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Abstract

For n a positive integer, the Prouhet-Tarry-Escott Problem asks for two different

sets of n positive integers for which the sum of the kth powers of the elements of one

set is equal to the sum of the kth powers of the elements of the second set for each

positive integer k < n. For n > 12, it is not known whether such sets exist. I will

give some background on this problem and then show how Newton polygons can be

used to determine information on the size of the 2-adic value of a certain constant

associated with the problem.
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Chapter 1

Introduction

We discuss a result about a classical problem in Diophantine number theory, namely

the Prouhet-Tarry-Escott problem (the PTE problem). The PTE problem asks for

two distinct multisets of integers X = {x1, . . . , xn} and Y = {y1, . . . , yn} such that

n∑
i=1

xei =
n∑
i=1

yei for e = 1, 2, . . . , k (1.1)

for some integer k ≤ n− 1. If X, Y satisfy (1.1) then the pair is called a solution of

the PTE problem, denoted as X =k Y . A solution is ideal if k = n − 1. We call n

the size of the solution and k the degree. The largest known ideal solution is of size

n = 12 [1]. However, there is no known ideal solution of size n = 11 [1].

Let α1, α2, . . . , αn be n variables. Then,

σ1 = α1 + α2 + · · ·αn

σ2 = α1α2 + α1α3 + · · ·+ αn−1αn

σ3 = α1α2α3 + α1α2α4 + · · ·+ αn−2αn−1αn

... ...

σn = α1α2 · · ·αn

are the elementary symmetric functions in α1, α2, . . . , αn. We recall the following

result about symmetric polynomials.
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Lemma 1. Let R be a commutative ring with an identity. Then every symmet-

ric polynomial in α1, . . . , αn with coefficients in R is expressible as a polynomial in

σ1, . . . , σn with coefficients in R.

Proof. For a symmetric h(α1, . . . , αn) ∈ R[α1, . . . , αn], we set T = Th to be the set

of n-tuples (`1, . . . , `n) with the coefficient of α`11 · · ·α`nn in h(α1, . . . , αn) non-zero.

We define the size of h to be (k1, . . . , kn) where (k1, . . . , kn) is the element of T with

k1 as large as possible, k2 as large as possible given k1, etc. Since h(α1, . . . , αn)

is symmetric, it follows that (`1, . . . , `n) ∈ T if and only if each permutation of

(`1, . . . , `n) is in T . This implies that k1 ≥ k2 ≥ · · · ≥ kn. Observe that we can use

the notion of size to form an ordering on the elements of R[α1, . . . , αn] in the sense

that if h1 has size (k1, . . . , kn) and h2 has size (k′1, . . . , k′n), then h1 > h2 if there is

an i ∈ {0, 1, . . . , n − 1} such that k1 = k′1, . . . , ki = k′i, and ki+1 > k′i+1. Note that

the elements of R[α1, . . . , αn] which have size (0, 0, . . . , 0) are precisely the constants

(the elements of R).

Suppose now that (k1, . . . , kn) is the size of some symmetric g ∈ R[α1, . . . , αn]

with g 6∈ R. For non-negative integers d1, . . . , dn, the size of h = σd1
1 σ

d2
2 · · ·σdn

n is

(d1 + d2 + · · · + dn, d2 + · · · + dn, . . . , dn−1 + dn, dn). Taking d1 = k1 − k2, d2 =

k2 − k3, . . . , dn−1 = kn−1 − kn, and dn = kn, we get the size of h is (k1, . . . , kn). The

coefficient of αk1
1 · · ·αkn

n in h is 1. It follows that there is an a ∈ R such that g − ah

is of smaller size than g.

The above implies that for any symmetric element f ∈ R[α1, . . . , αn], there exist

a1, . . . , am ∈ R and h1, . . . , hm ∈ R[σ1, . . . , σn] such that f − a1h1 − · · · − amhm has

size (0, 0, . . . , 0). This implies the lemma.

Taking R to be the ring on integers, we use Lemma 1 to prove the following

lemma [1].
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Lemma 2. Let n and k be integers with 1 ≤ k < n. Let x1, . . . , xn and y1, . . . , yn

denote arbitrary integers. The following are equivalent:

n∑
i=1

xei =
n∑
i=1

yei for e = 1, 2, . . . , k, (1.2)

deg
(

n∏
i=1

(z − xi)−
n∏
i=1

(z − yi)
)
≤ n− (k + 1) = n− k − 1 (1.3)

(z − 1)k+1
∣∣∣( n∑

i=1
zxi −

n∑
i=1

zyi

)
(1.4)

Proof. We begin by proving (1.2) =⇒ (1.3). Let

n∑
i=1

xei =
n∑
i=1

yei for e = 1, 2, . . . , k.

Further, we define,

f(z) =
n∏
i=1

(z − xi) and g(z) =
n∏
i=1

(z − yi).

Upon expanding, we have,

f(z) = zn − σ1z
n−1 + σ2z

n−2 − · · ·+ (−1)nσn

g(z) = zn − σ′1zn−1 + σ′2z
n−2 − · · ·+ (−1)nσ′n,

where σj signifies the sum of each product of j of the xi (with distinct subscripts),

and the σ′j are similarly defined using the yj. Thus,

σ1 =
n∑
i=1

xi

σ2 =
∑

1≤i<j≤n
xixj

...
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Note that

σ1 =
n∑
i=1

xi =
n∑
i=1

yi = σ′1

by assumption. Further,

n∑
i=1

x2
i = (x1 + · · ·+ xn) (x1 + · · ·+ xn)− 2(x1x2 + · · ·+ xnxn−1)

= σ2
1 − 2σ2

and

n∑
i=1

y2
i = (y1 + · · ·+ yn) (y1 + · · ·+ yn)− 2(y1y2 + · · ·+ ynyn−1)

= (σ′1)2 − 2σ′2.

For k ≥ 2, we have
n∑
i=1

x2
i =

n∑
i=1

y2
i ,

so that

σ2
1 − 2σ2 = (σ′1)2 − 2σ′2

= σ2
1 − 2σ′2.

Hence σ2 = σ′2. This trend continues until we deduce that σj = σ′j, for all j ≤ k. We

lastly consider the difference

f(z)− g(z) =
n∏
i=1

(z − xi)−
n∏
i=1

(z − yi)

= (zn − σ1z
n−1 + σ2z

n−2 − · · ·+ (−1)nσn)

− (zn − σ′1zn−1 + σ′2z
n−2 − · · ·+ (−1)nσ′n).
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Since σi = σ′i for 1 ≤ i ≤ k, we have

deg
(

n∏
i=1

(z − xi)−
n∏
i=1

(z − yi)
)
≤ n− k − 1.

This completes the proof of (1.2) =⇒ (1.3).

Next, we establish (1.3) =⇒ (1.2). For k = 1, from (1.3), we deduce that the

coefficient of zn−1 must be the same in both f(z) and g(z). That is, based off of

the notation above, σ1 = σ′1. This establishes that (1.3) =⇒ (1.2) for k = 1. We

suppose that (1.3) =⇒ (1.2) for k ≤ k0 for some 1 ≤ k0 < n− 1 and prove by way

of induction that (1.3) =⇒ (1.2) for k = k0 + 1.

For 1 ≤ e ≤ n− 1, define Se =
n∑
i=1

xei and S ′e =
n∑
i=1

yei . Newton’s Identities imply

n∑
i=1

xei = σ1Se−1 − σ2Se−2 + · · · ± σe−1S1 ∓ eσe

and

n∑
i=1

yei = σ′1S
′
e−1 − σ′2S ′e−2 + · · · ± σ′e−1S

′
1 ∓ eσ′e.

Given (1.3) holds for k = k0 + 1, we deduce that σi = σ′i for 1 ≤ i ≤ k0 + 1. Also,

(1.3) will hold for k = k0, so that by the induction hypothesis Se = S ′e for e ≤ k0.

Taking e = k0 + 1 above, we deduce that

n∑
i=1

xk0+1
i = σ1Sk0 − σ2Sk0−1 + · · · ± σk0S1 ∓ (k0 + 1)σk0+1

= σ′1S
′
k0 − σ

′
2S
′
k0−1 + · · · ± σ′k0S

′
1 ∓ (k0 + 1)σ′k0+1 =

n∑
i=1

yk0+1
i .

Thus, (1.2) holds for k = k0 + 1, completing the proof that (1.3) =⇒ (1.2).

Next, we show that (1.2) =⇒ (1.4). We consider the function

F (w) =
n∑
i=1

wxi −
n∑
i=1

wyi ,
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so that

F ′(w) =
n∑
i=1

xiw
xi−1 −

n∑
i=1

yiw
yi−1

...

F (k)(w) =
n∑
i=1

xi · · · (xi − (k − 1))wxi−k −
n∑
i=1

yi · · · (yi − (k − 1))wyi−k.

Observe that F (1) = 0 and (1.2) implies F ′(1) = ∑n
i=1 xi −

∑n
i=1 yi = 0. For k ≥ 2,

we also deduce from (1.2) that

F ′′(1) =
n∑
i=1

xi(xi − 1)−
n∑
i=1

yi(yi − 1)

=
(

n∑
i=1

x2
i −

n∑
i=1

y2
i

)
−
(

n∑
i=1

xi −
n∑
i=1

yi

)
= 0.

Continuing in this manner, we deduce that (1.2) implies

F (1) = F ′(1) = F ′′(1) = · · · = F (k)(1) = 0.

Hence, F (w) has a root at w = 1 with multiplicity k + 1. Therefore,

(z − 1)k+1
∣∣∣( n∑

i=1
zxi −

n∑
i=1

zyi

)
,

establishing (1.4).

Lastly, we prove (1.4) =⇒ (1.2). Let

h(z) =
n∑
i=1

zxi −
n∑
i=1

zyi .

Thus, (1.4) is the same as (z − 1)k+1|h(z). In other words, h(z) has a zero at z = 1

of order k + 1. It follows that h(j)(1) = 0 for 0 ≤ j ≤ k. Since

h′(z) =
n∑
i=1

xiz
xi−1 −

n∑
i=1

yiz
yi−1,
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we obtain

h′(1) =
n∑
i=1

xi −
n∑
i=1

yi = 0 =⇒
n∑
i=1

xi =
n∑
i=1

yi.

Since

z · h′(z) = z

(
n∑
i=1

xiz
xi−1 −

n∑
i=1

yiz
yi−1

)

=
n∑
i=1

xiz
xi −

n∑
i=1

yiz
yi ,

we obtain by taking a derivative that

h′(z) + z · h′′(z) =
n∑
i=1

x2
i z
xi−1 −

n∑
i=1

y2
i z

yi−1. (1.5)

Setting z = 1 into (1.5), for k ≥ 2, we have

0 = h′(1) + 1 · h′′(1) =
n∑
i=1

x2
i −

n∑
i=1

y2
i =⇒

n∑
i=1

x2
i =

n∑
i=1

y2
i .

Continuing in this manner, by successfully multiplying by x, taking a derivative, and

setting x = 1, we obtain
n∑
i=1

xei =
n∑
i=1

yei for e = 1, 2, . . . , k.

This completes the proof that (1.4) =⇒ (1.2) and, hence, the proof of Lemma 2.

Corollary 3. The pair of multisets {x1, . . . , xn} , {y1, . . . , yn} is an ideal PTE so-

lution if and only if
n∏
i=1

(z − xi)−
n∏
i=1

(z − yi) = C (1.6)

for some real constant C.

Proof. This follows immediately from the fact that k = n − 1 is the degree of an

ideal solution. Using Lemma 2 and k = n− 1, we see that (1.3) is equivalent to

deg
(

n∏
i=1

(z − xi)−
n∏
i=1

(z − yi)
)
≤ 0.

Thus, the corollary follows from the equivalence of (1.2) and (1.3).
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Corollary 4. Let a ∈ Z. The pair of multisets {x1, . . . , xn} and {y1, . . . , yn} is

an ideal PTE solution if and only if the pair of multisets {x1 + a, . . . , xn + a} and

{y1 + a, . . . , yn + a} is an ideal PTE solution

Proof. From Corollary 3, it is sufficient to observe that (1.6) holds if and only if

n∏
i=1

(z − a− xi)−
n∏
i=1

(z − a− yi) = C (1.7)

holds. Indeed, it is clear that the difference of the left and right side of (1.6) has

infinitely many zeroes if and only if the difference of the left and right side of (1.7)

has infinitely many zeroes, from which the result follows.

As a consequence, we can translate ideal solutions as in Corollary 4 to obtain

new ideal solutions. We will use this at various stages of our arguments.

Definition 5. Let X = {x1, . . . , xn} and Y = {y1, . . . , yn}, where X =n−1 Y is an

ideal solution. We define

Cn(X, Y ) =
n∏
i=1

(z − xi)−
n∏
i=1

(z − yi).

Further, we define

Cn =
∞∏
j=1

p
ej

j ,

where

ej = min{e : pej‖Cn(X, Y ) for some X and Y with X =n−1 Y }.

There has been some interest in determining the exact values of Cn (cf. [1] and

8



[2]). The values of Cn for 2 ≤ n ≤ 7 are known:

C2 = 1

C3 = 22

C4 = 22 · 32

C5 = 24 · 32 · 5 · 7

C6 = 25 · 32 · 52

C7 = 26 · 33 · 52 · 7 · 11.

In this thesis, we pay particular attention to ideal solutions of sizes 8 and 9. For

these, according to [2], it is known that

C8 = 2e1 · 33 · 52 · 72 · 11 · 13, where 4 ≤ e1 ≤ 8

C9 = 2e2 · 3e3 · 52 · 72 · 11 · 13 · 17e4 · 23e5 · 29e6 , where 7 ≤ e2 ≤ 9, 3 ≤ e3 ≤ 4
0 ≤ ej ≤ 1, for j ∈ {4, 5, 6}.

After discussing further preliminary material in Chapter II, we show in Chap-

ter III that 29‖C9 (so e2 = 9). Further, in Chapter IV, we show that 26|C8 (so

6 ≤ e1 ≤ 8). We do not know if 28|C8. In particular, our arguments are based on

working modulo small powers of 2 (taking advantage of information from Newton

polygons) and on obtaining contradictions to (1.6) by considering the largest power

of 2 that divides the left-hand side of (1.6) for different choices of z ∈ Z. The example

X = {221, 259, 274, 278, 292, 320, 375, 473}

and

Y = {42, 606, 652, 699, 721, 1413, 2424, 4127}

9



has the property that

8∏
i=1

(z − xi)−
8∏
i=1

(z − yi) ≡ 128 (mod 212).

In particular, for any value of z ∈ Z, the left-hand side is exactly divisible by 27,

and arguments showing (1.6) cannot hold with 27‖C8 modulo a power of 2 less than

212 are not possible. Thus, it is unlikely our same methods can provide a proof that

28|C8. Similarly, the example

X = {24, 135, 152, 153, 170, 199, 345, 426}

and

Y = {21, 22, 525, 611, 622, 772, 1979, 2172}

has the property that

8∏
i=1

(z − xi)−
8∏
i=1

(z − yi) ≡ 64 (mod 210).

In the way of a slightly different example, we note that

X = {31914804930538, 392011859134314, 414199788923609,

550721232905543, 563570240533272, 870589495146520,

1039460985683225, 1113937730497799}

and

Y = {226375709153429, 382003430459158, 502458387218286,

690280771238587, 750383096702563, 764464731978500,

790357673966989, 870082337037308}

10



has the property that

8∏
i=1

(z − xi)−
8∏
i=1

(z − yi) ≡ 954668492881984 (mod 250).

Of interest here is that the number 954668492881984 is exactly divisible by 26. Per-

haps these examples exist for the obvious reason that 26‖C8, but we cannot show

this.

The examples above raise the following natural question.

Question: Let p be a prime. Is it possible to have a p-adic solution to

n∏
i=1

(z − xi)−
n∏
i=1

(z − yi) = C,

for which νp(C) < νp
(
Cn

)
, where νp is the usual p-adic valuation?

11



Chapter 2

Further preliminaries

We write

f(z) =
n∏
j=1

(z − xj) =
n∑
j=0

ajz
j and g(z) =

n∏
j=1

(z − yj) =
n∑
j=0

bjz
j

where xj, yj ∈ Z are chosen so that

f(z)− g(z) = Cn (2.1)

and so that the exact power of 2 dividing Cn is equal to the exact power of 2 dividing

Cn. Thus, by Corollary 3, we have that X = {x1, . . . , xn} and Y = {y1, . . . , yn} is

an ideal solution. Recall that we write this as X =n−1 Y . We write C = Cn, where

n should be clear from the context.

Definition 6. For m ∈ Z − {0} and p a prime, νp(m) denotes the nonnegative

integer k such that pk‖m. We further define νp(0) = +∞.

For fixed n, we consider the two sets of points in the extended plane

S1 = {(j, ν2(an−j)) : 0 ≤ j ≤ n} and S2 = {(j, ν2(bn−j)) : 0 ≤ j ≤ n}.

Since f(z) − g(z) = C, a constant, we see that an−j = bn−j for 0 ≤ j ≤ n − 1.

Otherwise, we would have that f(z) − g(z) is a polynomial with degree at least 1.

Thus, S1 and S2 have at least n of n+ 1 points in common.

12



We translate f(z) and g(z) by the same translation, if necessary, so that a0 6= 0

and b0 6= 0. Thus, ν2(a0) 6= +∞ and ν2(b0) 6= +∞. Note that (2.1) still holds. This

ensures that the remaining points (n, ν2(a0)) and (n, ν2(b0)), which may differ in S1

and S2, are in the finite plane.

We will be interested in Newton polygons, and in particular to a result that goes

back to work of Dumas [3].

Definition 7 (Newton Polygon). Let F (z) = ∑n
j=0 cjz

j ∈ Z[z] with c0cn 6= 0. Let p be

a prime. For j ∈ {0, · · · , n}, we define xj = j and define yj = νp(cn−j). We consider

the lower edges along the convex hull of the points in S = {(x0, y0), · · · , (xn, yn)}.

The polygonal path formed by these edges is called the Newton polygon associated

with F (z) with respect to p.

Thus, the Newton polygon of f(z) with respect to the prime 2 is exactly the lower

convex hull of the points in S1. Similarly, the Newton polygon of g(z) with respect

to 2 is the lower convex hull of the points in S2. Note that the slopes of the edges

of the Newton polygons increase from left to right. The following is an important

property of Newton polygons applicable to our current situation.

Lemma 8. The Newton polygons of f(z) and g(z) will each pass through n+1 lattice

points (including the endpoints), which we denote respectively as

T1 = {(j, tj) : 0 ≤ j ≤ n} and T2 = {(j, t′j) : 0 ≤ j ≤ n}

After possibly rearranging the xj and yj, we have 2tj−tj−1 exactly divides xj and

2t′j−t′j−1 exactly divides yj for each j ∈ {1, 2, · · · , n}.

This lemma follows directly from a theorem of Dumas [3] which asserts that the

Newton polygon of a product of two polynomials with respect to a prime p can

13



be obtained by translating the edges of the Newton polygons for each polynomial

with respect to p. Since f(z) and g(z) are a product of n linear factors, we have

that the Newton polygons associated with f(z) and g(z) each have ten lattice points

(including endpoints) along its edges.

As a consequence of Lemma 8, the slope of each edge of the Newton polygon of

f(z) and g(z) is an integer. In the last statement of Lemma 8, we observe that this

implies that the values ν2(xj) and ν2(yj) are increasing as j ranges from 1 to n.

We consider the following figures as potential Newton polygons for f(z) in Fig-

ure 2.1 and g(z) in Figure 2.2, where n = 9.

y

x
O 1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9
10
11
12
13

Figure 2.1: NP 1

y

x
O 1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

Figure 2.2: NP 2

Note that the solid circles represent the points of S1 and S2 with the bottom left-

hand endpoint equal to (0, 0) in each case (since the polynomials are monic). Further,

the open circles refer to the lattice points in T1 and T2 as mentioned in Lemma 8.

In these figures, the 9 points in S1 that are identical to points in S2 correspond to

the x-coordinates in [0, 8]. Following Lemma 8, the lattice points associated with

14



Figures 2.1 and 2.2 are as follows:

T1 = {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 2), (6, 4), (7, 6), (8, 9), (9, 13)},

and

T2 = {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 1), (6, 2), (7, 3), (8, 4), (9, 5)}.

We note that in general, unlike S1 and S2, the points other than (0, 0) belonging to

T1 and T2 can be different. Looking at the height differences between two consecutive

lattice points in T1, referring to Lemma 8, we note that there are exactly four odd

xj’s, three xj’s that are exactly divisible by 4, one xj exactly divisible by 8, and one

xj that is exactly divisible by 16. Similarly for T2, there are exactly four yj’s that

are odd and five yj’s that are exactly divisible by 2. By considering the following

lemma, we can immediately see that Figure 2.1 and Figure 2.2 cannot be the Newton

polygons for f(z) and g(z).

Lemma 9. If the points (n, ν2(a0)) in S1 and (n, ν2(b0)) in S2 are distinct and

k = min{ν2(a0), ν2(b0)},

then 2k‖C.

Proof. By hypothesis, we assume that a0 and b0 are distinct. Since C = a0 − b0, we

see that

ν2(C) = ν2(a0 − b0) = min{ν2(a0), ν2(b0)} = k;

thus, 2k‖C.

We note that 2ν2(a0) exactly divides the constant term of f(z) and 2ν2(b0) exactly

divides the constant term of g(z). Hence according to Figure 2.1 and Figure 2.2, we

15



see that 2ν2(b0) = 25‖C, which is a contradiction since it is known that 27 divides C

[2].

We develop some notation that we will be using in the subsequent chapters. Let

k1 be the number of odd xj and k′1 be the number of odd yj; thus, the 2-valuation

of each of these xj and yj is equal to 0. Further, we let k2 be the number of xj

which are congruent to 2 (mod 4) and k′2 be the number of yj that are congruent to

2 (mod 4); thus, the 2-valuation of each of these xj and yj is equal to 1.

By translating f(z) and g(z) by 1 (or some odd number to guarantee that a0

and b0 are not equal to 0), we may suppose k′1 ≤ bn/2c. Furthermore, we may

now translate by 2 (or some other number that is congruent to 2 (mod 4)) if needed

to obtain that k′2 ≥ d(n − k′1)/2e of the yj are congruent to 2 (mod 4). To make

this concept explicit, after translating as above, we note that Figure 2.2 could be

the Newton polygon of g(z) since in this case k′1 = 4 = b9/2c and k′2 = 5 ≥ 3 =

d(9 − k′1)/2e. However, after our translations, Figure 2.1 could not be the Newton

polygon of g(z) since in this case k′1 = 4 but k′2 = 0 < 3 = d(9− k′1)/2e.

Using the following proposition from Caley [2], we deduce that if C is even, then

k1 = k′1.

Lemma 10. Let {x1, . . . , xn} =n−1 {y1, . . . , yn} be two multisets of integers that

constitute an ideal PTE solution, and suppose that a prime p divides the constant C

associated with this solution. Then we can reorder the integers yi so that

xi ≡ yi (mod p) for i = 1, . . . , n.

Proof. Let p be a prime dividing C; thus, C ≡ 0 (mod p). We consider the field of

p elements, Fp. Since
∏n
j=1(z − xj)−

∏n
j=1(z − yj) = C ≡ 0 (mod p), we have

n∏
j=1

(z − xj) ≡
n∏
j=1

(z − yj) (mod p),
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in Fp[x]. Since Fp is a field, we have that the polynomial ring Fp[x] is a unique

factorization domain. Since each factor z− xi and z− yi is irreducible, we have that

the multisets {x1, . . . , xn} and {y1, . . . , yn} are equal as subsets of Fp. That is to say,

after reordering, xi ≡ yi (mod p) for i = 1, . . . , n.

Taking p = 2 in Lemma 10, we obtain the fact that the number of odd xj must

equal the number of odd yj, that is, k1 = k′1. Further, we can interchange the roles

of f(z) and g(z), if necessary, so that k′2 ≥ k2. Since there are n elements in the

multisets X and Y , it must be the case that k1 + k2 ≤ n and k′1 + k′2 ≤ n.

Before ending this chapter, we establish the following.

Lemma 11. Let n ≥ 8. Suppose {x1, . . . , xn} =n−1 {y1, . . . , yn}. For 1 ≤ j ≤ n, let

xj and yj be such that x1, . . . , xt and y1, . . . , yt are odd and otherwise xj and yj are

even. Then

xk1 + · · ·+ xkt ≡ yk1 + · · ·+ ykt (mod 16), for k ≥ 1.

and

xkt+1 + · · ·+ xkn ≡ ykt+1 + · · ·+ ykn (mod 16), for k ≥ 1. (2.2)

Proof. Since x1, . . . , xt and y1, . . . , yt are odd, we obtain

x4
j ≡ y4

j ≡ 1 (mod 16), for 1 ≤ j ≤ t.

Thus,

xk1 + · · ·+ xkt ≡ xk+4
1 + · · ·+ xk+4

t (mod 16)

and

yk1 + · · ·+ ykt ≡ yk+4
1 + · · ·+ yk+4

t (mod 16).
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As xk+4
j ≡ yk+4

j ≡ 0 (mod 16) for t+ 1 ≤ j ≤ n, we deduce that

xk1+ · · ·+ xkt ≡ xk+4
1 + · · ·+ xk+4

t ≡ xk+4
1 + · · ·+ xk+4

n

≡ yk+4
1 + · · ·+ yk+4

n ≡ yk+4
1 + · · ·+ yk+4

t ≡ yk1 + · · ·+ ykt (mod 16),

provided 1 ≤ k + 4 ≤ n − 1. Since n ≥ 8, the above holds for 1 ≤ k ≤ 3. On the

other hand,

xk1 + · · ·+ xkn = yk1 + · · ·+ ykn, for 1 ≤ k ≤ 3.

Hence,

xkt+1 + · · ·+ xkn ≡ ykt+1 + · · ·+ ykn (mod 16), for 1 ≤ k ≤ 3.

The lemma follows since for k ≥ 4, both sides of the congruence in (2.2) are divisible

by 16.
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Chapter 3

The 2-adic value of C9

It is known that 27|C9 and 210 - C9 [2]. Our goal in this chapter is to increase the

lower bound of the valuation of 2 in C9. Using Newton polygons in the PTE problem,

we establish 29|C9 from which we can deduce that 29‖C9.

We make use of the notation in the previous chapter with n = 9 and deal with

two cases, each involving multiple subcases, depending on the values of k′1 and k′2.

Case 1. k′1 + k′2 = 9

In this case, we are assuming that there are no elements in the multiset Y that are

congruent to 0 (mod 4). We consider possibilities for the Newton polygon of f(z).

From Lemma 10, we know that k1 = k′1 odd xj’s are in the multiset X. Additionally,

the slopes of the Newton polygon of f(z) are integers. We recall that k2 ≤ k′2, which

implies that X contains at most k′2 elements that are divisible by 2 exactly once.

Combining these facts, we have that each point (j, ν2(a9−j)) in S1 is on or above the

corresponding point (j, ν2(b9−j)) in S2.

Case 1.1. k2 = k′2

By construction, we supposed k′1 ≤ 4. Therefore, in this subcase, k2 and k′2 are both

greater than or equal to 5. We consider what happens when z = 2 in (2.1). That is,
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we consider

f(2)− g(2) =
9∏
j=1

(2− xj)−
9∏
j=1

(2− yj),

where at least five of the xj’s and at least five of the yj’s are 2 modulo 4. Thus, 210

divides each product, and therefore, their difference. This implies a contradiction,

since 210 - C.

Case 1.2. k2 < k′2

In this subcase, X must contain some elements that are congruent to 0 (mod 4) but

Y cannot. We deduce that the right-most point of the Newton polygon of f(z) is

above the point (9, ν2(b0)). Since these endpoints are distinct, by Lemma 9 we have

2ν2(b0)‖C. Since all of the even elements in Y are congruent to 2 (mod 4) (thus have

valuation equal to 1 with respect to the prime 2), we have that ν2(b0) = k′2. In the

case under consideration, ν2(b0) = k′2 = 9 − k′1. By assumption 27 | C; thus, k′2 ≥ 7

and k′1 ≤ 2.

Figure 3.1 and Figure 3.2 are possible Newton polygons for f(z) and g(z).

Case 1.2.1. k′1 = 2

Letting k′1 = 2 as in Figure 3.2, we arrive at a contradiction as follows. Consider the

constant term in the expansion of the product

(z − y3)(z − y4)(z − y5)(z − y6)(z − y7)(z − y8)(z − y9). (3.1)

We note that in this case, yj ≡ 2 (mod 4) for 3 ≤ j ≤ 9. Hence, we see that the

constant term is divisible by 27. Further, the coefficient on z in the above product

is given by
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y3y4y5y6y7y8 + y3y4y5y6y7y9 + y3y4y5y6y8y9 + · · ·+ y4y5y6y7y8y9, (3.2)

the sum of the product of combinations of 6 roots taken at a time. Thus, in total,

there are seven terms in the summation, each of which is 26 times an odd number.

Hence, the coefficient on z in the product above is exactly divisible by 26. Next, we

consider (z − y1)(z − y2) = z2 − (y1 + y2)z + y1y2. Recall y1 and y2 are both odd.

Thus, the constant term y1y2 is also odd. Further, the coefficient on z is even, since

it is the sum of two odd numbers. Multiplying the two products above gives us the

expression for g(z). We now consider the coefficient of z in g(z), given by the sum of(
the product of the constant term in (3.1) and −(y1 + y2)

)
+
(
the product of (3.2) and y1y2

)
.

Note that this sum is exactly divisible by 26. Hence, (8, 6) must be a point in S2.

Since the points in S1 and S2 agree for 0 ≤ j ≤ 8, we have that (8, 6) is also a point
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in S1. Recall k1 = k′1 = 2 and the slopes of the edges of the Newton polygon of f(z)

are integers. Hence, the line segment joining (2, 0) and (8, 6) must be on the Newton

polygon of f(z). By Lemma 8, we see that k2 ≥ 6. We again consider when z = 2 in

(2.1). Notice, there are at least six factors 2− xj in f(2) and at least six factors of

2− yj in g(2) each divisible by 22. Hence 212 | C in this case. However, we are given

210 - C, giving us a contradiction.

Case 1.2.2. k′1 = 1

In this subcase, we consider the following polynomial

w(z) = (z − y2)(z − y3) · · · (z − y9) =
8∑
j=0

ujz
j. (3.3)

We study the 2-adic valuations in the coefficients of w(z) to gain insight into g(z).

Note, (z − y1)w(z) = g(z), with g(z) monic. Thus, u8 = 1. Further, u0 is exactly

divisible by 28, since yj ≡ 2 (mod 4) for 2 ≤ j ≤ 9.

We claim that 28‖u1. Otherwise, considering the coefficient of z in g(z), we

deduce

ν2(a1) = ν2(b1) = ν2(u0 − y1u1) = min{ν2(u0), ν2(u1)} ≤ 8.

The first equality holds since a1 = b1. The second equality holds by expanding

(z − y1)w(z) and comparing the coefficient of z with that of g(z). The third equal-

ity follows from the rules of valuations and the fact that y1 is odd and thus does

not contribute a factor of 2. The last inequality holds since ν2(u0) = 8. Since

(8, ν2(a1)) ∈ S1, there is an edge of the Newton polygon of f(z) that lies on or below

the segment joining (1, 0) and (8, 8). Since the slopes of the edges of the Newton

polygon must be integers, we deduce that the segment joining (1, 0) and (8, 7) is on
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the Newton polygon of f(z). Setting z = 2 in (2.1) as before gives 215 | C, implying

a contradiction. Thus, 28‖u1.

Similarly, we argue 28‖u2. Otherwise, we have

ν2(a2) = ν2(b2) = ν2(u1 − y1u2) = min{ν2(u1), ν2(u2)} ≤ 8.

This would imply that there is a point on or below (7, 8) in S1. We again recall

that the edges of the Newton polygon of f(z) have integer slopes, and therefore the

segment joining (1, 0) and (7, 6) is on the Newton polygon of f(z). Setting z = 2 in

(2.1) would imply 214|C, a contradiction. Thus, 28‖u2.

Next, we show 22‖u7. In this subcase, recall that there are eight elements of Y

that are congruent to 2 (mod 4). Writing yj = 4y′j + 2 for j ∈ {2, 3, . . . , 9} in (3.3),

we see that

u1 = −27

 9∏
j=2

(2y′j + 1)
( 1

2y′2 + 1 + 1
2y′3 + 1 + · · ·+ 1

2y′9 + 1

)
.

We note that every odd square is 1 (mod 8). In particular, (2y′k + 1)2 ≡ 1 (mod 8).

Therefore, for each k ∈ {2, 3, . . . , 9}, we have( 9∏
j=2

(2y′j + 1)
)

1
2y′k + 1 ≡

( 9∏
j=2

(2y′j + 1)
)

1
2y′k + 1 · (2y

′
k + 1)2

≡
( 9∏
j=2

(2y′j + 1)
)

(2y′k + 1) (mod 8).

Thus,

−u1

27 ≡
9∏
j=2

(2y′j + 1) ·
9∑

k=2

1
2y′k + 1 ≡

9∏
j=2

(2y′j + 1) ·
9∑

k=2
(2y′k + 1) (mod 8).

Recall, we proved 28‖u1. Thus ν2(u1
27 ) = 1. We deduce that ∑9

k=2(2y′k + 1) is exactly

divisible by 2 (since a product of odd numbers does not contribute any factors of 2).

Multiplying ∑9
k=2(2y′k + 1) by 2, we deduce that

ν2(y2 + y3 + · · ·+ y9) = 2.
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In other words, 22‖u7.

The last bit of information we need for this case is that 24‖u6. We continue

along the same lines as the argument given for 22‖u7. Here, we let k and l be in

{2, 3, · · · , 9} with k 6= l. We have,( 9∏
j=2

(2y′j + 1)
)

1
(2y′k + 1)(2y′l + 1) ≡

( 9∏
j=2

(2y′j + 1)
)

(2y′k + 1)2(2y′l + 1)2

(2y′k + 1)(2y′l + 1)

≡
( 9∏
j=2

(2y′j + 1)
)

(2y′k + 1)(2y′l + 1) (mod 8).

Note that u2 is the sum of the product of six roots of w(z) at a time. Thus, u2 is 26

times the sum of all expressions of the form above. That is,

u2 = 26

 9∏
j=2

(2y′j + 1)
 ∑

2≤k<l≤9

1
(2y′k + 1)(2y′l + 1)

 .
Therefore,

u2

26 ≡
( 9∏
j=2

(2y′j + 1)
) ∑

2≤k<l≤9

1
(2y′k + 1)(2y′l + 1)

≡
( 9∏
j=2

(2y′j + 1)
) ∑

2≤k<l≤9
(2y′k + 1)(2y′l + 1) (mod 8).

Since 28‖u2, we deduce that 22 exactly divides ∑
2≤k<l≤9

(2y′k + 1)(2y′l + 1). Multiplying

by 22, we deduce that

ν2

( ∑
2≤k<l≤9

ykyl

)
= 4.

In other words, 24‖u6.

Recall yj = 4y′j + 2. Thus, for each j ∈ {2, 3, · · · , 9}, we have that

y2
j = (4y′j + 2)2 = 4 · (2y′j + 1)2

is 4 times an odd square. We consider

y2
2 + y2

3 + · · ·+ y2
9 = 4 ·

9∑
j=2

(2y′j + 1)2.
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Since (2y′j + 1)2 ≡ 1 (mod 8), we deduce

9∑
j=2

(2y′j + 1)2 ≡ 0 (mod 8).

Therefore, y2
2 + y2

3 + · · · + y2
9 is 4 times a number that is divisible by 8. Thus,

y2
2 + y2

3 + · · ·+ y2
9 is divisible by 25. We make use of the identity

(y2 + y3 + · · ·+ y9)2 = y2
2 + y2

3 + · · ·+ y2
9 + 2

∑
2≤k<l≤9

ykyl.

The last sum in the identity above is u6. We established before that u6 is exactly

divisible by 24. Thus, the right-hand side of the identity is divisible by 25. However,

on the left-hand side we have u2
7. We have shown that 22‖u7; thus 24‖u2

7. Hence, we

have a contradiction since the 2-adic valuations do not agree on the left and right

sides of the equation above. This completes the case for k′1 = 1.

Case 1.2.3. k′1 = 0

From (2.1),

C9 = f(0)− g(0) = −
9∏
j=1

xj +
9∏
j=1

yj

is divisible by 29. This is what we set out to show, so we are done in this case.

(Alternatively, one can use that the 18 xj’s and yj’s cannot all have a common prime

divisor p in (2.1) if νp(C9) is minimal. From this point of view, this subcase cannot

occur.)

Case 2. k′1 + k′2 < 9

Recall that we chose k′1 ≤ 4 and

k′2 ≥
⌈

9− k′1
2

⌉
≥ 3.
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We also have k′2 ≥ k2. We note the importance of the condition k′1 + k′2 < 9. This

implies k′2 < 9 − k′1. We consider the coefficient b9−k′1 . This coefficient is equal to

plus or minus the sum of the product of yj’s taken k′1 at a time. Since there are k′1

odd elements of Y , exactly one of the summands mentioned in the previous sentence

is a product of odd numbers. Thus, ν2(b9−k′1) = 0. Hence, (k′1, 0) and (k′1 + k′2, k
′
2)

are points in S2 and, hence, points in S1. Since there are exactly k1 = k′1 odd xj

and the Newton polygon of f(z) has integer slopes, we deduce that the segment

joining (k′1, 0) and (k′1 + k′2, k
′
2) is part of the Newton polygon of f(z). In particular,

k2 ≥ k′2 ≥ 3. Since k′2 ≥ k2, we deduce k2 = k′2 ≥ 3.

Case 2.1. k′1 ≤ 3

If k′1 ≤ 3, then there are at least six even xj and six even yj. Out of the six even xj’s

and the six even yj’s, at least three xj’s and three yj’s are 2 (mod 4). Thus, setting

z = 2 in (2.1), we obtain 29|C, as desired.

Case 2.2. k′1 = 4

We lastly consider k′1 = k1 = 4 and k2 = k′2 ≥ 3. Since we are in the case where

k′1 + k′2 < 9 and k′1 = 4, we have k′2 < 5. Thus, either k′2 = 4 or k′2 = 3.

Case 2.2.1. k′2 = 4

If k′2 = 4, then k2 = k′2 = 4 implies that there are five even xj’s and five even yj’s.

Out of the five even xj’s and the five even yj’s, there are four xj’s and four yj’s that

are 2 (mod 4). Setting z = 2 in (2.1), we obtain 29|C and are done as before.
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Case 2.2.2. k′2 = 3

One possibility for the Newton polygons for f(z) and g(z) is given by Figure 3.3

and Figure 3.4. We quickly rule out the possibility that these could be the Newton

polygons for f(z) and g(z). By Lemma 9, assuming Figure 3.3 and 3.4 are the

Newton polygons of f(z) and g(z), we have 27‖C. However, setting z = 2 in (2.1),

we obtain 28|C, a contradiction.

If the right-most points on the Newton polygons, (9, ν2(a0)) and (9, ν2(b0)), are

on or above (9, 9), then we take z = 0 in (2.1) to see that 29|C. This finishes the

argument in this case.

Further, we recall the slopes of the Newton polygons of f(z) and g(z) are integers,

where the slopes increase from left to right. For each of these Newton polygons, the

edge with slope 1 ends at the point (k1 +k2, k2) = (7, 3). Thus, the remaining edge(s)

have slope at least 2, and therefore, the right most point must be on or above (9, 7).

If exactly one of the Newton polygons has the right-most point (9, 7), then we

proceed as above, setting z = 2 in (2.1) to get 28|C. However, Lemma 9 implies that
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27‖C, a contradiction. If both of the Newton polygons have right-most endpoint

(9, 7), as in Figure 3.4, then by setting z = 4 in (2.1), we see that 29|C, giving us

the conclusion we want.

We now have that both of the Newton polygons have right-most point on or above

(9, 8). We have already handled the case where both of the right-most points are on

or above (9, 9). Thus, we consider the case that at least one of the Newton polygons

has right-most point (9, 8). We consider if the Newton polygons for f(z) and g(z)

both look like Figure 3.6. If this is the case, we take z = 8 in (2.1). Doing so yields

that 29|C, as desired.

Now, we assume one of the Newton polygons looks like Figure 3.6 and the other

has right-most point above (9, 8) as in Figure 3.5. We observe that (8, 5) is a point

in either S1 or S2, and thus both, since they agree for all j ≤ 8. Since there are

four odd xj’s and yj’s and three xj’s and yj’s congruent to 2 (mod 4) we have (7, 3)

as a point in both S1 and S2. Hence the edge joining (7, 3) and (8, 5) is common

to both Newton polygons. Thus, the Newton polygons look like those of Figure 3.5

and Figure 3.6 with the exception that the right-most point of Figure 3.5 may be
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above (9, 9) and the associated edge modified accordingly. Observe that each of x5,

x6, x7, y5, y6, and y7 is 2 modulo 4. Thus, they are either 2 or 6 modulo 8. If one of

these xj is congruent to one of the yj modulo 8, then by setting z = 2 or z = 6 in

(2.1), we see that 29|C, and we are done. Hence, we only need to consider the case

that each of x5, x6, and x7 is congruent modulo 8, each of y5, y6, and y7 is congruent

modulo 8, and x5 6≡ y5 (mod 8). As a consequence, one of the sums x5 + x6 + x7 or

y5 + y6 + y7 is equivalent to 2 + 2 + 2 ≡ 6 (mod 8) and the other is 6 + 6 + 6 ≡ 2

(mod 8). Further, since (7, 3) and (8, 5) are points on the Newton polygon of f(z)

and on the Newton polygon of g(z), we obtain from Lemma 8 that

x8 ≡ y8 ≡ 4 (mod 8).

Further, since the right-most points of the Newton polygons are on or above (9, 8),

by Lemma 8 we have

x9 ≡ y9 ≡ 0 (mod 8).

Since x5 + x6 + x7 6≡ y5 + y6 + y7 (mod 8), x8 ≡ y8 (mod 8), and x9 ≡ y9 (mod 8),

we obtain that

x5 + x6 + x7 + x8 + x9 6≡ y5 + y6 + y7 + y8 + y9 (mod 8).

This contradicts (2.2) in Lemma 11 with t = 4, n = 9 and k = 1. Thus, we are done

in this case.
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Chapter 4

Lower bound for ν2
(
C8

)

In this chapter, we investigate C8. It is known (see [2]) that 24|C8 and 29 - C8. In

this chapter, we increase the lower bound on the 2-adic valuation of C8. We show

that 26|C8. For possible future analysis, we show in all but one case of conditions on

X = {x1, . . . , x8} and Y = {y1, . . . , y8} that we consider, one has 28|C8.

Our set-up in this chapter is that

f(z) =
8∏
j=1

(z − xj) =
8∑
j=0

ajz
j and g(z) =

8∏
j=1

(z − yj) =
8∑
j=0

bjz
j

where xj, yj ∈ Z are chosen so that

f(z)− g(z) = C8, (4.1)

with the largest power of 2 dividing C8 equal to the largest power of 2 dividing C8.

Thus, by Corollary 3, we have that X = {x1, . . . , x8} and Y = {y1, . . . , y8} give an

ideal solution or X =7 Y . For the remainder of this chapter, we have C = C8.

Recall f(z) and g(z) have been translated, if necessary, so that a0 6= 0, b0 6= 0

and k1, k′1, k2, and k′2 are as before. Thus, k′1 = k1 ≤ 4, k′2 ≥ d(8 − k′1)/2e ≥ 2 and

k′2 ≥ k2. Since here the multisets X and Y have eight elements, k1 + k2 ≤ 8 and

k′1 + k′2 ≤ 8.
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Case 1. k′1 = 4 and k′2 = 4

From Lemma 11, we have

x2
5 + x2

6 + x2
7 + x2

8 ≡ y2
5 + y2

6 + y2
7 + y2

8 (mod 16).

As an even integer m squared is 4 modulo 16 if m ≡ 2 (mod 4) and otherwise is 0

modulo 16, the above congruence can be rewritten as

4k2 ≡ 4k′2 (mod 16) ⇐⇒ k2 ≡ k′2 (mod 4).

Thus, either k2 = 0 or k2 = 4. In the second case, letting z = 2 in (4.1) shows 28|C,

as we want. So suppose k2 = 0. In this case, the edges of the Newton polygon of

f(z) with positive slope have slope ≥ 2. In particular, this implies

ν2(a8−j) ≥ 2(j − 4) for 5 ≤ j ≤ 8.

As the points
(
j, ν2(a8−j)

)
on S1 and

(
j, ν2(b8−j)

)
on S2 agree for 0 ≤ j ≤ 7, we

deduce

ν2(b8−j) ≥ 2(j − 4) for 5 ≤ j ≤ 7. (4.2)

Define uj ∈ Z by the equation

(z − y5)(z − y6)(z − y7)(z − y8) =
4∑
j=0

ujz
j.

Next, we obtain information on the 2-adic values of the uj. As yj ≡ 2 (mod 4) for

5 ≤ j ≤ 8, we have

u0 = y5y6y7y8 =⇒ ν2(u0) = 4.

Also, u1 is the sum of 4 terms that are exactly divisible by 8, so ν2(u1) ≥ 4. Assume

ν2(u1) = 4. We make use of the congruence

(z − y1)(z − y2)(z − y3)(z − y4) ≡ (z + 1)4 ≡ z4 + 1 (mod 2). (4.3)
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Thus, the product on the left when expanded is a quartic with odd constant term

and an odd coefficient for z4 but otherwise has even coefficients. Thus, there are

integers r and s satisfying

b1 = u1(2r + 1) + u0(2s).

Since ν2(u0) = ν2(u1) = 4, we deduce ν2(b1) = 4. This contradicts (4.2) with j = 7.

Thus,

ν2(u1) ≥ 5.

Writing yj = 2(2y′j + 1) for 5 ≤ j ≤ 8, we see that

u1 = −23(2y′5 +1)(2y′6 +1)(2y′7 +1)(2y′8 +1)
(

1
2y′5 + 1 + 1

2y′6 + 1 + 1
2y′7 + 1 + 1

2y′8 + 1

)
.

We deduce that

−u1

23 ≡ (2y′5 + 1)(2y′6 + 1)(2y′7 + 1)(2y′8 + 1)
8∑
j=5

(2y′j + 1) (mod 8).

Since ν2(u1) ≥ 5, we deduce that the last sum above must be divisible by 4. Hence,

u3 = −y5 − y6 − y7 − y8 = −2
8∑
j=5

(2y′j + 1) =⇒ ν2(u3) ≥ 3.

Observe that

u2
3 = 22

8∑
j=5

(2y′j + 1)2 − 2u2. (4.4)

Since
8∑
j=5

(2y′j + 1)2 ≡ 4 (mod 8),

we see that 22∑8
j=5(2y′j+1)2 is exactly divisible by 24. On the other hand, ν2(u3) ≥ 3

implies u2
3 is divisible by 26. Hence, (4.4) implies

ν2(u2) = 3.
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From (4.3), there exist integers r, s and t such that

b2 = u2(2r + 1) + u1(2s) + u0(2t).

The values and estimates obtained above on ν2(uj), with j ∈ {0, 1, 2}, imply now

that ν2(b2) = 3. This contradicts (4.2) with j = 6, completing this case.

Case 2. k′1 ≤ 3

We can suppose k′1 ≥ 1 (see Case 1.2.3 of the previous chapter). Since k′1 ≤ 3, we

obtain k′2 ≥ d(8 − 3)/2e = 3. Suppose first that k′2 < 8 − k′1. Since the points(
j, ν2(a8−j)

)
on S1 and

(
j, ν2(b8−j)

)
on S2 agree for 0 ≤ j ≤ 7, we deduce that

k2 = k′2. In this case, letting z = 2 in (4.1), we see that 28|C, as we want. Now,

suppose k′2 = 8− k′1. As in Case 1, we obtain k2 ≡ k′2 (mod 4). Hence, k2 ≥ 1 and,

in particular, xk′1+1 ≡ 2 (mod 4). Let z = xk′1+1 in (4.1). As f(z) = 0 and g(z) is

divisible by 210, we get 210|C, contradicting that 29 - C.

Case 3. k′1 = 4 and k′2 < 4

Given that k′1 + k′2 < 8 in addition to knowing k1 = k′1 and k′2 ≥ k2, we deduce

k1 + k2 ≤ k1 + k′2 = k′1 + k′2 < 8.

Therefore, k1 + k2 < 8. Since the points
(
j, ν2(a8−j)

)
on S1 and

(
j, ν2(b8−j)

)
on

S2 agree for 0 ≤ j ≤ 7, we conclude that k2 = k′2 in this case. Note that k′2 ≥

d(8 − 4)/2e = 2 is true. Setting z = 2, one checks in this case that 28+k′2−k′1 divides

C. As 8 + k′2 − k′1 ≥ 8 + 2− 4 = 6, we obtain 26|C in this case.
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