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Abstract 

 

Changing land cover can drastically alter the hydrologic processes of a drainage 

basin. At the same time, the hydrologic processes that occur are governed by weather 

and climate of the region. The Southeastern United States, and more specifically the 

Piedmont region of South Carolina, is experiencing significant changes to the landscape 

and highly variable weather and climate conditions. Few modern hydrologic studies that 

investigate the impact from these dynamic variables on streamflow and the water 

balance within the region have taken place and further study is warranted because of 

the drastic change likely to occur. One objective of this thesis is to determine how 

increased low-density development alters streamflow and the water balance within a 

drainage basin characteristic to the Piedmont. The other objective is to test how 

streamflow and the water balance differ among two extreme weather periods and a 

period of moderate weather. The Arc SWAT model, and a land-use land-cover update 

module built within the model, were used to create scenarios for each research 

objective and non-parametric ANOVA tests were used to compare modeled simulations.  

The Arc SWAT model simulation assessments show that varying periods of extreme 

weather cause more significant changes to streamflow than the subtle changes in rural 

land cover within the region.  Surprisingly, the Arc SWAT simulations of development 

resulted in decreased runoff. This resulted from assigning lower curve numbers to rural 
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development within the model than for Hay or Rangeland conditions. The model did not 

simulate medium-density, or high-density, development that occurs in urban areas. 

Caution is advised when extrapolating the hydrologic response simulated in this study to 

urban or sub-urban environments within the Piedmont because of the vast 

generalization in land-use updates that occurred. 
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Chapter I:  Literature Review and Research Questions 

 

I.I: Literature Overview and Objectives 

 The main objective of this literature review is to show that monotonic trend 

detection methods vary widely from study-to-study, yet climate variability (inter-annual 

to multi-decadal) is more widely recognized and explained across the literature.  

Hydrologic processes are governed by numerous variables, with precipitation driving the 

entire cycle. Basic rainfall-runoff models, while simple and easy to implement, do not 

account for all of the various processes that can impact runoff and streamflow such as 

evapotranspiration, land-use and land-cover (LULC) changes, or changes in 

groundwater. That being said, it is imperative to take into account the past and present 

states of physical and climatological factors that can impact water resources and be 

aware of projected changes and trends in these variables. 

While general trends in climatologic variables (i.e.; precipitation, temperature, 

and evapotranspiration) have been studied throughout the Southeastern United States 

(SEUS), uncertainty exists in the dominant trends and magnitudes of variability 

(Groisman et al., 2004; Seager et al., 2009). Changes in the physical landscape (e.g.; 

increasing development, reforestation, deforestation, and silviculture) have also been 

documented (Costanza et al., 2010; Griffith et al., 2003; Terando et al., 2014), but these 
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studies vary across a range of spatial scales and time periods. Observed data of these 

variables, whether physical or climatological, often have reoccurring errors that need to 

be corrected and assessed for accuracy (Misra and Michael, 2013).

Hydrologic modeling has made great advances in recent decades. Hydrologic 

models can be used to assess scenario impacts to streamflow (Chattopadhyay and Jha, 

2014; Guo et al., 2008; Li et al., 2012). The conditions of the landscape and variability 

and trends in climate inputs need to be assessed to note how specific combinations of 

input variables can affect modeled output. Regional comparisons allow scientists to 

understand how cumulative changes vary throughout the physical landscape and over 

time. While many hydrologic models exist, the Arc SWAT model was selected for this 

thesis due to the fact it is an extension to Arc Map GIS software, many current studies 

use this model when evaluating water resource issues, and the large community and 

user support for it. Arc SWAT is a physically-based, semi-distributed, continuous-time 

model that was developed for primarily agricultural and forested drainage basins 

(Arnold et al., 2012). 

This literature review is broken into sections to address the issues associated 

with major variables affecting hydrologic processes. It covers analyses of individual 

variables (e.g.; changes in precipitation), as well as studies applying the Arc SWAT model 

to quantify impacts of changing physical and climatic conditions on water resources. It 

also covers the current scientific literature on how changes in LULC, weather, and 

climate variability can impact streamflow in a South Carolina Piedmont drainage basin. 

This review indicates recent advances and regional research needs. 
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I.II: Weather, Climate, and Streamflow 

 Weather and climate in the SEUS and the Piedmont of South Carolina (PSC) is 

generally quite variable due to several factors including latitude, longitude, topography, 

proximity to large water bodies and seasonality (Kunkel et al., 2013; Powell and Keim, 

2014). As a consequence, streamflow also varies. The SEUS encompasses a vast region 

stretching from Washington D.C. to portions of the Coastal Plains of the Gulf of Mexico 

(Rose, 2009; Wang et al., 2014). Physiographic regions within the SEUS have drastically 

different weather and climate conditions, such as the PSC. The Piedmont physiographic 

region is located along the eastern foothills of the Appalachian Mountains between the 

Coastal Plains and the Blue Ridge Mountains. The PSC is located in what is commonly 

known as the ‘warming hole’ (Kunkel et al., 2013; Schwartz et al., 2009). Recent 

research shows that slight warming within the SEUS has been steadily occurring since 

the 1970s yet these almost global trends in warming during the 20th century are not 

showing up in observed weather records of the region (Kunkel et al., 2013). Long-term 

warming or cooling can affect precipitation totals and at a finer temporal scale can lead 

to changes in monthly variability.  

I.II.I: Precipitation 

 Precipitation is the driving force of the hydrologic cycle. Precipitation can 

recharge groundwater, restore surface water resources, and generate runoff. Average 

annual precipitation totals in the Piedmont physiographic region of South Carolina range 

from 1143 – 1270 mm (South Carolina State Climatology Office and SCDNR, 2015). 
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Patterns of total precipitation within South Carolina strongly relate to elevation and 

proximity to moisture sources, which are major forcing factors (Changnon, 1994). Inter-

annual variations in precipitation depend on seasonal weather patterns that result in 

relatively wet or dry conditions in different portions of the state (Changnon, 1994). 

Some literature and data concerned with changes in precipitation in the PSC exist, 

although most of the relevant literature focuses on the regional scale (SEUS). Yet local 

findings can be discerned from results and discussion within the literature. Localized 

findings (i.e.; where the study area was just the PSC) should be compared to these larger 

patterns in precipitation at a regional scale. 

 Trends in precipitation are important to document because they could help in 

prediction of changing precipitation totals. Annual and seasonal trends have been 

documented across the SEUS, as well as in the Piedmont of South Carolina (Kunkel et al., 

2013; Mizzell et al., 2014; Powell and Keim, 2015; Rose, 2009). However, only a handful 

of stations demonstrate a trend (out of the many used in the studies). This inconsistency 

may depend on the different types of datasets that were used for each study and the 

time period of the data and the specific methods used to detect a trend (e.g.; linear 

regression or Mann-Kendall). The region shows increasing amounts of precipitation over 

the past century in some respects, but the trend has not been statistically significant at 

an annual scale (Kunkel et al., 2013; Rose, 2009). However, statistically significant 

decreasing (increasing) precipitation trends through time have been shown in summer 

(fall) (Kunkel et al., 2013; Mizzell et al., 2014). Mizzell et al. (2014) found these trends to 

be uniform across the state, covering all physiographic regions. Martino et al. (2013) 
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found that within the PSC very few precipitation records displayed annual increasing or 

decreasing trends, yet all but one location demonstrated a significant positive trend in 

the number or rainy days. However, the findings of Powell and Keim (2015) contradict 

the Martino et al. (2013) study even though they used the same dataset (USHCN). This 

disparity may have been due to the different thresholds set for ‘rainy day’ criteria 

between the articles. Within South Carolina, increasing and decreasing trends in 

precipitation are spatially diverse and no clear consistent increasing or decreasing trend 

can be determined at the annual scale. 

Extreme amounts of precipitation falling within a single day or over two 

consecutive days strongly influences runoff. Statistically significant precipitation trends 

have been detected for extreme amounts of precipitation within the region (Changnon, 

1994; Konrad, 1997; Powell and Keim, 2015; Wang et al., 2014). Changes in extreme 

amounts of daily precipitation may indicate a long-term trend or merely a period when 

storm intensification is occurring over a region. The SEUS is experiencing an overall 

increase in heavy precipitation days, yet few are statistically significant and those 

significant increases are generally in the Coastal Plain along the Gulf Coast (Powell and 

Keim, 2015; Wang et al., 2014). 

 While it is unclear if there is a monotonic increasing/decreasing precipitation 

trend in the SEUS and the PSC, variability in monthly and annual precipitation records 

have been observed for the region. Annual variability in precipitation totals in the region 

often reflect an increase or decrease in precipitation in a season. The region also 

experiences annual variability due to severe droughts (e.g.; mid-1950s and 1998 – 2002) 
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and periods of persistent above-average precipitation at many weather stations (e.g.; 

early 1960s and again in the early 1970s) (Patterson et al., 2013). Patterson et al. (2012) 

found that from 1970 – 2005, May precipitation is the most variable, ranging from 0 – 8 

cm below the long-term monthly averages, while the months from June to September 

experience moderate variability, and the months from January to April show the least 

amount of variability. The same study conducted monthly trend detection, splitting the 

record into different periods (1934 – 2005, 1934 – 1969, and 1970 – 2005) yet found 

little agreement between magnitude and direction of trend or the number of stations in 

the SEUS and PSC experiencing trends within the same months.  

Most of the regional variation in precipitation can be attributed to high-

frequency variations in climate caused by oceanic oscillations (AMO, ENSO, PDO) 

bringing increased moisture to the region for a short period of time (Misra et al., 2013). 

Describing the influence of each oceanic oscillation on precipitation totals in the SEUS 

and PSC is outside the scope of this literature review, yet they are a dominant cause of 

precipitation variability in the region. Downscaled climate models show the SEUS and 

the PSC have experienced frequent episodes of drier and wetter conditions (Misra et al., 

2013; Peterson et al., 2013). In summary, these highly variable episodes can affect the 

detection of long-term trends and could be the reason that very few locations in the 

SEUS and PSC experienced significant increasing or decreasing trends in precipitation 

over longer periods of time. 
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I.II.II: Temperature 

 Much like the patterns observed with precipitation, temperature is also variable 

within the region. Temperature trends and variability are important because they can 

influence evapotranspiration and exacerbate the impacts related to drought conditions 

(Brown, 2014). The mean annual maximum temperature for the PSC is approximately 

23.3 °C and the mean annual minimum temperature is approximately 10 °C (SCDNR and 

South Carolina State Climatology Office, 2015). Temperature ranges within the region 

are highly dependent on proximity to sources of moisture and specific elevation 

gradients, much like precipitation. 

 Recall that many researchers have observed a temperature ‘warming hole’ in the 

SEUS. The SEUS is one of the few places in the world that has not experienced increasing 

temperature trends over the 20th century (Kunkel et al., 2013). However, some trends 

do exist in daily temperature ranges and seasonal average temperature ranges. At the 

regional scale, decreasing diurnal temperature ranges and warmer night-time 

temperatures are some of the widespread trends occurring in the observed weather 

record (Misra et al., 2012; Misra et al., 2013; Powell and Keim, 2015). Some have 

hypothesized that the significant decrease in diurnal temperature range could be 

associated with intensive irrigation, a common practice in the agricultural portions of 

the SEUS and PSC, where areas that regularly irrigate tend to have slightly reduced daily 

temperatures and increased evening temperatures because of the increased heat 

capacity from regularly wetted soils (Misra et al., 2012). Indeed, local forcing factors 

(i.e.; urban heat island, irrigation, forests, and water bodies) can influence variations in 
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daily temperature (Chen et al., 2012). Within the PSC, there has been a significant 

increase in warm nights (annual count when minimum temperature above 24 °C) and a 

significant decrease in cold nights (annual count when minimum temperature below 0 

°C) (Powell and Keim, 2015). Warmer nights and days are projected for the region by the 

mid-21st century with noticeable increases in the PSC (Carter et al., 2014). Mizzell et al. 

(2014) found that maximum temperatures from 1901 – 2010 in the PSC increased in 

spring (3.5 – 4.5 °F) and winter (3.5 – 4.5 °F). This differs from the findings of Carbone 

and Burdett (1995) for the SEUS as a whole from 1910 – 1987 that winter maximum and 

minimum temperatures were decreasing (1.06 °C temperature maximum and 1.63 °C 

temperature minimum). Furthermore, uncertainty of these trends is only increased 

because both articles used the same dataset. 

 Similar to precipitation records, temperatures within the region have been highly 

variable through time. The region has experienced many extreme hot and cold periods 

within the observed record. Generally, cooling in the region was persistent throughout 

the 1960s and 1970s. Records also indicate that in the early-to-mid 20th century there 

were periods of extreme heat in the region as well as periods of extreme heat in the 

past 20 years (Patterson et al., 2013; Peterson et al., 2013). Shorter-term (seasonal) 

variations in temperature are common in the region and strongly related to oceanic 

oscillations. Stefanova et al. (2013) found that winter diurnal temperature ranges were 

smaller in positive phases of ENSO because of increased cloud cover over the PSC. The 

temperature gradient from the coast to the Appalachian Mountains along the eastern 

coast of the SEUS has been shown to increase or decrease depending on the phase of 



9 
 

the AMO (Ortegren et al., 2011). This implies that seasonal temperature trends and 

variability can vary drastically with the spatial and temporal scales of the study. 

Furthermore, the literature indicates that temperatures across the SEUS didn’t 

experience continuous annual warming trends, yet seasonal variations are evident. 

I.II.III: Streamflow 

 Although changes in precipitation and temperature can be observed from 

weather observations, it is important to understand how streamflow has responded to 

increased variability over the past century. Streamflow variability is used to quantify 

hydrologic droughts (or the absence of them), which have a strong governing role on 

water resources in the region (Patterson et al., 2013). Most of the SEUS and the PSC 

receive their water resources from surface water and reservoirs that are fed by rivers 

and smaller tributaries. Identifying changes within streamflow records could indicate if 

reservoirs are receiving more or less incoming streamflow. Within the PSC numerous 

power generating facilities depend upon surface waters for operation (e.g.; Lake Murray 

Hydroelectric Dam and V.C. Summer Nuclear Reactor 1). 

 Trends in streamflow within the region have been observed over the past 

century (Lins and Slack, 2005; McCabe and Wolock, 2002). Within the SEUS, streamflow 

has generally experienced decreasing trends in low-flow observations with increasing 

trends in median and high flows (Lins and Slack, 2005). Patterson et al. (2012) found 

that in the mid-20th century, 5 gages in the PSC experienced general increasing trends 

(between 3.1 – 8 cm annual runoff depth), yet out of five stream gages chosen for the 
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study only one was statistically significant. The same study found that for the latter half 

of the 20th century all stations within the PSC experienced significant declines ranging 

from 16.1 – 35 cm in runoff depth (Patterson et al., 2012). Again, slight differences 

between findings of the studies are due to how different authors define the SEUS and 

PSC. Patterson et al. (2012) clearly delineated the PSC within the SEUS, whereas Lins and 

Slack (2005) defined the SEUS from Mississippi to the southern portions of Virginia. 

However, both studies report regional streamflow is lowest in September and highest in 

March. 

 Variability of streamflow in the SEUS with respect to specific months, and trends 

in specific months, was generally overlooked by most studies. Patterson et al. (2012) 

investigated monthly variability in SEUS streamflow records and found that most 

summer months across the entire record (1934 – 2005) had significant decreases in 

streamflow with most in the mid-20th century. They also found that streamflow declined 

for months of generally high streamflow in the PSC (January – April) with an average 

total runoff decrease of approximately 1.5 cm. Various authors found streamflow 

variability in the SEUS correlated to specific phases of oceanic oscillations (Almanaseer 

and Sankarasubramanian, 2012; Tootle et al., 2005). 

I.II.IV: Synopsis: Weather in the SEUS and PSC 

 Although some trends in precipitation, temperature, and streamflow occur 

within the observed records, those observations were influenced by frequent extreme 

changes in weather. This indicates that hydrologists and water resource managers 
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should be more concerned with the highly variable weather in the SEUS and the PSC due 

to the lack of significant increases or decreases in precipitation, temperature, and 

streamflow over longer periods (i.e.; multiple decades).  Specifically, few studies of the 

PSC relate to seasonal and annual changes in precipitation, temperature, and 

streamflow and many of the findings come from research with a much larger geographic 

scope. This often means that only a few weather stations and streamflow gauges were 

used from within the region and many of the findings are generalizations. 

 Climatic data do not show monotonic gradual trends in precipitation, 

temperature, and streamflow in the SEUS region. A usual justification for this in the 

literature is that the SEUS is susceptible to changes in weather and climate brought 

about by high frequency oceanic oscillations (i.e.; ENSO) that can be coupled with less 

frequent oceanic oscillations (i.e.; AMO), which when compounded, can raise the 

variability of extreme weather and climate conditions (Patterson et al., 2012; Patterson 

et al., 2013). This variability attributes to uncertainty in weather and climate conditions 

for long-term planning, which pose challenges to water resource policy and decision 

making in the SEUS and the PSC. 

I.III: Changes and Impacts from LULC: 

 This section reviews historic LULC conditions and dominant patterns of LULC 

change within the SEUS and specifically within the PSC. While weather and climate have 

a strong influence on hydrology and water resources, the physical conditions of the 

landscape can be just as important in influencing the generation of runoff, rates of 
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evapotranspiration, and sub-surface flows. Trends in LULC change may also explain 

water resources changes over time. The following sub-sections investigate changes to 

the physical landscape at different spatial and temporal scales, specific types of change, 

and how these changes can impact local and regional weather, climate, and water 

resources. 

I.III.I: Historical LULC in the SEUS and PSC: 

 The landscape of this region has been altered by people for thousands of years, 

but widespread intensive agriculture dominated the landscape after the time of 

European settlement (Napton et al., 2010). Relatively benign land-use practices were 

commonplace in the PSC until after the Civil War. Around the end of the Civil War, 

however, intensive agriculture lowered the productivity of the soil (Fox et al., 2007). It 

was no longer economically feasible to produce cotton (the cash crop in the region at 

the time), much of the top soil had been eroded away, and the hilly landscape became 

accentuated with gullies which proved too difficult to continue growing any crop 

(Napton et al., 2010). These factors in turn led to rural populations migrating towards 

cities for jobs and much cropland in the region being left fallow. Throughout much of 

the first half of the 20th century, reforestation was a dominant process with the SEUS 

and the PSC (Fox et al., 2007; Napton et al., 2010; Revels, 2003). 

 During the middle of the 20th century, the migration to cities continued, and 

some abandoned croplands were beginning to be used again. However, the major 

change was not a continuation of traditional agricultural practices but a widespread 



13 
 

introduction of silviculture to the region (Fox et al., 2007). Harvesting timber provided 

the means to make an income from exhausted marginal lands. It wasn’t economically 

feasible to grow cotton on the depleted soils, but southern pines could be grown with a 

much better economic return. Innovations in forestry from research institutes and 

national forests, like Sumter National Forest, in the PSC were the result of a combined 

effort to determine the best ways to grow loblolly pine (Pinus taeda) and slash pine 

(Pinus elliottii) in the region (Fox et al., 2007). Changes to LULC in the first half of the 

20th century influenced the types of LULC changes in the recent past.  Most changes 

continued to occur on marginal lands (i.e.; abandoned agricultural fields). 

I.III.II: Recent Trends in LULC in the Region 

 Increases in development, reforestation, and declines in cropland all occurred at 

different rates of change over different spatial and temporal scales. Most historical LULC 

studies focus on the past 50 years but remark on previous LULC conditions in the first 

half of the 20th century. The spatial resolution of studies (e.g.; PSC or SEUS) determines 

the dominant types of LULC change and the associated forces driving change.  Across 

the SEUS and PSC population growth has been notably increasing. Terando et al. (2014) 

noted that over 77 million people now live in the SEUS, which experienced one of the 

greatest growth rates of any area in the United States over the past half century 

(approximately 60% increase). The region is a desirable place to live because of 

economic growth with international companies such as BMW, Fleur, and Michelin all 

operating within the PSC (Napton et al., 2010; Terando et al., 2014). Population growth 

helps explain the increasing development of the region. While some development is 
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occurring in urban areas, most development in the SEUS and PSC is occurring in exurban 

areas. Recent growth projections predict that exurban and urban areas in the region 

from 2009 to 2060 will increase from 90,700 km2 to 216,900 km2 with that the largest 

loss to urbanization from grasslands (9% - 17%) and forests (7% - 12%) (Terando et al., 

2014). 

 When compared to other ecoregions in the SEUS (i.e.; Middle Atlantic Coastal 

Plains, Blue Ridge, and Southeastern Coastal Plains) the Piedmont has experienced 

moderate growth. The total change in land area from 1973 – 2000 in the Piedmont was 

14.5%, which was the third highest out of the 7 ecoregions in the SEUS (Brown et al., 

2005). Most of the change occurred recently (1992 – 2000) with 6.8% of land within the 

Piedmont ecoregion experiencing a change in LULC conditions. Compared to most other 

regions of the SEUS, the PSC experienced some of the greatest increases in developed 

areas and the largest decreases in forested areas. Developed land area in the Piedmont 

ecoregion increased from 11.9% in 1973 to 16.4% in 2000 (Brown et al., 2005; Napton et 

al., 2010). On the other hand, forested cover in the full southeastern Piedmont 

ecoregion decreased from 59.8% of land cover in 1973 to 55.1% in 2000 (Brown et al., 

2005). Agricultural land cover and forest use in the region also decreased during that 

period. Similar trends in LULC were observed from 1972 – 2000 with an increasing trend 

in the number of forest patches in the Piedmont ecoregion although the trend wasn’t 

statistically significant (p-value = 0.057) (Griffith et al., 2003). Brown et al. (2005) 

observed changes in rural areas of the Piedmont ecoregion and found that the 

dominant types of LULC from 1973 -2000 were clear-cutting and forest regeneration. At 
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a finer scale than ecoregions, silviculture is evident and being practiced in rural parts of 

South Carolina on private and public lands (e.g.; Sumter National Forest and Francis 

Marion National Forest). In spite of substantial late-20th century LULC changes, the most 

dominant LULC type in South Carolina remains forested areas that cover approximately 

67% of the land with noticeably higher concentrations in the Piedmont region than in 

other parts of the state (SCFC, 2010). 

I.III.III: Impacts from LULC Changes and Hydroclimatology on Runoff 

Feedbacks among vegetation, precipitation, and temperature play a vital role in 

the availability of water resources and changes in LULC impact streamflow. Literature 

pertaining to effects that reforestation and urbanization have on streamflow are 

summarized as follows.  Climate and vegetation feedbacks have been widely studied 

and a general understanding of feedbacks in specific regions of the United States can be 

discerned. For example, decreased precipitation over a region may cause closure of 

stomatal openings of vegetation which, in turn, lowers rates of evapotranspiration 

(Notaro et al., 2006). Numerous studies have investigated the impacts forests have on 

the local and regional environment with an emphasis on feedbacks to precipitation, 

temperature, and evapotranspiration. Lu et al. (2003) used a set of 23 climate and 

physical environment variables (e.g.; mean annual precipitation, mean annual 

temperature, estimated evapotranspiration from various methods, percent of a LULC 

type of a drainage basin, etc.) to build a logistic regression model to determine rates of 

actual evapotranspiration within the SEUS and PSC. The regression analysis found that 

actual evapotranspiration in and around the PSC averaged 796 mm/year. The study also 
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found that only using latitude, elevation, long-term mean annual rainfall, and percent 

forest-cover variables yielded an R2 of 0.817 for logistic regressions. Chen et al. (2012) 

modeled reforestation in the SEUS by converting 25% of grasslands to forested lands. 

The authors found that increased forest cover augmented precipitation by 18% in 

summer and decreased winter precipitation by 30%. The same study found that 

reforestation didn’t lead to a significant increase or decrease in precipitation or 

temperature yet noted a significant increase in evapotranspiration. Reforestation can 

also lead to increased surface roughness, lower albedo, and increase convective cloud 

cover (Chen et al., 2012). These studies are important because, while records of 

observed precipitation and temperature exist from many stations in the SEUS and PSC, 

rates of evapotranspiration aren’t regularly recorded and analyses such as these give 

insight into how vegetation can impact multiple climate variables. 

Streamflow responses to weather events are strongly related to the dominant 

LULC conditions in a drainage basin. Drainage basins that are predominantly developed 

(urban or exurban) have distinctly different streamflow responses to storms than 

forested drainage basins. Increased impervious surface cover results in increased 

surface runoff, reduced infiltration and groundwater recharge, and higher peaks in 

streamflow (Julian and Gardner, 2014). 

I.IV: Arc SWAT Modeling 

 Many different models can be used to quantify hydrologic processes. The 

decision of what model to use comes down to whether the model can realistically 
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simulate processes in a given environment and at what spatial scale the model is 

designed to work. Water models range in focus from quantifying urban water quality on 

smaller basins (SWMM), the water balance of larger basins such as HUC 8s (HSPF-

BASINS), to water quantity in forested drainage basins (SWAT). Since most watersheds 

in the SEUS and the PSC are predominantly covered by agricultural and forested LULC, 

the Arc SWAT model was used in this study because it has been proven efficient in 

quantifying water balances in similar drainage basins in the region (Chattopadhyay and 

Jha, 2014; Kim et al., 2014). The literature reviewed in this section focuses on Arc SWAT 

modeling applications not only within the SEUS but also in drainage basins with similar 

LULC conditions and those regions with similar weather and climate (i.e.; temperate and 

sub-humid). Arc SWAT model applications to changes in water quantity from either 

LULC changes or specific periods of weather and climate are also briefly summarized.  

I.IV.I: LULC Change Impact on Arc SWAT Models 

 The review in the previous sub-section highlighted influences from LULC on 

hydrology. Factors such as area of a drainage basin covered by a specific LULC condition 

play dominant roles in the hydrologic process.  Yet, LULC conditions are not static and 

changes to them should be accounted for when modeling water resources. The 

landscape of the SEUS and the PSC is constantly being repurposed for new uses (e.g.; 

development or silviculture) and these changes have impacted hydrologic processes 

within the region. The Arc SWAT model has the capability to simulate LULC changes and 

can be used to quantify the associated changes in streamflow (Pai and Saraswat, 2011). 
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Multiple studies using the Arc SWAT model have found that when simulating 

streamflow over a LULC dataset that has more (or less) vegetation cover than baseline 

conditions, there is a general decrease (or increase) in streamflow. Li et al. (2009) noted 

that deforestation in a temperate drainage basin in China resulted in a 9.6% increase in 

average-annual simulated runoff depth when compared to baseline conditions. Guo et 

al. (2008) examined how reforestation on previously agricultural plots (23.3% of basin 

area) resulted in a 3.2% decrease in annual basin discharge. The same study found that 

simulating clear-cutting of all forested lands (74.2% of the drainage basin area) resulted 

in a 21.9% increase in annual basin discharge when compared to baseline values. A 

model application in the Piedmont of North Carolina on a drainage basin that 

experienced reforestation over the latter half of the 20th century found that average 

February – April groundwater contributions increased runoff depth by 25mm when 

compared to less forested conditions (Kim et al., 2014). Impacts to streamflow related 

to decreases in pasture land and cropland have also been simulated by modelers. 

Schilling et al. (2014) found that switches from mostly cropland and pastureland to 

strictly grassland resulted in less runoff generation because of increased infiltration.  

Most studies report results and discussions in terms of impacts related to 

increases or decreases specific to forest cover, developed area, and agricultural area. 

While other LULC conditions increase or decrease over time, they were generally not as 

significant as changes relating to forest, developed, and agricultural lands. These studies 

are relevant to water resources analysis in the SEUS and PSC because the region has 
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experienced many of the same changes in LULC conditions as most drainage basins in 

these studies. 

I.IV.II: Impacts from Altering Weather and Climate in Arc SWAT Scenarios 

 Weather and climate variability has been projected to impact most of the 

world’s water resources in the near-future (Kunkel et al., 2013). However, there isn’t 

one universally agreed upon projection. Diverse scenarios result in different changes to 

weather and climate (i.e.; increasing CO2 concentrations, temperature increases, 

precipitation increases). Hydrologic modeling can be used to assess the impacts to water 

resources from changes in weather and climate. Model applications are summarized as 

follows. 

 Not all studies take the same approach to quantify changes caused by weather 

and climate. The literature is generally divided into studies that investigate long-term 

trends (using either annual or monthly data), and other modeling applications that focus 

on periods that are markedly drier or wetter than average. To be clear, this thesis does 

not attempt to detect long-term trends in precipitation, temperature, or streamflow 

records. Regional insight into weather, climate, and streamflow was gained, however, 

from those studies that did choose to apply trend-detection methods. Almost all studies 

provide results and discussions of monthly simulated output, which allows comparisons 

to be made of monthly changes across different study areas. Model projecting to 

produce relatively long simulations was the predominant method used by studies, 

although hindcasting was also used. 
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 The Arc SWAT model has been applied in similar drainage basins in the Piedmont 

of North Carolina using different approaches to climate change and LULC scenarios. 

Chattopadhyay and Jha (2014) modeled streamflow response from projected climate 

variability (IPCC scenarios), whereas Kim et al. (2014) hindcasted simulations and 

conducted a trend-detection analysis. Chattopadhyay and Jha (2014) found that the 

different climate projections produced noticeable water yield variability in the middle of 

the 21st century ranging from 179 – 674 mm. They also found that late winter and all 

spring months experienced increases in water yields up to 74%. These spring-time 

projections are in contrast to the findings of the Kim et al. (2014) study in a nearby 

drainage basin, which found some of the most significant decreasing trends in 

streamflow during the spring months. The decreasing trends in spring were the 

strongest magnitude out of all months (all significant at the p = 0.001 level and with a 

regression line slope ranging from -0.3 to -0.58). Although these two studies are 

geographically close to one another the temporal scope of the studies have little 

overlap. Chattopadhyay and Jha (2014) observed water yields from 1990 – 2069, 

whereas Kim et al. (2014) examined streamflow from 1920 – 2000. The Chattopadhyay 

and Jha (2014) article further investigated variability between climate scenarios by 

comparing changes in percentile streamflow (10th and 99th percentiles). The climate 

scenario that produced the greatest decreases (increases) in the 99th (10th) percentile 

was the RCM3-GFDL (downscaled climate model developed by the NARCCAP), the other 

3 climate scenarios indicated less variability for the drainage basin during the middle of 

the 21st century. 
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 Only a small portion of the relevant literature, on LULC and climate modeling, 

was specific to the SEUS and PSC and the objectives of this thesis. Most studies with a 

similar focus did occur in temperate environments and impacts from extreme weather 

and climate scenarios could be discerned. All of them were located in the eastern 

portions of Asia (Guo et al., 2008; Kim et al., 2013; Li et al., 2009; Li et al., 2012; Ma et 

al., 2009). Guo et al. (2008) examined differences in streamflow under wet, dry, and 

normal weather conditions simulated over baseline LULC conditions. In spite of 

noticeable seasonal variation, the most drastic changes were at the annual scale for 

which the wet period produced approximately 120% more streamflow than the normal 

period. The dry period produced a 40% decrease in streamflow as compared to normal 

weather streamflow (Guo et al., 2008). Seasonal impacts were opposite of one another 

under wet and dry weather conditions. Streamflow during the dry period experienced 

the most noticeable departures from normal streamflow from January to March 

(approximately 70%), whereas streamflow during the wet period experienced the 

greatest departure from normal streamflow from October to December (approximately 

225%). Li et al. (2012) conducted a similar study in Taoerhe River drainage basin in 

China. This study selected three years that were characteristic of an extremely wet year 

(1990), an extremely dry year (2001), and a year with moderate conditions (1970). 

When they compared the simulated runoff from the moderate year to the extremely 

wet year, there was a 161.9% increase in runoff. Simulated runoff from the dry year was 

75.5% less than for the moderate year (Li et al., 2012). 
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Another study that examined annual and inter-annual changes to streamflow 

from weather and climate change was Kim et al. (2013), who simulated two climate 

scenarios (RCP 4.5 and RCP 8.5) in the Hoeya River Basin, Korea.  They found that, 

compared to baseline streamflow, the greatest increases in streamflow were during the 

spring (15 – 35% for RCP 4.5 and 29-64% for RCP 8.5) and winter months (31 – 50% for 

RCP 4.5 and 28 – 59% for RCP 8.5), which were also the seasons with the highest 

variability. They found that climate-scenario simulated streamflow in the autumn and 

summer decreased compared to baseline streamflow. 

I.IV.III: Gaps in Recent Literature and Potential for Hydrologic Scenario Testing 

 The Arc SWAT model has been successfully used to quantify changes to 

streamflow under different LULC, weather, and climate scenarios, yet no such 

simulations have been applied to drainage basins in the PSC. This region has many 

largely undeveloped drainage basins that are projected to experience major growth in 

the near future. Most of the relevant modeling literature also examined changes in long-

term streamflow averages and sought to detect increasing or decreasing trends. 

Because there exists little agreement with respect to trend detection, with respect to 

precipitation, temperature, and streamflow in the region it would be wise to assess the 

effects of streamflow over specific periods of extreme weather. 

 Guo et al. (2008) and Li et al. (2012) investigated the impacts to streamflow 

caused by periods of extreme weather and LULC change. However, neither article’s 

justification for the extreme weather periods were lucid. Guo et al. (2008) stated that 
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the dry and wet periods relate to modes within the region and didn’t provide specific 

years. Li et al. (2009) averaged the annual climate conditions and chose a single year for 

each period. This is an over-simplification of the problem because their models only 

simulated one year. More understanding is needed of how streamflow is affected during 

an extended period of anomalous years rather than one specific year. Understanding 

the impact on streamflow of a group of anomalous years with above or below average 

precipitation—instead of a single year—would be more valuable to those that work with 

water resources because it provides insight into how streamflow is impacted from a 

persistent weather condition. Likewise, when evaluating impacts of extreme weather at 

the decadal scale it is unlikely that every year in a decade is characteristic of the 

extreme conditions (e.g.; a single extremely wet year following and preceding droughts). 

More attention should be given to quantifying the impacts of a period of extreme 

weather and the duration of those events on hydrology. 

I.V: Research Questions 

 Previous research from various fields indicates that impacts from changing 

weather, climate, and LULC can drastically change streamflow, yet little is known of 

these impacts to streamflow in the PSC. The objective of this research is to calibrate an 

Arc SWAT model for the Bush River drainage basin and use it to simulate a set of 

scenarios. The scenarios will take into account different combinations of LULC and 

periods of extreme weather. The following research questions will then be addressed. 

i. Can the Arc SWAT model accurately simulate streamflow in the PSC? 
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ii. Are changes in streamflow in the Bush River drainage basin influenced more 

by changes between periods of extreme weather or by increased 

development and decreased vegetated cover (LULC)? 

iii. How does the water balance of the drainage basin change between 

scenarios? Specifically, what is the change in monthly rates of runoff, 

infiltration, evapotranspiration, and water yields and what parts of the water 

budget are affected (ET, runoff, groundwater, etc.)? 

Multiple hypotheses can be postulated from these research questions. One 

hypothesis is that streamflow will generally increase with wetter conditions under all 

LULC because precipitation is the key component of the hydrologic cycle. Another 

hypothesis is that the water budget will show distinct differences between weather 

periods. Relating to impacts from LULC, one hypothesis is that increasing developed 

area within the model will increase surface runoff, decrease infiltration, and alter the 

characteristics of the hydrograph (compared against baseline conditions). A hypothesis 

centered on calibration of a hydrologic model is that using similar modeling parameters 

from research with a similar climate and physical landscape will produce similar results. 

While there are differences in methods and scale, there should not be any drastic 

differences in objective functions between these simulations and similar research. 

I.VI: Study Area 

 The Bush River Drainage Basin (BRDB) is located in Newberry County and the 

eastern portions of Laurens County in the South Carolina Piedmont (Figure 1.1). The 
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BRDB has a drainage area of 297 km2 at the USGS gage near where it drains to Lake 

Murray (area derived by ArcHydro).  The BRDB is located in a rural region of the state 

outside of most major urban areas (~ 61 km northwest of Columbia and ~ 90 km 

southeast of Greenville) yet it is experiencing growth. It is primarily covered by forests, 

agriculture, rangeland, ponds, and wetlands in the lower portions of the catchment. The 

town of Newberry and the southeastern portion of Clinton are contained within the 

BRDB. The Sumter National Forest is adjacent to the BRDB along its northern drainage 

divide. One of South Carolina’s major transportation corridors, Interstate 26, runs along 

the northern portion of the drainage divide. The watershed is predominantly composed 

of clay-rich soils and metamorphic rock. LiDAR data show the topography consists of 

rolling hills with many rills and gullies (James et al., 2007). The shape of the watershed is 

fairly linear and the drainage pattern is not distinctly dendritic as most other drainage 

basins in the region. 

The history of land use in the BRDB, including cultivation of crops and small 

settlements, extends back to the 18th century (Revels, 2003). In the early-to-mid 1800s a 

majority of the land was used to grow cotton, and planting and harvesting were not well 

managed.  This led to widespread soil exhaustion because of the extensive monoculture 

and erosive practices (Revels, 2003). Aerial photographs of Newberry County from the 

middle to the end of the 20th century show agricultural practices are still widely 

practiced in the BRDB. The most evident changes in LULC in the basin are emergent 

successional forests, slight increases in urbanization, and the loss of agriculture land, 

which are common trends in the Southeast (Castanza et al., 2010). 
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The BRDB is a prime location to conduct hydrologic modeling because it drains to 

a major water resource in the region, has experienced constant changes in LULC 

conditions, and investigations in this drainage basin could serve as an analog to predict 

water resources in many other similar drainage basins in the region. Bush Rriver drains 

to Lake Murray which has been a resource for generating electricity since 1930. 

Modeling this watershed could increase understanding of how climatic variability and 

changes in the landscape affect water resources in the PSC and SEUS. 
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Tables and Figures: 

 

Figure 1.1: Bush River delineated drainage basin overlaying aerial imagery. 
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Chapter II:  Arc SWAT Model and Input Data Descriptions 

 

II.I: Description of Arc SWAT Model 

 Arc SWAT, an ArcGIS (©ESRI Corporation) application of SWAT, is one of the 

most widely used tools that modelers use to simulate hydrologic processes (Chu et al., 

2004; Gassman et al., 2007). The SWAT model is continuous in time, semi-distributed in 

space, and a process-based river-basin model that evaluates the effects of alternative 

management decisions on water resources (Arnold et al., 2012). The model is fairly 

robust in terms of the number of parameters (e.g.: streamflow, runoff, pollutant yields, 

climate variables, etc.) that can be modeled, but the number of parameters that are 

actually needed for accurate simulations depends on which processes within a drainage 

basin are being modeled.  Arc SWAT subdivides the drainage basin into sub-basins (Arc 

Hydro) that are further subdivided into Hydrologic Response Units (HRUs). HRUs are 

created immediately after sub-basin delineation in the model. HRUs are characterized 

by unique combinations of soil properties, topography, and LULC conditions. Thresholds 

can be set to a given area of a sub-basin, or a percentage of a sub-basin covered by a 

specific input, to establish the number and size of HRUs in a model. HRUs are the 

smallest parcel of land that hydrologic and hydraulic processes can be on simulated in 

the model. 



29 
 

 The model has the capability to simulate hydrologic and hydraulic processes such 

as surface runoff, base flow, lateral flow, and streamflow velocity (Neitsch et al., 2005). 

This allows modelers to investigate specific components of the water balance. Neitsch et 

al. (2005) note that hydrologic and hydraulic processes can be split into two 

components. The first component of the water balance is comprised of processes that 

occur above the surface. Surface processes are important because overland flow can 

rapidly transport sediments, nutrients, and chemicals into a water body. The water 

balance equation is given by Neitsch et al. (2005) as follows: 

 SWt = SW0 + ∑ (𝑅𝑑𝑎𝑦  − 𝑄𝑠𝑢𝑟𝑓   − 𝐸𝑎 – 𝑊𝑠𝑒𝑒𝑝 – 𝑄𝑔𝑤 )  𝑛
𝑖=1  (Eq. 2.1)  

where, SWt is final soil water content (mm), SW0 is initial soil water content on day i 

(mm), t is time (days for monthly model runs), Rday is precipitation on day i, Qsurf  is 

surface runoff on day i, Ea is evapotranspiration on day i, wseep is water entering the 

vadose zone from the soil profile on day i, and Qgw is return flow to the surface on day i.  

The vadose zone is the unsaturated zone between the bottom of the soil profile and the 

top of the aquifer (Neitsch et al., 2005), so flow from the vadose zone to groundwater is 

percolation of water recharging the aquifers.  Equation 1 may be rearranged to solve for 

surface runoff or groundwater fluxes.  Because SW0 is carried forward each day, 

Equation 1 shows that potential runoff and groundwater flow are dependent on 

antecedent moisture conditions and may vary from day-to-day. The land-phase module 

of SWAT accounts for, and influences, other processes such as evapotranspiration, 

canopy storage, ponding, and management practices (Neitsch et al., 2005). Erosion is 
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accounted for as well in the surface component and is computed by the Modified 

Universal Soil Loss Equation (MUSLE) (Mukandan et al, 2010). 

 The second phase of the hydrologic cycle in the model is the routing phase 

(Neitsch et al., 2005). This component deals with how water, and organic and inorganic 

matter are transferred through the channels of a drainage basin. Routing methods vary 

for flood, sediment, nutrient, and chemical materials. Streamflow routing is computed 

by the storage coefficient method or the Muskingum routing method (Neitsch et al., 

2005). Sediments are transported by the Bagnold equation which depends on peak 

channel velocity and channel morphology. Nutrients and chemical transportation 

equations vary because specific types can dissolve in water or adsorb onto sediment and 

travel at different rates. The QUAL2E module is used to account for this phenomenon.  

This thesis does not examine sediment transport. 

Arc SWAT has the ability to predict water availability under future climate 

projections and has been used to model streamflow, sediment yields, and pesticide 

impacts on water quality (Arnold et al., 2012; Srinivasan et al., 2010). This thesis models 

monthly streamflow.  The SWAT model is widely used because of the incorporation of 

various computational methods, the possibility to expand or limit the number of 

parameters used, and the capability to build in accuracy assessments (SWAT Check). The 

Arc SWAT program (Version 2012 for ArcMap Version 10.2) was downloaded from 

swat.tamu.edu, a website established by Arc SWAT developers.  The website also has 

extension programs (SWAT-CUP) that aid in calibration of Arc SWAT, a literature 

database, and instructional videos on how to initialize and run the model. 
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II.II: Data Description 

 The Arc SWAT model requires topographic data, geologic data, LULC 

information, and climate data to model physical processes. Observed streamflow data is 

also necessary to calibrate and validate the model to realistic values. The types of input 

data used in this thesis and their properties are listed and described as follows. 

II.II.I: Topographic Data  

High spatial resolution, 3.0-m (10-ft) grid cell, DEM data were obtained from 

http://www.dnr.sc.gov/GIS/lidarstatus.html for Newberry and Laurens Counties, South 

Carolina (Figure 2.1). The LiDAR data were flown during January in 2008 for both 

counties. The elevation in the BRDB ranges from 110 – 211 meters above mean sea 

level. The drainage basin is fairly linear compared to most other drainage basins in the 

region. 

II.II.II: Soils Data 

 SSURGO soils data were used for the soils input data for the model. Newberry 

and Laurens County SSURGO data were obtained from the USDA Web Soil Survey 

(websoilsurvey.sc.egov.usda.gov/App/WebSoilSuvey.aspx). These data contain 

information as to the soil composition, the number and thickness of layers for each soil 

type, and the hydraulic conductivity for each soil type and layer. The dominant soil types 

within the BRDB are Cecil loams which cover approximately 25.2% of the drainage basin. 

Hydric soils, which can be used to delineate wetlands, are not widespread in the BRDB 

and are usually found near channels or in small depressions. High resolution soils data 

http://www.dnr.sc.gov/GIS/lidarstatus.html
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are invaluable to modeling because this allows for finer, more unique, combinations of 

HRUs. 

II.II.III: LULC Data 

 Land cover and management practices effect the amount of runoff a surface can 

generate. The LULC dataset used for this model was the National Land Cover Dataset 

(NLCD) for the year 2001, which was obtained from 

http://www.mrlc.gov/nlcd01_data.php. This dataset was chosen over other available 

datasets because it represents LULC conditions roughly half way through the available 

streamflow record (1990 – present) and the look-up tables are built into the model. 

Figure 2.2 and Table 2.1 show the spatial distribution of LULC throughout the BRDB and 

the area (km2) covered by each LULC type. The dominant land use in the basin is 

agriculture with a mosaic of coniferous, deciduous, and mixed forest types. The total 

forest area is 125.8 km2 (app. 42.2%) with evergreen forest being the most predominant 

of all forest types (69.7 km2). Small patches of rangeland and abandoned agricultural 

fields, classified as herbaceous lands (6.38 km2) are also evident.  Table 2.1 shows that 

most of the lands are classified as hay/pasture (94.4 km2). Developed lands cover 45.8 

km2 (~ 15.4%) of the drainage basin, yet most development is low density with only the 

most intense development being located in the city centers or small business districts of 

Newberry and Clinton. Wetlands account for 2.55% of drainage basin area. 

 

 

http://www.mrlc.gov/nlcd01_data.php
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II.II.IV: Weather Data 

 Weather data were obtained from the NOAA National Climatic Data Center 

(ncdc.coaa.gov/cdc-web/datatools/findstation).  Four weather stations were used for 

modeling climate variables, one in Newberry and the other three just outside the 

boundaries of the BRDB in the towns of Clinton, Little Mountain, and Laurens. All of 

these stations have over a century of observations, yet only the observations from 1 

January 1950 to 31 December 2013 were collected.  Data were collected back to 1950 

because the Arc SWAT model requires a warm-up period before calibration of at least 

10 years for groundwater flows to stabilize to near-realistic levels.  Although the model 

can take inputs for precipitation, temperature, relative humidity, solar radiation, and 

wind speed, only precipitation and temperature were available for all stations. However, 

studies have achieved satisfactory results just using these two types of observed 

weather data (need ref). 

II.II.V: Streamflow Data 

 Mean daily streamflow data were obtained from the USGS National Water 

Information System. The outlet of the drainage basin is just downstream of a USGS 

stream gage (02167582 Bush River near Prosperity, SC), which has 24 years of daily 

streamflow data (maximum, minimum, and average) from 27 February 1990 to 16 

September 2014 (time of data retrieval, gage was still operating at the time of writing). 

However, modeling constraints only allow use of the observations from January 1st to 

December 31st so only the years of complete record were used (1991 – 2013). These 
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observed flows were compared against flow simulations to calibrate and validate the 

streamflow output produced by the model. A long-term hydrograph for the duration of 

the monitoring period shows the 23-year period of record (Figure 2.3). The median 

discharge for the period was 1.08 m3/s (38.1 cfs) while the mean observed discharge 

was 2.55 m3/s. The modal daily flow was 0.040 m3/s while the maximum daily observed 

discharge was 123 m3/s. Exploratory analysis of the data revealed the asymmetry of 

streamflow frequencies. A multitude of flows were experienced under relatively low-

flow conditions (< median discharge) while several outliers throughout the observation 

period were an order of magnitude greater than the median discharge. 
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Tables and Figures: 

Table 2.1: NLCD LULC type and area in square kilometers of drainage basin. 

Table 2.1: NLCD of BRDB 

 

 

 

LULC Type 2001 LULC Area (sq. km) 2011 LULC Area (sq. km) Area (sq. km)

Open Water 1.52 1.60 0.08

Developed, Open Space 25.86 26.14 0.27

Developed, Low Intensity 13.68 13.91 0.22

Developed, Medium Intensity 3.03 3.74 0.71

Developed, High Intensity 1.09 1.58 0.49

Barren Land 3.46 3.15 -0.31

Deciduous Forest 53.20 60.00 6.80

Evergreen Forest 70.02 72.21 2.19

Mixed Forest 2.88 2.58 -0.30

Shrub/Scrub 1.36 7.16 5.80

Herbaceuous 18.98 17.01 -1.97

Hay/Pasture 94.63 80.21 -14.43

Cultivated Crops 0.54 0.90 0.36

Woody Wetlands 7.59 7.34 -0.26

Emergent Herbaceuous Wetlands 0.00 0.32 0.32

Absolute Change: 34.52
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Figure 2.1: DEM of the Bush River Drainage Basin. Note the fairly linear shape of the 
basin. 
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Figure 2.2: NLCD 2001 LULC for Bush River Drainage Basin. 
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Figure 2.3: Streamflow record for the Bush River Drainage Basin with available 
precipitation data. 
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Chapter III: Methods 

 

III.I: Detecting Periods of Extreme and Moderate Weather Conditions 

One period of drought, moderate weather, and markedly wet conditions were 

identified by observing county-level monthly Standardized Precipitation (SPI), Palmer 

Drought Severity (PDSI), and average temperature indices. Monthly SPI and PDSI values 

for Newberry County were collected from drought.dnr.sc.gov. These records generally 

extended from the early 1950s through the middle 2000s. Calculated monthly values 

were normalized with respect to that specific month for the entire record. The inter-

annual variability in indices scores was accounted for by counting the number of months 

a specific index was above or below a threshold. For example, the threshold for drought 

or extremely wet conditions for a month was one standard deviation below or above 

normal for the PDSI record, respectively. SPI values were counted if they were above or 

below 1 or -1 to detect wet or dry periods, respectively, as defined by Guttman (1999). 

Baseline conditions were determined as periods when the number of months with mean 

monthly PDSI values were within +/- 0.25 standard deviations from the long-term 

monthly mean and had SPI monthly counts close to the mean. 
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After the threshold for each index was applied, a moving three-year sum of the 

months above or below a certain index was computed. This procedure identified specific 

three year periods that were consistently drier or wetter than average, and identified a 

period of moderate weather conditions in terms of both the PDSI and the SPI. The three-

year sums for each index were then ranked and the three periods with the most 

extreme drought, most moderate conditions, and greatest amount of precipitation were 

noted. The drought period identified was from 1999 – 2001, which was the period for 

the most severe drought in South Carolina’s recent history (with regard to the PDSI and 

SPI records) (Carbone and Dow, 2005). Magnitudes of the selected weather scenarios do 

not match in terms of severity (dry or wet), but the durations are similar. The ranked 

three-year sums of the weather periods show all of the potential three year periods that 

were consistently wet or dry. A three year period with the most months experiencing 

above normal precipitation was from 1971 – 1973. The period of moderate weather 

conditions with respect to multiple indices was from 1967 - 1969. Monthly threshold 

criteria and three years sums are given below in Table 3.1, which shows extreme 

variability on a monthly scale and Table 3.2, which shows index extremes. SPI and PDSI 

records of the Bush River Drainage Basin are illustrated in Figure 3.1. 

Table 3.1 gives insight into the need to use multiple indices to detect extreme 

dry periods and extreme wet periods. The difference between the two indices are that 

the PDSI is based on precipitation, evapotranspiration, and soil moisture, whereas the 

SPI is based solely on precipitation (Guttman, 1999). The SPI was used to detect wet and 

dry periods, while the PDSI was used to verify the severity of the two drought periods. 
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Primarily, the PDSI was used to prove that the drought condition (1999 – 2001) was the 

most severe on record. The baseline period (1967 – 1969) experienced the most months 

with near-average conditions in terms of the two indices. 

 Table 3.2 makes the differentiation between periods lucid. The previous table 

showed the number of months above a threshold, whereas Table 3.2 focuses on the 3-

year index sums by adding all monthly values for each weather period. While Table 3.1 

shows that most periods had nearly similar PSI extreme threshold values, Table 3.2 

shows that the weather periods were markedly different. In particular, the wet and 

moderate weather periods may have appeared similar from the monthly threshold 

values of Table 3.1, but appear to have been extremely different when grouped in terms 

of years. 

 The objective of this analysis was to use multiple weather and climate indices 

(SPI and PDSI) to determine periods where weather conditions were markedly different 

from one another in terms of abundance or lack of precipitation. Periods of extreme 

weather had to be discerned in order to model and quantify impacts to streamflow and 

the water balance from a highly variable climate. Using a combined-indices approach 

allowed for in-depth analysis and quantification of extremely wet and dry periods 

throughout the record. 

III.II: LULC and LULC Change Scenarios 

 Evaluating the differences between extreme weather periods streamflow and 

water yields provides information about water resources of the drainage basin during 
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droughts and wet periods. However, LULC also has been shown to alter streamflow in a 

drainage basin and affect local climate. An increased low-density development scenario 

was created for the model to simulate potential changes to LULC conditions in the 

BRDB. This is one of the dominant types of LULC change in the PSC and within rural 

basins such as the BRDB. This type of change is also the most likely to occur with 

projected growth of the region (Coastanza et al., 2010; Napton et al., 2010; Oliver and 

Thomas, 2014; Terando et al., 2014). 

 The hypothetical scenario simulated specific changes of two initial LULC 

conditions to one new LULC condition.  Previous studies predict that agricultural lands 

and abandoned fields are the most likely to change to developed lands (Napton et al., 

2010).  They show that abandoned agricultural fields are largely put back to use, and 

that the gradual decline in agriculture is likely to force some, but not all, of these lands 

to be developed.  Much of the agricultural land and abandoned fields in the basin are 

classified as rangeland and herbaceous lands (RNGE) and livestock grazing, hay, and 

seed crop lands (HAY).   The updated LULC scenario, therefore, changed all of the RNGE 

and half of the HAY to low-density development (URLD). This scenario was used to 

estimate the changes likely to be caused by widespread development, and to test the 

assumption that LULC change in the form of development would alter streamflow 

simulations when compared to baseline conditions. While not derived from any future 

projection of the exact amount of predicted LULC change, these scenarios should be 

viewed as significant changes to landscape of the BRDB. 
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 Changes in LULC were simulated by activating the land-use update module 

within the model. This module is used to select a baseline LULC condition currently 

within the model and convert it to a new LULC condition. A visualization of how the 

updated LULC scenario was input into the module is given in Figure 3.2. Note how 60% 

of HAY is being converted to FRSE and the remaining 40% stays as HAY. The values in the 

percent column within the land-use update module must add up to 100%, so the 

remainder of the initial LULC must always be included. Land-use updates only occur in 

sub-basins where both the initial and target LULC condition exist. This implies that the 

amount of increasing development isn’t the same across the drainage basin. The model 

also requires the target LULC (in this case URLD) to pre-exist within the drainage basin. 

Likewise, if a sub-basin had URLD but no RNGE or HAY lands present at baseline 

conditions, then the module would not alter the sub-basin. This analysis tests 

hypothetical percentage changes in specific LULC conditions and not equal amounts of 

LULC area changes in each sub-basin. However, total amounts of LULC area change were 

accounted for and their effects will be addressed in the interpretation of model output. 

Table 3.3 indicates which sub-basins were affected by specific land-use updates, and 

updated areas for each LULC condition for each scenario are given in Tables 3.4 and 3.5. 

III.III: Lup.dat Module 

The land-use update module is not applied to the raw LULC input data but to the 

constructed HRUs. In this analysis, the HRU threshold definition for all inputs (i.e.; LULC 

conditions, soils, and slope) was set at 5%.  Thus, no less than 5% of a sub-basin’s area 
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could be covered by a unique combination of physical data inputs. If LULC conditions 

within a sub-basin do not cover a total of at least 5% of the area with similar slope and 

soil conditions, physical processes will not be simulated for those conditions. This 5% 

threshold was based on the objectives of the study, spatial distribution of LULC 

conditions in the basin, and processing times. A threshold definition of 0% would 

attempt to include all possible LULC conditions, yet this would greatly increase the time 

of processing and likelihood of simulation failures. Setting thresholds at a low value 

(e.g., 5%) is a compromise that allows efficient computations with only a slight 

abstraction. 

III.IV: Extreme Weather Periods (EWP) and LULC Change Scenarios 

 A variation of a well-documented method was used to quantify the specific 

impacts of drought and wet periods and LULC change on streamflow (Li et al., 2009).  Six 

scenarios with unique extreme weather periods (EWP) and LULC combinations were 

created to estimate impacts on streamflow from changing conditions. Streamflow was 

simulated on a calibrated model under baseline conditions over the three EWPs. After 

the baseline calibrations, the land-use module (lup.dat) was updated and streamflow 

was simulated for the three EWPs again. The 6 scenarios should reveal the impacts on 

streamflow due to changing physical conditions of the drainage basin, as well as the 

impacts on streamflow due to different weather periods. The first three scenarios utilize 

baseline LULC conditions under varying extreme 3-year periods.  These scenarios 

actually occurred and simulations are based on direct observations. The following three 
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scenarios employ changes in LULC under the same three weather periods. All six are 

explicitly listed as follows: 

   Group I Observed Scenarios: 

1. Moderate Period (1967 – 1969) weather inputs and Baseline LULC 

2. Wet Period (1971 – 1973) weather inputs and Baseline LULC 

3. Drought Period (1999 – 2001) weather inputs and Baseline LULC 

   Group II Modified LULC Scenarios: 

4. Moderate Period (1967 – 1969) weather inputs and Developed LULC 

5. Wet Period (1971 – 1973) weather inputs and Developed LULC 

6. Drought Period (1999 – 2001) weather inputs and Developed LULC 

Scenario 1 simulates processes using precipitation and temperature inputs from 

the moderate period (1967 – 1969) over baseline LULC conditions. Scenarios 2 and 3 

were derived from the same model run which meant that simulated streamflow and 

water balance information from the wet (1971 – 1973) and dry (1999 – 2001) periods 

were extracted.  Output from these simulated scenarios were compared to Scenario 1 to 

discern the impacts on streamflow from extremely dry and wet periods.  Specifically, 

comparing Scenario 1 to Scenario 2 measures impacts to streamflow due to a change 

from moderate to extremely wet weather conditions over a three-year period. 

Comparing Scenario 3 to Scenario 1 measures the runoff impacts of droughts as 

compared to moderate weather conditions.  Finally, comparing Scenario 3 to Scenario 2 

measures how streamflow differs between extremely dry and extremely wet periods. 
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 The same methodology of comparing simulated streamflow from moderate 

weather conditions to simulated streamflow from extremely wet and dry periods was 

applied to a model run with updated LULC conditions.  Scenarios 4 – 6 (Group II 

Scenarios) mimic the first three weather conditions applied to updated LULC conditions 

to simulate intensive development throughout the BRDB. Scenarios with the same 

weather conditions; e.g., scenarios 2 and 5, were compared against one another to 

measure the impacts on streamflow related to changing land-use conditions within the 

drainage basin.  Scenarios 1 and 4 are moderate weather scenarios, Scenarios 2 and 5 

are extremely wet scenarios, and Scenarios 3 and 6 are the extreme drought scenarios. 

Comparisons between these pairs examined differences in average annual and monthly 

streamflow values, precipitation differences, and changes in water balances from 

scenario-to-scenario. Comparisons were not limited to the same LULC conditions or the 

same weather conditions. Unrelated scenarios (i.e.; Scenario 1 to Scenario 5) were also 

compared with non-parametric significance testing to assess the affects from 

cumulative impacts to streamflow. The objective in comparing the 6 scenarios was to 

identify differences between unique combinations of inputs and seeking to use these 

differences to explain variations in water yields under the specific conditions. 

III.V: Data Pre-processing 

 Model input data comes from many sources and in many formats.  For example, 

the required geospatial data may come in a variety of projections and weather data may 

be incomplete. Prior to simulating physically based processes, pre-processing must be 
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done to format the geospatial data into a uniform projection, append observed records, 

and detect potential errors within the input data. The BRDB was not located entirely in 

one county so LiDAR DEM data from Laurens County and Newberry County had to be 

mosaicked to obtain a single DEM that contained the entire BRDB. The DEM was also 

resampled from 3 to 10 meters to allow faster processing. A DEM with 10-meter spatial 

resolution is still much finer than the 30-meter DEMs typically used in most Arc SWAT 

models. Arc Hydro, the tool that is used to calculate sinks, flow accumulation, and 

delineate streams in the model had the potential to falsely delineate streams at finer 

scales of spatial resolution and resampling to 10 meters allowed for better accuracy in 

mapping streams (Lin et al., 2010). At finer spatial resolutions the local geomorphology 

has a greater influence on hydraulics and hydrology. 

 The soils data for Laurens and Newberry County also had to be combined by 

merging and re-projecting the shape files to match the projection of the DEM data. The 

projection that was used for all geospatial data in the study was the NAD 1983 HARN 

State Plane FIPS 3900 (Meters). The NLCD 2001 was re-projected to this projection as 

well. The observed weather data were checked for days of missing and erroneous 

observations. Days with a missing observation for precipitation, maximum temperature, 

or minimum temperature were assigned an average value computed from the nearest 

stations that didn’t have a missing observation that day. Erroneous records that were 

detected within the climate dataset were corrected so they would not impact 

simulations. Most errors were from observations that were an order of magnitude 

greater than the previous day or nearby weather stations. The handful of erroneous 
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precipitation records that were identified coincided with some of the most extreme 

winter storms in South Carolina’s recent history. The issue was apparently that the 

accumulation height of snow was not converted to precipitation totals using a snow-to-

liquid ratio. Snow-to-liquid ratio was converted by using values from Baxter et al. (2004). 

The errors caused by inaccurate snow accumulations would likely be minor because 

snow rarely falls in the region. Streamflow data that were obtained from the USGS had 

previously been corrected for errors and potential missing values by the USGS, so the 

only pre-processing that was done was to convert from cubic feet per second to cubic 

meters per second. 

III.VI: Statistical Methods 

 After the calibrated models were run, the outputs were extracted from the reach 

files (output.rch). This file contains the simulated streamflow for all sub-basins for the 

entire period of simulation excluding the warm-up period (1951 – 1953). Simulated 

streamflow values from the three time periods of the weather scenarios (Moderate, 

Extremely Wet, and Extremely Dry) were extracted from the calibrated original and 

model with updated LULC conditions.  Each of the 6 scenarios produced 36 monthly 

streamflow observations, one for each month of the 3-year period. The objective of the 

statistical analysis was to test each of the 36 monthly streamflow sets for significant 

differences between the 6 scenarios. The testing framework is shown in Table 3.7, which 

denotes the observations from each scenario and how they were set up for significance 

testing. The actual simulated values are given in the Results and Discussion section. 
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  Statistical testing was applied to the entire duration of streamflow (36 months) 

for each scenario to make comparisons without regard to specific temporal or spatial 

differences.  Analysis of variance (ANOVA) and pairwise significance testing were carried 

out to determine if there were differences in streamflow between the various scenarios. 

However, it was imperative to determine whether parametric or non-parametric 

statistical tests were appropriate for this analysis. Previous observations have revealed 

that the distribution of streamflow is generally non-normal (Lins and Slack, 1999). 

Therefore, the Kruskal-Wallis non-parametric ANOVA test was applied to the simulated 

output to determine if there were significant differences in streamflow between the 6 

scenarios. While corrections can be made to the data to allow for parametric testing of 

the data (i.e.; log-normalizing the data), preliminary analysis found that parametric 

statistical tests were too conservative and yielded no scenarios with significantly 

different streamflow. 

 Assessing the distribution of the data is not the only way to determine which test 

to use, nor does it satisfy the assumptions that apply to a test. An assumption for 

significance testing is that the data must be independent. However, this assumption is 

very rarely met in hydrology due to autocorrelations (Bruce and Clark, 1966).  

Streamflow from one day will usually affect streamflow the next day (Herschy, 2008). 

Although ways exist to deal with autocorrelation they are complex and tend to dampen 

out the trend signal. At a daily scale, autocorrelation in streamflow may be clearly 

evident, yet as the temporal resolution is decreased (i.e.; using longer time scales), it is 

likely to diminish in strength (Bruce and Clark, 1966). While it will still exist, using 
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monthly instead of daily data could reduce the impact of autocorrelation. Some 

autocorrelation issues remain, such as seasonality, which are difficult to eliminate.  Yet 

seasonal patterns may be diminished during periods of extreme weather. ANOVA can be 

carried out on monthly streamflow data on time periods where seasonality does not 

have a strong impact on streamflow (Bruce and Clark, 1966). The moderate time period 

would be the most susceptible to seasonality and this is recognized when interpreting 

the outcome of ANOVA analysis and pairwise testing with this category of simulations. It 

is imperative to state that no methods to correct for potential autocorrelation within 

the data were taken due to the complexities of such analyses. Due to the nature of the 

data it was assumed to be autocorrelated. 

 The Kruskal-Wallis non-parametric ANOVA test was used to test if streamflow 

differed significantly between scenarios. The Kruskal-Wallis test may detect differences 

between groups but it does not identify which groups are different from one another.  

This method introduced two cases: 

1)  At least one scenario existed where simulated streamflow was significantly 

different from the other scenarios, or  

2) No scenario produced simulated streamflow significantly different from any other 

scenario. 

The method employed by this thesis was to test to see if the first case was satisfied, and 

if so, then apply ad-hoc pairwise Mann-Whitney significance testing between two 

specific groups. The total number of paired post-hoc tests is 15 (possible permutations 
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of pairs of 6 scenarios).  The relatively large number of pairs to be tested for significance 

against one another presented a difficulty in that some paired test outcomes could be 

significant by chance alone (Bland and Altman, 1995; illustrated examples by Adbi, 

2010). Therefore, the Holm-Bonferroni correction was made to each paired significance 

test, following the formula given by Adbi (2010): 

 pBonferroni, i|C = (C – i + 1) * p       (Eq. 3.1) 

where pBonferroni, i|C  is the adjusted significance level, C is the number of pairwise 

tests computed, i is the sequential p-value ranks of the Mann-Whitney tests ordered 

from smallest to largest, and p is the original level of significance. In any case when 

pBonferroni, i|C is greater than 1.00 the value is then truncated to 1.00. Values for this 

formula are C = 15 and p = 0.05 for this study. If case 2 was satisfied; no significant 

differences in streamflow were produced between the six scenarios, no further pairwise 

testing of the groups would be needed.   

Additional month-specific and spatial-specific significance tests were run to focus 

on specific monthly averages in streamflow within a scenario and average streamflow 

within a specific sub-basin within a scenario. The monthly and spatially specific tests are 

given in Table 3.8 and Table 3.9. 

As with the 3-year tests, non-parametric testing between monthly or sub-basin 

groups was used because of non-normal distributions within scenario simulations and 

the drastically reduced number of observations (12 for months and 11 for sub-basins). 

The Kruskal-Wallis non-parametric test was used to test for significantly different 
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streamflow between all 6 scenarios. As with the 3-year tests, results may fall into one of 

two categories: (1) cases exist with at least one scenario where the specific months 

(sub-basins) streamflow were significantly different from any other scenario, or (2) no 

scenarios are significantly different from any of the others.  The method employed by 

this thesis was to test to see if a scenario had a significantly different streamflow and, if 

so, conduct a post-hoc pairwise comparison using Mann-Whitney pair-wise tests with 

the post-hoc Holm-Bonferroni method to account for erroneous Type I errors.  

Conversely, if the Kruskal-Wallis test found no significant difference between scenarios, 

no Mann-Whitney testing would be conducted and the analysis would be complete. 

Significant differences between simulated streamflow based on monthly and 

sub-basin differences can be related to changes in weather inputs and LULC. Therefore, 

sub-basin specific LULC data and weather period descriptive statistics were used to 

describe and interpret significant differences. These processes could potentially be 

cumulative or specific impacts. For example, scenarios with the same LULC but 

differences in weather inputs would be specific changes, whereas those that had 

different LULC inputs and different weather conditions would be cumulative impacts. 

The timing of extreme precipitation, duration of drought, and location of LULC change 

within sub-basin across the scenarios were systematically examined as potential 

indicators of what may have caused changes to streamflow. 
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III.VII: Modeling Processes 

Arc SWAT modeling was carried out by loading the pre-processed data in a step-

by-step manner to delineate the drainage basin, delineate streams, create HRUs, and 

add observed weather data to be used by the model. The first step was to start a new 

SWAT project and load the DEM. The model incorporates the Arc Hydro tool to 

delineate streams based on accumulation thresholds. The default value for stream 

accumulation was used because this generated sub-basins that were large enough to be 

unique in LULC composition (i.e.; predominantly forested, developed, cultivated, etc.). 

This is also important because the size of the sub-basins influence the size of HRUs 

created from spatial thresholds (i.e.; 5% of the sub-basin having this LULC classification). 

The location of the stream gage was designated as the outlet for the drainage basin. The 

delineated Bush River drainage basin (BRDB) contains 11 sub-basins. 

After the BRDB was delineated, both the sets of processed LULC and soils data 

were added to the model. These data were used by the SWAT model to construct 

hydrologic response units (HRUs) that are unique combinations of slope, soil type, and 

LULC within a sub-basin (Gassman et al., 2007). Runoff was generated from the HRUs 

using the USDA NRCS Curve Number method, which is commonly used in modeling 

applications and has been proven successful at simulating runoff (Pilgrim and Cordroy, 

1993). This method calculates runoff based on LULC type and antecedent moisture 

conditions. Another reason for using this method over the Green-Ampt method, 

another commonly used method to calculate runoff, was that the observed 
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precipitation data were recorded at a daily time-step and not sub-daily. Green-Ampt 

works on a finer temporal scale so it was not applied to the study.  

As described in Section II of this chapter thresholds were set at 5% to limit the 

number of HRUs delimited based on the percent of land covered by a specific 

combination of physical properties. To express hydrologic processes accurately within a 

sub-basin, low thresholds were established for a less generalized representation of each 

sub-basin. Higher HRU delimiting thresholds overlook very small yet unique physical 

conditions. Lower HRU delimiting thresholds theoretically increase representation of 

specific physical conditions within the sub-basin, yet can greatly increase the time it 

takes to calibrate a model and perform uncertainty analysis. Thresholds were selected 

as 5% of the land covering the sub-basin for all HRU inputs (slope, soil type, and LULC). 

Low thresholds were advantageous to conduct LULC change analysis because small scale 

changes were more likely to be within threshold values and simulate runoff processes 

on the changed surface. 

After the HRUs were delimited, weather station locations and observed data 

were loaded into the model. Weather data (described in Chapter 2, Section II.IV)for all 

stations were edited to start on 1 January 1951 and end on 31 December 2013, a time 

period spanning all Extreme Weather Periods (EWPs). The only parameters that were 

input into the model were precipitation and temperature. While Arc SWAT can use 

weather inputs such as wind, solar radiation, and evaporation, the model has been 

shown to successfully model streamflow and water yields with only precipitation and 
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temperature inputs (Arnold et al., 2012). The simulated weather parameters were based 

on nearby weather stations used to make the model’s weather generator. The Penman-

Monteith method was applied to calculate evapotranspiration (ET) using the SWAT 

weather generator.  This approach was chosen because the SWAT weather generator 

(which can simulate daily weather data for days with no recorded observations) is 

located in Newberry and was assumed to provide accurate simulations for the ET 

method.  

Model simulations were run from 1 January 1951 to 31 December 2013. This also 

meant there was quite a long warm-up period until the observed streamflow record 

started (1992), so some of the groundwater parameters, generally the most difficult to 

model, had enough time to self-regulate and fluctuate to near-realistic ranges 

(Mukandan et al., 2010). Simulated output in the reach (.rch), sub-basin (.sub), and HRU 

(.hru) file types was saved for further examination. 

III.VIII: Calibration and Validation 

 The Arc SWAT model simulates streamflow, yet—as with all hydrologic 

simulations—initial output from the model seldom matches observed streamflow. 

Parameters within the model that govern various processes (groundwater transfer, 

evapotranspiration, generation of runoff, etc.) can be adjusted and more realistic 

streamflow simulations can be obtained.  Although a program within the model can 

check parameter ranges and the water balance (SWAT Check), it is a manual method for 

calibration and uncertainty analysis which is time-consuming. SWAT Check was used but 
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it was done only to assess the accuracy of the simulated water balance after calibrated 

values were input back into the model. 

 SWAT CUP is an open-source calibration and validation program that is capable 

of performing a multitude of calibration and uncertainty procedures (Abbaspour et al., 

2007). The calibration/uncertainty analysis used on the model was the Sequential 

Uncertainty Fitting version 2 algorithm (SUFI-2). This semi-automatic method selects a 

subset of parameters from the model to adjust in order to improve the match between 

simulated and observed streamflow. Choosing meaningful parameters was the first step 

in performing the SUFI-2 calibration/uncertainty analysis. While the software has the 

potential to use many parameters in the calibration, a parsimonious approach is to use a 

few meaningful parameters that are best understood by the modeler and are important 

to the specific objectives of the study.  For example, this thesis is not concerned with 

water quality or establishing TMDL for the BRDB, so nutrient parameters were not 

included in the calibration/uncertainty analysis. One method for initially selecting 

calibration/uncertainty parameters was to identify parameters that were used in 

successful analyses of modeling efforts in similar drainage basins. Ideally, these models 

were located within South Carolina, Georgia, or North Carolina, or within the Piedmont 

physiographic region. Another method for selecting parameters for 

calibration/uncertainty was to identify which parameters were the least understood, yet 

have a great impact on runoff in the resulting calibrated model. Generally, groundwater 

parameters (.gw) are commonly included in calibration/uncertainty analysis because 

they vary from region-to-region and groundwater observations are limited. 
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Groundwater parameters govern sub-surface flow, return flow, and percolation to the 

shallow aquifer, so they are an essential element of the water budget.  

The parameters chosen for calibration/uncertainty are given in the Results 

section (with acceptable parameter ranges and calibrated values). Once the parameters 

were selected, parameter ranges that were realistic to the study area were set and 

iterations consisting of 1500 simulations were carried out.   This produced 1500 time 

series of streamflow in the BRDB all with slightly different parameter values. Objective 

methods were used to quantitatively evaluate how accurately the simulations match the 

observed streamflow record and to indicate whether a round of calibrations produced a 

simulation with realistic results. The Nash-Sutcliffe Efficiency (NSE) is commonly used to 

quantify simulation accuracy (Van Liew et al., 2007): 

 
𝑁𝑆𝐸 = 1 − (

∑ (𝑄𝑘𝑜𝑏𝑠−𝑄𝑘𝑠𝑖𝑚)  
𝑛

𝑘=1

∑ (𝑄𝑘𝑜𝑏𝑠−𝑄𝑚𝑒𝑎𝑛)
𝑛

𝑘=1

)2                   
(Eq. 3.2) 

 

where Qkobs is the kth observation, Qksim is the kth simulated response, and Qmean is the 

long-term mean of the observed parameter being evaluated (Moriasi et al., 2007; Van 

Liew et al., 2007).   The observed and simulated streamflows in this case represent 

mean monthly average flow rates for the BRDB. The NSE ranges from negative infinity 

up to 1.0, which represents a perfect fit between the model and observations. NSE 

values above 0.75 (for stream flow) are generally considered acceptable (Van Liew et al., 

2007). Using the NSE to compare simulations with observed data helps determine when 

to readjust input parameters or if the current inputs are suitable for modeling. 
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 After satisfactory values were obtained for the objective functions and calibrated 

parameters were within realistic ranges for the calibration period (1992 – 2001), the 

same calibrated parameter ranges were used for the validation period of the model 

(2002 – 2013) and the process was repeated for an iteration of 1500 simulations. After 

the validation process, updates to the .gw, .hru, .sol, and .mgt files in the model were 

made by direct changes to parameters within the Arc SWAT 2012 interface or query 

updates in the model Microsoft Access Database files. This allowed for accurate, as well 

as realistic, parameters and a model that could sufficiently simulate streamflow if there 

were weather input data available. 

III.IX: Post-Calibration LULC Updates 

 Land-use update procedures were carried out by updating LULC in the lup.dat 

file at the HRU-scale, which was far easier than re-running the model for an entirely 

different LULC dataset (NLCD 2011). This procedure not only avoids having to do 

another calibration/uncertainty analysis, it also means that comparisons between the 

two different land-use scenarios are based on runoff and streamflow differences from 

the same HRUs. Indeed, if the model were run with an entirely new LULC dataset, the 

amount and spatial distribution of HRUs would change. The two model runs could still 

be compared but they wouldn’t be comparisons controlled for LULC because the spatial 

distribution of HRUs would also change. The land-use update module (lup.dat) operates 

by quantifying HRU change from the initial LULC type to the later LULC type and the 

percent change in HRU area within a sub-basin (Pai and Saraswat, 2011). This conserves 
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the number and spatial distribution of the HRUs. After the HRUs are updated, the model 

was run with no further calibration/uncertainty analysis and simulated streamflow 

output from the updated and calibrated original model was compared between the two. 
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Tables and Figures: 

Table 3.1: Total Months above or below Index Thresholds. 

Table 3.1: Index Monthly Threshold Counts 

Scenario SPI > 1 SPI < -1 PDSI > 1 PDSI < -1 SPI +/- 0.25 PDSI +/- 1 

Moderate 3 2 9 0 3 27 
Wet 5 2 22 0 2 14 
Drought  2 7 0 20 2 16 

       
 

Table 3.2: Annual Sums of Standardized Index Records 3-Year Totals. 

Table 3.2: Annual Sums of Standardized Index Records 3-Year Totals 

Scenario SPI PDSI 

Moderate (1967 - 1969) 0.54 1.06 
Wet (1971 - 1973) 3.44 1.94 
Drought  (1999 - 2001) -4.26 -4.45 

   
 

Table 3.3: Sub-basins affected by updating two initial LULC conditions (HAY and RNGE) 
to hypothetical urbanizing LULC conditions (URLD).  
 

Table 3.3: lup.dat Impacted Sub-Basins 

Initial Target Sub-basins affected 

HAY URLD 1 - 6, 8, 9 

RNGE URLD 3, 6, 8, 9 
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Table 3.4: Approximate percent LULC area in each sub-basin under baseline and 
updated LULC. Percentage of sub-basin area is given in the Baseline and Lup.dat 
columns 

Table 3.4: LULC Scenarios Areas 

 Sub-basin  LULC Baseline Lup.dat Scenario 

Su
b

-b
as

in
 1

 FRSD 25.11 
18.74 
25.18 
18.65 
12.31 

25.11 
FRSE 18.74 
HAY 11.37 
URLD 32.47 
URMD 12.31 

    100.00  100.00 

Su
b

-b
as

in
 2

 FRSD 21.39 
20.78 
31.60 
15.27 
10.96 

21.39 

FRSE 20.78 
HAY 12.64 
URLD 34.24 
URMD 10.96 

    100.00  100.00 

Su
b

-b
as

in
 3

 FRSD 17.24 
24.43 
44.05 

8.46 
5.81 

17.24 
FRSE 24.43 
HAY 22.13 
RNGE 5.09 

URLD 31.11 
    100.00  100.00 

Su
b

-b
as

in
 4

 

FRSD 16.75 
19.78 
55.19 

8.28 

16.75 
FRSE 19.78 
HAY 24.14 
URLD 39.33 

    100.00  100.00 

Su
b

-b
as

in
 5

 FRSD 13.36 
13.71 
19.87 
28.20 
24.86 

13.36 
FRSE 13.71 
HAY 10.28 
URLD 37.79 

URMD 24.86 
    100.00  100.00 

Su
b

-b
as

in
 6

 

FRSD 19.72 
26.22 
31.33 

5.60 
9.73 
7.40 

19.72 

FRSE 26.22 

HAY 15.35 

RNGE 2.93 

URLD 28.38 

URMD 7.40 

    100.00  100.00 
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Su
b

-b
as

in
 7

 

FRSD 20.35 
29.80 
40.26 

9.58 

20.35 
FRSE 29.80 
HAY 40.26 
RNGE 9.58 

    100.00  100.00 
Su

b
-b

as
in

 8
 FRSD 23.78 

42.32 
19.43 

7.41 
7.06 

23.78 
FRSE 42.32 
HAY 8.51 
RNGE 4.03 
URLD 21.37 

    100.00  100.00 

Su
b

-b
as

in
 9

 FRSD 26.20 
29.68 
29.17 

9.47 
5.48 

26.20 
FRSE 29.68 
HAY 13.08 
RNGE 5.09 
URLD 25.96 

    100.00  100.00 

Su
b

-b
as

in
  

1
0

 

FRSD 43.49 
20.52 
11.69 
24.30 

43.49 
FRSE 20.52 
HAY 11.69 
RNGE 24.30 

    100.00  100.00 

Su
b

-b
as

in
 

1
1 

FRSD 25.67 
56.74 

8.48 
9.11 

25.67 

FRSE 56.74 
HAY 8.48 
RNGE 9.11 

    1100.00  1100.00 
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Table 3.5: Approximate percent change in HRU area for the entire drainage basin under 
baseline and updated scenarios. Total area for each LULC condition are given for 
baseline conditions and both updated LULC scenarios. 

Table 3.5: Percent Drainage Basin LULC 

LULC Condition Baseline Development 

FRSD 23.01 23.01 
FRSE 27.52 27.52 
HAY 28.75 16.17 
RNGE 6.72 5.47 
URLD 8.95 22.79 
URMD 5.05 5.05 

 

Table 3.6: Simulated streamflow values for all scenarios. Q (cms) signifies the simulated 

streamflow in cubic meters per second. 

Table 3.6: Duration Streamflow Setup 

Obs. Scen. 1 Scen. 2 Scen. 3 Scen. 4 Scen. 5 Scen. 6 

Obs. 1 Q (cms) Q (cms) Q (cms) Q (cms) Q (cms) Q (cms) 

Obs. 2 Q (cms) Q (cms) Q (cms) Q (cms) Q (cms) Q (cms) 

… Q (cms) Q (cms) Q (cms) Q (cms) Q (cms) Q (cms) 

Obs. 36 Q (cms) Q (cms) Q (cms) Q (cms) Q (cms) Q (cms) 

 

Table 3.7: Monthly Differences between Scenarios based on Months. 

Table 3.7: Monthly Streamflow Setup 

 Scen. 1 Scen. 2 Scen. 3 Scen. 4 Scen. 5 Scen. 6 

January Q (cms) Q (cms) Q (cms) Q (cms) Q (cms) Q (cms) 

... Q (cms) Q (cms) Q (cms) Q (cms) Q (cms) Q (cms) 

December Q (cms) Q (cms) Q (cms) Q (cms) Q (cms) Q (cms) 
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Table .3.8:  Spatial Differences between Scenarios based on the Sub-basins. 

Table 3.8: Sub-basin Streamflow Setup 

Scen. 2 

Scen. 3 

Scen. 4 

Scen. 5 

Scen. 6 

 Scen. 1 Scen. 2 Scen. 3 Scen. 4 Scen. 5 Scen. 6 

Sub-basin 1 Q (cms) Q (cms) Q (cms) Q (cms) Q (cms) Q (cms) 

… Q (cms) Q (cms) Q (cms) Q (cms) Q (cms) Q (cms) 

Sub-basin 11 Q (cms) Q (cms) Q (cms) Q (cms) Q (cms) Q (cms) 

 

 

 

Figure 3.1: SPI and PDSI records for Newberry County, the county containing most of the 
Bush River Drainage Basin. Annual sums of monthly index values can be used to indicate 
which years had most months experiencing above/below average conditions. 
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Lup.dat Module 

 

Figure 3.2: SWAT land-use update module interface. In this example, the land use to 
update is HAY and the projected change is for 60% of all HAY HRUs to be simulated as 
evergreen forest (FRSE). 
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Chapter IV: Results 

 

 This chapter presents the results of calibration and validation of the model and 

the modeled output.  These results are followed by discussion of the impacts of weather 

conditions and LULC changes on the simulated monthly runoff for the basin.  Finally, the 

chapter concludes with a discussion and evaluation of the overall analysis and results.   

IV.I: Uncertainty, Calibration, and Validation Outcomes 

 Calibration and uncertainty analysis results were computed as SWAT-CUP 

objective function values for the calibration period (1992 – 2001) as described in 

Chapter III.  The objective functions quantify the ability of the model to replicate 

observed streamflow conditions (Table 4.1). The objective function values for the 

calibration period were NSE = 0.78, r2 = 0.80, and the simulation percent bias (PBIAS) = 

5.2%. A visualization of the calibration results is given in Figure 4.1. All of the selected 

objective function values fall within ranges that are widely considered good among 

hydrologic modelers (Moriasi et al., 2007). The objective function values indicate above 

average accuracy in simulating realistic streamflow with only a slight bias of simulated 

values greater than observed streamflow. The NSE value of 0.78 indicates that the 

model predicted streamflow values better than using the average of all observed values 

(Moriasi et al., 2007). r2 = 0.80 expresses how little error there was in the model’s ability 
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to describe streamflow variance in the simulations (Van Liew et al., 2003). The p-factor 

measures the percent of observations that are bracketed by the 95 percent prediction 

uncertainty (95ppu). That means a p value of 0.71 indicates that 71% of observed values 

fall within the 95% confidence interval.  This p value is relatively close to the desired 

(perfect) value of 1.0, which would represent 100% of observations.   Conversely, the r-

factor value (0.66) was greater than the desired (perfect) value of 0, which may indicate 

that the final parameter ranges were not as precise as they could have been. The r-

factor describes the thickness of the uncertainty range (Arnold et al, 2012). While most 

(71%) of the simulated streamflow values were within the 95ppu, the uncertainty range 

was still relatively large (r=0.66), which may be improved upon with greater knowledge 

of parameter ranges for the region. A majority of the simulations were within realistic 

ranges for streamflow and the objective functions reflect this fact as well. The slightly 

positive bias (PBIAS = 5.2%) may also be due to the use of simulated parameter inputs 

during a drought within the end of the calibration period. Objective function values 

during the validation period (2002 – 2013) are also given in Table 4.1.  The validated NSE 

= 0.80 and r2 = 0.83 were within the range of good objective function values, and the 

PBIAS improved to a lower value of 1.3%.  This represents even less bias in the 

simulation of streamflow throughout the validation period, which can be observed in 

Figure 4.2.  Table 4.1 also reveals that the p-factor remained the same for the validation 

period (0.71), whereas the r-factor slightly increased to 0.67. Again, all of the objective 

function values are considered good for the validation period. Considering objective 
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function values from both calibration and validation periods, the model does a good job 

at replicating observed streamflow data within a Piedmont drainage basin.  

 Errors in calibration and validation can sometimes be attributed to overly wet 

conditions or drought conditions (Abbaspour et al., 2007). Both of these conditions 

occurred during the calibration and validation time periods with a severe drought in the 

late 1990s and early 2000s, followed by an extremely wet year in 2003. However, both 

calibration and validation periods need to have variability, with respect to weather, to 

be able to accurately simulate streamflow during varying weather conditions (Arnold et 

al., 2012). A relatively long warm-up period (from 1953 to 1991) provided ample time to 

allow a wide fluctuation of processes (e.g., groundwater percolation and soil moisture) 

within realistic values. 

 Adjusted parameter values are given in Table 4.2, which includes the fitted 

parameter values that were used to calibrate the model and brief descriptions of the 

selected parameters. Theoretic parameter values (realistic minimum and maximum 

values) are included that represent the range of realistic input data for this region. The 

fitted values were determined from the SUFI-2 calibration/uncertainty analysis. The 

calibrated parameters from Table 4.2 were imported back into the original Arc SWAT 

model and a complete simulation (1953 – 2013) was carried out at a monthly time-step. 

The model LULC was updated using the lup.dat module and the same calibrated 

parameters were used. The updated model was run for the same period on a monthly 

time-step 



69 
 

 Even after being adjusted, all calibrated parameter values were within realistic 

ranges.  The SCS curve number (CN.mgt) parameter adjustment ranges from application 

to application and the value that was obtained was within a realistic parameter range. 

The ALPHA_BF.gw factor agrees with Purdue University’s WHAT tool to estimate 

percent of the year in which baseflow sustains streamflow. The groundwater 

(GW_DELAY.gw) factor was within realistic ranges and related well to values from Santhi 

et al. (2007). Soil parameters were applied to all soil horizons. It is possible to 

parameterize using just the top layer of soil or individually calibrate each soil layer. All 

soil layers were selected for simplicity. SOL_AWC indicates the water in the soil available 

for plant uptake and SOL_K indicates the hydraulic conductivity of the soil. Calibrated 

values indicate that the available water for plant uptake was increased from default 

values and the hydraulic conductivity of all soil layers was also increased from default 

values. These calibrated parameters were accepted because of the water demand that a 

drainage basin predominantly covered in vegetation required and most of the soils in 

the Piedmont region are rich in clay which impedes the transfer of water through the 

soil horizons. The soil evaporation compensation factor (ESCO.hru) was adjusted based 

on Mukandan et al. (2010).  

IV.II: Modeled Output 

The highest simulated streamflows occurred during the late winter and early 

spring months across the 3 weather conditions, and this period also experienced the 

highest variability in streamflow (Figure 4.3 & Figure 4.4). The summer and autumn 

months experienced the lowest average streamflow values. Seasonal streamflow 
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patterns are evident regardless of extreme weather conditions, suggesting one 

hypothesis was incorrect that extreme weather periods could suppress seasonal 

streamflow patterns in the PSC. The larger variance for late winter and early spring is to 

be expected due to the greater magnitude of flows.  Hydrographs for the 3-year 

weather conditions under baseline LULC conditions (Figure 4.4) are nearly identical to 

those simulated with developed LULC conditions, which are not shown. It is evident that 

even within a specific weather condition there existed variability (e.g.; the occasional 

wet (dry) month in the dry (wet) period). However, the hydrographs of each weather 

period exhibit distinct traits. The hydrograph of the dry period is unique from the other 

weather periods in that there were protracted periods of low streamflow. Conversely, 

there appeared to be protracted periods of higher streamflow during the wet period 

with increased month-to-month variability in streamflow. The moderate weather 

period’s hydrograph reveals that there were no long-term periods of characteristically 

low or high streamflow and less drastic streamflow variability. 

 Modeled streamflow output from contrasting weather condition scenarios were 

significantly different and produced the greatest changes in median streamflow which 

agrees with many of the recent studies that focus on quantifying changes to streamflow 

caused by extreme weather conditions (Chattopadhyay and Jha, 2014; Guo et al., 2008; 

Kim et al., 2013, Li et al., 2013; Li et al., 2009). Results indicated that changes to 

streamflow resulting from increased development were not significant. The percent 

change in median streamflow and in the overall water balance were minimal. Again, 

similar findings have been observed by previous studies (Guo et al., 2008; Kim et al., 
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2013; Li et al., 2013; Li et al., 2009; Zhu and Li, 2015). However, the conditions under 

which these studies were conducted all varied with scale, magnitude, and the type of 

LULC change.  

 Simulated streamflow for all EWPs under both the original and updated LULC 

conditions are given in Appendix Table Results.2 - 4. Appendix Table Results.2 - 4 shows 

how the original model, with more rangeland and cultivated land cover and less low-

density development, produced less streamflow than the updated model which 

accounted for increased low density development in the region. These formatted values 

were used for ANOVA and pairwise testing to determine statistically significant 

differences between the scenarios simulated streamflow. 

IV.III:  Statistical Testing of Output 

 Kruskal-Wallis tests—non-parametric ANOVA—were conducted on three sets of 

the input data created from model output (Appendix Table Results.2 – 4), The data were 

grouped to test for significant differences in simulated streamflow between scenarios 

for (1) their entire durations (all 36 months in a scenario), (2) at a finer temporal scale 

(specific months), and (3) at a finer spatial scale (sub-basins). The test results include 

Chi-Squared values, degrees of freedom (5 for all test groups), and the p-value (Table 

4.3). A p-value less than 0.05 meant a simulated streamflow scenario was statistically 

different from one of the other scenarios. The p-values were significant for the duration 

group and the monthly group. The lack of significant difference with the spatial group 

represents a lack of difference in streamflow attributable to changes in the physical 
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characteristics of the sub-basin. Figures 4.3 (A – C) show the distribution of samples 

within each scenario for each formatted table. 

 After the Kruskal-Wallis test was computed for all three formatted groups, pair-

wise comparisons were carried out using the Mann-Whitney test for all 15 possible pairs 

of scenarios for the duration group and the month-specific group.  Abbreviations used in 

this and subsequent discussions are defined in Appendix Table A.1.  Mann-Whitney tests 

for the spatial group were not performed because the Kruskal-Wallis test indicated that 

no two scenarios simulated significantly different streamflow at the sub-basin scale. 

 The pair-wise test results for the duration group indicate that out of the 15 

scenarios 12 are significantly (p < 0.05) different (Table 4.5). The only three that were 

not significantly different were the paired scenarios from the same weather period in 

which only LULC changed (e.g., Baseline Moderate (BM) to Developed Moderate (DM)). 

This indicates that changes in streamflow caused by conversion of abandoned and 

agricultural lands to low-density development were relatively small. The post-hoc 

Bonferroni correction was applied for a more conservative estimate of significance 

levels to determine significant differences in streamflow between scenarios. The 

Bonferroni correction indicated only 4 of the 15 paired scenarios had significant 

differences in streamflow (Table 4.5). These 4 paired scenarios were the Baseline Wet 

(BW) to Baseline Dry (BD), Baseline Wet to Developed Dry (DD), Developed Wet (DW) to 

Baseline Dry, and Developed Wet to Developed Dry. None of the moderate weather 

scenarios were significantly different from any of the other scenarios.  These results 
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indicate that only extreme weather scenarios, comparing a wet scenario to a dry 

scenario, produced statistically significant differences in streamflow. 

 Pair-wise significance testing performed on the month-specific grouped 

streamflow indicates that only 4 of the 15 paired scenarios had statistically different 

streamflow (Table 4.6). These were the same 4 scenarios that were significantly 

different after the Bonferroni correction from the duration group pair-wise testing. 

However, after the Bonferroni correction was implemented on the month-specific group 

not a single pair of scenarios exhibited significantly different values for streamflow 

(Table 4.6). This could have been expected because the data were aggregated from 36 

specific months to 12 months that were each averaged from 3 values. In summary, 

median streamflow was less sensitive to changes in land cover than changes in weather 

and climate. 

 The smallest changes in median streamflow between scenarios for the duration 

group were associated with substantial increases in low-density development rather 

than changes in weather periods (Table 4.7).  For example, using the moderate weather 

scenario under baseline land-use conditions and changing only land use by increasing 

low-density development, the baseline median streamflow was 0.14 m3 s-1 less than the 

developed scenario’s median streamflow. This represents a 5.53% increase in median 

streamflow from the Baseline Moderate to the Developed Moderate scenario.  In 

contrast, under baseline LULC conditions, changing the weather from moderate 

conditions to wet conditions resulted in a 2.61 m3 s-1 (102%) increase in streamflow.  

When the moderate weather period is compared to the extremely dry weather 
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conditions there was a 1.5 m3 s-1 (57.9%) decrease in median streamflow. Similar 

responses in median streamflow were obtained under developed LULC conditions when 

the weather periods were shifted.  For example, median streamflow from the 

Developed Moderate period to the Developed Wet period increased by 2.49 m3 s-1 

(91.2%), and median streamflow decreased by 1.68 m3 s-1 (61.7%) with a shift from the 

Developed Moderate scenario to the Developed Dry scenario. 

IV.IV:  Analysis of Water Budget Changes 

 One of the advantages of spatially-distributed simulation modeling is that 

individual pathways and repositories of water can be tracked using a water budget.  

These results are divided into changes due to weather extremes versus those due to 

changes in LULC.  Water budgets for each scenario produced by the model give insight 

into the processes and components of the water balance contributing to streamflow for 

each scenario (Appendix: Tables A1 – A9). All scenarios indicate that lateral flow 

contributed the least to simulated streamflow. Runoff and groundwater flow contribute 

substantially more to streamflow than lateral flow with groundwater flow contributing 

the most throughout all 6 scenarios. In the most basic sense, the water yield is 

computed as the difference between precipitation and ET: 

 𝑊𝑌 = 𝑃 − 𝐸𝑇 (Eq. 4.1) 

Model documentation states that water yield (streamflow leaving the sub-basin or 

basin) is calculated by the following equation (Neitsch et al., 2005): 

 𝑊𝑌 = 𝑆𝑈𝑅𝑄 + 𝐿𝐴𝑇𝑄 + 𝐺𝑊𝑄 − 𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (Eq. 4.2) 
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Where WY is water in the sub-basins or basin contributing to streamflow (mm), SURQ is 

surface runoff contribution to streamflow (mm), LATQ is lateral flow contribution to 

streamflow (mm), GWQ is groundwater contribution to streamflow (mm), and 

Abstractions is the combination of transmission losses of water through the channel to 

the shallow and deep aquifers, ponding throughout the sub-basins, and infiltration 

(mm). It is important to note that abstractions are not given and must be manually 

calculated using the following corollary equation: 

 𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 = 𝑊𝑌 − 𝑆𝑈𝑅𝑄 − 𝐿𝐴𝑇𝑄 − 𝐺𝑊𝑄 

 

(Eq. 4.3) 

Overall, abstractions only accounted for 2-3% of the water budget when compared to 

surface runoff, lateral flow, and groundwater contributions to streamflow for any given 

scenario. In the BRDB the entire water yield was measured at the outlet. 

IV.IV.I:   Water Budget Changes Due to Weather Extremes 

Differences in water balance parameters between scenarios were noticeable. 

Regardless of LULC condition within the BRDB soil moisture was shown to be greatest 

for the wet period, least for the drought period, and the moderate weather period had 

soil moisture conditions similar to the wet period. Only having one year separate the 

moderate and wet weather periods may have been why the amount of soil moisture 

between the two periods was similar. Soil moisture is a key indicator of drought and is a 

common metric used to define drought (e.g.: PDSI takes into account soil moisture) 

(Carbone and Dow, 2005). Calculated PDSI values for the drainage basin were used in 
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establishing the weather periods of the thesis and this was evident from the simulated 

soil moisture differences between scenarios. Greater amounts of soil moisture could 

have influenced the increase in the total amount of evapotranspiration (Zhang and 

Schilling, 2006). The moderate and wet weather conditions both had higher soil 

moisture and higher total amounts of actual evapotranspiration. The highest amounts of 

actual evapotranspiration occurred during the moderate period.  

Differences in soil moisture between the 3 weather periods was also shown to 

substantially influence hydrologic processes. An abundance of soil moisture can greatly 

decrease infiltration and increase runoff generation (Penna et al., 2011).  The wet and 

moderate periods had similar amounts of soil moisture with less than a 1% difference 

between the two scenarios (Table 4.7 and Table A.13). However, the wet period had 

more precipitation than the moderate period and had a slightly higher soil moisture 

content, which resulted in a 30% increase in total surface runoff between the Baseline 

Moderate and Baseline Wet scenarios, and a 31% increase in total surface runoff 

between the Developed Moderate and Developed Wet scenarios.  This demonstrates 

the sensitivity of runoff to soil moisture in this environment.  Surface runoff from the 

moderate to wet weather conditions increased about the same regardless of the LULC 

conditions. There was a 42% decrease in surface runoff from the Baseline Moderate to 

Baseline Dry scenarios and a 43% decrease from the Developed Moderate to Developed 

Dry scenarios. Again the reduction in the average runoff was about the same when 

comparing different weather periods with the same LULC conditions. These findings 

relate to those of other studies that investigated how the amount of runoff can 
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decrease during droughts (Dracup et al., 1980; Shukla and Wood, 2008). These studies 

both found that less runoff is generated when persistent deficits in precipitation and soil 

moisture exist. Soils that have lower amounts of moisture content would allow for more 

infiltration to occur. 

 When accounting for the total precipitation that occurred during a weather 

period, the relative amount of precipitation that was evaporated and transpired was 

greatest during the drought period. ET accounted for approximately 67% of 

precipitation during the moderate period, 58% during the wet period, and 76% during 

the driest period. These values were effectively the same for both LULC scenarios. Rates 

of actual evapotranspiration are effected not only by soil moisture but by solar 

radiation, wind, temperature, and humidity (Notaro et al., 2006).  The simulated solar 

radiation was greater during the drought period when compared to the moderate 

period, and least during the wet period. While this finding from the modeled output is 

intuitive and supports the hypothesis, the output was simulated by the weather 

generator and should be checked with nearby observed solar radiation data if it existed. 

IV.IV.II:   Water Budget Changes Due to LULC Development 

 Differences in the water yield to streamflow for scenarios with the same weather 

conditions but different LULC (e.g., Baseline Moderate to Developed Moderate) were all 

minor with all differences between any two LULC change scenarios being less than 1%. 

However, changes to components of the water balance are noticeable when comparing 

values between the scenarios with baseline LULC to those with increased low-density 
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development. All scenarios with increased development experienced lower 

contributions from surface runoff and greater contributions to streamflow from lateral 

flow and groundwater. Specifically, surface runoff decreased from Baseline Moderate to 

Developed Moderate by 7%, from Baseline Wet to Developed Wet by 6%, and from 

Baseline Dry to Developed Dry by 9%. These changes are all greater than the changes in 

scenario water yield. Conversely, lateral flow increased by 2% from Baseline Moderate 

to Developed Moderate, from Baseline Wet to Developed Wet, and from Baseline Dry to 

Developed Dry. Groundwater flows also increased between development scenarios with 

similar weather conditions but different LULC conditions. Groundwater flows increased 

from Baseline Moderate to Developed Moderate by 7%, Baseline Wet to Developed Wet 

by 4%, and from Baseline Dry to Developed Dry by 8%. When comparing scenarios with 

similar weather periods but contrasting LULC conditions percolation was greater for the 

scenarios with increased low-density development. 

The water balance tables for each scenario (Appendix Table A.1-6) indicate that 

increasing low-density development across the drainage basin will result in decreased 

surface runoff, greater lateral flow and groundwater contribution to streamflow, and 

more percolation of water to the deep aquifer. Specifically, surface runoff decreased 

from Baseline Moderate to Developed Moderate by 7%, from Baseline Wet to 

Developed Wet by 6%, and from Baseline Dry to Developed Dry by 9%. Conversely, 

lateral flow increased by 2% from baseline to developed LULC conditions over all EWP. 

Groundwater flows increased from Baseline Moderate to Developed Moderate by 7%, 

Baseline Wet to Developed Wet by 4%, and from Baseline Dry to Developed Dry by 8%. 
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The table shows that there were not large changes in ET, the water yield, or soil 

moisture when simulating over different LULC conditions. Percolation experienced 

increases from baseline due to developed conditions. 
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Tables and Figures: 

 

Table 4.1: Calibration and Validation objective function results. 

Table 4.1: Calibration/Validation Results 

Phase r2 NSE PBIAS p-factor r-factor 

Calibration 0.80 0.78 5.2 0.71 0.66 

Validation 0.85 0.80 1.3 0.71 0.67 
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Table 4.2: Parameters and their ranges for Calibration and Validation of the model. 

Table 4.2: Calibrated Model Parameters 

Parameter Name Description 
Min. 
Value 

Max. 
Value 

Fitted 
Value 

R__CN2.mgt Curve Number 0.02 0.15 0.088 

V__ALPHA_BF.gw Baseflow Contribution (Days/Year) 0.5 0.54 0.535 

V__GW_DELAY.gw Groundwater Delay (Days) 0 52 31.174 

V__GWQMN.gw Depth of Shallow Aquifer for Return Flow (mm) 0 14 11.571 

V__GW_REVAP.gw Groundwater "Revap" Coefficient 0.06 0.19 0.140 

V__ESCO.hru Soil Evaporation Compensation Factor 0.5 0.85 0.637 

R__SOL_AWC(..).sol Soil Available Water Content (mm H20/mm soil) 0.01 0.15 0.080 

R__SOL_K(..).sol Saturated Hydrualic Conductivity (mm/hr) 0.1 0.2 0.186 
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Table 4.3:  Kruskal-Wallis test results for all comparisons. Level of significance p < 0.05. 

Table 4.3: Kruskal-Wallis Results 
Grouping 
Method 

Kruksal-Wallis 
Chi-Squared Value p-value 

Duration 29.86 1.57E-05 

Spatial 7.677 0.175 

Monthly 14.41 0.0132 

 

Table 4.4: Bonferroni-corrected Mann-Whitney significance values for 36-month 
duration groups. 

Table 4.4: Duration Test Results 

Paired Scenarios Original p-value Bonferroni Corrected p-values 

DW-BD 0.0002 0.003 

BW-BD 0.0002427 0.0033978 

BW-DD 0.0002427 0.0031551 

DW-DD 0.0003417 0.0041004 

BM-DW 0.02261 Not Significant 

BM-BW 0.02475 Not Significant 

DM-DW 0.02706 Not Significant 

DM-BW 0.02955 Not Significant 

DM-BD 0.03132 Not Significant 

BM-BD 0.03318 Not Significant 

DM-DD 0.03614 Not Significant 

BM-DD 0.04043 Not Significant 

BM-DM 0.942 Not Significant 

BW-DW 0.9777 Not Significant 

BD-DD 0.982 Not Significant 
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Table 4.5: Bonferroni-corrected Mann-Whitney results for temporal (monthly) groups.  

Table 4.5: Monthly Test Results 

Paired Scenarios Original p-value Bonferroni Corrected p-values 

DW-BD 0.008293 Not Significant 

BW-BD 0.008293 Not Significant 

BW-DD 0.008293 Not Significant 

DW-DD 0.008293 Not Significant 

BM-BW 0.1432 Not Significant 

BM-DW 0.16 Not Significant 

DM-BW 0.16 Not Significant 

DM-DW 0.1782 Not Significant 

DM-BD 0.1978 Not Significant 

BM-BD 0.1978 Not Significant 

DM-DD 0.2189 Not Significant 

BM-DD 0.2189 Not Significant 

BM-DM 0.9081 Not Significant 

BW-DW 0.9323 Not Significant 

BD-DD 0.9323 Not Significant 

 

Table 4.6: Differences in median streamflow between scenarios. (A) Difference in 
median values given in cubic meters per second (row scenario minus column scenario).  
(B) Percent difference between scenarios. Note the smallest changes were between 
different LULC conditions within the same period of EWP.  

Table 4.6 A: Difference in Median Streamflow 

Scenario BM DM BW DW BD DD 

BM - -0.14 -2.61 -2.63 1.50 1.54 

DM   - -2.47 -2.49 1.64 1.68 

BW     - -0.02 4.11 4.15 

DW       - 4.13 4.17 

BD         - 0.04 

DD           - 

 

Table 4.6 B: Percent Difference in Median Streamflow 

Scenario BM DM BW DW BD DD 

BM - 5.53 101.08 101.82 -57.91 -59.56 

DM   - 90.54 91.24 -60.12 -61.68 

BW     - 0.37 -79.07 -79.89 

DW       - -79.15 -79.96 

BD         - -3.91 

DD           - 
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Table 4.7: Average annual water quantity values for each Scenario. All values given in millimeters.  

Table 4.7: Scenario Average Hydrologic Variables 

Scenarios Precipitation SURQ LATQ GWQ Percolate SW ET PET WY 

BM 1194.95 162.77 27.98 182.92 196.66 253.06 791.96 1000.23 383.08 

BW 1361.09 212.23 34.5 316.69 333.64 253.35 781.17 984.55 579.85 

BD 981.43 93.24 23.13 140.47 143.85 195.13 735.39 978.45 264.62 

DM 1194.91 151.2 28.47 195.69 209.55 253.63 791.24 1000.2 385.45 

DW 1361.05 198.43 35.1 329.41 347.65 254.12 780.06 984.52 580.03 

DD 981.4 84.67 23.5 151.04 155.26 198.93 731.21 978.42 267.53 
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Figure 4.1: Simulated results for the calibration time period (1992 – 2001). The period 
experiences fairly moderate weather conditions through most of the early portions of 
the record. On the other hand, the latter portions of the calibration period was during 
one of the most severe droughts on record. The green band indicates the range of all 
simulated values for the calibration period. The red line indicates the best simulation 

 

 

Figure 4.2: Simulated results for the validation period (2002 – 2013). There were many 
years characteristic of drought within the validation period. However, there existed 
some extremely wet years during the period. The green band indicates the range of all 
simulated values during the validation period. The red line indicates the best simulation. 
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Figure 4.3 (A): Boxplots for the 6 Scenarios by duration (36 months per scenario). 
Boxplots are grouped by color for easier indication. Green boxplots indicate the 
moderate weather conditions, blue boxplots indicate extremely wet weather conditions, 
and red boxplots indicate extremely dry weather conditions. The same two letter 
scenario formatting was applied. 
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Figure 4.3 (B): Boxplots visualizing streamflow distribution for all monthly averages 
within a scenario. 
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Figure 4.3 (C): Boxplots indicating the distribution from the average sub-basin 
streamflow for all scenarios. Formatting from Figure Result.1 was applied to this figure 
as well. 

 

 

Figure 4.4: Simulated streamflow for all months from all six scenarios. 
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Figure 4.5: Hydrographs for the 3 EWP (Baseline LULC conditions). 

 

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637

St
re

am
fl

o
w

 (
cm

s)

Month of Scenario

Simulated Scenario Monthly Streamflow

BM BW BD



90 
 

Chapter V: Discussion 

 

 Overall, the model was able to answer the research questions by accurately 

simulating streamflow and runoff over various weather periods and over different 

physical land-use conditions. The findings described in the previous section compare 

well with recent literature regarding scenario testing using the Arc SWAT hydrologic 

model. In addition, model outcomes conform closely with expected results as expressed 

by the hypotheses.  The model was shown to be well calibrated and all calibrated 

parameters were within realistic ranges. However, a degree of uncertainty remained 

that is explained in further detail within this section. The objectives of this section are to 

(1) discuss the findings  previous studies and hydrologic theory, (2) to address 

uncertainty of the findings, and (3) to offer suggestions on how future research could 

improve hydrologic understanding of this region. 

V.I: Impacts of Extreme Weather Conditions on Hydrology 

V.I.I: Responses of Hydrologic Processes to EWP 

Aside from the comparisons of runoff generation and streamflow to other 

modeling applications, the modeled streamflow and water balance results from this 

study reveal specific responses that relate well to hydrologic theory. The model 
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indicates how characteristically dry or wet periods are likely to influence specific 

hydrologic processes generating streamflow within the landscape. Precipitation is 

obviously the driving force of the hydrologic cycle and distinct changes in duration, 

frequency, and intensity can cause noticeable changes in hydrologic processes such as 

soil moisture, groundwater percolation, and water yields. Soil moisture, total and 

relative amounts of ET, and surface runoff all changed systematically between the 

weather scenarios. During periods of consistently above-average precipitation, soil 

moisture increases, which eventually reduces infiltration and increases surface runoff. 

Evapotranspiration has the potential to increase from increased soil moisture, yet it is 

also dependent on climate variables such as temperature, solar radiation, and humidity. 

Lastly, groundwater recharge is likely to be greater during periods of increased 

precipitation that occur over saturated soils. Conversely, periods of extremely dry 

conditions in the drainage basin experienced less soil moisture, less contribution to 

groundwater recharge, and less runoff compared to moderate conditions. 

Evapotranspiration accounted for a larger proportion of the water balance (~ 75%) 

during drought conditions and was markedly higher than during the moderate and wet 

weather periods. The model successfully simulated the impacts to streamflow and the 

water balance that were characteristic of the defined weather periods. This sufficiently 

answers the hypothesis postulated in Chapter 1 that the model could accurately 

simulate hydrologic processes over varying extreme weather conditions. These results 

relate to relevant modeling literature and hydrologic theory. 
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V.I.II: Relevance of Extreme Weather Studies to Climate Change Studies 

Modeling applications such as these are important, not only because the work in 

this thesis provided simulated streamflow from historic weather observations but 

because they provide information on the characteristics of streamflow and the water 

budget across a range of weather and climate conditions that a drainage basin will 

experience.  In addition to providing information on basin response to periods of 

extreme weather, this type of study is ideal for regions with highly variable weather and 

climate. Across the United States, most areas are experiencing significant trends in 

precipitation and temperature at a longer temporal scale. This generally implies that the 

increases or decreases in climate variables are persistent with some year-to-year 

fluctuation. The SEUS is an exception that has been noted to have little evidence 

supporting long-term annual trends in climate variables (i.e.; precipitation, temperature, 

etc.) when compared to other regions of the United States. While climate change is an 

issue that has received immense attention, studies investigating climate variability and 

its impact on the environment haven’t garnered as much attention. Small-scale studies 

such as this thesis provide detailed water resources information on the hydrologic 

response to areas with frequent periods of extreme weather. 

The statistical methods of this modeling application are simpler than studies that 

conduct trend detection on climatic variables and streamflow. Normalizing observed 

weather records and counting the number of months in a year above a threshold 

(wet/dry) and applying a moving window is a fairly simple procedure. Conducting the 

Kruskal-Wallis test, Mann-Whitney test, and the Bonferroni correction are also relatively 
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straightforward procedures. Long-term time series are ideal for trend detection, yet 

some complex computations must be performed on the time series (i.e.; pre-whitening) 

before analysis of data can begin. The simplified methods used in this thesis do not 

imply that the results are less accurate, or less reliable, compared to findings from 

studies incorporating trend detection. The methods used in this thesis applied a 

conservative correction to account for erroneously significant initial testing results. The 

relevance of investigating extreme weather periods is that they can be compared to 

moderate weather periods, as well as the opposite extreme (wet/dry), and quantify how 

weather and climate variability impact streamflow. 

V.I.III: Comparisons with Other Studies 

Previous investigations of differences in streamflow caused by varying weather 

conditions did not use the exact same methods as this study (i.e.; the use of non-

parametric ANOVA and pair-wise testing).  Nevertheless, similarities are noteworthy 

between the findings from this thesis and those of other studies investigating the 

differences in streamflow caused by different weather conditions. Recall that the 

highest simulated streamflow values were during the winter and early spring and the 

lowest values were during the summer and early autumn months. These results match 

those of other modeling applications as well as hydroclimatological and streamflow 

studies within the Piedmont physiographic region and hydrologic theory 

(Chattopadhyay and Jha, 2014; Groisman et al., 2001; Kim et al., 2014; Lins and Slack, 

1999).  
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Few applications of the model have been implemented within the Piedmont 

physiographic region or watersheds in the United States with similar climates. Modeling 

applications that investigated similar issues were primarily located in the eastern 

portions of Asia. Impacts on streamflow from different weather conditions from these 

Asian studies were summarized in Chapter One and are compared here to similar 

findings from this thesis.  Li et al. (2009) conducted LULC change and weather scenarios 

and found when comparing baseline runoff depth from a scenario with drier weather 

conditions and similar LULC inputs there was approximately 95% less runoff depth 

generated. Li et al. (2012) found that when comparing an average weather year to a wet 

weather year runoff increased by 161.9%, and decreased by 75.5% when comparing an 

average weather year to a dry weather year. Likewise, Guo et al. (2008) found that 

streamflow increased by 120% from an average weather year to a wet weather year, 

and decreased around 40% when comparing streamflow from a dry weather year to an 

average weather year. Scenario testing in the BRDB indicated that there was 

approximately 57 – 62% decrease in median streamflow from the moderate weather 

conditions to the extremely dry weather conditions, and approximately 90 – 100% 

increase in median streamflow when comparing moderate weather conditions to 

extremely wet weather conditions (Table 4.6). The impacts to streamflow caused by 

periods of extreme weather within this modeling application are similar to the findings 

of previous studies using the same model. The percent change in median streamflow 

from moderate to dry weather conditions was within the range of similar studies. 

However, the percent change in median streamflow from the moderate to wet weather 
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conditions in this study weren’t as high as those from similar studies. A possible 

explanation for this finding could be because the year/s defined as wet year/s in similar 

studies could have experienced much more precipitation compared to the wet weather 

years of this thesis. 

The modeling approach used in this thesis was fairly specific, yet moderate, wet, 

and dry periods were defined differently than other studies due to the different 

observed precipitation records between each drainage basin. While this thesis 

established thresholds to quantify periods of moderate, wet, and dry weather, other 

relevant studies compared streamflow from the single wettest and driest years on 

record to streamflow from a year that was closest to the average amount of 

precipitation. The multi-year approach of this thesis provided a more robust 

characterization of persistent weather conditions.  This relates to another challenge of 

comparing results between studies of runoff generation and streamflow. Most other 

studies used varying temporal scales of analysis. Studies that emphasized differences in 

streamflow from the single wettest year to the single driest year are not directly 

comparable with a study such as this that investigated differences during the drier and 

wetter periods (in some cases halves) of a climate record. These comparisons reveal a 

range of streamflow values over various weather conditions and how they change at 

various temporal resolutions (e.g.; year, period of years, decades). 
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V.II: Impacts of LULC Change on Streamflow 

 The modeling results indicated that there was no significant difference in 

streamflow attributed to changes in LULC within the BRDB at the basin or sub-basin 

scale. However, changes in water balance parameters between paired scenarios with 

the same weather conditions but different LULC conditions experienced distinct 

changes.  

V.II.I: Discussion of Low-Density Developments Impact on the Water Budget 

The water yield from all HRUs to streamflow was shown to increase slightly from 

baseline conditions to increased low-density development conditions.  Contrary to 

theories of urban hydrology that postulate increased surface water and decreased 

infiltration to groundwater, however, surface runoff decreased with development and 

was compensated for by increased groundwater and lateral flow contributions to 

streamflow. Sub-basin surface runoff totals for the 6 scenarios and 11 sub basins are 

given in Table 5.1, which shows that sub-basins 7, 10, and 11 did not experience 

changing surface runoff totals.  Although these sub-basins did have agricultural lands 

and abandoned lands, no low-density development previously existed within these sub-

basins, so the lup.dat module could not activate the LULC condition increase (Pai and 

Saraswat, 2011). This was a severe limitation of the modeling application but the 

simplest and most efficient way to implement LULC change within the model. 

Regardless, even with 3 of the 11 sub-basins not experiencing any LULC change, the 

median total surface runoff decreased when low-density development increased within 
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the basin. Median total surface runoff decreased from Baseline Moderate to Developed 

Moderate by 7%, from Baseline Wet to Developed Wet by 6%, and from Baseline Dry to 

Developed Dry by 9% (Table 5.2). 

Differences in the amount of runoff produced were greatest when comparing the 

driest conditions with different LULC scenarios and least when comparing the wettest 

conditions with different LULC. During drier conditions simulated soil moistures were less 

saturated and thus infiltration would be higher during these periods because of less 

antecedent moisture in the soils. Runoff is generated quickly from impervious and 

saturated surfaces because less infiltration occurs on these surfaces. The moderate and 

wet periods had higher and similar amounts of soil moisture, so infiltration was less and 

the introduction of less permeable surfaces during these periods wouldn’t create as great 

an increase in surface runoff as introducing less permeable surfaces during a period with 

less saturated soils (Putnam, 1972). 

 The spatial patterns of LULC and surface runoff change in sub-basins were 

investigated on a case-by-case basis. Sub-basins with the most noticeable decreases in 

total surface runoff were sub-basins 2, 3, and 4 (Table 5.1 and Table 5.3). These sub-

basins were all predominantly covered by agricultural lands with some pre-existing low-

density development. Total surface runoff decreased from Baseline Moderate to 

Developed Moderate in sub-basin 2 by 9.7%, in sub-basin 3 by 8.6%, and in sub-basin 4 

by 19.4%. A similar analysis comparing the runoff generated in these sub-basins from 

Baseline Wet to Developed Wet and from Baseline Dry to Developed Dry resulted in 

similar conclusions. The greatest decrease in total surface runoff (30.4%) was in sub-
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basin 4 from Baseline Dry to Developed Dry. Again, this was the sub-basin with the 

greatest increase in low-density development. Visualization of sub-basin changes in 

runoff between scenarios are given in Figure 5.3 and in the Appendix by Figure A.1-15. 

V.II.II: Why Simulated Surface Runoff Decreased 

Increases in developed land are generally expected to lead to increased surface 

runoff due to decreased infiltration and ET. An examination of how streamflow was 

calculated as a function of Soil Conservation Service curve numbers (CN) for each LULC 

type reveals why surface runoff decreased with low-density development in the 

simulations. First, RNGE (rangeland) and HAY (agriculture) are assumed by the model to 

be similar in composition to URLD (low-density development) with grasses, shrubs, and 

trees present.  Note that the monthly CN values for all LULC conditions in the model are 

computed as a function of LULC, antecedent moisture, and other factors that change 

seasonally (Figure 5.1). Agriculture and low-density development have similar CN values 

that decrease in summer months, yet the rangeland CN is noticeably higher and doesn’t 

experience the usual summertime decrease. The LULC update resulted in the conversion 

of Rangeland to URLD, which resulted in decreased CNs, especially during summer 

months when Rangeland CNs remain high whereas developed CNs are much lower 

(Figure 5.1). Groundwater contributes greatly to streamflow within the BRDB and 

reducing the ability of precipitation to infiltrate could cause the overall water yield to 

decrease. When the lup.dat module activated the LULC change scenario, half of the 

agricultural rangelands and all of the abandoned agricultural lands were converted to 

low-density development in all but 3 sub-basins. 
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Another issue with the selected method for implementing LULC change was that 

the spatial patterns of simulated change didn’t accurately simulate the change where it 

would be most likely to occur (i.e.; near roads, urban areas, and areas with favorable 

topography for development). Growth of developed areas usually emanates outward 

from developed areas, not just on land in cultivation or barren lands. Proximity to 

population centers is a major factor in LULC change within the SEUS and more detailed 

HRU updates could account for this change. However, this approach would be extremely 

time-consuming accounting for the thousands of HRUs in some simulations. 

Furthermore, this basin does not have stream gages within each sub-basin to provide 

streamflow data for calibrating simulations at the sub-basin scale.  

 Recall the curve number values for the low-density developed LULC classification 

were actually lower than the rangeland and cultivated land LULC classifications. In 

general, increases in development are taken as increasing impervious areas. What the 

model actually did, however, was alter the curve numbers of the RNGE and HAY LULC 

classification HRUs to reflect large parcels of land covered primarily by grass with very 

little impervious cover. When sparsely vegetated RNGE and HAY HRUs were updated to 

low-density development (URLD), the model simulated hydrologic and hydraulic 

processes and a drainage basin with drastically increased grass cover. In many cases, 

where clay soils were converted to low-density development, increased imperviousness 

would result in little increase to the CN. 
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V.II.III: Comparisons with Other Studies 

A few similar modeling applications have been conducted within the PSC and 

SEUS and, together with additional modeling applications with similar physical 

conditions in Asia, those results are comparable to the results of this thesis.  Kim et al. 

(2014), Wang et al. (2014), and Zhu and Li (2015) all conducted modeling applications 

investigating LULC change effects on streamflow in the SEUS. Kim et al. (2014) 

emphasized impacts of reforestation on streamflow, whereas Wang et al. (2014) 

emphasized how varying degrees of development can impact streamflow. Kim et al. 

(2014) found that prolonged reforestation (1920s – 2000s) led to decreasing monthly 

streamflow trends, especially from February to April. The Wang et al. (2014) study in the 

SEUS found that changing LULC to more urban conditions resulted in only a 2.1 – 3.5% 

increase in average daily streamflow depending on the magnitude of urbanization in the 

drainage basin. Zhu and Li (2015) found that increasing urban development and impacts 

to streamflow varied with scale. At the scale of the entire basin streamflow increased by 

approximately 3% as urbanization increased. However, when taking into account the 

spatial variation of the drainage basin, areas around cities that experienced rapid 

development experienced approximately 10% increase in streamflow (Zhu and Li, 2015). 

While their methods were different than those of this thesis, the study found that 

increases in developed lands led to increased streamflow within the Piedmont 

physiographic region.  

Similar results were obtained in this simulation of monthly average streamflow 

in the BRDB. Increases in low-density development generally resulted in modest 
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increases in streamflow. However, the streamflow increases were relatively minor 

compared to those caused by varying weather conditions and were insignificant by 

Kruskal-Wallis ANOVA and Mann-Whitney pair-wise tests. However, the modest gains in 

streamflow, both in this and other studies, seems quite conservative compared to 

theories of urban runoff and they result from increased groundwater rather than 

surface runoff. This discrepancy is discussed in the following sub-sections. 

V.III: Critical Interpretations of Results and Modeling 

V.III.I: Interpretations of Statistical Results 

Bonferroni corrections were intended to reduce the amount of findings that 

were significant by chance alone. However, 15 pair-wise scenarios may have been too 

few for the correction to be necessary and beneficial. Therefore, the significance tests 

should be considered to be a conservative measure of confidence in the difference 

tests. Tests that were significantly different by these metrics stood up to rigorous 

testing. On the other hand, tests that were not shown to be significant after the 

corrections should not be misinterpreted as proof that no differences existed. Although 

those pairs cannot be shown to be different at a high level of statistical confidence, they 

should not be dismissed completely.  After the post-hoc corrections were accounted for, 

only 4 of the 15 scenarios in the duration test were significantly different and no 

scenarios were significantly different when streamflow values were aggregated on a 

monthly scale. The post-hoc corrections revealed that drastically different weather 



102 
 

periods (specifically comparing wet periods to dry periods) do produce significant 

differences in streamflow.  

V.III.II: Water Budget 

 Minor inconsistencies existed within the water budget of the model. Model 

output documentation recommended using only a few output parameters to develop a 

water budget (Neitsch et al., 2005). While simple, it introduced the most uncertainty 

when synthesizing the modeled output. Abstractions were not given and had to be 

calculated from simulated sub-basin output. As mentioned earlier, abstractions only 

accounted for 2-3% of the water budget using the given equation. However when 

incorporating more variables that are traditionally used to create a water budget (e.g.; 

precipitation, evapotranspiration, and change in water storage of the soils) this small 

error still persisted. For example, a simple water budget equation of P = ET + WY yielded 

small errors as well (0-2%). There was great uncertainty when describing groundwater 

parameter output because few other modeling applications focus their discussion on 

this issue and generally little data exists to validate groundwater processes within the 

model. While streamflow and the water budget were assumed acceptable after model 

calibration and validation, it is apparent that further research into parameter calibration 

(specifically groundwater parameters) within the SEUS and PSC with the SWAT model is 

warranted. 
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V.III.III: Sources of Error 

 Error existed in multiple components of the model and were primarily the result 

of uncertainty. Errors within the weather data were in some cases evident whereas 

some were not noticed and propagated throughout the model. A weather generator 

also had to be used for some periods when no weather information existed. While the 

streamflow data that was used for the model was corrected by the USGS, simulated 

streamflow that was generated from erroneous or synthesized weather observations 

could have impacted model calibration and validation. Parameter ranges for the model 

were formed from the parameter ranges of other studies. These parameters were not 

calibrated specifically to the PSC so some uncertainty existed but caution was taken to 

not have unrealistic parameter ranges. Propagated errors from parameter uncertainty 

could have resulted in changes in the curve number which could have effected surface 

runoff generation and infiltration of water to the shallow and deep aquifer. This would 

in turn impact the water budget. Smaller parameter ranges could be developed for the 

PSC but this would require more research and experience with the model. In short, 

there are many sources of error when modeling and while they cannot always be 

determined and solved they must be kept in mind. 
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Tables and Figures:  

 

Table 5.1: Simulated total surface runoff generated in each sub-basin by each scenario 
(mm). 

Table 5.1: Surface Runoff Totals by Sub-basin 

Sub-basin BM BW BD DM DW DD 

1 484.04 636.87 321.83 455.69 603.41 299.39 

2 453.51 601.15 300.17 413.51 554.60 269.37 

3 485.70 632.39 267.27 447.08 585.02 239.02 

4 448.97 593.85 230.00 375.98 506.71 176.41 

5 589.04 749.61 379.92 565.30 722.36 363.13 

6 515.00 673.39 293.68 490.73 642.24 275.62 

7 394.78 525.17 204.66 394.78 525.17 204.66 

8 553.90 715.55 319.10 545.08 706.22 310.08 

9 403.85 528.08 211.99 380.91 500.21 194.20 

10 551.15 718.73 300.87 551.15 718.72 300.87 

11 405.24 539.85 207.32 405.24 539.85 207.32 

 

 

Table 5.2: Median Total Sub-basin Runoff for all 6 Scenarios.  

Table 5.2: Sub-basin Median Runoff by Scenario 

Scenario Median RO 

BM 484.04 

BW 632.39 

BD 293.68 

DM 447.08 

DW 585.02 

DD 269.37 

 



 

 
 

1
0
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Table 5.3: Comparison of Sub-basin Runoff Ratios by Sub-basin between scenarios. 

Table 5.3: Sub-basin Specific Changes in Runoff 

 

 

 

Sub-basin BW:BM BD:BM DM:BM DW:BM DD:BM BD:BW DM:BW DW:BW DD:BW DM:BD DW:BD DD:BD DW:DM DD:DM DD:DW

1 1.32 0.66 0.94 1.25 0.62 0.51 0.72 0.95 0.47 1.42 1.87 0.93 1.32 0.66 0.50

2 1.33 0.66 0.91 1.22 0.59 0.50 0.69 0.92 0.45 1.38 1.85 0.90 1.34 0.65 0.49

3 1.30 0.55 0.92 1.20 0.49 0.42 0.71 0.93 0.38 1.67 2.19 0.89 1.31 0.53 0.41

4 1.32 0.51 0.84 1.13 0.39 0.39 0.63 0.85 0.30 1.63 2.20 0.77 1.35 0.47 0.35

5 1.27 0.64 0.96 1.23 0.62 0.51 0.75 0.96 0.48 1.49 1.90 0.96 1.28 0.64 0.50

6 1.31 0.57 0.95 1.25 0.54 0.44 0.73 0.95 0.41 1.67 2.19 0.94 1.31 0.56 0.43

7 1.33 0.52 1.00 1.33 0.52 0.39 0.75 1.00 0.39 1.93 2.57 1.00 1.33 0.52 0.39

8 1.29 0.58 0.98 1.28 0.56 0.45 0.76 0.99 0.43 1.71 2.21 0.97 1.30 0.57 0.44

9 1.31 0.52 0.94 1.24 0.48 0.40 0.72 0.95 0.37 1.80 2.36 0.92 1.31 0.51 0.39

10 1.30 0.55 1.00 1.30 0.55 0.42 0.77 1.00 0.42 1.83 2.39 1.00 1.30 0.55 0.42

11 1.33 0.51 1.00 1.33 0.51 0.38 0.75 1.00 0.38 1.95 2.60 1.00 1.33 0.51 0.38

Scenarios
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Figure 5.1: Monthly CN average values and variability for LULC conditions in the BRDB. 

 

 

Figure 5.2: Distribution of sub-basin total surface runoff between scenarios. 
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Changes in Sub-basin Runoff between Scenarios 

 

Figure 5.3: Change in sub-basin surface runoff between two scenarios (BW and BM). 
Similar figures for all possible pairs of scenarios are given in the Appendix section. 
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Chapter VI: Conclusion

 

This thesis investigated how changes in extreme weather periods and increases 

in low-density development impact streamflow in a South Carolina Piedmont drainage 

basin. Weather and climate variability of the SEUS generally suppressed trends in 

precipitation and streamflow that were occurring in most other areas of the United 

States. Therefore, one facet of this research was focused on periods of extreme weather 

to capture the total range of streamflow over highly variable weather and climate 

conditions. LULC change research shows that specific to the Piedmont physiographic 

region, low-density development is increasing because of a desirable environment, 

increasing industry and business sectors, and an affordable cost of living. This increase in 

developed area often occurs on recently abandoned agricultural fields or parcels of land 

that aren’t being used. Modeling incorporated these potential changes to the landscape 

and how they affected the hydrologic process. 

Methods involved quantifying periods of extremely wet, extremely dry, and 

moderate weather conditions by establishing thresholds in observed SPI and PDSI 

indices and counting months above, below, or in between index thresholds. The Arc 

SWAT hydrologic model with the applied land-use update module (lup.dat) was 

calibrated to simulate increased low-density development occurring on abandoned 
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agricultural land. This specific method of modeling allowed for an investigation into the 

differences in scenario streamflow by using non-parametric ANOVA (Kruskal-Wallis) and 

pair-wise (Mann-Whitney) testing with post-hoc corrections (Bonferroni) on data that 

were not corrected for autocorrelation. 

Significant differences in streamflow existed between periods of extreme 

weather (wet to dry) and the magnitude of increased surface runoff was subtle and 

varied in each sub-basin with respect to increased low-density development. Bonferroni 

corrected pair-wise testing revealed that only 4 scenario pairs had significantly different 

streamflow values for the 36 months in each weather period. These were the Baseline 

Wet to Baseline Dry, Baseline Wet to Developed Dry, Developed Wet to Developed Dry, 

and Developed Wet to Baseline Dry paired scenarios. These were the 4 pairs that all 

were comparing the streamflow values from the extremely dry to the extremely wet 

weather periods. Before the Bonferroni corrections were calculated, the 3 scenarios 

with the largest p-values from the Mann-Whitney test were the Baseline Moderate to 

Developed Moderate, Baseline Wet to Developed Wet, and Baseline Dry to Developed 

Dry scenarios. This indicates that the least significant change to streamflow occurred 

when just accounting for changes in land-use and keeping weather conditions constant. 

Comparison of streamflow between scenarios with the same weather period and 

different LULC scenarios, and vice-versa, exhibited similar changes to findings from 

relevant literature/modeling applications. Analysis of the water balance between 

scenarios with different LULC conditions but similar weather conditions revealed that 
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increasing the amount of low-density development decreased surface runoff and 

increased lateral and groundwater flow contributions to streamflow. 

No modeling applications that account for changes in LULC, specifically to the 

anticipated increases in low-density development, have been applied to the PSC. That is 

alarming because the region is expected to dramatically grow within the near future. 

Low-density development increases that were modeled resulted in decreased runoff 

and increased sub-surface flows in response to low-density development. This result is 

contrary to conventional concepts of urban hydrology but this can be contributed to 

how the lup.dat module works within the model. The study area was a rural drainage 

basin that had intensive agricultural use, forested cover, some low-density 

development, and sparse pockets of abandoned land. Growth in the region radiates out 

from two small urban centers and transportation corridors. However, the simulated 

LULC change was a relatively uniform change from rangeland and agricultural land to 

low-density development. This offers insight into the potential changes to streamflow 

and surface runoff if only low-density developments were to occur within drainage 

basins with similar physical characteristics to the BRDB. Future work could project 

changes around a larger metropolitan area, such as a modeling application of the 

drainage basin that contains the city of Greenville. Using similar methods and 

accounting for changes in coniferous tree cover would surely alter the water balance 

and streamflow and would be worthwhile to investigate in drainage basins that 

silviculture is projected to increase or decrease.  
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This thesis focused on the most extreme wet and dry periods of weather 

compared to a representative moderate condition. Future modeling applications could 

model specific positive and negative phases of oceanic oscillations and investigate their 

impacts to the water balance in the SEUS and the PSC. Drainage basins could potentially 

have more stream gages on sub-basins which would allow for model calibration at the 

outlet and at interior locations within the watershed. Another likelihood is that other 

drainage basins in the PSC could have more observations from weather stations and 

include more variables (e.g.: humidity, wind, and evapotranspiration records). More 

complete datasets aid in the calibration and validation of a hydrologic model. 

Few studies have investigated the impacts from highly variable periods of 

weather and instead focus on detecting trends. This thesis detailed how variations from 

moderate weather periods can alter streamflow and the water balance. Significant 

changes were determined at 3 year periods which characterize the range of weather 

variability, and their impact to the water balance, within the PSC. This research strongly 

relates to water resources, environmental science, GIS modeling, and planning and 

development research within the SEUS. Findings could clearly support future 

investigations into the environmental impacts of increasing development in South 

Carolina Piedmont drainage basins. 
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Appendix A: Descriptions, Model Output, and Maps

 

Table A.1: Formatting descriptions for scenario abbreviations. 

Scenario Abbreviations 

First Letter Meaning Second Letter Meaning 

B Baseline LULC M Moderate 

D Increased Development W Extremely Wet 

  D Extremely Dry 
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Table A.2: Average streamflow values for the 6 Scenarios (units m3 s-1). 

Date BM DM BW DW BD DD 

1 1.838 1.968 6.274 6.296 4.727 4.679 

2 3.518 3.736 10.63 10.79 9.074 9.18 

3 2.117 2.311 14.36 14.43 4.968 5.101 

4 1.608 1.647 7.005 7.191 4.25 4.252 

5 4.18 4.163 5.021 5.11 3.711 3.891 

6 4.213 4.262 1.943 2.026 2.086 2.077 

7 1.191 1.228 1.417 1.374 0.714 0.701 

8 3.876 3.929 5.845 5.971 0.481 0.451 

9 2.038 2.127 6.624 6.411 0.921 0.835 

10 0.367 0.398 5.955 5.744 0.818 0.796 

11 1.609 1.527 3.987 3.939 0.709 0.702 

12 4.414 4.477 5.375 5.324 0.539 0.565 

13 11.98 12.04 8.568 8.527 2.634 2.697 

14 4.404 4.541 9.616 9.691 10.19 10.35 

15 4.623 4.7 5.489 5.579 7.448 7.618 

16 3.053 3.145 3.574 3.723 4.646 4.83 

17 1.785 1.806 4.243 4.197 2.051 2.195 

18 8.509 8.48 4.632 4.608 1.041 1.038 

19 3.576 3.601 3.129 3.088 0.664 0.613 

20 1.13 1.136 2.022 2.116 0.318 0.281 

21 0.623 0.599 0.686 0.674 2.482 2.397 

22 0.524 0.475 0.327 0.322 0.185 0.21 

23 1.649 1.626 0.886 0.76 0.575 0.511 

24 1.493 1.577 8.206 8.008 0.427 0.455 

25 5.96 6.104 8.312 8.349 0.689 0.722 

26 6.974 7.117 12.46 12.54 1.532 1.66 

27 8.006 8.104 9.244 9.235 8.639 8.922 

28 12.87 12.93 11.42 11.59 5.163 5.486 

29 5.256 5.353 6.852 6.822 2.025 2.133 

30 4.797 4.776 10.89 10.92 1.592 1.562 

31 1.871 1.916 3.081 3.189 1.135 1.053 

32 1.79 1.74 2.578 2.55 0.331 0.32 

33 3.824 3.685 3.852 3.881 0.925 0.837 

34 0.608 0.627 0.563 0.565 0.205 0.185 

35 0.361 0.344 0.24 0.242 0.517 0.5 

36 1.999 1.762 1.307 1.296 0.631 0.648 
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Table A.3: Average streamflow values for specific months (units m3 s-1). 

Month 
BM DM BW DW BD DD 

January 6.593 6.704 7.718 7.724 2.683 2.699 

February 4.965 5.131 10.902 11.007 6.932 7.063 

March 4.915 5.038 9.698 9.748 7.018 7.214 

April 5.844 5.907 7.333 7.501 4.686 4.856 

May 3.740 3.774 5.372 5.376 2.596 2.740 

June 5.840 5.839 5.822 5.851 1.573 1.559 

July 2.213 2.248 2.542 2.550 0.838 0.789 

August 2.265 2.268 3.482 3.546 0.376 0.351 

September 2.162 2.137 3.721 3.655 1.443 1.356 

October 0.500 0.500 2.282 2.210 0.403 0.397 

November 1.206 1.166 1.704 1.647 0.600 0.571 

December 2.635 2.605 4.963 4.876 0.532 0.556 

       
 

Table A.4: Average streamflow values for all sub-basins (units m3 s-1). 

Sub-basin BM DM BW DW BD DD 

1 0.215 0.217 0.293 0.292 0.123 0.124 

2 0.289 0.292 0.391 0.390 0.162 0.163 

3 1.574 1.597 2.372 2.378 1.036 1.058 

4 0.349 0.347 0.569 0.566 0.240 0.240 

5 0.362 0.361 0.518 0.517 0.280 0.279 

6 2.265 2.290 3.474 3.479 1.520 1.548 

7 0.213 0.213 0.332 0.332 0.152 0.152 

8 0.403 0.408 0.610 0.614 0.293 0.298 

9 2.900 2.931 4.429 4.438 1.988 2.022 

10 0.628 0.633 0.960 0.964 0.454 0.459 

11 3.573 3.610 5.461 5.474 2.473 2.513 
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Table A.5: Sub-basin Streamflow Contribution and Water Balance for BM Scenario. 

 

Table A.6: Sub-basin Streamflow Contribution and Water Balance for BW Scenario. 
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Table A.7: Sub-basin Streamflow Contribution and Water Balance for BD Scenario.

 

Table A.8: Sub-basin Streamflow Contribution and Water Balance for DM Scenario. 
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Table A.9: Sub-basin Streamflow Contribution and Water Balance for DW Scenario. 

 

Table A.10: Sub-basin Streamflow Contribution and Water Balance for DD Scenario. 
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Table A.11: Water Balance Parameters for the BRDB for all scenarios. 

 

Table A.12: Percent change in water balance parameters between weather periods. 

 

Table A.13: Percent change in water balance parameters with LULC change. 
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Figure A.1: Ratio of surface runoff between the BD and BM scenarios. 

 

Figure A.2: Ratio of surface runoff between the BW and BM scenarios. 
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Figure A.3: Ratio of surface runoff between the DM and BM scenarios. 

 

Figure A.4: Ratio of surface runoff between the DW and BM scenarios. 
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Figure A.5: Ratio of surface runoff between the DD and BM scenarios. 

 

Figure A.6: Ratio of surface runoff between the BD and BW scenarios. 
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Figure A.7: Ratio of surface runoff between the DM and BW scenarios. 

 

Figure A.8: Ratio of surface runoff between the DW and BW scenarios. 
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Figure A.9: Ratio of surface runoff between the DD and BW scenarios. 

 

Figure A.10: Ratio of surface runoff between the DM and BD scenarios. 



132 
 

 

Figure A.11: Ratio of surface runoff between the DW and BD scenarios. 

 

Figure A.12: Ratio of surface runoff between the DD and BD scenarios. 
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Figure A.13: Ratio of surface runoff between the DW and DM scenarios. 

 

Figure A.14: Ratio of surface runoff between the DD and DM scenarios. 
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Figure A.15: Ratio of surface runoff between the DD and DW scenarios. 
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