
University of South Carolina University of South Carolina 

Scholar Commons Scholar Commons 

Theses and Dissertations 

2016 

Applications Of Disposable Pipette Technologies With LC-MS/MS Applications Of Disposable Pipette Technologies With LC-MS/MS 

For Forensic And Clinical Analyses Of Biological Matrices For Forensic And Clinical Analyses Of Biological Matrices 

Kaylee R. Mastrianni 
University of South Carolina 

Follow this and additional works at: https://scholarcommons.sc.edu/etd 

 Part of the Chemistry Commons 

Recommended Citation Recommended Citation 
Mastrianni, K. R.(2016). Applications Of Disposable Pipette Technologies With LC-MS/MS For Forensic 
And Clinical Analyses Of Biological Matrices. (Doctoral dissertation). Retrieved from 
https://scholarcommons.sc.edu/etd/3808 

This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in 
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please 
contact digres@mailbox.sc.edu. 

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/etd
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F3808&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/131?utm_source=scholarcommons.sc.edu%2Fetd%2F3808&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/3808?utm_source=scholarcommons.sc.edu%2Fetd%2F3808&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu


APPLICATIONS OF DISPOSABLE PIPETTE TECHNOLOGIES WITH LC-MS/MS FOR 

FORENSIC AND CLINICAL ANALYSES OF BIOLOGICAL MATRICES 

 

by 

 

Kaylee R. Mastrianni 

 

Bachelor of Science  

Western New England University, 2012 

 

 

 

 

Submitted in Partial Fulfillment of the Requirements 

 

For the Degree of Doctor of Philosophy in 

 

Chemistry 

 

College of Arts and Sciences 

 

University of South Carolina 

 

2016 

 

Accepted by: 

 

Stephen L. Morgan, Major Professor  

 

William E. Brewer, Committee Member 

 

Scott Goode, Committee Member 

 

Michael Myrick, Committee Member 

 

Maria Marjorette Pena, Committee Member 

 

Paul Allen Miller, Vice Provost and Interim Dean of Graduate Studies



ii 

© Copyright by Kaylee R. Mastrianni, 2016 

All Rights Reserved.



iii 

DEDICATION 

 
 This work is dedicated to my loving husband, Chris, and parents, Martin and 

Laura McDonald, for their constant support and encouragement. 

  



iv 

ACKNOWLEDGEMENTS  

 I would like to thank my family, without whom I would not be the person I am 

today. I’m also forever grateful to my husband for his patience, love, and support over the 

last four years.  

I would like to express my sincere gratitude to my mentor, Dr. William E. 

Brewer, for his continuous support, motivation, and immense knowledge. I am indebted 

to him for providing the opportunity for me to research within my interest of toxicology. 

Working with him was both an honor and a pleasure.  

I would also like to thank Dr. Stephen L. Morgan for the opportunity to work for 

him. His attention to detail and editorial ability has influenced the refinement of my 

writing skills.  

  



v 

ABSTRACT 

Efficiently hydrolyzing glucuronide metabolites is an important step in the 

analysis of drugs in urine. Amitriptyline and cyclobenzaprine are both tricyclic 

compounds with tertiary aliphatic amine groups that are subsequently metabolized to a 

less common form of glucuronide metabolite, quaternary ammonium linked glucuronides 

(N+- glucuronide). A collaborative study was conducted to investigate discrepancies in 

recoveries of these two commonly prescribed compounds in patient urine samples when 

hydrolyzed with different enzyme from four different commercially available β-

glucuronidase sources.  

Similarly, there is potential for 6-monoacetylmorphine to be converted to 

morphine during β-glucuronidase hydrolysis of urine samples. 6-monoacetylmorphine is 

a unique metabolite of heroin and thus a marker of heroin use. A collaborative study was 

performed to analyze the degree of 6-monoacetylmorphine (6-MAM) conversion by the 

same four commercially available β-glucuronidase enzymes in drug free spiked urine and 

patient urine samples.  

Meconium is an important biological matrix in determining drug exposure of a 

newborn. A novel method for the quantitation of ten commonly prescribed 

benzodiazepines and/or their metabolites (7-aminoclonazepam, clonazepam, α-

hydroxyalprazolam, alprazolam, nordiazepam, diazepam, midazolam, oxazepam, 

lorazepam, and temazepam) in meconium was developed using enzymatic hydrolysis, 
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WAX-S dispersive pipette extraction (DPX) tips, and LC-MS/MS. The proposed 

method minimizes sample volume and sample preparation time. A successful blind study 

with a corresponding laboratory verified the effectiveness of the method. 

As marijuana continues to be decriminalized, the need for analyses to determine 

marijuana impairment for driving under the influence cases rises. An analytical procedure 

was developed and validated for the analysis of Δ9-tetrahydrocannabinol (THC) and its 

metabolites, 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC) and 11-nor-9-carboxy- 

Δ9-tetrahydrocannabinol (THC-COOH), in whole blood using liquid chromatography 

tandem mass spectrometry (LC-MS/MS). An automated DPX method was employed on a 

Hamilton NIMBUS96 platform to extract the analytes of interest. A full well plate (96) of 

samples could be extracted in less than three minutes. The method was fully validated 

according to the Scientific Working Group of Forensic Toxicology (SWGTOX) 

guidelines. This method resulted in a successful patient sample comparison with a local 

forensic toxicology lab, South Carolina Law Enforcement Division.  

The measurement of free catecholamines and metanephrines in the clinical laboratory 

is important for the diagnosis of tumors, such as pheochromocytoma. We have developed 

an automated, high throughput DPX sample preparation procedure for the selective 

extraction of norepinephrine, epinephrine, dopamine, normetanephrine, and metanephrine 

in urine. The method was assessed for linearity, sensitivity, precision, accuracy, 

carryover, matrix effects and recovery. Using diphenyl borinic acid for complexation and 

styrene divinyl benzene for extraction enabled high recoveries and reduced ion 

suppression. The simple and high throughput nature of this method would be ideal for 
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clinical laboratories experiencing high demand for catecholamine and metanephrine urine 

analysis. 

Determining the limit of detection (LOD) for a toxicological analytical method is an 

important component of method validation. However, with growing applications in an 

increasing variety of applications, the recommendation for determining an LOD from 

relevant data have evolved in varying directions. Specifically, guidelines often do not 

clarify the ambiguities and the effects of different choices associated with the estimate of 

uncertainty (standard deviation) for signal-to-noise LOD criteria. Further, LOD is based 

on fitting calibration relationship by the method of least squares which require 

assumptions (e.g., constant variance) that are rarely addressed. In addition to clarifying 

these ambiguities, the application of tolerance intervals for limits of detection 

determinations is discussed for forensic dye analysis.

 

. 
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CHAPTER 1 

VARIATIONS IN ENZYMATIC HYDROLYSIS EFFICIENCIES FOR AMITRIPTYLINE 

AND CYCLOBENZAPRINE IN URINE 

 

Abstract 

A collaborative study was conducted to investigate discrepancies in recoveries of two 

commonly prescribed compounds, amitriptyline and cyclobenzaprine, in patient urine 

samples when hydrolyzed with different enzymes from different sources. A two- to ten-

fold increase in analyte recoveries was seen for patient samples hydrolyzed using a 

recombinant β-glucuronidase (IMCSzymeTM) over samples hydrolyzed with β-

glucuronidase from Haliotis rufescens. We report outcomes from four commercially 

available β-glucuronidase enzymes (IMCSzymeTM, Patella vulgata, Helix pomatia, and 

Haliotis rufescens) on patient samples that tested positive for amitriptyline and 

cyclobenzaprine. Our results confirm reduced hydrolysis of glucuronides by β-

glucuronidases isolated from mollusks, but near complete conversion when using the 

recombinant enzyme. Our premise is systematic differences in hydrolysis efficiencies due 

to varying substrate affinity among enzyme subtypes potentially impacts accuracy and 

reliability of measurements.
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Introduction 

Amitriptyline and cyclobenzaprine are both tricyclic compounds with tertiary aliphatic 

amine groups that are subsequently metabolized to form quaternary ammonium linked 

glucuronides (N+- glucuronide). Amitriptyline is a tricyclic antidepressant that was first 

introduced in the 1950s (1). Amitriptyline is currently a widely used tricyclic 

antidepressant. Cyclobenzaprine is also a tricyclic compound, initially marketed under 

the name FlexerilTM in 1977 (2). The drug is a skeletal muscle relaxant commonly 

prescribed for acute neck and back pain as well as fibromyalgia treatment (2). Due to its 

high potential for abuse, cyclobenzaprine is monitored by many toxicology and pain 

management laboratories (3-8). 

Cyclobenzaprine and amitriptyline are structurally related and hence metabolize 

similarly. Both can be demethylated, oxidized, hydroxylated at the aromatic carbons, and 

glucuronidated (9-11). The glucuronides formed are quaternary ammonium-linked 

(Figure 1.1). Only trace levels of parent compound are found in urine due to the extensive 

metabolism. A pharmacokinetic study showed free unconjugated amitriptyline in urine at 

approximately 1% of the initial dose, while amitriptyline glucuronide accounts for 58% 

of the urinary metabolites at approximately 25% of the dose taken (9). Similarly, 

cyclobenzaprine N+-glucuronide can be present in urine with concentrations up to 50% of 

the dose (10). Ideally, glucuronides could be targeted directly for monitoring 

amitriptyline or cyclobenzaprine use. Glucuronides typically require extended liquid 

chromatography run times, and exhibit poor recoveries with solid phase extractions and 

low ionization efficiencies with in electrospray mass spectrometry. Hydrolysis of the 

glucuronides should lead to increased concentrations of the parent compounds, providing 
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better sensitivity and accuracy for monitoring these drugs. Unfortunately, the quaternary 

ammonium linked glucuronides are less common than primary or secondary glucuronides 

and have proven to be difficult to hydrolyze with β-glucuronidase enzymes isolated from 

mollusks (10, 12-13). 

After observing large discrepancies between samples hydrolyzed with Haliotis 

rufescens and IMCSzymeTM, a more comprehensive study was conducted to monitor the 

hydrolysis of patient samples positive for cyclobenzaprine or amitriptyline with four 

different sources of β-glucuronidase enzyme: IMCSzymeTM (genetically engineered E. 

Coli), Patella vulgata (limpet), Helix pomatia (Roman snail), and Haliotis rufescens (red 

abalone). Patient samples were analyzed before and after hydrolysis with each of the 

enzymes and conversion of glucuronide conjugates was monitored by the increase in free 

(unconjugated) parent compound. The objective of this study was to evaluate the 

hydrolysis of quaternary ammonium-linked glucuronide metabolites with each of the 

named target enzymes. 

Materials and Methods 

Reagents and Standards 

Amitriptyline, amitriptyline-d3, and cyclobenzaprine drug standards were purchased from 

Cerilliant Corporation (Round Rock, TX). The amitriptyline glucuronide standard had a 

listed concentration of 1000 ng/mL and was provided by TLC Pharmaceutical Standards 

(Ontario, Canada). Disposable pipette extraction (DPX) tips were provided by DPX 

Technologies, LLC (Columbia, SC); the 1 mL RP-S tips contain styrene divinyl benzene 

sorbent with salt. IMCSzymeTM was obtained from Integrated MicroChromatography 
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Systems, LLC (Columbia, SC). Haliotis rufescens β-glucuronidase was purchased from 

Campbell Science (Logan, UT). Helix pomatia and Patella vulgata enzymes were 

purchased from Sigma Aldrich (St. Louis, MO). All solvents were LC-MS Optima grade, 

from Fisher Scientific (Waltham, MA). 

Specimens 

Five urine samples positive for amitriptyline and five urine samples positive for 

cyclobenzaprine were obtained from PSO laboratory (Lansing, MI); all samples were 

anonymously coded. All ten samples were analyzed in the initial method comparison 

study using Haliotis rufescens (with results obtained by PSO Lab), and IMCSzymeTM 

(analyzed several days later). Further studies of the hydrolysis of spiked samples using 

other enzymes were conducted and presented herein. Patient samples, one positive for 

amitriptyline and one positive for cyclobenzaprine, were also analyzed using the various 

enzymes for direct comparison.  

Sample Preparation 

The following procedures were used for both the method comparison and the consequent 

enzyme hydrolysis comparison. Urine samples were prepared by aliquoting 200 µL into a 

2 mL micro centrifuge tube (VWR, Radnor, PA). A master mix solution containing 10 

µL of 1000 ng/mL amitriptyline-d3 in methanol, 50 µL of hydrolysis buffer, and 40 µL of 

enzyme were added to the urine. Rapid hydrolysis buffer was provided by the vendor for 

IMCSzymeTM and 1 M sodium acetate at pH 4.5 was used for the other three enzymes. 

IMCSzymeTM had an activity of > 50 kU/mL, while Helix pomatia, Patella vulgata, and 

Haliotis rufescens were > 100 kU/mL. Samples were heated and vortexed at 60 C and 
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550 RPM for 30 min. with IMCSzymeTM and 1 h for the other enzymes using a Labnet 

VorTempTM 56 Benchtop Incubator/Shaker (Woodbridge, NJ). These hydrolysis time and 

temperature were consistent with manufacturer specifications.  

Subsequent to hydrolysis, 500 µL acetonitrile was added to each sample, and 

disposable pipette extractions were performed by aspirating and dispensing the sample 

solutions in and out of the DPX (RP-S) tips. The extraction produces two distinct layers, 

aqueous solution containing salts on the bottom and acetonitrile containing analytes of 

interest on the top. After transferring a 300 µL portion of the top acetonitrile layer to a 

vial, and adding 700 µL water, the samples were ready for analysis.  

Calibrators and Controls 

All calibrators and controls were prepared in drug-free urine, obtained from healthy 

volunteers. The calibration design used for the method comparison study included eight 

concentration points at 0, 50, 100, 250, 500, 1000, and 2000 ng/mL of amitriptyline and 

cyclobenzaprine. Calibrations were done in duplicate to account for the difference in 

buffer pH needed for IMCSzymeTM (pH ~7.4) and Haliotis rufescens, Patella vulgata, 

and Helix pomatia (pH ~4.5). 

Instrumental Analysis 

Analyses were performed using a Thermo TSQ VantageTM triple quadrupole mass 

spectrometer (Milwaukee, WI) coupled to an Agilent 1100 Series HPLC (Agilent 

Technologies, Waldbronn, Germany) equipped with an Agilent Poroshell EC-C18 

column (3.0 x 50 mm, 2.7 µm). Sample injections of 20 µL were made using a 6 port 
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(0.25 mm) Cheminert C2V injection valve (Houston, TX) incorporated on a dual rail 

GERSTEL MPS autosampler (Linthicum, MD). 

The mobile phase was composed of 0.1% formic acid in water (A) and 0.1% formic 

acid in acetonitrile (B). The gradient started at 70% A for 0.5 min., ramped to 5% A at 3 

min., held at 5% A at 3.5 min, and then changed back to 70% A. The total run time was 6 

min. Eluent was diverted to waste during the intervals of 0-0.75 and 4.5-6 min. after the 

injection. The column flow rate was 0.4 mL/min. Mass spectrometer parameters were: 

electrospray voltage, 4000 V; auxillary gas pressure, 60 psi; sheath gas pressure, 47 psi; 

vaporizer temperature, 400 °C; auxillary gas temperature, 24 °C; capillary temperature 

350 °C.  The selected ion pairs for multiple reaction monitoring (MRM) for each analyte 

can be found in Table 1.1. 

Results and Discussion 

Comparative Study with 10 Patient Samples 

Researchers at PSO laboratory recognized a discrepancy between hydrolysis results of 

Haliotis rufescens and IMCSzymeTM in a number of patient samples, and donated 

samples to the University of South Carolina (USC) for further investigation. Patient 

sample results comparing IMCSzymeTM and Haliotis rufescens are summarized in Table 

1.2, showing the concentrations of the unhydrolyzed parent compound (amitriptyline/ 

cyclobenzaprine) and concentrations of the parent compound after hydrolysis 

(hydrolyzed). The amount of glucuronide conjugates can be calculated from hydrolyzed 

versus unhydrolyzed concentration of the parent compound. The IMCSzymeTM and 

Haliotis rufescens unhydrolyzed sample concentration should be the same. Differences, 
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however, can potentially be attributed to hydrolysis in the two month storage time 

between analyses.  

IMCSzymeTM and Haliotis rufescens produced different hydrolyzed parent compound 

concentrations, ranging over almost an order of magnitude. For example, in patient 

sample 42756, the hydrolyzed concentration of cyclobenzaprine using IMCSzymeTM was 

4153.0 ng/mL; the hydrolyzed concentration using Haliotis rufescens was only 450.4 

ng/mL. The amount of glucuronide conjugates hydrolyzed by the Haliotis rufescens was 

consistently lower in all samples compared to that produced by IMCSzymeTM. Thus, 

enzyme choice (Haliotis rufescens for PSO, and IMCSzymeTM for this method) 

significantly impacted the amount of glucuronide converted. Consequently, further 

experiments were performed evaluate the ability of four commercially available β-

glucuronidase enzymes to hydrolyze this unique class of glucuronides. 

Glucuronides were monitored using the same product ions as the parent compounds 

shown in Table 1.1. These measurements enabled qualitative assessment of the 

glucuronide decrease as a result of hydrolysis, and to monitor consistency of the 

relationship between the parent compound peak area increase and glucuronide peak area 

decrease as a result of hydrolysis. The ratio (∆[Parent]/∆[Glucuronide]), shown in Table 

1.3, can be employed to ascertain the likelihood that the increase in parent compound is a 

direct result of glucuronide decrease. If the ratio remains consistent throughout the 

patient samples, then it is likely that the parent compound peak area increase is a direct 

result of the glucuronide peak area decrease. However, if the ratios are highly variable, 

then it is likely there is a confounding factor causing the parent compound increase. 

Ratios for IMCSzymeTM data were consistent (approximately 6 for cyclobenzaprine and 
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18 for amitriptyline) except when the glucuronide peak areas for unhydrolyzed 

compounds were low (~30,000 area counts). This occurred for patient samples 48675 and 

42746, which were most likely outside the linear dynamic range. We therefore concluded 

that the observed parent compound peak intensity increases were a direct result of 

glucuronide hydrolysis. 

Hydrolysis of Amitriptyline Glucuronide Standard in Drug Free Urine 

Drug-free urine was spiked with the acquired amitriptyline glucuronide standard. 

However, the concentration of amitriptyline glucuronide standard that was provided was 

inaccurate for two reasons. After “complete” hydrolysis (where no glucuronide peak was 

detected), the yield of amitriptyline did not match the manufacturer’s specified 

amitriptyline glucuronide concentration. Further, amitriptyline was also present in the 

glucuronide standard solution, thus suggesting degradation had occurred. Therefore, 

calibration for product amounts was not conducted, and the peak areas of both 

compounds were monitored before and after hydrolysis. 

The four sources of β-glucuronidase chosen here include a genetically engineered β-

glucuronidase and three different types of sea snail sources. The goal of this work was 

not to find the optimum hydrolysis conditions for different enzymes, but rather, to 

compare their relative hydrolysis efficiencies.  For that reason, the manufacturer 

recommendations for hydrolysis conditions were followed as described in the 

Experimental section. 

Average peak areas for amitriptyline and amitriptyline glucuronide before and after 

hydrolysis with each of the enzymes are shown in Table 1.4. Percent hydrolysis was 

calculated as 
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% hydrolysis = (1 – A/B) × 100%    (Equation 1) 

where A is the average ratio (n = 3) of amitriptyline glucuronide peak area to internal 

standard peak area for post-hydrolysis, and B is the average ratio (n = 3) of amitriptyline 

glucuronide peak area to internal standard peak area for pre-hydrolysis. 

IMCSzymeTM achieved 99.3% hydrolysis in 30 min. of incubation. The three mollusk 

enzymes (Helix pomatia, Haliotis rufescens, and Patella vulgate) produced 6.3%, 23.2%, 

and 31.4% hydrolysis, respectively, in 1 h. of incubation. The incubation times employed 

are based on manufacturer recommendations and common laboratory procedures for the 

respective enzymes. Amitriptyline glucuronide peak area decrease and amitriptyline peak 

area increase, when comparing pre-and post-hydrolysis chromatograms for each enzyme, 

as shown in Table 1.4. 

Hydrolysis of Patient Samples by Four Different Enzymes 

Further experiments to estimate the percent glucuronidation in actual patient samples 

were performed for the same four enzymes. In this case, however, the percent 

glucuronidation was calculated based on monitoring changes in the concentration of the 

parent compound (amitriptyline or cyclobenzaprine). The calculated percent 

glucuronidation for each enzyme can be compared to average ratios reported in the 

literature for parent and glucuronide metabolites in human urine. We assume that if 

calculated glucuronidation percentages are similar to reported averages, then the enzyme 

likely converted close to all of the available glucuronide.  

The patient samples chosen for comparison of hydrolysis capability were patient 

sample 49187 (positive for cyclobenzaprine), and 42748 (positive for amitriptyline). 
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Samples (n = 2) were analyzed for amitriptyline or cyclobenzaprine before hydrolysis 

(unhydrolyzed), and after hydrolysis (hydrolyzed) for each of the four enzymes. The N+-

glucuronide metabolites of cyclobenzaprine and amitriptyline were resistant to hydrolysis 

with Helix pomatia, Patella vulgata, and Haliotis rufescens, but not with IMCSzymeTM.  

Table 1.5 shows total parent compound (amitriptyline/cyclobenzaprine) concentration 

(ng/mL) prior to hydrolysis (“unhydrolyzed”), and after hydrolysis (“hydrolyzed”) with 

each of the four β-glucuronidase enzymes. Based on these values, the percent 

glucuronidation is calculated as the percentage of glucuronide metabolite compared to 

amount of total parent compound after hydrolysis, and represents the relative amount of 

hydrolyzed glucuronide produced by each enzyme. Hence, the percent glucuronidation 

increases with the increase in hydrolysis of the glucuronide metabolites. 

Of the four enzymes tested, IMCSzymeTM converted the highest amount of 

amitriptyline N+-glucuronide during hydrolysis (95.3%). The other enzymes exhibited 

glucuronidation percentages ranging from 57.8-67.5 %. The glucuronidation percentage 

with IMCSzymeTM hydrolysis is consistent with reported amitriptyline and amitriptyline 

glucuronide concentrations from metabolism studies in the literature. Using a hot alkali 

treatment (2 M sodium hydroxide at 100 °C for 15 min.), Dahl-Puustinen, et al. (14) 

found free amitriptyline concentration in urine to be 0.45 ± 0.46 % of total dose, while 

amitriptyline glucuronide was found to be 8.2 ± 3.2 % of total dose. These values 

represent an average of 94.8 % glucuronidation. Other studies report that excreted 

amitriptyline N+-glucuronide is 5-10 % of the administered dose, and that free 

amitriptyline constitutes 0.2-0.4% of the dose (10). These results imply 92-98 % binding 

of glucuronide conjugates. Lastly, Rana, et al. (1) reported an average of 90 % 
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glucuronidation for amitriptyline in urine using K12 β-glucuronidase from E. coli at 52 

°C for one h.  

Our results show that the concentration of cyclobenzaprine post-hydrolysis with 

IMCSzymeTM was much higher than the post-hydrolysis cyclobenzaprine concentrations 

for the other enzymes. The IMCSzymeTM post-hydrolysis concentration of 

cyclobenzaprine was 2322.6 ± 16 ng/mL, while the concentration of free cyclobenzaprine 

in the unhydrolyzed sample was 144.4 ± 11 ng/mL, which correlates to a glucuronidation 

percentage of 93.8%. The other three enzymes had percentages that ranged from 52.0-

72.9%. The IMCSzymeTM glucuronidation percentage is comparable to the free 

cyclobenzaprine and cyclobenzaprine glucuronide ratios found in the literature. Hucker, 

et al. (11) reported 1.7 % of metabolites in urine as free cyclobenzaprine and 34.0% was 

attributed to the N+-glucuronide during the first 24 h. after administration–an average 

glucuronidation percentage of 95.2%. Between 24 and 48 h. 1.1 ± 0.6 % of metabolites in 

urine was free cyclobenzaprine, and 24.1 ± 6.9% was cyclobenzaprine glucuronide, 

corresponding to an average glucuronidation percentage of 95.6%. Hucker’s study was 

carried out over five days. Cyclobenzaprine was present for the first 48 h. while 

cyclobenzaprine glucuronide was present for all five days. High hydrolysis efficiency 

from IMCSzymeTM for cyclobenzaprine glucuronide increases sensitivity and provides a 

longer window of detection for the parent compound. 

We employed drug-free urine spiked with amitriptyline glucuronide standard to 

provide known reference samples for testing hydrolysis efficiency for the four different 

enzymes. Percent hydrolysis ranged from 6.3% with Helix pomatia in one h., to 99.3% 

with IMCSzymeTM in 30 min. This amitriptyline glucuronide standard hydrolysis study 
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was performed at a relatively low level (~1000 ng/mL) of amitriptyline glucuronide at 

which the enzymes perform optimally. However, patient samples often have a much 

greater glucuronide concentration. Thus, when comparing the post-hydrolysis 

glucuronide amounts in both the patient sample study and the glucuronide standard study, 

the three snail sourced enzymes performed more poorly. For example, Patella vulgata 

hydrolyzed approximately 30% of the amount that IMCSzymeTM did in the low 

glucuronide spiked urine. However, in patient samples, Patella vulgata only hydrolyzed 

approximately 13% of that hydrolyzed by IMCSzymeTM (based on post-hydrolysis 

amitriptyline concentrations). Use of IMCSzymeTM provided ratios of parent compound 

to glucuronide most consistent with the literature reports of average human excretion 

patterns (6, 10-11). The other three enzymes convert less amitriptyline and 

cyclobenzaprine glucuronide, even under more rigorous conditions (i.e., longer 

hydrolysis time and higher activity). This variation of hydrolysis based on enzyme source 

for N+-glucuronides is consistent with previous literature. Kowalczyk, et al., compared 

the ability of three different enzymes (bovine liver, E. coli, and Helix pomatia) to 

hydrolyze two cyclic and two acyclic quaternary ammonium-linked glucuronide 

metabolites. This work showed that the enzymes hydrolyzed the compounds to different 

degrees and adjustment of buffer pH and amount of enzyme did not achieve complete 

hydrolysis (13).  

Conclusion 

Although variation in hydrolysis of these quaternary ammonium-linked glucuronides 

with enzyme source is evident, the high degree of hydrolysis with IMCSzymeTM provides 

a reliable β-glucuronidase source for amitriptyline and cyclobenzaprine N+-glucuronide 
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hydrolysis. Hydrolysis efficiencies may vary due to many factors, including impurities in 

the enzyme solution, and/or differing binding affinities for this specific class of 

glucuronides. Large discrepancies in the hydrolysis efficiency of different enzymes is of 

great practical significance due to the potential for incomplete hydrolysis of samples. 

Insufficient hydrolysis results in limited sensitivity and positive samples may fall below 

limits of detection and/or limits of quantitation. Results presented here demonstrate that 

enzyme choice and/or optimal hydrolysis conditions should be evaluated specifically for 

N+-glucuronides. Other combinations of N+-glucuronide metabolites of different drugs 

(30+ known) and sources of β-glucuronidase may produce different hydrolysis results.  

For both amitriptyline and cyclobenzaprine, Helix pomatia, Patella vulgata, and 

Haliotis rufescens produced lower hydrolysis efficiencies for amitriptyline N+-

glucuronide and produce glucuronide percentages in patient samples well below literature 

reported human metabolism ratios of these drugs. IMCSzymeTM hydrolysis resulted in 

calculated glucuronidation percentages closer to the literature averages in half the 

hydrolysis time. Based on the data reported, we conclude that IMCSzymeTM is more 

efficient at hydrolyzing these N+-glucuronide metabolites (at the conditions tested) and 

could improve the sensitivity of the analysis of these compounds. 
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Table 1.1  

Ions selected for multiple reaction monitoring. 

Analyte Ions 

  Parent Products 

   
Amitriptyline 278 91.1, 233.0 

Amitriptyline d3 281 190.9, 233.0 

Amitriptyline glucuronide 454.2 91.1, 233.0 

Cyclobenzaprine 275.9 215.9, 231.0 

Cyclobenzaprine glucuronide 452.2 215.9, 231.1 
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Table 1.2 

Comparison of patient sample cyclobenzaprine and 

amitriptyline concentrations (ng/mL) prior to hydrolysis 

(unhydrolyzed), and after hydrolysis (hydrolyzed) in after 

use of IMCSzymeTM and Haliotis rufescens (red abalone)  

(NF = not found). 

Cyclobenzaprine 

IMCSzymeTM 

Patient Sample Unhydrolyzed Hydrolyzed 

42756 1407 4153 

48675 3618 3918 

48678 NF NF 

48735 298 2985 

49187 167 2715 

Haliotis rufescens 

Patient Sample Unhydrolyzed Hydrolyzed 

42756 29 450 

48675 214 661 

48678 NF 87 

48735 81 170 

49187 33 182 

   
Amitriptyline 

IMCSzymeTM 

Patient Sample Unhydrolyzed Hydrolyzed 

42746 7 95 

42748 117 2253 

42753 47 799 

48663 587 4175 

48665 35 1542 

   

Haliotis rufescens 

Patient Sample Unhydrolyzed Hydrolyzed 

42746 6 11 

42748 67 85 

42753 26 76 

48663 312 496 

48665 20 191 
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Table 1.3 

Comparison of peak areas for parent (cyclobenzaprine/amitriptyline) and glucuronide 

conjugates before and after hydrolysis with IMCSzyme™ as described in Sample 

Preparation (NF = Not Found, N/A = Not Applicable). 

 

 

Cyclobenzaprine 

glucuronide 
Cyclobenzaprine 

 

Patient 

Sample 
Unhydrolyzed Hydrolyzed Unhydrolyzed Hydrolyzed 

∆[Parent]/ 

∆[Glucuronide] 

42756 820983 1182 2904217.4 7440808.8 5.5 

48675 31197 NF 10290532 11237703 30.4 

48678 NF NF 930.5 2799.9 N/A 

48735 1305618 912 665501.5 9123170.9 6.5 

49187 735546 929 380286 6597721.7 8.5 

 
     

 
Amitriptyline glucuronide Amitriptyline 

 
Patient 

Sample 
Unhydrolyzed Hydrolyzed Unhydrolyzed Hydrolyzed 

∆[Parent]/ 

∆[Glucuronide] 

42746 31269 NF 5114 308288 9.7 

42748 372287 4938 480017 6824697 17.3 

42753 162822 1823 199265 3072325 17.9 

48663 696569 11806 2158599 15531667 19.5 

48665 247575 233 133743 4702824 18.5 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

19 

Table 1.4 

 

Average peak areas (n = 3) before and after hydrolysis with Helix pomatia, Haliotis 

rufescens, Patella vulgata, and IMCSzymeTM and subsequent calculated percent 

hydrolysis.  

 

Average Peak Area % Hydrolysis 

 

Am. Gluc. Amitriptyline Am. Gluc./I.S. 
 

Helix pomatia 

 Pre-Hydrolysis 126093.1 11987.6 0.293 
6.3 

Post-Hydrolysis 123873.1 34786.1 0.274 

Haliotis rufescens 

    Pre-Hydrolysis 116697.4 13315.4 0.255 
23.2 

Post-Hydrolysis 92136.2 96844.6 0.196 

Patella vulgata 

    Pre-Hydrolysis 112592.8 12715 0.244 
31.4 

Post-Hydrolysis 76658.2 137821.6 0.168 

IMCSzymeTM 

    Pre-Hydrolysis 107857.2 16285.1 0.194 
99.3 

Post-Hydrolysis 500.3 356913.9 0.001 
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Table 1.5 

Amitriptyline and cyclobenzaprine concentrations (mean  standard 

deviation, ng/mL) (n = 2) post-hydrolysis for each enzyme and the 

calculated percent glucuronidation based on concentrations of parent 

drug pre-hydrolysis (N/A = not applicable). 

Amitriptyline 

 
Total Parent Concentration % Glucuronidation 

Unhydrolyzed 88.4 +/- 2.1 N/A 

IMCSzymeTM 1892.6 +/- 21.4 95.3 

Helix pomatia 209.3 (one rep) 57.8 

Patella vulgata 245.8 +/- 2.8 64.0 

Haliotis rufescens 271.9 +/- 3.1 67.5 

Cyclobenzaprine 

  Total Parent Concentration % Glucuronidation 

Unhydrolyzed 144.4 +/- 10.9 N/A 

IMCSzymeTM 2322.6 +/- 16.1 93.8 

Helix pomatia 300.9 (one rep) 52.0 

Patella vulgata 523.7 +/- 3.6 72.4 

Haliotis rufescens 532.8 +/- 3.7 72.9 
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Figure 1.1 Structures of amitriptyline, cyclobenzaprine, and their N+-glucuronides. 
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CHAPTER 2 

ASSESSMENT OF 6-MONOACETYLMORPHINE CONVERSION DURING 

HYDROLYSIS WITH DIFFERENT β-GLUCURONIDASES 

 

Abstract  

There is potential for 6-monoacetylmorphine, a unique metabolite of heroin, to be 

converted to morphine during β-glucuronidase hydrolysis of urine samples. Loss of 6-

monoacetylmorphine from the sample under analysis is detrimental to the determination 

of heroin use. Therefore, laboratories are forced to analyze opiate positive urine samples 

before and after hydrolysis to limit false negative heroin results. The increase in samples 

to analyze propagates backlog and increases cost. 

 A collaborative study was performed to determine the degree of 6-

monoacetylmorphine (6-MAM) conversion by four commercially available β-

glucuronidase enzymes (IMCSzymeTM, Haliotis rufescens, Helix pomatia, and Patella 

vulgata) in drug free spiked urine and patient urine samples. The hydrolysis was 

performed at the specified temperature at 0, 1, and 2 h hydrolysis time intervals. 6-MAM 

and morphine levels were compared at each time interval to determine the amount of 6-

MAM loss and corresponding morphine increase. The extent of 6-MAM conversion 

varied for each β-glucuronidase from 3 to 47% over 2 h. Choosing a β-glucuronidase that 

minimizes 6-MAM conversion would help conserve valuable resources.
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Introduction 

Heroin (3,6-diacetylmorphine) was first synthesized in 1874 as an antitussive. Heroin use 

drastically increased after the Vietnam War; approximately 42% of returning service 

members reported use. Heroin eventually became a Schedule I Substance, but there are 

still approximately 980,000 “hard core” users in the United States and 1.2-1.5 million 

total users (1). Due to its illicitness and highly adverse side effects, urine drug testing is 

routine for workplace, pre-employment, pre-trial, and criminal/death investigations, and 

in other situations in which effects of impairment are observed with individuals who are 

subsequently suspected of illicit drug use. 

Due to the very short half-life of heroin (~2-8 min), detection of abuse using urine 

must rely on its metabolites (2, 3-9). Drug testing for heroin first began by monitoring for 

morphine, a known metabolite of heroin (Fig. 2.1). However, morphine is also a 

metabolite of codeine, and can also be found as a result of poppy seed ingestion, thus 

producing an increased likelihood of false positives for heroin presence. In 1994, the 

Department of Defense and the Department of Health and Human Services mandated 

testing for 6-monoacetylmorphine (6-MAM) because it is a metabolite exclusively for 

heroin (1, 10). 

 Today, analysis of opiates often includes hydrolysis via a β-glucuronidase for 

removal of the glucuronide moiety from glucuronidated metabolites for increased 

sensitivity. Unfortunately, a significant problem lies with the use of β-glucuronidase 

enzymes and their potential to convert 6-MAM to morphine. Initial 6-MAM levels in 

urine are often low as a result of a half-life of 10-40 min and a detection window of 2-24 
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h after intake (9). If 6-MAM conversion via the β-glucuronidase is significant, then 6-

MAM may fall below detection limits, and definitive heroin use may be inconclusive. To 

avoid inaccurate quantitation of 6-MAM and morphine as a result of conversion during 

hydrolysis, laboratories have to analyze both hydrolyzed and unhydrolyzed opiate 

positive samples to monitor potential 6-MAM loss and morphine increase. This extra 

sample load requires time and money. 

 It is generally understood that β-glucuronidase enzymes effectively hydrolyze 

glucuronide conjugates, which is their primary purpose in opiate positive samples. 

However, their ability to convert 6-MAM to morphine undesirably has not been 

evaluated. Herein, we compare four commercially available β-glucuronidase enzymes, 

Haliotis rufescens, Helix pomatia, Patella vulgata, and IMCSzymeTM, for their ability to 

convert 6-MAM to morphine using both controlled samples and patient samples.  

Materials and Methods 

Reagents and Standards 

Morphine, 6-Monoacetylmorphine, and codeine-d6 drug standards were purchased from 

Cerilliant Corporation (Round Rock, TX). Disposable pipette extraction (DPX) tips (type 

RP-S) were provided by DPX Technologies, LLC (Columbia, SC). IMCSzymeTM was 

obtained from Integrated MicroChromatography Systems, LLC (Columbia, SC). Haliotis 

rufescens β-glucuronidase was purchased from Campbell Science (Logan, UT). Helix 

pomatia and Patella vulgata enzymes were purchased from Sigma Aldrich (St. Louis, 

MO). All solvents were LC-MS Optima grade, from Fisher Scientific (Waltham, MA). 

Specimens 
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Spiked urine was used for direct analysis of 6-MAM conversion to morphine for all of 

the enzymes. Three urine samples positive for 6-MAM were obtained from PSO 

laboratory (Lansing, MI), all samples were anonymously coded, and used to compliment 

and confirm 6-MAM conversion in patient samples. 

All calibrators and controls were prepared in drug-free urine. The two calibration curves 

consisted of morphine and 6-MAM at 0, 10, 50, 100, 500, and 1000 ng/mL. One 

calibration curve was prepared with the buffer solution appropriate for Haliotis rufescens, 

Helix pomatia, and Patella vulgata (pH 4.5) with sucrose in place of the enzyme. The 

other calibration curve was prepared with IMCSzymeTM and its appropriate buffer at pH 

7.4. Quality control samples were also prepared using drug-free urine. Six total quality 

controls positive for 6-MAM were used, three at 10 ng/mL and three at 100 ng/mL. 

Hydrolysis and Sample Preparation 

Hydrolysis of 200 µL urine was performed by adding 100 µL of the hydrolysis solution 

containing hydrolysis buffer (0.2 M potassium phosphate buffer at pH 7.4 for 

IMCSzymeTM) and 1M sodium acetate buffer at pH 4.5 for the other three enzymes, in 

addition to a β-glucuronidase and codeine-d6 internal standard at a ratio of 2:2:1, 

respectively. Samples were heated and mixed at 55 C using a Labnet VorTempTM 56 

Benchtop Incubator/Shaker (Woodbridge, NJ). Subsequently, 400 µL acetonitrile was 

added to each sample, and the solution was extracted using DPX-RP-S tips. This 

extraction results in separation of acetonitrile (containing drugs of interest) from water 

(containing salts and many interferences), after which 50 µL of the top acetonitrile layer 

was transferred to a 96-well plate. The solvent was evaporated and reconstituted with 200 
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µL of water/methanol (95/5). Hydrolysis with the 3 other enzymes was performed 

similarly, except the hydrolysis was carried out at 55C using NaOAc buffer (167 mM, 

pH of 4.5).  

For the controlled samples, the 6-MAM and morphine concentrations were 

monitored at time 0, after 1 h of incubation, and after 2 h of incubation with each 

enzyme. For the patient samples, each sample was hydrolyzed according to the 

manufacturer specified hydrolysis time, which was 30 min for IMCSzymeTM and 2 h for 

the other three enzymes. 

Instrumental Analysis 

Analyses were performed using a Thermo TSQ Vantage triple quadrupole system 

(Milwaukee, WI) with an Agilent 1100 HPLC (Santa Clara, CA) equipped with an 

Agilent Poroshell EC-C18 column (3.0 × 50 mm, 2.7 µm). Sample injections of 20 µL 

were made using a 6 port (0.25 mm) Cheminert C2V injection valve (Houston, TX) 

incorporated on a dual rail GERSTEL MPS autosampler (Linthicum, MD).  

The mobile phase used 0.1% formic acid in water (mobile phase A), and 0.1% 

formic acid in acetonitrile (mobile phase B) with a gradient from 95% A for 0.5 min, 

ramped to 5% A at 3 min, held at 5% A at 3.5 min, and then changed back to 95% A, for 

a run time of 6 min. The eluent was diverted to waste during the intervals of 0-0.75 and 

4.5-6 min after the injection. The column flow rate was 0.4 mL/min. Electrospray voltage 

was 4000 V, and gas pressure was 60 psi. The selected MRMs were 286.1 to 152.1/165.1 

(morphine), 462.0 to 285.8/200.89 (morphine glucuronide), 306.0 to 217.9/164.9/182.9 

(codeine-d6), and 327.9 to 165/201.9 m/z (6-MAM). 
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Results 

Hydrolysis of Spiked 6-MAM Samples 

Four enzymes were used to individually hydrolyze a previously drug-free urine sample 

spiked with 6-MAM for 0, 1, and 2 h. Nine samples were prepared for each enzyme, 

three samples for each length of hydrolysis. Therefore, any conversion could be 

monitored as a function of time. Of these four enzymes, three (Haliotis rufescens, Helix 

pomatia, and Patella vulgata) resulted in a decrease of 6-MAM and simultaneous 

increase in morphine after just 1 h.  

The comparison of chromatograms (Figure 2.2) clearly shows that the Helix 

pomatia enzyme converts 6-MAM to morphine during the hydrolysis process. The 

amount of conversion appears to have a roughly linear relationship with length of 

hydrolysis. Over the course of two h. of hydrolysis, 6-MAM area counts decreased by 

half and morphine area counts reached a high of almost 11,000. 

Figure 2.3 shows data from the analysis of 6-MAM spiked urine samples before 

and after hydrolysis with all four of the enzymes: IMCSzymeTM, Patella vulgata (Sigma 

Aldrich, St. Louis, MO), Haliotis rufescens (Campbell science), and Helix pomatia 

(Sigma Aldrich). The concentration of 6-MAM stayed relatively constant when using 

IMCSzymeTM and approximately 10 ng/mL of morphine was detected after two hours. 

Because IMCSzymeTM only requires 30 min for glucuronide hydrolysis, any further 

morphine production would be minimized. The other enzymes come with 

recommendations of two hours for hydrolysis, and significant conversion to morphine 

occurs during that time. For example, Haliotis rufescens converted approximately 10% of 
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the starting 6-MAM concentration and produced about 28 ng/mL of morphine after two h 

of incubation. Patella vulgata converted over 30% of the 6-MAM and 75 ng/mL of 

morphine was detected after two h. Most severely, incubation for two h with Helix 

pomatia resulted in 47% loss in 6-MAM and a morphine level of 120 ng/mL. The 

concomitant 6-MAM loss and morphine increase suggests that the enzyme is responsible 

for the conversion. 

Hydrolysis of 6-MAM Positive Patient Samples 

The hydrolysis procedure used for the control samples was repeated with patient samples 

positive for 6-MAM. The exception being that these samples were hydrolyzed using the 

manufacturer specified hydrolysis time for each enzyme. (Haliotis rufescens, Helix 

pomatia, and Patella vulgata: 2 h; IMCSzymeTM: 30 m). Each patient sample was 

analyzed prior to hydrolysis (“Unhydrolyzed”) and was also separated into four different 

aliquots to be hydrolyzed with each of the four enzymes. Table 2.1 illustrates the 

significant conversion of 6-MAM to morphine in patient samples. The increase in 

morphine is unreliable as an indicator for the 6-MAM conversion due to the probable 

presence of morphine glucuronides prior to hydrolysis; however, the 6-MAM 

concentration should not fluctuate as a result of enzyme hydrolysis. Any variation of 6-

MAM concentration can thus be attributed to enzyme conversion as shown with the 

controlled samples. In the case of Helix pomatia hydrolysis of patient sample 3741, 

almost half of the initial detected 6-MAM is lost in the time necessary for the enzyme to 

hydrolyze morphine glucuronides (two h). Both Patella vulgata and Haliotis rufescens 

also showed significant conversion to morphine, while IMCSzymeTM converted very 

little. Patient sample 3637 obviously contained morphine and morphine glucuronides, but 
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reduction in 6-MAM was still apparent when Helix pomatia and Patella vulgata enzymes 

were used. Lastly, in patient sample 3627, 6-MAM concentrations increased with some 

of the enzymes which could possibly be attributed to the presence of acetate buffer as 

noted by Heideloff, et al. (11). However, notable morphine increases for Helix pomatia, 

Patella vulgata, and Haliotis rufescens occurred.  

Conclusion 

Significant conversion of 6-MAM to morphine occurs with the use of Helix pomatia, 

Patella vulgata and Haliotis rufescens enzymes for morphine glucuronide hydrolysis. 

This conversion is seen in the quality control samples as well as the patient samples. 

Depletion of 6-MAM to morphine using these enzymes would reduce the likelihood of 

detecting conclusive heroin use. IMCSzymeTM demonstrates efficient hydrolysis of 

morphine glucuronide with negligible conversion of 6-MAM to morphine. While some 

conversion may occur after two h of incubation, only 30 min is needed for optimal 

morphine glucuronide hydrolysis with IMCSzymeTM. Conversion of 6-MAM to 

morphine should be considered when using β-glucuronidase hydrolysis for analysis of 

heroin metabolites. 
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Figure 2.1. Metabolic pathway of heroin. 
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Figure 2.2. Morphine and 6-MAM intensities after Helix pomatia hydrolysis for 0 hours 

(A), 1 hour (B), and 2 hours (C) of 6-MAM spiked drug-free urine. 
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Figure 2.3. Concentration (ng/mL), of 6-MAM and morphine after 0, 1, and 2 h. of 

incubation with the respective enzyme in previously drug free urine spiked with 6-MAM.  
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Table 2.1  

Concentration (ng/mL) of 6-MAM and morphine in patient 

samples, 3741, 3637, and 3627, after hydrolysis of 

respective enzyme compared to the unhydrolyzed sample. 

3741 

Hydrolysis 6-MAM Morphine 

Unhydrolyzed 91.3 0 

IMCSzymeTM 88.6 1.8 

Helix pomatia 37.3 41.1 

Patella vulgata 71.0 15.8 

Haliotis rufescens 58.8 14.3 

3637 

Hydrolysis 6-MAM Morphine 

Unhydrolyzed 781.7 4006.3 

IMCSzymeTM 743.1 44042.5 

Helix pomatia 424.4 62093.7 

Patella vulgata 522.5 51581.1 

Haliotis rufescens 801.6 47031.6 

3627 

Hydrolysis 6-MAM Morphine 

Unhydrolyzed 57.2 0 

IMCSzymeTM 65.0 4.3 

Helix pomatia 73.4 48.6 

Patella vulgata 103 27.4 

Haliotis rufescens 103.4 10.2 
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CHAPTER 3 

INNOVATIVE METHOD FOR MONITORING BENZODIAZEPINES IN MECONIUM: 

VALIDATION AND INTERLABORATORY COMPARISON 

 

Abstract 

A novel method for the quantitation of ten commonly prescribed benzodiazepines and 

metabolites (7-aminoclonazepam, clonazepam, α-hydroxyalprazolam, alprazolam, 

nordiazepam, diazepam, midazolam, oxazepam, lorazepam, and temazepam) in 

meconium was developed using enzymatic hydrolysis, WAX-S dispersive pipette 

extraction (DPX) tips, and liquid chromatography tandem mass spectrometry (LC-

MS/MS). The method requires only 25 mg of meconium, limits pre-hydrolysis 

preparation to a dilution with water, and uses DPX tips for a quick (< 60 s) and effective 

sample clean-up post-hydrolysis. Calibrations were linear over a range of 5 ng/g to 1000 

ng/g with correlation coefficients above 0.99 for each benzodiazepine. All intraday, 

interday, and total imprecision measures were below 13 % RSD. A blind study with a 

corresponding laboratory based on 35 positive patient samples produced an R2 value of 

0.9206 for quantitative results, and perfect agreement for qualitative results
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Introduction 

Benzodiazepines are a schedule IV class of psychotropic drugs commonly used for their 

depressant properties (1). Benzodiazepines are one of the most prescribed drug classes to 

women of reproductive age and to pregnant women (2, 3). However, the US Food and 

Drug Administration (FDA) classifies most benzodiazepines as pregnancy category “C”, 

which have shown adverse effects on animal fetus, but there are no studies in humans, or 

“D”, which have shown conclusive evidence of negative effects on human fetus (4). 

Benzodiazepines have the ability to cross the placenta and accumulate in the fetus, 

potentially causing adverse effects such as cleft palates and withdrawal symptoms (2, 4-

6). Maternal prescription, prenatal prescriptions, misuse of non-prescribed medications 

and administration during birth to the mother and/or to the newborn are possible sources 

of fetal exposure to benzodiazepines. Thus, detection of benzodiazepine use is critical 

both for monitoring compliance and misuse/abuse by pregnant women, and for 

identifying potential health risks and treatment options for exposed newborns. 

Meconium is the black, tarry stool of a newborn passed 1-5 days after birth. 

Meconium is an ideal toxicological matrix for identifying in utero drug exposure because 

it acts as a repository for xenobiotics including drugs of abuse from the 12-16th week of 

gestation until birth (7-9). Drugs accumulate in the meconium as a function of fetal 

swallowing of bile or urine and fetal biliary excretion. Once deposited, the meconium and 

drugs therein remain fixed until passed after birth, although the potential for drug 

degradation has been noted (7). 
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Due to its large window of detection and the easy, non-invasive collection, 

meconium has become a matrix of choice for determining fetal exposure to drugs (10). 

However, analysis of meconium is difficult. Meconium is a complex heterogeneous 

mixture composed of epithelial cells, mucus, lanugo, bile acids and salts, sugars, lipids, 

proteins, pancreatic and intestinal secretions, and more (1, 7, 9). As a result of this 

complexity, use of meconium as a biological matrix to monitor drug use by liquid 

chromatography/mass spectrometry is problematic because of the potential for significant 

matrix effects. Reducing matrix effects requires sample preparation methods that can 

extract target analytes from the endogenous biological interferents, a task that is often 

time consuming and labor intensive. Further, benzodiazepines are extensively 

metabolized, producing many glucuronide conjugates. Enzymatic hydrolysis with β-

glucuronidases is employed to convert glucuronides back to the free parent compound for 

improved detection (11). Unfortunately, enzyme hydrolysis adds time and complexity to 

the analysis of meconium. The objective of our present research is to minimize both 

meconium matrix effects and sample preparation time by using minimal sample, 

performing hydrolysis in situ, preparing samples with dispersive pipette extraction (DPX) 

tips, and analyzing benzodiazepines with liquid chromatography tandem mass 

spectrometry.  

The method was evaluated for imprecision (total, interday, and intraday), 

accuracy, extraction recovery, and linearity, and limits of detection and quantitation were 

estimated for each of the ten benzodiazepines and/or metabolites analyzed (7-

aminoclonazepam, clonazepam, α-hydroxyalprazolam, alprazolam, nordiazepam, 

diazepam, midazolam, oxazepam, lorazepam, and temazepam). A blind study of 35 
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patient samples was performed with a collaborating lab (ARUP Laboratories, Salt Lake 

City, UT) that independently determined benzodiazepine concentrations using alternative 

β-glucuronidase hydrolysis, solid phase extraction, and LC-MS/MS.  

There are a few publications regarding the analysis of benzodiazepines in 

meconium using LC-MS/MS (1, 9, 12), and one paper that reports analysis of meconium 

for nicotine, cocaine, and metabolites using DPX tips for sample preparation (13). The 

objective of this study was to develop and validate a simple and reliable method for the 

analysis of benzodiazepines in meconium using LC-MS/MS. 

Experimental 

Reagents and Standards.  

Drug standards and deuterated internal standards (7-aminoclonazepam, clonazepam, α-

hydroxyalprazolam, alprazolam, nordiazepam, diazepam, midazolam, oxazepam, 

lorazepam, temazepam, 7-aminoclonazepam-d4, midazolam-d4, oxazepam-d5, lorazepam-

d4, clonazepam-d4, temazepam-d5, and diazepam-d5) were purchased from Cerilliant 

Corporation (Round Rock, TX). Fisher Scientific (Waltham, MA) Optima LC/MS grade 

acetonitrile and formic acid were used.  

DPX WAX-S tips were purchased from DPX Technologies, LLC (Columbia, 

SC). IMCSzymeTM was obtained from Integrated MicroChromatography Systems, LLC 

(Columbia, SC). Blank meconium, used for all controls and calibrators, was donated by 

ARUP Laboratories (Salt Lake City, UT) and previously found to be negative using 

established preliminary and confirmatory methods (10). Patient samples for the blind 
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study (also donated by ARUP) had been previously analyzed and all patient identification 

was removed prior to donation. 

Instrumental Analysis.  

Analyses were performed using a Thermo TSQ Vantage triple quadrupole system 

(Thermo Fisher Scientific Inc, Waltham, MA) with an Agilent 1100 HPLC system 

(Agilent Technologies, Santa Clara, CA) equipped with an Agilent Poroshell EC-C18 

column (3.0 x 50 mm, 2.7 µm). Sample injections of 20 µL were made using a 6 port 

(0.25 mm) Cheminert C2V injection valve incorporated on a dual rail MPS autosampler 

(Gerstel Inc., Linthicum Heights, MD). 

The mobile phase was composed of 0.1% formic acid in water (A) and 0.1% 

formic acid in acetonitrile (B). The initial gradient was 70% A for 0.25 min, which then 

ramped to 5% A at 5 min. The gradient remained at 5% A for 1 min, and then switched 

back to 70% A for a total run time of 6.5 min. The eluent was diverted to waste during 

the intervals of 0-0.5 and 5-6.5 min after injection. The column flow rate was 0.4 

mL/min. The electrospray voltage and the gas pressure were set at 4000V and 60 psi, 

respectively. Selected multiple reaction monitoring transitions (MRMs) and retention 

time windows are listed in Table 3.1. 

Methods 

Sample Preparation.  

Meconium samples were weighed (25 mg) and transferred into 2 mL micro centrifuge 

tubes (VWR, Radnor, PA) containing 215 µL of water from an 18.2 MΩ, Millipore 
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(Billerica, MA) Direct-Q 3 Ultrapure Type 1 water purification system. The mixture was 

vortexed using a Fisher Scientific (Waltham, MA) Vortex-Genie at speed 10 until 

homogenously distributed/dissolved in the water. A solution consisting of 75 L of pH 

7.5, 0.1 M potassium phosphate buffer, 50 L of IMCSzymeTM β-glucuronidase enzyme 

(50,000 units/mL), and 10 L of 500 ng/mL internal standards (7-aminoclonazepam-d4, 

midazolam-d4, oxazepam-d5, lorazepam-d4, clonazepam-d4, temazepam-d5, and 

diazepam-d5) in water was added. This mixture was then incubated for 1 h at 55°C using 

a Labnet VorTempTM 56 Benchtop Incubator/Shaker (Woodbridge, NJ). Following 

hydrolysis, 600 L of acetonitrile was added to the mixture to precipitate proteins. This 

mixture was vortexed for ~20 s and centrifuged for 5 min using a Becton Dickinson 

(Franklin Lakes, NJ) Clay Adams brand Compact II Centrifuge. The supernatant (~950 

μL) was removed and placed into a clean round bottom shell glass vial. The solution was 

taken in and out of a DPX-WAX-S tip (20 mg 55-65 μm resin/40 mg salt) twice. This 

step separates the acetonitrile and water layers and facilitates transfer of analytes into the 

acetonitrile supernatant, and binds matrix components to the resin to reduce matrix 

effects.   The top acetonitrile layer (~500 μL) was then transferred to a new vial suitable 

for solvent evaporation. Solvent evaporation was performed with a Sybron 

ThermolyneTM Dri-Bath (Barnstead/ Thermolyne Corp., Dubuque, IA) at temperature 

setting 8 with N2 gas flow.  After evaporation, the residue was reconstituted in 100 L of 

10/90 methanol/water (v/v) and analyzed by LC-MS/MS. 
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Results and Discussion 

Because meconium is available in a finite quantity, minimizing sample mass required for 

analysis is desirable to conserve patient specimens for other analyses. Past methods have 

used 1 g of meconium and required pre-hydrolysis preparation including mechanical 

homogenization and 15 min of centrifugation (1). Our methodology uses 25 mg of 

meconium and requires dilution with water and vortexing until homogenized pre-

hydrolysis. Hydrolysis is performed with IMCSzymeTM, which is a genetically 

engineered β-glucuronidase enzyme optimized for rapid hydrolysis. Morris, et. al. 

previously reported use of IMCSzymeTM for complete hydrolysis of benzodiazepines in 

urine in less than 5 min (14). IMCSzymeTM was chosen because it hydrolyzes 

benzodiazepines efficiently, and because it is highly purified and will not complicate the 

matrix further. Performing the hydrolysis in situ was an important goal to minimize 

overall pre-hydrolysis preparation and to avoid protein precipitation prior to hydrolysis. 

Protein precipitation can trap analytes of interest in clusters of folded proteins, often 

discarded or out of reach of enzyme, reducing the availability of target compounds. If 

protein precipitation were performed prior to hydrolysis, an additional solvent 

evaporation step would have been required because β-glucuronidases have poor 

performance in high organic content solutions. Thus, we proposed hydrolysis with β-

glucuronidase in situ followed by protein precipitation with acetonitrile for increased 

efficiency. 

Following hydrolysis and protein precipitation, the supernatant was transferred to 

a clean vial, and the solution was extracted using dispersive pipette extraction (DPX). 
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DPX is a solid phase extraction method that incorporates loosely contained sorbent in a 

pipette tip between a frit at the narrow bottom end of the tip and a barrier at the wider top 

end. By using loose sorbent, DPX tips increase surface area available for analyte contact, 

which produces high extraction efficiency. The tips allow for simple and fast clean-up 

methods, typically taking less than 60 s to complete. In summary, a “dirty” solution is 

aspirated into the tip, then air drawn into the tip (to effect vigorous mixing of sample 

solution and sorbent), and a clean solution is eluted. The process permits rapid 

equilibration and selective retention of the matrix components, leaving the analytes of 

interest in the clean eluted solution. In this case, using WAX-S tips, the clean solution 

contains 2 layers, with the upper acetonitrile layer containing the analytes with high 

recovery. 

Method Validation.  

Extraction recovery, ion suppression, imprecision (interday, intraday, and total), 

analytical measurement range, and limits of detection and quantitation were evaluated to 

validate the performance of the method.  

Extraction recovery was estimated by comparing three replicate extractions of 

fortified samples to three replicate matrix matched (analyte spiked post-extraction) 

samples. Three blank meconium samples were fortified with the ten benzodiazepine 

standards and then analyzed according to the above procedure. Three blank meconium 

samples were also analyzed according to the same procedure, but were fortified just 

before solvent evaporation. The samples were fortified to theoretically have the same 

final concentration as the pre-fortified samples (i.e., accounting for the total dilution 
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factor). These samples are referred to as “matrix matched” samples and represent 100% 

recovery. Extraction recovery was calculated by taking the average response in the pre-

fortified samples, dividing by the average response in the matrix matched samples for 

each benzodiazepine, and expressed as a percentage. Ion suppression was similarly 

calculated, but the matrix matched samples were compared to three “neat” replicates. The 

neat replicates did not contain any meconium and were simply the final solvent 

composition (100 µL of 10% methanol in water (v/v)) spiked to the same concentration 

as the matrix matched samples. The average response in the neat sample was then 

compared to the average response of the matrix matched for each benzodiazepine, and 

then multiplied by 100 to express ion suppression as a percent. The recovery and ion 

suppression percentages for the benzodiazepines of interest are listed in Table 3.2. All 

recoveries were greater than 50% (55% to 81%) and percent ion suppression did not 

exceed 45% for any analyte, with 7 of the 10 benzodiazepines having less than 20% ion 

suppression. 

Linearity was assessed by analyzing samples at ten concentration points (5, 10, 

25, 50, 75, 100, 250, 500, 750, 1000 ng/g) with four replicates at each point. The 

correlation coefficients and subsequent linear regression analysis equations for each 

benzodiazepine are shown in Table 3.3. The calibrations for all compounds produced 

coefficients of determination (R2) above 0.994 with slopes ranging from 0.9948 to 

1.0414. Limit of detection (LOD) and the limit of quantitation (LOQ) estimates for each 

benzodiazepine are also listed. LOD was calculated as 3.33 times the standard deviation 

of four replicate measurements at the concentration of the lowest non-zero calibrator (5 

ng/g) divided by the slope of the calibration line. The LOQ was calculated as 10 times the 
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same standard deviation divided by the slope of the calibration line. The LODs ranged 

from 0.5 to 2.1 ng/g, and the LOQs ranged from 1.5 to 6.4 ng/g. For ease of use, the LOD 

and LOQ were administratively set to 5 ng/g and 10 ng/g, respectively. 

A precision study was performed over three days with three replicate samples at 

concentrations of 100 ng/g and 1000 ng/g each day, for a total of nine samples at each 

concentration. The average intraday imprecision (expressed as percent relative standard 

deviation, %RSD) was based on the average of each day’s concentration standard 

deviation. The intraday precision did not exceed 10% RSD. The average interday 

imprecision was 10.2 % or lower for each benzodiazepine at each concentration. Lastly, 

the total imprecision, which is the square root of the sum of the squares of the interday 

and intraday imprecision at each concentration for each benzodiazepine, ranged from 2.3 

to12.2 % RSD. Values of zero for the interday imprecision represent a negligible 

imprecision when compared to the intraday imprecision, thus total imprecision is simply 

equal to the intraday imprecision (15).  

Case Samples and Blind Study.  

Meconium case samples that had been previously analyzed were provided by ARUP. 

These patient samples (35 in total, with 89 positive benzodiazepines) were analyzed 

using the lab’s existing validated meconium method involving a mechanical 

homogenization process, enzyme hydrolysis (post protein precipitation), solid phase 

extraction, and a different LC-MS/MS system than used in our work, similar to that 

described previously (16). These patient samples were analyzed in our laboratory in 

triplicate by our method delineated above. Relative standard deviations (% RSD) for the 
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measurements of each benzodiazepine in each set of patient samples ranged from 0.04% 

to 40% with an average %RSD of 8%. 

The correlation coefficient for measured benzodiazepine concentrations 

determined by our method against the previously estimated results determined by the 

corresponding lab’s results was 0.9206 (Figure 3.2). Additionally, every benzodiazepine 

found in each patient sample by ARUP was also found by our method (100% qualitative 

correlation). Further observations concerning individual benzodiazepines are also 

possible. Seven out of the ten individual analytes of interest exhibited great correlation 

with R2 > 0.93. The three analytes that fell below an R2 of 0.93 were alpha-

hydroxyalprazolam (0.8206), alprazolam (0.8178), and 7-aminoclonazepam (0.4387). 7-

aminoclonazepam likely had a low correlation due to a low number of positive samples 

(n = 6), but a recent presentation suggests it may also be due to degradation during the 

time between ARUP analysis and our analysis (17).  The presentation reported that 7-

aminoclonazepam decreased by 48% at 4 °C after storage for two weeks. Lower 

correlation of alpha-hydroxyalprazolam and alprazolam may be affected by the lack of 

respective internal standard. Seven out of ten of the analytes had slopes ranging from 

0.91-1.3, indicating that our results were not systematically higher or lower than the 

ARUP previously reported values. The overall success of this blind study validates the 

application of this quick and easy method compared to a more intricate, lengthy method. 

Conclusions 

The method reported here is based on simple vortexing for sample homogenization, use 

of fast and reliable IMCSzymeTM for hydrolysis in situ that reduces hydrolysis time to 
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one hour, and use of a single WAX-S DPX tip for rapid sample clean-up. The final 

extract consists of a clean and analyte rich acetonitrile solution, which is solvent 

evaporated and reconstituted in 10% methanol. The method minimizes sample 

preparation and solvent evaporation times. LODs and LOQs were below 5 and 10 ng/g, 

respectively. Coefficients of determination for the calibrations with each benzodiazepine 

were above 0.99 for the ten-point calibration (5-1000 ng/g) with four replicates at each 

point. Results from 35 positive patient samples using our method, compared to the results 

from our collaborating laboratory using a different analytical protocol, produced an 

overall correlation of 0.9206. While the percent recovery and ion suppression outcomes 

were not ideal, they are acceptable given the difficult and complex nature of meconium 

and the level of precision, linearity, and sensitivity achieved by the method. DPX tip 

extraction and the straightforward nature of the method also enables automation of the 

sample preparation and analysis protocol. The success of the blind study indicates that 

analytical approach espoused herein, consisting of a combination of fast hydrolysis 

coupled with a simple clean-up scheme, offers an effective analytical approach for the 

analysis of benzodiazepines in meconium. 
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Table 3.1  

Mass transitions and retention time windows for the ten benzodiazepines and 

deuterated internal standards. 

Compound 
Ion mass, 

m/z 

Quantifier, 

m/z 

Qualifier, 

m/z 

Retention time 

(min) 

7-Aminoclonazepam 285.8 249.90 221.90 1.28-1.32 

Midazolam 325.7 290.80 208.80 3.23-3.29 

α-hydroxyalprazolam 324.7 296.84 175.94 3.49-3.53 

Alprazolam 308.8 164.94 280.85 3.65-3.68 

Oxazepam 286.7 240.94 268.81 3.66-3.68 

Nordiazepam 270.7 139.97 164.93 3.71-3.75 

Lorazepam 321.0 274.78 302.77 3.73-3.78 

Clonazepam 315.7 269.80 213.90 3.78-3.81 

Temazepam 300.7 254.86 282.81 3.99-4.00 

Diazepam 284.7 153.97 192.97 4.18-4.20 

7-Aminoclonazepam-d4 289.8 121.00 225.90 1.26-1.30 

Midazolam-d4 329.7 294.90 247.70 3.23-3.28 

Oxazepam-d5 291.7 245.87 287.82 3.65-3.67 

Lorazepam-d4 328.9 278.80 306.70 3.72-3.75 

Clonazepam-d4 319.7 273.80 217.80 3.78-3.81 

Temazepam-d5 305.7 259.87 287.82 3.96-3.99 

Diazepam-d5 289.7 153.99 197.96 4.14-4.18 
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Table 3.2 
Mean percent recovery and mean percent ion suppression for 

benzodiazepines. 

Compound % Recovery % Ion Suppression 

Nordiazepam 60.33 13.21 

Diazepam 54.97 27.19 

7-Aminoclonazepam 64.23 38.20 

Oxazepam 54.51 2.00 

Temazepam 63.57 19.73 

Alprazolam 80.74 6.54 

Clonazepam 68.46 12.98 

Lorazepam 56.32 1.69 

α-hydroxyalprazolam 80.95 6.03 

Midazolam 77.95 42.82 
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Figure 3.1 A chromatogram of a 100 ng/g spiked meconium sample analyzed according 

to the same procedure. Peak identities are: (1) 7-aminoclonazepam, (2) Midazolam, (3) α-

hydroxyalprazolam, (4) Oxazepam, (5) Alprazolam, (6) Nordiazepam, (7) Lorazepam, (8) 

Clonazepam, (9) Temazepam, and (10) Diazepam. 
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Table 3.3 
Linear regression results and limits of detection and quantitation. 

Compound R2 Equation 
LOD 

(ng/g) 

LOQ 

(ng/g) 

7-Aminoclonazepam 0.9997 y = 0.0048x - 0.0047 1.5 4.4 

Midazolam 0.9965 y = 0.0043x - 0.0430 0.5 1.5 

α-hydroxyalprazolam 0.9948 y = 0.0003x - 0.0008 1.8 5.3 

Alprazolam 0.9953 y = 0.0038x - 0.0055 1.6 4.8 

Oxazepam 0.9956 y = 0.0031x - 0.0123 1.2 3.7 

Nordiazepam 0.9971 y = 0.0037x + 0.0028 1.9 5.8 

Lorazepam 0.9979 y = 0.0014x + 0.0043 2.1 6.4 

Clonazepam 0.9993 y = 0.0051x - 0.0048 1.4 4.2 

Temazepam 0.9950 y = 0.0039x - 0.0163 0.6 1.8 

Diazepam 0.9984 y = 0.0059x - 0.0213 0.7 2.1 
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Table 3.4 

Average within-run precision, average between-run precision, and total precision 

for two concentrations (100 and 1000 ng/g) expressed in percent relative standard 

deviation (%RSD). 

  
Within Run 

Imprecision 

Between Run 

Imprecision  
Total Imprecision 

Compound 100 1000 100 1000 100 1000  

7-Aminoclonazepam 3.9 1.8 0.0 2.6 3.9 3.2 

Midazolam 6.4 1.3 0.0 1.6 6.4 2.0 

α-hydroxyalprazolam 11.8 10.0 2.9 0.0 12.2 10.0 

Alprazolam 5.7 4.5 0.0 1.5 5.7 4.7 

Oxazepam 3.3 3.1 2.0 2.5 3.8 3.9 

Nordiazepam 6.5 4.8 7.9 2.7 10.3 5.5 

Lorazepam 5.0 2.5 3.8 10.0 6.3 10.4 

Clonazepam 1.9 2.5 1.2 1.2 2.3 2.8 

Temazepam 5.0 2.4 0.0 3.4 5.0 4.2 

Diazepam 4.0 3.2 0.7 0.0 4.1 3.2 
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Figure 3.2. Correlation of positive patient sample results from the proposed method and 

the ARUP method. The fitted straight line is y = 0.9816x + 6.5126, with a coefficient of 

determination of R2 = 0.9206. 
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CHAPTER 4 

ANALYSIS OF Δ9-TETRAHYDROCANNABINOL AND ITS TWO MAIN 

METABOLITES IN WHOLE BLOOD USING AUTOMATED DISPERSIVE PIPETTE 

EXTRACTION AND LC-MS/MS 

 

Abstract 

An analytical procedure was developed and validated for the analysis of Δ9-

tetrahydrocannabinol (THC) and its metabolites (11-hydroxy-Δ9-tetrahydrocannabinol 

(11-OH-THC) and 11-nor-9-carboxy- Δ9-tetrahydrocannabinol (THC-COOH)) in whole 

blood using LC-MS/MS. An automated dispersive pipette extraction (DPX) using a 

unique liquid-liquid solid-phase extraction was employed on a Hamilton NIMBUS96 

platform to extract the analytes of interest. Extraction time was less than 3 min with a 

total LC-MS/MS run time of 5.6 min. The method was fully validated in accordance with 

the Scientific Working Group of Forensic Toxicology (SWGTOX) guidelines for limit of 

detection (0.22 ng/mL THC, 0.25 ng/mL 11-OH-THC and 0.62 ng/mL THC-COOH), 

limit of quantitation, carryover, extraction efficiency (93-100%), matrix effects (8-30%), 

linearity (0.5-50 ng/mL), within and between-run precision (CV <7.5%), and accuracy 

(mean relative bias <5%). An interlaboratory comparison of patient samples in 

collaboration with a local forensic toxicology lab method resulted in a correlation 

coefficient of 0.9901 between results from the two labs.
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Introduction 

Cannabis is the most widely abused illicit drug in the US. According to the National 

Survey on Drug Use and Health, 18.9 million people admitted to marijuana use in the 

previous month. Between 2007 and 2012, the rate of marijuana use rose from 5.8% to 

7.3% (1). As the use of marijuana increases, it becomes more prevalent in clinical and 

forensic case work, particularly in impaired driving cases. After legalization in 

Washington State in 2015, the percent of cannabinoid positive cases went from 28 to 

40% (2). Colorado also reported an increase in cannabinoid positive case samples after 

legalization in 2012 (3). The National Highway Traffic Safety Administration (NHTSA) 

reported in 2007, that 8.6% of nighttime drivers tested positive for cannabinoids  a rate 

almost four times higher than those with blood alcohol levels equal to or above 0.8 g/L 

(4). Recent use of marijuana is associated with 2-6 times increased risk of crashing while 

driving, depending on dose, than when unimpaired (5). From 1992 to 2009, 20,000 US 

drivers involved in fatal car crashes tested positive for cannabinoids (5). 

Δ9-Tetrahydrocannabinol (THC) is the main psychoactive ingredient in cannabis 

(marijuana). After smoking, THC is rapidly absorbed into the blood stream. THC is 

metabolized into two main metabolites, the active metabolite, 11-hydroxy-Δ9-

tetrahydrocannabinol (11-OH-THC) and the inactive metabolite, 11-nor-9-carboxy- Δ9-

tetrahydrocannabinol (THC-COOH). THC affects mental processes, ranging from altered 

perception of time and distance to hallucinations (6), owing to the risk of use while 

driving. Peak THC effects are 20-30 min after use, when blood levels are the highest, 

levels are low after 3 h and become baseline after 4 h (7, 8). Blood is routinely the matrix 

of choice when determining drug or alcohol impairment. Colorado and Washington states 
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have both legalized recreational marijuana use and adopted a 5 ng/mL THC blood 

concentration as the driving under the influence of drugs (DUID) level (3, 9). 

Unfortunately, blood draws are not done at the “scene” and can take up to hours after the 

time of the incident. DUI data shows that 42 and 70% of all cannabinoid-positive traffic 

arrests tested below 5 ng/mL THC in blood. Detection and quantification of THC and its 

metabolites in blood at low levels (< 5ng/mL) are imperative in determining time of THC 

use and potential impairment. 

 Previously published LC-MS/MS methods for the analysis of THC and its 

metabolites in blood require at least 0.25 mL of blood (10), but most require 0.5 mL or 

more (6, 11-16) or derivatization (17) to achieve necessary sensitivity. These methods 

often necessitate tedious sample preparation, e.g., use of SPE columns (11-13, 15-16), 

intricate online SPE (6), or liquid-liquid extraction (10, 14). Our aim was to develop a 

method that minimizes sample volume and automates a fast and easy dispersive pipette 

extraction procedure to obtain sensitive quantitation of THC, 11-OH-THC and THC-

COOH in whole blood using LC-MS/MS. 

Experimental Methods 

Reagents and Standards.  

All drug standards (Δ9-Tetrahydrocannabinol, 11-hydroxy-Δ9-tetrahydrocannabinol, 11-

nor-9-carboxy- Δ9-tetrahydrocannabinol, Δ9-Tetrahydrocannabinol-d3, and 11-nor-9-

carboxy- Δ9-tetrahydrocannabinol-d3) were purchased from Cerilliant Corporation 

(Round Rock, TX). DPX WAX-S tips were purchased from DPX Technologies, LLC 

(Columbia, SC).  
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Instrumental Analysis.  

Analyses were performed using a Thermo TSQ VantageTM triple quadrupole mass 

spectrometer (Milwaukee, WI) coupled to an Agilent 1260 Series HPLC (Agilent 

Technologies, Santa Clara, CA) equipped with an Agilent Poroshell EC-C18 column (3.0 

× 50 mm, 2.7 µm) with column temperature held at 50 °C. Sample injections of 20 µL 

were made using a 6 port (0.25 mm) Cheminert C2V injection valve (Houston, TX) 

incorporated on a dual rail GERSTEL MPS autosampler (Linthicum, MD). 

The mobile phase was composed of 0.1% formic acid in water (A) and 0.1% formic acid 

in methanol (B). The gradient started at 40% B, ramped to 90% B at 1.3 min, and 91% B 

at 3.5 min, after which the composition was ramped quickly ramped to 98% B at 3.6 min, 

where it remained until 4.6 min and was re-equilibrated to 40% B. The total run time was 

5.6 min. Eluent was diverted to waste during the intervals of 0-1.5 min after injection. 

The column flow rate was 0.5 mL/min. Mass spectrometer parameters were: electrospray 

voltage, 5000 V/-4500V; auxillary gas pressure, 25 psi; sheath gas pressure, 35 psi; 

vaporizer temperature was 330 °C, and capillary temperature was 400 °C. Ion transitions 

monitored for each compound are listed in Table 4.1. 

Sample Preparation.  

Aliquots of 100 L of each sample (calibrator, control, blank, patient sample) were 

transferred to a 2 mL micro centrifuge tube (VWR, Radnor, PA). Internal standard in 

methanol was added (10 µL) and the tubes were vortex mixed. Acetonitrile (300 µL) was 

added and the tubes were vortexed using a Fisher Scientific (Waltham, MA) Vortex-

Genie at speed 10 and then centrifuged for 10 min at 13,300 RPMs using a Thermo 
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Scientific Sorvall Legend Micro 17 centrifuge (Milwaukee, WI). For the interlaboratory 

comparsion, the forensic samples were prepared up to protein precipitation at the State 

Law Enforcement Division to avoid any biological hazards at the University of South 

Carolina. The protein precipitated forensic samples were brought back to the university 

for centrifugation and further analysis. The supernatant (350 µL) was transferred to a 2.2 

mL well plate, which was then placed on the Hamilton NIMBUS96 system (Reno, NV) 

for the automated solid-phase extraction procedure. The NIMBUS system was loaded 

with DPX WAX-S tips (10 mg WAX resin and 20 mg salt), 300 µL CO-RE tips, a 

reservoir of 0.1 M formic acid, and an additional empty well plate. The NIMBUS system 

uses the CO-RE tips to add 50 µL of 0.1 M formic acid to the well plate containing the 

sample supernatant. The 1 mL DPX WAX-S tips are then used to aspirate and dispense 

the sample solution three times, thus allowing extraction of matrix and subsequent 

partitioning of the acetonitrile and the aqueous phase. The CO-RE tips are used to 

transfer 100 µL of the supernatant (acetonitrile layer) to a clean well plate, which is then 

transferred to the LC-MS/MS for injection. 

Method Validation 

Linearity and Sensitivity.  

The method was validated according to SWGTOX guidelines (18). Linear least squares 

regression with a 1/x weighting was used as a calibration model for each analyte and 

spanned 0.5 ng/mL to 50 ng/mL with seven calibration points and five replicates at each 

point. Carryover was evaluated by running an extracted blank matrix sample after each 

high calibrator (n = 5). The sensitivity was determined by calculating the limits of 
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detection and quantitation. The limit of detection (LOD) was calculated using the 

standard deviation of the y-intercept (sy) and the average slope (avgm): 

LOD = (3.3 sy)/avgm 

The limit of quantitation (LOQ) was similarly quantified with a multiple of 10 instead of 

3.3. The average slope and standard deviation of the y-intercept were taken from the five 

separate runs of the calibration plot. 

Accuracy and Precision.  

The accuracy and precision of the method were determined by evaluating three different 

concentrations (2 ng/mL, 10 ng/mL, and 25 ng/mL) in triplicate over 5 separate runs. The 

accuracy was calculated as the (mean concentration measured – fortified concentration) 

divided by the fortified concentration × 100%. The within-run precision was determined 

by taking the standard deviation of a single run of samples at a single concentration 

divided by the mean calculated value of that single run × 100%. The between-run 

precision was determined by taking the standard deviation of all observations for each 

concentration divided by the grand mean for each concentration × 100%.  

Extraction Efficiency and Matrix Effects.  

Matrix effects were determined using the post-extraction addition technique. An 

unextracted neat solution of a low concentration (1 ng/mL 11-OH-THC, 5 ng/mL THC, 

and 10 ng/mL THC-COOH) and a high concentration (2 ng/mL 11-OH-THC, 20 ng/mL 

THC, and 40 ng/mL THC-COOH) were injected six times each (set 1). These results 

were compared to pooled blank blood spiked with analyte at the appropriate 
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concentration post-extraction in triplicate (set 2). Matrix effects were then calculated as 

the mean area of set 2 divided by the mean area of set 1 subtracted from 1 and multiplied 

by 100%. A negative value represents ion suppression, while a positive value represents 

ion enhancement. Extraction efficiency was determined by comparing the matrix 

matched samples (set 2) to a set of samples that were fortified after protein-precipitation 

and centrifugation, but before extraction (set 3). Extraction efficiency was calculated as 

the mean area of set 3 divided by the mean area of set 2 multiplied by 100%. Finally, loss 

during the protein precipitation step was also determined. In this case, the post-

precipitation spiked samples (set 3) were compared to a set of samples where the blood 

was fortified before any processing (set 4). Protein precipitation loss was also calculated 

as the mean area of set 4 divided by the mean area of set 3 × 100%. 

Results and Discussion   

LC-MS/MS parameters.  

Various liquid chromatography and mass spectrometry parameters were evaluated, but 

the most noteworthy differences involved the spray voltage and the choice of organic 

mobile phase. The difference in analyte signal when switching from low (3500/-3500V) 

to high (5000/-4500V) spray voltage was significant. The 11-THC-OH analyte showed 

the largest difference with a 2.5-fold increase in signal intensity after switching from low 

to high voltage. Similarly, the THC peak doubled in intensity, but the THC-COOH peak 

showed a 33% increase. The change of organic mobile phase (B) from acetonitrile to 

methanol also resulted in significant increases in signal intensity for all analytes. The 11-

THC-OH peak exhibited the largest signal increase of over 8 ×. The THC signal 
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increased by almost 4 times, and THC-COOH signal increased by about 2.5 times. The 

reduced surface tension of methanol and the increased spray voltage both helped to 

increase ionization efficiency, with a concomitant increase in both signal intensity and 

sensitivity. 

Stability in Plastic Time Study.  

It is well known that THC has a tendency to fall out of solution and/or be retained on the 

surfaces of its container, particularly plastic. In the method presented here, plastic well 

plates were utilized throughout sample preparation. Most importantly, plastic well plates 

hold the eluent during LC-MS/MS analysis. With a run time of 5.6 min, a full well plate 

could take 9 h. A study was performed to evaluate analyte loss due to the use of plastic 

well plate containers at room temperature in the eluent conditions (~100% acetonitrile). 

Samples were extracted in triplicate at three different concentrations (1, 10, 25 ng/mL) 

for each analyte. The extracted samples were injected immediately at time 0, and then 

again at 6, 12, and 24 h. Concentrations did not vary by more than 15% except at 1 

ng/mL for THC-COOH, which decreased by 35% after 12 h; however, no further loss 

was observed at 24 h. As a result of this study, well plates were used throughout this 

study, but calibrators were re-injected at the end of the runs to ensure stability. 

Linearity and Sensitivity.  

Calibration fitting resulted in average coefficients of determination (R2) values of 0.9984 

for THC, 0.9980 for 11-OH-THC, and 0.9966 for THC-COOH. The average slope and y-

intercept standard deviation values were used to determine the LODs and LOQs for each 

compound (0.66 ng/mL for THC, 0.75 ng/mL for 11-OH-THC, and 1.8 ng/mL for THC-



 
 

65 

COOH) as described above (Table 4.2). The limit of quantitation for each compound was 

well below the recommended cut-off level for DUID confirmation in blood of 1, 5, and 1 

ng/mL for THC, THC-COOH, and 11-OH-THC, respectively (19). Chromatograms of 

the parent-to-quantifier transition response for each of the analytes at the suggested cut-

off levels are shown in Figure 4.1. 

Accuracy and Precision.  

Accuracy, within-run precision, and between-run precision were determined and shown 

in Table 4.3. The method exhibited a minimum bias of 0.02% at 25 ng/mL for 11-OH-

THC, and a maximum of 4.7% at 2 ng/mL of THC. The within-run and between-run 

precision was ascertained from the same replicate analyses. The average within-run 

precision had a maximum of 6.8% at 2 ng/mL of THC, and the between-run precision 

had a maximum at 2 ng/mL of THC at 7.5%. 

Extraction Efficiency and Matrix Effects.  

Low concentrations of analyte are most susceptible to large matrix effects. Ion 

suppression for THC was 31% at 5 ng/mL, but only 12% at 20 ng/mL. The 11-OH-THC 

analyte elicited ion suppression at 1 ng/mL of 6% and 2% at 2 ng/mL. THC-COOH had 

negligible matrix effects, showing ion suppression at 10 ng/mL of 3% but ion 

enhancement at 40 ng/mL of 3%. The DPX extraction post-protein precipitation was very 

efficient at >93% at both concentrations for all compounds. The loss of analyte during the 

protein precipitation step also varied with concentration. There was approximately 30% 

loss of all compounds at 25 ng/mL, but 15%, 19%, and 8% of THC, 11-OH-THC and 

THC-COOH, respectively, were lost at 2 ng/mL. 
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Interlaboratory Comparison.  

A successful sample comparison was completed with the South Carolina Law 

Enforcement Division (SLED). SLED uses a method that requires 1 mL of blood and 

employs solid-phase extraction cartridges and GC-MS analysis. Twenty-eight forensic 

samples were compared. Each sample was analyzed in triplicate using the DPX method 

described above. The coefficient of determination (R2) for the comparison of 11-OH-

THC positive samples was 0.9965 (n = 3) (Figure 4.2), THC-COOH R2 was 0.9836 (n = 

27) (Figure 4.3), and THC produced an R2 of 0.9960 (n = 16) (Figure 4.4). When all 

positive results were combined, the overall correlation was 0.9901 (Figure 4.5). A 

chromatogram of the parent to quantifier ion transitions for each of the analytes in patient 

sample 13 is shown in Figure 4.6. The calculated percent difference in triplicate analysis 

of each sample compared to the reported concentration from SLED did not exceed 20% 

for any case sample. The relative standard deviation of the triplicate extractions of patient 

samples did not exceed 15%. SLED detection cut-off values were 2 ng/mL for each 

analyte. Our LOQs were considerably lower and resulted in more positive 11-OH-THC 

and THC samples than SLED identified. 

Conclusion 

The LC-MS/MS method developed in this study minimizes required sample volume, and 

provides sensitive quantitation of THC, 11-OH-THC and THC-COOH in whole blood. 

Notably, our method simplifies sample preparation for the analysis of THC and its 

metabolites in blood with an automated dispersive pipette extraction without subsequent 

dilution or solvent evaporation. The extraction process is rapid, minimizes matrix effects 
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(<30%), and maximizes recoveries (>93%). LODs and LOQs were below 0.75 ng/mL 

and 2 ng/mL, respectively. These outcomes clearly provide the necessary sensitivity to 

meet laboratory cut-off with minimal imprecision (<8%). All calibrations were linear (R2 

> 0.99) over two orders of magnitude (0.5-50 ng/mL). Lastly, a successful comparison of 

forensic case sample using our new method with a local toxicology laboratory verifies the 

effectiveness of this new quick and easy method.  
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Table 4.1. Selected ion transitions  

Compound Precursor Quantifier Qualifier 

THC-COOH 343 299.06 244.99 

THC-COOH d3 346 301.89 N/A 

11-OH-THC 331 312.99 193.10 

THC  315 192.98 123.03 

THC d3 318 196.00 N/A 
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Table 4.2. The standard deviation of the y-intercept (Sy), average slope (n=5) 

(Avgm), limit of detection (LOD) in ng/mL, limit of quantitation (LOQ) in 

ng/mL, and the average coefficient of determination (R2) (n = 5). 

 

Sy Avgm LOD LOQ Avg R2 

THC 0.001 0.014 0.22 0.67 0.9984 

11-OH-THC 0.006 0.074 0.25 0.75 0.9980 

THC-COOH 0.003 0.016 0.62 1.8 0.9966 
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Table 4.3. The accuracy, within-run precision, 

and between-run precision calculated as 

described above. 

 

Accuracy 

 

2 ng/mL 10 ng/mL 25 ng/mL 

THC 4.7% 0.7% -0.2% 

11-OH-THC -1.3% -2.8% 0.02% 

THC-COOH 3.6% 0.7% -0.4% 

 

Within-Run Precision 

 

2 ng/mL 10 ng/mL 25 ng/mL 

THC 6.8% 4.6% 2.8% 

11-OH-THC 5.0% 3.5% 1.8% 

THC-COOH 6.4% 4.5% 3.0% 

 

Between-Run Precision 

 

2 ng/mL 10 ng/mL 25 ng/mL 

THC 7.5% 5.6% 2.9% 

11-OH-THC 6.6% 6.0% 3.5% 

THC-COOH 7.0% 4.4% 3.1% 
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Table 4.4. Extraction efficiency, precipitation loss and matrix effects percentages 

for THC, 11-OH-THC, and THC-COOH at multiple concentrations. 

 
Extraction Efficiency Precipitation Loss Matrix Effects  

Concentration 2 ng/mL 25 ng/mL 2 ng/mL 25 ng/mL Low High 

THC 94 99 15 30 -31 -12 

11-OH-THC 100 99 19 28 -6 -2 

THC-COOH 93 96 8 29 -3 +3 
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Figure 4.1. Chromatograms of calibrators at previously reported suggested cut-offs for 

THC (1 ng/mL), THC-COOH (5 ng/mL), and 11-OH-THC (1 ng/mL). 
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Figure 4.2. Correlation of 11-OH-THC positive case samples between the SLED and 

DPX method. 
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Figure 4.3. Correlation of THC-COOH positive case samples between the SLED and 

DPX method. 
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Figure 4.4. Correlation of THC positive case samples between the SLED and DPX 

method. 
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Figure 4.5. Correlation of all positive case samples between the SLED and DPX method. 
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Figure 4.6. Chromatogram of patient sample 13 with 31 ng/mL THC, 77 ng/mL THC-

COOH, and 6.7 ng/mL 11-OH-THC. 
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Table 4.5.  

Patient Sample (PS) Results in ng/mL ± standard deviation (n = 3). 

 
11-OH-THC THC-COOH THC 

PS DPX SLED DPX SLED DPX SLED 

1     21.5 ± 0.42 21 2.6 ± 0.24 2.4 

2     15.3 ± 0.47  14 4.2 ± 0.61 4 

3     8.7 ± 0.59 8.6     

4     4.7 ± 0.15 4.8     

5 2.7 ± 0.29 2.8 37.6 ± 0.95 31 4.9 ± 0.36 5.3 

6     44.6 ± 0.47 39 4.1 ± 0.29 4.3 

7     24.0 ± 0.73 21 6.4 ± 0.18 6.6 

8     12.4 ± 0.49 11     

9     20.6 ± 1.2 18     

10 3.5 ± 0.24 3.8 27.0 ± 2.0 24 4.8 ± 0.21 4.7 

11     4.6 ± 0.20 3.8     

12     17.0 ± 0.63 17     

13 6.7 ± 0.22 6.5 77.0 ± 2.6 >50 31.0 ± 2.3  27 

14     6.4 ± 0.29 7.5     

15     2.8 ± 0.28 2.9     

16     19.4 ± 1.1 18 2.32 ± 0.15 2.1 

17     22.6 ± 0.38 20 5.9 ± 0.26 6.2 

18     16.4 ± 1.4 14 3.3 ± 0.41 3.8 

19     12.8 ± 0.78 12     

20     38.0 ± 2.2 32     

21     76.0 ± 0.41 >50 2.77 ± 0.22 2.6 

22     28.0 ± 0.38 23 2.4 ± 0.18 2.3 

23     63.4 ± 0.64 >50 3.8 ± 0.27 4.4 

24     <2 <2     

25     46.5 ± 0.77 45 2.8 ± 0.56 2.7 

26     11.4 ± 0.23 11 4.8 ± 0.34 4.9 

27     2.8 ± 0.34 2.7     

28     33.2 ± 0.77 33 3.5 ± 0.19 3.6 

 

 

 

 



 
 

82 

 

CHAPTER 5 

AUTOMATED DISPERSIVE PIPETTE EXTRACTION OF DIPHENYL BORINATE 

COMPLEXED FREE CATECHOLAMINES AND METANEPHRINES IN URINE WITH 

LC-MS/MS ANALYSIS 

 

Abstract 

The measurement of free catecholamines and metanephrines in the clinical laboratory is 

important for the diagnosis of tumors, such as pheochromocytoma, a cancer of the 

adrenal gland. We have developed an automated, high throughput procedure, with a short 

LC-MS/MS analysis time, for the selective extraction of norepinephrine, epinephrine, 

dopamine, normetanephrine, and metanephrine in urine. An automated, high throughput 

extraction was achieved using dispersive pipette extraction (DPX) tip technology on an 

automated sample preparation system. The method was assessed for linearity, sensitivity, 

precision, accuracy, carryover, matrix effects and recovery. Using diphenyl boronic acid 

for complexation and styrene divinyl benzene for extraction enabled high recoveries 

(>81%) and reduced ion suppression (<39%). A pentafluorophenylpropyl column was 

found to provide adequate chromatographic separation prior to analysis on a triple 

quadrupole mass spectrometer with positive electrospray ionization. The method was 

linear over a broad range from 0.5 ng/mL to 1000 ng/mL, with precision below 8% CV, 

and limits of detection below 0.25 ng/mL for all analytes. External quality controls were
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tested and quantitative results fell within the manufacturer specified concentration ranges. 

The simple and high throughput nature of this method would be ideal for clinical 

laboratories experiencing high demand for catecholamine and metanephrine urine 

analysis. 

Introduction 

The catecholamines, epinephrine, norepinephrine, and dopamine, are bioamines that play 

an integral role as neurotransmitters in the central and peripheral nervous system. 

Screening for catecholamines and their O-methylated metabolites, metanephrine and 

normetanephrine, is a widely accepted approach for diagnosis of catecholamine secreting 

tumors, such as pheochromocytomas, neuroblastomas, and paragangliomas (1-5). These 

tumors arise from adrenal and extra-adrenal chromaffin cells and are characterized by the 

over-production of catecholamines (6). Generally, pheochromocytomas are benign, but 

the potent effects on the cardiovascular system caused by excess catecholamines can have 

potentially fatal outcomes (7). Correct and timely diagnosis is crucial. Unlike analysis in 

plasma, it is recommended that both metanephrines and catecholamines be measured in 

urine (8). Urine analysis is not necessarily invasive, and urine usually exhibits 

sufficiently high levels of the target compounds. Catecholamines and metanephrines 

undergo phase II metabolism, primarily via sulphation. Whiting, et al. reported one-third 

of norepinephrine and one-half of epinephrine in urine were present in the free form, 

while metanephrines were present in the free form to a lesser extent (8). Previously, acid 

hydrolysis has been used to assess the amount of total catecholamine and metanephrines 

in urine to boost sensitivity. However, free fractionated metanephrines have been 
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proposed for enhanced diagnostic accuracy (9); with LC-MS/MS, methods for 

quantitation of free metanephrine have been implemented (5-6). 

 Catecholamines are characterized by a monoamine-linked benzene ring with two 

vicinyl hydroxyl groups (catechol) (2). Epinephrine is a secondary amine, while 

norepinephrine and dopamine are primary amines. The catechol group makes the 

catecholamines vulnerable to oxidation to the quinone species in neutral and alkaline 

conditions (10). Metanephrines do not have the catechol group, but have a methoxy 

group adjacent to a hydroxyl group, and are thus more stable. These compounds are 

highly polar and hydrophilic, with negative log D and log P values (3). These structural 

properties make sample preparation and analysis difficult.  

 A wide range of sample preparation techniques have been employed to analyze 

catecholamines and metanephrines in urine, most have been summarized in a recent 

review (3). Cation exchange mechanisms work well for metanephrines, but not the 

catecholamines because of their susceptibility to oxidation during elution with base. Solid 

phase extraction (SPE) with phenyl boronic acid (PBA SPE) columns work well for 

sample preparation of catecholamines because catechol groups bind with high affinity to 

the boronic acid groups to provide high recoveries. However, PBA SPE does not work 

well with metanephrines due to the absence of catechol groups. A method comparison 

published by Whiting, et al. reported reduced recoveries for catecholamines using cation 

exchange SPE, and no recovery for metanephrines on PBA SPE (8). The SPE method 

with the highest reported recoveries was that developed by Talwar, et al. (11), who found 

diphenyl boronic acid (DPBA) to complex and stabilize catecholamines in basic solution. 

The complex was then extracted using C18 sorbent, followed by acidic media to disrupt 
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the complex and elute the target compounds. DPBA forms reversible covalent bonds with 

the catechol of the catecholamines in basic solution; effectively minimizing oxidation and 

increasing lipophilicity for reversed phase retention (Figure 5.1). Whiting, et al., also 

note that, although metanephrines do not have the cis-diol moiety necessary for the 

complexation with DPBA, they exhibited high recoveries with the same extraction 

procedure. Metanephrine recovery was decreased by a third without DPBA present 

during extraction, suggesting interaction as an affinity-pairing agent. We have adapted 

the Whiting method to design a DPX extraction that takes place within a pipette tip, 

which facilitates an easily automated alternative to traditional SPE requiring less sample 

and solvent volume. The objective of this study was to develop an automated sample 

preparation method utilizing the DPBA complexing agent to minimize sample 

preparation time (<15 min) and improve sensitivity (limit of detection < 0.25 ng/mL) for 

the analysis of free catecholamines and metanephrines in urine with LC-MS/MS. 

Experimental Methods 

Reagents and Standards.  

Drug standards (catecholamine mix 1, catecholamine mix 2, dopamine, dopamine-d4, 

norepinephrine-d6, epinephrine-d6, normetanephrine-d3, and metanephrine-d3) were 

purchased from Cerilliant Corporation (Round Rock, TX). Ammonium chloride and 

diphenylborinic acid 2-aminoethyl ester (98%), were purchased from Acros Organics 

through Thermo Fisher Scientific (NJ). LC-MS grade formic acid was also purchased 

from Thermo Scientific (Waltham, MA). Level 1 and level 2 ClinChek® lyophilized 

biogenic amine urine controls were purchased from RECIPE (Munich, Germany). 
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Synthetic urine (SurineTM) was purchased from DTI (Lenexa, KS). DPX CO-RE RP tips 

were purchased from DPX Technologies, LLC (Columbia, SC). 

Instrumental Analysis.  

Analyses were performed using a Thermo TSQ VantageTM triple quadrupole mass 

spectrometer (Milwaukee, WI) coupled to an Agilent 1260 Series HPLC (Agilent 

Technologies, Santa Clara, CA) equipped with a Restek 3 m Ultra PFPP column (100 

mm × 2.1 mm) (Bellefonte, PA) with column temperature held at 40 °C. Sample 

injections of 10 µL were made using a 6 port (0.25 mm) Cheminert C2V injection valve 

(Houston, TX) incorporated on a dual rail GERSTEL MPS autosampler (Linthicum, 

MD). 

The mobile phase was composed of 0.1% formic acid in water (A) and 0.1% formic acid 

in methanol (B). The gradient started at 4% B and was held for 2 min. It was ramped to 

70% B at 3 min, where it remained until 3.75 min, then re-equilibrated to 4% B, for a 

total run time of 5.5 min. Eluent was diverted to waste during the intervals of 0-0.5 and 

4.0-5.5 min. The column flow rate was 0.3 mL/min. Mass spectrometer parameters were: 

electrospray voltage, 3000 V; auxillary gas pressure, 8 psi; sheath gas pressure, 30 psi; 

vaporizer temperature was 325 °C and capillary temperature was 300 °C. The transitions 

monitored for each compound are listed in Table 5.1. The most abundant m/z was 

monitored, which for norepinephrine, normetanephrine and metanephrine was the water-

loss (M+H-H2O) product ion. 
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Sample Preparation.  

In a well plate, 300 µL of synthetic urine, 0.2 M HCl calibrator, or quality control sample 

was spiked with internal standard (10 µL). The well plate was loaded onto a Hamilton 

NIMBUS96 system. Reservoirs of complexing agent (0.2% (w/v) diphenylborinic acid, 5 

g/L EDTA in a 2 M NH4Cl/NH4OH pH 8.5 buffer), wash buffer (0.2 M NH4Cl/NH4OH 

pH 8.5), 100% methanol, and 1 M formic acid were also added to the deck of the 

Hamilton system. The liquid handling system used CO-RE 1 mL tips to add 600 µL of 

complexing agent to the urine sample well plate, 500 µL of wash buffer to a second 

“wash” well plate, 270 µL of 1 M formic acid to a third “elution” well plate, and 30 µL 

of methanol to the third “elution” well plate. The Hamilton robotic system discards the 

CO-RE tips and picks up 1 mL DPX RP (reverse phase) tips. Styrene divinyl benzene 

sorbent DPX RP tips are ideal for extracting these analytes. After conditioning by 

aspirating and dispensing 100% methanol twice, the tips were conditioned with wash 

buffer, and then the sample solution was aspirated and dispensed four times. Note that the 

DPBA complexing is essentially quantitative (8), and the mixing provided by aspirating 

and dispensing the sample solution insures complexation of catecholamines and efficient 

retention on the styrene divinyl benzene resin. After rinsing the tips with the wash buffer, 

analytes were eluted with the 1 M formic acid/10% methanol solution. The acidic 

solution reverses the diphenyl boronate complexes, and the methanol enhances elution of 

any remaining retained analytes via reverse phased interactions. Low methanol content is 

also beneficial for minimal removal of any retained matrix and maximizing selectivity.  

The “elution” well plate was then moved to the autosampler for LC-MS/MS injection. 

This automated process takes less than 15 min to complete.  
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Method Validation 

Linearity and Sensitivity.  

Linear least squares regression with a 1/x weighting was used to fit calibration models 

based on nine calibration points for each analyte spanning the concentration range from 

0.5 ng/mL to 1000 ng/mL for norepinephrine and epinephrine, and 0.1 to 1000 ng/mL for 

dopamine, normetanephrine and metanephrine. Carryover was evaluated by running three 

replicate blank samples after each high calibrator. The limit of detection (LOD) was 

calculated using the estimated standard deviation of the y-intercept (sy0) and the average 

slope of the calibration (avgm): 

LOD = (3.3 sy)/avgm        

The limit of quantitation (LOQ) was similarly estimated with a multiple of 10 instead of 

3.3. The average slope and standard deviation of the y-intercept were taken from the 

analysis of three separate sets of extracted calibrators. 

Accuracy and Precision.  

The accuracy and precision of the method were determined by evaluating two external 

quality controls. The Level 1 control had mean values of 64 ng/mL for norepinephrine, 

20 ng/mL for epinephrine, 194 ng/mL for dopamine, 325 ng/mL for normetanephrine, 

and 172 ng/mL for metanephrine. Level 2 had mean values of 174 ng/mL for 

norepinephrine, 39.8 ng/mL for epinephrine, 293 ng/mL for dopamine, 1568 ng/mL for 

normetanephrine, and 1017 ng/mL for metanephrine. Each control was analyzed in  

triplicate over three separate runs. The accuracy was calculated as shown below. 
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(mean concentration measured –  fortified concentration)

fortified concentration 
 𝑥 100% 

The within-run precision was determined by taking the standard deviation of a single run 

of triplicate quality control samples at a single concentration divided by the mean 

calculated value of that single run x 100%. The between-run precision was determined by 

taking the standard deviation of all observations (9 total) for each concentration divided 

by the grand mean for each concentration x 100%.  

Extraction Efficiency and Matrix Effects.  

Matrix effects were determined using a post-extraction addition technique. An 

unextracted neat solution of 100 ng/mL of each analyte was injected four times (set 1). 

These results were compared to the results from four replicate samples of extracted 

synthetic urine spiked containing analyte at the appropriate concentration post-extraction 

(set 2). Matrix effects were calculated as the mean area of set 2 divided by the mean area 

of set 1 subtracted from 1 and multiplied by 100%. A negative value represents ion 

suppression, while a positive value represents ion enhancement. Extraction efficiency 

was determined by comparing the matrix matched samples (set 2) to a set of synthetic 

urine samples that were fortified before extraction (set 3). Extraction efficiency was 

calculated as the mean area of set 3 divided by the mean area of set 2 multiplied by 

100%.  
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Results and Discussion 

Chromatography.  

Figure 2 shows the separation of the analytes at a concentration of 10 ng/mL. The five 

analytes were easily separated on the 100 mm PFPP column. The highest water mobile 

phase percentage for initial conditions is ideal to promote the most retention and 

separation of these highly polar compounds. With the initial gradient conditions of 

methanol (mobile phase B) less than 4%, peak splitting arose due to the relatively large 

injection volume (10 uL) of the 10% methanol eluent. The initial gradient conditions 

were modified to prevent peak splitting of norepinephrine, and in some cases 

epinephrine. Larger initial methanol mobile phase percentages resulted in less separation 

between analytes and more interference peaks. 

Sample pH and flow rates.  

As previously reported by Talwar, et al, the pH of the complexed sample needs to be 

within the range of 7.5-9.5 to achieve reproducible high recoveries (> 81%). Sample 

loading and elution flow rates also affected recoveries. During aspiration and dispensing 

of each step of the extraction process, a slow flow rate was used to assure efficient 

mixing of the solution and the sorbent inside the tip. During dispensing steps especially, a 

slow flow allows the resin to settle first so the solution flows through the bed of resin at 

the bottom of the tip to maximize retention/elution. Higher flow rates resulted in 

inconsistent, lower recoveries. 
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Elution step.  

Formic acid (1 M) was chosen for the elution step from DPX yielded better analyte signal 

intensities than acetic acid. While the acid disrupts the diphenyl boronic acid-

catecholamine complex, residual reversed phase interactions between free 

catecholamines (and metanephrines) with the styrene divinyl benzene sorbent remained. 

Addition of methanol was necessary for disrupting the remaining reversed phase 

interactions to enhance elution efficiency and thus, enhance recovery. The addition of 

methanol to the elution solvent increased recoveries of all analytes with 10% performing 

better than 5%. 

Linearity and Sensitivity.  

Calibrations resulted in average coefficients of determination (R2) values of 0.9992 for 

norepinephrine, 0.9996 for epinephrine, 0.9996 for dopamine, 0.9998 for 

normetanephrine, and 0.9982 for metanephrine. The average slope and y-intercept 

standard deviation values were used to determine the LODs and LOQs for each 

compound as described above and shown in Table 5.2. The limit of quantitation for each 

compound was similar to or better than those recently reported values (4-7, 12). 

Accuracy and Precision.  

Accuracy, as well as within-run and between-run precision (% CV) are provided in Table 

5.3. The method was very accurate for quantitation of quality control samples with each 

average analyte concentration falling within the manufacturer’s listed expected range of 

concentrations. The average within-run precision had a maximum CV of 6% for the level 
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1 of epinephrine control, and the between-run precision had a maximum CV of 7% for 

the level 2 metanephrine control. 

Extraction Efficiency and Matrix Effects.  

Matrix effects were relatively low for epinephrine, dopamine, normetanephrine and 

metanephrine with a range of ion suppression from 1-14%. Norepinephrine exhibited 

greater matrix effects with ion suppression at 39%, likely because it is the most polar 

compound with little to no retention on the PFPP column. Extraction efficiencies were 

higher than 96% for all analytes except dopamine, which resulted in 81% extraction 

recovery (Figure 3.3). 

Conclusions 

We report a fast and robust analytical method reported that achieves sensitive LC-

MS/MS analysis of free catecholamines and metanephrines in urine. Extraction using 

dispersive pipette extraction with DPX tips facilitates seamless integration of SPE with 

the Hamilton NIMBUS96 platform for the rapid (< 15 min) extraction of DPBA 

complexed catecholamines and metanephrines from urine. This method provides the 

necessary sensitivities without an additional solvent evaporation step. Limits of detection 

for all analytes were below 0.25 ng/mL, and LOQs were below 0.70 ng/mL. The 

calibration was linear (R2 > 0.998) over more than four orders of magnitude with 

concentrations ranging from 0.5-1000 ng/mL. Replicate analysis of two different levels 

of synthetic urine controls demonstrated % coefficients of variation less than 8%. This 

method is an excellent alternative to previously published methods, with the advantages 

of ease of implementation, robustness, high sensitivity due to effective sample clean-up, 
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and high throughput (96 samples extracted in less than 15 min) with a 5.5 min LC-

MS/MS run time. 
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Figure 5.1. Diphenyl boronate-catecholamine complex structure. (For norepinephrine: 

R1 = OH, R2=H; for epinephrine: R1=OH, R2=CH3; for dopamine: R1=H, R2=H). 
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Table 5.1. Selected ion transitions 

Compound m/z Quantifier Qualifier 

Norepinephrine 151.8 106.8 77 

Norepinephrine-d6 157.8 80 111 

Epinephrine 183.9 166 107 

Epinephrine-d6 190.1 171.7   

Dopamine 153.8 136.8 90.9 

Dopamine-d4 157.9 140.7   

Normetanephrine  165.8 121 133.8 

Normetanephrine-d3 168.8 136.7 122.8 

Metanephrine 180 148 165 

Metanephrine-d3 182.8 120.9 150.8 
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Table 5.2. The standard deviation of the y-intercept (sy), average 

slope (n=5) (avgm), limit of detection (LOD) in ng/mL, limit of 

quantitation (LOQ) in ng/mL, and the average coefficient of 

determination (R2) (n = 5). 

Compound sy avgm LOD LOQ avg R2 

Norepinephrine 0.0037 0.068 0.18 0.53 0.9992 

Epinephrine 0.0058 0.088 0.22 0.65 0.9996 

Dopamine 0.0055 0.12 0.15 0.46 0.9996 

Normetanephrine 0.00019 0.19 0.003 0.01 0.9998 

Metanephrine 0.0016 0.17 0.03 0.09 0.9982 
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Table 5.3. Accuracy and Precision of the method based on two levels of external 

quality control.  

Level 1 

Analyte 
Expected 

Range 
Mean 

 Within-run, 

CV 

Between Run, 

CV 

Norepinephrine 51.2-76.8 62.8 5% 5% 

Epinephrine 16.0-24.0 19.6 6% 5% 

Dopamine 155-233 186.2 3% 6% 

Normetanephrine 260-390 264.5 5% 5% 

Metanephrine 138-206 166.6 5% 7% 

Level 2 

Analyte 
Expected 

Range 
Mean 

 Within-run, 

CV 

Between Run, 

CV 

Norepinephrine 139-209 168.3 3% 5% 

Epinephrine 31.8-47.8 39.7 2% 2% 

Dopamine 234-352 284.3 4% 5% 

Normetanephrine 1254-1882 1493.7 4% 4% 

Metanephrine 814-1220 1056.8 3% 4% 
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Figure 5.2. Separation of analytes at 10 ng/mL: (A) norepinephrine; (B) epinephrine; (C) 

normetanephrine; (D) is dopamine; and (E) metanephrine. 
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Figure 5.3. Recovery and matrix effects of catecholamines and metanephrines extracted 

using the automated DPX method. 

 

 

 

 

 

96% 98%

81%

97% 97%

-39%

-9%

-1%

-14%

-11%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Norepinephrine Epinephrine Dopamine Normetanephirne Metanephrine

Recovery Matrix Effects



 
 

102 

CHAPTER 6 

EVALUATIONS OF LIMIT OF DETECTION, WEIGHTED LEAST SQUARES 

REGRESSION, AND TOLERANCE INTERVALS IN A FORENSIC APPLICATION 

 

Abstract 

Limit of detection (LOD) is an important figure of merit, especially in forensic science 

where the question of detection has real world implications. However, ambiguity often 

exists in the choice of measurement standard deviation as a basis for the LOD (replicate 

blank measurements, residuals from the calibration relationship, etc.). Few sources 

discuss assumptions made with different choices of calibration regression on which the 

LOD is based (normality of data, homoscedasticity of variance, false positive/negative 

rates) (1-2), or the applicability of tolerance intervals to LOD calculations (3-5). This 

research stands to clarify these ambiguities and to demonstrate the application of 

tolerance intervals for calculating LOD in forensic dye analysis.
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Introduction 

The ubiquitous nature of fibers provides an information-rich evidence source for crime 

scene investigations; however, in cases of similarly dyed fibers, current fiber analysis 

techniques do not provide adequate chemical information for unambiguous match 

determinations to be made. We have targeted fiber sizes of 1 mm or less for our 

extraction procedure to offset the issue of damaging evidence, and we use UPLC-DAD 

(Ultra Performance Liquid Chromatography-Diode Array Detection) to achieve the 

necessary sensitivity. In association with taking the smallest fiber size possible, we also 

care to determine the limit of detection for each of the dyes.  

Limit of detection (LOD, sometimes referred to as detection limit) does not carry a 

consistent definition throughout the literature. Accreditation organizations and governing 

bodies do not have specific definitions or defined ways to calculate LOD (6-14). Some 

may put forth suggestions, but do not have detailed procedures. There is a lack of 

consistent definitions, a lack of consistent notation, and calculations. In 1995, IUPAC 

(International Union of Pure and Applied Chemistry), in an attempt to standardize 

nomenclature, defined detection limit as “the measure of the inherent detection capability 

of a chemical measurement process” (11). In 1997, IUPAC defined “the limit of 

detection, expressed as the concentration, cL, or the quantity, qL, is derived from the 

smallest measure, xL, that can be detected with reasonable certainty for a given analytical 

procedure. The value of xL is given by the equation, 𝑥𝐿 =  𝑥̅𝑏𝑖  +  k𝑠𝑏𝑖, where 𝑥̅𝑏𝑖 is the 

mean of the blank measures, sbi is the standard deviation of the blank measures, and k is a 

numerical factor chosen according to the confidence level desired” (7). The factor k does 

not have a defined value and values in the literature range from 2 to 3.3.6 IUPAC 
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specifically gives an arbitrary value of k=3 (9). This IUPAC methodology is different 

from that documented in ICH (International Conference on Harmonization) (14), the 

Scientific Working Group for Forensic Toxicology (SWGTOX) (8), the Analytical 

Methods Committee of the Royal Society of Chemistry (9), and countless other 

guidelines and literature references. These inconsistencies lead to chemists unknowingly 

making statistical errors and misguided laboratory comparisons. Most guidelines for 

LOD gloss over two important issues: how can both false positive and false negative 

errors be controlled, and how one handles calibration data that is heteroscedastic 

(variability not the same at different analyte levels).  

The research objective of this work is to demonstrate the forensic value of a statistically 

sound approach for calculating the limit of detection with control of both false positive 

and negative rates using statistical tolerance intervals and to evaluate the performance of 

weighted least squares for a calibration model for heteroscedastic data. 

Theory 

LOD Meaning and Calculation 

 Limit of detection is the smallest measure, on the y-axis, that can be extrapolated to an x-

axis concentration or quantity that can be reliably detected for an analytical method. A 

limit of detection, traditionally a point estimate, has related false negative and false 

positive error rates. A false negative is the error of not detecting analyte when it is, in 

fact, present. A false positive is the error of detecting an analyte when it is, in fact, not 

present. These concepts are shown in Table 6.1. 
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Most existing LOD guidelines lack a detailed procedure for calculation of the limit of 

detection, thus impeding inter-laboratory comparisons. Two laboratories may use the 

same instrumental method, but the way in which LOD was calculated, if not identical, 

skews the comparison. Even if the equation used in both cases is the same, interpretation 

of the variables could vary. The largest variation in interpretation involves the source of 

uncertainty employed in the LOD calculation: where should the standard deviation be 

evaluated? As shown in Table 6.2, the variety of choices for calculation of the standard 

deviation results in different LOD values. The measurement variability has been 

estimated using the standard deviation of the blank and of the measurements, the lowest 

non-zero calibrator, and the standard deviation of the residuals.  

The number of standard deviations, k, above the mean of the blank measurements at 

which the LOD is defined, determines the probability of false positive detection. No 

single value for LOD is appropriate for all situations and, ultimately, the analyst should 

think about the consequences of false positives and set LOD accordingly. LOD is often 

defined as b + 3b, or as b + 3.3b, where b and b are the mean of the blank replicates 

and a measure of the measurement uncertainty, respectively. The former is generally a 

result of the rounding of the latter.2 If LOD is set at b + 3.3b, this point is also known 

as the critical level when not being used as the LOD (3), the fractional risk, α, of 

detecting analyte when, in fact, it is absent (false positive) is 0.0005. Thus, LOD is based 

on setting the false positive risk to an acceptably low level by using an appropriately high 

value for the k-multiplier. Historically, k values as low as 2 have been used (6). However, 

the false negative error rate is 50% at any limit of detection so defined (2). This concept 

is illustrated in Figure 1. 
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The false negative rate decreases as the number of standard deviations, k, from the mean 

that the LOD is determined to lie increases. The fractional false negative rate, β, falls to 

0.0005, at 6.6b above the mean of the blank (Figure 6.2). At which level, analyte can be 

detected consistently. The value at 6.6b gives sufficiently consistent detection, 99.95% 

of the time, and is called the “minimum-consistently-detectable amount” (MCDA) (15). 

If the analyte is present at the MCDA repeatedly, then it would only be incorrectly 

assessed as absent (a false negative result) 0.05% of the time. However, there is no 

confidence level associated with the MCDA. 

Tolerance Intervals 

 If controlling both false positive and false negative error rates is of concern, with a 

designated degree of confidence, then a tolerance interval is required. Statistical tolerance 

intervals have not been often applied in practice, partly because of the paucity of 

statistical tables for the asymmetric functions needed, and the complex calculations 

required (1,3,16). However, sample calculations are available (5,10). 

A tolerance interval is defined as an interval that contains at least a defined portion, p, of 

the population with a defined degree of confidence, 100(1-α)%. As a result, there is 

100(1-α)% confidence that the tolerance interval includes 100p% of the population (16). 

The confidence level associated with the tolerance interval takes into account the fact that 

the samples do not perfectly reflect the true population. Adjusting the confidence and 

spread inherently adjusts the false negative and false positive rates, which can later be 

determined. The higher the confidence and the spread, the lower the false positive and 

false negative error rates. Adjusting the confidence and spread can be valuable when 
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either the false positive or false negative result may have significant consequences (i.e., 

forensic cases that go to trial based on laboratory results). The tolerance interval can also 

be adjusted to determine an upper or lower bound of a portion of the data. These upper 

limits can help generate more accurate limits of detection. Statistical tolerance intervals 

typically produce LODs higher than estimated using other approaches. Tolerance 

intervals provide the best option for calculating limit of detection because it provides a 

value that can be used for a “large and potentially unknown number of detection 

decisions with a high, specified, degree of confidence” (3).  

Assumptions 

Most analysts use ordinary least squares (OLS) as a regression analysis technique. In 

doing this, there are some basic assumptions that are made. Miller2 provides a description 

of the three major assumptions: (1) errors made in measuring instrumental signals (y-

direction error) are greater than all other errors, (2) y-direction error is normally 

distributed, and (3) the data is homoscedastic. In general, if the OLS model does not pass 

a lack-of-fit test, then a better investigation of the required assumptions may be 

informative. If any of these assumptions cannot be upheld, then the OLS regression is not 

the appropriate model.  

The validity of the first assumption relies on the error of the standards versus error of the 

instrumentation. Previously, the first assumption was generally taken as valid because the 

instrumentation error outweighed the error of the standards. However, with modern day 

instrumentation and standard reference materials, the two errors may be closer than most 

would think. One can simply assess the relative standard deviation of the instrumental 
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method compared to the relative standard deviation (RSD) of the reference material or 

the in-house calibrators (propagation of error). If the instrumental RSD is not greater than 

the calibrator RSD, then the assumption fails.  

The residuals must be normally distributed. Normality can be easily detected by 

examination of the plot of residuals. The data is normally distributed if the points lie 

primarily at the predicted value with some residuals trailing off symmetrically. More 

formal statistical tests exist that examine normality including an Anderson-Darling test or 

a Shapiro-Wilks test.  

The importance of the third assumption, homoscedasticity, lies in the fact that OLS 

regression minimizes the sum of squares of residuals. If certain concentrations have 

disproportionately high variance, then the regression coefficients estimation will be 

unreasonably effected. Bartlett’s Test and Levene’s Test are useful for testing 

homogeneity of the data. Another easy way of checking for constant variance is to simply 

look at the residuals. A common way to counteract the heterogeneity of the variance is to 

weight the dependent variable, as done with weighted least squares regression (WLS). 

The weighting scheme generally results in homogenous variance which allows OLS to be 

performed on the weighted regression. 

Weighted Least Squares 

The main assumption that generally does not hold with OLS, and is usually not tested for, 

is homoscedasticity. When the data does not exhibit constant variance, OLS estimation is 

still linear and unbiased, but it is not the minimum variance estimate which means that it 

is inefficient (3). Weighted least squares (WLS) is a great technique when the data is 

heteroscedastic and the analyst would prefer not to use a transformation model or one 
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does not fit the data appropriately. Weighted least squares is an adaptation of OLS that 

accounts for heterogeneity in variance. Weighted least squares regression is used by 

applying a weight to each set of data points. Recommended weights vary, but the most 

cited and most reflective of the data is a weight of the inverse of the variance at each set 

of data points (4). By using the inverse of the variance as a weight, more weight is given 

to the sets of data points with the least amount of variance and less weight to the sets of 

data points with more uncertainty. In the present research, true variance was estimated 

from the replicates, but variance modeling is a good alternative when replicate number is 

small (4). Variance modeling can also be used to determine uncertainty between data 

points. Another benefit of WLS is that the original data remain unchanged, i.e. there is no 

need to refit response versus concentration. The model used in the present work is 

explained by Zorn et al (3). 

Experimental Section 

Materials  

Dyed fabric and textile dye standards were sampled from our collection of production 

samples, which were donated by textile and dyestuff manufacturers from the southeastern 

United States. The nine dyes selected for this study included three dyes from each of the 

acid, basic, and disperse classes.  

Fiber sample preparation  

Individual fibers 5-mm in length were cut using a fiber guillotine; 1 mm and 0.5 mm 

fibers were cut by hand using a table-mounted magnifying glass and scalpel. Each fiber 

length was cut in triplicate. Cut fibers were then loaded into Waters Total Recovery® 
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vials for extraction. These vials enable extractions to be performed with low solvent 

volumes (< 50 μL), enabling concentration of dyes in the resulting extract. 

Calibration design  

Experimental designs for UPLC-DAD calibration were constructed for all nine dyes 

based on 5 replicate experiments at 7 levels of dye concentration (0 ppb, 100 ppb, 500 

ppb, 1000 ppb, 1500 ppb, 2000 ppb, and 2500 ppb). A blank sample was measured 15 

times as a quality control sample interspersed through the runs. A lower concentration 

design was also performed based on five replicate experiments using standard mixtures of 

the 9 dyes at concentrations 10 ppb, 20 ppb, 30 ppb, 40 ppb, 50 ppb, and 18 blank 

injections to better characterize low limits of detection. For each dye peak, QuanLynx™, 

data management software included with MassLynx™ (Waters Corporation, Milford, 

MA) was used to integrate peak areas above corrected baselines. For each dye standard at 

1000 ppb concentration, the retention time window encompassing the baseline peak 

width was determined; this window was then employed as the dye peak integration 

window for all samples, including blanks.  

Instrumentation  

Dye standards and extracts were separated and detected using a Waters Acquity™ UPLC 

H-Class equipped with a quaternary solvent pump system and a Waters PDA eλ detector. 

The column was a 2.1 X 50 mm I.D. 1.7 μm particle size Waters Acquity™ BEH C18 

column with a 2.1 X 5 mm I.D. 1.7 μm particle size Waters Acquity UPLC® BEH C18 

VanGuard precolumn. The mobile phase gradient was based on mixtures of 50 mM 

ammonium acetate in water and 0.15% formic acid in methanol. The column temperature 
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was set at 40 °C. The diode array detector scanned the wavelength range from 325 nm to 

675 nm at a rate of 40 Hz and 1.2 nm resolution. The sample injection volume was10 μL. 

Results and Discussion 

A fiber dye extraction method was calibrated at five different concentration points. After 

looking at the residuals and calculating an F-test based on the OLS regression, it was 

obvious that the data was heteroscedastic and did not fit the OLS model, shown in Figure 

6.3. A WLS model was produced for each dye, yielding better residual standard 

deviations in every case. Four examples of this are shown in Table 6.3. The residual 

standard deviations of the WLS regression were all less than 0.1 suggesting a very good 

correlation between the data and the model. According to Zeng, this behavior may be a 

result of the chromatographic technique. “A growing body of evidence indicates that 

chromatographic techniques are dominated by this type of heteroscedasticity over 

sampling regions used in routine analytical work. Neglect of heteroscedasticity in 

calibration, through use of unweighted or “ordinary” least squares (OLS) instead of 

weighted least squares (WLS), can lead to significant loss of precision, especially in the 

low signal limit which is often important in quantitating substances present at trace 

levels” (17). 

The limits of detection were calculated for the dyes as well; three examples are shown in 

Table 6.4. It is made clear that the LOD values vary with the method used. LOD1-3 are 

calculated via 3.3σb (this calculation was used for comparison purposes because it the 

most common calculation used) but differ in the method of calculating σb, the standard 

deviation of the blank. LOD1 estimates σb using the standard deviation of the integrated 
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blank signals across the width of the peak. LOD2 estimates σb using the standard 

deviation of the lowest non-zero calibrator (10 ppb). LOD3 estimates σb based on the 

standard error of the y-intercept of the calibration model, i.e. the standard deviation of the 

residuals. However, for LOD4, an upper one-sided tolerance interval was used. 

A sample calculation of a simple non-simultaneous upper-limit tolerance interval based 

on Acid Red 337 is shown below.  

According to NIST (20), Upper One Sided Tolerance Interval: 

𝑌𝑈 = 𝑌̅ +  𝑘1𝑠 

𝑘1 =
𝑧𝑝 + √𝑧𝑝

2 − 𝑎𝑏

𝑎
 

𝑎 = 1 −
𝑧𝛾

2

2(𝑁 − 1)
 

𝑏 = 𝑧𝑝
2 −

𝑧𝛾
2

𝑁
 

95% confidence (γ=0.99) & 99.95% population (p=0.95)  

𝑧𝑝 = 3.291 𝑧𝑝
2 = 10.831             𝑧𝛾 = 1.645            𝑧𝛾

2 = 2.706 

𝑎 = 1 −
2.706

2(18 − 1)
= 0.92041 

𝑏 = 10.831 −
2.706

18
= 10.68067 

𝑘1 =
3.291 + √10.831 − (0.92041)(10.68067)

0.92041
= 4.6623 

𝑌𝑈 = 𝑌̅ +  𝑘1𝑠 

𝑌𝑈 = 0.7126 + 4.6623(1.36) = 7.06 𝑝𝑝𝑏 (𝐿𝑂𝐷) 
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The calculation requires a mean and standard deviation and a confidence and population 

designation. The mean of this calculation must be the critical level, LC, (μb + 3.3σb) 

because the LOD justified by the tolerance interval needs to be shifted to the right of the 

critical level (where β is 0.5) to decrease the false negative rate, as is done with MCDA. 

This “shift to the right” is shown by the variable k1 in the tolerance interval and 

represents the number of standard deviations from the critical level that the LOD will be. 

In total, the LOD will be 3.3 + k1 standard deviations from the blank. The standard 

deviation used in the calculation is the standard deviation of the blank, which is assuming 

homoscedasticity. In the future, variance modeling will be used to predict a more 

accurate uncertainty at the LC and the LOD, as mentioned below. The confidence and 

population coverage were set at 95% and 99.95%, respectively.  

A population coverage of 99.95% (below the interval specified) allows for 0.0005 false 

negative risk, shown in Figure 6.4. This is known because the standard deviation of the 

two curves is equal. A false negative rate of 0.0005 makes the tolerance interval LOD 

comparable to the MCDA. However, giving the tolerance interval a confidence level 

makes it inherently more reliable than the MCDA. As a result, LOD generally lies further 

from the blank than the MCDA. (i.e. 3.3 + k1 is greater than 3.3 + 3.3) With the specified 

conditions, k1 is 4.6623, which means that the tolerance interval LOD is actually 1.3623 

standard deviations further than the MCDA. 

The point at which the LOD normal distribution and the distribution of the blank overlap 

is called the critical level (μb + 3.3σb). The area of each curve that overlaps into the other 

at the critical level represents either the false positive or false negative error, shown in 

Figure 6.5. The rate of these errors decreases with the increase in number of standard 
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deviations from the blank in which the LOD lies. Here this distance is controlled 

primarily by the confidence and population spread chosen in the tolerance interval. In 

other words, by increasing the confidence and the population percentages, the number of 

standard deviations between the LOD and the blank will increase, thus decreasing the 

false positive and false negative error rates. In general, the tolerance interval based LODs 

were more conservative, which is to be expected.  

 Other means of calibration analysis include generalized least squares (GLS), 

simultaneous tolerance intervals and modeling weights for least squares. GLS includes 

uncertainties in the x-axis and the y-axis, unlike WLS (i.e. in GLS, there is no assumption 

that errors in the y direction need to be larger than the errors in the x direction) (18). 

However, there is the opposite assertion: there are errors in both the x and y direction; 

therefore, GLS calibration requires uncertainty profiles for both the calibration solutions 

(x direction) and their corresponding instrumental responses (y direction) (18). Once the 

standard deviation in each direction is determined, the inverse variance weights can be 

determined and applied.  

The tolerance intervals described thus far have been non-simultaneous intervals. 

However, simultaneous tolerance intervals can also be useful and can be broken down 

into ordinary least squares intervals and weighted least squares intervals. Simultaneous 

intervals span the entire calibration model and, in the case of tolerance intervals, give a 

sense of uncertainty along the calibration. (i.e., for the future, the model will show an 

interval where, for instance, 99.95% of the population will lie, at any given concentration 

along the model, with 95% confidence). The simultaneous tolerance intervals require a 

correlation between variance and concentration. In the OLS case, this is rather simple due 
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to the homoscedasticity. However, with WLS tolerance intervals, a proper model must be 

fit to the relationship (described further in “modeling weights” below). Zorn and Gibbons 

both discuss calculations for the weighted tolerance intervals (3-4). As a result of the 

modeling of the variance, weighted tolerance interval width varies with concentration (4).  

Because error generally increases with concentration, weighted tolerance intervals allow 

for tighter tolerance intervals at lower concentrations which would result in lower and 

more accurate limits of detection (3). 

In the case of the weighted and generalized least squares regressions and the weighted 

tolerance intervals, the weights are presumed to be known via analysis of the replicates or 

by propagation of error. However, when the number of replicates is low or when the 

propagation of error is too timely, the use of models to estimate the variance as a function 

of concentration should be explored. Obviously, the best fit model should be used and 

potential models include, but are not limited to, the Rocke and Lorenzo model, 

exponential model, and a linear model (32). Modeling variance as a function of 

concentration will also help to interpolate variances for future figures, including limit of 

detection.  

Conclusion 

Limit of detection is an important figure of merit in forensic trace analysis. A consistent 

limit of detection can be skewed through improper calculations. Firstly, it is imperative 

that the proper regression model be chosen for the calibration data. Heteroscedasticity is 

frequently overlooked and in its presence, weighted least squares regression is an 

appropriate alternative to ordinary (unweighted) least squares. Tolerance intervals, 
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specifically upper limit tolerance intervals, should be employed to determine the limit of 

detection value. At this time, tolerance intervals are calculated with an assumption of 

homoscedasticity, thus can only be used with OLS. Therefore, any extrapolation 

(converting from the y-axis to the x-axis) during the tolerance interval calculation should 

be done with the OLS regression model. Tolerance intervals give a conservative 

estimation of limit of detection that can be implemented for an extended period of time.  
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Table 6.1. Confusion Matrix of False Positives and False Negatives 
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Table 6.2.  

Effects on the limit of detection by estimating variability from 

different sources. 

Acid Red 337 

σb LOD Basis LOD 

standard deviation of replicate 

measurements of blanks, df = 14 

3.3σb 

3.07 

standard deviation of the lowest non-zero 

calibrator, df = 5 
1.89 

standard deviation of the residuals, df = 43 0.86 
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Table 6.3.  

Comparison of Calibration Parameters based on Unweighted versus Weighted Least 

Squares Analysis 

Least Squares Regression Parameters 

  Unweighted Weighted 

Dye Intercept Slope 
S, 

residuals 
Intercept Slope 

S, 

residuals 

Acid Red 337 11.39 55.45 68.48 105.6 57.34 0.023 

BasicYellow 28 93.52 56.32 62.68 110.7 55.02 0.046 

Disperse Yellow 114 13.84 86.45 46.64 46.71 14.52 0.069 

Basic Violet 16 93.65 109.7 122.5 95.97 93.94 0.037 
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Table 6.4. Comparison of UPLC with UV/visible detection LODs for textile 

dyes (in ppb) (𝑥𝐿𝑂𝐷 = 𝑥̅𝑏𝑙𝑎𝑛𝑘 + 3.3s) based on: (1) sb ; (2) s of the lowest non-

zero concentration replicates; (3) s of the y-intercept of the calibration line; and 

(4) a statistical tolerance interval. 

DYE LOD1 LOD2 LOD3 LOD4 

Basic Violet 16 1.84 2.09 0.91 4.36 

Basic Yellow 28 2.69 0.93 0.77 6.50 

Acid Red 337 3.07 1.89 0.86 7.06 
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Figure 6.1. False positive and false negative risks for a sample containing analyte 

equivalent to the amount at the limit of detection. 
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Figure 6.2. For a sample that contains an amount of analyte that gives a signal equal to 

the mean of the blank plus 6.6 standard deviations of the blank signal (twice that for 

LOD), it can be said that analyte has been confidently detected (at or above the LOD), 

and that the analyte is also consistently detected (at or above the MCDA). 
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Figure 6.3. An example of heteroscedasticity in the Disperse Yellow 114 data. The 

critical value of the F-Statistic with 41 degrees of freedom is 4.0785 at 95% confidence. 

The calculated F-statistic for this data is 1268.7695. This exemplifies the lack of fit of the 

ordinary least squares model.  
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Figure 6.4. Comparison of the blank, critical level, and LOD distributions. 
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Figure 6.5. Relationship between the blank, limit of detection, and the critical level. 

Representation of the false positive and false negative error. LD is the limit of detection, 

LC is the critical level, and the blank mean is shown to be zero (3). 
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