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ABSTRACT 

With the development of advanced medical technology, a significant proportion of 

patients can be cured of many chronic diseases. Because a substantial fraction of patients 

have censored information, the standard survival model, such as the proportional hazards 

(PH) model cannot capture the cured information of patients. Thus PH mixture cure model 

is developed to handle the survival data with potential cured information. A corresponding 

sample size formula based on log rank test has been proposed by Wang et al. (2012) and 

the probability of death in their formula is only contributed by the control arm. However, 

to calculate the sample size and power, the hazard ratio and odds ratio are prespecified, 

which can also contribute to increase the accuracy of probability of death, by accounting 

for both the control and treatment arm. Therefore, we modify this formula by improving 

the estimation of the probability of death based on both the control and treatment arm using 

two approaches. The Schoenfeld and Ewell method adjusts the probability of death by 

averaging the death from both groups. The modified approach is verified by extensive 

simulation under exponential, weibull and lognormal distribution. The performance of the 

three methods has been compared under each setting with parametric and nonparametric 

estimation. Furthermore, the sample size calculation has been extended to PH mixture cure 

model with nonbinary covariates and evaluated by simulation studies. These modifications 

have been implemented in the R package and applied to the real data sets. 

 



 

v 

 

TABLE OF CONTENTS 
ACKNOWLEDGEMENTS ........................................................................................................ iii 

ABSTRACT .......................................................................................................................... iv 

LIST OF TABLES ................................................................................................................. vii 

LIST OF FIGURES ............................................................................................................... viii 

CHAPTER 1 INTRODUCTION .................................................................................................. 1 

1.1 PROPORTIONAL HAZARDS MODEL ............................................................................ 1 

1.2 SAMPLE SIZE CALCULATION FOR PROPORTIONAL HAZARDS MODEL ........................ 2 

1.3 PROPORTIONAL HAZARDS MIXTURE CURE MODEL ................................................... 3 

1.4 SAMPLE SIZE CALCULATION FOR PROPORTIONAL HAZARDS 

          MIXTURE CURE MODEL...………………………………………………………….. 5 

 

1.5 MOTIVATION AND OUTLINE OF THESIS .................................................................... 7 

CHAPTER 2 METHODS AND SOFTWARE IMPLEMENTATION .................................................. 9 

2.1 SCHOENFELD AND EWELL METHOD MODIFICATION .................................................. 9 

2.2 LOGNORMAL DISTRIBUTION .................................................................................... 11 

2.3 COMPONENT SPECIFICATIONS ................................................................................. 12 

2.4 EXAMPLES FOR NONPARAMETRIC ASSUMPTION ..................................................... 14 

2.5 IMPLEMENTATION IN R ............................................................................................ 15 

2.6 SAMPLE SIZE CALCULATION FOR NONBINARY COVARIATE .................................... 17 

CHAPTER 3 SIMULATION STUDY ........................................................................................ 19



 

vi 

 

     3.1 SIMULATION COMPARING WANG, SCHOENFELD AND EWELL METHODS ................. 20 

3.2 COMPARISON OF PARAMETRIC SAMPLE SIZE ESTIMATION WITH NONPARAMETRIC     

SAMPLE SIZE ESTIMATION ..................................................................................... 31 

 

3.3 SIMULATION COMPARING WANG AND EWELL METHODS, FOR NONBINARY 

COVARIATE ............................................................................................................ 32 

 

CHAPTER 4 REAL DATA APPLICATION AND POWER ANALYSIS .......................................... 42 

4.1 PARAMETRIC SAMPLE SIZE ESTIMATION ................................................................. 43 

4.2 REAL DATA ANALYSIS ............................................................................................ 44 

4.3 POWER ANALYSIS .................................................................................................... 46 

4.4 POWER ANALYSIS FOR STUDYING EFFECTS OF HAZARDRATIO AND ODDSRATIO ... 46 

CHAPTER 5 SUMMARY AND CONCLUSIONS ........................................................................ 50 

BIBLIOGRAPHY .................................................................................................................. 53 

 



 

vii 

 

LIST OF TABLES 

Table 2.1 Density Functions g(t) of Accrual Times and Survival Functions Sc(t)  of 

Censoring Times ............................................................................................. 13 

 

Table 3.1   Comparison of Exponential parametric sample size estimation with 

nonparametric estimation ................................................................................ 33 

 

Table 3.2   Comparison of Weibull parametric sample size estimation with nonparametric      

estimation ........................................................................................................ 34 

 

Table 3.3   Comparison of Lognormal parametric sample size estimation with  

nonparametric sample size estimation ............................................................ 35 



 

viii 

 

LIST OF FIGURES 

Figure 3.1 Simulation for Exponential distribution under parametric condition .............. 25 

Figure 3.2 Simulation for Exponential distribution, adjusting follow up period .............. 26 

Figure 3.3 Simulation for Weibull distribution................................................................. 27 

Figure 3.4 Simulation for Weibull distribution, adjusting follow up period .................... 28 

Figure 3.5 Simulation for Lognormal distribution ............................................................ 29 

Figure 3.6 Simulation for Lognormal distribution, adjusting follow up period ............... 30 

Figure 3.7 Comparing two methods for exponential distribution,  

for nonbinary covariate ................................................................................... 38 

Figure 3.8 Comparing two methods for Weibull distribution, for nonbinary covariate ... 39 

Figure 3.9 Comparing the Wang and Ewell methods for Weibull distribution, for nonbinary      

covariate, adjusting follow up period.............................................................. 40 

 

Figure 3.10 Comparing the Wang and Ewell methods for Lognormal distribution, for 

nonbinary covariate...................................................................................... 41 

 

Figure 4.1 Power analysis for parametric estimation........................................................ 47 

Figure 4.2 Power analysis for nonparametric estimation.................................................. 47 

Figure 4.3  Effects of hazardratio on power under different sample sizes ....................... 48 

Figure 4.4 Effects of odds ratio on power under different sample sizes........................... 49 

 



 

  1   

 

CHAPTER 1 INTRODUCTION 

In randomized controlled clinical trials with time-to-event endpoints, a sample size 

calculation is a very important consideration. Because the main goal in survival analysis is 

to distinguish the treatment effect among different groups, the number of patients enrolled 

should be adequate for obtaining the conclusion from statistical inference. On the other 

hand, excess number of patients may result in waste of resources. Thus developing accurate 

and widely used sample size calculation method has attracted more and more interests. 

 

1.1 PROPORTIONAL HAZARDS MODEL 

The proportional hazards (PH) model is one of the most popular models in survival 

analysis [1, 2]. The PH model can be expressed as 

ℎ(𝑡|𝒙) = ℎ0(𝑡)exp(𝜷′𝒙) 

where ℎ(·) is the hazard function, ℎ0(·) is the baseline hazard function, 𝒙 is a vector of 

covariates and 𝜷 is an unknown vector of coefficients of interest. In the case where 𝒙 = 0, 

the hazard function ℎ(𝑡|𝒙) reduces to the baseline hazard function ℎ0(𝑡).  

Under the PH model, the hazard ratio of two subjects is constant over time. For example, 

the hazard ratio of two subjects with covariates 𝒙𝟏 and 𝒙𝟐 is calculated as 

𝐻𝑅 =
ℎ0(𝑡)exp(𝜷𝒙𝟏)

ℎ0(𝑡)exp(𝜷𝒙𝟐)
= exp[𝜷(𝒙𝟏 − 𝒙𝟐)]           

which is apparently constant over time. We could interpret the HR (exp[𝜷(𝒙𝟏 − 𝒙𝟐)]) as 
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the relative risk of an individual with risk factor 𝒙𝟏 having the event as compared to an 

individual with risk factor 𝒙𝟐 having the event. Particularly, given all other variables at the 

same level, when x is a binary indicator variable of control and treatment arm,exp(𝜷) can 

be interpreted as the hazard ratio between two arms. Having this nice interpretation, the 

PH model is used for investigating the covariate effects on the hazard function. 

The proportional hazards model has been widely used in practice due to its easy 

estimation through the nonparametric approach. Particularly, there is no need to specify 

the baseline hazard function and the MLE approach is approximated by the partial 

likelihood. The estimation based on this approach is consistent and satisfies the normal 

approximation. Based on the estimated parameter 𝛽, the survival function can be estimated 

nonparametrically. The partial likelihood has been implemented in most statistical software 

such as “phreg” in SAS, “coxph” in R, and “stcox” in stata [3], 

 

1.2 SAMPLE SIZE CALCULATION FOR PROPORTIONAL HAZARDS MODEL 

Especially for 𝑥 being a binary variable, if letting 𝑥 indicate the treatment effect 

(𝑥 = 1for treatment arm and 𝑥 = 0 for control arm), the PH model can be expressed as 

ℎ(𝑡|𝑥) = ℎ0(𝑡)exp(𝛽0𝑥) 

After adjusting all the other covariates, exp(𝛽0) can be interpreted as the risk ratio of an 

individual in treatment arm having the event as compared to an individual in control arm 

having the event. 

Assuming 1 − 𝜃 is the power of statistical test, α is the significance level, and thus 

𝑍𝜃 and 𝑍𝛼 2⁄  are the 𝜃 and 𝛼 2⁄  percentiles of the standard normal distribution, respectively; 

𝑝 is the proportion of subjects in the treatment arm; 𝛽0 is the log-hazard ratio between 
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treatment and control arms; 𝛿 is the censoring indicator, for which 1 denotes failure and 0 

denotes censoring. 𝑃(𝛿 = 1)  is the probability of failure. The following sample size 

formula based on the standard PH model has been widely used [4, 5],  

𝑛 =
(𝑍𝜃+𝑍𝛼 2⁄ )2

𝑝(1−𝑝)𝛽0
2𝑃(𝛿=1)

                         (1.1) 

The major statistics software can perform sample size and power calculation for 

survival studies. In SAS [6], “TWOSAMPLESURVIVAL” statement in the POWER 

procedure can compare two survival curves based on log-rank test, using Schoenfeld’s 

method [4]. Stata has several “stpower” commands for calculating sample size under 

various scenarios. The R package “powerSurvEpi” has several functions to calculate 

sample size for Cox PH model with both binary and nonbinary covariates [7]. However, 

these software packages have limited options in either the survival distribution function or 

the accrual pattern. 

 

1.3 PROPORTIONAL HAZARDS MIXTURE CURE MODEL 

As we know, in all the standard survival models, there’s a common assumption, 

that all patients will eventually experience the event of interest, which means that when 

time is long enough, the survival probability for the population will become 0. However, 

with the development of advanced medical technology, many fatal and chronic diseases 

are now becoming curable. In this scenario, those cured patients will never experience the 

event of interest, even the follow-up period is sufficient. To account for this curable part, 

mixture cure model has been specifically designed to be applied for this type of study [8-

10]. Different from the standard survival model, one advantage of the mixture cure model 
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is that it has two separate components to model the cure probability for the cured part and 

the survival probability for the uncured patients, respectively. The most popular mixture 

cure model for analyzing survival data was proposed by Boag [11], which could estimate 

the cure rate of the cured patients and the survival probability of uncured patients in the 

meantime. 

Let 𝑇 be a nonnegative random variable denoting the observed time of a patient, 

which is the minimum of the failure time and censoring time. We assume that 𝑇  is 

independent of censoring. Let 𝑆(𝑡|𝒙, 𝒛)denote the survival functions of 𝑇, where 𝒙 and 𝒛 

are observed values of two covariate vectors on which the distribution of 𝑇 may depend. 

The mixture cure model is then given by 

𝑆(𝑡|𝒙, 𝒛) = 𝜋(𝒛) + (1 − 𝜋(𝒛))𝑆𝑢(𝑡|𝒙)                             (1.2) 

where 𝑆(𝑡|𝒙, 𝒛) denotes the overall survival function. 𝜋(𝒛) is usually referred to as the 

“incidence” part, which is the probability of being cured giving predictors 𝒛 via the inverse 

logistic function, 

𝜋(𝒛) =
exp(𝜸′𝒛)

1+exp(𝜸′𝒛)
                                                     (1.3) 

𝑆𝑢(𝑡|𝒙) is usually referred as “latency” part, which is the survival function of the uncured 

subjects depending on 𝒙. Under the proportional hazards model assumption, that is 

𝑆𝑢(𝑡|𝒙) = 𝑆0(𝑡|𝒙)
𝑒𝜷𝒙 

the above model (1.2) and (1.3) become PH mixture cure model. 

There’s an existing R package “smcure” developed for analyzing mixture cure 

models [12]. The package can estimate semiparametric PH mixture cure model and 

semiparametric accelerating failure time (AFT) mixture cure model, based on the EM 
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algorithm. In SAS, there’s an existing macro called PSPMCM which accounts for the 

PHMC model and the parametric approach for the AFTMC model [13]. 

 

1.4 SAMPLE SIZE CALCULATION FOR PROPORTIONAL HAZARDS MIXTURE CURE 

MODEL 

For mixture cure models, the most common case is that the covariate is binary 

variable, such as only including the control and treatment arm. If let 𝑗 = 0, 1 denote the 

control and treatment arm; 𝜋0 , 𝜋1  denote cure rate for control arm and treatment arm; 

𝜆0(𝑡), 𝜆1(𝑡) denote the hazard function for control arm and treatment arm; 𝛽0 denote the 

log-hazard ratio between two arms and 𝛾0 denote the log-odds ratio between two arms. 

𝑆𝑗
∗(•)  Denotes the overall survival function and 𝑆𝑗(•)  denote the survival function of 

uncured patients. The mixture cure model is as follows, 

𝑆𝑗
∗(𝑡) = 𝜋𝑗 + (1 −𝜋𝑗)𝑆𝑗(𝑡) 

𝜆1(𝑡) = 𝑒𝛽0𝜆0(𝑡) 

which accounts for the constant hazard ratio. 

𝑙𝑜𝑔𝑖𝑡(𝜋1) = 𝑙𝑜𝑔𝑖𝑡(𝜋0) + 𝛾0 

which accounts for the constant odds ratio. In a special case that, when  𝜋0 = 𝜋1 = 0, it 

reduces to the standard PH model. 

For a survival trial with a proportion of patients being cured, the hypothesis of 

interest is listed as follows,  

𝐻0 ∶  𝛽0 = 𝛾0 = 0     VS    𝐻𝑎: 𝑎𝑡𝑙𝑒𝑎𝑠𝑡𝑜𝑛𝑒𝑜𝑓(𝛽0, 𝛾0) ≠ 0 

The alternative hypothesis 𝐻𝑎 includes the following cases, 
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1) 𝛽0 ≠ 0, 𝛾0 ≠ 0: treatment has effects on both cure rate and survival probability 

of uncured patients; 

2) 𝛽0 ≠ 0, 𝛾0 = 0: treatment only has effect on survival probability of uncured 

patients; 

3) 𝛽0 = 0, 𝛾0 ≠ 0: treatment only has effect on cure rate. 

Wang et al. developed a sample size formula for the PH mixture cure model based 

on the log rank test [14]: 

For power 1 − 𝜃 and significance level α, 

                𝑛 =
(𝑍𝜃+𝑍𝛼 2⁄ )2 ∫ 𝑆𝐶(𝑡)𝑓0(𝑡)

∞

0
𝑑𝑡

𝑝(1−𝑝)(1−𝜋0){∫ 𝑚(𝛾0,𝛽0,𝜋0)𝑆𝐶(𝑡)𝑓0(𝑡)
∞

0
𝑑𝑡}

2                   (1.4)              

where 𝑚(𝛾0, 𝛽0, 𝜋0) = 𝜋0{𝛾0 + 𝛬0(𝑡)𝛽0}/𝑆0
∗(𝑡) − 𝛽0   

𝑝 is the proportion of subjects in the treatment arm; 𝜋0 is the cure rate for control arm. 𝛽0 

denotes the log-hazard ratio between two arms and 𝛾0 denotes the log-odds ratio between 

two arms. 𝑆𝐶(𝑡) is the survival function of censoring time and 𝑓0(𝑡) is the density function 

of survival times for uncured patients in the control arm. 𝑆0
∗(𝑡) is the overall survival 

function in the control arm. 

When  𝜋0 = 0, there’s no cured part, and (1.4) reduces to the sample size formula 

for standard PH model in (1.1). 

Therefore, this sample size formula extends the original formula for standard PH 

model by allowing a cure fraction. In Wang’s paper [14], effects of the difference in the 

short-term survival and the difference in the cure fraction on the sample size has been 

studied, which are usually of main interest in many survival trials. Impacts of various 
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accrual rate patterns, including uniform, increasing, and decreasing, and also the length of 

accrual and follow-up periods on the estimated sample size have been illustrated. 

Cai. et al implement the above sample size calculation method in R and develop a 

R package NPHMC [15]. In their package, they include many options as discussed in the 

paper. First, they provide option for accrual pattern, such as uniform, increasing, and 

decreasing; Secondly, the base hazard function for treatment is also flexible, which 

includes two parametric distributions, exponential and Weibull; Thirdly, in their output 

interface, either the sample size or power can be reported by given either power or sample 

size and power curves can be generated for multiple sample sizes for power analysis; 

Lastly, the package can either do the parametric estimation based on the known parameters, 

or do the nonparametric estimation from the available dataset. 

 

1.5 MOTIVATION AND OUTLINE OF THESIS 

Based on Wang’s method, the sample size for the PH mixture cure model can be 

conveniently calculated. However, in the original method, the probability of death is 

contributed only from the control arm, which may either underestimate or overestimate the 

power. It’s expected that when calculating the probability of death, if it can be accounted 

for in both arms, sample size calculation will be more precise comparing with the current 

method. The outline of the thesis is listed as follows, 

In Chapter 2, we introduce the method of modification for sample size calculation 

under PH mixture cure model, using both the Schoenfeld [4] and Ewell [16] method. 

Secondly, the formula was updated to be adapted to cases with lognormal distribution in 

hazard function. Thirdly, formulas are developed to be used for nonbinary cases based on 
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Hsieh and Lavori’s method [17], under exponential, Weibull and lognormal distribution in 

hazard function. All the methods are illustrated with notation specification, formulas and 

implementation in R. 

In Chapter 3, extensive simulation are conducted to check the performance of the 

proposed methods. We first compare the performance of the three methods under different 

distribution in hazard function, by comparing the empirical power with the nominal power. 

Secondly, for each method, parametric estimation has been compared with nonparametric 

estimation. 

In Chapter 4, the proposed method has been applied to the melanoma dataset from 

ECOG phase III clinical trial E1684. Furthermore, power analysis has been conducted 

using the proposed method, under various settings. 

Finally in Chapter 5, we summarize all the work and present some discussion and 

conclusions for future work.  
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CHAPTER 2 METHODS AND SOFTWARE IMPLEMENTATION 

In this chapter, methods used for formula modification and implementation are 

illustrated. Section 2.1 introduces the motivation and presents our two proposed 

modification methods; section 2.2 extends the current method and the two proposed 

method to lognormal distribution; section 2.3 demonstrates the components specification 

for how to apply all three methods in sample size calculation, under three distributions 

( exponential, Weibull and lognormal); section 2.4 develops the nonparametric estimation 

method using the two proposed methods; section 2.5 demonstrate the implementation of 

the three methods in R; section 2.5 further extends the methods to the sample size 

calculation for nonbinary cases.  

 

2.1 SCHOENFELD AND EWELL METHOD MODIFICATION 

            For the sample size formula proposed by Wang in (1.4), the probability of death 

(𝑃[𝛿 = 1] ) is calculated only from the control arm, which may either underestimate or 

overestimate the necessary sample size. 

For sample size calculation in standard PH model, Schoenfeld [4] proposed a 

method to adjust the calculation of the probability of death, based on both the control and 

the treatment arm, with 𝑝 denoting the proportion of subjects in the treatment arm. 

𝑃(𝛿 = 1) = 𝑝𝑃(𝛿 = 1|𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡) + (1 − 𝑝)𝑃(𝛿 = 1|𝐶𝑜𝑛𝑡𝑟𝑜𝑙) 

We refer to this method as Schoenfeld method. If we expand the formula, it is as follows,
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𝑛 =
(𝑍𝜃 + 𝑍𝛼 2⁄ )2

𝑝(1 − 𝑝)𝛽0
2{𝑝 ∫ 𝑆𝐶(𝑡)𝑓1(𝑡)

∞

0
𝑑𝑡 + (1 − 𝑝) ∫ 𝑆𝐶(𝑡)𝑓0(𝑡)

∞

0
𝑑𝑡}

 

It is apparent that it accounts for the different density function between the control and 

treatment arm, which is closer to the real situation.  

Instead of 𝑓0(𝑡)  in Wang’s method, 𝑓(̅𝑡)  is applied to formula which is an average 

probability density function from both the control arm and treatment arm.  

𝑓(̅𝑡) = 𝑝𝑓1(𝑡) + (1 − 𝑝)𝑓0(𝑡) 

By substituting the 𝑓0  in Wang’s method by 𝑓̅ , it becomes the modified sample size 

calculation formula, which is written as  

𝑛 =
(𝑍𝜃+𝑍𝛼 2⁄ )2 ∫ 𝑆𝐶(𝑡)𝑓̅(𝑡)

∞
0 𝑑𝑡

𝑝(1−𝑝)(1−𝜋0){∫ �̅�(𝛾0,𝛽0,𝜋0)𝑆𝐶(𝑡)𝑓̅(𝑡)
∞
0 𝑑𝑡}

2                   (2.1) 

where �̅�(𝛾0, 𝛽0, 𝜋0) = 𝜋0{𝛾0 + 𝛬̅(𝑡)𝛽0}/𝑆̅
∗(𝑡) − 𝛽0. 

As for the numeric average of density function, other components can be derived 

similarly, which are listed as follows, 

 𝑓(̅𝑡) = 𝑝𝑓1(𝑡) + (1 − 𝑝)𝑓0(𝑡),         𝑆̅(𝑡) = 𝑝𝑆1(𝑡) + (1 − 𝑝)𝑆0(𝑡) 

 𝑆̅∗(𝑡) = 𝜋0 + (1 − 𝜋0)𝑆0̅(𝑡),            𝛬̅(𝑡) = −𝑙𝑜𝑔𝑆̅(𝑡) 

Besides the Schoenfeld method which averages the density function first, an 

alternative method proposed by Ewell [16] which aims to average the hazard function first 

and we refer to it as Ewell method. First, the weighted hazard function was calculated from 

the square root of the product of hazard function from both control and treatment arms. 

Then the density function and survival function is calculated based on the hazard function. 

We listed each component as follows: 

Ewell method: 
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𝛬𝑖(𝑡): Cumulative hazard function of the 𝑖𝑡ℎ group, where  𝑖 = 0,1 

 𝛬̅(𝑡) = 𝛬1(𝑡)
𝑝𝛬0(𝑡)

1−𝑝,                𝑆̅(𝑡) = exp{−𝛬̅(𝑡)}     

 𝑆̅∗(𝑡) = 𝜋0 + (1 − 𝜋0)𝑆0̅(𝑡),        𝑓(̅𝑡) = −
𝜕�̅�(𝑡)

𝜕𝑡
 

Similar as Schoenfeld method, 𝑓0  in Wang’s method is substituted by 𝑓̅ , which is 

calculated based on Ewell method. Then the other components calculated as above are 

substituted into the formula.  

 

2.2 LOGNORMAL DISTRIBUTION 

As mentioned before, the existing method and package only cover exponential and 

Weibull distribution, in our study all three methods has been accommodated to lognormal 

distribution. 

Formulas for lognormal distribution in R will be utilized here. Similar as for the 

exponential and Weibull distributions, the Wang method calculates the probability of death 

based on the control arm, while Schoenfeld method acquires the weighted functions from 

the numeric average of both the control and treatment arm. The Ewell method uses the 

geometric average to get necessary functions. Some related formulas are as follows, 

 Wang method:                                                                                                       

𝑆0(𝑡) = 1 − 𝑝𝑛𝑜𝑟𝑚(
lnt−µ0

𝜎0
),           𝑆0

∗(𝑡) = 𝜋0 + (1 − 𝜋0)𝑆0(𝑡), 

𝑓0(𝑡) = 𝑑𝑛𝑜𝑟𝑚 (
lnt−µ0

𝜎0
)

1

𝜎0

1

𝑡
,           𝛬0(𝑡) = −log(𝑆0(𝑡)). 

 Schoenfeld method: 

𝑆0(𝑡) = 1 − 𝑝𝑛𝑜𝑟𝑚(
lnt−µ0

𝜎0
),              𝑆1(𝑡) = 𝑆0(𝑡)

𝑒𝛽 , 
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𝑓0(𝑡) = 𝑑𝑛𝑜𝑟𝑚 (
lnt−µ0

𝜎0
)

1

𝜎0

1

𝑡
,             𝑓1(𝑥) = 𝑒𝛽𝑆0(𝑡)

𝑒𝛽−1𝑓0(𝑡) 

 Ewell method: 

𝑆0(𝑡) = 1 − 𝑝𝑛𝑜𝑟𝑚(
lnt−µ0

𝜎0
),         𝑆1(𝑡) = 𝑆0(𝑡)

𝑒𝛽 , 

𝛬0(𝑡) = −log(𝑆0(𝑡)),                   𝛬1(𝑡) = −log(𝑆1(𝑡)), 

𝛬̅(𝑡) = 𝛬1(𝑡)
𝑝𝛬0(𝑡)

1−𝑝,               𝑆̅(𝑡) = exp(−𝛬̅(𝑡)), 

𝑆̅∗(𝑡) = 𝜋0 + (1 − 𝜋0)𝑆̅(𝑡),          𝑓(̅𝑡) = exp(−�̅�(𝑡))
𝜕�̅�(𝑡)

𝜕𝑡
. 

 

2.3 COMPONENT SPECIFICATIONS 

To calculate the sample size using the formula shown above, several components 

need to be specified, such as survival function of censoring time, corresponding to different 

accrual patterns. There are three patterns considered here, uniform, increasing and 

decreasing. Specifically, if we let 𝜏𝑎 and 𝜏𝑓 denote the accrual and the follow-up period, 

respectively; 𝑔(𝑡)  denote the probability density function of accrual times. Their 

corresponding survival function of the censoring times are summarized in the table below, 

which will be substituted into the formula. 

For the density function of survival probability, we’ll consider three different 

parametric distributions, including exponential, Weibull and lognormal. The lognormal 

distribution is the new feature we add to the original package. Some expressions for the 

three distributions are as follows: 

Exponential Distribution 

𝜆0(𝑡) = 𝜆0𝑘,                    𝛬0(𝑡) = 𝜆0𝑡,                   𝑆0(𝑡) = 𝑒−𝜆0𝑡, 

𝑓0(𝑡) = 𝜆0 exp(−𝜆0𝑡) ,𝑓𝑜𝑟𝑡 > 0. 
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Table 2.1 Density Functions g(t) of Accrual Times and Survival Functions 𝑆𝑐(𝑡)  of 

Censoring Times 

 

Weibull Distribution 

𝜆0(𝑡) = 𝜆0𝑘(𝜆0𝑡)
𝑘−1,                    𝛬0(𝑡) = (𝜆0𝑡)

𝑘,                   𝑆0(𝑡) = 𝑒−(𝜆0𝑡)
𝑘
, 

𝑓0(𝑡) = 𝜆0𝑘(𝜆0𝑡)
𝑘−1 exp(−(𝜆0𝑡)

𝑘) ,𝑓𝑜𝑟𝑡 > 0. 

Lognormal Distribution 

𝑆0(𝑡) = 1 − 𝑝𝑛𝑜𝑟𝑚(
𝑙𝑛𝑡−µ0

𝜎0
),     𝑓0(𝑡) = 𝑑𝑛𝑜𝑟𝑚 (

𝑙𝑛𝑡−µ0

𝜎0
)

1

𝜎0

1

𝑡
 

To apply the Schoenfeld or Ewell method is to calculate 𝑓(̅𝑡), 𝑆̅(𝑡), 𝑆̅∗(𝑡) and 𝛬̅(𝑡) 

based on the above equations, discussed in section 2.2, respectively. Then those calculated 

average functions are substituted into the formula (2.1). For example, if a trial has uniform 

distribution for the accrual period, for power 1 − 𝜃 and significance level α, the sample 

size can be calculated as the following, 

𝑛 =
(𝑧𝜃+𝑧𝛼 2⁄ )

2
{∫ 𝑓̅(𝑡)𝑑𝑡

𝜏𝑓
0

+∫ 
𝜏𝑎+𝜏𝑓−𝑡

𝜏𝑎
𝑓̅(𝑡)𝑑𝑡

𝜏𝑎+𝜏𝑓
𝜏𝑓

}

𝑝(1−𝑝)(1−𝜋0){∫ �̅�(𝛾0,𝛽0,𝜋0)𝑓̅(𝑡)
𝜏𝑓
0

𝑑𝑡+∫
𝜏𝑎+𝜏𝑓−𝑡

𝜏𝑎
�̅�(𝛾0,𝛽0,𝜋0)𝑓̅(𝑡)𝑑𝑡

𝜏𝑎+𝜏𝑓

𝜏𝑓
}
2      

where �̅�(𝛾0, 𝛽0, 𝜋0) = 𝜋0{𝛾0 + 𝛬̅(𝑡)𝛽0}/𝑆̅
∗(𝑡) − 𝛽0. 
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2.4 EXAMPLES FOR NONPARAMETRIC ASSUMPTION 

Alternative to parametric assumptions, the sample size for nonparametric 

assumptions could also be calculated. If a dataset is available, the baseline survival function, 

cure rate and hazard ratio could be first estimated by an existing R package, smcure, which 

is developed for mixture cure model. By specifying the significance level, power and 

accrual pattern, the sample size can be attained as follows, 

𝑛 =
(𝑧𝜃 + 𝑧𝛼 2⁄ )

2
∑ �̂�0(𝑡(𝑖))
𝑘
𝑖=1 𝑆𝑐(𝑡(𝑖))

𝑝(1 − 𝑝)(1 − 𝜋0){∑ �̂�0(𝑡(𝑖))
𝑘
𝑖=1 𝑆𝑐(𝑡(𝑖))�̂�(�̂�0, �̂�0, �̂�0; 𝑡(𝑖))}

2 

where �̂�(𝛾0, �̂�0, �̂�0; 𝑡(𝑖)) = �̂�0{𝛾0 + �̂�(𝑡)�̂�0}/�̂�
∗(𝑡) − �̂�0 

�̂�0(𝑡) = −𝑙𝑜𝑔�̂�0(𝑡),          �̂�0
∗
(𝑡) = �̂�0 + (1 − �̂�0)�̂�0(𝑡) 

Similar to the parametric one, numeric or geometric average will be calculated for 

Schoenfeld and Ewell method as following, 

 

Schoenfeld method: 

�̂�0(𝑡): estimated from smcure package, 

�̂�1(𝑡) = �̂�0(𝑡)
𝑒�̂�0 ,               �̂�(𝑡) = 𝑝�̂�1(𝑡) + (1 − 𝑝)�̂�0(𝑡), 

�̂�0
∗
(𝑡) = �̂�0 + (1 − �̂�0)�̂�0(𝑡),�̂�(𝑡) = −log(�̂�(𝑡)). 

Ewell method: 

�̂�0(𝑡): estimated from smcure package, 

�̂�0(𝑡) = −log(�̂�0(𝑡)),              �̂�1(𝑡) = �̂�0(𝑡)
𝑒�̂�0 , 

�̂�1(𝑡) = − log (�̂�1(𝑡)) = −𝑒�̂�0log(�̂�0(𝑡)),        �̂�(𝑡) = �̂�1(𝑡)
𝑝�̂�0(𝑡)

1−𝑝, 

�̂�(𝑡) = exp(−�̂�(𝑡)),                  �̂�∗(𝑡) = �̂�0 + (1 − �̂�0)�̂�(𝑡) 
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2.5 IMPLEMENTATION IN R 

The sample size formula under the exponential, Weibull and lognormal distribution 

and also for the nonparametric estimation with different accrual patterns are implemented 

in “allNPHMC” package we developed. The function can be called using the following 

syntax: 

allNPHMC <- function (n, power, alpha, accrualtime, followuptime, p, accrualdist= 

c(“uniform”, ”increasing”, “decreasing”), hazardratio, oddsratio, pi0, survdist = 

c(“exp”,”weib”,”lgnorm”), shape, scale, data=NULL, output=NULL) 

 
The arguments are as follows: 

 n: the sample size needed for the power calculation. 

 power: the power needed for sample size calculation, default is 90%. 

 alpha: the level of significance of the statistical test, default is 0.05. 

 accrualtime: the length of accrual period. 

   followuptime: the length of follow-up time. 

 p: the proportion of subjects in the treatment arm, default is 0.5. 

 accrualdist: the accrual pattern. It can be "uniform","increasing" or "decreasing". 

 hazardratio: the hazard ratio of uncured patients between two arms, which is defined 

as 𝑒𝛽0 = 𝜆1(𝑡) 𝜆0(𝑡)⁄ . The value must be greater than 0 and not equal to 1. 

 oddsratio: the odds ratio of cure rates between two arms, which is equivalent to 𝑒𝛾0 =

[𝜋1 (1 − 𝜋1)⁄ ] [𝜋0 (1 − 𝜋0)]⁄⁄ . The value should be greater than 0 if there’s cured 

fraction. When it is 0, the model is reduced to the standard proportional hazards model, 

which means there is no cure rate. 

 pi0: the cure rate for the control arm, which is between 0 and 1. 

 survdist: the survival distribution of uncured patients. It can be “exp”, “weib” or 

“lgnorm”. 

 shape: shape parameter for distribution of survival function. By default shape=1, which 

refers to the exponential distribution. 
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 scale: scale parameter for distribution of survival function. 

 data: if observed/historical data is available, the sample size can be calculated based 

on the nonparametric estimators from the PH mixture cure model by smcure package 

in R. The data must contain three columns with the order of “Time”, “Status” and “X” 

where “Time” refers to observed time, “Status” refers to censoring indicator (1 = event 

of interest happens, and 0 = censoring) and “X” refers to arm indicator (1 = treatment 

and 0 = control). By default, data = NULL. 

 method: It can be “wang”,”schoenfeld”,”ewell”. if output is NULL, only result from 

Schoenfeld method will be output. To obtain the results from all three method (Wang, 

Schoenfeld, Ewell), method should be set to “all”. By default, output = NULL. 

 

Remarks: 

“oddsratio = 1” can be specified if we believe the difference between two arms 

does not exist in the cure fraction. “hazardratio = 1” (𝛽0 = 0) can also be specified if we 

believe the difference between two arms does not exist in the uncured fraction. If the 

argument “data” is not “NULL”, the “hazardratio” and the “oddsratio” will be 

automatically calculated based on the output from smcure package. If the argument “data” 

is not “NULL” and the “hazardratio” and the “oddsratio” are given, it will give a warning 

message as “The “hazardratio” and the “oddsratio” are not needed when the data option 

is specified. If the argument “data” is “NULL”, the value of the “hazardratio” and the 

“oddsratio” need to be specified. 

If power (sample size) and significant level of statistical test is given, the output of sample 

size (power) calculation is as follows: 

If data = NULL, the output will display: 

 PH Mixture Cure Model: n (Power)  
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 Standard PH Model: n (Power)  

If data is specified: the output will display: 

 Estimators from smcure package 

 PH Mixture Cure Model: n (Power)  

 Standard PH Model: n (Power)  

 

2.6 SAMPLE SIZE CALCULATION FOR NONBINARY COVARIATE 

In many experiments, the covariates are not binary variables, such as the covariates 

recording the dose levels, or the covariates being as risk factors, such as numbers of 

cigarettes smoked per day. To apply our sample size calculation method to this type of 

study, the above formula has been modified to accommodate to the nonbinary covariates. 

In 2000, Hsieh et al. proposed a sample size formula for nonbinary covariate without 

assuming any distribution on survival time. As seen from the above formula for standard 

PH model, the variance from the binary covariate contributes as 𝑝(1 − 𝑝). When applied 

to the nonbinary covariate, this variance item should be replaced by the variance of the 

nonbinary covariate, which is typically denoted as 𝜎2. 

Thus, the sample size for standard PH model is calculated as the following, 

𝑛 =
(𝑍𝜃 + 𝑍𝛼 2⁄ )2

𝜎2𝛽0
2𝑃(𝛿 = 1)

 

Based on above Hsieh’s method, sample size for mixture cure model with nonbinary 

covariate could be calculated as follows, 

 Wang method: 
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𝑛 =
(𝑍𝜃+𝑍𝛼 2⁄ )2 ∫ 𝑆𝐶(𝑡)𝑓0(𝑡)

∞
0 𝑑𝑡

𝜎0
2(1−𝜋0){∫ 𝑚(𝛾0,𝛽0,𝜋0)𝑆𝐶(𝑡)𝑓0(𝑡)

∞
0 𝑑𝑡}

2                            (15) 

 Ewell method:                                                                                                     (16) 

Exponential and Weibull distribution: 

𝛬0(𝑡) = (𝜆0𝑡)
𝑘,             𝛬̅(𝑡) = 𝛬0(𝑡)𝑒

𝛽�̅�,           𝑆̅(𝑡) = exp(−(𝜆0𝑡)
𝑘𝑒𝛽�̅�) 

𝑓(̅𝑡) = −
𝜕𝑆̅(𝑡)

𝜕𝑡
= 𝑆̅(𝑡)𝑒𝛽�̅�𝑘(𝜆0𝑡)

𝑘−1𝜆0 

Lognormal distribution: 

𝑆0(𝑡) = 1 − 𝑝𝑛𝑜𝑟𝑚 (
𝑙𝑛𝑡−µ0

𝜎0
),                  𝛬0(𝑡) = − log(𝑆0(𝑡)), 

𝛬̅(𝑡) = 𝛬0(𝑡)𝑒
𝛽�̅�,                       𝑆̅(𝑡) = exp[−𝛬̅(𝑡)] = exp[−𝛬0(𝑡)𝑒

𝛽�̅�] 

𝑓(̅𝑡) = −
𝜕𝑆̅(𝑡)

𝜕𝑡
= exp[−𝛬̅(𝑡)]𝑒𝛽�̅�

1

𝑆0(𝑡)
𝑑𝑛𝑜𝑟𝑚(

𝑙𝑛𝑡 − µ0
𝜎0

)
1

𝑡

1

𝜆0
 

Here the interpretation for the hazard ratio and odds ratio has changed. Compared 

to the binary case, both the hazard ratio and the odds ratio are now interpreted as change 

of the hazard function being associated with one unit change in corresponding covariate.  

Comment: we only use the Ewell method, because its expression can be expanded 

to the continuous variable conveniently. For Schoenfeld method, to calculate the mean of 

the continuous case, it will involve the integration without the closed form. The numerical 

integration may be needed and thus currently we choose the easily implementable approach.
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CHAPTER 3 SIMULATION STUDY 

The purpose of this chapter is to conduct comprehensive simulation studies to 

investigate the performance of the proposed sample size calculations.  

In section 3.1, we first evaluate the consistency of the nominal power and empirical 

power based on all three different methods (Wang, Schoenfeld and Ewell methods) under 

different simulation settings. The empirical power attained based on 2000 simulations will 

be compared to the nominal power which is set at 0.9 here. Performance will be evaluated 

based on the relative difference between the empirical power and the nominal power.  

In section 3.2, performance of three methods will be evaluated by checking the 

consistency between parametric estimation and nonparametric estimation for each method. 

For each set of parameters, we compare the sample size from the fully specified distribution 

with from the fully nonparametric approach. 

Lastly, in section 3.3, we extend the simulation to the continuous variable based on 

the formula provided in section 2.6. Wang and Ewell method has been applied. Simulation 

has been conducted to compare the performance of these two methods, under different 

distributions of hazard function, including exponential, Weibull and lognormal.
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3.1 SIMULATION COMPARING WANG, SCHOENFELD AND EWELL METHODS 

3.1.1 SIMULATION SETTINGS 

EXPONENTIAL DISTRIBUTION 

The following settings are used in the simulation study for exponential distribution. 

Covariate data are generated from a binomial distribution, which corresponding to control 

arm and treatment arm, with equal allocation. 

We specifically consider the control and treatment arm follow the mixture cure 

model with the exponential distribution, which can be written as  

𝑆0(𝑡) = 𝜋0 + (1 − 𝜋0)𝑒
−𝜆0𝑡 

𝑆1(𝑡) = 𝜋1 + (1 − 𝜋1)𝑒
−𝜆1𝑡 

Which leads to the odds ratio as log(
𝜋0

1−𝜋0

𝜋1

1−𝜋1
⁄ ) and hazard ratio as  

𝜆1

𝜆0
. 

1) The scale parameter is set at 𝜆0 = 0.1, 0.20.3., which correspondes to the mean 

survival time of control group as 10, 5, 2. 

2) For each 𝜆0, cure rate for control arm 𝜋0 is set at 0.4 and 0.3. 

The choice of 𝜆1𝑎𝑛𝑑𝜋1 are determined by the odds ratio and hazard ratio, which is set up 

as:  𝑒−𝛽0 is at (1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8),  𝑒𝛾0 is at (0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0), 

which correspond to 𝜋1 = (0.211, 0.25, 0.286, 0.318, 0.348, 0.375, 0.4)  for 𝜋0 = 0.4 

and 𝜋1 = (0.146, 0.176, 0.205, 0.231, 0.255, 0.278, 0.3) for 𝜋0 = 0.3. For 𝜆0 = 0.1, 𝜆1 

is varied at (0.083, 0.077, 0.071, 0.067, 0.063, 0.059, 0.056); For 𝜆0 = 0.2, 𝜆1 is varied at 

(0.167, 0.154, 0.143, 0.133, 0.125, 0.118, 0.111); For 𝜆0 = 0.5, 𝜆1  is varied at (0.417, 

0.385, 0.357, 0.333, 0.313, 0.294, 0.278). And thus the mean survival time of treatment 
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arm is varied at (12, 13, 14, 15, 16, 17, 18), (6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0), (2.4, 2.6, 2.8, 

3.0, 3.2, 3.4, 3.6). 

To calculate the empirical power, the sample size at power 90% should be specified.  

The formula to calculate the sample size is reduced to  

𝑛 =
42.03

𝛽0
2𝑃(𝛿 = 1)

 

The censoring distribution is calculated based on section 2.3. For example, 

assuming uniform distribution in the accrual period with an accrual period of 1 year and a 

follow up time of 4 years; For 𝜋0 = 0.4,the mean censoring rate is 0.83, 0.72, 0.56 for 

𝜆0 = 0.1, 0.2, 0.5, respectively.  For 𝜋0 = 0.3, the mean censoring rate is 0.80, 0.67 and 

0.48.  

Weibull distribution 

Settings used in the simulation study for Weibull distribution are listed as follows:  

Control and treatment group follow the mixture cure model with the Weibull distribution, 

which can be written as  

𝑆0(𝑡) = 𝜋0 + (1 − 𝜋0)𝑒
−(𝜆0𝑡)

𝑘
 

𝑆1(𝑡) = 𝜋1 + (1 − 𝜋1)𝑒
−(𝜆1𝑡)

𝑘 

Which leads to the odds ratio as log (
𝜋0

1−𝜋0

𝜋1

1−𝜋1
⁄ ) and hazard ratio as (

𝜆1
𝜆0
)𝑘. 

1) The shape parameter 𝑘 is set at 2. Scale parameter is set at 𝜆0 = 0.1, 0.20.3., which 

corresponding to the mean survival time of control group as 8.862, 4.431, 2.954. 

2) For each 𝜆0, cure rate for control arm 𝜋0 is set at 0.4 and 0.3. 

The choice of 𝜆1𝑎𝑛𝑑𝜋1 are determined by the odds ratio and hazard ratio, which 

are set up as:  𝑒−𝛽0 is at (1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8),  𝑒𝛾0 is at (0.4, 0.5, 0.6, 0.7, 0.8, 
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0.9, 1.0), which corresponding to 𝜋1 = (0.211, 0.25, 0.286, 0.318, 0.348, 0.375, 0.4) for 

𝜋0 = 0.4  and 𝜋1 = (0.146, 0.176, 0.205, 0.231, 0.255, 0.278, 0.3)  for 𝜋0 = 0.3 . For 

𝜆0 = 0.1, 𝜆1 is varied at (0.091, 0.088, 0.085, 0.082, 0.079, 0.077, 0.075); For 𝜆0 = 0.2, 

𝜆1 is varied at (0.183, 0.175, 0.169, 0.163, 0.158, 0.153, 0.149); For 𝜆0 = 0.3, 𝜆1 is varied 

at (0.274, 0.263, 0.254, 0.245, 0.237, 0.230, 0.224). And thus the mean survival time of 

treatment group is varied at (9.708, 10.105, 10.486, 10.854, 11.210, 11.555, 11.890), (4.854, 

5.052, 5.243, 5.427, 5.605, 5.777, 5.945), (3.236, 3.368, 3.495, 3.618, 3.737, 3.852, 3.963). 

For 𝜋0 = 0.4, the mean censoring rate is 0.92, 0.74, 0.59 for 𝜆0 = 0.1, 0.2, 0.3 , 

respectively. For 𝜋0 = 0.3, the mean censoring rate is 0.90, 0.69 and 0.52.   

Lognormal distribution 

Besides Exponential and Weibull distribution, simulation is also conducted on 

lognormal distribution. The specific settings are listed below: 

Control and treatment arm follow the mixture cure model with the lognormal distribution, 

which can be written as  

𝑆0(𝑡) = 𝜋0 + (1 − 𝜋0)(1 − 𝑝𝑛𝑜𝑟𝑚 (
𝑙𝑛𝑡 − µ0

𝜎0
)) 

𝑆1(𝑡) = 𝜋1 + (1 − 𝜋1)𝑆0(𝑡)
𝑒𝛽0  

Which leads to the odds ratio as log (
𝜋0

1−𝜋0

𝜋1

1−𝜋1
⁄ ) . 

1) Scale parameter is set at 𝜎0 = 1.5, 2.5, 3.5 ., which corresponding to the mean 

survival time of control group as 8.373, 61.868, 1242.648. 

2) For each 𝜎0, cure rate for control arm 𝜋0 is set at 0.4 and 0.3. 
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3) The setting of hazard ratio between two groups is the same as exponential and 

Weibull distribution. The setting of cure rates for control group and treatment group 

is the same as exponential and Weibull distribution. 

4) The censoring distribution is calculated based on section 2.3. For example, 

assuming uniform distribution in the accrual period with an accrual period of 1 year 

and a follow up time of 15 years; For 𝜋0 = 0.4,the mean censoring rate is 0.57, 

0.64, 0.68 for 𝜎0 = 1.5, 2.5, 3.5, respectively.  For 𝜋0 = 0.3, the mean censoring 

rate is 0.49, 0.57 and 0.61.  

 

3.1.2 SIMULATION RESULTS 

For each set of data, censoring rate, estimated sample size, empirical power is 

reported. To evaluate the performance of all three methods, the absolute relative bias is 

reported, which is calculated as 

|empiricalpower−0.9|

0.9
× 100%, 

The absolute relative bias can measure the distance of the estimated power to the nominal 

power. A smaller relative bias indicates that the empirical value is closer to the nominal 

value, which is set at 0.9 here. For comparison purposes, the absolute relative biases from 

all methods are illustrated in Figure 3.1-3.6. In all the plots, the y-axis denotes the absolute 

relative bias, and x-axis denotes the hazard ratio. Three different methods are denoted by 

dotted lines, where Wang method is denoted as “Wang” in blue dotted line, Schoenfeld 

method is denoted as “Schoenfeld” in yellow dotted line and Ewell method is denoted as 

“Ewell” in red dotted line. The other specific settings are denoted by the label in each figure, 

which include the scale and shape parameters, accrual and follow up time, cure rate and 
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mean censoring rate. The three plots in the left panel is all for 𝜋0 = 0.4, while the other 

three plots in the right panel is for  𝜋0 = 0.3.  

Figure 3.1 compares the three methods under exponential distribution. As for the 

three graphs in the left panel, with the same cure rate 0.4, censoring rate decreases from 

0.83 to 0.56. With the decreasing censoring rate, the absolute relative bias (ARS) from 

Wang method experienced the large decrease. This trend can’t be observed for the other 

two methods. Comparing all three methods, in relatively high censoring rate (censr = 0.83, 

left upper panel), the empirical power calculated by Wang’s method largely under estimate 

the power. Compared with the Wang method, Schoenfeld and Ewell methods both work 

well, in which the largest deviation from the nominal power 0.9 is only 2%. There’re not 

significantly differences between Schoenfeld and Ewell methods. When 𝜆0 = 0.2, censr = 

072  ( left, middle panel), Wang method has better performance than in the higher censoring 

rate. While for the other two methods, they both maintain good performance in all the 

estimation, deviation from the nominal power 0.9 are all smaller than 3%. In the scenario 

of even lower censoring rate (censr = 0.56, left low panel). There are not significant 

differences among all these three methods, deviation from the nominal power 0.9 are all 

smaller than 4%. Similar trends could be observed from the other three graphs in the right 

panel, in which 𝜋0 = 0.3. From Figure 3.1, we conclude that both Schoenfeld and Ewell 

methods have improvements over the Wang method in the scenarios of high and medium 

censoring rates, in which they get more accurate sample size estimation. While for the low 

censoring rate case, all these three methods have comparable performance. 

If there’s longer follow up period, more events could be detected, which will 

certainly lower the censoring rate. Figure 3.2 investigates the performance of the three 
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methods under various following up period. The settings are as follows, 𝜋0 = 0.4, 𝜆0 =

0.1, 𝜏𝑎 = 1. 𝜏𝑓 is varied at (4, 10, 15, 20). The same sets of 𝛽0/𝛾0 are used as above. By  

 

Figure 3.1 Simulation for Exponential distribution under parametric condition 

adjusting 𝜏𝑓, mean censoring rates vary from 0.5 to 0.8. The similar conclusion is achieved 

as in Figure 3.1. Scho and Ewell methods could get better sample size estimation than 
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Wang method in the case of high censoring rate; while at low censoring rate, it couldn’t be 

distinguished for the performance among these three methods. The differences between the 

empirical power and the nominal power are all less than 4%. 

 

 

Figure 3.2 Simulation for Exponential distribution, adjusting follow up period 

 

In Weibull distribution, increasing 𝜆0  results in shorter mean survival time and 

more event could be detected, and thus lower censoring rate could be acquired. The layout 

of Figure 3.3 is similar as Figure 3.1. As is shown here, both Schoenfeld and Ewell methods 

show superior performance over Wang method in all scenarios. Most of the results form 

Schoenfeld and Ewelll methods show less than 2% deviation from the nominal power 0.9, 

while the results from Wang method show as high as 10% deviation from 0.9. The 
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differences between Wang and the other two methods are larger in case of higher censoring 

rate than in the lower censoring rate. 

 

Figure 3.3 Simulation for Weibull distribution 

𝜏𝑓  is also changed for simulation in Weibull distribution. Similar to in the 

exponential distribution, by increasing 𝜏𝑓, more events could be detected, and thus lower 
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censoring rate could be achieved. By adjusting 𝜏𝑓 in the range of 𝜏𝑓 = 4, 10, 15, 20, actual 

mean censoring rate is achieved at 0.9 ~ 0.5. As shown from the result in Figure 3.4, 

Schoenfeld and Ewell method performs significantly better than Wang method when 𝜏𝑓 is 

4 and 10, corresponding to the mean censoring rate 0.92 and 0.69. While when mean 

censoring rate falls below 0.56, it can’t be distinguished clearly among all three methods. 

All of the methods are considered to perform well, as shown from that the empirical powers 

are all very close to the nominal power 0.9, and the differences are all less than 4%.  

 

Figure 3.4 Simulation for Weibull distribution, adjusting follow up period 

In lognormal distribution, mean survival time is calculated as 𝑒µ+(𝜎0)
2 2⁄

. So in 

contrast to the Exponential and Weibull distribution, increasing scale parameter will result 

in increasing mean survival time. While keeping all other parameters constant, increasing 

mean survival time will introduce higher censoring rate. The scale parameter is varied at 
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Figure 3.5 Simulation for Lognormal distribution 

𝑠𝑐𝑎𝑙𝑒 = 1.5, 2.5, 3.5, and the mean censoring rate is achieved at 0.48 ~ 0. 67. Comparing 

with the other two distributions, the results of the empirical powers for lognormal 

distribution is much less sensitive with varying scale parameter.  



 

30 

 

Figure 3.5 shows the result for lognormal distribution. For the settings used here, 

Schoenfeld and Ewell methods both have much better estimation capability than the Wang 

method in all scenarios. And we can’t distinguish between the Schoenfeld and Ewell 

methods. Their estimations are very close. 

 

 

Figure 3.6 Simulation for Lognormal distribution, adjusting follow up period 

 

When adjusting 𝜏𝑓 to compare the estimation performance for all three methods for 

lognormal distribution, similar trend is attained as Exponential and Weibull distribution. 

As shown in Figure 3.6, estimated empirical power from Schoenfeld and Ewell methods 

are much more accurate than that from Wang method, which is shown as much closer to 

nominal power 0.9. 



 

31 

 

3.2 COMPARISON OF PARAMETRIC SAMPLE SIZE ESTIMATION WITH 

NONPARAMETRIC SAMPLE SIZE ESTIMATION 

 

3.2.1 SIMULATION SETTINGS 

The model description for each setting are similar as in 3.1. The following settings 

are used in the simulation study for exponential and Weibull distribution: 

1) scale parameters 𝜆0 = (0.2, 0.3, 0.4, 0.5) and shape parameter 𝑘 = 2 for Weibull 

distribution; 

2) an accrual period of 3 years and a follow-up time of 4 years; 

3) an equal allocation between treatment and control group, 𝑝 = 0.5; 

4) a number of 500 observations is generated in each dataset and simulation are based 

on 200 replication. 

The settings used in the simulation study for lognormal distribution are listed as 

follows, 

1) scale parameter 𝜎0 = (2, 3, 4), shape parameter µ = 1; 

2) an accrual period of 1 year and a follow up period of 15 years; 

3) an equal allocation between treatment and control group, 𝑝 = 0.5; 

4) a number of 500 observations is generated for each dataset and simulation results 

are based on 200 replications. 

3.2.2 SIMULATION RESULTS 

As shown in Table 3.1, for all three methods, parametric sample size, 

nonparametric sample size and 95% CI are reported for each set of parameters. For all the 
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three methods, the results from the nonparametric sample size estimation are very close to 

the results from the parametric approach, indicating that the estimation method are valid.  

Similar to the exponential distribution, in Weibull and lognormal distribution, for 

all three methods, the results from the nonparametric sample size estimation are very close 

to that from the parametric approach, as shown in Table 3.2 and Table 3.3. 

 

3.3 SIMULATION COMPARING WANG AND EWELL METHODS, FOR NONBINARY 

COVARIATE 

3.3.1 SIMULATION SETTINGS 

The following settings are used in the simulation study for Exponential distribution. 

Covariate data are generated from a normal distribution, with mean µ = 0.5and variance 

𝜎2 = 1. 

We specifically consider the population follows the mixture cure model with the 

Exponential distribution, which can be written as  

𝑆0(𝑡) = 𝜋0 + (1 − 𝜋0)𝑒
−𝜆0𝑡 

𝑆̅(𝑡) = exp(−𝜆0𝑡𝑒
𝛽�̅�) 

1) an accrual period of 1 year and a follow up time of 4 years; 

2) Baseline scale parameter is set at 𝜆0 = 0.1, 0.25, 0.75., which corresponding to the 

mean survival time of baseline as 10, 4, 1.33. 

3) For each 𝜆0, cure rate for baseline 𝜋0 is set at 0.2 and 0.1. 

4) 𝑒−𝛽0 is at (1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8),  𝑒𝛾0 is at (0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0). 
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Table 3.1 Comparison of Exponential parametric sample size estimation with nonparametric estimation 

  OR 
 

HR Wang  Schoenfeld Ewell 

      para nonpara 95% CI para nonpara 95% CI para nonpara 95% CI 

censoring rate: 0.66 ~ 0.75 

0.4 2.226 0.2 0.63 200 247 ( 83 , 581 )  228 241 ( 84 , 554 ) 229 241 ( 84 , 553 ) 

  2.46 0.2 0.59 158 179 (81, 408) 183 176 (79, 406) 184 176 (79, 406) 

  2.718 0.2 0.56 128 142 (68, 303) 151 140 (68, 306) 152 140 (69, 306) 

  2.226 0.3 0.63 171 209 ( 89 , 563 )  185 203 ( 88 , 504 )  185 204 ( 88 , 502 )  

  2.46 0.3 0.59 135 152 ( 63 , 318 )  148 150 ( 65 , 307 )  148 150 ( 65 , 307 ) 

  2.718 0.3 0.56 109 128 ( 62 , 276 )  122 127 ( 63 , 271 )  122 127 ( 63 , 270 )  

censoring rate: 0.45 ~ 0.64 

0.4 2.226 0.4 0.63 162 190 ( 84 , 367 )  169 187 ( 84 , 354 )  168 187 ( 84 , 354 )  

  2.46 0.4 0.59 128 144 ( 76 , 250 )  134 142 ( 76 , 249 )  134 143 ( 76 , 249 )  

  2.718 0.4 0.56 104 116 ( 64 , 208 )  110 115 ( 62 , 202 )  110 115 ( 63 , 203 )  

0.1 2.46 0.3 0.59 164 208 ( 104 , 391 )  186 206 ( 103 , 381 )  186 206 ( 104 , 383 )  

  2.718 0.3 0.56 133 177 ( 92 , 358 )  154 176 ( 92 , 355 )  154 176 ( 93 , 354 )  

  2.718 0.2 0.56 164 209 ( 93 , 445 )  197 206 ( 93 , 424 )  199 206 ( 93 , 422 )  

censoring rate: 0.30 ~ 0.38 

0.1 2.226 0.4 0.63 189 255 ( 139 , 553 )  205 252 ( 142 , 540 ) 204 252 ( 142 , 540 ) 

  2.46 0.4 0.59 149 202 ( 100 , 379 )  163 201 ( 102 , 377 )  162 201 ( 101 , 379 )  

  2.718 0.4 0.56 121 164 ( 98 , 285 )  134 164 ( 97 , 285 )  134 164 ( 97 , 285 )  

  2.226 0.5 0.63 183 238 ( 128 , 485 )  191 237 ( 122 , 483 )  190 237 ( 122 , 483 )  

  2.46 0.5 0.59 144 194 ( 95 , 367 ) 151 192 ( 95 , 369 )  150 192 ( 95 , 369 )  

  2.718 0.5 0.56 117 159 ( 89 , 283 )  124 159 ( 90 , 287 ) 123 159 ( 90 , 287 ) 

𝜋0 𝜆0 
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Table 3.2 Comparison of Weibull parametric sample size estimation with nonparametric estimation 

  
OR 

 

  
 

HR Wang para Schoenfeld Ewell 

        para nonpara 95% CI para nonpara 95% CI para nonpara 95% CI 

censoring rate: 0.61 ~ 0.77 

0.4 0.8 0.2 1.6 213 263 (102, 606) 243 259 (99, 593 ) 245 259 (99, 592) 

  0.9 0.2 1.7 167 196 ( 79 , 479 )  195 190 ( 77 , 460 )  197 189 ( 78 , 452 )  

  1 0.2 1.8 136 160 ( 72 , 396 )  161 155 ( 73 , 400 )  163 155 ( 73 , 400 )  

  0.8 0.3 1.6 163 195 ( 89 , 486 )  169 192 ( 88 , 465 )  169 193 ( 89 , 468 )  

  0.9 0.3 1.7 128 154 ( 75 , 305 )  134 152 ( 74 , 293 )  134 152 ( 74 , 292 )  

  1 0.3 1.8 104 124 ( 62 , 221 )  110 122 ( 60 , 215 )  110 122 ( 61 , 215 )  

censoring rate: 0.37 ~ 0.56 

0.4 0.9 0.5 1.7 148 165  ( 82 , 322 )  138 156 ( 78 , 289 )  141 159 ( 81 , 299 )  

  1 0.5 1.8 120 126 ( 70 , 226 )  111 119  ( 66 , 205 )  114 121 ( 66 , 215 ) 

  0.9 0.4 1.7 136 150 ( 86 , 276 )  129 146 ( 84 , 268 )  130 147 ( 84 , 272 )  

  1 0.4 1.8 110 120 ( 69 , 211 ) 104 115 ( 69 , 197 )  105 116 ( 69 , 199 )  

0.1 0.9 0.3 1.7 149 205 ( 109 , 394 )  163 206 ( 110 , 396 )  162 206 ( 110 , 396 )  

  1 0.3 1.8 121 179 ( 92 , 400 )  134 181 ( 94 , 397 )  133 181 ( 93 , 397 ) 

censoring rate: 0.17 ~ 0.25 

0.1 0.8 0.4 1.6 187 231 ( 117 , 463 )  183 228 ( 116 , 465 ) 183 228 ( 116 , 466 )  

  0.9 0.4 1.7 147 187 ( 103 , 364 )  144 184 ( 99 , 365 )  144 184 ( 99 , 367 )  

  1 0.4 1.8 120 149 ( 82 , 259 )  117 147 ( 79 , 248 )  117 148 ( 80 , 248 )  

  0.8 0.5 1.6 203 237 ( 116 , 497 )  191 226 ( 109 , 480 )  194 229 ( 111 , 484 )  

  0.9 0.5 1.7 160 184 ( 102 , 385 )  149 176 ( 95 , 369 )  152 179 ( 97 , 373 )  

  1 0.5 1.8 130 151 ( 85 , 287 )  121 144 ( 78 , 276 )  123 146 ( 81 , 279 )  

 

 

𝜋0 𝜆0 
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Table 3.3 Comparison of Lognormal parametric sample size estimation with nonparametric sample size estimation 

 

  OR 
 

HR Wang Schoenfeld Ewell 

        para nonpara 95% CI para nonpara 95% CI para nonpara 95% CI 

censoring rate: 0.49 ~ 0.59 

0.3 2.014 2 0.67 182 251 ( 126 , 641 )  208 248 ( 125 , 640 )  210 249 ( 126 , 640 )  

  2.226 2 0.63 137 196 ( 91 , 435 )  160 194  ( 89 , 435 )  162 194 ( 89 , 435 )  

  2.46 2 0.59 108 144 ( 76 , 263 )  129 143 ( 76 , 263 )  130 143  ( 76 , 263 )  

  2.226 3 0.63 159 196 ( 94 , 460 ) 184 195 ( 93 , 460 )  185 195  ( 93 , 460 )  

  2.46 3 0.59 125 158 ( 82 , 318 )  147 157 ( 82 , 317 )  149 157 ( 82 , 317 )  

  2.226 2 0.56 88 122 ( 71 , 211 )  107 121 ( 69 , 210 )  108 121 ( 70 , 210 )  

censoring rate: 0.61 ~ 0.65 

0.3 2.718 3 0.56 102 129 ( 65 , 277 )  122 128 ( 65 , 277 )  123 128 ( 65 , 277 )  

  2.226 4 0.63 174 194 ( 91 , 416 )  200 193 ( 91 , 415 )  200 193 ( 91 , 415 )  

  2.46 4 0.59 137 155 ( 76 , 310 )  160 154 ( 76 , 308 )  161 154  ( 76 , 309 )  

  2.718 4 0.56 112 126 ( 68 , 243 )  133 125 ( 68 , 241 )  133 125 ( 68 , 242 )  

0.4 2.46 2 0.59 104 142 ( 77 , 277 )  124 141 ( 76 , 276 ) 125 141 ( 77 , 276 )  

  2.718 2 0.56 85 115 ( 66 , 218 )  102 114 ( 65 , 214 )  104 114 ( 65 , 215 )  

censoring rate: 0.66 ~ 0.71 

0.4 2.226 3 0.63 154 188 ( 84 , 345 )  177 187 ( 84 , 345 )  178 187  ( 84 , 345 )  

  2.46 3 0.59 121 145 ( 72 , 288 )  142 144 ( 72 , 287 )  143 144 ( 72 , 287 )  

  2.718 3 0.56 99 114 ( 61 , 205 ) 118 113 ( 61 , 205 )  119 113 ( 61 , 205 )  

  2.226 4 0.63 170 202 ( 89 , 422 )  194 201  ( 88 , 418 ) 194 201 ( 88 , 418 )  

  2.46 4 0.59 134 167 ( 77 , 370 )  155 165 ( 76 , 368 )  156 165 ( 76 , 368 )  

  2.718 4 0.56 109 114 ( 62 , 217 )  128 114 ( 62 , 217 )  129 114 ( 62 , 217 )  

 

𝜋0 𝜎0 
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Settings used in the simulation study for Weibull distribution are listed as follows  

The population follows the mixture cure model with the Weibull distribution, which can 

be written as  

𝑆0(𝑡) = 𝜋0 + (1 − 𝜋0)𝑒
−(𝜆0𝑡)

𝑘
 

𝑆̅(𝑡) = exp(−(𝜆0𝑡)
𝑘𝑒𝛽�̅�) 

1) an accrual period of 1 year and a follow up time of 4 years; 

2) Baseline scale parameter is set at 𝜆0 = 0.1, 0.2, 0.5., which corresponding to the 

mean survival time of baseline as 10, 5, 2. Shape parameter is 2. 

3) For each 𝜆0, cure rate for control arm 𝜋0 is set at 0.2 and 0.1. 

4) 𝑒−𝛽0 is at (1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8),  𝑒𝛾0 is at (0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0). 

Settings used in the simulation study for lognormal distribution are listed as follows:  

The population follows the mixture cure model with the lognormal distribution, which can 

be written as  

𝑆0(𝑡) = 𝜋0 + (1 − 𝜋0)(1 − 𝑝𝑛𝑜𝑟𝑚 (
𝑙𝑛𝑡 − µ0

𝜎0
)) 

𝑆̅(𝑡) = exp(−(𝜆0𝑡)
𝑘𝑒𝛽�̅�) 

1) an accrual period of 1 year and a follow up time of 20 years; 

2) Baseline scale parameter is set at 𝜎0 = 2, 2.5, 3.5., which corresponding to the 

mean survival time of baseline as 5, 4, 0.286. Shape is 0.1. 

3) For each 𝜆0, cure rate for baseline 𝜋0 is set at 0.4 and 0.5. 

4) 𝑒−𝛽0 is at (1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8),  𝑒𝛾0 is at (0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0). 

Effects of follow up period are investigated on the Weibull distribution as an 

example, the settings are listed as follows: 
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1) an accrual period of 1 year and baseline scale parameter is set at 𝜆0 = 2, 

2) follow up period is set at 𝜏𝑓 = 5, 10, 15, 25. 

3) 𝜋0 is set at 0.4, and shape parameter 𝑘 = 0.1. 

4) 𝑒−𝛽0 is at (1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8),  𝑒𝛾0 is at (0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0). 

 

3.3.2 SIMULATION RESULTS 

For the exponential distribution, the mean survival time is calculated as 1 𝜆0
⁄ . 

Corresponding to 𝜆0 = (0.1, 0.25, 0.75), mean censoring rate is attained at (0.82, 0.64, 

0.41) for 𝜋0 = 0.2, and at (0.78, 0.56, 0.28) for 𝜋0 = 0.1. As shown in Figure 3.7, if 

looking at the left upper panel for case of relatively high censoring rate (censr = 0.82), the 

empirical power calculated by Wang’s method significantly different from the nominal 

power. The Ewell method worked very well, in which the largest deviation is only 4% from 

the nominal power. With the censoring rate decreasing to 0.64 and 0.41, Wang method 

performs better, while the Ewell maintains good performance in all scenarios. In censoring 

rate of 0.41, all the cases got good estimation, with nearly all deviation of empirical power 

from nominal power smaller than 3%. Similar trend has been observed for the three graphs 

in right panel, where 𝜋0 = 0.1. 

For the Weibull distribution, mean survival time is calculated as 
𝛤(1+1/𝑘)

𝜆0
. As the 

result, larger 𝜆0 will lead to shorter mean survival time, and thus higher censoring rate. For 

𝜋0 = 0.2, corresponding to 𝜆0 = (0.1, 0.25, 0.75), mean censoring rate is achieved at 

(0.91, 0.71, 0.37). Similar trend is observed for Weibull distribution, as for exponential 

distribution in Figure 3.8. The Ewell method shows superior performance over the Wang 
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method in relative high and medium censoring rate (censr = 0.91 and 0.71). While for low 

censoring rate (censr = 0.37), both of the methods perform well, nearly all the deviation of 

empirical power from the nominal power is less than 2%. Similar trend is observed for 

𝜋0 = 0.1. In which, the mean censoring rate is (0.89, 0.65, 0.23). 

 

Figure 3.7 Comparing two methods for exponential distribution, for nonbinary covariate 
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Effects of follow up period 𝜏𝑓 is studied for Weibull distribution. By adjusting 𝜏𝑓 

in the range of (4, 10, 15, 25), actual mean censoring rate is achieved at (0.91, 0.64, 0.47, 

0.36). Similar as the case for Weibull distribution in binary case, by increasing 𝜏𝑓, more 

events could be detected, and thus lower censoring rate will be achieved.  

 

Figure 3.8 Comparing two methods for Weibull distribution, for nonbinary covariate 
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As shown in Figure 3.9, the Ewell method performs significantly better than the 

Wang method when 𝜏𝑓 is 4 and 10. When extending 𝜏𝑓 to 15, Ewell method becomes only 

slightly better than Wang method. When 𝜏𝑓 reaches 25, corresponding to a censoring rate 

of 0.36, we couldn’t distinguish between the two methods, with all the deviation of 

empirical power from the nominal power less than 4%. 

Different from the exponential and Weibull distribution, increasing 𝜆0 results in 

increasing censoring rate in lognormal distribution, as shown in Figure 3.10. For 𝜋0 = 0.4, 

by varying 𝜎0 at (2, 2.5, 3.5), mean censoring rate is acquired at (0.63, 0.66, 0.70). As seen 

from here, censoring rate is relatively stable while changing 𝜎0. With all the settings here, 

Ewell method performs significantly better than the Wang method. Similar trend is 

observed for 𝜋0 = 0.5 as for 𝜋0 = 0.4. 

 

Figure 3.9 Comparing the Wang and Ewell methods for Weibull distribution, for 

nonbinary covariate, adjusting follow up period 
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Figure 3.10 Comparing the Wang and Ewell methods for Lognormal distribution, for 

nonbinary covariate 
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CHAPTER 4 REAL DATA APPLICATION AND POWER ANALYSIS 

The components needed for the sample size calculation package include:  sample 

size (power), censoring distribution (accrual period, follow up time, accrual distribution), 

and components specific for the mixture cure model (hazard ratio 𝑒𝛽0, odds ratio (𝑒𝛾0, 

𝜋1, 𝜋0), survival distribution). In our package, there are two syntaxes for specifying the 

survival distribution: one is parametric syntax assuming the Exponential (Weibull, or 

Lognormal) survival distribution with all the parameters defined; the other is 

nonparametric syntax using the known dataset to estimate all the necessary parameters 

through smcure package. In this chapter, we will illustrate specifically how to apply the 

package in both parametric and nonparametric approaches. 

In section 4.1, we introduce the parametric sample size estimation by using a 

specific example under Weibull distribution. Both the syntax and output interface is 

demonstrated. Especially for output, it’s shown that the function is flexible with the option 

“method” that can either output the result from Schoenfeld method only, or can output the 

results from all three methods at the same time. Section 4.2 illustrates the application of 

the package to a well-known data set Eastern Cooperative Oncology Group trial e1684, as 

well as the calculation for cure rates. Section 4.3 studies the association between the power 

and the sample size by power curve analysis. Section 4.4 conducts the power curve analysis 

under various hazards ratios, as well as the power curve analysis under various odds ratios. 
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4.1 PARAMETRIC SAMPLE SIZE ESTIMATION 

The package assumed that both arms follow the same distribution, such as 

exponential, Weibull or lognormal. For example, if a survival trial follows a uniform 

accrual with an accrual period of 2 years and a follow-up period of 5 years, with equal 

allocation of patients in each arm (𝑝 = 0.5). The mean life of uncured patients is 3 years 

for control arm and 4 years for treatment arm. It’s assumed that both arms follow the 

Weibull distribution with 𝑘 = 2. Cure rates are 𝜋0 = 0.2 and 𝜋1 = 0.3 for the control and 

treatment arm, respectively. In order to detect a 33% improvement in the mean survival 

time from 3 to 4 years, at 95% significance level and 90% power, the estimated sample 

size can be acquired by the following code: 

 

The output is as follows: 

 

As shown from the above result, a sample size of 411 patients will be needed to    

achieve a power of 90% based on PH mixture cure model. While the sample size estimate

d from the standard PH model is 551, which apparently underestimates the power. 

If the “method” option is set as “all”, results from all the three methods will be     

displayed together as follows, 



 

44 

 

 

4.2 REAL DATA ANALYSIS 

The application of our sample size calculation package to the real data is illustrated 

with the dataset from Eastern Cooperative Oncology Group trial e1684 [18]. Note that our 

intension here is not to re-design the trial but to show the sample size requirement under 

the mixture cure model when the hazard ratio and cure rates are estimated from the dataset 

itself. The ECOG e1684 is a two-arm phase III clinical trial comparing high-dose interferon 

alpha-2b with an observation arm. The primary endpoint was relapse-free survival (RFS), 

with RFS defined as the time from randomization until progression of the tumor or death. 

There are a total of 286 patients enrolled and the total study time is 7 years, with an accrual 

period of 4 years and a follow-up period of 3 years. As seen from the Kaplan Meier survival 

curve, even in the end of the study (not shown here), the survival probability can still be as 

high as about 0.2. So in order to account for this curable part, mixture cure model should 

be applied here. 

To do nonparametric estimation, only power, alpha, accrualtime, followuptime, p, 

accrualdist and data need to be specified, with the hazard ratio and cure rates being directly 

estimated from the dataset by smcure package. The following code is used to obtain the 

sample size: 
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The output is as follows: 

 

The data are first fitted by recalling the smcure R package with the treatment as a 

covariate. The log(ℎ𝑎𝑧𝑎𝑟𝑑𝑟𝑎𝑡𝑖𝑜)𝛽0 is estimated as −0.164 from the smcure package.    

The coefficient from logistic regression model for modeling the cured part is 1.285 and -

0.546, which results in the cure rates for the observation arm and treatment arm calculated 

as follows: 

�̂�0 = 1 − 𝑒1.285 (1 + 𝑒1.285) = 0.217⁄  

�̂�1 = 1 − (𝑒1.285−0.546) (1 + 𝑒1.285−0.546) = 0.323⁄  

And thus to achieve 80% power, a sample size of 459 is required based on the estimates 

from the PH mixture cure model, while only 255 is required if ignoring the cured part. As 

is clearly seen, under this set of parameters, the cure fraction will lead to an underpowered 

trial.  
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4.3 POWER ANALYSIS  

Besides the sample size calculation, the package can provide power analysis if the 

sample sizes are given. Using the same setting as in 4.1, the power of the sample size of 

100, 150, 200, 250, 300, 350, 400, 450 and 500, can be obtained by using the following 

code: 

 

 

As seen from the Figure 4.1, with the increase of sample size from 100 to 500, the power 

will increase from 0.36 to 0.95 for PH mixture cure model, and from 0.28 to 0.87 for 

standard PH model. Comparing the results between PH mixture cure model and standard 

PH model, the power is underestimated with ignoring the cure fraction.  

Figure 4.2. shows how to calculate the power using the e1684 data. For both of the 

models, the calculated power increase with increasing sample size. However, ignoring the 

cure fraction leads to overestimating the power.  

 

4.4 POWER ANALYSIS FOR STUDYING EFFECTS OF HAZARDRATIO AND 

ODDSRATIO 

Power analysis is conducted to study the effects of the hazard ratio and odds ratio. 

For example, a survival trial will follow a uniform accrual with an accrual period of 3 years 

and a follow-up period of 4 years with equal allocation of patients in each arm (𝑝 = 0.5). 
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Figure 4.1 Power analysis for parametric estimation 

 

 

Figure 4.2 Power analysis for nonparametric estimation 
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The mean life of uncured patients in the control arm will be 2 years. Both arms follow the 

Exponential distribution and cure rate for control arm is 0.1. Oddsratio is set at 1.5. Hazard 

ratio is varied at (0.56, 0.59, 0.63, 0.67, 0.71, 0.77, 0.83). Powers under different sample 

sizes (100, 200, 300, 400, 500) are plotted in Figure 4.3. Generally, power decreases with 

increasing hazard ratio. Higher hazard ratio indicates smaller difference between two arms’ 

uncured parts. And thus it will result in the lower power in detecting the difference between 

the two arms. With the same hazard ratio, power will increase with the increase of the 

sample size. 

 

Figure 4.3  Effects of hazardratio on power under different sample sizes 

The same setting is used to study the effects of oddsratio on power. The hazard ratio 

is set at 0.83, while the oddsratio is varied at (2.718, 2.460, 2.226, 2.014, 1.822, 1.649, 

1.492). Similarly, powers under different sample sizes (100, 200, 300, 400, 500) are plotted 
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in Figure 4.4. Power increases with increasing odds ratio. Larger odds ratio means more 

significant differences between the cure rates of two arms, and thus easier to be 

differentiated. With the same odds ratio, increasing sample size will increase the power. 

 

Figure 4.4 Effects of odds ratio on power under different sample sizes 
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CHAPTER 5 SUMMARY AND CONCLUSIONS 

The development of modern medical technology has substantially improved cure 

rates for many fatal and chronic diseases. The mixture cure model is more appropriate to 

be applied to this type of study in order to account for the cured fractions among patients. 

The two components of the mixture cure model can model the cured and uncured 

proportions separately and simultaneously.  

Sample size calculation is crucial for designing randomized controlled clinical trials 

in survival analysis. The current sample size calculation method for PH mixture cure model 

naturally extends the sample size formula for standard PH model by allowing a cure 

fraction. However, this formula has limitations in calculating the probability of death, 

which is currently contributed only from the control arm, and this may underestimate or 

overestimate the required sample size. In the thesis, we have investigated the two modified 

versions of the sample size calculations for the PH mixture cure model. First we propose 

two methods for correcting the calculation of probability of death, by acquiring the numeric 

mean and geometric mean of the probability of death based on both control arm and 

treatment arm. Extensive simulation study has shown that the two proposed methods 

performs significantly better than the WANG’s method under various scenarios, when the 

study has the relatively high and medium censoring rate. There’re no significant differences 

between the two proposed methods. 
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Secondly, the method proposed by Wang has the parametric assumption on survival 

function under the exponential and Weibull distribution. We extend all three methods to 

the cases with the survival function under lognormal distribution. A simulation study has 

illustrated that the two proposed methods performs much better than the Wang method in 

the scenarios of relative high and medium censoring rate under lognormal distribution, 

similar as exponential and Weibull distribution. When the censoring rate is low, all three 

methods has good estimation for the required sample size. All the above proposed methods 

and extensions have been implemented in the R package. The method has been further 

applied to the melanoma dataset from the ECOG phase III clinical trial e1684. The power 

curve analysis has been conducted to demonstrate the application of the proposed methods. 

Thirdly, the sample size calculation for PH mixture cure model has been extended 

to the nonbinary (continuous) covariate cases under Wang method and Ewell method. The 

performances based on two approaches are evaluated by the comprehensive simulations 

and we also observe the preferred performance under the Ewell method.  The function has 

been developed under this case and more verification needed before releasing this function 

as a R package.  

In the future, there are many potential extensions and research directions for the 

sample size calculation under the mixture cure models. For example, it is common to see 

more than one treatment option in clinical trial. The sample size formula has been extended 

to the multi-arm cases [19] and it is possible to adapt similar approach to the PH mixture 

cure model for multi-arm covariates. Other challenging and interesting topics include 

developing the sample size calculation under the time varying coefficient structure. There 

are some other common scenarios seen in clinical trial, such as loss to follow-up and 
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noncompliance such as cross over effects [20, 21], which can also be considered applied 

to the sample size calculation in PH mixture cure model to improve the accuracy of  sample 

size and power calculation.    
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