independent, given the true statuses of the individuals.

This assumption is common among the group testing literature when case identifi-

cation is the goal; e.g., see Kim et al. (2007). Under this assumption, the observed
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data likelihood can be expressed as

L(θ|DD) =
∑
Ỹ∈Ỹ

T1(β,DD, Ỹ)T2(λ,DD, Ỹ)T3(DD, Ỹ), (3.4)

where Ỹ denotes the collection of all possible outcomes of Ỹ, and

T1(β,DD, Ỹ) =
J∏
j=1

cj∏
i=1

p
Ỹij

ij (1− pij)1−Ỹij ,

T2(λ,DD, Ỹ) =
J∏
j=1

cj∏
k=1

[
h(k, cj, λ)Zj{1− h(k, cj, λ)}(1−Zj)

]Ijk
,

T3(DD, Ỹ) =
J∏
j=1
{S(1−Zj)

p (1− Sp)Zj}Ij0

×
[ cj∏
i=1
{SỸij

e (1− Sp)1−Ỹij}Yij{S1−Ỹij
p (1− Se)Ỹij}1−Yij

]Zj

,

where Ijk = I(∑cj

i=1 Ỹij = k), for k = 1, 2, ..., cj. Due to the dimensionality of Ỹ ,

direct evaluation of (3.4) can be computationally burdensome.

To circumvent computational issues, we develop an expectation-maximization

(EM) algorithm to find the MLE of θ by viewing the individuals’ latent statuses

as “missing data.” The complete data likelihood can be expressed as

Lc(θ|DD, Ỹ) = T1(β,DD, Ỹ)T2(λ,DD, Ỹ)T3(DD, Ỹ). (3.5)

The E-step in the algorithm finds Q(θ,θ(d)) = E{lc(θ|DD, Ỹ)|DD,θ(d)}, where the

expectation is taken with respect to the individuals’ latent statuses and lc(θ|DD, Ỹ)

denotes the logarithm of (3.5). The form of Q(θ,θ(d)) can be expressed as

Q(θ,θ(d)) = T1(β,DD,θ(d)) + T2(λ,DD,θ(d)) + T3(DD,θ(d)),

where

T1(β,DD,θ(d)) =
J∑
j=1

cj∑
i=1

E(Ỹij|DD,θ(d)) log pij + {1− E(Ỹij|DD,θ(d))}log(1− pij)

T2(λ,DD,θ(d)) =
J∑
j=1

cj∑
k=1

[
Zj logh(k, cj, λ) + (1− Zj)log{1− h(k, cj, λ)}

]

×E(Ijk|DD,θ(d)),
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and T3(DD,θ(d)) is free of θ. We provide in Appendix B.1 closed-form expressions for

both E(Ỹij|DD,θ(d)) and E(Ijk|DD,θ(d)). It is important to note that for large values

of cj (e.g., cj > 20) evaluating these expectations directly can be computationally

intractable. An alternate approach to approximate these expectations is provided in

Appendix B.1.

The M-step of the algorithm finds θ(d+1) = arg maxθ Q(θ,θ(d)). Given the form

of Q(θ,θ(d)) above, the maximization step can be divided into two stages; i.e., one

can find

β(d+1) = arg maxβ T1(β,DD,θ(d)),

λ(d+1) = arg maxλ T2(λ,DD,θ(d)),

where θ(d+1) = (β(d+1)′, λ(d+1))′. The optimization step for β(d+1) can be completed

using any standard optimization routine appropriate for fitting binary regression

models; e.g., optim in R. Similarly, because λ ≥ 0 the optimization for λ is over

a unidimensional constrained space and can be completed using standard numerical

optimization routines; e.g., optimize in R.

In what follows, the EM algorithm is summarized. Initialize θ(0) = (β(0)′, λ(0))′,

set d = 0, and repeat the following steps until convergence.

1. Evaluate E(Ijk|DD,θ(d)), for k = 1, 2, ..., cj and j = 1, 2, ..., J .

2. Find λ(d+1) = arg maxλ T2(λ,DD,θ(d)).

3. Evaluate E{Ỹij|DD, (β(d)′, λ(d+1))′}, for i = 1, 2, ..., cj and j = 1, 2, ..., J .

4. Find β(d+1) = arg maxβ T1(β,DD, (β(d)′, λ(d+1))′).

5. Update θ(d+1) = (β(d+1)′, λ(d+1))′ and set d = d+ 1.

At convergence of the algorithm, take θ̂ = θ(d) to be the MLE of θ. By direct appeal

to the missing data principle and the method outlined in Louis (1982), one can obtain
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the observed information matrix as

I(θ) = −∂
2Q(θ,θ)
∂θ∂θ′

− cov
{
∂lc(θ|DD, Ỹ)

∂θ

∣∣∣∣∣DD,θ
}
.

Appendix B.1 provides closed-form expressions for both of the terms on the right hand

side of I(θ). Large-sample Wald inference can be conducted in the usual fashion using

I(θ̂)−1 as an estimate of the large-sample covariance matrix of θ̂.

3.3 Detecting the dilution effect

The dilution submodel h defined in Section 3.2 accounts for the presence or absence of

dilution through the parameter λ; i.e., λ > 0 corresponds to the event that dilution

is present, λ = 0 otherwise. Based on either DM or DD, the modeling techniques

outlined in Sections 3.2 and 3.2 can be used to obtain the MLE of λ, which is denoted

as λ̂. Thus, through this parameter estimate, one gains subjective evidence of whether

or not a dilution effect is present. In addition, a formal test can be constructed for

the same purpose by considering the following set of hypotheses,

H0 : λ = 0 and H1 : λ > 0, (3.6)

where rejecting H0 suggests there is evidence of dilution. The practical relevance

of this test is to assess whether the less complex model under H0 (e.g., the model

proposed by Vansteelandt et al., 2000) is appropriate for analyzing data observed

from a group testing algorithm.

In order to test H0 versus H1, a likelihood ratio statistic is given by

TLR = 2 ln
{
maxθ∈Θ L(θ|D)
maxθ∈Θ0 L(θ|D)

}
, (3.7)

where Θ0 denotes the constrained subset of the parameter space, Θ, specified under

the null hypothesis and D denotes the observed data. Large values of TLR provide

evidence against the null hypothesis; i.e., of a significant dilution effect. Due to the
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inherently complex nature of the likelihood functions presented in (3.3) and (3.4), pro-

viding exact finite sample critical values and or p-values for testing (3.6) through the

test statistic in (3.7) appears to be intractable. Further, approximating the sampling

distribution of TLR through the use of standard large-sample theory is not appro-

priate under the null hypothesis because λ exists on the boundary of the parameter

space under H0. To circumvent these issues, the general result of Self and Liang

(1987) can be used to establish that, asymptotically, TLR ∼ 1
2χ

2
0 + 1

2χ
2
1, where χ2

0 is a

random variable with a point mass distribution at 0 and χ2
1 is a chi-squared random

variable with 1 degree of freedom. Using this asymptotic result, one can calculate

critical values and p-values in the usual fashion. Testing near or at the boundary

of the parameter space is a commonly encountered problem in the random effects

literature; e.g., see Self and Liang (1987) and Molenberghs and Verbeke (2007).

Evaluation of TLR requires one to calculate the observed likelihood function L(θ|D)

at θ = θ̂. While L(θ|D) is available in (3.3) for master pool testing, a direct evalua-

tion of L(θ|D) from (3.5) for Dorfman decoding can be practically infeasible because

of the missing data involved. We show in Appendix B.3 how one can evaluate the

likelihood function in an alternative approach.

3.4 Simulation evidence

We perform a simulation study to access the performance of our proposed estimation

and testing approaches. We also compare our approach with the existing regression

techniques that ignore dilution; for example, Vansteelandt et al. (2000) fits master

pool testing data with constant Se and Sp and Zhang et al. (2013) fits Dorfman

decoding data with constant Se and Sp.
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Simulation description

We simulate B = 500 group testing data sets of sample size N = 5000 for both master

pool testing and Dorfman decoding. Our simulation requires specification of the link

function g(·) to generate individual true statuses and the submodel h to introduce

dilution (i.e., false negative test results). First, we generate individual true statuses

Ỹij using the logit link function g(·) given by

logit{pr(Ỹij = 1)} = β0 + β1xij1 + β2xij2,

where xij1 ∼ N (0, 0.752) and xij2 ∼ Bernoulli(0.1), and β = (−3, 2, 1)′. For this

configuration, the individual-level disease probability is between 8%−10% on average,

which is consistent with the HBV data example we use in Section 3.5. Second, we

assign individuals to pools using both random and homogeneous pooling strategies, as

described in Vansteelandt et al. (2000). For random pooling, individuals are assigned

to pools randomly. For homogeneous pooling, individuals are sorted first by xij2 and

then by xij1 before they are assigned to pools. We choose the constant pool sizes

cj = 5, 10 and also a combination (UE) which consists of 334 pools of size 5 and 333

pools of size 10. Third, we determine true pooled statuses and then simulate group

testing responses as Zj ∼ Bernoulli{h(k, cj, λ)Ijk + SpIj0}, for k = 1, 2, ..., cj, using

the submodel

h(k, cj, λ) = exp{λ τ(k, cj)}
S−1
e + exp{λ τ(k, cj)} − 1 (3.8)

where τ1(k, cj) = (k − cj)/cj and λ ≥ 0. For Dorfman decoding, individual retest

results are simulated as Yij ∼ Bernoulli{SeỸij + (1− Sp)Ỹij}. We use the individual-

level testing accuracies Se = Sp = 0.99. The submodel in (3.8) obeys all of the

assumptions defined in Section 3.2 and adheres to the characteristics outlined in (3.1)

and (3.2). We show in Appendix B.4 how we derive this submodel using a cumulative

distribution function. We use λ = 2.6, 3.8, 5.0 to introduce mild, moderate, and

severe misclassification. For these choices of λ, the dilution function h lies between
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85%−97% on average. The values of h for these configurations are provided in Table

3.1. To avoid constrained optimization, we reparameterize as λ = exp(φ) where

φ ∈ (−∞,∞); that is, we estimate (β0, β1, β2, φ)′ instead of estimating (β0, β1, β2, λ)′.

In addition to increasing numerical stability, this transformation improves covariance

matrix estimation for the MLE θ̂.

Table 3.1: Test sensitivity using the submodel h in (3.8) with different parameter config-
urations.

cj λ k = 1 2 3 4 5 6 7 8 9 10
2.6 0.93 0.95 0.97 0.98 0.99 —– —– —– —– —–

5 3.8 0.83 0.91 0.96 0.98 0.99 —– —– —– —– —–
5.0 0.64 0.83 0.93 0.97 0.99 —– —– —– —– —–

2.6 0.91 0.93 0.94 0.95 0.96 0.97 0.98 0.98 0.99 0.99
10 3.8 0.76 0.83 0.87 0.91 0.94 0.96 0.97 0.98 0.99 0.99

5.0 0.52 0.64 0.75 0.83 0.89 0.93 0.96 0.97 0.98 0.99

Simulation results

We view the dilution parameter λ as a nuisance parameter and present estimation re-

sults only for the regression parameter β. In Table 3.2, we present estimation results

calculated from B = 500 simulated data sets for random pooling. We report averaged

MLEs, averaged standard error estimates, and estimated coverage probabilities for

large-sample 95% Wald confidence intervals. Overall, our dilution method provides

estimates that are on target, on average, whereas techniques that ignores false nega-

tive test results can provide estimates that are severely biased. Furthermore, as the

pool size becomes larger or the level of misclassification increases, the amount of bias

becomes more pronounced. While our approach fixes estimation bias, it can yield less

precise estimates of β because it (i) accounts for testing errors and (ii) additionally

estimates λ. This phenomenon is mainly observed for master pool testing, although

the loss of efficiency does not appear to be large. The dilution method works ex-
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ceedingly well for Dorfman decoding; the MLEs are nearly as precise as the MLEs

using the constant method in Zhang et al. (2013) which estimates only β. This

happens because the accuracy for individual retest results are assumed to be known

(Se = Sp = 0.99).

We find from Table 3.2 that failure to account for dilution causes existing tech-

niques to drastically underestimate the nominal coverage rate for 95% Wald confi-

dence intervals. This mainly results from the high amount of bias in the estimates

of β. As λ increases, underestimation becomes more evident. In contrast, estimated

coverage rates using our approach are mostly on target for all parameters in β. We

show simulation evidence for homogeneous pooling in Appendix B.5. Estimation ac-

curacy and precision for homogeneous pooling are similar to that for random pooling.

This finding is somewhat counterintuitive given the evidence in Vansteelandt et al.

(2000) who showed that homogeneous pooling produces more efficient estimates of β.

For the estimation results discussed above, we correctly specified the true sub-

model in (3.8). One may wonder how robust these results are to dilution submodel

misspecification. To investigate this issue, we performed a simulation in Appendix

B.5 wherein we assume the submodel in (3.8) for the group testing data simulated

using the three submodels in Appendix B.4. We found that estimation results are

largely unaffected by submodel misspecification.

Finally, satisfactory performance of our approach requires large data sets. This

is especially crucial for master pool testing. With smaller sample sizes such as in

the HBV data application in Section 3.5, we do not advise to use the dilution model

for master pool testing. However, if individual retest results are available from a

screening algorithm, such as Dorfman decoding, halving algorithm, array testing,

etc., the dilution approach should work nearly as well as individual testing; we do not

show the comparison with individual testing for brevity. We sometimes experienced

computational difficulties (especially for master pool testing) when estimating the
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large-sample covariance matrix for θ̂. The estimated variance for λ̂ occasionally

becomes negative. This problem mainly arises when λ̂ is close to zero (boundary of

the parameter space). However, this problem can be resolved when the observed data

consists of a sufficiently large number of test results.

Table 3.2: Simulation results for master pool testing (MPT) and Dorfman decoding (DD)
with θ = (β0, β1, β2, λ)′ = (−3, 2, 1, λ)′. “Mean” is the averaged maximum likelihood esti-
mate and SE is the averaged standard error estimate calculated from 500 simulated data
sets. Cov is the estimated coverage rate of nominal 95% Wald confidence intervals. The
margin of error for the estimated coverage rate, assuming a 99% confidence level, is 0.03.
Constant pool sizes c are used. Random pooling has been used for this simulation.

Constant Se/Sp Dilution
c β̂0 β̂1 β̂2 β̂0 β̂1 β̂2

λ = 2.6
5 MPT Mean (SE) −3.05 (0.13) 1.92 (0.15) 0.93 (0.26) −2.98 (0.17) 2.07 (0.24) 1.01 (0.30)

Cov 0.96 0.91 0.95 0.97 0.95 0.97
DD Mean (SE) −3.06 (0.09) 1.97 (0.09) 0.97 (0.15) −3.00 (0.10) 2.01 (0.10) 1.00 (0.16)

Cov 0.91 0.92 0.91 0.93 0.94 0.92
10 MPT Mean (SE) −3.05 (0.18) 1.81 (0.23) 0.85 (0.40) −3.07 (0.26) 2.21 (0.49) 1.03 (0.55)

Cov 0.95 0.87 0.97 0.97 0.97 0.97
DD Mean (SE) −3.07 (0.09) 1.96 (0.10) 0.97 (0.15) −3.00 (0.10) 2.01 (0.10) 0.99 (0.16)

Cov 0.89 0.93 0.96 0.96 0.96 0.96

λ = 3.8
5 MPT Mean (SE) −3.15 (0.13) 1.82 (0.15) 0.90 (0.26) −3.01 (0.21) 2.08 (0.27) 1.05 (0.32)

Cov 0.81 0.77 0.94 0.92 0.94 0.95
DD Mean (SE) −3.14 (0.09) 1.92 (0.09) 0.95 (0.15) −3.01 (0.10) 2.00 (0.10) 1.00 (0.16)

Cov 0.64 0.84 0.95 0.94 0.95 0.96
10 MPT Mean (SE) −3.18 (0.17) 1.59 (0.22) 0.79 (0.41) −3.10 (0.36) 2.29 (0.63) 1.15 (0.69)

Cov 0.85 0.53 0.96 0.91 0.91 0.96
DD Mean (SE) −3.21 (0.09) 1.90 (0.10) 0.93 (0.16) −3.01 (0.10) 2.00 (0.11) 0.99 (0.17)

Cov 0.41 0.83 0.93 0.94 0.94 0.95

λ = 5.0
5 MPT Mean (SE) −3.35 (0.13) 1.68 (0.16) 0.83 (0.28) −3.03 (0.31) 2.04 (0.30) 1.02 (0.37)

Cov 0.24 0.46 0.94 0.89 0.91 0.96
DD Mean (SE) −3.34 (0.10) 1.84 (0.10) 0.89 (0.17) −3.01 (0.11) 2.01 (0.12) 0.99 (0.18)

Cov 0.04 0.61 0.91 0.95 0.94 0.96
10 MPT Mean (SE) −3.55 (0.18) 1.45 (0.23) 0.67 (0.47) −3.09 (0.54) 2.19 (0.64) 1.10 (0.77)

Cov 0.09 0.30 0.98 0.82 0.90 0.96
DD Mean (SE) −3.50 (0.11) 1.82 (0.11) 0.89 (0.18) −3.01 (0.12) 2.01 (0.12) 1.00 (0.20)

Cov 0.00 0.59 0.92 0.96 0.96 0.94
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Table 3.3: Estimated size and power of the α = 0.05 likelihood ratio test calculated from
500 simulated data sets with θ = (β0, β1, β2, λ)′ = (−3, 2, 1, λ)′. The margin of error for the
estimated size when λ = 0, assuming a 99% confidence level, is 0.03. Constant pool sizes c
and unequal (UE) pool sizes are used.

Master pool testing Dorfman decoding
c λ = 0 1 2 3 4 0 1 2 3 4

Random pooling
5 0.05 0.08 0.06 0.13 0.22 0.05 0.07 0.16 0.51 0.93
10 0.05 0.09 0.10 0.20 0.27 0.05 0.10 0.32 0.91 1.00
UE 0.04 0.05 0.17 0.30 0.59 0.04 0.08 0.27 0.83 1.00

Homogeneous pooling
5 0.04 0.06 0.08 0.14 0.16 0.06 0.06 0.17 0.54 0.92
10 0.06 0.09 0.20 0.31 0.38 0.03 0.10 0.34 0.78 1.00
UE 0.07 0.10 0.19 0.29 0.38 0.04 0.13 0.32 0.84 1.00

Power of the hypothesis test for dilution effects

To exhibit power properties of the likelihood ratio test in Section 3.3, we continue with

the data simulation configurations described in Section 3.4 with one exception; we

now consider λ = 0, 1, ..., 4. The estimated size and power of the α = 0.05 likelihood

ratio test is presented in Table 3.3. We estimate the power as the proportion of times

H0 : λ = 0 is rejected out of 500 data sets. As one might expect, the power of the

test increases as λ increases. For all configurations, the size of the test is estimated

well and is within the margin of error for α = 0.05. The test for Dorfman decoding is

much more powerful because it involves more test results. The overall performance

of the test using variable pool sizes (UE) is better. This may be the result of the in-

duced between-pool variability (in regard to testing sensitivities) from unequal group

composition. Like the estimation results in Section 3.4, the power calculation results

here are unaffected by the pooling strategies (random or homogeneous). We also ex-

plored the power properties when the submodel in (3.8) is misspecified (see Appendix

B.5). With the misspecified submodels, the likelihood ratio test performs as well as

with the correctly specified submodel; the size is estimated well and the power has a
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monotonically increasing trend as the amount of dilution increases.

3.5 Data application

We illustrate our regression techniques using HBV data from a national study con-

ducted in Ireland and reported in Allwright et al. (2000). The data consist of HBV

test results, OD readings from a Murex ICE enzyme immunoassay, and covariate in-

formation, such as age, drug use, and sexual practices, for N = 1193 Irish prisoners.

HBV tests were performed individually using oral fluid specimens and the covariates

were collected through a voluntary survey performed anonymously. The goal of this

study was to estimate the overall prevalence of positivity and to identify risk factors

for infection.

To incorporate false negative results in group testing, we adopt the strategy

demonstrated in McMahan et al. (2013). We use age as a covariate and HBV disease

statuses and OD readings to determine testing responses. In our analysis, we use 1137

individuals (99 positive cases and 1038 negative cases) for whom we have complete

information. The variable age ranges from 16 to 67 years, 91% of the individuals

are aged between 16 and 40, and multiple individuals share the same age. We con-

sider both random and homogeneous pooling strategies. For homogeneous pooling,

individuals are sorted by age before assigning to pools.

We assume the OD readings are measured without error because we do not have

any additional information about these observations. First, we assign individuals

to pools and then calculate the pooled OD reading as ODj = c−1
j

∑cj

i=1 ODij. This

proceeds under the assumption adopted by McMahan et al. (2013) that the OD

reading for a pool is the average of the individuals’ OD readings in the pool. To

determine diagnosed statuses, we find the cutoff t∗ (which is not available to us) that
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minimizes the discrepancies between the individuals’ diagnosed statuses so that

t∗ = arg mint


N+∑
i=1

I(OD+
i < t) +

N−∑
i=1

I(OD−i > t)

 ,
where N+ = 99, N− = 1038, and OD+

i and OD−i are the OD readings observed

from HBV-positive and HBV-negative individuals. Next, we determine pool testing

responses by Zj = I(ODj > t∗) and individual retest results by Yij = I(ODij > t∗).

Recall that, for Dorfman decoding, the retest results {Y1j, Y2j, ..., Ycjj} are observed

only when the jth pool is diagnosed as positive. For simplicity, we use constant pool

sizes cj = 1, 3, 4, 5, 6, 8, 10, where cj = 1 corresponds to individual testing. When

N/cj > 0, we form one reminder pool of smaller size. We repeat this entire procedure

B = 500 times to obtain 500 group testing data sets.

For individual-level disease probabilities, we consider the following logistic models

logit{pr(Ỹij = 1)} = β0 + β1xij (3.9)

logit{pr(Ỹij = 1)} = β0 + β1xij + β2x
2
ij, (3.10)

where the covariate x = (age−age)/SD, age is the mean age and SD is the standard

deviation for age. We found that standardization improves numerical stability for

the polynomial model in (3.10). Because we treat OD readings as being measured

without error, the individual testing accuracies are calculated as

Se = 1
N+

N+∑
i=1

I(OD+
i > t∗) and Sp = 1

N−

N−∑
i=1

I(OD−i < t∗).

For this small sample study, we fit the dilution model only for Dorfman decoding,

and we continue to use the submodel h given by (3.8). To make our comparisons,

we also fit an individual testing model and the model in Zhang et al. (2013) which

assumes Se and Sp to be constant.
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Figure 3.1: Irish HBV data analysis with Dorfman decoding and random pooling. The
first-order logistic model in (3.9) is assumed. Estimated regression functions, averaged over
B = 500 implementations, are presented. The estimated regression function for individual
testing is also shown for comparison.
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Figure 3.2: Irish HBV data analysis with Dorfman decoding and random pooling. The
polynomial logistic model in (3.10) is assumed. Estimated regression functions, averaged
over B = 500 implementations, are presented. The estimated regression function for indi-
vidual testing is also shown for comparison.
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Table 3.4: Irish HBV data analysis with Dorfman decoding. The first-order logistic model
in (3.9) is assumed. MLE (estimated standard error) for β = (β0, β1)′ averaged overB = 500
implementations. “Reject” is the proportion that the likelihood ratio test in Section 3.3
detects dilution using the level of significance α. Individual testing (c = 1) estimates are
also reported for comparison.

Constant Se/Sp Dilution Reject
c β̂0 β̂1 β̂0 β̂1 α = 0.05 0.10
1 −2.38 (0.11) 0.28 (0.09) —– —– —– —–

Random pooling
3 −2.59 (0.12) 0.24 (0.10) −2.37 (0.20) 0.25 (0.11) 0.30 0.42
4 −2.63 (0.12) 0.24 (0.10) −2.34 (0.19) 0.25 (0.11) 0.49 0.66
5 −2.66 (0.12) 0.22 (0.11) −2.32 (0.18) 0.24 (0.11) 0.69 0.79
6 −2.67 (0.12) 0.21 (0.11) −2.30 (0.18) 0.22 (0.11) 0.81 0.87
8 −2.69 (0.12) 0.21 (0.11) −2.26 (0.17) 0.22 (0.11) 0.93 0.97
10 −2.70 (0.13) 0.20 (0.11) −2.23 (0.16) 0.22 (0.12) 0.98 0.99

Homogeneous pooling
3 −2.59 (0.12) 0.25 (0.10) −2.35 (0.20) 0.24 (0.11) 0.35 0.50
4 −2.62 (0.12) 0.25 (0.11) −2.32 (0.19) 0.25 (0.11) 0.57 0.72
5 −2.65 (0.12) 0.23 (0.11) −2.29 (0.18) 0.22 (0.11) 0.76 0.88
6 −2.66 (0.12) 0.22 (0.11) −2.25 (0.17) 0.21 (0.12) 0.90 0.97
8 −2.67 (0.12) 0.22 (0.11) −2.20 (0.16) 0.22 (0.12) 0.99 0.99
10 −2.67 (0.13) 0.25 (0.11) −2.18 (0.16) 0.23 (0.12) 1.00 1.00

Figure 3.1 presents averaged estimates of the first-order regression function in

(3.9). Table 3.4 shows averaged MLEs, averaged standard error estimates, and the

proportion of times the likelihood ratio test in Section 3 detects dilution, for the

regression function in (3.9). These estimation results are calculated from the 500

data sets using random pooling. One observes that the performance of the dilution

regression method is close to that for individual testing, despite the fact that the

former is estimating the additional parameter λ with significantly fewer number of

test results. On the other hand, the constant Se/Sp method in Zhang et al. (2013)

provides inaccurate estimates and performs worse as more dilution is incorporated by

increasing pool sizes. These results reinforce the simulation evidence in Section 3.4.
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One can make several remarks from the hypothesis test results in Table 3.4. The

rejection rate increases with cj as one would expect. Homogeneous pooling appears

to help detect the dilution, although this outcome is not observed from the simulation

in Section 3.4. Also, changing the level of significance from α = 0.05 to α = 0.10

shows a noticeable increase in the rejection rates, as expected. Finally, Figure 3.2

shows estimated regression functions, averaged over 500 data sets, for the polynomial

model in (3.10). These results are fairly consistent with the results discussed above.

However, the regression functions are slightly underestimated in the extremes when

cj is smaller, perhaps because only a few individuals are older than 40. More results

from this data analysis are presented in Appendix B.6.

3.6 Discussion

We have generalized group testing regression models to account for misclassification

due to dilution effects. Our approach corrects for estimation bias by exploiting a

parametric function specified for pooled-level sensitivity and provides reliable infer-

ence. While McMahan et al. (2013) studied the same problem (for master pool

testing), one of the notable advantages of our framework is that a formal hypothesis

test can be performed to detect dilution. This enables one to decide whether to fit

our complex dilution model which accounts for false negative test results.

We have assumed that pool testing sensitivities can be modeled by a parametric

function h whose form is known. Such an assumption is not overly restrictive. One

can select h using pilot study data or an assay’s validation data. In the absence of such

data, one can construct the function using any cumulative distribution function as we

have shown in Appendix B.4. While any submodel which possesses the characteristics

of h as defined in Section 3.2 can be used, careful choice of h will ensure better

estimation precision. Our dilution approach requires a sufficient amount of data. This

is not unrealistic because group testing is often used for large screening applications
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(e.g., chlamydia and gonorrhea screening by CDC and HIV, HBV, and HCV screening

by American Red Cross). For example, the state of Nebraska alone tests 20-30

thousand individuals every year for chlamydia and gonorrhea.

In this work, we have assumed that individual testing sensitivity and specificity

(Se and Sp) are known. Future work might treat these quantities as unknown and

make efforts to estimate them from the observed data. This would require even larger

data sets to identify the submodel model h, in which case a Bayesian approach might

be more suitable. One can construct informative prior distributions using the plethora

of prior information available in most disease screening applications. Finally, we have

generalized the regression models in Vansteelandt et al. (2000) and Zhang et al.

(2013) for master pool testing and Dorfman decoding. It would be straightforward to

generalize our methods to handle other group testing strategies, such as array based

testing and the halving algorithm in Zhang et al. (2013). One could also generalize

our approach to be used with other types of models, such as the random effects model

described in Chen, Tebbs, and Bilder (2009).
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Chapter 4

Group testing regression with measurement

error in covariates

4.1 Introduction

The seminal work in group testing was motivated by a large-scale infection screening

application (Dorfman, 1943). During World War II, the United States Public Health

Service and associated organizations used to test inductees to weed out the ones

infected by syphilis. To accomplish such a massive testing task with affordable costs

and efforts, Dorfman proposed to test the inductees through pooled blood specimens

as an alternative to the conventional one-by-one testing. Since then, group testing,

also called pooled testing, has been effectively used in applications involving sexually

transmitted diseases, such as HIV (Pilcher et al., 2005), chlamydia and gonorrhea

(Lewis et al., 2012), and HBV and HCV (Hourfar et al., 2008; Stramer et al., 2013).

Group testing can be successfully implemented in any applications when two primary

requirements are met: (i) trait of interest (e.g., defective/non-defective) is rare, (ii)

pools can be formed by compositing a set of individual specimens. For group testing

applications in other areas see, animal testing (Dhand et al., 2010), genetics (Chi

et al., 2009), pollution detection (Wahed et al., 2006), food safety (Fahey et al.,

2006), and drug discovery (Remlinger et al., 2006).

Statistical research in group testing is mainly found in a homogeneous population

setting, where the goal is to estimate a binomial proportion (Mendoza-Blanco et al.,

1996; Johnson and Pearson, 1999; Hanson et al., 2006). In recent years, group testing
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research has shifted towards heterogeneous population settings where individual-level

covariates can be useful in both classification (case identification) and estimation

problems. To improve efficiency in classification, Bilder et al. (2010) and McMahan

et al. (2012a,b) used covariates in the design stage of group testing. In estimation

problems, covariate-adjusted inference has been proposed in all research directions:

parametric (Vansteelandt et al., 2000; Bilder and Tebbs, 2009), semiparametric (Wang

et al., 2014b), and nonparametric (Delaigle and Meister, 2011; Delaigle and Zhou,

2015). Furthermore, group testing regression models have been studied for more

sophisticated data structures. Chen et al. (2009) proposed random effects models

to account for regional variability, and McMahan et al. (2013), Wang et al. (2015)

and Delaigle and Hall (2015) proposed regression models in the presence of dilution

effects.

Accuracy in group testing regression inference can be compromised by two basic

sources of error contamination: (i) errors in testing responses, (ii) errors in covariate

measurements. While the former has been studied widely, the later is still very new

and a fulfilling research direction. Measurement errors in covariates often arise in

epidemiological applications. For example, subjects infected by one sexually trans-

mitted disease, such as chlamydia or gonorrhea, are susceptible to another disease

such as HIV. Therefore, to calculate a subject’s disease probability for HIV, it is

crucial to use the subject’s infection status for chlamydia or gonorrhea as a covariate.

Because these types of covariates are often measured with errors, it is necessary to ac-

knowledge such errors to accurately calculate covariate-specific disease probabilities.

Huang and Tebbs (2009) first studied measurement error models for group testing

data. These authors developed a diagnostic tool that can identify misspecification in

structural measurement error models. Huang (2009) proposed an improved version

of the diagnostic method in Huang and Tebbs (2009). These articles did not focus on

estimation and are limited to structural measurement error models, which require a
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known probability distribution for true (latent) covariates. Misspecification of such

latent model can adversely affect inference (Carroll et al., 2006; Huang and Tebbs,

2009). Furthermore, these articles assume the availability of a perfect assay. This

requirement can be too prohibitive for most applications in group testing. Delaigle

and Meister (2011) briefly talked about a nonparametric approach to model group

testing data in the presence of measurement errors.

We take a Bayesian approach to generalize the existing group testing models in

the presence of measurement errors. Our method offers a number of appealing fea-

tures. First, we treat the latent covariates as “missing data” on which a flexible prior

distribution is specified. Moreover, to emulate a study where no such prior infor-

mation is available, we estimate the latent model nonparametrically. Second, our

approach provides flexibility to the error structure which relates observed covariates

to latent covariates, unlike most existing approaches which assume the measurement

error variance fixed and known (Huang and Tebbs, 2009; Huang, 2009). Third, we

allow for imperfect diagnoses and incorporate information about the assay’s uncer-

tainty from assay product literature. Finally, one can construct sound informative

priors using the abundance of historical data available in epidemiological applications

where group testing is often used. In the next section, we formulate our model and

discuss how the inference can be performed via Markov Chain Monte Carolo (MCMC)

techniques.
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4.2 Model formulation

We consider a group testing application of N individuals who are randomly assigned

to one of the J non-overlapping pools. Let Ỹij denote true disease statuses, where

Ỹij = 1 if the ith individual in the jth is truly positive and Ỹij = 0 if otherwise,

for i = 1, 2, ..., cj and j = 1, 2, ..., J . Let cj denote the pool size and N = ∑J
j=1 cj,

where cj = 1 refers to individual testing. We assume that Ỹij ∼ Bernoulli(pij); i.e.,

Ỹij’s are independent Bernoulli random variables with mean pij. Denote by Xij the

true (scalar) covariates of the ith individual in the jth pool. In this study, Xij’s are

unobserved and are regarded as missing data. For ease of exposition, we develop the

model with the univariate covariates Xij. Extension of our model to multivariate

settings will be straightforward. Let individuals’ disease statuses relate to their true

covariates as

pij = pr(Ỹij = 1|Xij,β) = g−1(β0 + β1Xij), (4.1)

where g(·) is a monotone and differentiable link function and β = (β0, β1)′ is the

vector of regression parameters. Inference about β is of central interest.

Suppose Wij’s are observed covariates that are prone to measurement error; i.e.,

we observe the error contaminated covariates Wij in place of Xij. We assume an

additive error model structure which links Wij to Xij as

Wij = Xij + Uij, (4.2)

where Uij’s are independent errors and Uij|σ2
U ∼ N (0, σ2

U). Thus, Wij|{Xij, σ
2
U} ∼

N (Xij, σ
2
U). Note, we treat σ2

U as an unknown random variable. In the presence of

replicate measurements on Xij, one can estimate σ2
U and can treat σ2

U as a known con-

stant. However, this assumption can be questionable when sufficiently large number

of replicates are unavailable.
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Let Z̃j denote true pool statuses, where Z̃j = 1 if the jth pool contains at least one

positive individual and Z̃j = 0 if otherwise. Denote the pool testing responses by Zj,

where Zj = 1 if the jth pool is diagnosed as positive and Zj = 0 if otherwise. In the

presence of testing errors, Z̃j’s can not be unobserved, and one observes Zj instead

of Z̃j. Let the misclassification in testing responses be governed by assay sensitivity

and specificity defined as Se = pr(Zj = 1|Z̃j = 1) and Sp = pr(Zj = 0|Z̃j = 0).

We assume that Se and Sp do not depend on the pool size cj. This assumption

is common in group testing (Kim et al., 2007) and is reasonable when an assay’s

threshold is carefully chosen to accommodate both pooled and individual specimens.

Let δ = (Se, Sp)′. The probability that a pool tests positively is

pr(Zj = 1|Xj,β, δ) = Se − (Se + Sp − 1)
cj∏
i=1

{
1− g−1 (β0 + β1Xij)

}
,

where Xj = (X1j, X2j, ..., Xcjj)′. Define Wj = (W1j,W2j, ...,Wcjj)′. We assume that

Zj and Wj, for j = 1, 2, ..., cj, are independent conditional on the true covariates

Xj; i.e., {Zj|Xj}⊥{Wj|Xj}. This assumption is analogous to the “nondifferentiality

assumption” commonly arises in individual testing regression (Carroll et al., 2006;

Huang and Tebbs, 2009). The joint distribution of (Zj,Wj) conditional on Xj is

given by

f(Zj,Wj|Xj,β, δ, σ
2
U) = f(Zj|Xj,β, δ)f(Wj|Xj, σ

2
U),

where

f(Wj|Xj, σ
2
U) =

cj∏
i=1

σ−1
U φ{σ−1

U (Wij −Xij)}

f(Zj|Xj,β, δ) = pr(Zj = 1|Xj,β, δ)Zj{1− pr(Zj = 1|Xj,β, δ)}1−Zj ,

and φ(·) denotes the probability density function of a standard normal random vari-

able. Let Z = (Z1, Z2, ..., ZJ)′, W = (W1
′,W2

′, ...,WJ
′)′ and X = (X1

′,X2
′, ...,XJ

′)′.

Thus, the joint distribution of the observed data (Z,W) given (X,β, δ, σ2
U) is

f(Z,W|X,β, δ, σ2
U) =

J∏
j=1

f(Zj,Wj|Xj,β, δ, σ
2
U). (4.3)
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Having derived the observed data likelihood function in (4.3), we are left to specify

a prior distribution f(X,β, δ, σ2
U) for the unknown quantity (β, δ, σ2

U ,X), which is

treated as random in a Bayesian framework. It follows that the posterior distribution

is given by

π(X,β, δ, σ2
U |Z,W) ∝ f(Z,W|X,β, δ, σ2

U)f(X,β, δ, σ2
U). (4.4)

We specify commonly used prior distributions. For the regression parameter β, we

elicit a multivariate normal distribution with mean vector µ and covariance matrix

Σ; i.e., β ∼ N (µ,Σ). We specify independent beta prior distributions for the test

accuracy parameters in δ, i.e., Se ∼ beta(aSe , bSe) and Sp ∼ beta(aSp , bSp). This in-

dependent beta-prior approach is analogous to the approach in Johnson and Pearson

(1999) and Hanson et al. (2006). We choose inverse-gamma prior for the error vari-

ance, i.e., σ2
U ∼ IG(aσ2

u
, bσ2

u
). Note, the aforementioned hyperparameters are assumed

known constant. For the latent variables in X, we use a hierarchical model struc-

ture; i.e., Xij|{µX , σ2
X} ∼ N (µX , σ2

X), µX ∼ N (µµx , σ
2
µx

), and σ2
X ∼ IG(aσ2

x
, aσ2

x
).

Note, specification of the prior for Xij should be close to the true distribution of

Xij. Assuming mutual independence among the parameters in (β, δ, σ2
U ,X), one can

write out the posterior distribution in (4.4) and derive full conditional distributions.

Inference about these parameters can be made conventionally using MCMC samples

from those conditional distributions. Commonly used sampling techniques are Gibbs

sampler (Geman and Geman, 1984) and Metropolis-Hastings algorithm (Metropo-

lis et al., 1953; Hastings, 1970) corresponding to the situations whether closed-form

expressions for these condition distributions are available or not.

In the event that subjective knowledge about the true covariates Xij is hard

to obtain or is completely unavailable, we suggest to model Xij nonparametrically,

instead of specifying the hierarchical prior described above. It is straightforward

to generalize our work to the case when replicate measurements are available on

Xij. In what follows, we provide a brief description of the generalization. Let

62



W∗
ij = (Wij1,Wij2, ...,WijK)′ denote the vector of K measurements for the ith subject

in the jth pool. Because W∗
ij is obtained from the same subject, we treat the obser-

vations in W∗
ij correlated. Continuing with the assumptions about the additive error

model in (4.2), we have W∗
ij|{Xij,ΣW ∗} ∼ N (Xij1K ,ΣW ∗), a multivariate normal

distribution. To obtain the Bayesian model in presence of replicate measurements,

one can replace the univariate model for Wij|{Xij, σ
2
U} by the multivariate model for

W∗
ij|{Xij,ΣW ∗} in (4.4).

In this chapter, we have outlined a Bayesian regression model in the presence of

measurement errors in covariates (and also in testing responses). Our model can be

viewed as a generalization of the existing regression models in group testing. Note,

in the absence of replicate measurements on Xij, the observed data do not provide

much information about the error variance σ2
U . Hence, one will need to specify a

heavily informative prior for σ2
U . Such a requirement can be weakened when replicate

measurements are available. I have not explored this project completely. To access

performance of the proposed model, I plan to do an extensive simulation study in

future. I also plan to apply this model to the HBV data collected from the Irish

prison population (Allwright et al., 2000). Description about the Irish HBV data is

provided in Chapter 3.
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Chapter 5

Future research ideas in group testing

During the progress of this dissertation, I have come up with some new ideas that

could be interesting and would contribute significantly to the statistical literature in

group testing. I herein describe few research problems that I did not have time to

explore but I plan to pursue in future.

5.1 Group testing for multiple infections

• In Chapter 2, we modeled the group testing data for multiple infections from

the IPP two-stage hierarchical algorithm. An immediate extension of this work

could be to incorporate test results from more than two stages; an example of

such group testing method is the halving algorithm. We found on a separate

piece of work that testing performed in more than two stages can actually in-

crease individuals’ screening efficiency. Consequently, this extension will enable

one to estimate disease prevalences using data from more cost efficient testing

protocols. I also plan to investigate optimal pool sizes for the multiple-stage

pooling algorithm which involves multiple correlated infections. In Chapter 2,

we used the pool size, suggested by Tebbs, McMahan, and Bilder (2013), which

maximizes individuals’ screening efficiency. However, when the goal is estima-

tion, it is natural to use the optimal pool size which results in the most precise

estimates.
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• A further advancement of the problem discussed above is possible by adjusting

for individual-level covariate information. Zhang, Bilder, and Tebbs (2013) first

proposed a likelihood-based inference for the IPP two-stage algorithm. A future

research can extend this work to more stages in both frequentist’s and Bayesian

framework.

• The IPP pooling algorithm in Chapter 2 assumes the availability of a discrimi-

natory assay for both master pool testing in Stage 1 and individuals’ retesting

in Stage 2. A future work can generalize our Bayesian model in Chapter 2 to

allow for other types of assays that are commonly used in group testing. For

example, a variant of the IPP pool testing can use a discriminatory assay in

Stage 1 and a disease specific assay in Stage 2. This provides added flexibility

in testing and is particularly useful when more accurate diagnoses are desired

to retest individuals from positive pools. Another such testing algorithm can

apply a non-discriminatory assay in Stage 1 and a disease specific assay in Stage

2. In my future research, I plan to survey the group testing protocols imple-

mented by American Red Cross, German Red Cross, etc., and then develop

statistical methods for those applications.

5.2 Group testing for single infection

• In Chapter 3, we proposed a regression method that accounts for dilution ef-

fects through a parametric submodel. Even though the parametric approach

is flexible, a poor choice of the submodel can seriously compromise estimation

precision. An alternative approach could be to estimate the submodel non-

parametrically. Particularly, one can find order-restricted maximum likelihood

estimators of the submodel by exploiting the property that an assay’s pool test-

ing sensitivity is increasing as a function of the number of true positives. This

semiparametric approach (i.e., parametric primary regression model and non-
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parametric submodel) will be appropriate even with a reasonably large sample

size. This project is in progress; we are currently in the exploratory stage.

• The dilution model in Chapter 3 requires a large sample for its validity. Even

though such a requirement is not prohibitive, a Bayesian approach can be more

suitable and can offer several advantages. First, carefully constructed prior dis-

tributions can substantially reduce the large sample requirements. The priors

can be easily elicited using historical data and assay product literature informa-

tion. Second, one can relax the assumption that individual testing sensitivity

and specificity (Se and Sp) are known constants. Inference is possible conven-

tionally by Markov Chain Monte Carlo techniques, such as Gibbs sampler and

Metropolis-Hastings algorithm.

• A more general version of the dilution method in Chapter 3 can include random

effects to account for regional variability. To accomplish this, one can combine

our method in Chapter 3 and the random effects model in Chen, Tebbs, and

Bilder (2009). Hypothesis tests for dilution effects and for regional variability

can be done as before. A general regression framework could be of practical

interest. This will be a challenging problem because of the complex model

structure for group testing and also because of additional computational burden

by including random effects.

5.3 Group testing coupled with measurement error in covariates

• I plan to study the asymptotic properties of naive maximum likelihood esti-

mators in the presence of measurement error in covariates. The naive regres-

sion estimates for individual testing are usually attenuated; similar results are

expected for the naive estimates using group testing. However, previous ro-

bustness studies (Hung and Swallow, 1999; Huang and Tebbs, 2009) suggest
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that inference using group testing should be less affected by the measurement

error. If such a robustness outcome is revealed, we might be able to develop

a formal hypothesis test which detects measurement errors. Furthermore, this

outcome can provide several other appealing features. First, practitioners will

be more encouraged to use group testing as an alternative to individual testing,

whereby substantial cost saving is possible. Second, the hypothesis test does

not require replicate measurements, unlike the hypothesis test for individual

testing. Note that replicate measurements can often be prohibitively costly,

both, economically and logistically.

• Another measurement error project, which can be supremely interesting, is the

generalization of the individual testing regression models in Tsiatis and Ma

(2004) to allow for group testing. The authors proposed functional models

which treat error-prone covariates as random variables that follow an unknown

parametric distribution. This study is limited to the generalized linear models

and is not applicable for more sophisticated data structures, such as group

testing where regression models usually fall outside the range of generalized

linear models.
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Appendix A

Chapter 2 supplementary materials

A.1 Generalization of estimation methods to include J ≥ 2 infec-

tions.

It is straightforward to generalize our estimation procedure in Section 2.3 to include

J ≥ 2 infections. We continue to assume that a single discriminating assay is used in

both stages of the algorithm below. For potential applications, see Section 2.6.

POOLING ALGORITHM

Stage 1: Individuals are randomly assigned to master pools. Each pool is tested

for each of J infections using a single assay. A single assay detects all infections

simultaneously.

Stage 2: Individuals in pools that

• test negatively for all J infections are diagnosed as negative for all infections.

• test positively for at least one infection are retested (individually) for all J

infections using the same assay in Stage 1. Diagnoses for all infections are

made from the outcomes of the individual tests.

Suppose N individuals are to be tested using the two-stage algorithm above for

J ≥ 2 infections. Let Ỹik = (Ỹi1k, Ỹi2k, ..., ỸiJk)′ denote the vector of true statuses

for the ith individual in the kth pool, for i = 1, 2, ..., ck and k = 1, 2, ..., K, where

N = ∑K
k=1 ck. Let Z̃k = (Z̃1k, Z̃2k, ..., Z̃Jk)′ and Zk = (Z1k, Z2k, ..., ZJk)′ denote the

vector of true and observed statuses for the kth master pool, respectively. If the kth

master pool tests positively for at least one infection in Stage 1, the testing response
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vector for ith individual in Stage 2 is Yik = (Yi1k, Yi2k, ..., YiJk)′. Denote the 2J × 1

vector of assay accuracies by δ = (Se:1, Se:2, ..., Se:J , Sp:1, Sp:2, ..., Sp:J)′.

We use the notation adopted by Hughes-Oliver and Rosenberger (2000), referenced

in the manuscript. Let ω = (ω1ω2 . . . ωJ) denote the J-tuple where ωj ∈ {0, 1}, for

j = 1, 2, ..., J , and let Ω denote the collection of the 2J ω outcomes. The probability

of the outcome ω is denoted by pω ∈ (0, 1) so that ∑ω∈Ω pω = 1. Let p denote the

2J × 1 vector consisting of {pω : ω ∈ Ω}. The probability mass function (pmf) of Ỹik

is

pr(Ỹik = ỹ|p) =
∏
ω∈Ω

pṽω
ω , (A.1)

where ỹ = (ỹ1, ỹ2, . . . , ỹJ)′ and ṽω = ∏J
j=1 ỹ

ωj

j (1− ỹj)1−ωj . For example, when J = 2,

we have Ω = {00, 10, 01, 11}, p = (p00, p10, p01, p11)′, and

ṽ00 = (1− ỹ1)(1− ỹ2)

ṽ10 = ỹ1(1− ỹ2)

ṽ01 = (1− ỹ1)ỹ2

ṽ11 = ỹ1ỹ2.

In this case, the pmf in Equation (A.1) reduces to the pmf in Section 2.3.

Let θ = (p′, δ′)′. Under the same assumptions described in Section 2.3 and Section

2.6 (i.e., non-differential assay error, conditional independence of testing results given

the true statuses, no-interference among diseases with regard to Se:j and Sp:j), the

joint distribution of the observed data {Z,Y} and the latent data Ỹ, conditional on

θ, is given by

π(Z,Y, Ỹ|θ) =
K∏
k=1

ck∏
i=1

∏
ω∈Ω

p
Ṽ(ω)ik
ω

×

 J∏
j=1

K∏
k=1

(
S
Zjk

e:j S
1−Zjk

e:j

)I(∑ck
i=1 Ỹijk>0) (

S
1−Zjk

p:j S
Zjk

p:j

)I(∑ck
i=1 Ỹijk=0)

×
{
ck∏
i=1

S
YijkỸijk

e:j S
(1−Yijk)Ỹijk

e:j S
(1−Yijk)(1−Ỹijk)
p:j S

Yijk(1−Ỹijk)
p:j

}I(∑J

j′=1 Zj′k>0)
,
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where Ṽ(ω)ik = ∏J
j=1 Ỹ

ωj

ijk(1− Ỹijk)1−ωj , Se:j = 1− Se:j, and Sp:j = 1− Sp:j. Our goal

is to estimate the 2J + 2J parameters in θ.

As in Section 2.3, we elicit independent beta prior distributions for the assay test

accuracies; i.e., Se:j ∼ beta(aSe:j , bSe:j ) and Sp:j ∼ beta(aSp:j , bSp:j ), for j = 1, 2, ..., J ,

where all hyperparameters are known. We specify a Dirichlet prior distribution for

p; specifically,

p ∼ π(p) ∝
∏
ω∈Ω

pαω−1
ω ,

and derive full conditional distributions. For the assay accuracies, these distribu-

tions are Se:j|Z,Y, Ỹ ∼ beta(a∗Se:j
, b∗Se:j

) and Sp:j|Z,Y, Ỹ ∼ beta(a∗Sp:j
, b∗Sp:j

), for

j = 1, 2, ..., J , where

a∗Se:j
= aSe:j +

K∑
k=1

ZjkZ̃jk + I

 J∑
j′=1

Zj′k > 0
 ck∑
i=1

YijkỸijk


b∗Se:j

= bSe:j +
K∑
k=1

(1− Zjk)Z̃jk + I

 J∑
j′=1

Zj′k > 0
 ck∑
i=1

(1− Yijk)Ỹijk


a∗Sp:j

= aSp:j +
K∑
k=1

(1− Zjk)(1− Z̃jk) + I

 J∑
j′=1

Zj′k > 0
 ck∑
i=1

(1− Yijk)(1− Ỹijk)


b∗Sp:j

= bSp:j +
K∑
k=1

Zjk(1− Z̃jk) + I

 J∑
j′=1

Zj′k > 0
 ck∑
i=1

Yijk(1− Ỹijk)


and Z̃jk = I(∑ck

i=1 Ỹijk > 0). For the prevalence parameter p, the full conditional

distribution is Dirichlet; i.e., p|Ỹ ∼ Dirichlet(Ψ), where Ψ is a 2J × 1 vector of the

elements of {αω + ∑K
k=1

∑ck
i=1 Ṽ(ω)ik : ω ∈ Ω}, where Ṽ(ω)ik = ∏J

j=1 Ỹ
ωj

ijk(1 − Ỹijk)1−ωj ,

for ωj ∈ {0, 1}.

Let Ṽik denote the 2J × 1 vector of the elements of {Ṽ(ω)ik : ω ∈ Ω}. The

conditional distribution of Ṽik given {Ỹk(i),p, δ,Y,Z} is multinomial with cell prob-

abilities ζ ikω /ζ ik, where

ζ ikω = pω
J∏
j=1

(
S
Zjk

e:j S̄
1−Zjk

e:j

)ωj
{(
S
Zjk

e:j S̄
1−Zjk

e:j

)γijk
(
S

1−Zjk

p:j S̄
Zjk

p:j

)1−γijk
}1−ωj

×
{(
S
Yijk

e:j S̄
1−Yijk

e:j

)I(∑J

j′=1 Zj′k>0)
}ωj

{(
S

1−Yijk

p:j S̄
Yijk

p:j

)I(∑J

j′=1 Zj′k>0)
}1−ωj

,
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ζ ik = ∑
ω′∈Ω ζ

ik
ω′ , and γijk = I(∑i′ 6=i Ỹi′jk > 0). When J = 2, the general expression

for ζ ikω admits the four multinomial cell probabilities stated in Section 2.3. Once

Ṽik is sampled from its conditional distribution, Ỹik can be uniquely determined as

shown in Section 2.3 when J = 2. With the conditional distributions of p, δ, and

Ṽik available, one can sample from these distributions using the Gibbs sampler we

described in Section 2.3.

A.2 Complete simulation results from Section 2.4.

This appendix contains the complete set of simulation results from Section 2.4. The

following figures are provided:

• Figure A.1: Prevalence estimates with p = (0.80, 0.10, 0.09, 0.01)

• Figure A.2: Assay accuracy estimates with p = (0.80, 0.10, 0.09, 0.01)

– flat priors for Se:j and Sp:j

• Figure A.3: Prevalence estimates with p = (0.80, 0.10, 0.09, 0.01)

• Figure A.4: Assay accuracy estimates with p = (0.80, 0.10, 0.09, 0.01)

– informative priors for Se:j and Sp:j

• Figure A.5: Prevalence estimates with p = (0.95, 0.03, 0.01, 0.01)

• Figure A.6: Assay accuracy estimates with p = (0.95, 0.03, 0.01, 0.01)

– flat priors for Se:j and Sp:j

• Figure A.7: Prevalence estimates with p = (0.95, 0.03, 0.01, 0.01)

• Figure A.8: Assay accuracy estimates with p = (0.95, 0.03, 0.01, 0.01)

– informative priors for Se:j and Sp:j

Note that Figures A.1 and A.2 are the same as Figures 2.1 and 2.2 in Chapter 2.
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Figure A.1: Simulation results with p = (0.80, 0.10, 0.09, 0.01), N = 1000 individuals,
Se:j = 0.95, and Sp:j = 0.99, for j = 1, 2. The 5th (bottom), 25th, 50th (median), 75th,
and 95th (top) percentiles of the B = 500 posterior median estimates of p are provided.
Flat priors for Se:j and Sp:j are used; i.e., Se:j ∼ beta(1, 1) and Sp:j ∼ beta(1, 1). The
precision parameter a0 increases from 0 (no historical information about p provided) to 1
by increments of 0.1.

80



a0

S
e

:
1

0.0 0.5 1.0

0
.9

0
0

.9
5

1
.0

0

a0

S
e

:
2

0.0 0.5 1.0

0
.9

0
0

.9
5

1
.0

0

a0

S
p

:
1

0.0 0.5 1.0

0
.9

7
0

.9
8

0
.9

9
1

.0
0

a0

S
p

:
2

0.0 0.5 1.0

0
.9

7
0

.9
8

0
.9

9
1

.0
0

Figure A.2: Simulation results with p = (0.80, 0.10, 0.09, 0.01), N = 1000 individuals,
Se:j = 0.95, and Sp:j = 0.99, for j = 1, 2. The 5th (bottom), 25th, 50th (median), 75th,
and 95th (top) percentiles of the B = 500 posterior median estimates of Se:j and Sp:j are
provided. Flat priors for Se:j and Sp:j are used; i.e., Se:j ∼ beta(1, 1) and Sp:j ∼ beta(1, 1).
The precision parameter a0 increases from 0 (no historical information about p provided)
to 1 by increments of 0.1.
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Figure A.3: Simulation results with p = (0.80, 0.10, 0.09, 0.01), N = 1000 individuals,
Se:j = 0.95, and Sp:j = 0.99, for j = 1, 2. The 5th (bottom), 25th, 50th (median), 75th, and
95th (top) percentiles of the B = 500 posterior median estimates of p are provided. Informa-
tive priors for Se:j and Sp:j are used; i.e., Se:j ∼ beta(109.0, 6.7) and Sp:j ∼ beta(55.2, 1.6).
The precision parameter a0 increases from 0 (no historical information about p provided)
to 1 by increments of 0.1.
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Figure A.4: Simulation results with p = (0.80, 0.10, 0.09, 0.01), N = 1000 individuals,
Se:j = 0.95, and Sp:j = 0.99, for j = 1, 2. The 5th (bottom), 25th, 50th (median), 75th,
and 95th (top) percentiles of the B = 500 posterior median estimates of Se:j and Sp:j
are provided. Informative priors for Se:j and Sp:j are used; i.e., Se:j ∼ beta(109.0, 6.7)
and Sp:j ∼ beta(55.2, 1.6). The precision parameter a0 increases from 0 (no historical
information about p provided) to 1 by increments of 0.1.
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Figure A.5: Simulation results with p = (0.95, 0.03, 0.01, 0.01), N = 1000 individuals,
Se:j = 0.95, and Sp:j = 0.99, for j = 1, 2. The 5th (bottom), 25th, 50th (median), 75th,
and 95th (top) percentiles of the B = 500 posterior median estimates of p are provided.
Flat priors for Se:j and Sp:j are used; i.e., Se:j ∼ beta(1, 1) and Sp:j ∼ beta(1, 1). The
precision parameter a0 increases from 0 (no historical information about p provided) to 1
by increments of 0.1.
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Figure A.6: Simulation results with p = (0.95, 0.03, 0.01, 0.01), N = 1000 individuals,
Se:j = 0.95, and Sp:j = 0.99, for j = 1, 2. The 5th (bottom), 25th, 50th (median), 75th,
and 95th (top) percentiles of the B = 500 posterior median estimates of Se:j and Sp:j are
provided. Flat priors for Se:j and Sp:j are used; i.e., Se:j ∼ beta(1, 1) and Sp:j ∼ beta(1, 1).
The precision parameter a0 increases from 0 (no historical information about p provided)
to 1 by increments of 0.1.
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Figure A.7: Simulation results with p = (0.95, 0.03, 0.01, 0.01), N = 1000 individuals,
Se:j = 0.95, and Sp:j = 0.99, for j = 1, 2. The 5th (bottom), 25th, 50th (median), 75th, and
95th (top) percentiles of the B = 500 posterior median estimates of p are provided. Informa-
tive priors for Se:j and Sp:j are used; i.e., Se:j ∼ beta(109.0, 6.7) and Sp:j ∼ beta(55.2, 1.6).
The precision parameter a0 increases from 0 (no historical information about p provided)
to 1 by increments of 0.1.
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Figure A.8: Simulation results with p = (0.95, 0.03, 0.01, 0.01), N = 1000 individuals,
Se:j = 0.95, and Sp:j = 0.99, for j = 1, 2. The 5th (bottom), 25th, 50th (median), 75th,
and 95th (top) percentiles of the B = 500 posterior median estimates of Se:j and Sp:j
are provided. Informative priors for Se:j and Sp:j are used; i.e., Se:j ∼ beta(109.0, 6.7)
and Sp:j ∼ beta(55.2, 1.6). The precision parameter a0 increases from 0 (no historical
information about p provided) to 1 by increments of 0.1.

87



A.3 Comparison of Bayesian and ML estimates under misspecified as-

say accuracies.

At the request of an anonymous referee, we compared our Bayesian estimates of p

with the maximum likelihood estimates of p from Tebbs et al. (2013) when

• incorrect beta priors are specified for Se:j and Sp:j

• incorrect values of Se:j and Sp:j are used to calculate the ML estimate.

We used simulation to do this comparison. We took the true values of Se:j and

Sp:j to be 0.95 and 0.99, respectively, for j = 1, 2, as in the manuscript. Other

simulation settings are identical to those described in Section 2.4:

• N = 1000 individuals; B = 500 Monte Carlo data sets

• p = (0.80, 0.10, 0.09, 0.01) and p = (0.95, 0.03, 0.01, 0.01)

• Use of pool size c∗k that minimizes the expected number of tests.

For the Bayesian estimates, we took G = 3000 Gibbs iterates after discarding

1500; we then thinned the 3000 iterates by taking every 6th one. This left us with

500 posterior draws for each Bayesian estimate. As in Section 2.5, thinning was

used here so that we could make a fair comparison between the Bayesian standard

errors and those for the ML estimates. To examine the impact of misspecification,

we considered the following prior distributions:

1. Mild misspecification: Se:j ∼ beta(13.5, 1), Sp:j ∼ beta(13.5, 1). These distri-

butions have a median value of Se:j = Sp:j ≈ 0.95.

2. Moderate misspecification: Se:j ∼ beta(6.6, 1), Sp:j ∼ beta(6.6, 1). These

distributions have a median value of Se:j = Sp:j ≈ 0.90.

3. Severe misspecification: Se:j ∼ beta(4.3, 1), Sp:j ∼ beta(4.3, 1). These distri-

butions have a median value of Se:j = Sp:j ≈ 0.85.

88



4. Extreme misspecification: Se:j ∼ beta(3.1, 1), Sp:j ∼ beta(3.1, 1). These dis-

tributions have a median value of Se:j = Sp:j ≈ 0.80.

We then compared our Bayesian estimates of p under these wrong priors with the

ML estimates calculated at the wrong (median) values of Se:j and Sp:j. Table A.1

shows the results for p = (0.80, 0.10, 0.09, 0.01). Table A.2 shows the results for

p = (0.95, 0.03, 0.01, 0.01). Comments are given after each table is presented.

Note that our wrong priors above were chosen to be highly variable; this might

be best when sound prior information is not available. We also tried more highly

concentrated wrong priors (results not shown) and observed similar findings when

the simulation sample size N was larger.
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Table A.1: Simulation results under prior misspecification. The true value of p is p =
(0.80, 0.10, 0.09, 0.01). The true values of Se:j and Sp:j are 0.95 and 0.99, respectively.
All quantities below are as defined in Sections 2.4-2.5. The use of “∗” with S∗e:j and S∗p:j
stresses that these are the wrong values.

Maximum likelihood Bayesian
Estimate SE Estimate BSE Estimate BSE

Mild p̂00 = 0.817 0.0132 p̂00 = 0.802 0.0157 Ŝe:1 = 0.958 0.0283
beta(13.5, 1) p̂10 = 0.092 0.0099 p̂10 = 0.098 0.0116 Ŝe:2 = 0.956 0.0296

S∗e:j = S∗p:j = 0.95 p̂01 = 0.083 0.0094 p̂01 = 0.089 0.0111 Ŝp:1 = 0.987 0.0079
p̂11 = 0.008 0.0031 p̂11 = 0.010 0.0036 Ŝp:2 = 0.988 0.0075

Moderate p̂00 = 0.823 0.0143 p̂00 = 0.799 0.0159 Ŝe:1 = 0.952 0.0303
beta(6.6, 1) p̂10 = 0.090 0.0107 p̂10 = 0.099 0.0118 Ŝe:2 = 0.949 0.0320

S∗e:j = S∗p:j = 0.90 p̂01 = 0.081 0.0102 p̂01 = 0.090 0.0113 Ŝp:1 = 0.988 0.0080
p̂11 = 0.006 0.0032 p̂11 = 0.010 0.0036 Ŝp:2 = 0.988 0.0075

Severe p̂00 = 0.839 0.0160 p̂00 = 0.799 0.0161 Ŝe:1 = 0.949 0.0310
beta(4.3, 1) p̂10 = 0.084 0.0120 p̂10 = 0.099 0.0119 Ŝe:2 = 0.947 0.0327

S∗e:j = S∗p:j = 0.85 p̂01 = 0.074 0.0114 p̂01 = 0.091 0.0114 Ŝp:1 = 0.988 0.0080
p̂11 = 0.003 0.0034 p̂11 = 0.010 0.0036 Ŝp:2 = 0.989 0.0075

Extreme p̂00 = 0.869 0.0188 p̂00 = 0.798 0.0161 Ŝe:1 = 0.949 0.0313
beta(3.1, 1) p̂10 = 0.070 0.0140 p̂10 = 0.099 0.0119 Ŝe:2 = 0.945 0.0332

S∗e:j = S∗p:j = 0.80 p̂01 = 0.059 0.0134 p̂01 = 0.091 0.0114 Ŝp:1 = 0.988 0.0079
p̂11 = 0.001 0.0030 p̂11 = 0.011 0.0037 Ŝp:2 = 0.989 0.0076

Remarks:

• As the level of misspecification increases, the ML estimates of p become more

biased. However, the Bayesian point estimates of p are largely unaffected by

prior model misspecification.

• The Bayesian point estimates of Se:j and Sp:j are largely on target; i.e., our

estimation procedure “recovers” the true values of Se:j and Sp:j despite choosing

incorrect priors.

• ML estimates have smaller variability at low levels of misspecification. At ex-

treme levels of misspecification, Bayesian estimates can be more precise.

• Bayesian point estimates of p and δ will only improve for larger N . ML esti-

mates will become more precise whenN is larger, but the bias will not disappear.
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Table A.2: Simulation results under prior misspecification. The true value of p is p =
(0.95, 0.03, 0.01, 0.01). The true values of Se:j and Sp:j are 0.95 and 0.99, respectively.
All quantities below are as defined in Sections 2.4-2.5. The use of “∗” with S∗e:j and S∗p:j
stresses that these are the wrong values.

Maximum likelihood Bayesian
Estimate SE Estimate BSE Estimate BSE

Mild p̂00 = 0.958 0.0069 p̂00 = 0.948 0.0081 Ŝe:1 = 0.954 0.0370
beta(13.5, 1) p̂10 = 0.026 0.0056 p̂10 = 0.029 0.0064 Ŝe:2 = 0.947 0.0459

S∗e:j = S∗p:j = 0.95 p̂01 = 0.007 0.0033 p̂01 = 0.011 0.0039 Ŝp:1 = 0.987 0.0090
p̂11 = 0.009 0.0031 p̂11 = 0.011 0.0034 Ŝp:2 = 0.989 0.0069

Moderate p̂00 = 0.970 0.0071 p̂00 = 0.947 0.0084 Ŝe:1 = 0.942 0.0437
beta(6.6, 1) p̂10 = 0.019 0.0059 p̂10 = 0.030 0.0067 Ŝe:2 = 0.926 0.0590

S∗e:j = S∗p:j = 0.90 p̂01 = 0.002 0.0025 p̂01 = 0.011 0.0041 Ŝp:1 = 0.987 0.0093
p̂11 = 0.009 0.0032 p̂11 = 0.011 0.0035 Ŝp:2 = 0.989 0.0070

Severe p̂00 = 0.982 0.0066 p̂00 = 0.946 0.0086 Ŝe:1 = 0.937 0.0467
beta(4.3, 1) p̂10 = 0.009 0.0060 p̂10 = 0.030 0.0068 Ŝe:2 = 0.916 0.0644

S∗e:j = S∗p:j = 0.85 p̂01 = 0.001 0.0007 p̂01 = 0.011 0.0043 Ŝp:1 = 0.987 0.0094
p̂11 = 0.008 0.0032 p̂11 = 0.011 0.0036 Ŝp:2 = 0.989 0.0071

Extreme p̂00 = 0.991 0.0053 p̂00 = 0.946 0.0087 Ŝe:1 = 0.933 0.0482
beta(3.1, 1) p̂10 = 0.004 0.0042 p̂10 = 0.030 0.0068 Ŝe:2 = 0.912 0.0668

S∗e:j = S∗p:j = 0.80 p̂01 = 0.000 0.0004 p̂01 = 0.012 0.0044 Ŝp:1 = 0.987 0.0094
p̂11 = 0.005 0.0035 p̂11 = 0.011 0.0036 Ŝp:2 = 0.989 0.0071

Remarks:

• As the level of misspecification increases, the ML estimates of p become more

biased. However, the Bayesian point estimates of p are largely unaffected by

prior model misspecification.

• Bayesian point estimates of Se:j can be slightly below the nominal level (espe-

cially for the second disease where the marginal prevalence is smaller); estimates

of Sp:j are generally on target.

• ML estimates have smaller variability in this case, but the bias associated with

ML estimates can be large especially when misspecification is severe or extreme.

• Bayesian point estimates of p and δ will only improve for larger N . ML esti-

mates will become more precise whenN is larger, but the bias will not disappear.
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A.4 Additional information on the Nebraska analysis in Section 2.5.

Calculating the 2008 historical estimate p0: For each gender/specimen type

stratum, our 2008 historical estimate p0 (see Table 2.1) is calculated from the observed

individual testing outcomes in 2008, after adjusting for potential misclassification. To

accomplish this, we first treat the assay sensitivity Se:j and assay specificity Sp:j as

fixed constants (see Table 2.3); these are the values stated in the Aptima Combo 2

Assay product literature, available at http://www.hologic.com.

Because the 2008 data are individual testing results, we remove the k subscript

in our notation and denote by

Yi = (Yi1, Yi2)′ = 2008 testing result for ith individual (what we have)

Ỹi = (Ỹi1, Ỹi2)′ = 2008 true status for ith individual,

for i = 1, 2, ..., N0, where N0 is the number of 2008 individuals in each stratum (see

Table 2.1). Under the same assumptions described in Section 2.3 and Section 2.6 in

the manuscript, the joint distribution of the (2008) individual testing results Y and

the latent data Ỹ is given by

π(Y, Ỹ|p) =
N0∏
i=1

p
(1−Ỹi1)(1−Ỹi2)
00 p

Ỹi1(1−Ỹi2)
10 p

(1−Ỹi1)Ỹi2
01 pỸi1Ỹi2

11

×

 2∏
j=1

N0∏
i=1

S
Yij Ỹij

e:j S
(1−Yij)Ỹij

e:j S
(1−Yij)(1−Ỹij)
p:j S

Yij(1−Ỹij)
p:j

. (A.2)

We assume a noninformative prior for p in Equation (A.2); i.e., p ∼ Dirichlet(14).

The full conditional distribution of p; that is, p|Ỹ ∼ Dirichlet(Ψ), where Ψ =

(1 + ∑N0
i=1 Ṽi(00), 1 + ∑N0

i=1 Ṽi(10), 1 + ∑N0
i=1 Ṽi(01), 1 + ∑N0

i=1 Ṽi(11))′ and Ṽi(uv) = Ỹ u
i1(1 −

Ỹi1)1−uỸ v
i2(1 − Ỹi2)1−v, for u, v ∈ {0, 1}. The full conditional distribution of Ṽi =

(Ṽi(00), Ṽi(10), Ṽi(01), Ṽi(11))′ given {p,Y} is multinomial with cell probabilities ζ i00/ζ
i,

ζ i10/ζ
i, ζ i01/ζ

i, and ζ i11/ζ
i, where ζ i00 = p00

∏2
j=1 S

1−Yij

p:j S
Yij

p:j , ζ i10 = p10S
Yi1
e:1 S

1−Yi1
e:1 S1−Yi2

p:2 S
Yi2
p:2 ,

ζ i01 = p01S
Yi2
e:2 S

1−Yi2
e:2 S1−Yi1

p:1 S
Yi1
p:1 , and ζ i11 = p11

∏2
j=1 S

Yij

e:j S
1−Yij

e:j , where ζ i = ∑1
u=0

∑1
v=0 ζ

i
uv.
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Note that by sampling Ṽi, we determine Ỹi = (Ỹi1, Ỹi2)′ uniquely as shown in Section

2.3. Using known values of Se:j and Sp:j, one can now sample from the conditional

distributions of p and Ṽi, for i = 1, 2, ..., N0, until convergence. The historical esti-

mate p0 shown in Table 2.1 (separately for each gender/specimen type stratum) is

the median of G = 10000 Gibbs iterates after discarding the first 500.

Prior selection for Se:j and Sp:j: We use sensitivity and specificity information

published in an assay’s product literature to elicit prior distributions for Se:j and

Sp:j. This information is typically collected in pilot studies using known positive and

known negative specimens. Define

TP = number of true positive test results

FN = number of false negative test results

TN = number of true negative test results

FP = number of false positive test results.

For the Aptima Combo 2 Assay, the following information was published in its prod-

uct literature, which is available at http://www.hologic.com. This table combines

information from Table 5a (CT) and Table 9a (NG) in the product literature docu-

ment.

Stratum TP FN TN FP

Chlamydia

Male/Urine 276 6 801 12
Male/Swab 260 11 774 20

Female/Urine 197 11 1170 13
Female/Swab 195 12 1154 28

Gonorrhea

Male/Urine 324 5 802 3
Male/Swab 319 3 764 17

Female/Urine 116 11 1347 10
Female/Swab 126 1 1335 17
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For a given infection, the following prior distributions are used:

Se:j ∼ beta(TP + 1,FN + 1)

Sp:j ∼ beta(TN + 1,FP + 1).

These distributions can be regarded as the posterior distributions for Se:j and Sp:j

had they been modeled with uniform priors before the pilot study was conducted.

To illustrate, consider the male/urine stratum. For chlamydia, the prior distri-

butions are Se:1 ∼ beta(277, 7) and Sp:1 ∼ beta(802, 13). For gonorrhea, the prior

distributions are Se:2 ∼ beta(325, 6) and Sp:2 ∼ beta(803, 4). Prior distributions for

the other strata are found similarly and are reported in Table 2.1. During 2008-2009,

the Nebraska Public Health Laboratory did not use the Aptima Combo 2 Assay;

however, they currently do use it. Regardless of the specific assay used, our R code

at www.chrisbilder.com/grouptesting/WTMB determines beta prior distributions

based on pilot data like those described above.

Simulating true responses for the 2009 analysis: With the observed individual

testing outcomes Yi = (Yi1, Yi2)′ from 2009, the 2008 historical estimate p0, and

known values of Se:j and Sp:j, we sample the 2009 true statuses Ỹi = (Ỹi1, Ỹi2)′ from

pr(Ỹi1 = ỹ1, Ỹi2 = ỹ2|Yi1 = y1, Y2k = y2), for ỹ1, ỹ2, y1, y2 ∈ {0, 1}. This is done as

follows:

1. For each i = 1, 2, ..., N , we sample Ṽi = (Ṽi(00), Ṽi(10), Ṽi(01), Ṽi(11))′ given

{p0,Y} from a multinomial distribution with cell probabilities ζ i00/ζ
i, ζ i10/ζ

i, ζ i01/ζ
i,

and ζ i11/ζ
i, where ζ i00 = p00(0)

∏2
j=1 S

1−Yij

p:j S
Yij

p:j , ζ i10 = p10(0)S
Yi1
e:1 S

1−Yi1
e:1 S1−Yi2

p:2 S
Yi2
p:2 , ζ i01 =

p01(0)S
Yi2
e:2 S

1−Yi2
e:2 S1−Yi1

p:1 S
Yi1
p:1 , and ζ i11 = p11(0)

∏2
j=1 S

Yij

e:j S
1−Yij

e:j , where ζ i = ∑1
u=0

∑1
v=0 ζ

i
uv.

Recall that Ṽi(uv) = Ỹ u
i1(1− Ỹi1)1−uỸ v

i2(1− Ỹi2)1−v, for u, v ∈ {0, 1}.

2. For each i = 1, 2, ..., N , we determine Ỹi = (Ṽi(10) + Ṽi(11), Ṽi(01) + Ṽi(11))′ =

(Ỹi1, Ỹi2)′.

3. Steps 1-2 are repeated B = 500 times to create 500 sets of true statuses (within

each gender/specimen type stratum).
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Nebraska data analysis using flat priors: Tables A.3 and A.4 summarize the

Nebraska data analysis performed in Section 2.5 using Se:j ∼ beta(1, 1) and Sp:j ∼

beta(1, 1).
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Table A.3: Nebraska CT/NG prevalence estimation results for 2009. Bayesian estimates (Bayes) are posterior medians averaged over
B = 500 data sets; BSE is the average of the standard deviations calculated from posterior samples of the B = 500 data sets. Values of
a0 = 0, a0 = 0.5, and a0 = 1 are used to incorporate different amounts of historical information for p as described in Section 2.5. Flat
priors for Se:j and Sp:j are used, where j = 1 for CT and j = 2 for NG; i.e., Se:j ∼ beta(1, 1) and Sp:j ∼ beta(1, 1). Maximum likelihood
estimates, calculated from Tebbs et al. (2013), are averaged over the same 500 data sets; the entries under SE are the averaged standard
errors. Stratum sample sizes N are given.

Maximum likelihood Bayes (a0 = 0) Bayes (a0 = 0.5) Bayes (a0 = 1)
Stratum CT NG Estimate SE Estimate BSE Estimate BSE Estimate BSE

− − p̂00 = 0.924 0.0035 p̂00 = 0.922 0.0044 p̂00 = 0.925 0.0032 p̂00 = 0.927 0.0026
Male/Urine + − p̂10 = 0.061 0.0032 p̂10 = 0.062 0.0041 p̂10 = 0.061 0.0030 p̂10 = 0.061 0.0024
N = 6139 − + p̂01 = 0.008 0.0012 p̂01 = 0.008 0.0013 p̂01 = 0.007 0.0009 p̂01 = 0.007 0.0008

+ + p̂11 = 0.007 0.0011 p̂11 = 0.007 0.0011 p̂11 = 0.006 0.0008 p̂11 = 0.006 0.0007
− − p̂00 = 0.831 0.0091 p̂00 = 0.825 0.0131 p̂00 = 0.838 0.0084 p̂00 = 0.841 0.0067

Male/Swab + − p̂10 = 0.119 0.0079 p̂10 = 0.118 0.0115 p̂10 = 0.110 0.0072 p̂10 = 0.108 0.0058
N = 1910 − + p̂01 = 0.034 0.0043 p̂01 = 0.039 0.0063 p̂01 = 0.036 0.0041 p̂01 = 0.034 0.0033

+ + p̂11 = 0.015 0.0029 p̂11 = 0.017 0.0035 p̂11 = 0.016 0.0026 p̂11 = 0.016 0.0022
− − p̂00 = 0.920 0.0041 p̂00 = 0.919 0.0054 p̂00 = 0.914 0.0040 p̂00 = 0.912 0.0033

Female/Urine + − p̂10 = 0.066 0.0038 p̂10 = 0.067 0.0051 p̂10 = 0.070 0.0037 p̂10 = 0.071 0.0030
N = 4972 − + p̂01 = 0.004 0.0010 p̂01 = 0.005 0.0013 p̂01 = 0.005 0.0010 p̂01 = 0.005 0.0008

+ + p̂11 = 0.009 0.0014 p̂11 = 0.009 0.0015 p̂11 = 0.011 0.0013 p̂11 = 0.011 0.0011
− − p̂00 = 0.949 0.0019 p̂00 = 0.949 0.0028 p̂00 = 0.949 0.0019 p̂00 = 0.948 0.0015

Female/Swab + − p̂10 = 0.045 0.0019 p̂10 = 0.045 0.0027 p̂10 = 0.046 0.0019 p̂10 = 0.047 0.0015
N = 14530 − + p̂01 = 0.001 0.0001 p̂01 = 0.001 0.0002 p̂01 = 0.001 0.0001 p̂01 = 0.001 0.0001

+ + p̂11 = 0.005 0.0006 p̂11 = 0.005 0.0007 p̂11 = 0.005 0.0005 p̂11 = 0.005 0.0004
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Table A.4: Bayesian assay accuracy estimates from 2009. Bayesian estimates (Bayes) are posterior medians averaged over B = 500
data sets; BSE is the average of the standard deviations calculated from posterior samples of the B = 500 data sets. Values of a0 = 0,
a0 = 0.5, and a0 = 1 are used to incorporate different amounts of historical information for p as described in Section 2.5. Flat priors for
Se:j and Sp:j are used, where j = 1 for CT and j = 2 for NG; i.e., Se:j ∼ beta(1, 1) and Sp:j ∼ beta(1, 1).

Bayes (a0 = 0) Bayes (a0 = 0.5) Bayes (a0 = 1)
Stratum Accuracy Estimate BSE Estimate BSE Estimate BSE

Se:1 = 0.979 Ŝe:1 = 0.975 0.0159 Ŝe:1 = 0.977 0.0140 Ŝe:1 = 0.978 0.0135
Male/Urine Se:2 = 0.985 Ŝe:2 = 0.968 0.0233 Ŝe:2 = 0.978 0.0191 Ŝe:2 = 0.982 0.0172
N = 6139 Sp:1 = 0.985 Ŝp:1 = 0.985 0.0050 Ŝp:1 = 0.984 0.0047 Ŝp:1 = 0.984 0.0045

Sp:2 = 0.996 Ŝp:2 = 0.996 0.0015 Ŝp:2 = 0.996 0.0015 Ŝp:2 = 0.996 0.0014
Se:1 = 0.959 Ŝe:1 = 0.957 0.0263 Ŝe:1 = 0.971 0.0202 Ŝe:1 = 0.974 0.0185

Male/Swab Se:2 = 0.991 Ŝe:2 = 0.935 0.0425 Ŝe:2 = 0.952 0.0341 Ŝe:2 = 0.958 0.0314
N = 1910 Sp:1 = 0.975 Ŝp:1 = 0.972 0.0116 Ŝp:1 = 0.966 0.0104 Ŝp:1 = 0.965 0.0099

Sp:2 = 0.978 Ŝp:2 = 0.985 0.0061 Ŝp:2 = 0.983 0.0055 Ŝp:2 = 0.982 0.0054
Se:1 = 0.947 Ŝe:1 = 0.946 0.0199 Ŝe:1 = 0.935 0.0185 Ŝe:1 = 0.932 0.0177

Female/Urine Se:2 = 0.913 Ŝe:2 = 0.899 0.0449 Ŝe:2 = 0.881 0.0449 Ŝe:2 = 0.874 0.0447
N = 4972 Sp:1 = 0.989 Ŝp:1 = 0.989 0.0057 Ŝp:1 = 0.992 0.0049 Ŝp:1 = 0.993 0.0046

Sp:2 = 0.993 Ŝp:2 = 0.993 0.0023 Ŝp:2 = 0.994 0.0022 Ŝp:2 = 0.994 0.0021
Se:1 = 0.942 Ŝe:1 = 0.942 0.0163 Ŝe:1 = 0.937 0.0148 Ŝe:1 = 0.935 0.0143

Female/Swab Se:2 = 0.992 Ŝe:2 = 0.960 0.0278 Ŝe:2 = 0.968 0.0250 Ŝe:2 = 0.970 0.0238
N = 14530 Sp:1 = 0.976 Ŝp:1 = 0.975 0.0043 Ŝp:1 = 0.977 0.0039 Ŝp:1 = 0.977 0.0037

Sp:2 = 0.987 Ŝp:2 = 0.988 0.0015 Ŝp:2 = 0.987 0.0015 Ŝp:2 = 0.988 0.0015
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Appendix B

Chapter 3 supplementary materials

B.1 E-step and Gibbs sampler for the EM algorithm in Section 3.2.

We herein provide closed-form expressions for the expectations E(Ijk|DD,θ(d)) and

E(Ỹij|DD,θ(d)) given in Section 3.2.

Expectation in Step 1 of the EM algorithm in Section 3.2:

E
(
Ijk
∣∣∣DD,θ(d)

)
=
 µ

(d)
z̃:jk∑cj

s=0 µ
(d)
z̃:js

Zj
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k, cj, λ

(d)
)}
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ỹij ≤ s

)
(1− Sp)I(

∑cj
i=1 ỹij=0)
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u, cj, λ

(d)
)I(∑cj

i=1 ỹij=u)
}{ cj∏

i=1

(
p

(d)
ij

)ỹij
(
1− p(d)

ij

)1−ỹij

}

×
cj∏
i=1

{
S ỹij
e (1− Sp)1−ỹij

}Yij
{

(1− Se)ỹij S1−ỹij
p

}1−Yij

,
ỹ1j = s−∑cj

i=2 ỹij, ỹij ∈ {0, 1}, and pr(∑cj

i=1 Ỹij = k)(d) is pr(∑cj

i=1 Ỹij = k) evaluated at

β = β(d). Note that the expression of µ(d)
z̃:js involves 2cj−1 terms. Therefore, evaluating

E(Ijk|DD,θ(d)) in closed form for large pool sizes can be computationally intractable.

To obviate this difficulty, we approximate E(Ijk|DD,θ(d)) using the Gibbs sampler

presented below.
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Expectation in Step 3 of the EM algorithm in Section 3.2:

E
(
Ỹij|DD,θ(d)

)
=

 µ
(d)
1ỹ:ij

µ
(d)
0ỹ:ij + µ

(d)
1ỹ:ij

Zj

×

p(d)
ij

∑cj−1
k=0

{
1− h(k + 1, cj, λ(d))

}
pr
(∑

i′ 6=i Ỹi′j = k
)(d)

1− p(d)
j


1−Zj

,

where

µ
(d)
0ỹ:ij = S1−Yij

p (1− Sp)Yij
(
1− p(d)

ij

)

×

(1− Sp)
∏
i′ 6=i

(
1− p(d)

ij

)
+

cj−1∑
k=1

h
(
k, cj, λ

(d)
)
pr
∑
i′ 6=i

Ỹi′j = k

(d)
 (B.1)

µ
(d)
1ỹ:ij = SYij

e (1− Se)1−Yij p
(d)
ij

cj−1∑
k=0

h
(
k + 1, cj, λ(d)

)
pr
∑
i′ 6=i

Ỹi′j = k

(d)

. (B.2)

Gibbs sampler to approximate E(Ijk|DD,θ(d)):

Let Ỹ(−i)j = (Ỹ1j, ..., Ỹi−1,j, Ỹi+1,j, ..., Ỹcjj)′ denote the collection of true statuses of

the individuals in the jth pool except the ith one. Also, let Yj = (Y1j, Y2j, ..., Ycjj)′

denote the individual retest results from the jth pool. At the current estimate θ(d),

Ỹij|{Z,Yj, Ỹ(−i)j} follows a Bernoulli distribution with success and failure probabil-

ities ζ ij(d)
1 /ζ

ij(d)
+ and ζ ij(d)

0 /ζ
ij(d)
+ , respectively, where ζ ij(d)

+ = ζ
ij(d)
1 + ζ

ij(d)
0 ,

ζ
ij(d)
1 = p

(d)
ij

{
SYij
e (1− Se)1−Yij

cj∏
k=1

γ
(d)
ijk

}Zj
{ cj∏
k=1

γ
(d)
ijk

}1−Zj

,

ζ
ij(d)
0 =

(
1− p(d)

ij

){
(1− Sp)

Yij+I
(∑

i′ 6=i
Ỹi′j=0

)
S1−Yij
p

cj∏
k=1

γ
(d)
ijk

}Zj

×

SI
(∑

i′ 6=i
Ỹi′j=0

)
p

cj∏
k=1

γ
(d)
ijk


1−Zj

,

γ
(d)
ijk = h(k, cj, λ(d))I

(∑
i′ 6=i

Ỹi′j=k−1
)
, and γ

(d)
ijk =

{
1− h(k, cj, λ(d))

}I(∑
i′ 6=i

Ỹi′j=k−1
)
.

We sample Ỹij|{Z,Yj, Ỹ(−i)j} from a Bernoulli distribution for each i = 1, 2, ..., cj

and j = 1, 2, ..., J and repeat this procedure a large number of times to approxi-

mate E(Ijk|DD,θ(d)). The Gibbs sampler works well overall. We did not observe
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any major differences between the exact and approximate approaches to calculate

E(Ijk|DD,θ(d)) when it was feasible to do this comparison. Now, we present the

complete EM algorithm which implements the Gibbs sampler for approximating

E(Ijk|DD,θ(d)). This EM algorithm works for any large pool size cj.

EM ALGORITHM

1. Specify θ(0), the number of Gibbs iterates G, and the burn-in period a. Set

d = 0.

2. Steps for estimating λ:

a) Initialize Ỹ (0)
ij = 0 for i = 1, 2, ..., cj and j = 1, 2, ..., J . Aggregate the

Ỹ
(0)
ij ’s into Ỹ(0). Set s = 0.

b) For each i = 1, 2, ..., cj and j = 1, 2, ..., J , sample

Ỹ
(s+1)
ij |

{
Z,Yj, Ỹ(s)

(−i)j

}
∼ Bernoulli

(
ζ
ij(d)
1 /ζ

ij(d)
+

)
,

where Ỹ(s)
(−i)j =

(
Ỹ

(s)
1j , ..., Ỹ

(s)
i−1,j, Ỹ

(s)
i+1,j, ..., Ỹ

(s)
cjj

)′
. Aggregate the Ỹ (s+1)

ij ’s

into Ỹ(s+1).

c) Set s = s+ 1 and repeat (b) while s < G.

d) For j = 1, 2, ..., J and k = 1, 2, ..., cj calculate

Ijk = 1
G− a

G∑
s=a+1

I

( cj∑
i=1

Ỹ
(s)
ij = k

)
.

We use Ijk as an approximation of E
(
Ijk
∣∣∣DD,θ(d)

)
.

e) Find λ(d+1) = arg maxλ T2(λ,DD,θ(d)).

3. Steps for estimating β:

a) Evaluate E
{
Ỹij|DD,

(
β(d), λ(d+1)

)′}
using the closed-form expressions pro-

vided in the E-Step.
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b) Find β(d+1) = arg maxβ T1{β,DD, (β(d)′, λ(d+1))′}.

4. Set θ(d+1) = (β(d+1), λ(d+1))′ and d = d + 1. Repeat the steps above until θ(d)

converges.

B.2 Covariance matrix estimation using Louis’s method.

Let θ̂ = (β̂′, λ̂)′ denote the estimate of θ at convergence. As discussed in Section 3.2,

the estimated standard errors are calculated via I(θ̂)−1, where

I(θ) = −∂
2Q(θ,θ)
∂θ∂θ′

− cov
{
∂lc(θ|DD, Ỹ)

∂θ

∣∣∣∣∣DD,θ
}
.

We now present an explicit expression for I(θ) when g(t) = log{t/(1−t)} and h is the

submodel provided in (3.8). For notational convenience, define Ujk = E(Ijk|DD,θ)

and Vij = E(Ỹij|DD,θ). The components of ∂2Q(θ,θ)/∂θ∂θ′ are given by

∂2Q(θ,θ)
∂β∂β′

= −
J∑
j=1

cj∑
i=1

pij(1− pij)xijx′ij

∂2Q(θ,θ)
∂β∂λ

= 0

∂2Q(θ,θ)
∂λ2 = −

J∑
j=1

cj∑
k=1

Ujk h(k, cj, λ) {1− h(k, cj, λ)} τ(k, cj)2,

where τ(k, cj) = (k − cj)/cj. The components of cov{∂lc(θ|DD, Ỹ)/∂θ|DD,θ} are

given by

cov
(
∂lc(θ|DD, Ỹ)

∂β
,
∂lc(θ|DD, Ỹ)

∂β

∣∣∣∣∣DD,θ
)

=
J∑
j=1

cj∑
i=1

Vij (1− Vij) xijx′ij

cov
(
∂lc(θ|DD, Ỹ)

∂β
,
∂lc(θ|DD, Ỹ)

∂λ

∣∣∣∣∣DD,θ
)

=
J∑
j=1

cj∑
k=1

δjk

cj∑
i=1

(
µ
Zj

1:ijk µ
1−Zj

0:ijk − Ujk Vij
)

xij

cov
(
∂lc(θ|DD, Ỹ)

∂λ
,
∂lc(θ|DD, Ỹ)

∂λ

∣∣∣∣∣DD,θ
)

=
J∑
j=1

cj∑
s=1

cj∑
t=1

δjsδjt {Ujs(1− Ujs)}I(s=t)
× (−Ujs Ujt)I(s 6=t)

,
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where

δjk = [Zj {1− h(k, cj, λ)} − (1− Zj)h(k, cj, λ)] τ(k, cj)

µ1:ijk =
h(k, cj, λ)SYij

e (1− Se)1−Yij pij pr
(∑cj

i′ 6=i Ỹi′j = k − 1
)

µ0ỹ:ij + µ1ỹ:ij

µ0:ijk =
{1− h(k, cj, λ)} pij pr(

∑cj

i′ 6=i Ỹi′j = k − 1)
Sp
∏cj

i=1 (1− pij) +∑cj

k=1{1− h(k, cj, λ)} pr
(∑cj

i=1 Ỹij = k
) ,

and µ0ỹ:ij and µ1ỹ:ij are given in Equations (B.1) and (B.2).

B.3 Observed likelihood function for Dorfman decoding.

In Section 3.3, we developed a likelihood ratio test to detect dilution. We now show

how one can evaluate the observed likelihood function for Dorfman decoding. Let

Yj = (Y1j, Y2j, ..., Ycjj)′ and Ỹj = (Ỹ1j, Ỹ2j, ..., Ỹcjj)′. Then, we have

p0:j = pr(Zj = 0) = Sp

cj∏
i=1

(1− pij) +
cj∑
k=1
{1− h(k, cj, λ)} pr

( cj∑
i=1

Ỹij = k

)

p1:j = pr(Zj = 1,Yj = yj) =
1∑

ỹ1j=0

...
1∑

ỹcj j=0

f1(ỹj, λ) f2(yj, ỹj) f3(ỹj,β), (B.3)

where

f1(ỹj, λ) = (1− Sp)I(
∑cj

i=1 ỹij=0)
cj∏
k=1

h (k, cj, λ)I(
∑cj

i=1 ỹij=k)

f2(yj, ỹj) =
cj∏
i=1

{
S ỹij
e (1− Sp)1−ỹij

}yij
{

(1− Se)ỹijS1−ỹij
p

}1−yij

f3(ỹj,β) =
cj∏
i=1

p
ỹij

ij (1− pij)(1−ỹij) ,

where ỹj = (ỹ1j, ỹ2j, ..., ỹcjj)′. Equation (B.3) is derived under the assumption, men-

tioned in Section 3.2, that testing responses are independent conditional on their true

statuses. The observed likelihood function is given by

L(θ|DD) =
J∏
j=1

p
Zj

1:j p
1−Zj

0:j .

To perform the hypothesis test in Sections 3.4 and 3.5, we used the exact approach

presented above for evaluating L(θ|DD) at θ = θ̂. However, this approach can be
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computationally infeasible when cj is very large because Equation (B.3) involves 2cj

terms. To avoid this computational difficulty, one can approximate p1:j in Equation

(B.3) empirically as follows. Note that

p1:j = pr(Zj = 1,Yj = yj)

=
∫

ỹj

pr(Zj = 1,Yj = yj|Ỹj = ỹj) pr(Ỹj = ỹj) dỹj

= EỸj

{
f1(Ỹj, λ) f2(yj, Ỹj)

}
.

At θ = θ̂ (the MLE of θ), let {ỹ(1)
j , ỹ(2)

j , ..., ỹ(M)
j } denote a Markov Chain Monte

Carlo (MCMC) sample from pr(Ỹj = ỹj). The empirical mean is given by

p1:j = 1
M

M∑
m=1

f1(ỹ(m)
j , λ) f2(yj, ỹ(m)

j ),

where f1(ỹj, λ) and f2(yj, ỹj) are defined above. For sufficiently large M , one can

use p1:j as an approximation of p1:j for any (large) pool size cj. Note that one can

sample {ỹ(1)
j , ỹ(2)

j , ..., ỹ(M)
j } using the Gibbs sampler presented in Appendix B.1.

B.4 Additional information about dilution submodels.

Equation (3.8) presents the parametric submodel we assume in Section 3.4:

h(k, cj, λ) = exp{λ τ(k, cj)}
S−1
e + exp{λ τ(k, cj)} − 1 . (B.4)

We obtain this function by manipulating the cumulative distribution function of a

logistic random variable with the assumption mentioned in Section 3.2 that Se =

h(k, cj, λ) for cj = 1 (individual testing). The function initially had the form of

logit{h(k, cj, λ)} = λ0 + λk/cj, where λ0 and λ are both unknown scalar constants.

Next, we set Se = h(k, cj, λ) for cj = 1 so that Se = exp(λ0 +λ)/{1+exp(λ0 +λ)} and

then solve the equation for λ0; finally we plug-in λ0 back to the original expression

of h(k, cj, λ) to obtain the submodel in (B.4).

103



To study the robustness of our proposed method to submodel misspecification,

we used the following submodels:

HS: h(k, cj, λ) = Se k

k + (cj − k)λ
Probit: h(k, cj, λ) = Φ

{
Φ−1(Se) + τ1(k, cj)λ

}
Cloglog: h(k, cj, λ) = 1− exp [−exp [log{−log(1− Se)}+ τ1(k, cj)λ]] ,

where τ1(k, cj) = (k − cj)/cj, λ ≥ 0, and Φ(·) is the cumulative distribution func-

tion of the standard normal random variable. These submodels obey the properties

of h(k, cj, λ) defined in Section 3.2. The first one, which we call HS, was originally

proposed by Hung and Swallow (1999). The latter two functions are derived by

manipulating the cumulative distribution functions associated with probit and com-

plementary log-log models similarly to how we derived the submodel in Equation

(B.4) from the logit model.

The robustness study is done in two steps. First, we simulate group testing data

using one of the submodels HS, Probit, and Cloglog. Second, we fit our model in

Equation (B.4) specified for h(k, cj, λ). The robustness study results presented next

use the parameter configurations listed below.

• Moderate misclassification (Figures B.1-B.6): λ = 0.05, 1.7, 1.2 for HS, Probit,

and Cloglog submodels in this order.

• Severe misclassification (Figures B.7-B.12): λ = 0.11, 2.3, 1.7 for HS, Probit,

and Cloglog submodels in this order.
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B.5 Simulation results from Section 3.4.

We present additional simulation results from Section 3.4.

• Table B.1: Estimation results for homogeneous pooling. The same results for

random pooling are presented in Section 3.4.

• Table B.2: Power properties of the hypothesis test with misspecified submodels.

• Figure B.1: Robustness study for random pooling and moderate misclas-

sification; data simulated using HS.

• Figure B.2: Robustness study for homogeneous pooling andmoderate mis-

classification; data simulated using HS.

• Figure B.3: Robustness study for random pooling and moderate misclas-

sification; data simulated using Probit.

• Figure B.4: Robustness study for homogeneous pooling andmoderate mis-

classification; data simulated using Probit.

• Figure B.5: Robustness study for random pooling and moderate misclas-

sification; data simulated using Cloglog.

• Figure B.6: Robustness study for homogeneous pooling andmoderate mis-

classification; data simulated using Cloglog.
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• Figure B.7: Robustness study for random pooling and severe misclassifi-

cation; data simulated using HS.

• Figure B.8: Robustness study for homogeneous pooling and severe mis-

classification; data simulated using HS.

• Figure B.9: Robustness study for random pooling and severe misclassifi-

cation; data simulated using Probit.

• Figure B.10: Robustness study for homogeneous pooling and severe mis-

classification; data simulated using Probit.

• Figure B.11: Robustness study for random pooling and severe misclassifi-

cation; data simulated using Cloglog.

• Figure B.12: Robustness study for homogeneous pooling and severe mis-

classification; data simulated using Cloglog.
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Table B.1: Simulation results for master pool testing (MPT) and Dorfman decoding
(DD) with θ = (β0, β1, β2, λ)′ = (−3, 2, 1, λ)′. “Mean” is the averaged maximum likelihood
estimate and SE is the averaged standard error estimate calculated from 500 simulated data
sets. Cov is the estimated coverage rate of nominal 95% Wald confidence intervals. The
margin of error for the estimated coverage rate, assuming a 99% confidence level, is 0.03.
Constant pool sizes c are used. Homogeneous pooling has been used for this simulation.

Constant Se/Sp Dilution
c β̂0 β̂1 β̂2 β̂0 β̂1 β̂2

λ = 2.6
5 MPT Mean (SE) −3.07 (0.10) 1.94 (0.14) 0.96 (0.21) −2.81 (0.32) 2.02 (0.18) 1.00 (0.23)

Cov 0.90 0.89 0.94 0.93 0.92 0.95
DD Mean (SE) −3.08 (0.09) 2.03 (0.09) 1.03 (0.15) −3.01 (0.10) 2.01 (0.10) 1.01 (0.15)

Cov 0.84 0.93 0.94 0.94 0.95 0.96
10 MPT Mean (SE) −3.13 (0.10) 1.85 (0.18) 0.93 (0.28) −2.82 (0.30) 2.07 (0.26) 1.05 (0.34)

Cov 0.84 0.80 0.94 0.93 0.90 0.97
DD Mean (SE) −3.11 (0.09) 2.06 (0.09) 1.02 (0.16) −3.01 (0.10) 2.01 (0.10) 1.00 (0.16)

Cov 0.78 0.89 0.93 0.94 0.96 0.94

λ = 3.8
5 MPT Mean (SE) −3.20 (0.10) 1.88 (0.13) 0.94 (0.21) −2.71 (0.52) 2.00 (0.20) 1.00 (0.24)

Cov 0.52 0.82 0.94 0.87 0.92 0.96
DD Mean (SE) −3.19 (0.09) 2.07 (0.10) 1.03 (0.16) −3.00 (0.11) 2.00 (0.10) 1.00 (0.16)

Cov 0.47 0.89 0.94 0.95 0.96 0.97
10 MPT Mean (SE) −3.34 (0.11) 1.71 (0.17) 0.86 (0.28) −2.58 (0.53) 2.03 (0.29) 1.03 (0.36)

Cov 0.08 0.56 0.87 0.83 0.95 0.94
DD Mean (SE) −3.28 (0.09) 2.15 (0.10) 1.07 (0.16) −3.01 (0.11) 2.01 (0.11) 1.00 (0.17)

Cov 0.14 0.71 0.91 0.96 0.96 0.96

λ = 5.0
5 MPT Mean (SE) −3.44 (0.11) 1.82 (0.14) 0.90 (0.22) −2.60 (0.77) 1.91 (0.24) 0.95 (0.26)

Cov 0.00 0.69 0.92 0.86 0.93 0.93
DD Mean (SE) −3.43 (0.10) 2.17 (0.10) 1.08 (0.17) −3.00 (0.12) 2.00 (0.11) 0.99 (0.17)

Cov 0.01 0.61 0.87 0.95 0.97 0.95
10 MPT Mean (SE) −3.74 (0.13) 1.64 (0.17) 0.81 (0.28) −2.65 (0.66) 1.90 (0.30) 0.95 (0.36)

Cov 0.00 0.40 0.90 0.87 0.95 0.94
DD Mean (SE) −3.64 (0.11) 2.34 (0.11) 1.17 (0.18) −3.00 (0.13) 1.99 (0.12) 0.99 (0.18)

Cov 0.00 0.17 0.78 0.96 0.96 0.95
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Table B.2: Robustness study with misspecified submodels for master pool testing (MPT) and Dorfman decoding (DD), where θ =
(β0, β1, β2, λ)′ = (−3, 2, 1, λ)′. The proposed methods with the assumed submodel in (3.8) are fitted to the group testing data generated
using the submodels HS, Probit, and Cloglog. Estimated size and power of the α = 0.05 likelihood ratio test calculated from 500
simulated data sets. The margin of error for the estimated size when λ = 0, assuming a 99% confidence level, is 0.03. Constant pool
sizes c and unequal (UE) pool sizes are used.

HS Probit Cloglog
c λ = 0 0.02 0.04 0.06 0.08 0 0.5 1 1.5 2 0 0.4 0.8 1.2 1.6

Random pooling
5 MPT 0.05 0.11 0.19 0.24 0.31 0.06 0.05 0.09 0.18 0.27 0.05 0.06 0.14 0.20 0.30

DD 0.05 0.37 0.78 0.94 0.99 0.04 0.09 0.27 0.66 0.97 0.04 0.10 0.38 0.90 1.00
10 MPT 0.06 0.18 0.22 0.24 0.29 0.06 0.08 0.14 0.22 0.26 0.05 0.11 0.17 0.23 0.26

DD 0.04 0.94 1.00 1.00 1.00 0.05 0.10 0.51 0.99 1.00 0.04 0.19 0.78 1.00 1.00
UE MPT 0.06 0.38 0.65 0.80 0.89 0.03 0.10 0.18 0.36 0.67 0.06 0.13 0.27 0.43 0.66

DD 0.05 0.87 1.00 1.00 1.00 0.05 0.12 0.49 0.94 1.00 0.05 0.16 0.69 1.00 1.00

Homogeneous pooling
5 MPT 0.05 0.10 0.16 0.17 0.19 0.05 0.07 0.10 0.15 0.26 0.05 0.07 0.15 0.19 0.27

DD 0.07 0.34 0.78 0.96 0.99 0.04 0.12 0.28 0.74 0.99 0.04 0.15 0.50 0.92 1.00
10 MPT 0.05 0.23 0.28 0.29 0.36 0.03 0.12 0.25 0.39 0.44 0.06 0.16 0.35 0.49 0.44

DD 0.05 0.73 0.99 1.00 1.00 0.04 0.18 0.51 0.96 1.00 0.05 0.21 0.73 0.99 1.00
UE MPT 0.06 0.20 0.21 0.24 0.25 0.04 0.14 0.25 0.32 0.37 0.05 0.15 0.30 0.41 0.39

DD 0.04 0.77 0.99 1.00 1.00 0.06 0.13 0.54 0.95 1.00 0.04 0.23 0.75 1.00 1.00
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Figure B.1: Robustness study with misspecified submodel using random pooling and
moderate misclassification. Boxplots of the maximum likelihood estimates for β =
(β0, β1, β2)′ from 500 simulated data sets are presented. The proposed method with the
submodel in Equation (3.8) is fit to group testing data generated using the submodel ‘HS’.
On the horizontal axes, ‘I’ refers to individual testing, ‘C’ refers to the constant Se/Sp
method, and ‘D’ refers to our proposed dilution method. Constant pool sizes c are reported
in parentheses. The true parameter values are represented by dashed horizontal lines.
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Figure B.2: Robustness study with misspecified submodel using homogeneous pooling
and moderate misclassification. Boxplots of the maximum likelihood estimates for β =
(β0, β1, β2)′ from 500 simulated data sets are presented. The proposed model with the
submodel in (3.8) is fit to the group testing data generated using the submodel ‘HS’. On
the horizontal axes, ‘I’ refers to individual testing, ‘C’ refers to the constant Se/Sp method,
and ‘D’ refers to our proposed dilution method. Constant pool sizes c are reported in
parentheses. The true parameter values are represented by dashed horizontal lines.
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Figure B.3: Robustness study with misspecified submodel using random pooling and
moderate misclassification. Boxplots of the maximum likelihood estimates for β =
(β0, β1, β2)′ from 500 simulated data sets are presented. The proposed model with the
submodel in (3.8) is fit to the group testing data generated using the submodel ‘Probit’.
On the horizontal axes, ‘I’ refers to individual testing, ‘C’ refers to the constant Se/Sp
method, and ‘D’ refers to our proposed dilution method. Constant pool sizes c are reported
in parentheses. The true parameter values are represented by dashed horizontal lines.
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Figure B.4: Robustness study with misspecified submodel using homogeneous pooling
and moderate misclassification. Boxplots of the maximum likelihood estimates for β =
(β0, β1, β2)′ from 500 simulated data sets are presented. The proposed model with the
submodel in (3.8) is fit to the group testing data generated using the submodel ‘Probit’.
On the horizontal axes, ‘I’ refers to individual testing, ‘C’ refers to the constant Se/Sp
method, and ‘D’ refers to our proposed dilution method. Constant pool sizes c are reported
in parentheses. The true parameter values are represented by dashed horizontal lines.
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Figure B.5: Robustness study with misspecified submodel using random pooling and
moderate misclassification. Boxplots of the maximum likelihood estimates for β =
(β0, β1, β2)′ from 500 simulated data sets are presented. The proposed model with the
submodel in (3.8) is fit to the group testing data generated using the submodel ‘Cloglog’.
On the horizontal axes, ‘I’ refers to individual testing, ‘C’ refers to the constant Se/Sp
method, and ‘D’ refers to our proposed dilution method. Constant pool sizes c are reported
in parentheses. The true parameter values are represented by dashed horizontal lines.
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Figure B.6: Robustness study with misspecified submodel using homogeneous pooling
and moderate misclassification. Boxplots of the maximum likelihood estimates for β =
(β0, β1, β2)′ from 500 simulated data sets are presented. The proposed model with the
submodel in (3.8) is fit to the group testing data generated using the submodel ‘Cloglog’.
On the horizontal axes, ‘I’ refers to individual testing, ‘C’ refers to the constant Se/Sp
method, and ‘D’ refers to our proposed dilution method. Constant pool sizes c are reported
in parentheses. The true parameter values are represented by dashed horizontal lines.
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Figure B.7: Robustness study with misspecified submodel using random pooling and se-
vere misclassification. Boxplots of the maximum likelihood estimates for β = (β0, β1, β2)′
from 500 simulated data sets are presented. The proposed model with the submodel in (3.8)
is fit to the group testing data generated using the submodel ‘HS’. On the horizontal axes,
‘I’ refers to individual testing, ‘C’ refers to the constant Se/Sp method, and ‘D’ refers to
our proposed dilution method. Constant pool sizes c are reported in parentheses. The true
parameter values are represented by dashed horizontal lines.
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Figure B.8: Robustness study with misspecified submodel using homogeneous pooling
and severe misclassification. Boxplots of the maximum likelihood estimates for β =
(β0, β1, β2)′ from 500 simulated data sets are presented. The proposed model with the
submodel in (3.8) is fit to the group testing data generated using the submodel ‘HS’. On
the horizontal axes, ‘I’ refers to individual testing, ‘C’ refers to the constant Se/Sp method,
and ‘D’ refers to our proposed dilution method. Constant pool sizes c are reported in
parentheses. The true parameter values are represented by dashed horizontal lines.
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Figure B.9: Robustness study with misspecified submodel using random pooling and se-
vere misclassification. Boxplots of the maximum likelihood estimates for β = (β0, β1, β2)′
from 500 simulated data sets are presented. The proposed model with the submodel in (3.8)
is fit to the group testing data generated using the submodel ‘Probit’. On the horizontal
axes, ‘I’ refers to individual testing, ‘C’ refers to the constant Se/Sp method, and ‘D’ refers
to our proposed dilution method. Constant pool sizes c are reported in parentheses. The
true parameter values are represented by dashed horizontal lines.
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Figure B.10: Robustness study with misspecified submodel using homogeneous pooling
and severe misclassification. Boxplots of the maximum likelihood estimates for β =
(β0, β1, β2)′ from 500 simulated data sets are presented. The proposed model with the
submodel in (3.8) is fit to the group testing data generated using the submodel ‘Probit’.
On the horizontal axes, ‘I’ refers to individual testing, ‘C’ refers to the constant Se/Sp
method, and ‘D’ refers to our proposed dilution method. Constant pool sizes c are reported
in parentheses. The true parameter values are represented by dashed horizontal lines.
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Figure B.11: Robustness study with misspecified submodel using random pooling
and severe misclassification. Boxplots of the maximum likelihood estimates for β =
(β0, β1, β2)′ from 500 simulated data sets are presented. The proposed model with the
submodel in (3.8) is fit to the group testing data generated using the submodel ‘Cloglog’.
On the horizontal axes, ‘I’ refers to individual testing, ‘C’ refers to the constant Se/Sp
method, and ‘D’ refers to our proposed dilution method. Constant pool sizes c are reported
in parentheses. The true parameter values are represented by dashed horizontal lines.
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Figure B.12: Robustness study with misspecified submodel using homogeneous pooling
and severe misclassification. Boxplots of the maximum likelihood estimates for β =
(β0, β1, β2)′ from 500 simulated data sets are presented. The proposed model with the
submodel in (3.8) is fit to the group testing data generated using the submodel ‘Cloglog’.
On the horizontal axes, ‘I’ refers to individual testing, ‘C’ refers to the constant Se/Sp
method, and ‘D’ refers to our proposed dilution method. Constant pool sizes c are reported
in parentheses. The true parameter values are represented by dashed horizontal lines.
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B.6 The HBV data results from Section 3.5.

In this section, we present additional results of the HBV data application in Section

3.5.

• Table B.3: Estimation results for the polynomial model in Equation (3.10)

• Figure B.13: Estimated regression functions for the first order model in Equa-

tion (3.9)

– homogeneous pooling is used

• Figure B.14: Estimated regression functions for the polynomial model in Equa-

tion (3.10)

– homogeneous pooling is used
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Table B.3: Irish HBV data analysis with Dorfman decoding. The polynomial logistic model in Equation (3.10) is assumed. MLE
(estimated standard error) for β = (β0, β1, β2)′ averaged over B = 500 implementations. “Reject” is the proportion that the likelihood
ratio test in Section 3.3 detects dilution using the level of significance α. Individual testing (c = 1) estimates are also reported for
comparison.

Constant Se/Sp Dilution Reject
c β̂0 β̂1 β̂2 β̂0 β̂1 β̂2 α = 0.05 0.10
1 −2.27 (0.12) 0.53 (0.16) −0.15 (0.08) —– —– —– —– —–

Random pooling
3 −2.42 (0.14) 0.58 (0.18) −0.21 (0.09) −2.19 (0.21) 0.59 (0.18) −0.22 (0.10) 0.35 0.43
4 −2.47 (0.14) 0.55 (0.18) −0.20 (0.09) −2.18 (0.21) 0.56 (0.18) −0.20 (0.10) 0.50 0.66
5 −2.51 (0.14) 0.51 (0.18) −0.18 (0.09) −2.16 (0.20) 0.52 (0.18) −0.18 (0.10) 0.72 0.80
6 −2.54 (0.14) 0.47 (0.18) −0.16 (0.09) −2.15 (0.19) 0.48 (0.18) −0.17 (0.10) 0.81 0.89
8 −2.57 (0.14) 0.44 (0.18) −0.15 (0.09) −2.13 (0.18) 0.45 (0.18) −0.15 (0.09) 0.94 0.98
10 −2.58 (0.14) 0.42 (0.18) −0.14 (0.09) −2.11 (0.18) 0.44 (0.18) −0.14 (0.09) 0.99 0.99

Homogeneous pooling
3 −2.41 (0.14) 0.61 (0.18) −0.23 (0.09) −2.22 (0.21) 0.59 (0.18) −0.23 (0.10) 0.28 0.38
4 −2.45 (0.14) 0.59 (0.18) −0.22 (0.10) −2.20 (0.20) 0.57 (0.18) −0.22 (0.10) 0.43 0.58
5 −2.48 (0.14) 0.57 (0.18) −0.21 (0.09) −2.16 (0.19) 0.54 (0.19) −0.21 (0.10) 0.71 0.82
6 −2.51 (0.14) 0.52 (0.18) −0.19 (0.09) −2.13 (0.19) 0.49 (0.19) −0.18 (0.10) 0.87 0.95
8 −2.53 (0.14) 0.49 (0.18) −0.18 (0.09) −2.09 (0.18) 0.45 (0.19) −0.17 (0.11) 0.98 0.99
10 −2.55 (0.14) 0.49 (0.18) −0.14 (0.09) −2.08 (0.18) 0.45 (0.19) −0.15 (0.10) 1.00 1.00
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Figure B.13: Irish HBV data analysis with Dorfman decoding and homogeneous pooling.
The first-order logistic model in Equation (3.9) is assumed. Estimated regression functions,
averaged over B = 500 implementations, are presented. The estimated regression function
for individual testing is also shown for comparison.
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Figure B.14: Irish HBV data analysis with Dorfman decoding and homogeneous pooling.
The polynomial logistic model in Equation (3.10) is assumed. Estimated regression func-
tions, averaged over B = 500 implementations, are presented. The estimated regression
function for individual testing is also shown for comparison.
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Appendix C

Permission to reprint

This section shows the evidence that the author of this dissertation has permission

to reprint the material of the article, “Estimating the prevalence of multiple diseases

from two-stage hierarchical pooling,” presented in Chapter 2 and in Appendix A.

Note, the legal name of this author is ‘Md Shamim Sarker’. However, the author uses

the name ‘Md S. Warasi’ for publications and conferences as it appears on the article.
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