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ABSTRACT 

Complex skeletal injuries and large bone fractures are still a significant clinical 

problem in US. Approximately 1.5 million Americans (veterans, their families, and 

civilians) every year suffer from bone loss due to traumatic skeletal injuries, infection, 

and resection of primary tumors that require extensive grafting to bridge the gap. The US 

bone graft market is over $2.2 billion a year. Due to insufficient mechanical stability, 

lack of vascularity, and inadequate resorption of the graft, patients with traumatic large 

skeletal injuries undergo multiple costly operations followed by extensive recovery steps 

to maintain proper bone alignment and length. Current strategies for repairing damaged 

or diseased bones include autologous or allograft bone transplantations. However, limited 

availability of autografts and risk of disease transmission associated with allografts have 

necessitated the search for the development of new bone graft options and strategies. 

The overall goal of this project is to develop a much-needed bone-mimetic 

engineered graft as a substitute for current strategies providing required bone grafts for 

reconstruction of large bone defects. This project will use the structure of natural cortical 

bone as a guide to produce an engineered bone graft with balanced strength, osteogenesis, 

vascularization, and resorption. The outcome of this project will be a biodegradable 

hybrid scaffold system (similar to natural cortical bone) including a mechanically strong 

scaffold allowing for mechanical stability of the load-bearing defect site and a soft and 

highly porous structure such as a hydrogel phase which will allow for efficient cell and 
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growth factor delivery into the defect implantation site, cell niche establishment and 

promotion of mineralization. Successful completion of this project will transform bone 

graft technology for regeneration of complex bone defects from a frozen or freeze-dried 

allograft to a safe, infection-free, mechanically-stable, osteoinductive, and vasculogenic 

graft that is ultimately displaced by the patient’s own tissue. 
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CHAPTER 1: BACKGROUND INFORMATION 

1. General introduction  

Repair and restoration of damaged bone is a major clinical challenge as well as an 

economic burden. Current strategies for repairing damaged or diseased bones include 

autologous or allograft bone transplantations. However, limited availability of autografts 

and risk of disease transmission associated with allografts have necessitated the search 

for the development of new bone graft options and strategies 1. Tissue engineering has 

recently emerged as an alternative strategy for bone defect repair and regeneration. In this 

strategy, a biodegradable scaffold is often utilized along with osteogenic cells and/or 

bone inducing factors to mimic the natural structure of the tissue.   

 

 

Figure 1.1: Tissue engineering approach for reconstruction of large bone fractures



2 

 

Bone tissue is composed of an external layer, referred to as cortical or compact bone, 

and an internal layer, referred to as cancellous or spongy bone 2. Cortical bone makes up 

to ~80% of the total bone mass in adults. It is extremely dense, with low porosity (20%) 

and high mechanical strength (130-190 MPa). Cancellous (spongy) bone accounts for the 

other 20% of the total bone mass and is highly porous (50%–90%), to allow for better 

penetration of vasculature, with ~10% of the mechanical strength of cortical bone 3. 

Although cortical and cancellous layers are quite different in structure, they both contain 

a highly vascularized network. The presence of a vascular network is essential to supply 

nutrients and remove waste products. The main source of blood cells and vascular 

structures in bone is bone marrow 4. Bone marrow is a soft, gelatinous and highly 

vascularized connective tissue within bone cavities and the spaces between the trabeculae 

of spongy bone. Bone marrow is either red or yellow, depending upon the preponderance 

of hematopoietic (red) or fatty (yellow) tissue 5.  

A scaffold for bone regeneration should satisfy basic scaffold requirements such as 

biocompatibility, interconnected pore structure for tissue in-growth, and controlled 

degradation with physiologically-friendly degradation products 6, 7. In addition, an ideal 

bone tissue engineering graft should provide suitable weight-bearing mechanical 

properties and have both excellent proosteogenesis and proangiogenesis to rapidly realize 

the bone regeneration in vivo 8, 9.  
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Figure 1.2. Bone anatomy (Copyright ª 2004 Pearson Education, Inc., publishing as 
Benjamin Cummings). 

 

 In fact, the healing of bone defect is a complex, coordinated temporal process 

involving a myriad of molecular, cellular, biochemical and mechanical cues, among 

which angiogenesis, or neovascularization, is a critical factor for regenerative bone tissue, 

because the existence of a functional vascular network within the defect site can provide 

sufficient oxygen and nutrients to facilitate growth, differentiation, and tissue 

functionality, which is of particular importance for bone regeneration 10. Thereupon, a 

desirable scaffold which could provide high mechanical stability and promote 

angiogenesis as well as osteogenesis during the bone regeneration process is worthy of 

study.  

Although great strides have been made, it is difficult for any biomaterial to satisfy all 

of the listed requirements. To develop better scaffolds for bone regeneration, researchers 
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have attempted to integrate mechanically strong and porous scaffolds with soft and 

hydrated scaffolds such as hydrogels. These structures are referred to as hybrid scaffolds 

11, 12. In this approach, the mechanically strong scaffold component would allow for 

mechanical stability of the load-bearing defect site; whereas, the hydrogel phase will 

allow for efficient cell delivery into the defect implantation site, cell niche establishment 

and promotion of mineralization. Hydrogels are polymeric, soft and flexible networks 

that have the ability to absorb and retain a large volume of water (80%–99%) without 

dissolving 13. Hydrogels can be made from natural biodegradable polymers such 

collagen, chitosan, and gelatin, or synthetic polymers such as polyethylene glycol (PEG) 

and polyvinyl alcohol 14, 15. Their remarkable properties, including similarities with the 

ECM, proper biological performance, hydrophilicity, high permeability to oxygen and 

nutrients, and inherent  cellular interaction capabilities, make them leading candidates for 

engineered tissue scaffolds 13. Also, growth factors for the promotion of accelerated bone 

and vascularization (i.e., BMP, VEGF) may also be covalently tethered to the hydrogel 

phase to allow for enhanced effects upon implantation. For instance, non-degradable 

hybrid scaffolds were fabricated by loading a self-assembling peptide into a porous 

titanium or polyetheretherketone cage to study bone regeneration in vitro and in vivo 11, 

12. The observed bone regeneration was superior to hybrid grafts since the hydrogel phase 

offered a native environment for bone forming cells while the porous matrix 

mechanically supported bone regeneration 12. In addition, hybrid grafts offer the 

possibility of osteogenic cell and factor encapsulation. The newly developed “polymer-

hydrogel” hybrid system is robust: it not only satisfies mechanical needs but also has the 

ability to load the cells and factors required for osteogenesis and vasculogenesis 16. 
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Therefore, there is a clear need to develop biodegradable hybrid scaffold systems for 

effective bone tissue engineering.  

Shortly, the overall aim of the present study is to develop a biodegradable hybrid 

scaffold system (similar to natural cortical bone shown in figure 1.2) that is weight 

bearing and osteoinductive for effective bone regeneration (Figure 1.3). We will address 

the most critical challenges separately to design an optimized hybrid structure with the 

final goal of improving the bone healing process.   

 

 

Figure 1.3. Engineered cortical bone-mimetic scaffold 

 

The first major challenge in designing scaffolds for reconstruction of large bone 

defects is the graft’s mechanical stability and toughness. The engineered graft should be 

sufficiently rigid for closure of the skeletal gap to maintain homeostasis 17. Further, the 

engineered graft should be osteo-conductive/inductive and ultimately be replaced by the 

natural bone. The second major challenge in reconstruction of large bone defects is 

insufficient vascularization. Current tissue engineering strategies are extremely limited by 
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the lack of vascularization, leading to poor graft integration and failure of engineered 

substitutes in clinical trials 17. Since diffusion of nutrients and oxygen to the progenitor 

cells in the graft is limited to a few hundred micrometers, successful regeneration of large 

bone defects requires early induction of vascularization in the graft 18, 19. It is notable that 

the final effective bone regeneration and vessel formation in a critical sized defect are 

also attributed to the close association and interaction between angiogenesis and 

osteogenesis 20. One hand, most osteogenic factors such as Bone Morphogenetic Protein-

2 (BMP2) involved in osteogenesis stimulate angiogenesis, if not directly, then indirectly, 

through production of angiogenic molecules, such as Vascular Endothelial Growth Factor 

(VEGF) 16, 21. For example, it has been clarified that during endochondral ossification, 

there is close correlation between vascularization and bone formation as the maximum 

extent of bone formation follows maximum levels of VEGF expression 22. Therefore, the 

engineered graft should provide a compliant permissive environment such as a hydrogel 

phase which allows for efficient cell delivery into the defect implantation site, cell niche 

establishment and promotion of vascularization and osteogenesis 23. The third challenge 

is timed-release of growth factors in their respective microenvironments. Interactions 

between cells play an important role in directing their function and differentiation. In 

vivo cellular communication is mainly through a cascade of chemical cues, such as 

protein interactions and growth factor signaling. Growth factors are known to affect 

cellular proliferation, migration, and differentiation during bone repair 24. Owing to the 

critical role of growth factors in controlling basic cellular functions, and their ability to 

directly elicit and arrange tissue regeneration, a wide range of growth factors has been 

tested for distinct therapeutic applications, including bone regeneration and 
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neovascularization of ischaemic tissues. For instance, bone morphogenetic protein-2 

(BMP-2), transforming growth factor-β (TGF-β), fibroblast growth factor (FGF), platelet-

derived growth factor (PDGF), insulin-like growth factor (IGF), endothelin-1, and 

vascular endothelial growth factor (VEGF) are involved in bone formation 25. BMP, 

PDGF, FGF, and VEGF have been shown to enhance migration of osteoprogenitor cells, 

while TGF-β, IGFs, and BMPs modulate their proliferation and differentiation 26. 

Additionally, VEGF and FGF are involved in initiating vascular growth during bone 

healing 25. The cross-talk between osteoblasts and endothelial cells (ECs) is conducted 

through the release of VEGF by osteoblasts, which act on ECs to promote angiogenesis, 

and through the release of BMPs by ECs, which act on precursor bone cells to promote 

osteoblastic differentiation. In addition, FGF has been shown to stimulate proliferation 

and migration of ECs 27 and also induce osteoblasts differentiation28. Therefore, one 

efficient way to obtain osteoinductivity and enhance repair of the critical sized bone 

defects is application of growth factors such as of BMP2 and VEGF as it has been largely 

reported 29. However, concerns about these bioactive strategies still remain, such as the 

uncontrollable dose and composition of the delivered growth factors, and a high 

degradation rate resulting from a high in vivo instability of the angiogenic factors 30. 

Currently, for the clinical therapy, BMP-2 in a high dosage thereafter a high cost need to 

be used, which is possibly accompanied by the contingent risk and side effect, such as 

excessive bone resorption and promotion of tumor angiogenesis 31, 32. Furthermore, it has 

been shown that the extent of bone formation in vivo depends on the duration of exposure 

of osteoprogenitor cells and endothelial progenitor cells to BMP2 and VEGF, 
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respectively 33-35. Therefore, the controlled delivery system of growth factors becomes 

increasingly necessary and important.  

To address these challenges, the idea is to utilize novel nanomaterials to mimic the 

shell-core structure of cortical bone which is composed of interconnected network of 

microcanals, and a compliant, permissive core with timed and localized release of BMP2 

and VEGF to form an osteoblastic-vascular niche (Figure 1.3). In nano scale, bone has a 

nanocomposite structure made of collagen type I nanofibers (~ 30 wt%) and 

hydroxyapatite nanocrystals (~ 70 wt%) .  The superior mechanical stability and 

osteoinductivity of cortical bone in the natural tissue stem from the presence of high 

amount of hydroxylapatite nanocrystals on the surface of collagen nanofibers (Figure 

1.4a). Therefore, to address the first challenge, aligned polylactide (PLA) nanofibers with 

a tunable degradation time were mineralized with high quantity of calcium phosphate 

(CaP) nanocrystals by incubation in simulated body fluid (SBF) supplemented with bone-

derived organic acids (Ami 1, Figure 1.4b).  

 

Figure 1.4. a) Aim 1: Nanostrucuture of natural cortical bone. b) Engineering approach to 
mimic the nanostructure of cortical bone 
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Then, the CaP-nucleated nanofiber microsheets will be wrapped into microtubes and 

a set of microtubes will be assembled around a cylindrical mold and allowed to fuse by 

annealing above the glass transition temperature (Tg) of PLA nanofibers to form a rigid, 

tough, osteoconductive, cylindrical shell.  

As it was mentioned earlier, the main source of blood cells and vascular structures in 

bone is a soft, gelatinous and highly porous structure called bone marrow which is placed 

in the core of cortical bone and empty spaces in cancellous bone. Hence, to address the 

second challenge, a compliant hydrogel loaded with required cells and growth factors 

will be designed to form a osteoblastic-vascular niche in the structure of the engineered 

scaffold.  

 

Figure 1.5. Aim 2 and 3: Compliant hydrogel loaded with required cells and growth factors 
to mimic soft structure of bone marrow 

 

It should be also emphasized that osteogenesis and vascularization processes are 

coupled during the bone formation and regeneration as maximum extent of osteogenesis 

follows maximum level of vascularization and vice-versa. Therefore, in this work, a 

patterned hydrogel were designed to facilitate controlling both osteogenesis and 

vasculogenesis processes in the scaffold and consequently increase the extent of bone 
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formation. Moreover, to address the third challenge, a set of nanogels (NGs) were 

engineered to control the release rate of growth factors in patterned hydrogel. To do this, 

polyethylene glycol (PEG) chain-extended with short lactide (L) and glycolide (G) 

segments were used to form self-assembled NGs and facilitate a wide range of timed-

release for different types of growth factors such as BMP2 and VEGF.  

 

Accordingly, the following aims are considered to test the hypothesis toward the 

objectives. 

Aim 1. To engineer a cortical-bone-mimetic nanostructured shell by fabricating 

mineralized nanofibers and evaluate with respect to mechanical strength. 

osteoconductivity, and degradability.        

Ami 2. To synthesize resorbable, self-assembled, polyethylene glycol based nanogels and 

evaluate with respect to size, degardation rate and the release kinetics of BMP2- and 

VEGE-grafted nanogels. 

Ami 3. To evaluate the extent of vasculogenesis and osteogenesis of human 

mesenchymal stem cells (hMSCs) and human colony-forming endothelial cells (ECFCs) 

encapsulated in a patterned hydrogel with spatiotemporal release of BMP2 and VEGF.  
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CHAPTER 2: FABRICATION AND CHARACTERIZATION OF MINERALIZED 

NANOFIBERS USING SIMULATED BODY FLUID SUPPLEMENTED WITH 

BONE-DERIVED ORGANIC ACID 
1
 

1. Introduction 

Reconstruction of large incomplete bone segments remains a significant clinical 

problem 36, 37. Frozen allogeneic bone graft is used but the long-term failure rate of 

allografts in reconstruction of large segmental defects mainly due to infection and non-

union is 25%.37, 38 Demineralized bone matrix provides a supportive matrix for 

differentiation and maturation of osteoprogenitor cells but it fails to provide rigidity for 

segmental defects.39 Ceramics and polymers and their composites have been used to 

generate constructs matrices for regeneration of load-bearing bone defects.40  In 

particular, calcium phosphate (CaP) ceramics have attracted much attention as a bone 

substitute due to their osteoconductivity and osteointegrative properties41, 42 but they are 

brittle in tension and shear.43, 44  

 

 

 

1 Barati, D., et al., Effect of Organic Acids on Calcium Phosphate Nucleation and Osteogenic 
Differentiation of Human Mesenchymal Stem Cells on Peptide Functionalized Nanofibers. 
Langmuir, 2015. 31(18): p. 5130-5140.  

Reprinted here with permission of publisher. 
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Fiber-reinforced composites composed of calcium phosphates and degradable 

polymers can potentially have superior properties than their individual components but 

their properties are limited by the amount of CaP crystals that can be incorporated in the 

composite matrix.45-49 There is a need for composite biomaterials that can stabilize the 

regenerating volume, have tunable resorption, and support differentiation and maturation 

of osteoprogenitor cells.  

  Mineralization in bone is mediated by extracellular matrix (ECM) proteins rich in 

glutamic acid sequence.50, 51 In previous studies, we demonstrated that CaP contents as 

high as 200% (based on fiber weight) can be achieved on nanofiber microsheets by 

combining surface functionalization of the nanofibers with glutamic acid peptides and 

using a layer-by-layer CaP deposition approach to overcome the limited penetration of 

calcium and phosphate ions in the microsheets. The CaP content achieved in our previous 

study was higher than that of cancellous  bone (190%)52 but lower than the compact bone 

(>250%).10 Carboxylate-rich organic acids account for 5.5% of the organic matter in bone 

and citric acid plays a significant role in controlling crystallite size, growth and the extent 

of mineralization in the natural bone.53 Recently, it was reported that the spacing between 

the carboxylate groups in citric acid matches the spacing between calcium ions in the 

growing CaP nanocrystals.53-57 Citrate ions in the CaP nucleation solution inhibit the 

formation of large and stable crystals in solution58 and catalyze CaP nucleation on 

surfaces.59 

The objectives of this work was to investigate the effect of supplementing the 

nucleation medium with organic acids on the extent of CaP nucleation on the surface of 
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functionalized nanofiber microsheets and osteogenic differentiation of human 

mesenchymal stem cells (hMSCs) seeded on the surface of functionalized nanofiber 

microsheets through the following approach. The CaP nucleating peptide Glu-Glu-Gly-

Gly-Cys (EEGGC) was conjugated to relatively low molecular weight poly(DL-lactide) 

to produce a LMPLA-GLU conjugate. LMPLA-GLU conjugate was mixed with high 

molecular weight PLA and electrospun to generate aligned GLU-functionalized PLA 

nanofiber microsheets. The microsheets were incubated in concentrated simulated body 

fluid (SBF) supplemented with an organic acid to nucleate and grow CaP crystals on the 

surface of nanofibers. Citric acid (CA), hydroxycitric acid (HCA), tartaric acid (TART), 

malic acid (MA), salicylic acid (SalA) and ascorbic acid (AsA) were selected to tested 

organic acids with a range of carboxylic acid and hydroxyl groups.  

 

 

 

Figure 2.1. Nucleation of CaP crystals on the surface of nanofibers a. without addition of 
chealting agent, b. with addition of chelating agent such as citric acid 



14 

 

Carboxylic acid-rich organic acids like citric and malic acids account for 5.5% of the 

organic matter in natural bone.53 All tested organic acids are naturally present in fruit and 

vegetables. CA is the dominant organic acid in citrus fruits while MA is found in apple 

and pear.60 Tomato contains 9% CA, 4% MA, and 0.5% AsA based on dry mass.61 Rice 

and soybean contain SalA62 while grapes and grapefruit are a major source of TART and 

HCA.63, 64 The CaP nucleated microsheets were characterized with respect to particle 

size, crystallite size, percent crystallinity, calcium to phosphate ratio, CaP content, and 

compressive modulus. Next, CaP nucleated microsheets were seeded with hMSCs and 

cultivated in osteogenic medium. The cell-seeded microsheets were characterized by cell 

number, alkaline phosphatase (ALP) activity, and calcium content with incubation time. 

Results show that the addition of HCA, CA, and TART to the nucleation solution 

significantly increased the CaP content of the microsheets whereas only the addition of 

CA and AsA to the nucleation solution significantly increased osteogenic differentiation 

of hMSCs seeded on the microsheets.  

2.  Experimental 

2.1. Nanofiber Electrospinning 

The solution for electrospinning was prepared by dissolving 8 wt% PLA  and 1.5 

wt% LMPLA-GLU in HFIP (there was no LMPLA-GLU in “without GLU” samples” ) 

as we previously described.42 The electrospinning solution loaded in a 1 mL syringe was 

injected through a 21-gauge needle (PrecisionGlide, 0.7 mm I.D., Becton-Dickinson, 

Franklin, NJ) via a KDS100 syringe pump. The positive and ground electrodes of the 

high-voltage power source were connected to the needle and the custom-built rotating 
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wheel, respectively.42 The aligned nanofibers were electrospun using a 0.8 mL/h injection 

rate, 20 kV electric potential, 7.5 cm needle-to-needle distance, and wheel diameter and 

rotation speed of 20 cm and 1800 rpm, respectively, as we previously optimized.65-67 The 

collected aligned nanofiber microsheet from a 0.8 mL solution had a thickness of 6 µm. 

The average size of the aligned fibers was 200 ±60 nm.42 The electrospun PLA/LMPLA-

GLU nanofibers are hereafter denoted by NF. 

2.2. . Mineralization of NF in Modified Simulated Body Fluid 

A stock solution of 10-fold concentrated SBF (10xSBF) was prepared by dissolving 

NaCl, KCl, CaCl2•H2O, MgCl2•6H2O, NaH2PO4 in distilled deionized (DI) water as 

described.42 Next, one of the organic acids was added to the solution in concentrations 

ranging from zero to 15 mM. Molecular structure and pKa value of the organic acids are 

given in Table 1. Then, the pH of the solution was adjusted to 7.4 by addition of sodium 

bicarbonate (NaHCO3) to the mineralization solution. The solution was maintained at 

ambient conditions for 15-45 min to equilibrate and solution-nucleated CaP crystal was 

removed by filtration with a 220 nm pore-size filter. Next, the nanofiber microsheets 

were submerged in the organic acid-supplemented 10xSBF with agitation on an orbital 

shaker for 12 h. The containers were sealed with Parafilm to prevent diffusion of CO2 

from the atmosphere and maintain a constant solution pH. The nucleation solution was 

changed every 6 h to maintain a constant concentration of calcium and phosphate ions in 

solution with incubation time. The NF microsheets mineralized in 10xSBF solution 

supplemented with TART, HCA, CA, MA, AsA and SalA are hereafter denoted by 

TART, HCA, CA, MA, AsA and SalA, respectively.   
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2.3. Characterization of CaP-Nucleated Nanofiber Microsheets 

The extent of CaP nucleation and growth on NF microsheets was measured using a 

QuantiChrom calcium assay (Bioassay Systems, Hayward, CA) according the 

manufacturer’s instructions.42  

 

 

Table 2.1. Molecular structure and pKa of the organic acids. 

 

 

 

Briefly, the calcium content of 1 mg NF microsheet was dissolved in 0.4 mL of 1M 

HCl. Next, 5 µL aliquot of the suspension was added to 200 µL of the kit working 
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solution. After 3 min incubation at 37°C, absorbance was measured on a Synergy HT 

plate reader at a wavelength of 612 nm and correlated to the equivalent amount of Ca2+ 

using a calibration curve constructed from reference solutions with known Ca2+ 

concentrations. The total CaP content was determined from the measured Ca2+ content 

and calcium to phosphate (Ca/P) ratio obtained from energy-dispersive X-ray spectrum 

(EDS) of the sample. The measured CaP content was divided by the weight of NF sheet 

to determine CaP weight percent in each sample with incubation time in nucleation 

solution. The CaP-nucleated nanofiber microsheets were imaged with a VEGA3 SBU 

variable pressure scanning electron microscope (SEM; Tescan, Kotoutovice, Czech 

Republic) at an accelerating voltage of 8 KeV. Samples were coated with gold using a 

Denton Desk II sputter coater (Moorestown, NJ) at 20 mA current for 75 sec. The 

average fiber size of the microsheets and CaP particle size were determined from the 

analysis of SEM images using the ImageJ software (National Institutes of Health, 

Bethesda, MD) as described previously.42 An EDS system (Tescan) connected to the 

SEM was used to analyze the samples for elemental composition and Ca/P ratio of the 

samples as described.68 

Crystallinity and crystallite size of the nucleated CaP on microsheets were measured 

by wide-angle X-ray diffraction (XRD) using a Philips 405S5 diffractometer (Eindhoven, 

Netherlands) as we previously described.68 The diffraction spectrum was collected with a 

CuKα radiation source (λ=1.54059 Å) at 30 KeV over Bragg angles (2Ө) ranging from 

10 to 50 degrees with a step size of 3 degrees/min-1. Average crystallite size (L) of CaP 

particles nucleated on the microsheets was calculated from the XRD spectrum using 

Scherrer equation 69, 70 
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θβ

λ
=

cos
K

L                                                                        (1)     

where K  is a shape factor with a value close to unity, λ  is the X-ray wavelength, β  

is full width at half maximum (FWHM) of the peak at the diffraction angle θ . The (002) 

reflection peak (2Ө=25.8) in the XRD spectrum was used to calculate crystallite size of 

the CaP particles as described. 71, 72 The fraction of crystalline phase in the CaP 

nanoparticles ( CX ) was calculated using the following equation developed for calcium 

phosphate crystals73  

300

300/1121
I

X C

ν
−≈                                                                               (2)  

where 300I  is intensity of the (300) diffraction peak and 300/112ν  is intensity of the 

hollow region between (112) and (300) diffraction peaks in the XRD spectrum of the 

samples.   

For determination of compressive modulus, a 10 layered nanofibrous microsheets 

with the overall thickness of 60 µm was loaded on the Peltier plate of an AR2000 

rheometer (TA Instruments, New Castle, DE) and subjected to a uniaxial compressive 

force at a displacement rate of 7.5 mm/s.  The slope of the linear fit to the stress–strain 

curve for 5–10% strain was taken as the elastic modulus (E) of the mineralized matrix as 

we previously described.74 For determination of mass loss, the annealed samples were 

incubated in simulated body fluid (SBF) at 37ºC and under mild agitation.  At each time 

point, samples were removed from SBF, washed three times with DI water and dried 

under vacuum. The dry sample weight was measured and compared with the initial dry 

weight to determine the fractional mass remaining as described 75. 
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2.4. Cell Seeding on Mineralized Microsheets 

hMSCs were cultivated at 5000 cells/cm2 in a high glucose DMEM medium 

supplemented with 10% FBS, 100 units/mL penicillin and 100 µg/mL streptomycin 

(basal medium) with medium refreshment every three days. After reaching 70% 

confluency, the cells were detached with 0.1% trypsin- 0.03% EDTA and sub-cultivated 

at a ratio of 1:3 for <5 passages, according to supplier’s instructions. For cell seeding, 

edges of the microsheets on 12 mm circular glass coverslips were covered with a 

medical-grade silicone sealant (Dow Corning, MI) to prevent separation of the 

microsheet from coverslip in the cell culture medium. The microsheets were sterilized by 

ultraviolet (UV) radiation for 1 h followed by immersion in 70% ethanol for 30 min and 

washing three times with sterile PBS. We have previously shown that fiber alignment and 

size, or attachment of CaP nanoparticles nucleated on the fibers are not affected by the 

sterilization procedure.42 After incubation in basal medium for 1 h, each microsheet 

sample was seeded with 60 µL hMSC cell suspension (1.7x106 cells/mL in basal 

medium) at a surface density of 1x105 cells/cm2. After incubation for 24 h for cell 

attachment, the medium was replaced with osteogenic medium (basal medium plus 100 

nM dexamethasone, 50 µg/mL ascorbic acid, 10 mM ß-glycerophosphate). CA 

microsheets seeded with hMSCs and incubated in basal medium was used as the control 

group. The hMSC-seeded microsheets were incubated in a humidified 5% CO2 incubator 

for 21 days.  

2.5. Osteogenic Differentiation of Cell-Seeded Mineralized Microsheets 

At each time point (0, 7, 14 and 21 days), cell-seeded microsheet samples were 

washed with serum-free DMEM for 8 h to remove serum proteins followed by washing 
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with PBS. Next, samples were lysed with 10 mM Tris supplemented with 0.2% triton in 

PBS and the lysed samples were used for measurement of DNA content, ALP activity, 

and calcium content. Double-stranded DNA content, ALP activity and calcium content of 

the samples were measured with Quant-it PicoGreen, QuantiChrom ALP and 

QuantiChrom Calcium Assays, respectively, as we previously described. 42, 75 To 

determine the extent of mineralization of the samples by the seeded hMSCs at each time 

point, the measured calcium intensities at time zero was used a baseline to subtract the 

calcium contribution from the CaP-nucleated fibers prior to cell seeding. The measured 

ALP activities and calcium contents were normalized to cell number by dividing to DNA 

content at each time point. For imaging the extent of hMSC-induced mineral deposition, 

the microsheets were stained with Alizarin red using the following procedure. The cells 

on the microsheets were fixed with 10% paraformaldehyde. Next, the fixed samples were 

covered with a solution of Alizarin red, prepared according to the manufacturer’s 

instructions, and incubated in the dark at ambient conditions for 20 min. Then, a Nikon 

Optiphot epifluorescence microscope was used to image the samples for extent of nodule 

formation and the images were analyzed for average size of the nodules by the ImageJ 

software as we previously described 42.  

2.6. Statistical analysis. 

 Data are expressed as means ± standard deviation. All experiments were done in 

triplicate. Significant differences between groups were evaluated using a two-tailed 

Student's t-test. A value of p<0.05 was considered statistically significant. 
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3. Results  

3.1. CaP nucleation on the mineralized microsheets 

Figure 2.2a and 10b show the percent CaP nucleated on the microsheets with GLU 

(1a) or without GLU (1b) as a function of organic acid concentration in 10xSBF. CaP 

content of the GLU incorporated microsheets incubated for 12 h in 10xSBF without the 

addition of organic acids was 160±20%. That was significantly higher than the CaP 

content of the “without GLU” microsheets incubated for 12 h in 10xSBF (40%, see 

Figure 2.2b).  SalA and AsA did not significantly affect CaP content of “with GLU” 

microsheets at concentrations <4mM. CaP content of the “with GLU” microsheets 

increased to 170±10% and 175±5%, respectively, as SalA and AsA concentrations 

increased to 10 mM and CaP content remained unchanged with further increase in SalA 

or AsA concentration. CaP content of the “with GLU” microsheets peaked at 200%±20 

as MA concentration increased to 8 mM and then decreased to 185%±15 at MA 

concentration of 15 mM. CaP content of the “with GLU” microsheets incubated with CA, 

TART, and HCA increased with organic acid concentration, peaked at 6 mM 

concentration, and then decreased with increasing organic acid concentration. CaP 

content of the “with GLU” microsheets incubated with 6mM concentration of CA, 

TART, and HCA was 225±30%, 225±20% and 240±25%, respectively, but CaP content 

decreased to 200±20%, 205±15% and 215±20% at 15 mM organic acid concentration. 

The CaP content of “without GLU” microsheets increased from 40 wt% to a maximum of 

103, 114, 133, 155, 160 and 175 wt% when the nucleation medium was supplemented 

with SalA, AsA, MA, CA, TART and HCA, respectively. The peak CaP content of the 

“with GLU” microsheets incubated with 6 mM HCA was comparable with CaP content 
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of the natural compact bone.10 Figure 2.3 shows CaP content of the “with GLU” 

microsheets as a function of incubation time in 10xSBF supplemented with one of the 

organic acids at a concentration corresponding to the peak CaP content in Figure 2.2. In 

Figure 2.3, “None” represents the group without addition organic acids and Ctrl 

represents the group without addition of neither organic acid nor GLU. CaP content of 

the microsheets monotonically increased with incubation time in the first 16 h and 

reached a plateau at longer times. CaP content did not change significantly when 

incubation time was increased from 16 to 24 h for all organic acids and the plateau CaP 

content was highest for HCA supplemented 10xSBF at 244±10% and lowest for SalA at 

174±8%. Results in Figures 2.2-2.3 show that the addition of HCA to 10xSBF had the 

greatest effect on CaP content of the microsheets followed by TART, CA, and MA. 

Further, the optimum concentration and optimum incubation time was 6 mM and 12 h, 

respectively.  

 

 

Figure 2.2. Effect of organic acid concentration added to the concentrated SBF on CaP 
content of DL-PLA nanofiber microsheets (a) with and (b) without GLU for different organic 

acids after 16 h incubation.  
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Figure 2.3. Effect of incubation time in the concentrated SBF supplemented with different 
organic acids on CaP content of DL-PLA nanofiber microsheets at organic acid concentration 

corresponding to maximum CaP content in Figure 2.2.  

Figure 2.4 shows XRD spectra of the mineralized “with GLU” microsheets after 

incubation for 12 h in 10xSBF supplemented with optimum concentration of the organic 

acid (Figure 2.2a). The XRD spectra of pristine nanofiber microsheet without CaP 

nucleation (PLA) and pure hydroxyapatite (HA) are also included in Figure 2.4.  The 

broad diffraction peak in the spectrum of pristine PLA microsheet centered at 2Ө = 16° is 

characteristic of the amorphous poly(DL-lactide).76 Calcium phosphates that mineralize 

from solution at ambient conditions are HA, amorphous calcium phosphate (ACP), 

dicalcium phosphate dihydrate (DCPD), and octacalcium phosphate (OCP). 77, 78 The 

relatively sharp diffraction peaks in the spectra of HA and mineralized microsheets 

centered at 2Ө = 25.8°, 31.8°, 32°, 33°, and 46° corresponded to (002), (211), (112), 

(300) and  (222) planes of HA, respectively. 72, 76-78 The relatively broad diffraction peak 

overlapping the HA peaks at 2Ө = 31.8°, 32°, and 33°, which was absent in the spectrum 
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of HA, was due to the formation of ACP in the mineralized microsheets.70, 77 The 

characteristic diffraction peaks for crystalline OCP (2Ө = 16° and 24°) and DCPD (2Ө = 

29.2°, 34.4°, and 11.4°) were absent in the spectra of mineralized microsheets72, 77, 78. 

 

 

Figure 2.4. X-ray diffraction spectra of DL-PLA nanofiber microsheets with GLU incubated 
in the concentrated SBF supplemented with HCA, TART, CA, MA, AsA, and SalA organic acids 

for 16 h at the concentration corresponding to the maximum CaP content in Figure 2.3.  

 

 The EDS spectra of the mineralized “with GLU” microsheets incubated in 10xSBF 

for 12 h with optimum concentration (Figure 2.2) of HCA, TART, CA, MA, AsA, and 

SalA are shown in Figures 2.5a through f. The elemental Ca/P ratio calculated from the 

calcium and phosphorous peaks in Figure 2.5 and EDS data for “without GLU” 

microsheets (data not shown) are presented in Table 3 together with crystallinity and size 

of the crystallites (XRD images) and size of the CaP particles nucleated on nanofibers of 
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the microsheets (SEM images). Crystallinity of “with GLU” microsheets incubated in 

10xSBF without organic acids was 21±2%. TART and AsA incubated microsheets 

(TART and AsA) had the highest and lowest percent crystallinity, respectively, among all 

organic acids with 39±2% and 20±2%. SalA, HCA, CA, and MA incubated microsheets 

(SalA, HCA, CA, and MA) had percent crystallinity of 23±1%, 31±1%, 30±1%, and 

35%±3, respectively, which was in the range of crystallinity of cortical and cancellous 

bone (33-37%).79 The size of crystallites ranged between 31±2 and 62±4 nm with TART 

and Sal having the lowest and highest crystallite size, respectively. In comparison, the 

crystallite size for the “with GLU” microsheets mineralized in the absence of organic 

acids was 60±5 nm. Ca/P ratio of the microsheets ranged between 1.68±0.03 for TART 

and 1.91±0.05 for AsA with the microsheets mineralized in the absence of organic acids 

having a Ca/P ratio of 1.88±0.1. TART incubated “with GLU” microsheets  had Ca/P 

ratio of 1.68 which was closest to that of natural bone at 1.67 79 followed by HCA and 

CA with Ca/P ratio of 1.71 and 1.77, respectively. Crystals formed on “without GLU” 

microsheets had lower crystallinity, higher Ca/P ratio and larger crystallite size compared 

to the ones formed on “with GLU” microsheets.  
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Figure 2.5. EDS spectra of DL-PLA nanofiber microsheets incubated in the concentrated 
SBF supplemented with HCA, TART, CA, MA, AsA, and SalA organic acids for 16 h at the 

concentration corresponding to the maximum CaP content in Figure 2.2. 

 

Figure 2.6a-b shows the mass loss of the mineralized “with GLU” microsheets with 

incubation time in SBF at 37°C. The mass remaining of pristine PLGA and PLA NFs was 

0 % and 68%±5, respectively, whereas the mass remaining of mineralized NFs ranged 

between 85 %±2 and 93 %±1 after 35 days of incubation in SBF.  
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Table 2.2. Percent crystallinity, calcium to phosphate (Ca/P) ratio, crystallite size, and 
particle size of calcium phosphates particles nucleated on DL-PLA nanofiber microsheets (a) with 

and (b) without GLU. 

 

 

 

 

 

The mass losses are magnified in Figure 2.6b to show the effect of organic acid 

added to 10xSBF on mass loss of the mineralized microsheets. HCA with 12 %±2 mass 

loss had the slowest degradation while SalA with 19 %±3 mass loss had the fastest 

degradation among mineralized NFs after 42 days.  
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Figure 2.6. (a) Mass loss of DL-PLA nanofiber microsheets incubated in the concentrated 
SBF supplemented with HCA, TART, CA, MA, AsA, and SalA organic acids for 16 h at the 
concentration corresponding to the maximum CaP content in Figure 2.2. In (b) the y-axis is 
expanded (100-95% mass remaining) to show mass remaining for the mineralized microsheets. 
PLGA NF and PLA NF are PLGA and DL-PLA nanofiber microsheets with GLU and without 
incubation in SBF. There was not a significant pair-wise difference between the mass loss of CA 
and MA, CA and TART, and TART and MA groups by ANOVA test. There was a significant 
pair-wise difference between the mass remaining of other groups. Error bars correspond to 
means±1 SD for n=3. 

 

SEM images in Figure 2.7 and Figure 2.8 show the effect of organic acid added to 

10xSBF on size and distribution of the CaP nanoparticles nucleated on nanofibers of the 

“with GLU” and “without GLU” microsheets respectively. The average size of the 

nucleated CaP nanoparticles determined from the SEM images is presented in Table 3. 

The average particle size on “with GLU” microsheets ranged from 95±8 nm for TART to 

180±9 nm for SalA whereas the average particle size on “without GLU” microsheets 

ranged from 110±9 nm for TART to 270±33 nm for SalA. The size of the CaP crystals 

formed on both “with GLU” and “without GLU” microsheets in the organic acid 

incorporated solutions were significantly lower than the size of the ones formed in the 

absence of organic acids (None groups in Figure 2.7 and Figure 2.8). The number density 
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of CaP nanoparticles in AsA and SalA samples was lower than that of the other organic 

acid incorporated samples, consistent with the lower CaP content of AsA and SalA 

microsheets (see Table 4). The effect of organic acid in CaP nucleation medium on 

compressive modulus of the microsheets is presented in Table 4. Modulus of the “with 

GLU” and “without GLU” microsheets increased by 2.9 and 10.0 folds with CaP 

nucleation in the absence of organic acids in the nucleation solution (None group in Table 

3). The modulus of both “with GLU” and “without GLU” microsheets significantly 

increased with incorporation of organic acids within the nucleation solution. Furthermore, 

the modulus of “with GLU” microsheet was significantly higher than the one for 

“without GLU” microsheet in the presence or absence of organic acids.    HCA “with 

GLU” microsheets with CaP content of 240±10 wt% had the highest modulus of 260±40 

MPa compared to other mineralized microsheets which was 21.7-fold higher than the 

modulus of pristine DL-PLA microsheets 

 

Table 2.3. Maximum CaP content and compressive modulus of DL-PLA nanofiber 
microsheets with and without GLU incubated in the concentrated SBF supplemented with 

different organic acids. 

 

. 
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Figure 2.7. SEM images of DL-PLA nanofiber microsheets with GLU incubated in the 
concentrated SBF supplemented with HCA (a), TART (b), CA (c), MA (d), AsA (e), and (f) SalA 

for 16 h at the concentration corresponding to the maximum CaP content in Figure 2.2. None 
SEM image is DL-PLA nanofiber microsheets with GLU incubated in the concentrated SBF 

without the addition of organic acids for 16 h at the concentration corresponding to the maximum 
CaP in Figure 2.2. 

 

3.2. Osteogenic differentiation of hMSCs on nanofiber microsheets 

hMSCs were seeded on mineralized microsheets and cultured in complete osteogenic 

medium (basal medium plus dexamethasone, ascorbic acid (0.3 mM), ß-

glycerophosphate).  
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Figure 2.8. SEM images of DL-PLA nanofiber microsheets without GLU incubated in the 
concentrated SBF supplemented with HCA (a), TART (b), CA (c), MA (d), AsA (e), and (f) SalA 
for 16 h at the concentration corresponding to the maximum CaP content in Figure 2.2. None 
SEM image is DL-PLA nanofiber microsheets without GLU incubated in the concentrated SBF 
without the addition of organic acids for 16 h at the concentration corresponding to the maximum 
CaP in Figure 2.2. 

 

Experimental groups were hMSCs seeded on “with GLU” microsheets mineralized 

in the absence of organic acids (None) or presence of CA, AsA, SalA, HCA, MA and 

TART organic acids within the nucleation solution. hMSCs seeded on CA group and 

cultured in basal medium (CA-BM) was used as a control. DNA content of hMSCs 

cultured on the NF microsheets is shown in Figure 2.9. DNA content of the hMSCs in the 

control CA-BM group (black diamond) increased slightly with incubation time while the 



32 

 

DNA content of groups incubated in osteogenic medium decreased slightly with time. 

We have previously shown that at high initial cell seeding density used in our 

experiments, cell content of the microsheets decreases with incubation time as the cells 

undergo osteogenic differentiation.42 DNA content of hMSCs seeded on CA, AsA, SalA, 

HCA, MA and TART with a seeding density of 105 cells/ cm2 and incubated in 

osteogenic medium decreased slightly over 7 days of culture (Figure 2.9a) while the 

DNA content of hMSCs seeded on the same groups with two orders of magnitude lower 

seeding density (103 cells/cm2) increased significantly after 7 days of culture within the 

osteogenic medium.  

ALPase activity of hMSCs seeded on NF microsheets is shown in Figure 2.9b. 

ALPase activity of hMSCs seeded on CA-BM group incubated in basal medium did not 

increase significantly with time (black diamond). ALPase activity of hMSCs in CA, AsA 

and SalA groups peaked to the value of 5800±300, 5300±250 and 4800±150 IU/mgDNA, 

respectively at day 14, which was higher than that of None group with 4500±300 

IU/mgDNA at day 14. The peak value of ALPase activity for hMSCs seeded on HCA, 

MA and TART microsheets was 3800±200, 3200±100 and 3000±150 IU/mgDNA, 

respectively, after 14 days which was lower than that for None group. Calcium content of 

hMSCs seeded on mineralized NFs and cultured in osteogenic medium (basal medium for 

CA-BM) group is shown in Figure 2.9c. All calcium content values were subtracted from 

the values at day 1 to isloate the Ca deposited by cells from CaP deposited on fibers prior 

to cell seeding. Calcium content of the hMSCs seeded on CA-BM did not significantly 

change after 21 days of incubation in basal medium. The calcium content of all other 

groups increased slightly from day 4 to 7 and then increased monotonically over 21 days. 
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The calcium content of CA, AsA was 1200±100 and 1100±100 (mg/mg DNA) 

respectively after 21 days of incubation, higher than calcium content of None group 

(980±85 mg/ mg DNA). Calcium content of SalA, did not have a significant difference 

with that of None group at day 21. Calcium content of HCA, MA and TART groups was 

750±60, 610±50 and 550±55 mg/mgDNA, respectively, after 21 days of incubation 

which was lower than the calcium content of None group.  

 

 

Figure 2.9. DNA content (a) ALP activity (b) and calcium content (c) of hMSCs seeded on 
mineralized DL-PLA nanofiber microsheets with GLU as a function of incubation in osteogenic 
medium. CA-BM group (black diamond) is CA group incubated in basal medium, group 
incubated in osteogenic medium. Error bars correspond to means±1 SD for n=3. 

 

Image in Figure 2.10 show Alizarin Red Staining of hMSCs seeded on “with GLU” 

mineralized NF microsheets and cultured in osteogenic medium for 21 days. Controls 

included NF microsheets without CaP deposition and without hMSCs seeding (NF, 11i), 

NF microsheets with CaP deposition and without hMSCs seeding (NF+CaP, 11h) and NF 

microsheets with CaP deposition in the absence of organic acids within the nucleation 

solution and seeded with hMSCs (None, 11g). The presence of dark red areas in Figure 
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2.10a-g as opposed to Figure 2.9h and 2.10i showed the contributing effect of hMSCs to 

mineralization. A relatively high density of orange-red areas on the CA, AsA, SalA and 

None groups qualitatively confirmed a higher Calcium content (See Figure 2.10c) of the 

aforementioned groups compared with that of  MA, TART and HCA groups. Formation 

of bone nodules, three dimensional specifically mineralized and organized structures with 

proliferation, differentiation and mineralization stages of hMSCs simultaneously  80, was 

observed as large dark spots only on the CA group (see Figure 2.10b). The number 

density and total area of bone nodules on the CA group was 86 counts/cm2 and 1.8 ± 0.2 

mm2/cm2.  Dark spots on the AsA and None groups (see Figure 2.10e and 2.10g) were 

smaller (<35 µm) to be considered as bone nodules based on the previous reports 80, 81 . 

4. Discussion 

In this work, we investigated the effect of organic acids with different number of 

hydroxyl and carboxylic acid groups (see Table 1) in the simulated body fluid on the 

extent of CaP nucleation on nanofiber microsheets . An attractive approach to retard CaP 

crystal nucleation in solution and enhance nucleation on the fiber surface is to increase 

the solubility of calcium and phosphate ions in the nucleation solution.78 Carboxylate-rich 

organic acids like citric acid which account for 5.5% of the organic matter in the natural 

bone,53 inhibits CaP crystal nucleation in solution.58, 59 Citric acid (������) with three 

carboxylate groups is ionized to citrate ion (������
�	) (hereafter referred as Cit) in 

10xSBF nucleation medium.  
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Figure 2.10. Alizarin red staining of hMSCs seeded on mineralized DL-PLA with GLU and 
incubated in osteogenic medium for 21 days. NF+CaP and NF groups are mineralized and 

pristine nanofiber microsheets, respectively. 

 

Subsequently, the citrate ions are adsorbed on the surface of positively charged 

calcium ions to form a Ca-Cit complex. The negatively charged Ca-Cit complex is 

electrostatically repelled by the phosphate ions (PO4
3-) 53, 58, 82. The stability of Ca-Cit 

complex in solution depends on Cit concentration with the chelated Ca(Cit)- complex 

formed at low Cit concentrations72 and the stable [Ca(Cit)2]
-4 complex formed at high Cit 

concentrations.59 Therefore, the presence of Cit ions at low concentration inhibits the 

formation of CaP crystals in the nucleation solution, effectively increasing the probability 
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of CaP nucleation on GLU sites on the surface of nanofibers. Consequently, CaP content 

of the NF microsheets increased with increasing CA concentration from zero to 6 mM in 

the presence of Ca(Cit)- complex. As the CA concentration was increased to values >6 

mM, the stable [Ca(Cit)2]-4 formed at high concentrations inhibited CaP nucleation  on 

the fiber surface.59 HCA, TART, MA, SalA, and AsA organic acids form complexes with 

Ca ions in the nucleation solution through their carboxylate groups similar to that of citric 

acid.83 Therefore, the biphasic trend of CaP content of the NF microsheets observed in 

Figure 2.2 can be attributed to a change in the stability of organic acid-calcium complex 

with organic acid concentration in the nucleation solution.  

The maximum CaP content of “with GLU” NF microsheets after 12 h incubation in 

10xSBF supplemented with HCA, TART, CA, MA, AsA, and SalA was 240±10%, 

225±8%, 225±10%, 177±15%, 203±12%, and 170±6=7%, respectively, compared to 

160±12% without organic  acid. The difference in peak CaP contents can be attributed to 

the different number of carboxylic acid and hydroxyl groups in the organic acids. Higher 

number of carboxylate groups in the organic acid increased chelation between calcium 

ions and organic acid molecules in the nucleation solution83 whereas higher number of 

hydroxyl groups in the organic acid enhanced hydrogen bonding interaction between the 

Calcium-organic acid complex and the carboxylic acid groups and electronegative groups 

present on GLU as well as fiber surface. 59 According to Figure 2.2a and 1.1b, the CaP 

content of both “with GLU” and “without GLU” NF microsheets increased significantly 

with addition of organic acids to the nucleation solution. However, the peak values for 

calcium content were higher in “with GLU” microsheets. Therefore, while Calcium-
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organic acid complex can bind to the fiber surface in the absence of GLU, the presence of 

GLU contributed to the CaP nucleation significantly.  

CaP content of the NF microsheets decreased as the organic acid in the nucleation 

medium was changed from HCA with three carboxylic acids to TART and MA with two 

carboxylic acids and SalA with one carboxylic acid group (see Tables 2 and 4). Further, 

HCA with two hydroxyl groups resulted in higher CaP of the microsheets when added to 

the nucleation medium compared to CA with a single hydroxyl group although both 

organic acids had three carboxylic acid groups. Similarly, CaP content of the microsheets 

incubated in SBF supplemented with TART (two hydroxyl groups) was higher than MA 

with one hydroxyl group while both organic acids had the same number of carboxylic 

acids. The higher CaP content of the microsheets incubated in SBF supplemented with 

AsA compared with MA was attributed to the higher number of hydroxyl groups in AsA 

(three for AsA versus one for MA). CaP content of the microsheets was 240% after 12 h 

incubation in HCA-supplemented 10xSBF which was higher than the CaP content of 

natural cancellous bone (190%)52 and cortical bone (230%).10 The incubation time to 

reach 95% of the plateau CaP content was 10 h which was significantly lower than the 

reported 4 days of incubation for CaP nucleation on the collagen nanofibers in 1.5xSBF 

supplemented with CA.59 

XRD results demonstrated that the CaP nucleated on the NF microsheets was a 

mixture of HA and ACP. Further, the deviation of Ca/P ratio from that of pure HA (1.67, 

see Table 3) increased with decreasing crystallinity of the nucleated CaP on the 

microsheets. Therefore, the deviation of Ca/P ratio from that of HA was related to the 

changes in the amorphous phase of the CaP particles with a Ca/P ratio in the 1.2-2.2 
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range). 72, 77, 78, 84 The crystallinity of CaP particles on NF microsheets was highest when 

the nucleation medium was supplemented with TART or MA having two carboxylic acid 

groups which can be attributed to an optimal spacing of Ca ions on the surface of the 

growing crystals. The relatively large CaP particle size and crystallite size in microsheets 

incubated in AsA and SalA supplemented SBF (Table 3) can be attributed to the lower 

inhibitory effect of those organic acids on crystal growth. Since AsA and SalA had only 

one carboxylic acid group with a net negative charge of one, the propensity for complex 

formation with Ca ions on the fiber surface for AsA and SalA was lower than other 

organic acids with two or more carboxylic acid groups (see Table 3). The number of 

crystallites per CaP particle on the microsheets was calculated from the particle size, 

crystallite size, and crystallinity data in Table 3. The number of crystallites per particle on 

the microsheets incubated in SBF supplemented with HCA, TART, CA, and MA was 11, 

11, 10 and 11, respectively, whereas that number was 4 and 5 for AsA and SalA. 

Therefore, the number of growing crystals on the surface of NF microsheets decreased 

and the size increased for those organic acids with lower inhibitory effect toward crystal 

growth (see Table 2.3 and Figure 2.7). Since the number of crystallites per particle was 

greater than unity for all organic acids, the nucleated particles had a polycrystalline 

structure interconnected by an amorphous phase.72  

For equal CaP content, TART incubated microsheets with higher crystallinity had 

higher compressive modulus than CA incubated microsheets (see Table 4). The slower 

degradation of mineralized microsheets indicated that the CaP nanoparticles had slower 

degradation than the DL-PLA nanofibers.43 The difference in degradation of the 

mineralized microsheets (Figure 2.6b) was related to differences in crystallinity and CaP 
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content. For example, microsheets incubated with AsA supplemented SBF with lowest 

crystallinity but higher CaP content than SalA and MA incubated microsheets had fastest 

mass loss among all microsheets. Conversely, microsheets incubated with HCA 

supplemented SBF with highest CaP content but lower crystallinity than TART and MA 

incubated microsheets had slowest mass loss among all microsheets.  

The difference between DNA content of hMSCs seeded on the surface of mineralized 

fibers 1 day after culture could be related to the differences between the surface 

properties of mineralized fibers.  It has been reported elsewhere that the surface adhesion 

of human gingival fibroblasts cells on an amorphous HA (~25% crystallinity) coating 

surface was higher than that of surfaces coated with higher crystalline HA (~ 63% and 

97% crystallinity) 85. Therefore, a higher DNA content of AsA, Ca and SalA groups 

compared with those of MA, TART and HCA groups could be due to a lower 

crystallinity of CaP particles hence higher adhesion of cells to the surface of former 

groups. Based on ALPase and calcium measurements, the presence of CA or AsA in the 

nucleation solution of microsheets had a positive effect on osteogenic differentiation of 

hMSCs while the presence of SalA did not have a significant effect and the presence of 

HCA, MA and TART within the nucleation solution was counterproductive in osteogenic 

differentiation of hMSCs. The contributing effect of CA to osteogenic differentiation of 

hMSCs was consistent with a reported contributing effect of calcium citrate in bone 

healing 86.  Further, it was shown elsewhere that an incorporation of CA into a cellulose 

based hydrogel improved osteogenic differentiation of hMSCs 87. In addition, It is well 

established that the presence of AsA stimulates the osteogenesis through integrin-

mediated intracellular signaling 88. Addition of CA to the nucleation solution also 
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stimulated the formation of nodules >100 µm in size (Figure 2.10). Schecroun et al. 

reported that dexamethasone in the osteogenic medium inhibited nodule formation by 

hMSCs in 2D culture.80 Our results indicate that the addition of CA to the nucleation 

solution hence the presence of citrate ion on the fiber surface stimulates nodule formation 

by hMSCs even in the presence of dexamethasone within the culture medium.  

5. Conclusion 

In this work, the effect of organic acids added to the simulated body fluid on CaP 

nucleation and osteogenic differentiation of human MSCs on nanofiber microsheets 

functionalized with a CaP nucleating glutamic acid peptide. Glutamic acid-functionalized 

aligned DL-PLA nanofiber microsheets were electrospun by blending high molecular 

weight DL-PLA with low molecular weight PLA conjugated with EEGGC peptide. The 

nanofiber microsheets were incubated in concentrated SBF supplemented with different 

organic acids for nucleation and growth of CaP nanoparticles on the surface of 

nanofibers. Organic acids included citric acid (CA), hydroxycitric acid (HCA), tartaric 

acid (TART), malic acid (MA), ascorbic acid (AsA), and salicylic acid (SalA). Addition 

of organic acids to SBF significantly increased CaP nucleation on the fiber microsheets 

and the extent of CaP nucleation depended on the number of carboxylic acid and 

hydroxyl groups in the organic acid. HCA-supplemented group had the highest CaP 

content at 240±10% followed by TART and CA with 225±8% and 225±10%, 

respectively. CaP nanoparticles nucleated on the fiber surface in TART-supplemented 

group had Ca/P ratio (1.68) and crystallinity (39%) closet to that of natural bone. 

Microsheets in HCA-supplemented group had the highest compressive modulus of 

260±40 MPa followed by TART and CA with 225±8 and 225±10 MPa, respectively. The 
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presence of CA or AsA in the nucleation solution of microsheets had a positive effect on 

osteogenic differentiation of hMSCs while the presence of SalA did not have a significant 

effect and the presence of HCA, MA and TART within the nucleation solution was 

counterproductive in osteogenic differentiation of hMSCs. CA group also stimulated the 

formation of bone nodules on the microsheets. 
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CHAPTER 3: ENGINEERING A CORTICAL-BONE-MIMETIC 

NANOSTRUCTURED SHELL WITH INTERCONNECTED MICROCANALS 

1. Introduction 

Biodegradable scaffolds, as key artificial devices widely used in tissue engineering, 

aim to provide a desirable micro-environment that allows neo-tissue to be generated 

properly for repairing and replacing damaged tissues or organs. To improve the 

performance of tissue scaffolds, various material parameters, e.g. stiffness, porosity and 

permeability, have proven particularly crucial to determine the biomechanical 

environments within scaffold micro-architectures. The scaffold material and porous 

architecture design (here architecture refers to features 10 to 1,000 micrometres in size) 

play a significant role in tissue regeneration by preserving tissue volume, providing 

temporary mechanical function, and delivering biofactors.  Intuitively, the best scaffold 

for an engineered tissue should be the ECM of the target tissue in its native state. One of 

the crucial characterizations of a tissue engineering scaffold is possessing sufficient 

mechanical properties to fill up the void space of the defect and simulating that of the 

native tissue. Therefore, scaffolds should provide mechanical and shape stability to the 

tissue defect. The intrinsic mechanical properties of the biomaterials used for scaffolding 

or their post-processing properties should match that of the host tissue. Recent studies on 

mechanobiology have highlighted the importance of mechanical properties of a scaffold
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on the seeded cells. Additionally, a tissue engineering scaffold should provide void 

volume for vascularization, new tissue formation and remodeling so as to facilitate host 

tissue integration upon implantation. The biomaterials should be processed to give a 

porous enough structure for efficient nutrient and metabolite transport without 

significantly compromising the mechanical stability of the scaffold. On the one hand, 

increasing scaffold stiffness could lead to a potential decrease in porosity and 

permeability, which prevents the neo-tissue from proper ingrowth to the bulk of 

scaffolds. On the other hand, increasing scaffold porosity might lead to a higher 

permeability but the effective stiffness would be sacrificed.  Moreover, the biomaterials 

should also be degradable upon implantation (with a temporary resistance to 

biodegradation upon implantation) at a rate matching that of the new matrix production 

by the developing tissue.  

Bone is a natural complex porous composite with unique properties of remodelling to 

adapt its microstructure to external mechanical stress. Bone is also one of the tissues with 

the highest demand for tissue reconstruction or replacement. Cranial, maxillofacial, oral 

fractures and large bone defects are currently being treated by using auto- and allografts. 

These techniques have limitations in the clinical usage such as immune response, donor-

site morbidity, and lack of availability89-91. Therefore, the interest on artificial tissue 

grafts were recently considered in order to overcome limitations of traditional allo- or 

autografts, such as risk of immune rejection and pathogen transfer, pain and infection, or 

limited availability 7, 92. The overall aim of this study is to develop a much-needed 

autograft-bone-mimetic engineered graft as a substitute for allograft bone in 

reconstruction of large bone defects.  Bioresorbable scaffolds, i.e. porous constructs, 
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seeded with the appropriate type of cells, should provide a template for tissue 

regeneration, while slowly resorbing, to finally leaving no foreign substances in the body, 

thus reducing the risk of inflammation. A three-dimensional (3D) internal geometry, 

similar to bone morphology, and the retention of mechanical properties after implantation 

are required for scaffolds in order to maintain a tissue space of prescribed size and shape 

for tissue formation.  

 The cortical bone is a hollow center dens shell composed of smaller units called 

osteons that have microtube like structures with a central vascular channel inside for 

ensuring suitable nutrient/waste transport to the bone tissue 93. Laminated multilayers of 

CaP deposited collagen fibers forms the osteon microtubes. The extracellular matrix 

(ECM) of bone is a composite that primarily comprises hydroxyapatite (HA) (biological 

ceramics) embedded within a collagen matrix (biological polymers) and water (Figure 3.1 

a). Carbonated HA Ca10(PO4)6(OH)2 accounts for approximately 70 % of the weight of 

bone. The inorganic component provides compressive stiffness to bone.  Roughly one-

third of the weight of bone is composed of the organic matter, which is primarily type I 

collagen and ground substance. Type I collagen fibres are elastic and flexible, and thus 

tolerate stretching, twisting, and bending. Therefore, biocompatible and biodegradable 

engineered scaffolds which can mimic both nano and microstructure of osteons in cortical 

bone tissue would be strong candidates for bone tissue engineering applications. 

Numerous methods have been developed and employed to fabricate 3D scaffolds for 

tissue engineering applications. Although the conventional fabrication techniques such as 

solvent casting, Freeze-drying and Gas foaming/supercritical fluid processinghave 

produced scaffolds used in tissue engineering of various types, most of them are 
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incapable of producing fully continuous interconnectivity and uniform pore morphology 

within a scaffold. Additionally, the pore size, pore geometry and spatial distribution 

cannot be precisely controlled in these conventional processes. One of the main 

limitations of most conventional fabrication methods is the need of an organic solvent to 

dissolve polymers and other chemicals, as well as the use of porogens to create pore 

structures. Most solvents and porogens are toxic, and their residues in the scaffold may 

cause severe inflammatory responses. Also, the physical configuration of the scaffolds, 

which mediate the cell-cell and cell-scaffold interactions, exerts strong influence on the 

success of osteogenesis processes in vitro 94, 95. The success of engineered scaffold 

mostly depends on how closely the cell-scaffold interaction mimics that natural tissue in 

vivo. Both in vitro and in vivo studies have demonstrated that organic/inorganic 

composite fibrous scaffolds which can mimic nanostructure of natural bone, support 

attachment, differentiation, and proliferation of osteoblasts or mesenchymal stem cells 

(MSCs) and facilitate bone healing 96. However, investigations regarding the effect of 

fibrous composite scaffolds such as osteon-mimetic tubular scaffolds with 3D 

morphology on osteogenic differentiation of MSCs are still limited. To this end, we 

hypothesized that three dimensional structure of microtubes with well-defined pores 

could potentially mimic the microstructure of osteons in cortical bone and induce 

osteogenesis of MSCs. In order to test this hypothesis, we investigated the osteogenic 

differentiation potential of MSCs when seeded into microtubes engineered from CaP 

deposited aligned nanofiber microsheets that have an array of macropores to enhance 

diffusion of nutrients. The microtube structure fabricated by wrapping CaP deposited 

nanofiber layers around the stainless steel needles upon annealing wrapped nanofiber 
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microsheets above glass transation temperature (Tg).  The effect of tubular formation of 

CaP deposited microsheets on osteogenic differentiation of rat MSCs was investigated by 

cytochemical, and mRNA expression. Our results indicate that the 3D microtubes provide 

a promising microenvironment that enhances osteogenesis when compared to microsheet 

scaffolds.  

2. Experimental 

2.1. Fabrication of cortical-bone-mimetic scaffolds 

CaP-nucleated microsheets (discussed in Chapter 2) were wrapped tightly around a 

25 G needle between 10-30 times for form a microtube (Figure 3.1 b). Next, a set of the 

microtubes was packed around a stainless steel rod and the assembly was heated to a 

temperature above the Tg PLA (85°C) nanofibers to form a rigid, tough, osleoconduetive, 

cylindrical shell by fuse the microtubes. After cooling, the rod and microneedles (in the 

mierotubes) were removed to obtain a nanostructred cylindrical shell with Haversian-like 

microcanals (Figure 3.1 b). Then, an array of circular microholes was drilled by a 

scanning deep-ultraviolet laser micro-drilling system (Precision MicroFab) on the outside 

surface of the shell (500-1000 µm apart) traversing the shell thickness to generate 

Volkmann like microcanals. Microdrilling resulted in the formation of a shell with an 

interconnected network of microcanals to stimulate cell migration, vascularization, and 

bone formation within the shell wall after implantation.  
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Figure 3.1. (a) Natural structure of bone tissue from micron to nano scale. (b) Steps for 
fabricating biodegradable, rigid, osteoinductive and osteoconductive shell. 

 

2.2. Characterization of cortical-bone-mimetic scaffolds 

The porosity and density of the CaP nucleated NF microsheets before and after heat 

treatment were calculated using Eq. (1) and Eq. (2). The thickness and size of the 

microsheets were measured using a micrometer caliper (VWR, Atlanta, GA).  

Apparent	density	(mg/mm�) 	=
����� !""#	�$  	(�%)

#!��&'"  × )�*$�"	$�"$	(��+)
	           (1) 

Porosity	(%) = 1 −
/"' �#0	�*	����� !""#	(�%/��+)

/"' �#0	�*	123	(�%/��+)
	                              (2) 

For determination of compressive modulus, the scaffolds were prepared with the 

overall thickness of 1 mm and diameter of 1 cm, was loaded on the Peltier plate of an 

AR2000 rheometer (TA Instruments, New Castle, DE) and subjected to a uniaxial 

compressive force at a displacement rate of 7.5 mm/s.  The slope of the linear fit to the 

stress–strain curve for 5–10% strain was taken as the elastic modulus (E) of the 

mineralized matrix as we previously described 74. For determination of mass loss, the 
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scaffolds were incubated in simulated body fluid (SBF) at 37ºC and under mild agitation.  

At each time point, samples were removed from SBF, washed three times with DI water 

and dried under vacuum. The dry sample weight was measured and compared with the 

initial dry weight to determine the fractional mass remaining as described 75. 

3. Results and Discussion  

Mineralization in osteons occurs under the function of glutamic-acid rich residues 

of bone sialoprotein and osteonectinon on hydroxyapatite nucleation 97, 98.  Therefore, 

peptides including polyglutamic acid sequences have been widely investigated to 

determine the interaction with nHA crystals. For example, Itoh et al. coated HA with the 

synthetic peptide (E7PRGDT), and seeded osteoblastic cells onto the surface. They 

demonstrated that the amount of E7PRGDT peptide containing polyglutamic acid 

sequence bound to HA was higher than passively adsorbed RGD at all coating 

concentrations due to high affinity of polyglutamic acid peptide to nHA crystals 99. In 

addition, Sarvestani et al. treated the surface of nHA particles with glutamic acid peptide 

(Ac-Glu6). It was indicated that the average density of elastically active chains in the 

PLEOF network increased significantly when nHA in the network were treated with the 

osteonectin-derived Ac-Glu6 100. Similar to others, in our previous study, conjugation of 

glutamic acid template peptide on NF significantly increased the CaP nucleation 

(Karaman et al. in press). Thus, in this study we used the glutamic acid conjugated NF to 

nucleate the CaP crystals. 50 wt% CaP to fiber ratio (GLU-NF/CaP50) was used to 

fabricate the osteon-mimetic microtubes. The micro-tubuler structure of the biofabricated 

scaffolds ideally mimics the osteons structures of bone tissue 101. 
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The effects of the heat treatment on nanofiber microsheets based on CaP to NF 

weight ratio porosity and density are shown in Figure 3.2 a and b, respectively. The 

results indicated that the porosity of the CaP nucleated microsheets after heating 

decreased significantly for all the test groups. In addition, the appeareant density of 

different CaP containing GLU-NF microsheets was increased significantly for each test 

group after heat treatment.  

 

Figure 3.2. The effect of heat treatment on porosity(a) and density(b) of microsheets 

 

The compressive modulus and strength of the shell was a strong function of the CaP 

content of the microsheels (Figures 3.3 a and b). The compressive modulus and strength 

of the shell with 240% CaP content were 2.5 GPa and 150 MPa (Figure 3.3 a and b), 

respectively, which was in the range of natural compact bone 102, 103. The degradation of 

the engineered shell was inversely related to CaP content (Figure 3.3 c). The shell with 

240% CaP content had <5% mass loss after 120 days of incubation in SBF, thus the shell 

can potentially provide rigidity during the callus formation stage of bone formation 104. 
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Figure 3.3. Compressive modulus (a) and strength (b) of the shell as a function of CaP 
content, (c) Mass loss of the shell with incubation time in SBF for CaP contents of 0, 120, 180 
and 240%. (d) Magnification of mass remaining results for 120, 180 and 240%. 

Also, the compressive modulus of microsheets before and after heat treatment is 

compared in Figure 3.3 a.  The heat treatment significantly increased the compressive 

modulus of the CaP nucleated NF microsheets.  For example, the compressive modulus 

of 120 wt% CaP microsheets increased from 0.12±0.02  GPa to 1.4±0.2 GPa. And that of 

240 wt% increased from 0.26±0.04  GPa to 2.4±0.3 GPa after heat treatment. These 

results indicated that the stiffness of  microsheets was increased by heat-shrinking the 

microsheets. Similar with our results, it has been reported that with the increasing of  

apatite amount in nanofibrous microsheets, the tensile modulus of the microsheets 

increases significantly 105. In addition, incorporation of nHA crystals in polycaprolactone 

fibers increases the tensile modulus of fabricated electrospun NF 106. Overall, nCaP 

deposited NFs have the potential to provide higher structural support to progenitor cells 
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compared to NF with no CaP content. It has been observed that increasing mineral 

content on NF significantly enhanced MSCs adhesion and differentiation107.  

The limitation of nanofibers fabrication with electrospinning is that it produces a 

relatively two dimensional fibrous scaffolds. In addition, the pore sizes are relatively 

smaller which does not allow cells to penetrate into the scaffold 108. Therefore, a rigid, 

resorbable, and osteoconductive shell with similar microstructure to cortical bone 

including interconnected network of microcanals to provide the mechanical stability 

needed for large bone fracture was designed in this study. Figure 3.4 shows the SEM 

images of different inner diameter microtubes made by 240 wt% CaP coated NF sheets.    

 

Figure 3.4. SEM images of different inner diameter microtubes 250 µm (a), 450 µm (b), and 
800 µm (c). 

 

Figure 3.5 shows a hollow center annealed scaffold containg 180 nucleated 

microtubes with 240 wt% CaP content. It can be observed in figures 3.5 a and b that this 

biofabrication technique results in formation of dens shell-like structure including several 

microchannels which mimics that of natural cortical bone (see natural cortical bone 

structure in figures 1.2 and 3.1). Additionally,   the microholes on the surface of scaffold 

can eb clearly seen in figure 3.5 c. The presence of these microholes can be resulted in 
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the formation of a shell with an interconnected network of microcanals to stimulate cell 

migration, vascularization, and bone formation within the shell wall alter implantation.  

 

Figure 3.5. A cortical bone-mimetic scaffold made by 180 microtubes. (a) Top view of the 
cross section of scaffold. (b) Side view of scaffold including the microholes. (c) Magnification of 

microholes in the scaffold. 

 

It has been reported that it takes 12 weeks for newly formed callus to become load-

bearing  as patients 104 undergoing alveolar bone reconstruction wait minimum of 12 

weeks for bone to form  on the regenerating membrane prior to tooth implantation 109. 

The engineered shell should resorb and transfer load to the newly formed bone to reduce 

stress-shielding after 24 weeks 110. The natural dense bone has <15% porosity 111), CaP to 

collagen fiber ratio of 200- 300% 52,   compressive modulus and strength of 5 GPa and 

90- 170 MPa, respectively 102, 103. Therefore, success is defined by <5% resorption of the 

engineered shell after 12 weeks, >75% resorption after 24 weeks, with initial and 12-
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weeks compressive strength of 150 MPa and 100 MPa, respectively. The product is an 

engineered, rigid, and resorbable shell with interconnected canals to allow vascularization 

and bone formation from within the shell wall. 

4. Conclusion 

In this study, our objective was to investigate the fabrication a 3D formation of 

microtubes acffold. The novel aspect of this work is the synthesis of a cortical-bone-mimetic 

shell with Haversian-/Volkmann-like canals for nutrient and oxygen supply to the 

migrating cells inside the shell. In this aim, aligned, functionalized. nanotmermicrosheets 

were nucleated with CaP naocrystals. Then the sheets were wrapped into microtubes, a 

set of mierotubes were fused to from a shell. Microhdles were drilled on the shell surface 

to form an interconnected network of canals for nutrient and oxygen supply. The shells 

will be evaluated with respect tq strength, resorption, and osteogenesis. The target 

compressive strength is 150 MPa, mass loss of <5% after 12 weeks and >75% after 24 

weeks. Present findings demonstrate that the 3D structure of microrubular scaffolds 

provide a promising microenvironment that enhances osteogenesis compared to 2D 

microsheet scaffolds.  
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CHAPTER 4: FABRICATION OF RESORBABLE, SELF-ASSEMBLED, 

POLYETHYLENE GLYCOL BASED NANOGELS FOR CONTROLLED 

RELEASE OF GROWTH FACTORS 
1
 

1. Introduction 

Bone morphogenetic proteins (BMPs) are the most abundant osteoinductive proteins 

which regulate the differentiation and function of cells involved in osteogenesis 112. 

Specifically, it has been proved that BMP-2 is present in different steps of bone healing, 

from the initial stages of bone regeneration as well as during later phases including 

osteogenesis and chondrogenesis 113, 114. Vascular endothelial growth factor (VEGF) as a 

widely used angiogenic growth factor in regenerative medicine plays a key regulatory 

role in up-regulation of angiogenesis by signaling vascular endothelial cells to undergo 

proliferation, migration, and differentiation into new blood vessels 115. VEGF's normal 

function is to create new blood vessels during embryonic development, new blood 

vessels after injury, muscle following exercise, and new vessels (collateral circulation) to 

bypass blocked vessels.  

 

 

1 Barati, D., et al., Spatiotemporal release of BMP-2 and VEGF enhances osteogenic and 
vasculogenic differentiation of human mesenchymal stem cells and endothelial colony-forming 
cells co-encapsulated in a patterned hydrogel. Controlled Release, 2016. 223: p. 126-136. 

Reprinted here with permission of publisher. 
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Therefore, an alternative approach like developing biocompatible carriers is 

necessary to control both the location and rate of growth factors delivery at the defect 

site. PLGA micro- and nanoparticles due to their wide range of degradation times are 

used for immobilization and timed-release of BMP2 and VEGF 118-121. However, protein 

denaturation by surface adsorption and acidic degradation products of PLGA can 

significantly reduce protein bioactivity 122, 123. Due to the hydrophilicity and chain 

flexibility of polyethylene glycol (PEG), PEGylation is used to increase stability of 

PLGA nanoparticles in aqueous suspensions, enhance stability of the grafted protein, and 

reduce particle phagocytosis 118, 120, 124-126. In this work, PEG macromers chain-extended 

with short lactide (L) and glycolide (G) segments were used to form nanogels (NGs) for 

grafting and timed-release of BMP2 and VEGF proteins. In the chain-extended 

macromer, the PEG block imparted stability to NGs in aqueous solution, L segment led to 

self-assembly and NG formation, and G segment controlled NG degradation and protein 

release. We have previously shown that PEG macromers chain-extended with short L/G 

segments form micellar structures in aqueous solution 127. Here, the effect of PEG 

molecular weight (MW) and L/G segment length on degradation and protein release 

kinetics of the NGs have been investigated.  
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Figure 4.1. Synthesis of PEG macromers chain-extended with short lactide (L) and glycolide 
(G) segments to form nanogels (NGs) for grafting and timed-release of BMP2 and VEGF proteins 

 

2. Experimental 

2.1. Synthesis and functionalization of PEG-LG block copolymer 

The PEG-LG block copolymers were synthesized by melt ring-opening 

polymerization with successive addition of L and G monomers to the reaction using PEG 

as the initiator and TOC as the catalyst. PEG and lactide were added to a reaction flask 

equipped with a stirrer and immersed in an oil bath in a molar ratio based on the desired 

L segment length (Table 4). Next, the flask was heated to 120°C under nitrogen flow and 

maintained at that temperature for 1 h to remove residual moisture. Then, TOC catalyst 

was added to the mixture at 120°C and the reaction was allowed to proceed for 6 h at 

140°C. The lactide chain-extended PEG macromer was used as an initiator for chain 

extension with G monomer with a predetermined L to G ratio (Table 1). The reaction was 

allowed to proceed for 6 h at 140°C and the product was precipitated in ice-cold hexane 

to remove the unreacted monomers. The synthesized copolymer was functionalized with 

succinimide groups by reacting hydroxyl end-groups of the copolymer with DSC as we 

described previously 128. The product was purified by dialysis against DI water and 

lyophilized. The chemical structure of the synthesized copolymer was characterized by a 
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Varian Mercury-300 1H-NMR (Varian, Palo Alto, CA) as we previously described 129. 

The synthesized macromers are hereafter referred to as PaLGb-Lc (Tables 1 and 2) where 

the lowercase letter “a” is the PEG MW in kDa, “b” is LG to PEG molar ratio, and “c” is 

the mole fraction of lactide in LG segments. The shorter abbreviations P4-I,II,III, P8-

I,II,III, and P12-I,II,III stand for those macromers based on 4, 8, and 12 kDa PEG MW, 

respectively.  

2.2. Nanogel formation and protein grafting 

PaLGb-Lc macromer was dissolved in DMSO and self-assembled to form NGs by 

dialysis (3.5 kDa MW cutoff) against PBS for 8 h as we previously described 118. For 

BMP2 or VEGF grafting, 10 mg NGs was suspended in 0.5 mL PBS by sonication for 1 

min. Next, 0.5 mL of the protein in PBS (20 mg/mL for BSA, 800 ng/mL for BMP2 and 

VEGF) was added to the NG suspension. The amine group of the protein was allowed to 

react with succinimide end-groups of PaLGb-Lc in NGs under ambient conditions for 12 

h as we previously described (Figure 4.1) 119. The protein grafted NGs were freeze-dried 

to obtain a free flowing powder. To determine grafting efficiency, the protein grafted 

NGs were resuspended in PBS and centrifuged at 18,000 rcf for 10 min and the 

supernatant was analyzed for total protein content with the ninhydrin reagent as we 

described previously 130. Grafting efficiency was determined by dividing the amount of 

attached protein (total - free protein) by the initial amount in the grafting reaction. 

Size distribution of the NGs was measured by dynamic light scattering with a 

Submicron Particle Sizer (Model 370, NICOMP, Santa Barbara, CA) as we described 

previously 119. Polydispersity (PD) of the NGs was determined using the equation PD = 

∆d/ <d> where ∆d and <d> are the standard deviation and mean size of the NGs, 
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respectively 131, 132. Zeta potential of the NGs was measured with a ZetaPlus analyzer 

(Brookhaven Instruments, Holtsville, NY) with a particle concentration of 2.5 mg/mL at 

25°C in PBS 133. NGs degradation kinetic was measured by incubation in PBS at 37°C as 

we described previously 118. The fractional mass remaining was determined by dividing 

the dried mass at time t by the initial mass. For measurement of release kinetic, 1 mg 

protein grafted NGs were incubated in 1 mL PBS at 37°C as we previously described 118. 

At each time point, the suspension was centrifuged at 18350 rcf for 10 min, the 

supernatant was removed, the NGs were resuspended in 1 mL fresh PBS and incubated 

until the next time point. The amount of BSA in the supernatant was measured with the 

ninhydrin reagent as described 130. In the case of BMP2 and VEGF-grafted NGs, the 

protein concentration in the supernatant was measured by ELISA as we described 

previously 118.  

3. Results 

3.1. Macromer characterization 

The average number of L/G units per PaLGb-Lc was calculated from 1H-NMR 

spectra of the macromer. Two chemical shifts with peak positions at 1.6 and 5.2 ppm, 

two at 3.6 and 4.2 ppm and one at 4.8 ppm were attributed to the methyl and methine 

hydrogens of lactide, the methylene hydrogens of PEG and the methylene hydrogens of 

glycolide, respectively 128, 134. The chemical shift with peak position at 2.77 ppm was 

related to the methylene hydrogens of succinimide end-groups. The average segment 

length of L and G units per macromer and the number-average MW ( nM ) of the 
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macromers are shown in Table 4. The number of L and G units per macromer ranged 2.3-

8.9 and 0.9-5.7, respectively.  

3.2. Characterization of nanogels 

Size distribution of P4, P8, and P12 NGs and their corresponding SEM images are 

shown in Figures 4.3a to c, respectively. In general, mean size of the NGs was <200 nm. 

Mean size, PD, and zeta potential of the NGs are given in Table 5. Mean size ranged 

from 120±6 to 140±13 nm for P4 NGs, 150±11 to 160±17 nm for P8 NGs, and 170±12 to 

190±15 nm for P12 NGs, respectively.  

 

Table 4.1. Number average molecular weight (M_n ) ,̅ LG to PEG feed ratio, average 
number of L and G segments per macromer for PaLGb-Lc macromers. 

 

 

 

The NGs were relatively monodisperse with PD<0.2 and the mean NG size increased 

with decreasing lactide fraction. All NGs were negatively charged with zeta potential 

between -23 and -15 mV. The absolute value of the zeta potential increased with 

increasing PEG molecular weight while the lactide fraction did not significantly affect 

zeta potential.  
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Degradation of the NGs with incubation time was biphasic with an initial fast rate 

followed by a slow rate (Figure 4.2 a-c). Degradation rate increased with decreasing L:G 

ratio for all NGs. Mass loss of P4 and P8 NGs after 24 days incubation increased from 

50±5 to 65±3% and 60±8 to 85±2%, respectively, as the L:G ratio decreased from 75:25 

to 50:50. P12-I, P12-II and P12-III NGs degraded after 12, 16, and 18 days, respectively.  

 

Table 4.2. Mean size, polydispersity (PD) and zeta potential of NGs formed by PaLGb-Lc 
macromers. Error bars correspond to means ± 1 SD for n=3. 

 

 

 

P4-I NGs had the slowest degradation with 50±5% mass loss after 30 days and P12-

III NGs had the fastest degradation with >95% mass loss after 12 days. The release 

kinetic of BSA from the NGs in PBS was biphasic with an initial fast rate followed by a 

slow rate (Figure 4.3 d-f), consistent with NGs degradation. The release of BSA 

increased with decreasing L:G ratio for all NGs. The average BSA release rate of P4, P8, 

and P12 NGs increased from 2 to 4.2%/day, 4 to 6.3%/day, and 5.7 to 9.7%/day, 

respectively, as L:G ratio decreased from 75:25 to 50:50. P4-I had the slowest BSA 

release with 45±8% in 24 days and P12-III had the fastest with >95% released in 12 days.  
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Figure 4.2. Effect of PEG MW, LG segment length, and L/G ratio in PaLGb-Lc macromer 
on NG mass loss in PBS with incubation time.  The abbreviations P4, P8, and P12 represent NGs 

made from macromers with PEG MW=4, 8, and 12 kDa and average LG segment length of 8. 
The 

 

The extent of bone formation in vivo depends on the duration of BMP2 exposure to 

MSCs in the first four weeks 135, 136 whereas vascularization depends on VEGF exposure 

to endothelial progenitor cells within the first week 137. Figure 4.3 g represents the release 

rate of BMP2 and VEGF encapsulated inside SPELA and GelMA hydrogels, 

respectively, compared to BMP2 and VEGF grafted to NGs(21) and NG(10), 

respectively. It can be observed that the encapsulated BMP2 and VEGF were completely 

released from hydrogels in less than 40 hours while the ones attached to NG(21) and 

NG(10) were released steadily after 3 weeks and 7 days, respectively. Therefore, NGs 

with steady release for 3 weeks and 71±3 wt% bioactivity (P8-1 NGs) were used for 

BMP2 grafting; NGs with steady release for 7 days with 80±5 wt% bioactivity (P12-II 

NGs) were used for VEGF (Figure 4.3 g).  
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Figure 4.3. Effect of PEG MW, LG segment length, and L/G ratio in PaLGb-Lc macromer 
on NG size distribution (a-c), and cumulative BSA release (d-f) in PBS with incubation time. 
Release kinetic of BMP2 encapsulated in SEPLA and VEGF encapsulated in GelMA hydrogel 
compared to release kinetic of BMP2 grafted to NGs and VEGF grafted to NGs. The 
abbreviations P4, P8, and P12 represent NGs made from macromers with PEG MW=4, 8, and 12 
kDa and average LG segment length of 8. The abbreviations P4-I, P4-II, and P4-III represent NGs 
made from 4 kDa MW PEG macromers with 75%, 60%, and 50% lactide in the LG segments, 
respectively. The numbers in abbreviations NG(21) and NG(10) represent the release time of 
grafted proteins on each type of NG. Morphology of the dried NGs is shown in the inset SEM 
images in (a-c). Error bars correspond to means ± 1 SD for n=3. 

 

4. Discussion 

Size distribution of nanoparticles self-assembled from PEG-LG macromers depends 

on the rate of particle assembly which in turn is related to the length of hydrophobic LG 

segments 138. We previously generated nanoparticles (NPs) by self-assembly of ultra-low 

molecular weight ULMW-PLGA (1-2 kDa MW) with amphiphilic copolymers of PEG 

(3.4 kDa) and ULMW-PLA (PLEOF). The resulting NPs had mean sizes in the 200-300 

nm range and relatively wide size distributions from 100 to 600 nm 118. In this work, we 

used a different approach to generate PEG-LG macromers by extension of PEG chain-

ends with a short L segment followed with a short G segment. The average length of the 

L segments was 5-10 (Table 4, note two ends per chain) while it was 15-30 in the 
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previous approach with ULMW-PLAF/PLEOF 118. The relatively shorter hydrophobic 

segments in PaLGb-Lc led to the formation of hydrophilic NGs with mean sizes as low as 

120 nm and size distributions as narrow as 25-150 nm. The more hydrophobic L segment 

in PaLGb-Lc controlled NGs assembly whereas the less hydrophobic G segment 

controlled NGs degradation. 

 As the PEG MW was increased from 4 to 8 and 12 kDa in P4-I, P8-I and P12-I, 

the L segment length had to be increased from 2.3 to 3.8 and 5.4, respectively, to induce 

self-assembly for the macromer with 50/50 L/G ratio (Table 4). As the L segment length 

in P4-I, P8-I and P12-I increased, mean NG size increased from 118±6 nm to 141±11 and 

165±12 nm (Table 3), respectively. Length of the PEG block regulated the extent of 

association between the macromers by balancing van der Waals and dipolar interactions 

to prevent aggregation of hydrophobic LG segments 139. The measured NG sizes in Table 

5 are consistent with the previously reported increase in the average diameter of PLA-

PEG nanoparticles from 30 to 60 nm with increasing PLA block MW from 3 to 30 kDa 

140. The measured zeta potentials of the NGs (-15 to -22 mv) was significantly less than 

the reported values for PLA or PLGA nanoparticles (~ -50 mv) 141 which was attributed 

to the negatively-charged carboxyl end-groups of PEG and their higher fraction in the 

NGs corona at higher PEG MWs 139.  

It has been shown by us and others that the degradation kinetic of PEG-LG based 

micelles depends on the proximity of water molecules to L and G ester groups 127, 142, 

which is dependent on PEG MW and hydrophobicity of the degradable units 143, 144. 

Consequently, PEG MW had the greatest effect on NGs degradation followed by the 

fraction of less hydrophobic G in LG segments (Figure 4.3 d-f). Release kinetic of BSA 
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grafted to the NGs followed the degradation of NGs (Figure 4.3 g-i). P4-III, P8-III, and 

P12-III NGs (50% G) with PEG MW of 4, 8, and 12 kDa lost 52, 61, and 94% mass after 

12 days, respectively; those NGs released 67, 78, and 95% of the grafted BSA after 12 

days. P8-I, P8-II, and P8-III NGs ( (PEG MW 8kDa) with 25, 40, and 50% G in LG 

segments lost 30, 41, and 61% mass after 12 days incubation, respectively, those NGs 

released 58%, 62%, and 78% of the grafted BSA after 12 days. 

5. Conclusion 

Fabrication and characterization of resorbable NGs based on self-assembly of PEG 

macromers chain-extended with short L and G segments were investigated. It was shown 

that the NGs properties can be controlled by changing the molecular weight of PEG and 

ratio of L to G. For example, it was observed that degradation rate and protein release of 

the NGs increased with decreasing L to G ratio for the same PEG molecular weight. 

Therefore, these NGs can be potentially used as a carrier for temporal controlled release 

of different types of growth factors for different purposes.  
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CHAPTER 5: EVALUATING THE EXTENT OF VASCULOGENESIS AND 

OSTEOGENESIS STEM CELLS ENCAPSULATED IN A PATTERNED 

HYDROGEL WITH SPATIOTEMPORAL RELEASE OF BMP2 AND VEGF.  

1. Introduction 

The reconstruction of large bone defects with implanted scaffolds due to resection of 

tumors, skeletal trauma, or infection remains a significant clinical problem 145. The high 

clinical failure rates with allografts and implanted scaffolds are attributed to insufficient 

vascularization and slow bone regeneration 146. Engineered matrices that can guide 

concerted differentiation of multiple cell types to both vasculogenic and osteogenic 

lineages are promising for the treatment of large bone defects. In that regard, natural and 

synthetic matrices loaded with bone morphogenetic proteins (BMPs), with or without 

mesenchymal stem cells (MSCs), have been used extensively as a graft to accelerate bone 

repair and healing 147. Among BMPs, recombinant human BMP-2 (hereafter referred to 

as BMP2) is used as a potent osteogenic factor in certain clinical applications including 

spine fusion and alveolar ridge augmentation 148. Similarly, the widely used vascular 

endothelial growth factor (VEGF) is not only involved in angiogenesis, but also 

implicated in maturation of osteoblasts, ossification, and bone turnover 115, 149. As the 

bioactivity of BMP2 and VEGF is concentration and time-dependent 135-137, their 

sustained delivery from biodegradable particulate systems has been investigated 118, 120 .
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 Osteogenesis and vascularization during bone development and growth are coupled 

processes 149, 153. VEGF plays a key role in blood vessel invasion into hypertrophic 

cartilage as the endothelial cells in the invading vessels secrete growth factors that 

stimulate osteogenesis 149, 154. There is a close correlation between vascularization and 

bone formation in endochondral ossification as maximum extent of bone formation 

follows maximum levels of VEGF expression 155. In the bone marrow, endothelial 

progenitor cells form an osteoblast-vascular niche by close proximity to osteoprogenitor 

cells in the endosteum 156. Hence, several studies have investigated the combined effect 

of BMP2 and VEGF on osteogenic and vasculogenic differentiation of MSCs and 

endothelial progenitor cells (EPCs).  

 

Figure 5.1. Vasculogenesis and osteogenesis are tightly coupled processes during bone 
formation 

 

In one study 157, the extent of osteogenic differentiation of rat MSCs co-expressing 

BMP2 and VEGF in 2D culture was lower than MSCs expressing only BMP2. In another 
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study 158, in which MSCs in combination with EPCs were seeded in a calcium 

sulfate/alginate scaffold, the extent of osteogenic and vasculogenic differentiation of 

MSC+EPC group in vitro and in vivo (bone formation and blood vessel density) was 

significantly higher than the groups with only MSCs or EPCs. Furthermore in that study, 

the MSC+EPC group had higher extent of mineralization and vascularization than the 

group with BMP2-expressing MSCs. These previous studies indicate that EPCs not only 

take part in vascularization but they also enhance osteogenesis in combination with 

MSCs 159.  

There is conflicting reports on the effect of VEGF and its combination with BMP2 

on the extent of bone formation in vivo 160-162. In an in vivo study 161, BMP2-expressing 

MSCs in combination with VEGF-expressing EPCs encapsulated in an alginate gel 

showed higher extent of bone formation after intramuscular implantation compared to the 

alginate gel with MSCs and VEGF-expressing EPCs. Further, VEGF-expressing EPCs 

hindered terminal differentiation of MSCs in co-cultures of EPCs+MSCs 161. In an in vivo 

study in rat cranium 162, dual delivery of BMP2 and VEGF from gelatin nanoparticles 

embedded in a porous scaffold increased bone formation after 4 weeks implantation, but 

not after 12 weeks, compared to the delivery of BMP2 only. In addition, in an in vivo 

study in canine ulna 160, the extent of bone formation in a calcium phosphate scaffold, 

embedded with BMP2 and VEGF in poly(lactide-co-glycolide) (PLGA) nanoparticles, 

was independent of VEGF. Also, in an in vivo study in rat, dual delivery of VEGF from a 

gelatin hydrogel surrounding a solid matrix embedded with BMP2-encapsulated PLGA 

microspheres had no effect on bone formation in an orthotopic site compared to BMP2 

alone 163. However, dual and sustained delivery of BMP2 and VEGF enhanced bone 
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formation in an ectopic site 163 where MSCs and EPCs can potentially migrate from the 

surrounding tissue to the site of regeneration.  

The previous studies suggest that dual BMP2 and VEGF delivery is effective in the 

presence of both MSCs and EPCs. Further, the addition of VEGF seems to retard 

maturation of MSCs to osteoblasts. This suggests that osteogenesis and vascularization 

may be coupled by spatiotemporal regulation of paracrine signaling in which the invading 

vascular endothelial cells secrete osteogenic morphogens to stimulate MSC 

differentiation and bone formation 164.  

 

Figure 5.2. Dual delivery of BMP2 and VEGF in 21 and 10 days, respectively. 

 

We hypothesized that osteogenesis and vascularization are coupled by the spatial and 

temporal expression of morphogens secreted by the differentiating MSCs and invading 

vascular endothelial cells. In this work, we test the hypothesis in vitro with human MSCs 

(hMSCs) and human colony-forming endothelial cells (ECFCs) encapsulated in a 

patterned hydrogel with spatiotemporal release of BMP2 and VEGF. Microchannels were 

generated in lactide-chain-extended star polyethylene glycol (SPELA) hydrogel. hMSCs 
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and BMP2-grafted NGs (BMP2-NGs) were encapsulated in the SPELA hydrogel. The 

microchannels were injected with a suspension of ECFCs+hMSCs and VEGF-grafted 

NGs (VEGF-NGs) in gelatin methacryloyl (GelMA) and crosslinked. The hydrogel 

constructs were cultured in vasculogenic/osteogenic medium (without VEGF or BMP2) 

and characterized with respect to the extent of osteogenic/vasculogenic differentiation of 

hMSCs and ECFCs.  

 

 

Figure 5.3. (a) Schematic diagram for NG assembly and protein grafting. The diagram is for 
illustration of protein grafting to NGS and is not intended to show the actual nanostructure of the 
NGs. (b) Schematic diagram of vasculogenic GelMA microchannels in osteogenic SPELA gel for 
patterned constructs. The SPELA precursor solution loaded with hMSCs and NG-BMP2 was 
injected inside a Teflon cylinder (5 mm diameter and 3 mm height) fitted with 12 needles spaced 
500 µm apart. After gelation, the needles were removed and the GelMA precursor solution loaded 
with ECFCs+hMSCs and NG-VEGF was injected in the microchannels and UV crosslinked. 
After gelation, the cell-encapsulated construct was incubated in vasculogenic medium (without 
VEGF) for the first week, 50:50 mixture of vasculogenic and osteogenic medium (without VEGF, 
BMP2, and DEX) for three days (days 8-10), and finally in osteogenic medium (without DEX 
and BMP2, days 11-21).  
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2. Experimental  

2.1. Encapsulation and differentiation of hMSCs and ECFCs in the un-patterned 

constructs 

For the un-pattarned osteogenic constructs, hMSCs and BMP2-NGs were 

encapsulated in SPELA hydrogel and cultured in osteogenic medium without DEX and 

BMP2 (basal medium plus 50 µg/mL AA and 10 mM βGP). Osteogenic constructs 

included hMSCs in SPELA gel without BMP2, with dissolved BMP2, and BMP2-NGs. 

Briefly, 20 mg of BMP2-NGs (1.2 µg BMP2) were suspended in 1 mL of SPELA gel 

precursor solution [200 mg SEPLA macromer, 4 mg Ac-GRGD (2 wt% of macromer) for 

cell adhesion, and 7.5 mg (0.75 wt%) photo-initiator (Irgacure-2959, CIBA)] and the 

suspension was sterilized by filtration. Next, hMSCs at a density of 2x106 cells/mL were 

suspended in the sterile SPELA precursor solution, injected between two sterile glass 

slides, and crosslinked by exposure to UV irradiation as we previously described 134. For 

the un-patterned vasculogenic constructs, a 50:50 mixture of hMSCs+ECFCs 134 plus 

VEGF-NGs was encapsulated in GelMA hydrogel and cultured in EMB-2 BulletKit 

medium (Lonza) without the addition of VEGF. Vasculogenic constructs included 

hMSCs+ECFCs in GelMA hydrogel without VEGF, with dissolved VEGF, and VEGF-

NGs. Briefly, 2 mg VEGF-NGs (120 ng VEGF) was suspended in 1 mL of GelMA 

precursor solution (50 mg GelMA and 7.5 mg photo-initiator) and sterilized. Next, 50:50 

mixture of hMSCs+ECFCs at a total density of 2x106 cells/mL was suspended in the 

sterile GelMA precursor solution, injected between glass slides, and crosslinked by UV 

irradiation as described 134. After gelation, disk-shape gels (7 mm diameter and 0.5 mm 

thickness) were cut and incubated in PBS for 1 h with two PBS changes. Next, the media 
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was replaced with osteogenic (without DEX and BMP2) or vasculogenic (without VEGF) 

medium and incubated for 21 and 10 days, respectively.  

2.2. Encapsulation and differentiation of hMSCs and ECFCs in the patterned 

constructs 

Patterned hydrogels with GelMA micro-channels in a SPELA matrix were generated 

for osteogenic-vasculogenic co-culture experiments. Twelve 900-µm diameter needles 

(G-20) were inserted through the end-caps of a Teflon cylinder with diameter and height 

of 5 and 3 mm, respectively. The distance between the needles was 500 µm. Next, the 

sterile SPELA precursor solution (200 mg SPELA macromer, 4 mg Ac-GRGD, 7.5 mg 

photo-initiator, 20 mg BMP2-NGs, and 2x106 hMSCs in 1 mL PBS) was injected 

between the needles and crosslinked with UV as described (Figure 5.3 b) 134. Then, the 

needles were removed and the GelMA precursor solution (50 mg GelMA, 7.5 mg photo-

initiator, 2 mg VEGF-NGs, and 2x106 hMSCs/ECFCs in 1 mL PBS) were injected in the 

channels and crosslinked with UV as described (Figure 5.3 b) 134. After gelation, the 

patterned constructs were washed with PBS and incubated in vasculogenic medium 

(without VEGF) for the first week, 50:50 mixture of vasculogenic and osteogenic 

medium (without VEGF, BMP2, and DEX) for the next three days (days 8 -10), and 

finally in osteogenic medium (without DEX and BMP2) for 11 days (days 11-21). 

Experimental groups included patterned constructs without BMP2/VEGF, BMP2 

dissolved in SPELA gel plus VEGF in GelMA, and BMP2-NGs in SPELA gel plus 

VEGF-NGs in GelMA.  
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2.3. Characterization of cells behavior encapsulated in patterned and un-patterned 

hydrogels  

Biochemical, mRNA, and protein analysis, alizarin red and Immunofluorescent 

staining techniques were used to characterized the extent of osteogenesis and 

vasculogenesis of cells in hydrogels.  

3. Results 

3.1. Osteogenic differentiation of hMSCs and ECFCs encapsulated in patterned 

hydrogels with BMP2 and VEGF NGs  

DNA content, ALP activity, calcium content, and mRNA expression of osteogenic 

markers for ECFCs+hMSCs/NG-VEGF encapsulated in GelMA channels and 

hMSCs/NG-BMP2 encapsulated in SPELA matrix in the patterned constructs are shown 

in Figure 5.4 (blue curve). Controls included ECFCs+hMSCs in the channels and hMSCs 

in the matrix with (red curve, without NG grafting) and without (green curve) VEGF and 

BMP2 in the channels and matrix, respectively. Other controls included hMSCs/BMP2 

(dashed pink) and hMSCs/NG-BMP2 (dashed light blue) in SPELA gel (no GelMA 

channels) and cultured in osteogenic medium (without DEX and BMP2) for 21 days. 

DNA content of the groups with BMP2/VEGF (with or without  NG grafting) decreased 

significantly with time which was related to the differentiation of encapsulated cells, as 

we previously described 165 (Figure 5.4 a). ALP activity of hMSCs in un-patterned 

osteogenic constructs with BMP2 or BMP2-NGs (dashed curves) increased significantly 

from day 7 to 14, reached a maximum after 14 days and decreased from day 14 to 21 

(Figure 5.4 b). The peak ALP activity of hMSCs in the patterned constructs with 
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BMP2/VEGF (with or without grafting) was delayed to day 18 because the constructs 

were cultured in vasculogenic medium in the first 7 days (Figure 5.4 b). The patterned 

constructs (solid lines) had higher ALP activity than their corresponding un-patterned 

osteogenic constructs (dashed lines). The patterned constructs with NG-BMP2/NG-

VEGF (blue curve) and without BMP2/VEGF (green curve) had the highest and lowest 

ALP activity with 6100±500 and 2000±300 IU/mg DNA, respectively. Calcium content 

as a measure of the extent of mineralization for all groups steadily increased with 

incubation time (Figure 5.4 c). After 21 days incubation, the patterned constructs (solid 

lines) had higher calcium content than their corresponding un-patterned osteogenic 

constructs (dashed lines). The patterned constructs with NG-BMP2/NG-VEGF (blue 

curve) and without BMP2/VEGF (green curve) had the highest and lowest calcium 

content after 21 days with 710±50 and 220±30 mg/mg DNA, respectively (Figure 5.4 c). 

mRNA expression of RUNX2 transcription factor initially increased with incubation 

time for all groups, peaked at day 14, and then decreased. The un-patterned osteogenic 

construct with NG-BMP2 and the patterned construct with NG-BMP2/NG-VEGF had the 

highest RUNX2 expression while the patterned construct without BMP2/VEGF had the 

lowest RUNX2 expression (Figure 5.4 d). Interestingly, RUNX2 expression of the 

patterned construct with NG-BMP2/NG-VEGF decreased slightly with incubation after 

day 14 (Figure 5.4 d). mRNA expression  of ALP (Figure 5.4 e) followed a trend similar 

to that of ALP activity shown in Figure 5.4 b. 

 The patterned construct with NG-BMP2/NG-VEGF (blue curve) had highest ALP 

expression at day 14. mRNA expression for Col I for all groups increased steadily with 

incubation time (Figure 5.4 f). The un-patterned osteogenic construct with NG-BMP2 
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and the patterned construct with NG-BMP2/NG-VEGF had the highest Col I expression 

after 21 days incubation. 

 

 

Figure 5.4. DNA content (a), ALP activity (b), calcium content (c), and mRNA expression of 
osteogenic markers Runx2 (d), ALP (e), and Col I (f) for hMSCs and ECFCs in the patterned 
constructs. Groups included patterned constructs without VEGF/BMP2 (green), with 
VEGF/BMP2 (red), and with NG-VEGF/NG-BMP2 (blue); un-patterned constructs with NG-
BMP2 (dashed light blue) and with BMP2 (dashed pink). Patterned constructs were incubated in 
vasculogenic medium for 7 days, vasculogenic/osteogenic medium for 3 days, and osteogenic 
medium for 11 days (without VEGF, BMP2, and DEX). Un-patterned constructs were incubated 
in osteogenic medium without DEX and BMP2 for 21 days. (e) Alizarin red stained (dark red) 
images of the patterned constructs along the length of a microchannel with none, dissolved, and 
NG-grafted BMP2/VEGF after 4 and 21 days of incubation. BMP2 and VEGF in NG-VEGF/NG-
BMP2 group have 21 days and 10 days release, respectively.One star indicates statistically 
significant difference (s.d.; p<0.05) between the test group and None (green); two stars between 
the test group and BMP2/VEGF (red). Error bars correspond to means ± 1 SD for n=3. 

 

The images in Figure 5.4g show Alizarin red staining along the length of a 

microchannel for the patterned constructs with none, dissolved, and NG-grafted 

BMP2/VEGF after 4 and 21 days of incubation. The image for patterned construct with 

NG-grafted BMP2/VEGF after 21 days (bottom right image) showed significantly higher 

staining in the matrix (dark red) and lower staining in the channels compared to the other 

groups.  
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3.2. Vasculogenic differentiation of hMSCs and ECFCs encapsulated in patterned 

hydrogels with BMP2 and VEGF NGs 

DNA content, CD31 protein, and mRNA expression of vasculogenic markers for 

ECFCs+hMSCs/NG‐VEGF encapsulated in GelMA channels and hMSCs/NG‐BMP2 

encapsulated in SPELA matrix in the patterned constructs are shown in Figure 5.5 (blue 

curve). Controls included ECFCs+hMSCs in the channels and hMSCs in the matrix with 

(red curve, without NG grafting) and without (green curve) VEGF and BMP2 in the 

channels and matrix, respectively. Other controls included ECFCs+hMSCs/VEGF 

(dashed pink) and ECFCs+hMSCs/NG‐VEGF (dashed light blue) in GelMA (no SPELA) 

and cultured in vasculogenic medium (without VEGF) for 21 days. DNA content of the 

groups with BMP2/VEGF (with or without NG grafting) decreased with time with 

differentiation of the encapsulated cells 134 (Figure 5.5 a). CD31 protein expression for 

the patterned construct without BMP2/VEGF (green curve) did not increase significantly 

with time (Figure 5.5 b,c). CD31 expression of the un-patterned vasculogenic constructs 

with VEGF (dashed pink) or NG-VEGF (dashed light blue) increased with time but the 

CD31 expression for the NG-VEGF construct was significantly higher than that of VEGF 

(Figure 5.5 b,c). The patterned constructs (solid lines) had higher CD31 expression than 

the un-patterned vasculogenic constructs (dashed lines) for all incubation times. For 

example after 10 days of incubation, CD31 expressions for patterned constructs with NG-

BMP2/NG-VEGF and BMP2/VEGF were 0.91±0.08 and 0.75±0.12, respectively; the 

expressions for the un-patterned vasculogenic constructs were 0.78±0.12 and 0.52±0.07. 

For all time points, CD31 expression of patterned construct with NG-BMP2/NG-VEGF 
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was higher than the other groups. mRNA expressions of vWF, CD31, and VE-cadherin 

(Figure 5.5 d-f) with incubation time were consistent with the CD31 protein expression in 

Figure 5.5 b. The patterned construct with NG-BMP2/NG-VEGF (blue curve) had higher 

expression of vWF, CD31, and VE-cadherin than the other groups for all time points.  

 

Figure 5.5. DNA content (a), CD31protein expression (b), representative western blot bands 
(c), and mRNA expression of vasculogenic markers vWF (d), CD31 (e), and VE-cadherin (f) for 
hMSCs and ECFCs in the patterned constructs (see Figure 5.4 for the groups). (e) CD31 stained 
(green) images of the patterned constructs along the length of a microchannel with none, 
dissolved, and NG-grafted BMP2/VEGF after 4 and 10 days of incubation. BMP2 and VEGF in 
NG-VEGF/NG-BMP2 group have 21 days and 10 days release, respectively. One star indicates 
statistically significant difference (s.d.; p<0.05) between the test group and None (green); two 
stars between the test group and BMP2/VEGF (red). Error bars correspond to means ± 1 SD for 
n=3. 

The images in Figure 5.5 g show CD31 staining (green) along the length of a 

microchannel for the patterned constructs with none, dissolved, and NG-grafted 

BMP2/VEGF after 4 and 10 days of incubation. The image for patterned construct with 

NG-grafted BMP2/VEGF after 10 days (bottom right image) showed significantly higher 

CD31 expression in the channel compared to the other groups. 

bFGF protein expression of the un-patterned osteogenic, patterned, and un-patterned 

vasculogenic constructs are shown in Figures 5.6 a-c, respectively. For a given time 
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point, patterned constructs and the un-patterned osteogenic constructs had highest and 

lowest expression of bFGF, respectively, with or without protein grafting. For a given 

culture system, the groups with grafted proteins had the highest expression of bFGF after 

14 and 21 days of incubation. Overall, the patterned construct with NG-BMP2/NG-

VEGF had highest expression of bFGF after 14 and 21 days among all groups (Figure 5.6 

b). For example, bFGF expression of the patterned construct with none, dissolved, and 

NG-grafted BMP2/VEGF after 21 days incubation was 160±7, 54±4, and 23±1 ng/mL, 

respectively (Figure 5.6 b); those of the un-patterned vasculogenic constructs was 

110±12, 48±4, and 19±5 ng/mL (Figure 5.6 c); and those of the un-patterned osteogenic 

constructs was 49±7, 14±4, and zero ng/mL (Figure 5.6 a). In addition, the effect BMP2 

and VEGF release rate in patterned constructs on bFGF protein expression has been 

shown in figure 5.6.  

The groups with 21 days release of BMP2 and 10 days release of VEGF (dashed blue 

curve) had the highest bFGF expression compared to the other two groups with 10 days 

or 21 days release for both BMP2 and VEGF (dashed green and red curves) with 149±9 

and 120±6 ng/ml bFGF expression, respectively, after 21 days.It should be mentioned 

that there was no significant difference between the bFGF expression of NG(21)-

BMP2/NG(10)-VEGF and NG(10)-BMP2/NG(10)-VEGF groups.  
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Figure 5.6. bFGF protein expression of the un-patterned osteogenic (a), patterned (b), and 
un-patterned vasculogenic (c) constructs with incubation time for the groups with none, 
VEGF/BMP2, and NG(21)-BMP2/NG(10)-VEGF. (d) Effect of BMP2 and VEGF release rate on 
bFGF protein expression of patterned construct.  Groups included patterned constructs without 
VEGF/BMP2 (green, c), with VEGF/BMP2 (red, c), and with NG(21)-BMP2/NG(10)-VEGF 
(blue, b); un-patterned osteogenic constructs with NG(21)-BMP2 (light blue, a) and with BMP2 
(pink, a); and un-patterned vasculogenic constructs with NG(10)-VEGF (dashed light blue in b) 
and with VEGF (dashed pink in b). Groups with NG(21)-BMP2/NG(10)-VEGF (dashed blue in 
d), NG(21)-BMP2/NG(21)-VEGF (dashed red in d) and NG(10)-BMP2/NG(10)-VEGF (dashed 
green in d) shows patterned construct with different protein release rate. The numbers in 
abbreviations NG(21) and NG(10) represent the release time of grafted proteins on each type of 
NG. One star indicates statistically significant difference (s.d.; p<0.05) between the test group 
and None (green); two stars between the test group and BMP2 (pink in a) or VEGF (dashed pink 
in b) or BMP2/VEGF (red in c) or NG(21)-BMP2/NG(21)-VEGF (dashed red in d). Error bars 
correspond to means ± 1 SD for n=3. 

  

4. Discussion  

It has been reported that the extent of bone formation in vivo depends on the duration 

of BMP2 exposure to MSCs in the first four weeks 135, 136 whereas vascularization 

depends on VEGF exposure to endothelial progenitor cells within the first week 137. 

Therefore, P8-I NGs with 90% BSA release in 24 days and P12-II NGs with 70% BSA 
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release in 7 days were used for timed release of BMP2 and VEGF in the osteogenic 

SPELA matrix and vasculogenic GelMA channels, respectively. 78% and 71% of the 

grafted VEGF and BMP2 proteins, respectively, were released at a constant rate for 7 and 

21 days, without an initial burst release 150, in the enzymatically-active conformation. 

Comparison of BSA (70 kDa) release curves with those of VEGF (40 kDa) and BMP2 

(26 kDa) indicated that the protein release was dominated by the NGs degradation. PLGA 

and heparin-functionalized PLGA nanoparticles have previously been used for BMP2 

delivery and gelatin microparticles have been used for VEGF. Attachment of BMP2 to 

heparin-functionalized PLGA (90 kDa) nanoparticles and their encapsulation in a fibrin 

gel prolonged the release to 2 weeks, but the fraction of bioactive BMP2 released was 

23% compared to 57% for untreated PLGA nanoparticles 121. Encapsulation in gelatin 

microspheres prolonged VEGF release to 2 weeks but <45% of the protein was released 

from the microparticles 150. In another study, the fraction of bioactive BSA released from 

PLGA (45 kDa) nanoparticles increased from 50% to 70% after 1 week incubation by 

copolymerization of PLGA with PEG (5 kDa) 120. We previously reported that the release 

of BMP2 can be extended to 4 weeks by grafting to succinimide-functionalized blend of 

ULMW-PLA/PLEOF nanoparticles but <50% of the released protein was enzymatically 

active 118. Release kinetic of VEGF and BMP2 from PaLGb-Lc NGs (Figure 4.3 g) 

suggests that hydrophilic NGs are a more efficient platform for grafting and timed-release 

of proteins than hydrophobic PLGA nanoparticles. The lower bioactivity of BMP2 

released from PLGA nanoparticles could be attributed to protein denaturation by acidic 

degradation products of PLGA and protein adsorption/unfolding 122. 
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Several recent studies have investigated the combined effect of VEGF and BMP2 on 

osteogenesis and vascularization 157, 158, 160-162. Based on previous experimental results, 

co-expression of BMP2 and VEGF in MSC cultures had no effect on the extent of 

mineralization in vitro. On the other hand, combination of MSCs and EPCs in a calcium 

sulfate scaffold without over-expression of BMP2 showed higher mineralization in vitro 

compared to BMP2-expressing MSC only group 158. Dual delivery of VEGF and BMP2 

in vivo increased bone formation only at early time points but it was relatively 

independent of VEGF at late time points 160, 162, 163. In another study, combination of 

BMP2-expressing MSCs and VEGF-expressing EPCs in a scaffold significantly 

increased bone formation after intramuscular implantion in rat 161. The previous results 

indicate that dual delivery of BMP2 and VEGF increases osteogenesis only in MSC and 

EPC co-cultures. Our results in Figures 5.4 and 5.5 demonstrate that localized, dual 

delivery of VEGF to ECFCs+hMSCs in the channels and BMP2 to hMSCs in the matrix 

significantly increased the extent of mineralization and vascularization. Further, localized 

timed-release of VEGF in the channels and BMP2 in the matrix by grafting to NGs 

significantly improved mineralization and vascularization (blue curves in Figures 5.4-5.5) 

compared to direct addition of growth factors (red curves in Figures 5.4-5.5). 

These results suggest that differentiation and maturation of MSCs and ECFCs to 

osteoblasts and endothelial cells induced by BMP2 and VEGF, respectively, may be 

indirectly coupled; that is differentiation of ECFCs+hMSCs in the channels by VEGF 

leads to the release of osteogenic factors that diffuse to the matrix to stimulate 

osteogenesis. bFGF is shown to mediate vascularization and bone formation in MSC 

seeded scaffolds 166, 167. Therefore, we measured the expression of bFGF at the protein 
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level for the un-patterned and patterned constructs (Figure 5.6). The un-patterned 

vasculogenic construct without VEGF expressed low levels of bFGF after 7 and 10 days 

incubation (green in c) whereas the un-patterned osteogenic construct without BMP2 did 

not express bFGF in 21 days (green in a). The un-patterned vasculogenic construct with 

VEGF (dashed pink and blue in c) had higher expression of bFGF than the un-patterned 

osteogenic construct with BMP2 (dashed pink and blue in a). bFGF expression of the 

patterned construct with direct addition of BMP2/VEGF (red in b) was comparable to 

those of un-patterned vasculogenic construct with VEGF (dashed pink in c). Overall, 

timed-release of NG grafted BMP2/VEGF significantly enhanced bFGF expression level 

in un-patterned (dashed pink in a,c) and patterned (blue in b) constructs. However, timed-

release of BMP2/VEGF in the patterned construct sharply increased bFGF expression 

level after 14 and 21 days (blue in b) compared to direct addition of the growth factors 

(red in b). The results with NG-BMP2/NG-VEGF support previous reports on the effect 

of timed-release of VEGF and BMP2 on vascularization and osteogenesis, respectively 

168-170.  

During endochondral ossification, maximum levels of VEGF precede maximum 

levels of new bone formation 155. In the mineralization front, differentiated vascular 

endothelial cells in the invading vessels secrete growth factors that stimulate 

differentiation of MSCs to the osteogenic lineage 149. Consistent with the process of bone 

development in vivo, bFGF expression levels in Figure 5.6 suggests that the differentiated 

ECFCs+hMSCs in the channels secret bFGF, and possibly other growth factors, that 

synergistically enhance osteogenic differentiation of hMSCs and mineralization. The data 

in Figure 5.6 also indicates that timed-release of NG-grafted VEGF in the channels leads 
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to sustained production of bFGF in the first week of co-culture to stimulate maturation of 

the differentiated cells to osteoblasts and endothelial cells. 

5. Conclusion 

We investigated the effect of spatial and temporal release of BMP2 and VEGF on the 

extent of osteogenic and vasculogenic differentiation of hMSCs and ECFCs encapsulated 

in a patterned hydrogel. For timed-release, BMP2 and VEGF were grafted to resorbable 

NGs based on self-assembly of PEG macromers chain-extended with short L and G 

segments. Degradation rate and protein release of the NGs increased with decreasing L to 

G ratio. Based on NGs release profile, P12-II NGs with 12 kDa PEG MW, 12 LG 

segment length, and 60/40 L/G ratio was selected for VEGF grafting and release in 7 

days. P8-I NGs with 8 kDa PEG MW, 13 LG segment length, and 60/40 L/G ratio was 

selected for BMP2 grafting and release in 21 days. Enzymatic activity of the released 

VEGF and BMP2 after 7 and 21 days was 80% and 71%, respectively. hMSCs and 

ECFCs were encapsulated in patterned hydrogels with NG-grafted proteins; that is, 

hMSCs and BMP2-NGs encapsulated in SPELA matrix and hMSCs+ECFCs and VEGF-

NGs in GelMA microchannels. Control groups were hMSCs in the un-patterned SPELA 

and hMSCs/ECFCs in the un-patterned GelMA. Based on the results, the extent of 

osteogenic and vasculogenic differentiation of hMSCs and ECFCs was higher in 

patterned constructs compared to un-patterned constructs. The addition of VEGF-NGs in 

the channels and BMP2-NGs to the matrix significantly increased osteogenic and 

vasculogenic differentiation of hMSCs and ECFCs compared to the addition of VEGF 

and BMP2. The patterned constructs with timed-release of NG-grafted VEGF and BMP2 

had highest extent of osteogenic and vasculogenic differentiation. Further, timed-release 
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of NG-grafted VEGF in hMSC+ECFC seeded channels and NG-grafted BMP2 in hMSC-

seeded matrix sharply increased bFGF expression after 21 days in the co-cultured 

constructs. The results suggest that mineralization and vascularization may be coupled by 

localized secretion of paracrine signaling factors like bFGF by differentiating hMSCs and 

ECFCs.  
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CHAPTER 6: FUTURE WORK 

Traditional attempts to grow bone grafts in the laboratory were based on culturing 

cell/scaffold constructs under static conditions in the presence of osteogenesis-inducing 

factors. However, static cultures are not optimal to grow centimeter-sized bone grafts for 

clinical translation due to poor nutrient supply and removal of metabolic waste. Under 

these conditions, in fact, mass transport occurs only via diffusion, which is not sufficient 

to support cell survival and proliferation inside the core of large cell/scaffold constructs, 

resulting in necrosis and poor tissue formation. In addition, cell proliferation and matrix 

synthesis at the construct periphery over the culture period further impede medium 

diffusion and contribute to the formation of a nutrient gradient that drive cell migration 

towards the substitute borders 171. On top of this, culture in static conditions does not 

allow provision of those biophysical stimuli that are critical for functional regeneration 

172, 173. In fact, bone cells are sensitive to mechanical stimuli, whose integration and 

conversion into intracellular signals play an important role in driving bone remodeling 

throughout lifetime and regeneration during fracture healing 174, 175. Human bone is 

principally subjected to two types of mechanical stimuli, i.e., strain caused by 

deformation (bending and compression) resulting from physical activity (estimated 

values <2000 µε), and fluid shear stress resulting from interstitial fluid movement 

through the lacunae as a consequence of loading (estimated values 0.8–3 Pa) 176. 
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Conversion of physical stimuli into molecular signals and biological responses is 

termed mechanotransduction, which principally relies on the regulation of stretch-

activated ion channels and integrin-initiated cytoskeleton deformations and organelle 

displacement 177  that ultimately triggers the initiation of a cascade of events culminating 

in the activation of genes involved in osteogenic pathways 176. Based on this knowledge, 

it is clear that the recapitulation of these mechanisms in vitro is essential for fostering the 

regenerative properties of human osteocompetent cells seeded onto biomaterial scaffolds, 

thus enabling the formation of mature tissue substitutes for enhanced skeletal 

reconstructions. Advances in bioreactor systems over the last two decades have opened 

new possibilities in the field of bone engineering as they allow to nurture the 

development of bone tissue by providing an appropriate physiological environment with 

stimulatory biochemical and biophysical signals 178. The combination of stem cells, 

biomaterials, osteogenesis-inducing factors and bioreactor systems has recently been 

defined as the “Tissue Engineering Quadriad” 179, with the culture under dynamic 

conditions representing a paradigm shift for the ex vivo construction of viable tissue 

substitutes for replacement and reconstructive therapies. Not least, the construction of 

viable bone substitutes using bioreactor systems opens new opportunities for the 

generation of valid experimental models to study bone development and pathologies, 

screen new drugs and test biomaterials within a context that better reflects the native 

tissue environment. Therefore, the first step in the future would be evaluating the extent 

of osteogenesis and vasculogenesis of stem cells in the engineered shell-core composite 

with timed and localized delivery of BMP2 and VEGF with respect to mineralization and 

vascularization in vitro in a dynamic direct perfusion bioreactor.  
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Figure 6.1. Schematic representation of direct perfusion bioreactor. In direct perfusion 
bioreactors the cell/scaffold constructs are placed in a press-fitted fashion in the culture chamber 

and the medium is perfused throughout the constructs. 

 

To design the bioreactor system, microtubular shells with 8 mm outer diameter and 3 

mm wall thickness will be used to direct the flow of osteogenic medium in the hioreactor 

of a perfusion cell culture. The interconnected microcanals of the shell will be injected 

with a mixture of BMP2  (200 ng/mL) and 5xlob hMSCs in collagen type I. The scaffolds 

will be press-fitted into a silicone tube to yield the bioreactor section of the perfusion 

system (Figure 6.2 b). The medium will be oxygenated in the reservoir which has one 

inlet and 16 outlets to allow simultaneous perfusion of 16 shells (Figure 6.2 a).   

Factors that affect the transport of nutrients and oxygen in the central part of the 

engineered shell-core graft are the spacing between the Volkmann canals in the rigid 

shell and the spacing between the microchannels in the soft core (Figure 1.2).  



87 

 

 

 

Figure 6.2. 16 perfusion bioreactors in parallel (arrow shows one of the reactors). (b) The 
perfusion cell culture system. 

 

The average wall thickness of osteons in the native compact bone is 150 µm 180. 

Therefore for 5-µm microsheet thickness, microtubes will consist of 30 lamellar layers. 

The spacing between the Volkmann canals in the natural bone varies between 500-1000 

µm 181.  Therefore, microdrilling will be used to vary the spacing between the Volkmann-

like canals in the engineered graft from 500 to 750 and 1000 µm. The spacing between 

the needles in the soft GeIMA gel will also be varied from 500 to 750 and 1000 µm. The 

rigid shell will be synthesized as described before 181. An array of circular microholes 

with intervals of 500, 750, or 1000 µm will be drilled by laser microdrilling on the 

outside surface of the shell traversing the shell thickness. Next, the shell will be sterilized 

and all subsequent steps will be done under sterile condition. Then, needles with 

separation distance of 500-1000 µm will be placed inside the shell through an end-cap. 

The sterile GeIMA precursor solution, NG-VEGF, and human MSCs+EPCs (50:50, 2xl06 

cells/ml of GeLMA) will be injected between the needles and cross-linked with UV as we 

described previously 182 and needles are removed. Finally, the interconnected microcanals 
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of the shell wall will be filled with NG-BMP2 and human MSCs (2x106 cells/ml 

collagen) in collagen type I solution. The cellular constructs with timed-release of growth 

factors will be press-fitted into a silicone tube as the bioreactor section of the perfusion 

system (Figure 6.2 b) and culture medium will pumped through the bioreactors at the rate 

of 0.5 mL/min for 21 days as described. At each time point (1, 3,7. 10, 14. 21), the 

middle section of the graft will he characterized with respect to cellularity, extent of 

mineralization, and extent of vascularization as we previously described 134, 182, 183. 

Microvessels will be visualized with Image ProPlus software to determine uniformity and 

total capillary density as described 35. 
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