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ABSTRACT 

Pooled next-generation sequencing allows multiple genomes to be sequenced at once in a 

single sample, with the resultant single nucleotide polymorphism data giving reliable 

estimates of allele frequencies and population genetic parameters in a cost-effective 

manner. This approach has potentiated new opportunities for understanding the evolution 

of virus populations within individual hosts over the course of infection, where the 

sequencing of individual genomes is exceedingly difficult and impractical. However, 

evolutionary tools for analyzing the latest forms of pooled-sequencing data have been 

lacking. In this thesis, I first review next-generation sequencing and relevant molecular 

evolution topics, including the unique features of RNA viruses. I conclude that viruses, 

given their extremely fast replication rates and within-host population sizes, are ideal 

models for studying evolution by natural selection. Next, simple methods are devised for 

estimating nonsynonymous and synonymous nucleotide diversity from pooled next-

generation sequencing data, without the need for inferring linkage. I introduce SNPGenie, 

a new bioinformatics tool for applying these methods to any pooled or individual variant 

data. Finally, I use SNPGenie to address topics of both practical and theoretical interest in 

the evolution of simian hemorrhagic fever viruses (Arteriviridae) infecting red colobus 

monkeys (Procolobus rufomitratus tephrosceles), including fundamental questions 

regarding the effective population sizes of, the mutation rates experienced by, and the 

modes and efficacy of natural selection acting on within-host viral populations. 
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1.1 Pooled Next-Generation Sequencing 

Over the past decade, a host of new DNA sequencing tools, dubbed “next-generation” 

sequencing (NGS) technologies, have for the first time allowed millions to billions of 

nucleic acid sequences to be processed in parallel directly from sequence fragment 

libraries (Metzker 2010). By tremendously increasing the speed and accuracy, while 

concurrently decreasing the cost of sequencing, NGS platforms such as Illumina and 

Roche/454 have potentiated unprecedented sequencing and resequencing efforts (Mardis 

2008; Shendure and Ji 2008). These include initiatives both to characterize genetic 

variation within a species (Nielsen et al. 2011) and to quantify gene expression 

differences through transcriptomic analyses using RNA-seq (Martin and Wang 2011). 

Massive-scale examples of the former, involving sequencing of large numbers of 

individual genomes, include the 1000 Genomes Project for humans (Auton et al. 2015; 

Sudmant et al. 2015) and the 1001 Genomes Project for Arabidopsis (Cao et al. 2011). 

 More recently, it has been realized that population genetic characterization need 

not require the individual sequencing of multiple genomes, but can instead be 

accomplished through the pooling of those genomes from separate individuals into a 

single representative sample. Analyses of natural isolates and samples constructed with 

known frequencies of single nucleotide polymorphisms (SNPs) have established that this 

“pooled-sequencing” approach gives accurate estimates of allele frequencies above at 

least the 1% level, for both Roche/454 (Ingman and Gyllensten 2009; Becker et al. 2012; 

Rellstab et al. 2013) and Illumina technologies (Wright et al. 2011; Dudley et al. 2014), 

and statistical developments can further improve accuracy (Futschik and Schlötterer 

2010; Lynch et al. 2014).  
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 Illumina sequencing, which is the technology used in my studies, works by 

utilizing the so-called “sequencing by synthesis” approach (for overviews, see Mardis 

2008 and Shendure and Ji 2008). First, libraries are constructed by fragmenting the 

source DNA and simultaneously ligating adaptor sequences to the fragment termini. In 

the case of RNA genomes, this step is preceded by reverse transcription, yielding 

complementary DNA (cDNA) that can be used for library construction. Following 

adaptor ligation, additional sequence motifs are added to allow sample identification and 

binding of fragments to the Illumina flow cell. Flow cells refer to lanes on a sequencing 

plate, which are seeded with oligonucleotides that are complementary to the newly 

ligated fragment ends. The library is washed over the flow cell in sufficiently low 

concentrations so as to allow binding of separate fragments in distinct locations on the 

plate, nevertheless allowing millions of fragments to bind. The plate- and fragment-

bound oligonucleotide sequences are then extended by DNA polymerase, resulting in 

millions of plate-bound sequence fragments, and further amplified by bridge PCR to form 

clusters of identical sequences on the plate (roughly 1,000 copies per cluster). These 

clusters are then sequenced by repeated addition of a mix of all four of the DNA 

nucleotide bases: adenine (A), cytosine (C), guanine (G), and thymine (T). Each base is 

chemically linked to its own fluorescent label and a 3’-OH group, which prevents more 

than one base from being incorporated at a time. The plate is imaged to record the color 

of the base added at each distinct plate location (cluster), and then washed with an agent 

that removes the fluorescent label and 3’-OH group, allowing further addition and 

sequencing in subsequent cycles. The primary limitation of the technology is the short 

length of sequence fragments, which results from incomplete cleavage of fluorescent 
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labels and/or 3’-OH groups; as a result, the quality of base determination (i.e., base 

“calling”) diminishes further into the sequenced fragment, otherwise known as a read 

(Shendure and Ji 2008). Fortunately, this can be substantially overcome by paired-end 

sequencing, and both Illumina’s Hi-Seq and Mi-Seq platforms presently boast high-

quality paired-end reads exceeding 150 nt. Error rates of ~1% are nevertheless common, 

mostly single nucleotide substitutions (rarely insertions or deletions), necessitating the 

use of base quality scores and sophisticated algorithms to determine legitimate variant 

calls (Nielsen et al. 2011). 

 Whatever the NGS technology, the establishment of pooled-sequencing as a 

reliable approach to population genetic research presents a unique opportunity for 

studying the evolution of within-host viral populations. By circumventing the painstaking 

process of molecular cloning and sequencing of individual viral genotypes, pooling 

instead allows viral genomes to be isolated from infected tissues and amplified for 

sequencing en masse with no loss of accuracy, and an arguable gain in population-level 

resolution (Wright et al. 2011). SNP calling approaches can be used with sufficiently 

stringent criteria (i.e., base quality requirements and minimum allele frequency cutoffs) 

to allow the most important genetic variation to be identified with confidence. Moreover, 

important population genetic parameters such as nucleotide diversity (see Section 1.1 and 

Chapter 2) do not depend on very low-frequency SNPs, so their utility is not limited even 

by quite stringent base calling criteria (as in Chapter 4). In cases where the inoculum 

(infecting) sequence is known, pooled-sequencing can determine how a virus has evolved 

at distinct sites in a host. Where longitudinal data are available, comparisons of a within-

host viral population between two or more distinct time points can reveal viral dynamics 
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over time and the likely selective pressures at play. Finally, even when the inoculum is 

not known, analyses of natural isolates can be used to characterize viral polymorphism in 

ways that give evolutionary insights as to the relative roles of natural selection and 

genetic drift. 

 

1.2 Molecular Population Genetics 

Evolution involves change in the genetic makeup of populations over time. DNA—or 

RNA, in the case of many viruses—houses this genetic information, stored as a linear 

sequence of the four nucleotide bases (RNA genomes use uracil, or U, in place of T). A 

population’s genome refers simply to its consensus or most common DNA (or RNA) 

sequence. Each individual within a diploid population (e.g., most mammals) stores two 

unique copies of the genome in each cell, while haploid individuals (e.g., viruses) contain 

only one copy. Genomes themselves are organized into regions called genes, each of 

which encodes a specific molecule that plays some functional role for the organism. The 

most-studied gene product is the protein, which in the case of DNA genomes is formed 

first by transcription of an RNA copy of the gene, then by translation of the RNA into 

protein. While it has traditionally been thought that gene function relies chiefly on the 

expression of proteins, large-scale research efforts such as the ENCODE (ENCyclopedia 

Of DNA Elements) Project have raised awareness of a new world of functional RNA 

molecules that we are only beginning to understand (Birney et al. 2007; Gerstein et al. 

2007; Myers et al. 2011). It is too early to make a judgment about the fraction of 

mammalian genomes that encode functional genes, and the size of the subset of those 

genes which encode functional RNAs; however, interspecies conservation suggests that 
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the total cannot be much more than 5-10% in humans (Lindblad-Toh et al. 2011; Graur et 

al. 2013).  

 In diploids, genes are typically separated by much longer intergenic regions which 

may play structural or regulatory roles but are thought to lack other functionality in most 

instances. On the other hand, haploid genomes are relatively compact, with the genomes 

of viruses in particular housing few if any intergenic regions. RNA viruses are especially 

compact, their genes often overlapping and their nongenic regions being limited to small 

segments at the genomic termini. 

 Each copy of the genome within a population typically differs from every other 

copy as a result of mutations, random errors introduced either during genome replication 

or else by chemical or radioactive perturbation. When a gene incurs a mutation, a variant 

form called an allele results. An individual’s unique genome sequence (i.e., its collection 

of alleles) is referred to as its genotype, while its phenotype refers to its expressed 

characteristics, physical traits, and physiological qualities. Importantly, while mutations 

by definition change an organism’s genotype, they may or may not have an effect on the 

phenotype. Those that affect the phenotype, in turn, may or may not affect fitness, 

defined here as the organism’s potential for long-term (viable) reproductive success over 

the course of its life cycle. For viruses, this is often simply estimated as a replication rate. 

With respect to fitness, mutations may be characterized as deleterious (decrease fitness), 

neutral (no effect), or beneficial (increase fitness). While mutations can have fitness 

effects ranging from lethal to necessary for survival, the majority are slightly deleterious 

(Eyre-Walker and Keightley 2007).  
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 Mutational fitness effects allow the frequencies of mutations to be influenced by 

the action of natural selection. Deleterious mutations by definition cause their carriers to 

leave fewer offspring, on average, as compared to individuals with the mutation-free 

genotype. The result is a phenomenon called negative (purifying) selection, in which the 

frequency of a mutation decreases in a deterministic fashion. Neutral mutations, on the 

other hand, are subject to genetic drift, increasing or decreasing in frequency at random. 

These can also hitchhike to either extinction or fixation with other mutations which are 

themselves under selection. Finally, beneficial mutations by definition cause their carriers 

to leave more offspring, on average, as compared to individuals with the mutation-free 

genotype. The result is positive (Darwinian) selection, in which the frequency of a 

mutation increases in a deterministic fashion. Over a number of generations, a beneficial 

mutation may increase to a frequency of 100%, i.e., every individual in the population 

carries the mutation in its genome. The mutation is then said to have reached fixation 

through an evolutionary substitution—by which is meant the substitution of one (pre-

mutation) allele by another (beneficial mutant) allele in the population. The speed at 

which a mutation is eliminated by purifying selection, or promoted by positive selection, 

is dependent on the magnitude of the mutation’s fitness effect. 

 It has long been recognized that, owing largely to the small (finite) sizes of real 

populations in the natural world, deterministic processes such as natural selection do not 

always play a leading role in driving evolutionary substitutions (Wright 1931; Li 1997; 

Lynch 2007a; Lynch 2007b; Hughes 2008; Koonin 2009). Moreover, some have 

suggested that there is a rate limit, probably imposed by a species’ finite reproductive 

capacity, on the speed at which selection-driven substitutions can occur (e.g., see Nelson 
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2015). Originally proposed by Haldane (1957, 1960) as the “cost of selection,” this idea 

has attracted considerable criticism since its proposal (e.g., see Brues 1964; Ewens 1979; 

Wallace 1988; Wallace 1991; Woodruff et al. 1996; Watt 2003; Woodruff et al. 2004). 

Whatever the true rate limit may be, these ideas produced a perceived need for another 

mechanism of evolution, not deterred by the limitations of natural selection, which can 

explain the numbers of genetic difference observed between species, as well as the 

amount of polymorphism currently observed within populations. The result was the 

neutral theory of evolution.  

 The neutral theory hoped to explain the large numbers of genetic differences 

observed between species by relying on relatively ubiquitous neutral mutations, rather 

than on the relatively rare beneficial mutations, as previous approaches had done. The 

neutral theory’s central claims are that the majority of evolutionary substitutions occur by 

random genetic drift, and that the majority of polymorphisms are selectively neutral 

alleles (Kimura 1968; Kimura 1979; Kimura 1983; Ohta 1992; Hughes 2008; Nei et al. 

2010). In other words, polymorphism is a transient phase of the mechanism by which 

most molecular evolution takes place (Hughes 1999).  

 The hypotheses represented by the neutral theory have been the focus of much 

heated debate among so-called “neutralists” and “selectionists” working in evolutionary 

biology (Dietrich 1994). Rather than engage that debate here, I instead briefly discuss 

those aspects of the neutral theory that may be relevant in important ways to viral 

evolution. First, the neutral theory recognizes that an inverse relationship exists between 

the effective size of a population, Ne, and the range of mutations dominated by genetic 

drift, called nearly-neutral mutations. As compared to N, which represents the actual 
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(census) population size, Ne is the size of the ideal population (usually much smaller than 

N) which behaves in an evolutionary sense like a given population of size N, after 

accounting for random effects such as fluctuations in population size, unequal 

contributions of different individuals to the next generation, and spatial structuring. More 

specifically, following Wright (1931), the neutral theory states a mutation will be nearly 

neutral if its fitness effect falls approximately within the range -1/Ne to 1/Ne (Kimura 

1983). Thus, the larger the population, the narrower this window of nearly neutral fitness 

effects, and the higher the number that will be dominated by selection in the evolutionary 

process. This can be especially important for viruses during the process of transmission to 

new hosts, which can be accomplished by very few viral particles, or during the infection 

of new micro-environments within a single host. Thus, the neutral theory emphasizes 

demographic events such as population bottlenecks (i.e., extreme reductions in 

population size) in the course of evolution. To the extent that the elimination of 

individuals during such an episode is random with respect to fitness, genetic drift can 

accomplish a great deal of work, such as the fixation of rare alleles. Finally, the neutral 

theory makes several predictions about genetic variation within a population, including: 

(1) purifying selection against deleterious polymorphism should be common; (2) neutral 

polymorphism should increase over time; and (3) larger populations should harbor more 

polymorphism (see Chapter 2). 

 Prediction (1) above deserves further comment. Within protein-coding genes, 

nucleotides are arranged for functional purposes in triplets, called codons, each of which 

encodes a single amino acid to be incorporated into a protein product. For example, the 

codon CCC encodes the amino acid proline. The sites within a codon can be further 
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categorized as either nonsynonymous or synonymous. In human language, two words 

which are not synonymous have different “meanings”; in the same way, two 

nonsynonymous nucleotides in a genome encode different amino acids. For example, 

replacing the first C in CCC with A, G, or T results in a different amino acid (ACC 

encodes threonine; GCC encodes alanine; TCC encodes serine). For this reason, the first 

site of CCC is nonsynonymous. On the other hand, some codon sites are synonymous, 

because changes in the nucleotide do not change the amino acid product. For example, 

replacing the third C in CCC with A, G, or T does not change the amino acid (CCA, 

CCC, CCG, and CCT all encode proline). Some sites are only fractionally 

nonsynonymous, in the sense that only some of the possible nucleotide replacements at 

the site will change the amino acid. Various methods exist for dealing with such sites, 

ranging from very simple approaches to ones which involve parameters such as the ratio 

of transitions (mutations between A and G, the purines, or between C and T, the 

pyrimidines) to transversions (all other mutations) (Nei and Kumar 2000). 

 Nonsynonymous mutations are able to affect protein structure directly by 

changing the amino acid encoded, and are thus subject to natural selection acting on the 

phenotype. By comparison, synonymous mutations are generally “silent,” although some 

notable exceptions exist (e.g., see Komar 2007; Hunt et al. 2009; Kimchi-Sarfaty et al. 

2016). The prediction that purifying selection is common can therefore be tested by 

comparing polymorphism at nonsynonymous and synonymous sites, since purifying 

selection (if common) should act to decrease nonsynonymous polymorphism as opposed 

to synonymous polymorphism, the latter of which accumulates relatively neutrally. 

However, approximately 75% of all sites in a random DNA sequence are 
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nonsynonymous; thus a simple comparison of the number of polymorphisms of each type 

is not a fair one, since nonsynonymous mutations are three times as likely as synonymous 

ones. To correct for this, the number of nonsynonymous mutational differences among a 

pair of sequences, mN, is normalized by the number of nonsynonymous sites, nN. 

Likewise, the number of synonymous differences among a pair sequences, mS, is 

normalized by the number of synonymous sites, nS. For a population of N haploid 

sequences, there are NC2 = (N2 - N)/2 pairwise comparisons among the genome copies. 

The number of normalized nonsynonymous differences for each pairwise comparison 

constitutes an estimate of nonsynonymous polymorphism: 

 

𝑑" =
$%
&%

 [equation 1.1] 

 

Likewise, the number of normalized synonymous differences constitutes an estimate of 

synonymous polymorphism: 

 

𝑑' =
$(
&(

 [equation 1.2] 

 

The mean of all normalized differences for all (N2 - N)/2 pairwise comparisons is then 

equivalent to the population genetic parameter nucleotide diversity, denoted π (Nei and 

Li 1979). More specifically, mean within-population dN is equivalent to nonsynonymous 

nucleotide diversity πN, and mean within-population dS is equivalent to nonsynonymous 

nucleotide diversity πS. Estimates of these parameters will be used extensively in 

subsequent chapters. 
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 Given estimates of πN and πS for a population, it becomes possible to test for 

purifying selection by comparing their values. Because selection affects nonsynonymous 

but generally not synonymous sites, when purifying selection is widespread, we expect 

πN < πS; when genetic drift dominates, we expect πN = πS; and when positive selection is 

widespread, we expect πN > πS. As it turns out, most genes in most species exhibit the 

pattern πN < πS, vindicating this prediction of the neutral theory (Hughes 1999; Hughes 

2007). This holds equally for all viral genomes (Chapter 2; Holmes 2009). 

 The fact of widespread purifying selection is what enables perhaps the most 

important tool of evolutionary bioinformatics: sequence comparison. More specifically, if 

most functional genetic sequences are under purifying selection, then they experience 

evolutionary constraint. Such constraint preserves the sequences of functionally 

important regions over time as compared to sequences lacking function, allowing them to 

be aligned according to their similarity. Thus, degree of similarity can be used as an 

indicator of function, and can even help researchers to infer the function of newly 

discovered genes from their sequences alone using tools such as BLAST (Altschul et al. 

1990). If functionally important genes were instead constantly under positive selection 

over the course of evolution, they would change very rapidly, and the insights afforded 

by sequence comparison would not always be possible (Hughes 2011). 

 Although purifying selection is the norm, important instances of positive selection 

do exist. When selection favors multiple repeated changes in a genomic region, the 

pattern πN > πS can result. Perhaps the most important instance of this—and one which is 

highly relevant to viral evolution—is the case of the vertebrate major histocompatibility 

complex genes, to which we now turn. 
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1.3 The Major Histocompatibility Complex 

The surfaces of all nucleated cells in vertebrates are studded with major 

histocompatibility complex (MHC) class I receptors. The genes encoding these receptors, 

known as human leukocyte antigen (HLA) genes (Lawlor et al. 1990), have long been 

known as the most polymorphic loci observed in animals (Klein and Figueroa 1986). It 

has also been known that these receptors play a key role in the immune response by 

displaying peptide fragments (small pieces of proteins) to the immune system’s cytotoxic 

(CD8+) T cells (Klein 1986). This is accomplished through a random sampling of the 

proteins present inside a cell, which are sliced into fragments within LMP+ proteasomes, 

transported to the endoplasmic reticulum, attached to MHC class I receptors, and shuttled 

to the cell surface for display (Hughes 1999). If circulating cytotoxic T cells encounter a 

cell displaying an MHC class I molecule that is complexed with a non-self peptide 

fragment, the T cell can then set in motion the infected cell’s destruction.  

 The reason for high levels of MHC polymorphism was not always clear, and early 

hypotheses were numerous, including the idea that the MHC gene loci were mutational 

hotspots (Klein 1978). Hughes and Nei (1988) were the first to conclusively establish 

positive selection as the culprit. Following a handful for fortuitous developments, 

including the demonstration that different MHC alleles are able to bind different peptide 

fragments (Zinkernagel and Doherty 1974) and the determination of the MHC receptor’s 

molecular structure (Bjorkman et al. 1987), Hughes and Nei (1988) were able to validate 

a hypothesis first proposed by Doherty and Zinkernagel (1975). This hypothesis invokes 

a role for the overdominant type of positive selection, otherwise known as heterozygote 

advantage, in maintaining the polymorphism of the MHC locus. Rather than driving 
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evolutionary substitutions, overdominant selection constitutes a form of balancing 

selection in which diversity, rather than fixation, is favored. One case, sickle cell anemia, 

had already been well established. Here, a mutant allele in its homozygous state (two 

identical alleles in a diploid organism) causes the debilitating disease sickle cell anemia, 

but in its heterozygous state (two differing alleles in a diploid organism) provides 

protection against the malarial pathogen. As a result, the mutant allele is maintained in 

regions where malaria is prevalent, despite the adverse effects of the allele in 

homozygotes. 

 Hughes and Nei (1988) used comparisons among 12 available human and 8 

available mouse DNA sequences to establish the operation of the same evolutionary 

mechanism at the MHC loci. For both human and mouse, πN was significantly greater 

than πS in intralocus comparisons. Moreover, πS was no greater at the MHC loci than 

other parts of the genome, ruling out the alternative hypothesis of an elevated mutation 

rate. Subsequent work established that the pattern of πN > πS occurs precisely at the MHC 

residues responsible for binding the pathogen-derived peptide fragment, i.e., the MHC 

peptide binding region, and that nonsynonymous changes which alter amino acid electric 

charge explain most of this pattern (Hughes et al. 1990). Hughes and Yeager (1998) drew 

upon accumulating sequence data from different species, and several alternative lines of 

evidence including trans-species polymorphism, to further support this case. 

Overdominant selection thus makes an elegant explanation for the polymorphism of the 

MHC loci—and one which takes their function into account (Hughes 1999). 

 Pathogens must co-evolve with the immune systems of their hosts (Howard 

1991). Each exerts strong selective pressures on the other, as immune surveillance 
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competes with immune escape. Thus, the diversity observed at an individual’s MHC loci 

should be reflected in the population-level diversity of an infecting pathogen. If particular 

pathogenic proteins allow MHC binding and presentation, the infectious agent may do 

well if the peptide mutates beyond the recognition of the immune system, while 

simultaneously allowing the pathogen to remain viable. In this thesis, I take the point of 

view of the infecting pathogen, and we shall turn our attention specifically to viruses. 

 

1.4 Viruses 

Viruses are intracellular pathogens (disease-causing agents) whose genomes consist of 

either single- or double-stranded DNA or RNA. My focus will be the Arteriviruses 

(Arteriviridae), single-stranded (non-segmented) positive-sense RNA viruses infecting 

mammals. Because host cells do not express RNA-dependent RNA polymerases, RNA 

viruses carry genetic information for their own polymerase in order to replicate. Positive-

sense RNA genomes read as a messenger RNA (mRNA) molecule, and are thus ready for 

immediate translation upon infection. However, in Arteriviruses, only translation of the 

first two open reading frames (ORFs) occurs upon cell entry, the protein products of 

which are cleaved and assembled into a replication and transcription complex (RTC). The 

RTC then engages in negative-sense strand synthesis (beginning at the 3’ end of the 

genomic RNA), producing both full-length and subgenomic-length copies of the RNA 

genome, the latter containing only some fraction of the genome starting from the 3’ end. 

The full-length copies are again transcribed into positive-sense genomic copies to be 

incorporated into viral progeny, whereas the subgenomic-length copies are transcribed 
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into mRNA molecules for use in expression of the remaining ORFs (Snijder et al. 2013). 

For more details on the Arterivirus genome, see Chapter 4. 

 Considerable debate has taken place over whether viruses should be classified as 

living organisms (Raoult and Forterre 2008). The reason for this is quite simply that 

viruses are obligate parasites—they are not free living, and require a host cell for 

completion of their life cycle. However, this is not unlike obligate intracellular bacteria 

(Brüssow 2009), which are considered living, and indeed all living things are dependent 

on some sort of environment for surviving and obtaining energy. For our purposes, I 

bypass this question and note only that viruses possess all the characteristics necessary to 

study biological evolution: replication, inheritance, and heritable genetic variation that 

arises as a result of mutation. 

 In fact, several characteristics make RNA viruses especially amenable to 

evolutionary study (for an overview, see Holmes 2009). First, they have extremely high 

mutation rates, ranging from about 10-6 to 10-4 mutations per nucleotide per cell infection, 

with point mutations being about 4 times more common than insertions and deletions 

(Strauss and Strauss 2008; Sanjuán et al. 2010). This is the result of the RNA-dependent 

RNA polymerase, which lacks the proofreading capabilities of DNA polymerase. Since 

some viruses may undergo several rounds of copying within a single cell, the actual rate 

per replication may be somewhat lower. Importantly, although estimates of the mean 

mutation rate exist, the distribution of the mutation rate is not known. Determining this 

distribution will be crucial to understanding the evolutionary trajectories taken in RNA 

virus evolution. For example, a symmetric and peaked distribution would imply the 

production of numerous viral particles with the mean number of mutations, while an 
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alternative (e.g., bimodal) distribution might imply a disproportionately large number of 

viral progeny having either very few or very many mutations, the latter potentially 

enabling fitness valleys to be traversed but simultaneously imposing a heavy mutational 

burden. 

 The distribution of mutational fitness effects in viruses is bimodal, with most 

mutations being either lethal or nearly-neutral (Eyre-Walker and Keightley 2007). One 

study of single-stranded RNA and DNA viruses estimated that 20-41% of all mutations 

are lethal; of the remaining (viable) mutations, the mean fitness effect ranged from -0.103 

to -0.132 (Sanjuán 2010). Thus, the extremely high mutation rate of RNA viruses exerts a 

tremendous burden of deleterious mutations. This fact has informed certain therapeutic 

strategies, which take the approach of elevating a virus’ mutation rate (e.g., through 

application of the drug ribavirin) to induce lethal mutagenesis (Bull et al. 2007). In 

similar fashion for the host, mutation accumulation may help to explain the gradual 

deterioration of immune cells during HIV progression (Galvani 2005). 

 RNA viruses are able to cope with the deleterious effects of their extremely high 

mutation rates mainly through their large population sizes and replication rates. In 

Arteriviruses infecting red colobus monkeys, viremia (blood viral load) has been 

measured to vary from 3.4 X 104 to 1.9 X 108 viral particles per mL (see Chapter 4). 

Although the number of virions produced through budding has not been measured for 

Arteriviruses to date, burst sizes (number of viral progeny per cell infection) estimates for 

other RNA viruses have centered on approximately 104, being approximately 104 for 

polioviruses (Kew et al. 2005) and 4.0 X 104 to 5.5 X 104 for simian immunodeficiency 

virus (Chen et al. 2007). Within-host viral population size thus tends to exceed the 
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number of hosts infected worldwide (Holmes 2009). Although viruses tend to experience 

a population bottleneck upon transmission (i.e., infection of new hosts), their enormous 

replication rates can soon result in Ne values large enough to allow the action of selection, 

as for viruses which undergo persistent asymptomatic infections, like the Arteriviruses of 

African monkeys. 

 Another characteristic of RNA viruses that offsets their high mutation rates is 

their small genome sizes. One hypothesis states that the upper limit of genome size is 

approximately the reciprocal of the mutation rate, which for a mutation rate of 10-4 would 

be 10,000 nt (Eigen 1992). Roughly consistent with this, RNA virus genomes range in 

size from 2,500 to 31,500 nt, with a mean of approximately 10,000 nt (Holmes 2009). 

This is presumably because a genomic deleterious mutation rate of 1 per generation 

would be evolutionarily unsustainable, leading to mutational meltdown. Extra 

nonfunctional (“junk”) genetic material might not be subject to high rates of deleterious 

mutation, but its accumulation may be limited by other factors, such as the energy burden 

and increased replication time associated with maintaining excess genetic material 

(Lynch 2007a). Arteriviruses are themselves among the largest RNA viruses, having 

genome sizes approaching 16,000 nt in length. 

 Holmes (2009) has described RNA viruses as constituting “some of the best-

equipped laboratories to study evolution by natural selection.” The reasons for this should 

now be clear. RNA viruses experience extremely high mutation rates, such that nearly 

every new virion produced obtains a new mutation. This sets them apart from even 

double-stranded DNA viruses, such as herpesviruses, which take advantage of DNA 

proofreading capabilities and evolve relatively slowly (Cullen et al. 2015). Possibly to 
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offset this, their burst sizes are on the order of their genome size, ensuring that at least 

some viral progeny will be free of lethal or deleterious mutations after every round of cell 

infection. Once infection is established, their within-host population sizes can range from 

104 to 108 per mL of blood in the case of Arteriviruses, enabling extremely effective 

natural selection in cases of persistent infection. Finally, their small and streamlined 

genomes not only make them amenable to study, but also afford a very close genotype-

to-phenotype relationship. The result is that the phenotype very accurately “advertises” 

the viral genotype, such that most viral traits have high heritability and thus respond well 

to selection. 

 

1.5 Conclusion 

Next-generation sequencing analyses involving pooled samples allow reliable population 

genetic data to be obtained from single sequencing runs. This approach is particularly 

advantageous for the study of viruses, where the sequencing of sufficiently numerous 

individual genomes from extremely large populations is costly and impractical. RNA 

viruses in particular exhibit very high mutation rates, large population sizes, and high 

replication rates, making them excellent study systems for evolution by natural selection. 

Unfortunately, statistical approaches and widely available tools for undertaking 

evolutionary studies with pooled-sequencing data have not been readily available until 

lately. Toward this end, I present a simple method, based on that of Nei and Gojobori, for 

estimating the population parameter nucleotide diversity (π) from pooled NGS data in 

Chapter 2. Chapter 3 goes further to instantiate and expand this method as part of the 

open-source software SNPGenie. Finally, Chapter 4 applies SNPGenie to study the 
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largest pooled-sequencing Arterivirus dataset to date, effectively characterizing the 

within-host evolutionary dynamics of the virus and developing a framework for 

evolutionary modeling, unsupervised epitope discovery, and mutation rate estimation. 

Future prospects are then briefly explored. 

 



	  

21	  

CHAPTER 2 

WITHIN-HOST NUCLEOTIDE DIVERSITY OF  
VIRUS POPULATIONS: INSIGHTS FROM  

NEXT-GENERATION SEQUENCING1

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Nelson CW, Hughes AL. 2015. Within-host nucleotide diversity of virus populations: insights from next-
generation sequencing. Infection, Genetics and Evolution 30:1-7. Reprinted here in modified form with 
permission of publisher; see Appendix A. 
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2.1 Introduction 

Because of the rapid generation times and high mutation rates of most viruses, the virus 

population infecting an individual host can accumulate substantial genetic diversity over 

the course of infection. This diversity is in turn subject, like genetic diversity in any 

biological population, to the processes of natural selection and random genetic drift, 

which determine whether individual variants increase or decrease in frequency. Thus, the 

viral population infecting an individual host is subject to an evolutionary process. This 

evolutionary process may be important for the persistence of viral infection; for example, 

the host immune system may selectively favor viral variants that evade immune 

recognition. For this reason, understanding within-host viral evolution has been a major 

focus of research aiming to understand the mechanisms by which certain viruses, such as 

human immunodeficiency virus 1 (HIV-1) and hepatitis C virus (HCV), evade clearance 

by the host immune system and thus establish persistent infections. 

In spite of the importance of understanding within-host evolution of virus 

populations, it has been difficult to study this process until recently. The advent of so-

called “next-generation” sequencing (NGS) technologies, with their potential to survey 

thousands of viral sequences from a given host, has dramatically improved our ability to 

characterize within-host sequence diversity in viral infections. NGS has been applied to 

address such questions as overall viral diversity within-hosts (Wright et al. 2011; Lauck 

et al. 2012); evolution of T-cell epitopes under selection by the host immune system 

(Bimber et al. 2010; Hughes et al. 2010; Hughes et al. 2012; Mudd et al. 2012; O’Connor 

et al. 2012; Walsh et al. 2013); response of viruses to selection imposed by antiviral 

drugs (Wang et al. 2007; Cannon et al. 2008; Le et al. 2009; Hedskog et al. 2010); 
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differences between virus subpopulations infecting different host cell types (Rozera et al. 

2009); and population bottlenecks in infection (Wang et al. 2010). 

Here we discuss statistical methods for using NGS data to understand nucleotide 

sequence diversity of within-host viral populations, with particular emphasis on the 

comparison of nonsynonymous (amino acid-altering) and synonymous (“silent”) 

nucleotide diversity in coding regions. NGS studies of within-host virus diversity use 

pooled samples, i.e., the genetic material of multiple individuals pooled in a single 

sample, as opposed to sequencing individual viral genomes separately. Besides saving 

costs, the sequencing of sufficiently large pools has been shown to give more accurate 

estimates of population genetic parameters than those obtained from individual 

sequencing (Futschik and Schlötterer 2010). Such studies can be categorized as follows: 

(1) targeted NGS, using primers that amplify a specific short region of the viral genome, 

such as a specific T-cell epitope, thereby providing the complete sequences of haplotypes 

spanning that region (Bimber et al. 2010); or (2) genome-wide NGS, using sets of primers 

(e.g., random hexamers) designed to obtain sequence information across all or most of 

the viral genome (Hughes et al. 2012; Wilker et al. 2013; Bailey et al. 2014). In the 

former type of study, standard methods of statistical analysis of sequence data (Nei and 

Kumar 2000) are directly applicable, including the estimation of nonsynonymous and 

synonymous nucleotide diversity and even phylogenetic tree reconstruction. However, 

because the sequence reads produced by NGS are short and thus provide limited 

information, phylogenetic trees are often poorly resolved in the case of targeted NGS. 

In the case of genome-wide NGS, traditional techniques of sequence analysis are 

not directly applicable because of the lack of knowledge of haplotypes. Except when two 
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single nucleotide polymorphisms (SNPs) occur in the same short read, these methods do 

not provide any direct evidence regarding the phase of SNPs, i.e., whether or not they 

occur together in the same haplotype. In some studies, determining haplotypes may be 

sufficiently important that researchers may want to make use of statistical methods for 

inferring haplotypes by assembling sequence reads (Beerenwinkel and Zagordi 2011). 

However, it is uncertain that haplotype inference will always be possible in the case of 

within-host viral populations, where all or most haplotypes may be very closely related 

and parallel mutations and recombination may obscure haplotype identities. Moreover, 

whenever haplotype inference is used, it must be kept in mind that any further inferences 

that rely on that inference remain conditional upon its accuracy. 

For this reason, it may be useful in the case of whole-genome NGS to make use of 

methods that estimate population-level sequence parameters without the need to infer 

haplotypes. Here we discuss the theoretical basis of such methods and some examples of 

their application. We then briefly address the potential of these approaches for addressing 

some important theoretical and applied issues in the biology of viruses. As a specific 

example, we discuss how application of these approaches may provide data that will shed 

light on the relevance of the “quasispecies” model for understanding within-host 

evolution of viral populations. 

 

2.2 Nucleotide Diversity 

Nucleotide diversity (π) represents an important property of populations of nucleic acid 

sequences. In order to estimate nucleotide diversity in a population, we first take a 

random sample of n sequences from the population. Between each sequence and each 
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other sequence, we estimate dij, the number of nucleotide substitutions per site. A number 

of models are available for estimating dij, correcting for multiple hits and taking into 

account the effects of base composition bias and transitional bias (Nei and Kumar 2000). 

In the case of within-host virus populations, dij values are generally quite low (usually 

much less than 10%), and therefore the effect of these corrections will be very slight; 

thus, the uncorrected proportion of nucleotide differences between sequences often 

provides an adequate estimate of dij. Nucleotide diversity (π) is estimated by the mean dij 

for all (n2 − n)/2 possible pairwise comparisons among sequences; i.e., 

 

𝜋 = *+,
(&./&) 1234  [equation 2.1] 

 

In the case of coding sequences, important evolutionary information can be gained by 

estimating nucleotide diversity separately for nonsynonymous and synonymous sites. 

First, we estimate for each pair of sequences the number of nonsynonymous substitutions 

per synonymous site (dN) and the number of synonymous substitutions per 

nonsynonymous site (dS) (Chapter 1). In addition to correction for multiple hits, there 

exist a variety of methods for estimating dN and dS that also take into account nucleotide 

content and transitional bias (Nei and Kumar 2000). In the case of within-host viral 

populations, since the degree of sequence divergence is usually slight, the use of 

complicated models for estimating dN and dS has little effect on the results. Thus, a 

simple method, such as that of Nei and Gojobori (1986), usually provides adequate 

results. Note that complex methods for estimating dN and dS, such as likelihood methods, 

generally estimate nucleotide frequencies and other such parameters from the sequences 



	  

26	  

themselves; thus, this procedure can be positively misleading when the sequences 

analyzed are short, because the stochastic error of these estimates will be very high in the 

case of short sequences. These complex methods for estimating dN and dS should 

therefore be avoided in the analysis of short sequences, as in targeted NGS, or in the 

estimation of dN and dS in sliding windows along a gene. 

In a population of sequences, let dNij be the estimate of dN between sequences i 

and j. The nonsynonymous nucleotide diversity (πN) is estimated by substituting dNij for 

dij in equation 2.1. Similarly, let dSij be the estimate of dS between sequences i and j. The 

synonymous nucleotide diversity (πS) is estimated by substituting dSij for dij in equation 

2.1. 

Selectively neutral nucleotide diversity provides an estimate of the population 

parameter θ, which is proportional to the product of the effective population size (Ne) and 

the mutation rate (v) per generation (Li 1997; Nei and Kumar 2000). This relationship 

holds under the assumptions of the infinite-sites model of population genetics, when 

mutation and drift are in equilibrium (Nei and Kumar 2000). Since synonymous 

mutations are generally selectively neutral or nearly so, in the case of a haploid organism 

such as a virus, we expect 

 

𝜋' = 2𝑁7𝑣 [equation 2.2] 

 

When we compare two populations of the same virus, we expect that ν will probably be 

the same in the two populations. Therefore, comparing πS in the two populations will 

provide an estimate of their relative effective population sizes. 
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In addition, the comparison of πN and πS provides information regarding the 

action of natural selection on the population of sequences under study. In most coding 

regions, πS substantially exceeds πN. This pattern occurs because most nonsynonymous 

mutations are deleterious and are therefore reduced in frequency or eliminated by 

purifying selection, whereas synonymous mutations are much more likely to be neutral or 

nearly neutral (Hughes 1999). The relative values of πN and πS are thus indicative of the 

strength and effectiveness of purifying selection. The strength of purifying selection 

reflects the functional importance of the protein or protein region being studied. In 

general, relative to πS, we expect πN to be lower in protein regions highly important to 

viral fitness than in protein regions that are less important to viral fitness. 

When we have reason to suspect that positive Darwinian selection is acting to 

favor amino acid changes within a certain protein region, we may predict a reversal of the 

usual pattern, with πN greater than πS. An example of such a region would be a CD8+ TL 

epitope (Hughes et al. 2012); that is, a region of a viral protein that is recognized by a 

host class I major histocompatibility complex glycoprotein and presented to CD8+ T-

lymphocytes (“cytotoxic T-cells”). In such a case, biological knowledge suggests a 

reason to expect repeated amino acid-altering changes in a region: namely, the evasion of 

the host immune system by the pathogen. 

When there is no a priori reason to expect positive selection on some particular 

region of a viral protein, it may be useful to compute πN and πS in a sliding window along 

the gene. In the analysis of viruses infecting vertebrates, we frequently use a sliding 

window of 9 codons, because most CD8+ TL epitopes are nonamers (Evans et al. 1999; 

Hughes et al. 2001). Note that it is best to compute πN and πS separately, rather than to 
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compute the ratio πN/πS as is sometimes done. Ratios have undesirable statistical 

properties, and are therefore best avoided. For example, in the case of closely related 

sequences and a short sliding window length, πS may often be zero in a given window, in 

which case the ratio πN/πS will be undefined. Additionally, examining the ratio πN/πS 

alone provides no information as to why that ratio is high in a given gene region. For 

example, the ratio πN/πS may be high in a certain region merely because πS is unusually 

low, while πN is not unusually high. In the latter case, high πN/πS would not be suggestive 

of positive selection but merely of some constraint on πS, such as a low mutation rate or 

some constraint on synonymous substitution such as purifying selection on codon usage. 

Moreover, in the case of viruses, the existence of overlapping reading frames often 

provides constraints on synonymous substitutions because substitutions that are 

synonymous in one reading frame may be nonsynonymous in another (Hughes et al. 

2001; Hughes and Hughes 2005). 

 

2.3 Next-Generation Sequencing (NGS) Data 

Nei and Kumar (2000) note that nucleotide diversity is equivalent to “heterozygosity at 

the nucleotide level.” This relationship indicates that the estimation of nucleotide 

diversity across a genomic region does not require the availability of sequences 

(haplotypes) spanning the entire region, but rather only the frequency of different allelic 

variants at polymorphic sites. Thus, we can estimate nucleotide diversity from NGS data 

without reconstructing haplotypes, because NGS data provide information on the 

frequency of variants. 
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In order to estimate nucleotide diversity, we need to estimate the proportion of 

pairwise differences at each polymorphic site. Let mi designate the coverage provided at 

the ith site, i.e., the number of reads providing a base call for that site. The counts for the 

four bases at the ith site are designated, respectively, Ai, Ci, Gi, and Ti; thus mi = Ai + Ci + 

Gi + Ti. The proportion of pairwise nucleotide differences at the ith site (Di) is given by: 

 

𝐷2 =
:+×<+ = :+×>+ = :+×?+ = <+×>+ = <+×?+ = >+×?+

($+./$+) 1
 [equation 2.3] 

 

In within-host virus population data, the majority of SNPs are biallelic. In that case, only 

one of the six summed terms in the numerator of equation 2.3 will be non-zero. More 

complicated situations arise when multiple SNPs occur at the same site, or when analyses 

are based on entire codons. In the former case, there will be a maximum of 6 possible 

non-zero products. In the latter case, equation 2.3 must be expanded to compare all 64 

possible codons, which constrains the number of non-zero terms in the numerator by an 

upper bound of 64C2 = 2,016 pairs of codons. 

In order to estimate nucleotide diversity in non-protein-coding regions (or without 

regard to coding differences in coding regions), for a sequence of L nucleotides and n 

polymorphic sites: 

 

𝜋 = @+
A

&
2BC  [equation 2.4] 

 

The same approach can be easily extended to estimate πN and πS in coding sequences. Di 

is estimated separately for nonsynonymous and synonymous sites using equation 2.3, 
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while L represents the number of nonsynonymous or synonymous sites comprising the 

length of the sequence. This calculation obviously requires knowledge of a SNP’s codon 

context. To compute synonymous Di at a site that is less than fourfold degenerate, only 

the nucleotide pairs that are interchangeable without altering the amino acid are used in 

the numerator of equation 2.3. For example, consider the codon AAA, which encodes the 

amino acid Lys. If we are interested in determining πN and πS at this codon, we first note 

that one single-nucleotide variant at its third site is synonymous (AAG, also encoding 

Lys), while two single-nucleotide variants here are nonsynonymous (AAC and AAT, 

both encoding Asn). When estimating synonymous Di at the third position of the codon, 

only the products which represent no amino acid change are used in the numerator of 

equation 2.3. Thus, in this case of AAA, the products used are Ai * Gi and Ci * Ti, 

representing the synonymous codon pairs AAA(Lys)/AAG(Lys) and 

AAC(Asn)/AAT(Asn), respectively. Conversely, to compute nonsynonymous Di, only 

the other nucleotide pairs which do represent an amino acid change are included in the 

numerator of equation 2.3. In the case of AAA, the products used are Ai X Ci, Ai X Ti, Ci 

X Gi, and Gi X Ti, representing the nonsynonymous codon pairs AAA(Lys)/AAC(Asn), 

AAA(Lys)/AAT(Asn), AAC(Asn)/AAG(Lys), and AAG(Lys)/AAT(Asn), respectively. 

Thus, for the third position of the AAA codon, nonsynonymous Di may be computed: 

 

𝐷2 =
:+×<+ = :+×?+ = <+×>+ = >+×?+

($+./$+) 1
 [equation 2.5] 

 

Similarly, synonymous Di may be computed: 
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𝐷2 =
:+×>+ = <+×?+
($+./$+) 1

 [equation 2.6] 

 

In the more complicated case of whole-codon comparisons, SNPs at multiple sites in the 

same codon are often present. The frequency of each possible codon in the population 

may be estimated using coverage information provided by NGS. All possible pairwise 

comparisons between codons (up to 2,016) are considered, contributing to πN and πS 

following the methods of Nei and Gojobori (1986). 

The method we describe allows πN and πS to be calculated for pooled haploid 

NGS data. To automate this method, we have developed a software platform called 

SNPGenie (pronounced “snip genie”), which accepts SNP reports generated by separate 

SNP calling bioinformatics software (see Section 2.6). This approach differs from others, 

which estimate related population genetic parameters from aligned reads (e.g., 

PoPoolation; Kofler et al. 2011; Raineri et al. 2012). The SNPGenie approach is flexible 

in that it can be easily modified to incorporate SNP reports generated using whatever is 

the preferred method for calling SNPs in pools. Thus our method takes advantage of the 

SNP calling software and settings that are most appropriate for the desired application. 

By separating the bioinformatics involved in SNP calling and evolutionary inference, our 

method allows more flexibility and ease in characterizing nucleotide diversity than has 

previously been possible. Additionally, unlike its predecessors, SNPGenie calculates: (1) 

dN and dS versus a reference sequence, characterizing divergence from an ancestral 

sequence; and (2) gene diversity at polymorphic sites, characterizing the magnitude and 

nature of synonymous, nonsynonymous, and ambiguous polymorphism. Finally, at a 

practical level, our method allows different quality measures (e.g., filtering SNPs below a 
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minimum variant count) to be implemented without repeating the computationally intense 

process of SNP calling. 

 

2.4 Example: Within-Host Diversity of SHFV 

As an example of these methods, we present data on two new Arteriviruses isolated from 

natural populations of red colobus monkeys (Procolobus rufomitratus tephrosceles) from 

Uganda (Bailey et al. 2014). RNA was isolated from the blood plasma of wild-caught 

animals, and deep sequencing was performed on an Illumina MiSeq machine (Bailey et 

al. 2014). Many of the monkeys were infected by two distinct simian hemorrhagic fever 

viruses (SHFVs), designated SHFV-krc1 and SHFV-krc2. For 20 monkeys infected by 

both viruses, we estimated πN and πS for all codons with non-overlapping reading frames 

separately for the two viral genomes (Figure 2.1). Nucleotide diversity was consistently 

higher in the SHFV-krc1 virus than the SHFV-krc2 virus. Mean πS for SHFV-krc1 was 

0.0159 (± 0.00778 S.E.M.), which was significantly greater than that for SHFV-krc2 

(0.00932 ± 0.00555; two-tailed P = 0.00353; paired T-test; Figure 2.1B). Mean πN for 

SHFV-krc1 (0.00197 ± 0.000726) was also greater than that for SHFV-krc2 (0.00168 ± 

0.000946), but this difference was not significant (two-tailed P = 0.271; paired T-test; 

Figure 2.1A). The hypothesis that purifying selection has acted to eliminate and/or to 

reduce the frequency of deleterious nonsynonymous mutations in these viruses was 

supported by the significantly lower mean πN than mean πS in each virus (two-tailed P < 

0.001 in each case; paired T-tests). 



	  

33	  

 

 

Population genetics theory predicts that neutral nucleotide diversity (reflected 

largely by πS) is a function of both effective population size and mutation rate per 

generation (Nei 1987). SHFV-krc1 showed significantly greater viremia (blood 

concentration of virus) estimates than SHFV-krc2, suggesting the possibility that the 

within-host effective population sizes of SHFV-krc1 tend to be greater than those of 

SHFV-krc2 (Bailey et al. 2014), which would explain their difference in πS (Figure 

2.1B). On the other hand, it is also possible that the mutation rate per generation is higher 

in SHFV-krc1 than in SHFV-krc2. Preliminary analyses comparing of both viruses from 

one monkey sampled at two time points 2.5 years apart indeed suggested a higher 

mutation rate per unit time in SHFV-krc1 than in SHFV-krc2 (Bailey et al. 2014). 

However, the two viruses might still have identical mutation rates per generation if 

SHFV-krc1 has more generations per unit time. Resolving the relative contributions of 
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Figure 2.1. Nucleotide diversity in SHFV-krc1 vs. that in SHFV-krc2 from the same 
host red colobus monkey for all codons not overlapping multiple reading frames. 
Figures show (A) πN and (B) πS. In each case the line is a 45° line. 
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within-host effective population size, mutation rate, and generation time to the observed 

difference in nucleotide diversity in these two viruses will require further study (see 

Chapter 4). 

 

2.5 Discussion 

The population biology of viruses can be studied at two distinct levels: within hosts and 

across hosts. The study of within-host population biology of RNA viruses has been 

difficult until recently because it was necessary to infer features of a potentially very 

large and diverse viral population from only a small number of sequences. The 

availability of NGS methods that provide a much deeper picture of within-host viral 

diversity has a potential to change this situation dramatically. Using the methods 

described above we are able to obtain much more accurate estimates of nonsynonymous 

and synonymous nucleotide diversity than were previously possible, thereby providing 

insight into viral effective population sizes and the role of natural selection. 

An aspect of the fundamental biology of viruses into which these methods may 

provide important insights revolves around the so-called “quasispecies theory,” which 

models evolution in the case of infinite population sizes and high mutation rates (Eigen 

and Schuster 1977; Domingo 1992; Eigen 1996; Moya et al. 2000; Domingo 2002; 

Holmes and Moya 2002; Wilke 2005; Vignuzzi et al. 2006; Lauring and Andino 2010). 

Although there has been a tendency in the literature to treat quasispecies theory and 

population genetics as two competing paradigms, Holmes and Moya (2002) argue that 

the two might best be regarded as “two research traditions” each with its own “theoretical 

tools to explain population dynamics.” Moreover, there are numerous overlaps between 
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quasispecies theory and traditional population genetics. Indeed, as Wilke (2005) has 

shown, the quasispecies model is mathematically equivalent to the mutation-selection 

balance model of classical population genetics. 

Rather than contrasting quasispecies theory and population genetics as a whole, it 

might be more accurate to highlight differences between quasispecies theory and certain 

predictions of the neutral theory of molecular evolution (Kimura 1983). The original 

quasispecies models assumed infinite population sizes, as do the deterministic models of 

classical population genetics, although this obviously unrealistic assumption has been 

relaxed by some researchers working within the quasispecies tradition (e.g., Park et al. 

2010). On the other hand, the neutral theory emphasizes the importance of finite 

population size and genetic drift in the evolutionary process. As a consequence of genetic 

drift, populations are seen as inherently unstable and unpredictable in their genetic 

composition. By contrast, quasispecies theory tends to minimize the role of genetic drift 

and to predict the evolution of an equilibrium characterized by the dominance of a 

“cloud” of mutationally closely related genomes collectively known as a “quasispecies.” 

Empirical data that have been interpreted as providing support for quasispecies 

theory are often ambiguous and readily subject to alternative interpretations consistent 

with the neutral theory. For example, in experiments with laboratory-passaged strains of 

vesicular stomatosis virus (VSV), a strain with a high replication rate (and thus presumed 

high fitness) was outcompeted by a complex viral population assumed to represent a 

quasispecies (de la Torre and Holland 1990). However, this same result might be 

predicted under the neutral theory on the principle that, when the effective population 

size is low, natural selection is inefficient and even high-fitness genotypes may not 
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increase in frequency but rather may be subject to genetic drift (Kimura 1983). Since 

these virus populations were passaged (equivalent to “bottlenecking” in population 

genetic terms), they would be expected to have low effective population sizes (Hughes 

2009). 

Similarly, Lauring and Andino (2010) cite evidence that variants of dengue virus 

having a stop codon in one protein are maintained at high frequency in populations 

(Aaskov et al. 2006) as supporting a quasispecies model. But Aaskov et al. (2006) 

suggest other possible explanations for this observation that do not involve quasispecies. 

Since viruses in which certain proteins are defective can still be spread by “parasitizing” 

proteins from other viruses which co-infect the same host (Aaskov et al. 2006), selection 

against viruses with the stop codon may be relatively weak. Small effective population 

size, as a result of bottlenecks in transmission, may account for the failure of selection to 

remove such a mildly deleterious variant. 

NGS methods can contribute to an increased understanding of within-host viral 

evolution, and thus to a resolution of some of the controversies raised by quasispecies 

theory. We will briefly discuss three types of relevant evidence to which NGS data and 

the aforementioned methods of analysis can contribute. 

 

2.5.1 Nonsynonymous and Synonymous Polymorphism 

Jenkins et al. (2001) have argued that a pattern whereby πS exceeds πN in VSV is 

evidence against the quasispecies theory because it implies that numerous synonymous 

mutations are neutral or nearly so, whereas the accumulation of neutral polymorphism is 

not predicted by the quasispecies model. However, the sequences which Jenkins et al. 
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(2001) analyzed were sampled from numerous different hosts; thus, because they did not 

represent within-host populations, the relevance of these data to the quasispecies model 

of within-host virus evolution might be questioned. Sanger sequencing of within-host 

populations of viruses has shown a pattern whereby πS substantially exceeds πN in a 

variety of viruses (Hughes, Piontkivska, et al. 2005; Callendret et al. 2011; Li et al. 

2011). Similar patterns have been seen in studies using NGS data (Hughes et al. 2012; 

Lauck et al. 2012; Wilker et al. 2013; Bailey et al. 2014). Further studies using NGS 

methods will make it possible to estimate the relative magnitude of nonsynonymous and 

synonymous polymorphism for within-host virus populations, and thus to assess the role 

of neutral mutations and genetic drift in within-host viral evolution. 

 

2.5.2 Increase in Polymorphism Over Time 

The neutral theory predicts that most polymorphism in natural populations is selectively 

neutral or nearly so. Thus, in the absence of perturbing factors such as radical changes in 

the selective regime or population bottlenecks, neutral polymorphism will accumulate 

over time as a consequence of mutation. The quasispecies theory, by contrast, predicts 

that an equilibrium state will develop after which polymorphism will not increase. So far 

relatively few studies have examined within-host viral polymorphism at several time 

points over the course of infection; however, several studies using Sanger sequencing 

(Callendret et al. 2011; Li et al. 2011) have provided evidence that polymorphism—

particularly synonymous polymorphism—increases over time, as predicted by the neutral 

theory. Particularly interesting were data showing a steady increase over time of within-

host viral πS in human patients, raging from 2 to 38 years post-infection with hepatitis C 
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virus (Li et al. 2011). It is important to test for the generality of this pattern across 

different RNA virus species. Because NGS methods provide the potential for examining 

genome-wide viral polymorphism at different time points over the course of infection, 

these methods seem particularly well designed for addressing this question. 

 

2.5.3 The Impact of Effective Population Size 

According to the neutral theory, the extent of sequence polymorphism maintained in a 

population should be correlated with its effective population size, while quasispecies 

theory argues that within-host populations of RNA viruses are so large that effective 

population size can be ignored. Results such as those of Bailey et al. (2014) support the 

neutral theory since they suggest a correlation between nucleotide diversity and viral load 

(viremia), which may reflect viral population size. The correlation between virus 

nucleotide diversity and viral load requires further testing in a variety of viruses. 

In addition to the potential utility of NGS analyses in addressing theoretical 

debates regarding quasispecies theory, the approaches described here are useful in 

studying a number of other questions regarding within-host virus evolution. They can 

provide evidence regarding positive selection favoring new viral mutants, including those 

that confer escape from host immune recognition mechanisms (Hughes et al. 2012); those 

that confer resistance to anti-viral drugs; and those that are favored because they better 

adapt the virus to a new host species (Wilker et al. 2013). 
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2.6 Note on Software 

In order to perform the analyses herein, we developed and implemented a nascent 

software platform called SNPGenie (Wilker et al. 2013; Bailey et al. 2014) for analyzing 

nonsynonymous and synonymous polymorphism in these pooled NGS samples. 

SNPGenie makes several advances over previous approaches (Kofler, Orozco-terWengel, 

et al. 2011; Raineri et al. 2012), and is described in Chapter 3. 
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CHAPTER 3 

SNPGENIE:  
ESTIMATING EVOLUTIONARY PARAMETERS TO  

DETECT NATURAL SELECTION USING  
POOLED NEXT-GENERATION SEQUENCING DATA2

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 Nelson CW, Moncla LH, Hughes AL. 2015. SNPGenie: estimating evolutionary parameters to detect 
natural selection using pooled next-generation sequencing data. Bioinformatics 31(22):3709-11; 
https://github.com/hugheslab/snpgenie. Reprinted here in modified form with permission of publisher; see 
Appendix A. 
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3.1 Introduction 

Next-generation sequencing (NGS) technologies allow the rapid sequencing of pooled 

DNA samples containing genetic material from multiple individuals. The resultant single-

nucleotide polymorphism (SNP) data may be used to reliably estimate population genetic 

parameters with more accuracy and less expense than the separate sequencing of multiple 

individuals (Futschik and Schlötterer 2010; Lynch et al. 2014), especially when samples 

are large and coverage is high. Unfortunately, high coverage data also suffer from a 

substantial false-positive error rate. SNP calling techniques can address this issue, but the 

only software currently available for evolutionary analysis of pooled NGS data, 

PoPoolation (Kofler, Orozco-terWengel, et al. 2011), is inextricable from a problematic 

SNP caller that has an extremely high false-positive rate (Raineri et al. 2012). Further, 

PoPoolation relies on large pileup files and problematic simplifications, including use of 

the reference sequence alone to determine the number of nonsynonymous and 

synonymous sites. Ideally, software for evolutionary analyses of these data would allow 

users to first call SNPs using any preferred method, and then process the results using 

standard methods for determining the numbers of nonsynonymous and synonymous 

differences and sites. 

We have developed SNPGenie to meet this need, available at 

https://github.com/hugheslab/snpgenie. Using SNP calling results, SNPGenie estimates: 

(i) nucleotide diversity (π), and its nonsynonymous and synonymous partitions (πN and 

πS, respectively) for coding regions; (ii) mean nonsynonymous and synonymous 

divergence (dN and dS, respectively) from a reference sequence; (iii) gene diversity (H; 

Nei 1987); (iv) site type classification (nonsynonymous, synonymous or ambiguous) for 



	  

42	  

polymorphic coding loci (Knapp and Hughes 2012); and (v) the constraint imposed by 

overlapping open reading frames. These parameters do not depend on linkage (see 

Chapter 2), circumventing a major limitation of pooled data for other applications (Cutler 

and Jensen 2010). Indefinitely large genomes with multi-nucleotide variants may be 

analyzed at speeds exceeding those of PoPoolation’s default settings. The results allow 

users to test evolutionary hypotheses on the roles of negative (purifying) selection, 

positive (Darwinian) selection, and random genetic drift in the sampled population. In 

general, πN   =   πS indicates neutrality, πN < πS indicates purifying selection, and πN > πS 

may indicate positive selection favoring multiple amino acid changes (Hughes 1999). 

Comparing H at distinct polymorphic site categories may also address these hypotheses 

(although an important limitation is explored in Chapter 4) (Hughes et al. 2003). 

Parameter estimates are available at the nucleotide, codon, sliding window, whole gene 

and whole genome/population levels. 

 

3.2 Methods 

SNPGenie is a data processing Perl script, with no additional dependencies. The program 

accepts a reference sequence(s) (FASTA), a Gene Transfer Format (GTF) file with CDS 

annotations, and an arbitrary number of SNP reports, currently including Geneious 

(Variations/SNPs Annotations Table), CLC Genomics Workbench (Annotated Variant 

File), and VCF (variant call format) formats. The download package includes the Perl 

code, a detailed manual (README), various example files, and scripts to aid in data 

preparation. 
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Nucleotide diversity (π) is the mean number of pairwise differences per site in a 

population of sequences. SNPGenie estimates this for all sites, and then separately for 

nonsynonymous and synonymous coding sites (πN and πS, respectively), using a new 

method (Chapter 2) based on that of Nei and Gojobori (1986). Differences are calculated 

using all comparisons within every polymorphic codon and including all mutational 

pathways. To calculate the numbers of nonsynonymous and synonymous sites, SNPGenie 

weights by the sample allele frequencies. This becomes especially important when 

populations diverge from the reference sequence(s). Gene diversity is calculated as H  =  1 

– ∑xi
2, where xi is the population frequency of nucleotide i. Polymorphic coding sites are 

classified following the methods of Knapp and Hughes (2012), with gene diversities 

given for each category. 

SNPGenie (version 1.2) and PoPoolation (version 1.2.2) were used to analyze 

pooled H5N1 data from ferret #3501-DPI5, obtained from Wilker et al. (2013) (Jorge 

Dinis, personal correspondence). SNPGenie used SNP calling results from Geneious 

Version 5.6.3, while PoPoolation necessarily performed its own SNP calling. For 

SNPGenie, all default values were used. For PoPoolation, the Syn-nonsyn-

sliding.pl script was used with default settings, except max-coverage  =  100000, 

dissable-corrections  =  on, min-count  =  1, window-size  =  3, and step-

size  =  3 (single codon analysis). Statistical analyses were performed using RStudio 

version 0.98.1049. 
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Gene Parameter R2 PoPoolation SNPGenie P 

HA 

N diffs 0.991 0.0039 ± 0.0015 0.0033 ± 0.0016 0.001 
S diffs 0.995 0.0011 ± 0.0006 0.0008 ± 0.0006 0.002 
N sites 0.830 2.3844 ± 0.0144 2.3483 ± 0.0144 < 0.001 
S sites 0.830 0.6156 ± 0.0144 0.6517 ± 0.0144 < 0.001 

NA 

N diffs 0.437 0.0015 ± 0.0001 0.0089 ± 0.0007 < 0.001 
S diffs 0.231 0.0007 ± 0.0001 0.0029 ± 0.0002 < 0.001 
N sites 0.882 2.3667 ± 0.0159 2.3347 ± 0.0158 < 0.001 
S sites 0.884 0.6333 ± 0.0159 0.6647 ± 0.0158 < 0.001 

 

 

 

 
3.3 Results 

To validate SNPGenie’s execution of the Nei-Gojobori (1986) method, we constructed 

sequences with all 61 non-STOP codons and known numbers of differences. MEGA 

Version 6 (Tamura et al. 2013) was used to calculate πN and πS. SNP reports and GTF 

files were then constructed to reflect the known variant frequencies and reference 

sequence, and SNPGenie was used to estimate the same parameters. All results agreed to 

the last decimal. 

Next, both SNPGenie and PoPoolation were used to analyze a pooled H5N1 

sample. The nonsynonymous and synonymous mean numbers of pairwise differences per 

site and numbers of sites (the numerator and denominator of πN and πS) were then 

estimated for the hemagglutinin (HA) and neuraminidase (NA) genes. 

Table 3.1. Mean nonsynonymous (N) and synonymous (S) differences and 
sites in hemagglutinin (HA) and neuraminidase (NA) genes of an H5N1 
influenza population, estimated by PoPoolation and SNPGenie.	  

Values shown are means ± standard errors. P-values refer to a paired T-test 
comparing PoPoolation and SNPGenie, with the codon as the unit. For all 
R2, P < 0.001 (F test).	  
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When PoPoolation estimates were regressed on those from SNPGenie, all R2 

values were significant (P  <  0.001; F-test), but smaller for differences in NA. PoPoolation 

overestimated differences for HA and underestimated them for NA, while overestimating 

the number of nonsynonymous sites (Table 3.1). π was significantly lower in HA 

(P  <  0.01 for πN; P  <  0.001 for πS; two-sample T-tests), consistent with previous evidence 

for a population bottleneck upon viral transmission that is driven by selection for specific 

HA residues (Wilker et al. 2013). Because PoPoolation overestimated differences in HA, 

this suggests that its false discovery rate may be exacerbated in low-diversity (e.g., 

bottlenecked) contexts. 

Most differences between SNPGenie and PoPoolation can be attributed to: (i) 

differences in SNP calling; (ii) PoPoolation’s treatment of STOP codon variants as 

nonsynonymous; and (iii) SNPGenie’s use of allele frequency data in determining the 

number of sites, contrasted to PoPoolation’s use of the reference sequence alone. 

PoPoolation also reports πS =  0 for codons with no synonymous sites, where πS should be 

undefined. This could highly inflate the πN/πS ratio, overestimating the prevalence of 

positive natural selection. If the false positive calls are random, ∼75% will be 

nonsynonymous (Graur and Li, 2000), exacerbating this problem. 

Planned future improvements in SNPGenie include additional SNP report formats 

(e.g., VCF) and weighted mutational pathways. 
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3.4 Software Operation and Use 

A brief description of SNPGenie use follows. Its basic applications are all accomplished 

using the main script, snpgenie-1.2.2.pl, in a directory containing the necessary 

input files. Other accessory scripts currently available are described in Section 3.4.5. 

 

3.4.1 SNPGenie Input 

SNPGenie version 1.2 is a command-line interface application written in Perl, with no 

additional dependencies. As such, it is limited only by the memory and processing 

capabilities of the local hardware. As input, it accepts: 

 

1.   One or more reference sequence files in FASTA format (.fa/.fasta); 

2.   One file with CDS information in Gene Transfer Format (.gtf); and 

3.   One or more tab-delimited (.txt) SNP reports in CLC, Geneious, or VCF format. 

 

For ease and simplicity, one need only run SNPGenie in a directory containing the 

necessary input files, and SNPGenie takes care of all processing (Section 3.4.2 describes 

options for more control). To do this, the user first downloads the snpgenie-

1.2.2.pl script and places it in the system’s PATH, or simply in the working 

directory. Next, the SNP report(s), FASTA(s) (.fa/.fasta), and GTF (.gtf) files are placed 

in the working directory. The command line prompt (or Terminal) is used to navigate to 

the directory containing these files using the cd command. Finally, SNPGenie is 

executed by typing the name of the script and pressing the <RETURN> (or <ENTER>) 

key. Further details on input are given below. 
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3.4.1.1 Reference Sequence 

Only one reference sequence may be provided in a single FASTA (.fa/.fasta) file. Thus, 

all SNP coordinates in the SNP report(s) should have been called relative to the single 

reference sequence. This ONE-SEQUENCE MODE allows the maximum number of 

estimations to be performed, and is the only mode of SNPGenie that remains supported. 

(A MULTI-SEQUENCE MODE was available in past versions.) Because of this one-

sequence stipulation, a script has been provided to split a multi-sequence FASTA file into 

its constituent sequences if need be; see Section 3.4.5. 

 

3.4.1.2 Gene Transfer Format 

The Gene Transfer Format (.gtf) file is tab (\t)-delimited, and must include non-

redundant records for all CDS elements (i.e., open reading frames, or ORFs) present in 

the SNP report(s). Note that SNPGenie expects every coding element to be labeled as 

type “CDS”, and for its product name to follow a “gene_id” tag. In the case of CLC and 

Geneious SNP reports, this name must match that present in the SNP report. If a single 

coding element has multiple segments (e.g., exons) with different coordinates, the user 

simply enters one line for each segment, using the same product name. (Although 

SNPGenie could only handle 2 segments per ORF in the past, there is now no limit.) 

Finally, for cases with reverse ‘-’ strand features, SNPGenie must be run twice, once for 

each strand, with that strand's own set of input files (i.e., the ‘-’ strand FASTA, GTF, and 

SNP report); see Section 3.4.1.4. The Brent Lab provides more information about GTF at 

http://mblab.wustl.edu/GTF22.html. A simple example follows: 
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reference.gbk   CLC CDS 5694    8369    .   +   0   gene_id “ORF1”; 
reference.gbk   CLC CDS 8203    8772    .   +   0   gene_id “ORF2”; 
reference.gbk   CLC CDS 1465    4485    .   +   0   gene_id “ORF3”; 
reference.gbk   CLC CDS 5621    5687    .   +   0   gene_id “ORF4”; 
reference.gbk   CLC CDS 7920    8167    .   +   0   gene_id “ORF4”; 
reference.gbk   CLC CDS 5395    5687    .   +   0   gene_id “ORF5”; 
reference.gbk   CLC CDS 7920    8016    .   +   0   gene_id “ORF5”; 
reference.gbk   CLC CDS 4439    5080    .   +   0   gene_id “ORF6”; 
reference.gbk   CLC CDS 5247    5549    .   +   0   gene_id “ORF7”; 
reference.gbk   CLC CDS 4911    5246    .   +   0   gene_id “ORF8”; 
 
 

3.4.1.3 SNP Reports 

Each SNP report submitted to SNPGenie should contain variant calls for a single pooled-

sequencing run (i.e., a single population) in one of the following formats: 

•   CLC Genomics Workbench. At minimum, the CLC Genomics Workbench SNP 

report must include the following default column selections, with the unaltered 

CLC column headers: 

o   Reference Position, which refers to the start site of the polymorphism 

within the reference FASTA sequence; 

o   Type, which refers to the nature of the record, usually the type of 

polymorphism, e.g., “SNV” for single-nucleotide variants; 

o   Reference, the reference nucleotide(s) at that site(s); 

o   Allele, the variant nucleotide(s) at that site(s); 

o   Count, the number of reads containing the variant; 

o   Coverage, the total number of sequencing reads at the site(s); 

o   Frequency, the frequency of the variant as a percentage, e.g., “14.6” for 

14.60%; and 

o   Overlapping annotations, containing the name of the protein product or 

open reading frame (ORF), e.g., “CDS: ORF1”. 
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In addition to the aforementioned columns, the SNP report should ideally be free 

of thousands separators (,) in the Reference Position, Count, and Coverage 

columns (default format). The Frequency must remain a percentage (default 

format). Finally, the user should verify that the reading frame in the CLC output is 

correct. SNPGenie will produce various errors to indicate when these conditions 

are not met, e.g., by checking that all products begin with START and end with 

STOP codons, and checking for premature stop codons. Relevant information will 

be printed to the SNPGenie LOG file. 

 

•   Geneious. At minimum, the Geneious SNP report must include the following 

default column selections, with the unaltered Geneious column headers: 

o   Minimum and Maximum, which refer to the start and end sites of the 

polymorphism within the reference FASTA sequence, and will hold the 

same value for SNP records; 

o   CDS Position, with the coordinate of the site relative to the start cite of 

the relevant CDS annotation; 

o   Type, which refers to the nature of the record entry, e.g., 

“Polymorphism”; 

o   Polymorphism Type, which gives the type of polymorphism; 

o   product, containing the name of the protein product or open reading 

frame, e.g., ORF1; 
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o   Change, which contains the reference and variant nucleotides, e.g., “A -> 

G”, and are always populated for SNP records; 

o   Coverage, containing the number of sequencing reads that include the 

site; and 

o   Variant Frequency, which contains the frequency of the nucleotide 

variant as a percentage, e.g., 14.60%. 

As with CLC, the Geneious SNP report should ideally be free of extraneous 

characters such as thousands separators (,), but SNPGenie will do its best to adapt 

if they are present. Again, the Variant Frequency must remain a percentage 

(default format); again, the user should verify that the reading frame in the 

Geneious output is correct. SNPGenie will produce various errors to indicate 

when these conditions are not met, e.g., by checking that all products begin with 

START and end with STOP codons, and checking for premature stop codons. 

Relevant information will be printed to the SNPGenie LOG file. 

 

•   Variant Call Format (VCF). At minimum, the VCF SNP report must include (and 

at present does so by definition) the following columns, with the unaltered VCF 

column headers: 

o   CHROM, the name of the reference genome; 

o   POS, which refers to the start site of the polymorphism within the 

reference FASTA sequence; 

o   REF, the reference nucleotide(s) at that site(s); 

o   ALT, the variant nucleotide(s) at that site(s); 
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o   QUAL, the Phred quality score for the variant; 

o   FILTER, the filter status, based on such metrics as minimum frequencies 

and minimum quality scores; 

o   INFO, additional necessary information, including entries for: 

§   If a pooled VCF (i.e., the SNPs are called from a pooled 

sequencing sample): 

•   DP4, containing the number of reference and variant reads 

on the forward and reverse strands (e.g., 

“DP4=11,9,219,38”) 

§   If a summary VCF (i.e., the SNPs from multiple individual 

sequencing samples are being summarized): 

•   NS, the number of samples (i.e., individual sequencing 

experiments) being summarized; and  

•   AF, the allele frequency(-ies) for the variant alleles in the 

same order as listed in the ALT column (e.g., “NS=30” and 

“AF=0.200”) 

o   FORMAT and SAMPLE as an alternative to INFO for the pooled VCF 

approach (i.e., the SNPs are called from a pooled sequencing sample), 

with data entries for: 

§   AD, the allele depth for the reference, followed by that for the 

variant allele(s) in the same order as listed in the ALT column 

(e.g., “AD” in the FORMAT column and “75,77” in the 

SAMPLE column); and DP, the coverage or total read depth (e.g., 
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“DP” in the FORMAT column and “152” in the SAMPLE 

column) 

 

As usual, the user must make sure to maintain the VCF file's features, such as 

TAB-delimited columns. Unlike some other formats, the allele frequency in VCF 

is a decimal. 

 

3.4.1.4 A Note on Reverse Complement (‘-’ Strand) Records 

Many large genomes have coding products on both strands. In this case, SNPGenie must 

be run twice: once for the ‘+’ strand, and once for the ‘-’ strand. This requires FASTA, 

GTF, and SNP report input for the ‘-’ strand. The script snpgenie-vcf2revcom.pl, 

described in Section 3.4.5, automatically creates these files for the user, using the original 

data. Note that, regardless of the original SNP report format, the reverse complement 

SNP report is in a CLC-like format that SNPGenie will recognize. For both runs, the GTF 

should include all products for both strands, with the products on the strand being 

analyzed classified as ‘+’ and having coordinates defined with reference to the beginning 

of that FASTA sequence. Also note that a GTF file containing only ‘-’ strand records will 

not run; SNPGenie does calculations only for the products on the current ‘+’ strand, using 

the ‘-’ strand products only to determine the presence of overlapping reading frames. 

 

3.4.2 Options 

In case the user wishes to alter the way SNPGenie works, the following options 

(implemented using Perl's Getopt::Long module) may be used: 
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•   --minfreq: optional floating point parameter specifying the minimum allele 

(SNP) frequency to include. Entered as a proportion/decimal (e.g., 0.01), not as a 

percentage (e.g., not 1.0%). Default: 0. 

•   --snpreport: optional string parameter specifying the (one) SNP report to 

analyze. Default: auto-detect .txt and .csv file(s). 

•   --fastafile: optional string parameter specifying the (one) reference 

sequence. Default: auto-detect .fa and/or .fasta file(s). 

•   --gtffile: optional string parameter specifying the one file with CDS 

annotations. Default: auto-detect the .gtf file. 

•   --sepfiles: optional Boolean (flag) parameter specifying whether to produce 

separate results (codon) files for each SNP report (all results already included 

together in the codon_results.txt file). Simply include in the command 

line to activate. Default: not included. 

•   --slidingwindow: optional integer parameter specifying the length of the 

sliding (codon) window used in the analysis. Default: 9 codons. 

•   --ratiomode: optional Boolean (flag) parameter specifying whether to include 

π values for each codon in the codon_results.txt file(s). This is usually 

inadvisable, as π values (especially πS) are subject to great stochastic error. 

Simply include in the command line to activate. Default: not included. 

•   --sitebasedmode: optional Boolean (flag) parameter specifying whether to 

include π values derived using a site-based (reference codon context only) 

approach in the codon_results.txt file(s). This is usually inadvisable, as π 
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values will not reflect the true population pairwise comparisons. Simply include 

in the command line to activate. Default: not included. 

 

For example, if the user wishes to activate the sepfiles option, specify a minimum 

allele frequency of 1%, and specify input files, they might enter the command: 

 

snpgenie-1.2.2.pl –sepfiles --minfreq=0.01 --snpreport=mySNPreport.txt 

--fastafile=myFASTA.fa --gtffile=myGTF.gtf 

 

3.4.3 How SNPGenie Works 

Given the appropriate files, SNPGenie calculates gene and nucleotide diversities for 

different types of sites in a protein-coding sequence. Nucleotide diversity may be defined 

as the average number of nucleotide variants per nucleotide site for all pairwise 

comparisons. To distinguish between nonsynonymous and synonymous differences and 

sites, it is necessary to consider the codon context of each nucleotide in a sequence. This 

is why the user must submit the starting and ending sites of the coding regions in the 

.gtf file, along with the reference FASTA sequence file, so that the numbers of 

nonsynonymous and synonymous sites for each codon may be accurately estimated by 

the Nei-Gojobori (1986) method. SNPGenie first splits the coding sequence into codons, 

each of which contains 3 nucleotide sites. The software then determines the numbers of 

these sites which are nonsynonymous and synonymous by testing all polymorphisms 

present at each site of every codon in the sequence. Because different nucleotide variants 

at the same site may lead to both nonsynonymous and synonymous polymorphisms, 

fractional sites occur frequently (e.g., only 2 of 3 possible nucleotide substitutions at the 
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third position of AGA cause an amino acid change; thus, that site is considered 2/3 

nonsynonymous and 1/3 synonymous). Next, the SNP report is consulted for the presence 

of variants to produce a revised estimate. Variants are incorporated through averaging 

weighted by their frequency. Although it is relatively rare, high levels of sequence 

variation may alter the number of nonsynonymous and synonymous sites in a particular 

codon, contributing to an altered picture of natural selection. 

Next, SNPGenie calculates the number of nucleotide differences for each codon 

in each ORF specified in the .gtf file. Calculating nucleotide diversity codon-by-codon 

enables sliding window analyses that may help to pinpoint important nucleotide regions 

subject to varying forms of natural selection. SNPGenie determines the average number 

of pairwise differences as follows: for every variant in the SNP Report, the number of 

variants is calculated as the product of the variant’s relative frequency and the coverage 

at that site. For each variant nucleotide (up to 3 non-reference nucleotides), the number of 

variants is stored, and their sum is subtracted from the coverage to yield the reference’s 

absolute frequency. Next, for each pairwise nucleotide comparison at the site, it is 

determined whether the comparison represents a nonsynonymous or synonymous change. 

If the former, the product of their absolute frequencies contributes to the number of 

nonsynonymous pairwise differences; if the latter, it contributes to the number of 

synonymous pairwise differences. When comparing codons with more than one 

nucleotide difference, all possible mutational pathways are considered, per the method of 

Nei and Gojobori (1986). The sum of pairwise differences is divided by the total number 

of pairwise comparisons at the codon (nC2, where n is coverage) to yield the mean 
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number of differences per site of each type. This is calculated separately for 

nonsynonymous and synonymous comparisons. For further background, see Chapter 2. 

 

3.4.4 Output 

SNPGenie creates a new folder called SNPGenie_Results within the working 

directory. This contains the following TAB-delimited results files, for which detailed 

documentation can be found at https://github.com/hugheslab/snpgenie: 

1.   SNPGenie_parameters.txt, containing the input parameters and file 

names. 

2.   SNPGenie_LOG.txt, documenting any peculiarities or errors encountered. 

Warnings are also printed to the Terminal (shell) window. 

3.   site_results.txt, providing results for all polymorphic sites. Note that, if 

the population is genetically homogenous at a site, even if it differs from the 

reference or ancestral sequence, it will not be considered polymorphic. Also keep 

in mind that columns are sorted by product first, then site number, with noncoding 

sites at the end of the file.  

4.   codon_results.txt, providing results for all codons. 

5.   <SNP report name(s)>_results.txt, containing the information present in 

the codon_results.txt file, but subset by SNP report. 

6.   product_results.txt, providing summary results for all CDS elements 

present in the GTF file for the ‘+’ strand.  

7.   population_summary.txt, providing summary results for each 

population's sample (SNP report) with respect to the ‘+’ strand. 
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8.   sliding_window_length_results.txt, containing codon-based results 

over a sliding window, with a default length of 9 codons. 

 

3.4.5 Additional Scripts 

Some additional scripts are included to automate some common tasks when preparing 

SNPGenie input. These currently are: 

•   snpgenie-gbk2gtf.pl. At the command line, this script is provided with 

one argument: a GenBank (.gbk) file. It will extract the coding element 

annotations to produce a Gene Transfer Format (.gtf) file ready for SNPGenie. 

Here's an example: 

 

snpgenie-gbk2gtf.pl my_genbank_file.gbk 

 

•   snpgenie-gff2gtf.pl. At the command line, this script is provided with 

one argument: a General Feature Format (.gff) file. It will extract the coding 

element annotations to produce a Gene Transfer Format (.gtf) file ready for 

SNPGenie, with “gene_id” annotations identified using the GFF “ID” tag. Here's 

an example: 

 

snpgenie-gbk2gtf.pl my_gff_file.gff 

 

•   snpgenie-split_fasta.pl. At the command line, this script is provided 

with one argument: a FASTA (.fa or .fasta) file containing multiple sequences. It 
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will create multiple files in the working directory, each containing one of the 

sequences. Here's an example: 

 

snpgenie-split_fasta.pl my_multi_fasta_file.fasta 

•   snpgenie-vcf2revcom.pl. This script automates the creation of the reverse 

complement input files. At the command line, it is provided with three arguments, 

in the following order: 

i.   A ‘+’ strand FASTA (.fa or .fasta) file containing the reference 

sequence against which SNPs were called; 

ii.   A ‘+’ strand GTF file containing both ‘+’ and '–' strand products from the 

‘+’ strand point of view; and 

iii.   A ‘+’ strand SNP report in VCF format. 

 

This script will then create a ‘-’ strand (reverse complement) version of each file in the 

working directory, with “_revcom” concatenated to the original file name. Here's an 

example: 

 

snpgenie-vcf2revcom.pl my_snp_report.vcf  

my_reference_sequence.fasta my_cds_file.gtf 

 

3.4.6 Studies Using SNPGenie 

To date, SNPGenie has been used to study H5N1 (Wilker et al. 2013) and H1N1 (Moncla 

et al. 2016) influenza; simian hemorrhagic fever virus (Bailey et al. 2014; Nelson and 
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Hughes 2015; Chapters 2 and 4), simian immunodeficiency virus (SIV) (Gellerup et al. 

2016); Arteriviruses, pegiviruses, and lentiviruses in African Green Monkeys (Bailey et 

al., in press at Journal of Virology). Its first application to a eukaryote, namely the Nod-

Like Receptor resistance genes of the wild tomato Solanum pennelli, is in press at 

Genome Biology and Evolution (Stam et al.). 

 

3.5 Conclusion 

I have developed a software tool capable of performing population genetic analyses with 

numerous forms of pooled-sequencing (and other) NGS variant data. This affords an 

opportunity in Chapter 4 to return to the data of Bailey et al. (2014) to test numerous 

predictions about within-host viral evolution, including those presented in Chapter 2. 
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CHAPTER 4 

POOLED SEQUENCING VIRAL DATA ALLOW  
EPITOPE DISCOVERY, EVOLUTIONARY MODELING, AND  

MUTATION RATE ESTIMATION: PROSPECTS AND LIMITATIONS 
WITH RED COLOBUS ARTERIVIRUSES3 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 Nelson CW, Bailey AL, Lauck M, Dinis JM, Sibley SD, Goldberg TL, O’Connor DH, Hughes AL. In 
preparation for Molecular Biology and Evolution. 
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4.1 Introduction 

RNA viruses exhibit several properties that increase their likelihood of emergence via 

host-switching as compared to DNA viruses, most notably high replication and mutation 

rates (Holmes 2009; Chapter 1). As a result, they are not greatly limited by factors that 

may restrict the rate of adaptive evolution in other systems with low reproduction rates 

(Haldane 1957; Nelson 2015), making them a particularly tractable model for studying 

the role of selection in evolution. The Arteriviridae family (Arteriviruses) is a group of 

positive-sense, single-stranded RNA viruses that infect mammals, causing both persistent 

asymptomatic infections and acute disease, depending on the host (Snijder et al. 2013).  

Lauck et al. (2011) recently discovered two closely related Arteriviruses infecting 

30 red colobus (RC) monkeys (Procolobus rufomitratus tephrosceles) in Uganda’s 

Kibale National Park: simian hemorrhagic fever viruses (SHFVs) krc1 and krc2. SHFV-

krc1 and SHFV-krc2 (hereafter krc1 and krc2) each have genomes approximately 15,500 

nt in length and share 14 open reading frames (ORFs). We adopt the nomenclature of 

Snijder et al. (2013), with ORFs ordered from 5’ to 3’ by start site as 1a, TF, 1b, 2a’, 2b’, 

3’, 4’, 2a, 2b, 3, 4, 5a, 5, 6, and 7 (Figure 4.1). Ancient duplications have likely given rise 

to the ORF pairs 2a’/2a, 2b’/2b, 3’/3, and 4’/4 (Godeny et al. 1998). Among the 

Arteriviruses, ORFs 2a’, 3’, and 4’ are unique to SHFVs (formerly ORFs 2a, 2b, and 3; 

Lauck et al. 2013). Note that Lauck et al. (2011) use a different naming system which 

lacks our ORFs TF, 2b’, and 5a. Both viruses appear to be asymptomatic in RC hosts and, 

consistent with patterns expected for viruses likely to emerge by host-switching, they 

exhibit high prevalence, viremia, genetic diversity, and evolutionary substitution rates. 
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Figure 4.1. The SHFV genome. Both krc1 and krc2 are positive-sense single-stranded 
RNA viruses that share the same open reading frames (ORFs) and genome length 
(approximately 15,500 nt), with minor differences (Table 4.1). ORFs are offset to show 
their degree of overlap with one another, and we use the nomenclature of Snijder et al. 
(2013). ORF TF is contained entirely within 1a, and all other ORFs overlap at their 
termini. Prime (’) symbols indicate an ancient duplication, such that ORF 2a’ is thought 
to be a duplicate of 2a, and so on. The first three ORFs make up well over half the 
genome. 
 

Population genetic parameters such as nucleotide diversity (π), equivalent to the 

average number of pairwise differences per site in a population (Li 1997), can shed light 

on the within- and between-host evolutionary dynamics of infectious agents. For 

example, π can be estimated separately for nonsynonymous (amino acid-altering) and 

synonymous (silent) nucleotide sites in coding regions, yielding πN and πS, respectively 

(Chapter 2). In the case of within-host viral populations, values of π are generally quite 

low (<<10%), allowing the use of simple estimation methods (Nei and Gojobori 1986; 

Nei and Kumar 2000). Because nonsynonymous mutations introduce amino acid changes, 

they are far more likely than synonymous changes to alter fitness by disrupting protein 

structure. As a result, purifying (negative) selection generally acts to decrease the 

frequencies of nonsynonymous mutations in the population. On the other hand, 

synonymous mutations have relatively “silent” effects, as evidenced by their 

preponderance in nearly all populations (Hughes 1999), including all viruses (Holmes 

2009). As a result, most synonymous mutations accumulate freely, as if neutral or nearly 

neutral. Thus, in instances where purifying selection acts to eliminate nonsynonymous 
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mutations, we expect πN < πS. When purifying selection is relaxed, both types of sites 

evolve neutrally at the same rate, and we expect πN = πS. Finally, when positive 

(Darwinian) selection acts to promote repeated amino acid changes, as is the case with 

overdominant positive selection (heterozygote advantage), we expect πN > πS. 

Instances of πN > πS are not unambiguous evidence of overdominant selection, let 

alone other forms of positive selection. For example, πN > πS can result from other 

situations, e.g., an increase in the frequency of rare variant alleles during a population 

bottleneck. Nor is selection always expected to produce this signal, e.g., the fixation of 

variant alleles, resulting in π = 0. However, in the case of host/pathogen coevolution, the 

biological context allows the a priori hypothesis that the host immune system will target 

the pathogen. This is expected to provide a selective pressure that promotes mutations in 

regions of its genome encoding antigenic peptides (epitopes) allowing immune escape. 

Several studies have introduced statistical approaches for estimating population 

genetic parameters from newly available pooled next-generation sequencing (NGS) 

variant data, i.e., the simultaneous sequencing of multiple individuals in a single sample 

(Kofler, Orozco-terWengel, et al. 2011; Kofler, Pandey, et al. 2011; Raineri et al. 2012; 

Lynch et al. 2014; Nelson and Hughes 2015). This allows unprecedented insight into the 

molecular evolution of virus populations, both within their hosts and during transmission, 

which are otherwise difficult to characterize. In particular, the software SNPGenie 

(Chapter 3; Nelson et al. 2015; https://github.com/hugheslab/snpgenie) can be used to 

estimate population genetic parameters from pooled-sequencing variant data, including π 

and gene diversity at nonsynonymous and synonymous sites, at a range of levels 

including single nucleotides, codons, genes, and genomes (populations). 
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Bailey et al. (2014) showed that overall πN < πS for krc1 and krc2, suggesting that 

purifying selection dominates their evolution, as is observed for virtually all viruses 

studied to date (Holmes 2009). They further demonstrated that πN tends to be higher in 

3’-proximal ORFs, with ORFs 3 and 5 containing regions in which πN > πS, suggestive of 

overdominant selection for immune escape. Finally, they noted that a positive correlation 

exists between viremia (viral load) and both πN and πS, with all three measures being 

significantly higher in krc1 than krc2. Nelson and Hughes (2015) further noted that 

viremia should be directly related to effective population size (Ne), suggesting that 

within-host viral data can be used to elucidate the relative contributions of Ne, mutation 

rates, and generation times in viral evolution. 

In the present study, we use recent advances in SNPGenie to develop approaches 

for answering these and other questions about the evolution of viruses. Using the pooled-

sequencing data of Bailey et al. (2014), SNPs were called relative to de novo reference 

sequences, and quality filtering was used to eliminate SNPs with Q < 25, reads < 100 nt 

in length, and estimated frequencies < 5%. Because these viruses share a unique genome 

in which all ORFs overlap at their termini, with one ORF being entirely subsumed by 

another (TF within 1a), we first estimated π for all sites, and then separately for those 

which do and do not overlap multiple reading frames. The results allowed us to compare 

relative constraint of nonsynonymous and synonymous sites in both types of regions. 

Surprisingly, unlike in other viruses such as papillomaviruses (Hughes and Hughes 

2005), sites in krc1 and krc2 which overlap multiple reading frames tend to be less 

constrained in terms of nonsynonymous changes than non-overlapping sites. Our results 

suggest that this is due to an enrichment of viral epitopes in these regions, and that 



	  

65	  

purifying selection still acts by limiting the specific nonsynonymous changes that can 

occur in overlapping regions. 

 As recent evidence has shown that selection acting on viral epitopes can often not 

be detected at the whole-gene levels (Bailey et al., in press), we next undertake 

unsupervised nonsynonymous peak discovery using a sliding window approach to detect 

candidate epitope regions. Several candidate epitopes are identified, corroborating earlier 

findings that suggest important regions exist which cannot be identified using either 

single-codon or whole-gene statistics. Peaks in both viruses are remarkably concordant in 

terms of ORFs and positions within ORFs, suggesting that viable escape mutations are 

somewhat limited. Insertions and deletions (indels) also seem to play a key role in 

immune escape, as the ORFs exhibiting the most indels also contained nonsynonymous 

peaks. 

Elucidating the population genetic factors contributing to viral evolution requires 

not only an estimate of Ne, but also an estimate of the viral mutation rate. To this end, we 

present a simple population genetic estimator based on within- and between-population 

synonymous genetic distance for use with longitudinal population data. One co-infected 

RC host was sampled at two time points, allowing us to make such estimates for both 

krc1 and krc2, which to our knowledge are the first of their kind. Having obtained 

estimated mutation rates, we then explore the relative contributions of mutation and 

selection in the evolution of these viruses. Our results suggest that the majority of 

nonsynonymous evolutionary change is driven by mutation pressure, but also that most 

deleterious mutations probably persist at very low frequencies in viral populations. 
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 Finally, we estimate gene diversity (H) separately for nonsynonymous and 

synonymous sites, as well as the Tajima’s (D) statistic, showing that the quality control 

filtering currently necessary for pooled-sequencing SNP calling severely limit the utility 

of these measures. 

 

4.2 Results 

4.2.1 Evolutionary Constraint in Non-overlapping and Overlapping ORF Regions 

Previous work with SHFV viruses krc1 and krc2 has shown that πN < πS for both, 

evidencing widespread purifying selection and demonstrating the relative constraint of 

nonsynonymous sites as compared to synonymous sites (Bailey et al. 2014). However, 

many viral genomes exhibit higher sequence constraint in regions which overlap multiple 

ORFs as opposed to those which do not overlap (Belshaw et al. 2007; Sabath 2009). This 

is presumably because mutations in these regions are likely to alter multiple protein 

products, increasing the probability that they will have deleterious effects (e.g., 

papillomaviruses; Hughes and Hughes 2005). However, some viruses contain important 

viral epitopes within such overlapping regions, the result being rapid sequence change 

driven by overdominant selection (e.g., simian immunodeficiency virus; Hughes et al. 

2001). Previous analyses with krc1 and krc2 found that πN peaks occurring in overlapping 

regions specific to ORFs 3 and 5 correspond to πS peaks in the overlapping ORF, 

suggesting the possibility that positive selection in one ORF may be accompanied by 

purifying selection in the overlapping ORF at the same genomic positions (Bailey et al. 

2014). 
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To compare evolutionary constraint at coding residues which do and do not 

overlap multiple ORFs, we analyzed regions of each type separately for each virus. 

Because co-infection with both krc1 and krc2 does not impact the nucleotide diversity of 

either virus (Bailey et al. 2014), we included both mono- and co-infections in our 

analyses. The highest proportions of overlap occurred in ORF TF (overlaps 1a), with 

100% overlap in both viruses, and in ORF 2a, with 88.89% and 86.99% overlap in krc1 

and krc2, respectively. ORF 1b was the second largest ORF and exhibited the least 

proportion of overlap (overlaps 1a and 2a’), with 1.55% and 2.80% overlap for krc1 and 

krc2, respectively (Table 4.1). There was no significant tendency for ORFs to be longer 

in either virus. However, differences in length were significant for all ORFs (α = 0.05 

with Bonferroni correction for 14 Wilcoxon Signed Rank tests). Of these differences, the 

greatest differences in total non-STOP codons were in ORFs 4’ (28 more codons in krc1, 

26 of which were non-overlapping), 1b (21 more codons in krc2, 19 of which were 

overlapping), and 3’ (18 more codons in krc1, 6 of which were overlapping). There were 

also instances in which the amount of overlap shifted greatly but total ORF length was 

relatively preserved. The most dramatic examples were ORF 3 (45 more overlapping 

codons but 43 fewer non-overlapping codons in krc1), 2b (26 more overlapping codons 

but 25 fewer non-overlapping codons in krc1), and 4 (18 more overlapping codons but 17 

fewer non-overlapping codons in krc1). 

For krc1, mean πN = 0.00264 (± 0.00021 S.E.M.) and mean πS = 0.01529 (± 

0.00142). The mean values of πN for non-overlapping (NOL) and overlapping (OL) 

residues were πN-NOL = 0.00183 (± 0.00015) and πN-OL = 0.00585 (± 0.00049),  
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 krc1 krc2 
ORF Overlapping Total Overlapping Total 

1a 222.38 (10.85%) 2049 223.33 (10.88%) 2053 
TF 220 (100%) 220 221 (100%) 221 
1b 22.71 (1.55%) 1465.04 41.67 (2.80%) 1486 
2a’ 69.67 (29.90%) 233 82.67 (36.91%) 224 
3’ 74.67 (33.79%) 221 68.67 (33.83%) 203 
4’ 29.67 (15.22%) 195 28 (16.77%) 167 
2a 72 (88.89%) 81 71.33 (86.99%) 82 
2b 135 (65.53%) 206 108.93 (53.16%) 204.93 
3 117.88 (59.15%) 199.30 72.59 (36.92%) 196.63 
4 50.88 (29.37%) 173.22 32.67 (18.99%) 172 
5a 49.74 (74.53%) 66.74 42 (71.19%) 59 
5 51.74 (20.93%) 247.22 44 (18.69%) 235.37 
6 11 (6.79%) 162 9.22 (5.75%) 160.22 
7 8.67 (7.23%) 119.96 6.89 (6.19%) 111.22 

 

 

 

 

 

respectively. The mean values of πS for non-overlapping and overlapping residues were 

πS-NOL = 0.01616 (± 0.00164) and πS-OL = 0.01186 (± 0.00108), respectively. For krc2, πN 

= 0.00210 (± 0.00019) and πS = 0.00905 (± 0.00096); πN for non-overlapping and 

overlapping residues were πN-NOL = 0.00180 (± 0.00019) and πN-OL = 0.00322 (± 

0.00034); and πS for non-overlapping and overlapping residues were πS-NOL = 0.00959 (± 

0.00105) and πS-OL = 0.00689 (± 0.00074). All values of π were higher in krc1 than in 

Table 4.1. Mean number of overlapping (% of total) and total 
codons by ORF.	  

ORFs descend in the table from 5’ to 3’ by start site. Mean 
numbers of codons were determined by averaging the length of 
the respective ORF’s consensus sequences across all within-
host populations analyzed, 23 isolates for krc1 and 27 isolates 
for krc2.	  
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krc2. This difference was significant for πN-OL (P < 0.01), πS (P = 0.0008), πS-NOL (P = 

0.002), and πS-OL (P = 0.0005), but not significant for πN or πN-NOL (two-sample T-tests). 

At the genome level, πN < πS was significant for both viruses, including within 

both overlapping and non-overlapping regions (P < 0.0001; paired T-tests), constituting 

strong evidence of purifying selection that is consistent with previous results (Bailey et 

al. 2014). However, contrary to expectation, πN-OL significantly exceeded πN-NOL in krc1 

(P < 0.0001) and in krc2 (P = 0.0003; paired T-tests), implying decreased constraint for 

nonsynonymous changes at overlapping sites. The opposite pattern was observed for πS, 

with πS-NOL significantly exceeding πS-OL in both krc1 and krc2 (P = 0.011 and P = 

0.0006, respectively; paired T-tests). 

Even when overlapping ORFs contain known epitopes (e.g., the overlap between 

simian immunodeficiency virus ORFs tat and vpr; Hughes et al. 2001), a negative 

correlation can be observed between the proportion of an ORF’s overlap and its πS. This 

is because synonymous changes in one ORF are likely to be nonsynonymous in the 

alternative ORF, making them subject to purifying selection that will lower πS. Between 

ORFs, the distributions of π estimates for both viruses were positively skewed and 

departed significantly from normality (P < 0.001; Shapiro-Wilk test), necessitating the 

use of nonparametric tests. In keeping with our surprising result that overlapping regions 

had a higher πN (i.e., πN-OL > πN-NOL), there was no significant correlation between an 

ORF’s πS and its proportion of overlap. Thus, differences among ORFs with respect to 

proportions of overlap do not explain the variation in πS observed in either virus. 

We next analyzed each ORF separately to explore differences between  
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(A) 

 

Figure 4.2. Nonsynonymous and synonymous nucleotide diversity in overlapping (OL) 
and non-overlapping (NOL) ORF sites. Results shown separately for krc1 (A) and krc2 
(B). ORFs are ordered 5’ to 3’, but panel width is not proportional to ORF size. Colors 
are red for πN and blue for πS. Within bar pairs for each ORF, darker colors (left bars) 
represent non-overlapping sites and lighter colors (right bars) represent overlapping sites. 
ORF TF contains only overlapping residues. Horizontal red lines indicate a significant 
difference between an ORF’s πN-NOL and πN-OL; horizontal blue lines indicate a significant 
difference between an ORF’s πS-NOL and πS-OL. Where there are significant differences 
between πN and πS within overlapping (πN-OL vs. πS-OL) or within non-overlapping (πN-NOL 
vs. πS-NOL) residues, these differences are indicated above each bar. All tests were 
Wilcoxon Signed Rank tests, with significance levels determined using a Bonferroni 
correction for 14 tests: * for α < 0.05; ** for α < 0.01; and *** for α < 0.001. 

 
 

overlapping regions in different parts of the viral genomes. In krc1’s non-overlapping 

sites, πN-NOL < πS-NOL occurred in all ORFs, being significant in all except 2a, 5a, 5, and 7 

(α = 0.05 with Bonferroni correction for 14 Wilcoxon Signed Rank tests used 

throughout). On the other hand, in its overlapping sites, πN-OL < πS-OL was significant only  
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 (B) 

 

… see previous page. 
 
 

 

in ORFs 1a, 2a’, 3’, 2a, 2b, and 5a, while the opposite pattern of πN-OL > πS-OL was 

significant in ORFs 4’ and 5, and also present but not significant in ORF 4 (Figure 4.2A). 

Similarly, in krc2’s non-overlapping sites, πN-NOL < πS-NOL was significant in all ORFs 

except 2a, 3, 5a, and 5, while the opposite pattern of πN-NOL > πS-NOL occurred in ORF 3 

but was not significant. Also similar to krc1, in krc2’s overlapping sites, πN-OL < πS-OL in 

krc2 was significant only in ORFs 1a, 2a’, 2a, 2b, 3, and 5a, while the opposite pattern of 

πN-OL > πS-OL was highly significant in ORFs 4 and 5, and present but not significant in 

ORF 4’ (Figure 4.2B). 

It is particularly noteworthy that several ORFs saw a reversal of their πN/πS ratio 

between residues which do and do not overlap multiple ORFs. In krc1, a reversal from 

πN-NOL < πS-NOL to πN-OL > πS-OL was significant in ORF 4’ (P < 0.01; Wilcoxon Signed 
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Rank test), and present but not significant in ORFs 4 and 5. In krc2, the same reversal 

was significant in ORF 4 (P < 0.001; Wilcoxon Signed Rank test), and present but not 

significant in ORFs 4’ and 5. The opposite reversal from πN-NOL > πS-NOL to πN-OL < πS-OL 

was present but not significant in ORF 3. Thus ORFs 4’, 4, and 5 all exhibit strong 

evidence of purifying selection in their non-overlapping residues while concurrently 

exhibiting evidence of overdominant selection in their overlapping residues. 

In summary, πS significantly exceeded πN in both overlapping and non-

overlapping ORF regions of both viruses, evidencing widespread purifying selection. 

However, contrary to what might have been expected based on functional constraint, we 

observed that πN-OL is significantly higher than πN-NOL in both viruses. On the other hand,  

πS-NOL was significantly larger than πS-OL for both viruses. Two ORFs—ORF 4’ in krc1 

and ORF 4 in krc2—showed a particularly interesting pattern in which strong purifying 

selection in non-overlapping regions was accompanied by a strong signature of 

overdominant positive selection in overlapping regions. 

 

4.2.2 Unsupervised Epitope Discovery: Identifying Nonsynonymous Peaks Using 

Sliding Windows of πN > πS 

One possible explanation for the lack of consistent heightened nonsynonymous constraint 

in overlapping regions is that these loci may be particularly enriched in epitopes 

undergoing overdominant selection for immune escape. It was thus necessary to identify 

putative epitopes. Unfortunately, a statistical signal often cannot be detected at the ORF 

level. For example, recent work with African Green Monkey viruses demonstrates that 

the signal of πN < πS can be lost within ORFs containing known epitopes that are 
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otherwise constrained by purifying selection, presumably because localized 

overdominant selection cancels out the background signal of purifying selection at low 

genomic resolution (Bailey et al., in press). For this reason, it is necessary to perform 

sliding window analyses at a biologically meaningful scale. Such regions are 

characterized by πN > πS, even when this does not hold for the entire ORF (Hughes and 

Nei 1988; Halliburton 2004). The average size of antigenic peptide fragments presented 

by host MHC class I receptors to CD8+ (cytotoxic) T-cells is 9 amino acids (Rammensee 

et al. 1995; Evans et al. 1999; Hughes et al. 2001). Thus, in terms of host-pathogen 

coevolution, we might expect to observe peaks in nonsynonymous polymorphism in 9-

codon windows as a result of overdominant selection.  

Unsupervised nonsynonymous peak discovery was performed using 9-codon 

sliding windows of πN/πS across the krc1 and krc2 genomes, including aligned data from 

all isolates of each. For ORFs that differed in length between or within viruses, products 

were translated, aligned at the amino acid level, and this alignment was then imposed on 

the DNA sequence. We defined nonsynonymous peaks as windows in which πN exceeded 

not only that window’s πS, but also the overall πS of the respective ORF, which was 

always greater than 0. This was necessary to preclude the possibility of identifying peaks 

that were due either to mutational hotspots or else to stochastic (low) fluctuations in πS, 

as might be imposed by codon bias. Overlapping peaks were concatenated and the 

resultant regions were end-trimmed to remove codons lacking polymorphism. 

Our approach identified 20 nonsynonymous peaks, 12 peaks in krc1 with median 

length 15 (± 9.5 I.Q.R.) and 8 peaks in krc2 with median length 26.5 (± 15) (Table 4.2).  
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Table 4.2. Peaks of nonsynonymous viral polymorphism suggestive of overdominant 
selection and epitope function. 
 

 ORF ORF  
πN 

ORF  
πS Peak Peak 

πN 
Peak  
πS Start Stop Codons 

Isolates 
with 

nonsyn. 
SNPs 

krc1 

TF 0.00195 0.00354 
1⊗ 0.00899 0.00108 162 172 11 47.8% 

2⊗ 0.00422 0.00000 194 207 14 34.8% 

3⊗ 0.00832 0.00000 215 218 4 21.7% 

3’ 0.00422 0.01482 
1⊗ 0.01568 0.00000 16 31 16 65.2% 

2 0.01905 0.00801 178 184 7 47.8% 

4’ 0.00592 0.01978 
1⊗ 0.01988 0.00000 16 24 9 78.3% 

2 0.04978 0.04004 132 144 13 87.0% 

3 0.01180 0.02093 
1⊗ 0.03392 0.00566 46 63 18 91.3% 

2*⊗ 0.03184 0.02318 152 168 17 91.3% 

4 0.00892 0.01644 1⊗ 0.02914 0.00183 23 48 26 78.3% 

5 0.00971 0.03531 
1⊗ 0.04680 0.00892 15 42 28 91.3% 

2* 0.08344 0.05206 72 100 29 95.7% 

krc2 

TF 0.00210 0.00335 
1⊗ 0.00839 0.00426 90 123 34 70.4% 

2⊗ 0.00441 0.00000 170 183 14 44.4% 

4’ 0.00174 0.01041 1 0.01680 0.00875 69 79 11 51.9% 

3 0.02179 0.02330 
1* 0.02679 0.02112 120 132 13 96.3% 

2* 0.10550 0.05369 136 163 28 100% 

4 0.00454 0.00778 1⊗ 0.01752 0.00522 11 41 31 85.2% 

5 0.01082 0.03005 
1⊗ 0.03459 0.00921 12 38 27 85.2% 

2* 0.06393 0.04511 64 89 26 96.3% 
 
Peaks were identified conservatively as 9-codon sliding windows in which πN exceeded 
0, the respective window’s πS, and the mean value of πS for the ORF. ORF πN and πS 
values include all sites in the ORF. Windows were combined if they overlapped and end-
trimmed to remove codons with no within-host nonsynonymous polymorphism. Start and 
stop sites refer to the median ORF codon coordinates in between-isolate sequence 
alignments (i.e., site 1 is codon 1, which usually overlaps the previous ORF). *Peak 
contains indels between isolates. ⊗Peak is present in overlapping regions of the ORF. 
 

 
Of the 14 ORFs examined, 5 contained peaks in both viruses: TF (three peaks in krc1 and 

two peaks in krc2), 4’ (two peaks in krc1 and one peak in krc2), 3 (two peaks in both 

viruses), 4 (one peak in both viruses), and 5 (one peak in both viruses). ORF 3’ contained 
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two peaks in krc1 but none in krc2. To this point, it is significant that ORF 3’ 

experienced an 18-codon deletion in krc2 as compared to krc1 (Table 4.1). Alignments 

between the viruses show that this was primarily achieved via two distinct 9-codon 

deletions starting at codons 107 and 158 of ORF 3’ in krc1, suggesting deletion of two 

epitopes. However, alignments indicate that neither of these deletions is located in 

residues aligning to either nonsynonymous peak of ORF 3’ in krc1. The remaining 8 

ORFs contained no peaks in either virus. 

There was significant concordance between the two viruses for the number of 

peaks in each ORF (P = 0.0030; Fisher’s Exact test), as well as for their genomic 

locations, with 10 of 20 peaks (50%) overlapping the same locations in both viruses. For 

ORF TF, the last 4 codons of peak 1 in krc1 overlapped peak 2 in krc2 (32.0% 

concordance). For ORF 4’, the first 9 codons of peak 2 in krc1 overlapped a deletion in 

krc2 (69.2% overlap). For ORF 3, the first 15 codons of peak 2 in krc1 overlapped with 

the last 15 codons of peak 2 in krc2 (61.2% concordance). For ORF 4, the first 24 codons 

of the peak in krc1 overlapped the last codons of the peak in krc2 (84.2% concordance). 

ORF 5 had the most concordant peaks between viruses; peak 1 of krc1 was contained 

entirely within peak 1 of krc2 (98.2% concordance), which itself contained a 4-codon 

deletion, while the last 27 codons of peak 2 of krc1 overlapped the first codons of peak 2 

in krc2 (91.5% concordance). Here, ORF 5 peak 2 in krc1 contained a central 2-codon 

deletion, while the same peak in krc2 commonly contained 6- and 3-codon deletions. 

 Within-host populations of the same virus also exhibited indels within several 

peaks (Table 4.3). In krc1 ORF 3 peak 2, 14 of 21 (66.7%) isolates exhibiting peak  
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Table 4.3. Isolates exhibiting peaks of nonsynonymous viral polymorphism. 

Virus ORF Peak Isolates with non-silent polymorphism 

krc1 

TF 
1⊗ RC05, RC06, RC07, RC09, RC10, RC18, RC22, RC25, RC31, RC34, RC51 

2⊗ RC05, RC09, RC18, RC25, RC33, RC34, RC45, RC61 

3⊗ RC09, RC25, RC30, RC34, RC61 

3’ 
1⊗ 

RC05, RC06, RC08, RC10, RC18, RC30, RC31, RC33, RC34, RC40, RC44, 
RC45, RC56, RC60, RC61 

2 RC09, RC10, RC30, RC33, RC34, RC40, RC44, RC45, RC51, RC60, RC61 

4’ 
1⊗ RC05, RC06, RC08, RC09, RC10, RC18, RC22, RC25, RC30, RC31, RC33, 

RC34, RC40, RC45, RC54, RC56, RC60, RC61 

2 RC05, RC06, RC07, RC08, RC10, RC13, RC22, RC25, RC30, RC31, RC33, 
RC34, RC40, RC44, RC45, RC51, RC54, RC56, RC60, RC61 

3 

1⊗ RC05, RC06, RC07, RC08, RC09, RC10, RC13, RC18, RC22, RC25, RC30, 
RC31, RC33, RC34, RC40, RC44, RC45, RC54, RC56, RC60, RC61 

2*⊗ 
RC05+, RC06+, RC07°, RC08+, RC09, RC13°, RC18, RC22+, RC25+, RC28+, 
RC30, RC31+, RC33+, RC34+, RC40+, RC44+, RC45+, RC51, RC54+, RC56+, 

RC60 

4 1⊗ RC05, RC06, RC07, RC08, RC10, RC13, RC18, RC22, RC25, RC30, RC31, 
RC33, RC34, RC40, RC44, RC51, RC56, RC60 

5 

1⊗ 
RC05, RC06, RC07, RC08, RC09, RC10, RC13, RC18, RC22, RC25, RC30, 

RC33, RC34, RC40, RC44, RC45, RC51, RC54, RC56, RC60, RC61 

2* 
RC05+, RC06+, RC07+, RC08+, RC09+, RC10+, RC13+, RC22+, RC25+, 
RC28+, RC30+, RC31+, RC33+, RC34+, RC40+, RC44+, RC45+, RC51+, 

RC54+, RC56+, RC60+, RC61+ 

krc2 

TF 
1⊗ 

RC06, RC08, RC10, RC14, RC15, RC18, RC20, RC22, RC25, RC31, RC33, 
RC34, RC39, RC42, RC51, RC54, RC55, RC56, RC60 

2⊗ RC06, RC08, RC18, RC20, RC22, RC28, RC31, RC33, RC34, RC39, RC40, 
RC56 

4’ 1 RC06, RC07, RC10, RC14, RC15, RC18, RC26, RC31, RC33, RC34, RC39, 
RC40, RC42, RC61 

3 

1* 
RC06+, RC07°, RC08+, RC10+, RC13°, RC14+, RC15+, RC18+, RC20+, 
RC22+, RC25+, RC26+, RC28+, RC31+, RC33+, RC34+, RC39+, RC40+, 

RC42+, RC44°, RC51+, RC54+, RC55+, RC56, RC60°, RC61+ 

2* 
RC05+, RC06+, RC07+, RC08, RC10+, RC13+, RC14+, RC15+, RC18+, RC20+, 

RC22+, RC25+, RC26+, RC28+, RC31+, RC33+, RC34+, RC39+, RC40+, 
RC42+, RC44+, RC51+, RC54°, RC55+, RC56+, RC60+, RC61+ 

4 1⊗ 
RC05, RC06, RC08, RC10, RC14, RC15, RC18, RC20, RC22, RC25, RC26, 
RC28, RC31, RC33, RC34, RC40, RC42, RC44, RC51, RC55, RC56, RC60, 

RC61 

5 

1⊗ 
RC05, RC06, RC08, RC10, RC13, RC14, RC15, RC18, RC20, RC22, RC25, 
RC26, RC28, RC31, RC33, RC34, RC39, RC42, RC51, RC55, RC56, RC60, 

RC61 

2* 
RC05°, RC06°, RC07°, RC08+, RC10+, RC14+, RC15+, RC18+, RC20+, 
RC22+, RC25°, RC26+, RC28+, RC31+, RC33+, RC34°, RC39+, RC40+, 

RC42+, RC44°, RC51+, RC54°, RC55°, RC56°, RC60+, RC61+ 
 
Peaks (Table 4.2) from red colobus (RC) hosts: *Peak contains indels between isolates. 
⊗Peak is present in overlapping regions of the ORF. +Isolate contains both deletions and 
nonsynonymous SNPs. °Isolate contains deletions but no nonsynonymous SNPs. 
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polymorphism contained both alignment gaps and nonsynonymous polymorphism, while 

2 more contained gaps only. These gaps often occurred at the fifth codon of the peak. In 

krc1 ORF 5 peak 2, all isolates exhibiting peak polymorphism contained both gaps and 

nonsynonymous polymorphism. These gaps tended to be central in the peak, involving a 

median of 9 codons. Interestingly, the one isolate (RC18) which did not contain 

nonsynonymous polymorphism within this peak region was also the only isolate which 

had no gaps. In krc2 ORF 3 peak 1, 21 of 26 (80.8%) isolates exhibiting peak 

polymorphism contained both alignment gaps and nonsynonymous polymorphism, while 

4 more contained gaps only. Further, similar to krc1 ORF 3 peak 2, this peak contained a 

gap at the fifth codon in all but one isolate (RC05). Thus, there is a strong resemblance 

between ORF 3 peak 2 in krc1 and ORF 3 peak 1 in krc2. In krc2 ORF 3 peak 2, 25 of 27 

(92.6%) isolates exhibiting peak polymorphism contained both alignment gaps and 

nonsynonymous polymorphism, while 1 more contained gaps only. These gaps tended to 

be central in the peak, also involving a median of 9 codons. Finally, in krc2 ORF 5 peak 

2, 17 of 26 (63.4%) isolates exhibiting peak polymorphism contained both alignment 

gaps and nonsynonymous polymorphism, while 9 more contained gaps only. These gaps 

tended to occur in the first half of the peak, involving a median of 5 codons. 

Although only 20.15% of all genomic positions in krc1 overlapped multiple 

ORFs, 75% of nonsynonymous peaks were in overlapping regions. Likewise, although 

only 18.89% of all genomic positions in krc2 overlapped multiple ORFs, 50% of 

nonsynonymous peaks were in overlapping regions (Table 4.2). Thus, overlapping 

regions were enriched in nonsynonymous peaks as compared to the random expectation. 

In all instances, nonsynonymous peaks were only present in one of the two overlapping 
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ORFs, i.e., nonsynonymous peaks located in two overlapping ORFs never shared any 

genomic positions. For example, in both viruses, ORF TF is entirely subsumed by ORF 

1a, but TF contains multiple nonsynonymous peaks while 1a has none.  

The preponderances of nonsynonymous peaks in overlapping regions may explain 

our unexpected result that πN-OL > πN-NOL in krc1 ORF 4 and krc2 ORFs 4 and 5. To see 

whether this was due primarily to the nonsynonymous peaks we identified, we re-

calculated πN-OL and πN-NOL for these ORFs with nonsynonymous peaks excluded. For 

krc1 ORF 4, πN-OL dropped from 0.0198 to 0.0133, but this still exceeded πN-NOL = 

0.00436. On the other hand, the pattern dramatically reversed in krc2 ORF 4, with πN-OL 

dropping from 0.0142 to 0.000480, far below the non-peak πN-NOL = 0.00163. For krc2 

ORF 5, πN-OL dropped markedly from 0.0248 to 0.00339, but still exceeded the non-peak 

πN-NOL = 0.000639. Thus, the unexpected pattern of πN-OL > πN-NOL can sometimes but not 

always be explained by the nonsynonymous peak regions we identified. 

 

4.2.3 Effects of Nonsynonymous SNPs on Overlapping ORFs Within Nonsynonymous 

Peaks 

The majority of nonsynonymous SNPs occurring in one ORF will also be 

nonsynonymous in an overlapping ORF. The exact proportion depends on the specific 

codons used and whether the reading frames are offset by 1 or 2 positions. Because 

nonsynonymous peaks from overlapping ORFs never fall over the same genomic 

positions in our data, we hypothesized that the residues exhibiting nonsynonymous 

polymorphism in one ORF would be relatively constrained in the alternative overlapping 

ORF. Based on this hypothesis, we predicted that nonsynonymous changes in the peak-



	  

79	  

containing ORF would occur disproportionately so as to cause synonymous changes in 

the alternative ORF. This would constitute a test for purifying selection that controls for 

overdominant selection in one frame. 

Across all overlapping ORF regions containing nonsynonymous peaks in krc1, 

64.30% of all possible nonsynonymous changes also resulted in a nonsynonymous 

change in the overlapping ORF; however, only 32.06% of the observed SNPs did so. 

Likewise, across all overlapping ORF regions containing nonsynonymous peaks in krc2, 

63.49% of all possible nonsynonymous changes also resulted in a nonsynonymous 

change in the overlapping ORF; however, only 29.82% of the observed SNPs did so. 

Thus, nonsynonymous changes in the peak-containing ORF indeed occurred 

disproportionately so as to cause synonymous changes in the alternative ORF. This 

suggests that purifying selection acting on one ORF can constrain the nonsynonymous 

changes that are accepted in an overlapping ORF. 

This pattern is even more illuminating when viewed separately for each ORF 

(Table 4.4). For each overlapping region, nonsynonymous changes were analyzed in both 

the peak and in the non-peak (remainder) residues. For 16 peak and remainder regions in 

krc1, nonsynonymous changes in the peak-containing ORF caused fewer than expected 

nonsynonymous changes in the overlapping ORF in all but one instance, and this 

difference was significant in 13 of the regions (α = 0.05 with Bonferroni correction for 

23 Exact Binomial tests). Likewise, for the 7 peak and remainder regions in krc2, 

nonsynonymous changes in the peak-containing ORF caused fewer than expected 

nonsynonymous changes in the overlapping ORF in all cases, and this difference was 
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Table 4.4. Effects of nonsynonymous SNPs on overlapping ORFs. 
 

Virus ORF 
Alt. 

(OL) 
ORF 

Non-
syn. 
peak 

No. 
cod-
ons 

Prop. 
OL 

region 

Non-
syn. 

SNPs 

Prop. exp. 
nonsyn. in 
alt. ORF 

Prop. obs. 
nonsyn. in 
alt. ORF 

P-value 

krc1 

TF 1a 

1 12 5.45% 15 61.12% 6.67% < 0.0001*** 

2 15 6.82% 9 67.68% 0% < 0.0001*** 

3 5 2.27% 5 65.34% 0% 0.005 

rem. 188 85.45% 41 65.91% 21.95% < 0.0001*** 

3' 2a' 
1 17 34.00% 45 58.43% 11.11% < 0.0001*** 

rem. 33 66.00% 7 59.59% 0.00% 0.0018* 

4' 3' 
1 10 38.46% 29 63.64% 3.45% < 0.0001*** 

rem. 16 61.54% 8 63.01% 0.00% 0.0004** 

3 
 

2b 
1 18 26.47% 106 62.96% 30.19% < 0.0001*** 

rem. 50 73.53% 42 63.27% 19.05% < 0.0001*** 

4 
2 19 36.54% 102 67.77% 38.24% < 0.0001*** 

rem.⊗ 33 63.46% 31 63.55% 83.87% 0.0234 

4 3 
1 27 51.92% 120 57.28% 19.17% < 0.0001*** 

rem.⊗ 25 48.08% 70 64.73% 60.00% 0.4531 

5 5a 
1 28 58.33% 202 66.67% 43.07% < 0.0001*** 

rem. 20 41.67% 10 61.16% 10.00% 0.0013* 

krc2 

TF 
 

1a 
 

1 35 15.84% 51 61.53% 9.80% < 0.0001*** 

2 15 6.79% 18 64.33% 0.00% < 0.0001*** 

rem. 171 77.38% 38 64.20% 13.16% < 0.0001*** 

4 3 
1 23 69.70% 87 52.08% 12.64% < 0.0001*** 

rem. 10 30.30% 2 65.52% 0.00% 0.1189 

5 5a 
1 28 66.67% 173 69.60% 52.60% < 0.0001*** 

rem. 14 33.33% 10 63.83% 10.00% 0.0007* 
 
Peak numbers refer to those in Table 4.2.  “Prop. OL region” is the proportion of the 
entire overlapping region between two ORFs that is occupied by the feature in question. 
No peaks in different ORFs overlapped one another, but two did co-exist side by side in 
the same region of overlap between krc1 ORFs 3 and 4. The proportion of alternative 
ORF SNPs expected to be nonsynonymous was calculated as the fraction of all possible 
nonsynonymous SNPs in the peak ORF which were also nonsynonymous in the 
alternative (overlapping; OL) ORF, corresponding to p0 in Exact Binomial tests. The 
symbol ⊗ indicates overlapping but non-peak remainder residues (rem.) that overlap 
nonsynonymous peaks in an overlapping ORF. P-values refer to the results of Exact 
Binomial tests, with significance levels determined using a Bonferroni correction for 23 
tests: * for α < 0.05; ** for α < 0.01; and *** for α < 0.001. 
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significant in 6 (α = 0.05 with Bonferroni correction for 23 Exact Binomial tests). This 

difference was more pronounced in all remainder regions, excepting those of ORF TF in 

both viruses and the ORF 3/ORF 4 overlapping region of krc1. 

One exception occurred in krc1, namely, 83.87% of nonsynonymous SNPs in the 

remainder of ORF 3 peak 2 were also nonsynonymous in the overlapping ORF 4. 

Interestingly, this remainder region is occupied by a distinct nonsynonymous peak in the 

overlapping ORF 4 (peak 1). Complementarily, 60.00% of nonsynonymous SNPs in the 

remainder of ORF 4 peak 1 were also nonsynonymous in the overlapping ORF 3 peak 2. 

This was the only instance in which two peaks overlapped one another’s remainder 

regions in either viral genome, and explains the higher proportion of nonsynonymous 

overlapping changes as compared to other overlapping regions.  

 

4.2.4 Viremia and the Strength of Selection 

The differences between πN and πS within krc1 and krc2 provide a measure of the relative 

strength of purifying selection in the two viruses. According to the neutral theory, the 

efficacy of selection is directly proportional to the effective population size, Ne, and 

mutations having fitness effects of a magnitude much less than 1/Ne will behave 

essentially as if neutral (Wright 1931; Kimura 1983; Lynch 2007a). Thus, as Ne 

increases, the range of fitness effects dominated by random genetic drift shrinks. 

In terms of population genetics, viremia may be considered a proxy for Ne. Bailey 

et al. (2014) have shown that viremia is significantly higher in krc1 than in krc2, 

implying that krc1 has a larger Ne. For all co-infected hosts in our study, viremia  
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Isolate krc1 krc2 
RC05 9.20 X 107 1.21 X 107 
RC06 7.20 X 107 4.14 X 107 
RC07 8.38 X 107 3.24 X 106 
RC08 3.20 X 107 2.98 X 107 
RC09 1.88 X 108 4.80 X 102 
RC10 8.38 X 107 4.64 X 106 
RC13 N/A N/A 
RC14 0 1.98 X 107 
RC15 0 3.42 X 104 
RC18 2.76 X 107 7.02 X 106 
RC20 0 4.4 X 106 
RC22 4.37 X 107 9.4 X 106 
RC25 1.89 X 107 7.1 X 105 
RC26 0 5.3 X 103 
RC28 1.48 X 106 1.4 X 105 
RC30 5.39 X 107 1.6 X 103 
RC31 2.65 X 107 3.0 X 106 
RC33 1.11 X 107 2.7 X 106 
RC34 4.67 X 106 2.2 X 105 
RC39 0 9.8 X 105 
RC40 2.69 X 107 1.2 X 105 
RC42 0 4.0 X 106 
RC44 3.23 X 107 9.5 X 105 
RC45 1.19 X 108 0 
RC51 6.36 X 107 1.9 X 107 
RC54 1.87 X 106 1.7 X 106 
RC55 0 3.7 X 105 
RC56 3.31 X 107 5.9 X 106 
RC60 4.64 X 107 1.3 X 107 
RC61 5.95 X 107 2.0 X 107 

  

Table 4.5. Red colobus (RC) host viremia 
measures for krc1 and krc2.	  

Viremia (viral load) was assessed using a 
strain-specific qRT-PCR assay that 
amplifies highly conserved regions of ORF 
7 from the krc1 and krc2 genomes (Bailey et 
al. 2014).	  
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measures were greater for krc1 than for krc2 in every case, with a mean difference of 

4.31 X 107 (± 9.46 X 106 S.E.M) virions per mL (P < 0.001, paired T-test; Table 4.5). 

 Because we expected the strength of selection to be proportional to Ne, we 

predicted that strong signals of purifying selection would correspond to high viremia 

levels, increasing the magnitude of the difference between πN and πS. Indeed, for co-

infected monkeys, median |πN - πS| was 0.0134 for krc1 but only 0.00582 for krc2, a 

significant difference (P = 0.0020; Wilcoxon Signed Rank test). Further, according to the 

neutral theory, the amount of neutral polymorphism maintained in a population should be 

correlated with Ne. This prediction was supported by a positive correlation between πS-

NOL and viremia overall (rS = 0.447; P = 0.0016) and in krc1 (rS = 0.495; P = 0.0225; 

Spearman’s rank correlation); the correlation in krc2 alone was not significant. 

 

4.2.5 Longitudinal Diversity Change and Mutation Rate Estimation 

Unlike viruses such as HIV, which lead to the destruction of the immune system and 

eventual death of the individual host (Williamson et al. 2005), krc1 and krc2 maintain a 

persistent infection that is apparently asymptomatic. One co-infected monkey was 

sampled twice in this study, first as isolate RC05 on 11 February 2010, and next as isolate 

RC56 on 20 June 2012. Thus, the time elapsed between samplings was 860 days, or 2.36 

years (2 years, 4 months, and 9 days). Such longitudinal data allow the estimation of viral 

mutation rates, making the reasonable assumption that non-overlapping synonymous sites 

evolve neutrally.  

Mean between-population synonymous divergence (𝑑'), the mean number of 

pairwise synonymous differences per synonymous site, can be used to estimate the 
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synonymous substitution rate rS between two populations descended from a common 

ancestor over T generations, such that rS = 𝑑'/(2T) (Nei 1987). Under normal 

circumstances, if it can be assumed that synonymous mutations are not subject to 

selection, rS is also equal to the per-site mutation rate v, since v is equivalent to the 

neutral substitution rate (Kimura 1983; Nei 1987). However, in the case of closely related 

populations sampled at two points in time, within-population variation as measured by πS 

will contribute substantially to 𝑑' and must be subtracted from the latter (Nei and Li 

1979). In our case, one population is sampled at two time points separated by T years, 

such that the mutation rate can be estimated as: 

 

𝑣 = 𝑟' =
*(/E(
?

  equation 4.1 

 

where 𝜋' = (πS1 + πS2)/2, and πS1 and πS2 are estimates of within-population synonymous 

nucleotide diversity at time points 1 and 2, respectively. 

Because our analyses show that synonymous changes are constrained by 

overlapping ORFs, we used only non-overlapping codons in these analyses. We 

estimated 𝑑' using viral variant data and custom Perl scripts based on SNPGenie 

subroutines, and used πS-NOL values depicted in Figure 4.2. This yielded mutation rate 

estimates of 8.02 X 10-3 and 6.88 X 10-3 per site per year for krc1 and krc2, respectively 

(Table 4.6). Thus, the mutation rate for krc1 is estimated to be about 1.16 times greater 

than that of krc2. Although the estimated synonymous substitution rates of RNA viruses  
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Table 4.6. Mutation rates for all ORFs of krc1 and krc2 as estimated from non-
overlapping synonymous polymorphism. 
 

 krc1 krc2 

ORF Syn. Sites 𝒅𝐒 𝝅𝐒 𝒗 Syn. Sites 𝒅𝐒 𝝅𝐒 𝒗 
1a 1,402.98 0.0424 0.0265 6.77 X 10-3 1,362.78 0.0193 0.0173 8.52 X 10-4 
1b 1,102.07 0.0396 0.0294 4.35 X 10-3 1,068.00 0.0220 0.0187 1.39 X 10-3 
2a’ 112.33 0.0516 0.0240 1.17 X 10-2 91.13 0.0137 0.0128 3.74 X 10-4 
3’ 101.30 0.1147 0.0327 3.48 X 10-2 91.23 0.0244 0.0097 6.24 X 10-3 

4’ 111.91 0.0560 0.0303 1.09 X 10-2 94.86 0.0216 0.0164 2.22 X 10-3 
2a 6.33 0 0.0000 0 6.33 0 0 0 
2b 50.59 0.0167 0.0147 8.35 X 10-4 69.64 0.0242 0.0190 2.21 X 10-3 
3 62.05 0.0694 0.0320 1.59 X 10-2 86.38 0.1057 0.0390 2.83 X 10-2 
4 91.97 0.0615 0.0278 1.43 X 10-2 106.16 0.0195 0.0123 3.03 X 10-3 

5a 11.67 0.0230 0.0174 2.35 X 10-3 9.50 0 0 0 
5 144.12 0.0951 0.0292 2.80 X 10-2 139.83 0.2858 0.0052 1.19 X 10-1 
6 120.13 0.0155 0.0060 4.05 X 10-3 118.67 0.0023 0.0023 9.41 X 10-6 
7 84.17 0.0050 0.0029 8.88 X 10-4 84.00 0 0 0 

ALL 3,401.61 0.0452 0.0263 8.02 X 10-3 3,328.51 0.0325 0.0163 6.88 X 10-3 
 
Mean numbers of synonymous sites and differences between RC05 and RC56 (2.36 years 
apart) were calculated using custom scripts and SNPGenie (Nelson et al. 2015). ORFs in 
krc2 differ in their start and stop positions between the two isolates, requiring them to be 
extracted and analyzed separately. ORFs which differed in length were then translated, 
aligned with ClustalW in MEGA7, and this alignment was imposed on the nucleotide 
sequence before analysis. Mutation rates were estimates using equation 4.1: 𝑑' refers to 
mean between-isolate synonymous distance; 𝜋' = (πS1 + πS2)/2 where πS1 and πS2 are 
estimates of within-population synonymous nucleotide diversity at time points 1 and 2, 
respectively; 𝑣 is the estimated mutation rate. 
 

 
vary by at least 5 orders of magnitude, our mutation rate estimate falls in the center of the 

range of other estimates for members of Arteriviridae, which range from 5.20 X 10-3 to 

6.12 X 10-2 (Hanada et al. 2004). 

 Our estimates suggest substantial mutation rate heterogeneity within the viral 

genomes (Figure 4.3). To see whether the differences were significant, we used factorial 

analysis of variance (ANOVA) with aligned codon units to test for main effects of the  
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(A) 

 
(B) 

 
Figure 4.3. Interaction between virus and ORF mutation rate (per site per year) estimates. 
Although the overall mutation rate was estimated to be 1.16 times higher in krc2, this 
pattern saw a major reversal in ORF 5, and slight reversals in ORFs 3 and 2b. (A) ORFs 
with the top four mutation rates are annotated within the body of the chart. (B) ORFs are 
ordered 5’ to 3’ by start site from left to right. 
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virus (krc1, krc2), main effects of the ORF (1a, TF, 1b, 2a’, 2b’, 3’, 4’, 2a, 2b, 3, 4, 5a, 5, 

6, and 7), and a virus-by-ORF interaction. The virus-by-ORF interaction was significant 

(F12,8752 = 21.61; P < 0.0001), suggesting that the difference in mutation rate between 

krc1 and krc2 is inconsistent across ORFs. ORFs 2b, 3, and 5 were the only ORFs that 

did not follow the overall pattern of krc1 > krc2. Of these, the greatest (and only 

significant) difference was observed in ORF 5, which had an estimated mutation rate 4.25 

times higher in krc2 than krc1 (P < 0.0001; least squares means contrast with Tukey 

adjustment for multiple comparisons). The differences for ORFs 2b and 3 were not 

significant, being 2.64 and 1.78 times higher in krc2, respectively; however, it is 

noteworthy that these two ORFs neighbor one another in the genome. Of the remaining 

ORFs, in which the estimated mutation rate was higher in krc1 than in krc2, ORF 3’ was 

the only significant difference observed, having a mutation rate 5.57 times higher in krc1 

than krc2 (P < 0.0001; least squares Tukey adj.). The mutation rate of ORF 1a was also 

7.94 times higher in krc1, but this difference was only marginally significant (P = 0.0514; 

least squares Tukey adj.). 

Given that virus-by-ORF interaction was significant in the model, it follows that 

virus plays an important role in explaining mutation rate; however, after accounting for 

the interaction, the main effect of virus is not significant (F1,8752 = 0.08; P = 0.7816). On 

the other hand, the main effect of ORF remains highly significant (F12,8752 = 46.42; P < 

0.0001). ORF 5 was significantly greater than all other ORFs (P < 0.0001 in all cases; 

least squares Tukey adj.). ORFs 3 and 3’, both significantly less than ORF 5, did not 

differ significantly from one another, but did significantly exceed ORFs 2a’, 1a, 1b, 6, 2b, 

and 6 (P < 0.05 in all cases; least squares Tukey adj.). 
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A simpler approach to estimate the viral mutation rate might be to calculate dS 

between the consensus sequences of a viral population at two points in time. When this 

was done using our data, the mutation rate of krc1 was estimated to be 2.94 times greater 

than that of krc2 (1.35 X 10-2 and 4.58 X 10-3, respectively; data not shown). This 

suggests that comparing consensus sequences alone is inadequate, as it can exaggerate 

population differences by failing to account for within-population diversity. Further, the 

mutation rate heterogeneity observed in the previous analysis was obscured when using 

the consensus approach, with ORF 3 having an estimated mutation rate only 1.36 times 

higher in krc2, and all other ORFs (including ORF 5) being highest in krc1. Importantly, 

subtracting within-host πS from between-consensus dS resulted in negative values for 4 of 

13 (30.8%) ORFs in krc1, and for 9 of 13 (69.2%) ORFs in krc2, further evidencing the 

loss of data inherent in the taking of consensus sequences. 

To consider a possible host immune mechanism for viral mutation rate 

heterogeneity, we analyzed all ORFs for enrichment in each of six preferred APOBEC3 

motif targets (GG, TG, TGG, GGG, TGGG, GGGT; Ebrahimi et al. 2014). There was no 

significant correlation between the concentration of any of the motifs in an ORF and its 

estimated mutation rate (Spearman’s rank correlation). In fact, while the concentration of 

motifs in the highly mutable ORF 5 was not particularly high, it was ORF 5a that had the 

highest concentration of all motifs except TG (second highest) and GGGT (absent), 

despite exhibiting a relatively low mutation rate (2.35 X 10-3 in krc1 and 0 in krc2). 

The neutral theory predicts that most within-population diversity is selectively 

neutral. If this is the case, neutral polymorphism should accumulate over time as a 

consequence of mutation, which would be reflected by an increase in πS-NOL. Over the 
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2.36 years elapsed between isolates RC05 and RC56, πS-NOL instead decreased from 

0.0304 to 0.0223 in krc1, whereas it remained relatively constant in krc2, increasingly 

only slightly from 0.0161 to 0.0164. Neither change was significant (Wilcoxon Signed 

Rank tests). Thus, unlike other studies which demonstrate an increase in synonymous 

polymorphism over time (Nelson and Hughes 2015), our data fail to reject stasis. At the 

same time, the overall values of πS-NOL in these isolates were 0.0238 for krc1 and 0.0163 

for krc2, a significant difference (P = 0.0135; Wilcoxon Signed Rank test, ORF unit). 

This is in keeping with neutral expectations, as the mean viremia of krc1 was 6.95 times 

greater than krc2 in these isolates, and πS-NOL is expected to correlate with Ne. 

Li (1997) has noted that a strong correlation exists between nonsynonymous and 

synonymous substitution rates across many taxa, including RNA viruses, providing 

evidence that the mutation rate rather than positive selection drives evolutionary change. 

To test whether purifying selection is strong enough to eliminate the evolutionary signal 

of mutation pressure in krc1 and krc2, we measured the correlation between our 

estimated mutation rates and mean between-population dN (time points 1 and 2) for non-

overlapping regions of each ORF. All correlations were strong and significant: rS = 0.830 

overall (P < 0.0001), rS = 0.767 for krc1 (P < 0.0001), and rS = 0.909 for krc2 (P < 

0.0001; Spearman’s rank correlation). It is noteworthy that krc1, which has the larger Ne, 

has the weaker mutational signal. Additionally, we found that an ORF’s mutation rate 

correlates significantly with its πN at all coding sites (rS = 0.579; P = 0.0020), as well as 

for overlapping (rS = 0.501; P = 0.0091) and non-overlapping residues (rS = 0.597; P = 

0.0013; Spearman’s rank correlation). This suggests mutation rate heterogeneity as a 
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possible mechanism for the πN spatial pattern first observed by Bailey et al. (2014), in 

which 3’-proximal ORFs tend to have more nonsynonymous diversity. 

Taken together, these observations indicate that, while mutation pressure drives 

evolutionary change in krc1 and krc2, the viruses are also not accumulating synonymous 

diversity at a rate rapid enough to be detected over the period of our study (2.36 years). 

 

4.2.6 Gene Diversity and Tajima’s D 

Besides π, one measure that can be used to measure relative constraint is gene diversity 

(H), which can be compared at nonsynonymous, synonymous, ambiguous, and non-

protein-coding sites. This measures the probability that two genomes randomly chosen 

from a population differ at the site of interest, and it can be estimated as 𝐻 = 1 −

𝑥21&
2BC , where xi is the population frequency of the ith nucleotide variant and n is the 

number of variants observed (Li 1997). Most genes in most species display the greatest 

constraint at nonsynonymous sites, intermediate constraint in 5’- and 3’-UTRs, and the 

least constraint at synonymous sites, as determined by relative substitution rates (Li 1997; 

Graur and Li 2000; Hughes et al. 2003; Hughes, Packer, et al. 2005). 

We used SNPGenie to estimate H at different SNP sites in krc1 and krc2. 

However, because we filtered out SNPs having an estimated frequency < 5% for quality 

control purposes, we expected that purifying selection would be reflected by a depletion 

in the relative number of nonsynonymous SNP sites but not in their mean frequency, 

since the majority of deleterious nonsynonymous SNPs would be expected to persist at 

frequencies << 5% given mutation-selection balance, and thus would not be detected by 

our methods (see Section 4.3). 
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Non-protein-coding regions of krc1 and krc2 are limited to a few hundred 

nucleotides at either end of the single-stranded RNA genomes. Coverage in these regions 

was often too low to allow SNP calling, but high-quality variable sites were present in 

krc2 isolates RC13 and RC14. These two viral populations contained 221 SNP sites that 

did not overlap multiple ORFs, with mean H = 0.2476 (± 0.0094 S.E.M.). Of these SNP 

sites, 100 (45.25%) were synonymous, 72 (32.58%) were nonsynonymous, 33 (14.93%) 

were non-protein-coding, and 16 (7.24%) were ambiguous. Approximately 75% of 

random mutations in coding regions are expected to be nonsynonymous (Nei 1975; Graur 

and Li 2000). Consistent with this, the average proportions of nonsynonymous and 

synonymous sites in these populations were 75.49% and 24.51%, respectively. Thus, the 

fact that only 41.86% of non-ambiguous coding SNPs are nonsynonymous is a significant 

deviation from the neutral expectation (P < 0.0001; Exact Binomial test), and is evidence 

that purifying selection has acted to reduce the number of such SNPs in these genomes. 

Results were similar when all populations of both viruses were included (data not 

shown). 

Nonsynonymous SNP sites in krc2 RC13 and RC14 had the highest mean H of 

0.3226 (± 0.0153 S.E.M.), followed by ambiguous sites with H = 0.3050 (± 0.0405), 

synonymous sites with H = 0.2004 (± 0.0117), and finally non-protein-coding sites with 

H = 0.1994 (± 0.0240). Different SNP site types exhibited significant differences in H (P 

< 0.0001; Kruskall-Wallis test), with H at synonymous sites being significantly less than 

that at nonsynonymous and ambiguous sites, but not significantly greater than non-

protein-coding sites (Dunnett’s multiple comparisons test; family error rate of 5%; 

random seed set to 61). Results were similar when all populations of both viruses were 
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considered, and differences between medians were even more pronounced than means 

(data not shown). Thus, non-protein-coding SNP sites exhibited the greatest evidence of 

purifying selection, while the nonsynonymous SNP sites exhibited the weakest. This 

implies that, for those nonsynonymous SNPs that do occur at frequencies > 5%, positive 

selection has acted to increase variant frequencies. Complementarily, purifying selection 

in these populations is sufficient to hold the frequencies of deleterious nonsynonymous 

mutations well below 5%. 

Given that 58.14% of non-ambiguous coding SNP sites were synonymous when 

24.51% were expected under neutrality, but that mean H was higher at the 

nonsynonymous SNP sites detected, we next asked how this would influence other 

population genetic estimators. One popular approach for detecting natural selection uses 

Tajima’s D statistic (Tajima 1989). This measure compares two estimates of the 

population parameter θ, equivalent to 2Nev for haploid populations, each of which is 

affected differently by selection. The first estimate is Watterson’s θS, the number of SNP 

sites in a sample of sequences corrected for sample size, which ignores the frequencies of 

variants and is thus highly sensitive to rare alleles (Watterson 1975). The second estimate 

is Tajima’s θΠ, equivalent to the average number of pairwise differences between 

sequences in a sample, which increases only slightly with the existence of rare alleles 

(Tajima 1983). Balancing selection and population admixture can increase the 

frequencies of rare alleles, leading to θS < θΠ and a positive D (i.e., few rare variants). On 

the other hand, purifying selection against deleterious variants or a population that is 

actively growing can result in a decrease in the frequency of deleterious alleles, leading 

to θS > θΠ and a negative D (i.e., many rare variants).  
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Given that our gene diversity estimates suggested purifying selection is extremely 

effective in reducing the frequencies of nonsynonymous deleterious alleles below our 

minimum allele frequency cutoff of 5%, we predicted that we would observe a positive D 

overall, falsely indicative of widespread overdominant selection. Indeed, all populations 

had positive D values ranging from 1.169 to 4.785, with a median of 2.798 (± 0.731 

I.Q.R.) in krc1 and 2.049 (± 0.617) in krc2 (data not shown). These results demonstrate 

that a comparison of the number of nonsynonymous and synonymous segregating sites, 

and/or a nucleotide diversity analysis, is necessary for detecting purifying selection in 

quality-filtered pooled-sequencing results when overdominant selection is taking place in 

any regions of the source population’s genome. 

 

4.3 Discussion 

Estimation of population genetic parameters using pooled-sequencing viral data allows 

unprecedented insight into their within-host evolution. In this study, we go beyond mere 

comparisons of πN and πS to explore the effects of selection in different regions of SHFV 

viruses krc1 and krc2. As is true for almost all organisms studied to date, πN was 

significantly less than πS at the genome level for both viruses. While it has sometimes 

been hypothesized that ORF 3’ is silent (Godeny et al. 1998), our evidence suggests that 

this is not the case, since this ORF also exhibits strong evidence of purifying selection, 

which should only occur if it is expressed. Interestingly, ORFs 4’ and 3 are expressed 

only in small amounts during virus replication, which might lead us to hypothesize that 

they are subject to the most relaxed purifying selection (ORFs 3 and 5 in Godeny et al. 
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1998). However, πN < πS was significant for both ORFs in krc1 and for ORF 4’ in krc2, 

implying important functional constraint. 

All ORFs in these viruses have regions which overlap other ORFs, although the 

number of overlapping codons was dramatically lower in ORFs 3, 2b, and 4 of krc2. We 

predicted that purifying selection would be stronger at overlapping residues, leading to a 

reduction in πN at these as compared to non-overlapping sites, i.e., πN-OL < πN-NOL. 

Contrary to this prediction, πN-OL was significantly greater than πN-NOL in both viruses. 

Moreover, πS-OL was significantly less than πS-NOL in both viruses. 

 One possible explanation for the lack of constraint in overlapping regions is that 

they are less functionally important. However, some viruses are known to contain 

epitopes in overlapping regions (Hughes et al. 2001), suggesting the more likely 

possibility that πN-OL might be elevated in krc1 and krc2 because their overlapping 

regions contain epitopes undergoing ovedominant selection for immune escape. In 

particular, πN significantly exceeded πS in overlapping residues of krc1 ORFs 4’ and 5, 

and krc2 ORFs 4 and 5. If true, the observation that πS-OL was significantly less than πS-

NOL in both viruses could also be explained by the fact that many synonymous changes in 

overlapping regions would be nonsynonymous in the overlapping ORF, leading them to 

experience purifying selection that would decrease their frequencies. Finally, 

overdominant selection on overlapping residues could help explain why there was no 

significant correlation between an ORF’s πS and its proportion of overlap in either virus.  

 We identified candidate epitopes as nonsynonymous peaks, 9-codon sliding 

windows in which πN exceeded 0, the window’s πS, and the ORF’s πS. These windows 

were then concatenated and end-trimmed, yielding 12 peaks across 6 ORFs of krc1 and 8 



	  

95	  

peaks across 5 ORFs of krc2 (Table 4.2). Importantly, peak 1 in ORF 5 of both viruses 

overlapped ORF 5a, explaining why the overlapping residues of 5a exhibit such high 

levels of nucleotide diversity. Additionally, ORFs 3 and 5 each contained two 

nonsynonymous peaks in both viruses, explaining the previous identification of these 

ORFs as ones likely to be under positive selection (Bailey et al. 2014). It is interesting to 

note that these are also the two ORFs in which the mutation rate is substantially higher in 

krc2. 

Peaks in both viruses tended to occupy similar ORFs and positions within those 

ORFs. They were indeed located disproportionately in overlapping ORF regions, 

supporting our hypothesis that the elevated πN-OL, diminished πS-NOL, and lack of 

correlation between proportion of overlap and πS in these viruses are due to the presence 

in overlapping regions of epitopes undergoing overdominant selection for immune 

escape. However, of the 4 ORFs exhibiting significant πN-OL > πS-OL, exclusion of the 

peak residues only caused the ratio to reverse in one. Thus, overdominant selection may 

only be a partial explanation. On the other hand, our nonsynonymous peak criteria may 

have been too stringent to identify every epitope, or positive selection too weak to 

produce a sufficiently strong signal. 

 Because overlapping regions disproportionately house nonsynonymous peaks, the 

constraint imposed by overlapping ORFs was not apparent from straightforward analyses 

of nucleotide diversity at the genome level or in the majority of the ORFs of either 

viruses. We therefore sought evidence for purifying selection in these regions using an 

alternative approach that controls for the effects of overdominant selection. Of all 

possible nonsynonymous mutations that occur in overlapping ORFs, approximately 64% 
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are expected to result in a nonsynonymous change in the alternative ORF, assuming the 

frames differ (always the case in SHFV). However, only approximately 30% of 

nonsynonymous changes observed in peak-containing ORFs fit this expectation, the 

majority being synonymous in the alternative ORF. Thus, purifying natural selection 

acting on an overlapping region of one ORF in these viruses can constrain the 

nonsynonymous changes it undergoes, such that they will disproportionately be 

synonymous in the alternative ORF. This pattern was highly significant in the majority of 

ORFs, both in the peak residues and the remainder of the overlap. The only exception to 

this pattern was the one instance in which the remainder of one peak coincided with a 

peak in the alternative frame. The most straightforward explanation is that 

nonsynonymous changes in the alternative ORF were being favored by overdominant 

selection. Moreover, all other remainder residues, which did not overlap peaks in 

alterative ORFs, were even more constrained than the peak residues in terms of the 

accepted nonsynonymous changes. Thus, the existence of a peak does act to promote 

nonsynonymous polymorphisms in alternative ORFs, but purifying selection is still able 

to significantly constrict which changes these will be. 

 Having established that purifying selection constrains nonsynonymous mutations 

to disproportionately cause synonymous mutations in overlapping ORFs, an interesting 

implication immediately presents itself. If selection greatly limits what nonsynonymous 

mutations are able to be used by the virus to escape immune recognition, this means that 

the options for nonsynonymous escape mutations favored by selection in overlapping 

regions are to some extent predictable. This is especially true given the high mutation 

rates of these viruses, which we estimated as 8.02 X 10-3 and 6.88 X 10-3 per site per year 
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for krc1 and krc2, respectively. Given their high viremia, it is almost certain that 

mutations produce all possible SNPs that are 1 nucleotide removed from the viral 

consensus sequence of a within-host population each viral generation. All of these 

mutations are able to be tested by natural selection (with the vast majority of 

nonsynonymous ones being deleterious, as evidenced by πN < πS). Thus, for a given viral 

genome sequence, knowledge of which nonsynonymous changes lead to synonymous 

changes in overlapping ORF may improve our understanding of epitope evolution and its 

likely trajectories. Furthermore, one reason that peaks disproportionately map to 

overlapping regions might be that host immune systems have more success targeting 

these regions on account of their being more constrained. In other words, more epitopes 

may exist in overlapping regions simply because they have long ago been lost in non-

overlapping regions. 

 Besides nonsynonymous polymorphism, our data strongly suggest the jettisoning 

of genomic material as one mechanism by which these viruses can achieve immune 

escape. ORF 3’ contained 2 nonsynonymous peaks in krc1 that were absent in krc2, and 

also contained two 9-codons deletions in krc2 as compared to krc1. While the coordinates 

of these deletions did not match those of the peaks in krc1, they may have contributed to 

immune escape by altering the configuration of the epitope within the gene product. 

Alternatively, the epitopes may have changed positions in the ORFs before being 

jettisoned. For krc1 ORF 4’ peak 2, the first 9 codons (the majority of the peak) were 

deleted in krc2. Between-virus alignment gaps were also prevalent in krc2 ORF 5 peaks 1 

and 2, both peaks of which are also present (but without sequence gaps) in krc1. 
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Other evidence for the role of indels in immune escape comes from within-

population variation. All peaks containing indels exhibited alignment gaps in the majority 

of isolates, and these often differed in location, suggesting separate underlying mutations. 

For example, in krc1 ORF5, all isolates exhibiting peak 2 contained both alignment gaps 

and nonsynonymous polymorphism. Interestingly, the one isolate which does not contain 

nonsynonymous polymorphism within this peak is also the only isolate which has no 

alignment gaps. It is noteworthy that the only ORFs differing in size by more than 2 

central codons among populations of the same virus—ORF 5 in krc1 and ORFs 3 and 5 

in krc2—all contained nonsynonymous peaks. ORFs 3, 4, 5a, and 7 of krc1 and ORFs 2b, 

6, and 7 of krc2 also differed in length among isolates, but these differences were 

observed either entirely at the end of the ORF or else involved no more than 2 codons.  

Besides suggesting indels as a major mechanism by which immune escape can 

occur, these results complementarily suggest that most indels which become common in 

these viruses do so as a result of overdominant selection. This is in keeping with the 

prediction that many beneficial mutations will be loss-of-function, since it is easier for 

mutation to damage or deactivate genomic material than create it (Hughes 2007; Hughes 

2012). It is also noteworthy that only one peak contained indels in an overlapping region 

(krc1 ORF 3 peak 2), involving a median of only 1 codon. Thus, overlapping residues 

may be less likely to contain indels, presumably on account of their heightened functional 

constraint. 

According to the neutral theory, natural selection is expected to act with greater 

efficacy in larger populations. Our data support this prediction, as |πN - πS| was greater in 

krc1, which had higher viremia, than in krc2. We also support the neutral prediction that 
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larger populations maintain more neutral diversity, as measured by πS-NOL, although this 

did not hold when krc2 isolates were considered alone. Neutral diversity can be used to 

estimate the population parameter θ, which is proportional to Ne and the mutation rate, v. 

We would expect in the haploid case that πS-NOL = 2Nev (Nei and Kumar 2000; Lynch 

2007a). When comparing two viruses such as krc1 and krc2, we would further expect 

that: 
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  [equation 4.2] 

 

where tG is generation time. Thus, a significant difference in πS-NOL between two 

populations may be due to differences in Ne, v, or tG. 

 In our longitudinal isolates, viremia is 6.6 times higher in krc1 on average; thus a 

larger Ne helps to explain the higher πS-NOL observed in krc1. Further, we also estimate 

that v is 1.2 times higher in krc1. However, πS-NOL itself was only 4.8 times higher in 

krc1. To address this higher-than-expected Ne ratio, we might first make the reasonable 

assumption (supported by our statistical analyses) that v is the same in both viruses. To 

this end, evidence suggests that differences in RNA virus mutation rates per unit time are 

due primarily to differences in replication rates (i.e., tG) rather than to differences in 

replication error (i.e., v) (Hanada et al. 2004). We might then conclude that the virus with 

the higher πS-NOL (krc1) has a higher Ne or a shorter tG. In fact, Ne and tG may not 

necessarily be independent, as faster (shorter) replication times may contribute directly to 

the higher viremia observed in krc1. However, the ratio implied by viremia alone 

suggests that πS-NOL should be even greater in krc1 than we observe. One explanation for 
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this might be that the relationship between viremia and Ne is negatively allometric, i.e., it 

levels off. On the other hand, tG might actually be larger in krc1, acting to decrease the 

πS-NOL ratio. Whether the values of πS-NOL are due entirely to Ne, or if v and tG also play a 

role, are questions that should be addressed in future longitudinal studies. 

Higher v can increase the value of πN by exerting mutation pressure that can 

overwhelm purifying selection. This held true in our study, as πN correlated significantly 

with v in both viruses. As expected from Ne, this correlation was weaker in krc1 (rS = 

0.767) than krc2 (rS = 0.909). Interestingly, a factorial ANOVA using codons as 

independent mutational units supported the hypothesis that krc1 and krc2 experience 

within-genome mutation rate heterogeneity. Because 3’-proximal ORFs tended to have 

higher mutation rates, such heterogeneous mutation pressure could help explain why 

these ORFs also have higher πN. In particular, ORFs 3 and 5 both had the two highest 

estimated mutation rates and the two highest πN values in both viruses. Most indels also 

occur in 3’-proximal ORFs, which we never observed to occur before ORF 2b in either 

virus, being limited to the final ~20% of the genome’s 3’ end. Thus, besides having a 

higher mutation rate, the 3’ regions of these viruses are enriched in nonsynonymous 

changes, nonsynonymous peaks, and indels. 

Unfortunately, analyses for enrichment in known APOBEC3 motif targets were 

not significant, and a likely mechanism for mutation rate heterogeneity remains elusive. 

Other studies examining such heterogeneity between loci have identified the phenomenon 

at much higher levels of resolution, e.g. 200 kb, which greatly exceed SHFV genome 

length (Ness et al. 2015). Although krc1 and krc2 are non-segmented viruses in which 

various subgenomic RNAs containing different ORFs are produced for gene expression 
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purposes, only full minus-strand RNA transcripts including all ORFs are used for 

replication, implying no biological differences between ORFs in the replication process. 

On the other hand, the genome’s involvement in RNA secondary structures might 

contribute to mutability (Holmes 2009). Finally, the fact that we estimated a mutation 

rate of 0 for 4 of the 26 virus/ORF combinations tested may suggest that 860 days is 

insufficient sampling time to properly distinguish differences between ORFs in every 

instance.  

Future longitudinal studies with SHFVs should seek to model potential 

interactions between virus and ORF to confirm or deny our mutation rate findings. If 

correct, the competitive exclusion principle could be used to direct investigation of 

whether krc1 and krc2 occupy distinct niches within their red colobus hosts (as suggested 

by the fact that viremia and co-infection are independent), and whether predation by the 

immune system keeps viremia well below the carrying capacity of the within-host micro-

environment (Hardin 1960; den Boer 1986; Nowak and May 2000). These questions are 

more than theoretical, as defining such carrying capacities could help to decipher the 

evolutionary dynamics of emergent viruses during host-switching (e.g., for influenza; 

Moncla et al. 2016). 

It is critical to note that our estimate of v in no way depends on πN. Nor is the 

correlation between these two just a restatement of the correlation between πS and πN, 

since within-population πS is explicitly taken into account in our v estimator (equation 

4.1). Epigenetic mechanisms would also not greatly alter our conclusions, because in 

either case the result is selective immune escape. Some might point out that it is possible 

for synonymous mutations to influence protein structure, making them subject to natural 
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selection (Komar 2007; Hunt et al. 2009; Kimchi-Sarfaty et al. 2016). Indeed, there are 

examples of synonymous mutations which are subject to strong selection, e.g., in the 

ribosomal S20 gene of Salmonella enterica (Knöppel et al., in press). To the extent that 

this occurs, nucleotide diversity analyses will constitute a conservative test for purifying 

selection, a signal that is nevertheless ubiquitous. Yet πN < πS for both krc1 and krc2, 

indicating that synonymous sites are relatively unconstrained as compared to 

nonsynonymous sites in these viruses. Moreover, purifying selection against synonymous 

changes would deflate our estimate of the mutation rate, which nevertheless falls in the 

center of previous estimates for Arteriviruses. It is also difficult to imagine overdominant 

selection favoring a great many synonymous changes, since it is unable to act even on 

nonsynonymous changes with perfect efficacy. 

In addition to π, estimates of gene diversity (H) and Tajima’s D can be used to 

detect the effects of natural selection. Like π, these parameters suggest that synonymous 

sites are relatively unconstrained as compared to nonsynonymous sites, the former of 

which are comparable to non-protein-coding sites in most systems (Li 1997; Graur and Li 

2000). However, it is questionable whether they can be informative when used with 

pooled-sequencing data. Of the non-ambiguous SNP sites observed, only 41.86% were 

nonsynonymous as compared to the neutral expectation of 75.49%, strongly supporting 

the ubiquity of purifying selection in the viral genomes. However, contrary to 

expectation, H was significantly higher at nonsynonymous than at synonymous SNP 

sites, a signature normally indicative of widespread positive selection that is in conflict 

with our other analyses. Moreover, Tajima’s D, which relies on the number of SNP sites, 

also indicated widespread positive selection. 
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This apparent contradiction can be easily explained by mutation-selection balance 

and the quality control measures currently necessary for pooled-sequencing SNP calling. 

Site-directed mutagenesis experiments with RNA viruses have allowed unprecedented 

insight into the distribution of their mutational fitness effects, with fitness generally 

measured as a change in replication rate as compared to an ancestral viral genome within 

a laboratory cell medium. The fraction of lethal mutations ranges from 28.6% to 40.9%, 

while those mutations that are not lethal have an average (deleterious) fitness effect of -

0.103 to -0.132 (Sanjuán 2010). Thus, the distribution of mutational fitness effects for 

RNA viruses appears bimodal, with most mutations being either lethal or slightly 

deleterious. If it could be shown that purifying selection against most deleterious 

mutations is such that they are expected to segregate at frequencies far below our SNP 

calling cutoff of 5%, this would explain our finding that mean gene diversity is higher for 

nonsynonymous than for synonymous SNP sites in our variant data. 

Population genetics theory can be used to derive the equilibrium frequency of 

deleterious variants at mutation-selection balance. However, this requires a mutation rate 

per generation rather than per year. One approach for determining viral generation time 

might compare estimates of mutation rates per site per replication (viral generation) to 

synonymous substitution rates per site per year. Using data from the Arterivirus causing 

porcine reproductive and respiratory syndrome, this yields an estimate of 5.23 hr (i.e., 

1,675.7 generations per year) (Hanada et al. 2004). An alternative approach examines the 

virus’ time to plateau in one-step growth curves (Rafael Sanjuán, personal 

communication). Caì et al. (2015) have recently shown that SHFV titers peak in MA-104 

kidney cells at 36-60 hr, with titers beginning to fall by 72 hr. Estimates for peak time in 
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other RNA viruses range from 10-48 hr (Llewellyn et al. 2002; Mishra et al. 2010; Pliaka 

et al. 2011). However, generation time depends not only on intracellular viral replication, 

but also upon cellular exit and infection of new cells. Given that budding is thought to 

take 24-48 hours post-infection for Arteriviruses and other RNA viruses (Stueckemann et 

al. 1982; Bächi 1988), we take 96 hr as a conservative estimate of generation time (i.e., 

0.25 generations per day). This yields mutation rates per site per generation of 8.79 X 10-

5 and 7.54 X 10-5 for krc1 and krc2, respectively. We note that extended latency during 

persistent infection would reduce the number of generations, thereby causing our estimate 

of the mutation rate per generation to be an underestimate. However, the persistently high 

viremia observed in all examined SHFV-positive RC monkeys makes this unlikely. 

Given a mutation rate per generation, the equilibrium frequency of deleterious 

alleles can be calculated for haploids or fully dominant alleles as q = u/|s|, and is almost 

independent of population size (Crow and Kimura 1970). Given that krc1 and krc2 

participate in persistent, asymptomatic infection, it is reasonable to assume that 

approximate equilibrium has been reached. Thus, given the estimated mutation rates per 

site per generation, and assuming a mean deleterious fitness effect in the range -0.103 to -

0.132, we can estimate that the expected value of q should be bounded at the lower end 

by 0.057% (krc2) and at the higher end by 0.085% (krc1). Thus, we would indeed expect 

the great majority of deleterious mutations to persist at frequencies far below our 5% 

quality control cutoff, explaining the paucity of low-frequency nonsynonymous 

mutations in our dataset, and the gene diversity and Tajima’s D estimates that follow. 

This also suggests that non-protein-coding SNP sites, which had the lowest observed H, 

are indeed under purifying selection, but that this is not so strong as the selection acting 
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against nonsynonymous SNPs, since their frequency at mutation-selection balance sits 

well above 5%. 

Note that, if mutation/selection balance were to center on a mean frequency of 

5%, the mutation rate would need to be 5.15 X 10-3 per site per generation, which is two 

orders of magnitude greater than our and others’ estimates. Should episodes of latency 

occur, the mutation rate would need to be even higher to meet this condition. Thus, we 

feel confident in our interpretation that the great majority of nonsynonymous deleterious 

mutations likely segregate at frequencies far below 5% in these viral populations. 

These results suggest an important caveat for population genetics estimates based 

on pooled-sequencing data (Futschik and Schlötterer 2010), namely, that estimates of 

parameters such as H and Tajima’s D, which rely on knowledge of low-frequency 

segregating sites, may not have a straightforward interpretation. In our case, a traditional 

interpretation of Tajima’s D would erroneously indicate the prevalence of overdominant 

selection but not purifying selection. Paradoxically, this result actually arises from the 

extreme efficacy of purifying selection in viral populations, which keeps the frequencies 

of deleterious variants low. Thus, it must be recognized that whole genes and populations 

are not simply “under purifying selection” or “under positive selection”; rather, genes and 

genomes are subject to a complex interplay of various evolutionary forces, the signals of 

which may be obscured depending on the level of genomic resolution under study. In our 

case, the proportion of SNP sites which were nonsynonymous reflected widespread 

purifying selection, while the high value of H at those sites resulted from a relatively 

small number of nonsynonymous peaks in the genome. Until quality control measures for 

pooled-sequencing can be developed which allow us to detect the majority of rare 
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variants with confidence, such population parameter estimates will require careful 

interpretation. 

 

4.4 Materials and Methods 

Blood samples were collected from all animals in previous studies following the 

guidelines of the Weatherall Report on research using non-human primates, as described 

in Bailey et al. (2014). Briefly, red colobus (RC) monkeys were sampled between 

2/5/2010 and 7/22/2012 in Kibale National Park, Uganda (centroid 0.50°N, 30.40°E). 

Thirty (30) RC isolates were SHFV-positive of the 60 examined (50%); 23 were infected 

with krc1, 27 with krc2, and 21 were co-infected. Blood samples were obtained following 

the use of anesthesia, after which animals were returned to their social group. Blood was 

separated using centrifugation, frozen, and returned to the USA Wisconsin National 

Primate Research Center for study. For each animal, 1mL of blood plasma was filtered, 

viral RNA isolated, and DNase treatment performed. Quantitative RT-PCR was used to 

estimate viremia (viral RNA copies per mL of blood plasma) using highly conserved 

regions of ORF7. 

 As described in Bailey et al. (2014), pooled cDNA was synthesized using random 

hexamers and deep sequenced using Illumina MiSeq (Illumina, San Diego, CA, USA). 

Low-quality (< Q25) and short (< 100 bp) reads were filtered and de novo assembly 

performed using a customized method to minimize cross-mapping of krc1 and krc2 reads 

in co-infected animals, yielding < 0.2% cross-mapping, in CLC Genomics Workbench 

5.5 (CLC bio, Aarhus, Denmark). The resultant population consensus sequences 

correspond to GenBank accession numbers KC787607-KC787658. Coverage (reads per 
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site) ranged from 119 to 19,115 (mean 5,654) for krc1 and from 94 to 6,613 (mean 2,264) 

for krc2. Geneious R5 (Biomatters, Auckland, New Zealand) was used to call single-

nucleotide polymorphisms (SNPs) with a minimum coverage of 100 and a minimum 

allele frequency of 5%. 

All custom scripts were written in Perl or R, figures were made in R and modified 

in PowerPoint, and statistical analyses were performed in R version 3.0.2 (R Core Team 

2013; http://www.R-project.org/). Measures of spread were reported as S.E.M. (standard 

error of the mean) or I.Q.R. (interquartile range) as appropriate. When relevant, tests 

were two-sided. Exact Binomial tests used stats:binom.test(); Fisher’s Exact 

tests used stats:fisher.test(); Kruskall-Wallis tests used 

stats:kruskal.test(); Dunnett’s test used multcomp:glht() with linfct 

= mcp(factor.values = “Dunnett”); two-sample T-tests used 

stats:t.test() paired = F, while paired T-tests used the same function with 

paired = T;  Wilcoxon Sign tests used stats:wilcox.test() with paired = 

F, while Wilcoxon Signed Rank tests used the same function with paired = T; and 

correlation tests used stats:cor.test() with method = “spearman” for 

Spearman’s rank correlation. When outcomes depended on random number seeds, the 

seed was chosen using base:sample(1:1000,1) and set with 

base:set.seed(). 

Nucleotide diversity at nonsynonymous and synonymous sites (πN and πS, 

respectively) was calculated using a new method for pooled NGS data (Nelson and 

Hughes 2015) based on that of Nei and Gojobori (1986) using SNPGenie version 1.2.2 

(Nelson and Hughes 2015; Nelson et al. 2015; https://github.com/hugheslab/snpgenie). 
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This approach provides an accurate estimate when the number of substitutions per site is 

≤ 0.1 (Nei and Kumar 2000). When comparing viral populations between or within hosts, 

ORF sequences were extracted from the genome sequence using a custom script, 

translated, and aligned at the amino acid level using the CLUSTAL algorithm in MEGA7 

(default settings; Kumar et al. in press; Tamura et al. 2013). This alignment was then 

imposed on the nucleotide sequence. 

In order to estimate viral (meta-population) πN and πS in sliding windows of 9 

codons, we concatenated and aligned results from all isolates. Mean coverage estimates 

were used for multi-nucleotide variants. Nonsynonymous peaks, regions likely to be 

under overdominant positive selection, were identified conservatively as windows in 

which πN exceeded 0, the window’s πS, and the ORF’s πS. 

In order to estimate mean between-virus dN and dS for longitudinal isolates, a 

representative sample of genome sequences was generated with size equal to the viral 

population’s maximum NGS coverage depth for a single polymorphic site: n = 3,244 for 

krc1 host RC05; n = 2,914 for krc1 host RC56; n = 962 for krc2 host RC05; and n = 962 

for krc2 host RC56. Sequences were generated using custom Perl scripts based 

SNPGenie, which randomly distributed the observed variants throughout the sequence 

sample with frequencies equal to those observed in the SNP calling reports. MEGA7 

software was unable to handle these sample sizes (Kumar et al. in press; Tamura et al. 

2013). The mutation rate was then estimated using equation 4.1. 

To estimate dS between consensus sequences, numbers of nonsynonymous and 

synonymous sites were calculated using the Nei-Gojobori method in MEGA7 (Kumar et 

al. in press; Tamura et al. 2013). Since krc2 isolates differed in their non-protein-coding 
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leading and trailing material, these regions were manually removed. SNPGenie codon 

results for all non-overlapping sites were extracted using Perl scripts. 

We modeled the estimated mutation rate using a factorial analysis of variance 

(ANOVA) model with virus, ORF, and virus-by-ORF interaction terms. This was 

accomplished by building a linear model with the R stats:lm() function with the 

contrasts option set to contr.sum for both factors, and then using the 

car:Anova() function with type = 3 to perform type III (drop-one) F tests for each 

term. Results were verified in SAS. Because different virus/ORF combinations contained 

differing numbers of codons, the ANOVA was unbalanced, necessitating the use of least 

squares means to perform multiple comparisons. This was accomplished using the 

lsmeans:lsmeans() function with the tukey argument for all model terms. Results 

were verified in SAS. 

Gene diversity (H) was calculated using the methods of Hughes et al. (2003). 

Ambiguous SNP sites were defined as those having both nonsynonymous and 

synonymous variants as compared to other viruses in the same isolate. Tajima’s D was 

calculated for each viral population as:  

 

𝐷 = W/ X YQ
Z(W/ X YQ )

 [equation 4.3] 

 

where Π is the average number of pairwise differences between sequences in the isolate, 

S is the number of segregating sites, a1 is a correction factor for sample size, and the 

denominator is the standard error of the difference. The latter two were computed as 
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described by Tajima (1989), with minimum coverage used as the number of sequences 

being surveyed (sample size), using 1,000 as the upper limit. 
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CHAPTER 5 

CONCLUSION 
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Among students of evolutionary biology, there has been a strong tendency to claim that 
[some] population genetical parameters will never be known accurately and therefore 
theories which contain such parameters are of little use. I take the opposite view; these 
parameters have to be investigated and measured if we really want to understand the 
mechanism of evolution at the molecular level. Can astronomers and cosmologists claim 
that theories which contain various astronomical parameters should be avoided because 
such parameters are difficult to estimate accurately? This reminds me of an aphorism, 
which I understand is due to Galileo, and which in effect says: what we can measure we 
should measure; what we cannot measure at present, we should endeavor to make 
measurable… what is important in science is to find out the truth. 
 

— Motoo Kimura (1983) 

 

Having defined the population genetic factors determining the selective potential of 

biological populations, we saw in Chapter 1 that the high reproduction rates and 

population sizes of RNA viruses make them especially amenable to the study of positive 

natural selection. Specifically, simian hemorrhagic fever viruses have large population 

sizes, sometimes on the order of 108 per mL in their monkey hosts (Chapter 4), and likely 

exhibit enormous replication rates, with other RNA viruses having burst sizes on the 

order of 104 per cell (Chen et al. 2007). The appearance of adaptive mutations and burden 

of deleterious mutations are thus the rate-limiting phenomena in adaptive RNA virus 

evolution. 

 Next, we saw in Chapter 2 that next-generation sequencing (NGS) data using 

representative pooled samples—the genomes of multiple biological entities combined in 

one sequencing run—can be used to call single nucleotide polymorphisms (SNPs), the 

frequencies of which are reliable estimates of allele frequencies in the source population 

(Futschik and Schlötterer 2010). Specifically, SNP frequencies allow the use of simple 

methods for estimating population genetic parameters, including nucleotide diversity (π) 

and gene diversity (H) at nonsynonymous and synonymous sites. Determining the values 
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of these parameters at different scales, from the single nucleotide to the whole genome, 

allows numerous evolutionary hypotheses to be tested, including the prevalence of 

positive (Darwinian) and/or negative (purifying) selection and the applicability of the 

neutral theory (Kimura 1983) to within-host virus dynamics. 

 In Chapter 3 we introduced SNPGenie, a new bioinformatics tool, written in Perl, 

that can be used to automate the estimation of the aforementioned parameters. In the time 

since its inception, SNPGenie has been used to study the transmission of H1N1 (Moncla 

et al. 2016) and H5N1 (Wilker et al. 2013) influenza in ferrets, conditional immune 

escape in simian immunodeficiency virus (Gellerup et al. 2016), evolution of Nod-Like 

Receptor resistance genes of the wild tomato Solanum pennelli (Stam et al., in press), and 

natural isolates of Arteriviruses in red colobus monkeys (Bailey et al. 2014; Nelson and 

Hughes 2015; Chapter 4) and Arteriviruses, pegiviruses, and lentiviruses in African 

Green Monkeys (Bailey et al., in press). It has also been improved to accept the standard 

SNP data format, the variant call format (VCF), and can analyze both ‘+’ and ‘-’ strands 

for double-stranded genomes, which may be of use in the study of overlapping 

bidirectional genes. 

 Chapter 4 takes advantage of the most recent advances implemented in SNPGenie 

to address questions about red colobus (Procolobus rufomitratus tephrosceles) 

Arterviruses simian hemorrhagic fever virus (SHFV)-krc1 and SHFV-krc2 which were 

previously prohibitive. We first show through comparisons of nonsynonymous and 

synonymous π (πN and πS, respectively) that the genomes of both viruses experience 

widespread purifying selection, confirming previous results for SHFV (Bailey et al. 

2014) and most other viruses (Holmes 2009; Nelson and Hughes 2015). Regarding the 



	  

115	  

constraint imposed by overlapping open reading frames (ORFs), we find that overlapping 

regions indeed experience constraint in terms of what nonsynonymous variants are 

acceptable, namely, disproportionately ones which cause synonymous changes in the 

alternative ORF. However, this signal is not detectable on the genome scale, because we 

find that the majority of nonsynonymous peaks—sliding windows in which πN exceeds πS 

within both the ORF and the window—map disproportionately to overlapping regions, 

evidencing overdominant selection (heterozygote advantage) (Hughes and Nei 1988). 

 We further show that, when populations are sampled as natural isolates from the 

same host at distinct time points, straightforward population genetic theory can be 

adapted to NGS data to estimate mutation rates. When this was done, we obtained 

estimates of 8.02 X 10-3 mutations per site per year for SHFV-krc1 and 6.88 X 10-3 

mutations per site per year for SHFV-krc2, falling in the center of previous estimates for 

Arteriviruses (Hanada et al. 2004). Statistical analyses suggest the possibility of mutation 

rate heterogeneity in the SHFV genome, with 3’-proximal ORFs exhibiting higher rates. 

If true, this could help to explain the high πN of these ORFs, as well as their enrichment 

in nonsynonymous peaks and insertions/deletions. Unfortunately, a mechanism for this 

heterogeneity remains elusive. 

 Population parameters such as gene diversity and Tajima’s D are alternatives to π 

for detecting the effects of selection. However, when applied to our NGS data for SHFV, 

both yield the conflicting result that overdominant positive selection rather than purifying 

selection is most widespread. We show that, given the plausible range of within-host 

replication rates and our estimated mutation rates, mutation-selection balance would be 

expected to maintain the equilibrium frequency of a typical nonsynonymous deleterious 
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allele well below 5%. This is below our minimum frequency quality control cutoff, 

explaining the contradictory implications. As a result, we suggest that parameters which 

rely on the detection of rare variants may not be of much use until pooled NGS methods 

are improved. At present, π—which relies neither on linkage nor rare variants—is the 

best choice. 

 A few obvious avenues for continuing this research present themselves. First, it is 

critical that larger samples of longitudinal data be analyzed, so that more sophisticated 

statistical models can be brought to bare on mutation rate estimations. This will allow 

modeling of the strength of selection by regressing πN on both viremia and the mutation 

rate. Under the neutral theory, a negative coefficient for viremia would be expected, 

indicating the heightened efficacy of purifying selection against deleterious mutations in 

larger populations. On the other hand, a positive coefficient for the mutation rate would 

be expected, reflecting the ability of mutation pressure to overcome purifying selection. 

Other possible developments are technical, including the incorporation of more input 

formats for SNPGenie, more sophisticated methods accounting for transition/tranvsersion 

bias, and estimates (e.g., based on Miyata et al. 1979) of chemical distance for 

nonsynonymous mutations. 

 Modern evolutionary bioinformatics is a rare discipline in which virtually all 

analyses of novel data require a combination of substantial amounts of traditional theory 

in addition to novel input in the form of manual processing, including visual data 

manipulation and scripting. However, it is important for new tools to combine powerful 

automation with a degree of flexibility that will also allow their use well into the future. 

SNPGenie does this by accepting two standard file formats to specify the study genome 
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and its coding regions—FASTA and GTF (gene transfer format), respectively—but 

leaving the method for SNP calling relatively open-ended. As such, it is hoped that the 

software and the extensive labor it represents will prove useful in “making measurable” 

population genetic parameters, both for increasing our understanding of evolution, and 

for insights that may help to alleviate the diseases inflicted by pathogens. In finding out 

the truth, it is my hope that we shall find ourselves immeasurably improved—not just 

physically, but emotionally and spiritually as well. Lest we get ahead of ourselves, I close 

with the words of Hughes (1999): 

 
Finally, it is important to be humble about what we can and cannot know… We 
must realize that the molecular techniques now available to us have opened a 
fascinating but limited window on the mechanisms by which over millions of 
years of [sic] life as we know it has evolved. Let us be grateful for that window, 
while accepting that there will always be much that is mysterious about the 
history of life on earth. 
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