
University of South Carolina University of South Carolina

Scholar Commons Scholar Commons

Theses and Dissertations

2016

Chebyshev Inversion of the Radon Transform Chebyshev Inversion of the Radon Transform

Jared Cameron Szi
University of South Carolina

Follow this and additional works at: https://scholarcommons.sc.edu/etd

 Part of the Mathematics Commons

Recommended Citation Recommended Citation
Szi, J. C.(2016). Chebyshev Inversion of the Radon Transform. (Master's thesis). Retrieved from
https://scholarcommons.sc.edu/etd/3758

This Open Access Thesis is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of Scholar Commons. For more information, please contact
digres@mailbox.sc.edu.

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/etd
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F3758&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarcommons.sc.edu%2Fetd%2F3758&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/3758?utm_source=scholarcommons.sc.edu%2Fetd%2F3758&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu

Chebyshev Inversion of the Radon Transform

by

Jared Cameron Szi

Bachelor of Arts
University of California, Davis 2014

Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Arts in

Mathematics

College of Arts and Sciences

University of South Carolina

2016

Accepted by:

Pencho Petrushev, Director of Thesis

Joshua Cooper, Reader

Lacy Ford, Senior Vice Provost and Dean of Graduate Studies

c© Copyright by Jared Cameron Szi, 2016
All Rights Reserved.

ii

Abstract

In its two-dimensional form, the Radon transform of an image (function) is a col-

lection of projections of the image which are parameterized by a set of angles (from

the positive x-axis) and distances from the origin. Computational methods of the

Radon transform are important in many image processing and computer vision prob-

lems, such as pattern recognition and the reconstruction of medical images. However,

computability requires the construction of a discrete analog to the Radon transform,

along with discrete alternatives for its inversion. In this paper, we present discrete

analogs using classical methods of Chebyshev polynomial reconstruction, along with

a new computational method which makes use of sub-exponentially localized frames

comprised of Chebyshev polynomials. This new method leads directly to a potential

new algorithm for image reconstruction using Radon inversion.

iii

Table of Contents
Abstract . iii

List of Figures . vi

Chapter 1 Introduction . 1

Chapter 2 The Continuous Radon Transform 5

2.1 Classical Chebyshev Inversion Formula 5

2.2 Classical Fourier Inversion Formula 12

Chapter 3 The Discrete Radon Transform 18

3.1 Discrete Analog of Classical Chebyshev Inversion Formula 18

3.2 Data Acquisition Algorithms for the Discrete Radon Transform . . . 20

Chapter 4 Sub-Exponential Localization Properties of Needlets 29

Chapter 5 Ridgelet Inversion of the Radon Transform 40

5.1 Orthogonal Expansion using Chebyshev Polynomials 40

5.2 Construction and Computation of the Ridgelet Inversion Formula . . 45

Bibliography . 52

Appendix A Source Code . 54

A.1 Discrete Line Integral: Algorithm 1 54

iv

A.2 Discrete Line Integral: Algorithm 2 58

A.3 Discrete Radon Transform . 60

A.4 Classical Chebyshev Inversion Algorithm 61

v

List of Figures

Figure 1.1 The Radon Transform . 2

Figure 1.2 Sinogram . 3

Figure 3.1 8× 8 Image Region . 21

Figure 3.2 256× 256 Shepp-Logan Phantom Head 22

Figure 3.3 Image Representation on an Image Region 22

Figure 3.4 Pixel Intersection . 23

Figure 3.5 Length of Pixel Intersection . 24

Figure 3.6 Various Types of Pixel Cuttings 26

Figure 3.7 Algorithm A.1: Image Reconstruction 26

Figure 3.8 Algorithm A.2: Image Reconstruction 27

Figure 5.1 Plot of φ4(t) . 42

Figure 5.2 Plot of Cutoff Function ϕ(t) . 43

Figure 5.3 Localization of Kernel ΦM . 44

Figure 5.4 Visualization of Smoothness Issues of tϕ(t) 46

Figure 5.5 Visualization of Ridgelets ψν . 47

Figure 5.6 Plot of ω(t) . 50

Figure 5.7 Localization of Kernel Ψν . 51

vi

Chapter 1

Introduction

An integral transform is any transform T of the form

(Tf) (u) =
∫ t2

t1
K (t, u) f(t)dt.

It is a transform in the sense that the input of the transform is a function f , and the

output is yet another function Tf . While there are many integral transforms that

have useful applications, one that has remained of primary interest (particularly in

the field of tomography) is the Radon transform.

Let f ∈ C1
0(R2), the space of compactly supported, continuously differentiable

functions. The Radon transform of f is defined to be a function on the space of

straight lines in R2,

Rf(L) =
∫
L
f(x)dx. (1.1)

Any straight line L in R2 can be parameterized in the form

L = (s cosφ+ t sinφ,−s sinφ+ t cosφ), s ∈ R,

where t is the distance of L from the origin and φ is angle between L and the positive

x-axis. Using the following notation,

θ = (cosφ, sinφ), θ⊥ = (− sinφ, cosφ), (1.2)

it follows that (1.1) can be expressed as

Rθf(s) = Rf (θ, s) =
∫
R
f(sθ + tθ⊥)dt. (1.3)

1

As we’ve alluded to, the Radon transform is used in a variety of applications in

the field of tomography, which is concerned with the reconstruction of an image from

cross-sectional projection data of an object. In this manner, the function f can be

thought of as an unknown density function (i.e. density of pixels in a region). The

Radon transform then represents projection data obtained from a tomographic scan,

such as an X-ray (see Figure 1.2). Therefore, the inversion of the Radon transform

may be used to recreate the original density function from the projection data.

Figure 1.1: A visualization of the Radon transform.

The focus of this paper will remain on inversion formulas for the Radon transform.

Chapter 2 focuses on two classical inversion formulas for the Radon transform in the

continuous case. These results make use of Chebyshev polynomials and the Fourier

transform, and a more concise version of their constructions can be found in [10].

Chapter 3 is comprised of two sections. The first of which will focus on developing

a discretization of the Chebyshev inversion formula presented in Chapter 2, a result

which can also be found in [10] (albeit in briefer form). The second section of Chapter

3 provides a semi-rigorous explanation behind algorithms for capturing the projection

2

data given by the Radon transform, an absolutely necessary consideration for the

development of any reconstruction algorithm. Many such algorithms exist (see [3],

[6], and [12]), but the explanations provided are more loosely based on algorithms

found in [7] and [9].

Figure 1.2: A visualization of projection data, also called a sinogram.

In Chapter 4, we present in rigorous detail some localization properties of special-

ized types of kernels and frames which are used in the construction of a new Radon

inversion formula to be presented in Chapter 5. These properties are explored in

a more general sense in [8] and [11], though our goals only require us to consider

a specific case. Finally, in Chapter 5, we present in the first section the aforemen-

tioned new Radon inversion formula based on the results of Chapter 4. The second

section of Chapter 5 includes the associated discretization, which thereby provides

the computational framework necessary to lead to a new potential reconstruction

algorithm.

Overall, this paper highlights the importance of the development of inversion

3

formulas for the Radon transform. Numerical methods rely on discrete versions of

approximate results, but the approximation of inversions rely on the theoretical exis-

tence of analytic forms. Hence, to put it simply, theoretical underpinnings for inver-

sions must be put in place before numerical methods can be developed for industrial

applications.

4

Chapter 2

The Continuous Radon Transform

2.1 Classical Chebyshev Inversion Formula

In this section, we will present an inversion formula for the Radon transform based

on the so-called Ridge Chebyshev Polynomials of the Second Kind. For the sake of

simplicity, it will be useful to use the following notation in this section, as opposed

to the notation given by (1.2):

eα = (cosα, sinα), α ∈ R. (2.1)

Definition 2.1. Let f, g ∈ L2 (D). Then, we define the inner product to be

〈f, g〉 := 1
π

∫ ∫
D
f(x)g(x)dx.

Definition 2.2. Let m be a positive integer. Then, the Chebyshev Polynomials of

the First Kind are defined by

Tm(t) := cos(m arccos t). (2.2)

Definition 2.3. Similarly, we define the Chebyshev Polynomials of the Second Kind

by

Um(t) := sin(m arccos t)
sin(arccos t) . (2.3)

Lemma 2.4. Let m be a positive integer. Then,

Um ∈ Πm−1, (2.4)

where Πm−1 is the space of polynomials of degree less than or equal to m− 1.

5

Proof. Note that (Tm)′ = Um. Moreover, it is known that Tm ∈ Πm. Therefore,

Um ∈ Πm−1.

Definition 2.5. For any positive integer m, define

Ωm :=
{
kπ

m
: k = 1, . . . ,m

}
.

The collection {Um(x ·eαk)}mk=1, where αk = πk
m
∈ Ωm for k = 1, 2, . . . ,m, is called

a collection of Ridge Chebyshev Polynomials. To prove orthonormality, it will be

beneficial to make use of rotations of the Ridge Chebyshev Polynomials.

Lemma 2.6. Let m,n be positive integers and let α1, α2 ∈ R. Then, for all x =

(x1, x2) ∈ R2,

〈Um (x · eα1) , Un (x · eα2)〉 = 〈Um (x · eφ) , Un (x · e0)〉,

where φ = α1 − α2 and u = (u1, u2) ∈ R2.

Proof. By definition,

〈Um(x · eα1), Un(x · eα2)〉 = 1
π

∫ ∫
D
Um(x · eα1)Un(x · eα2)dx.

Explicitly writing the dot products, the foregoing becomes

1
π

∫ ∫
D
Um(x1 cosα1 + x2 sinα1)Un(x1 cosα2 + x2 sinα2)dx2dx1. (2.5)

We will use a change of variables to rotate the coordinate system by an angle of α2.

Let x1 = u1 cosα2 − u2 sinα2 and x2 = u1 sinα2 + u2 cosα2. Then, the Jacobian

corresponding to this change of variables, which is given by

J =

cosα2 − sinα2

sinα2 cosα2

 ,
has a determinant of 1. Now, performing our substitution, we see that

x1 cosα1 + x2 sinα1 = u1 cosφ+ u2 sinφ, x1 cosα2 + x2 sinα2 = u1. (2.6)

6

Since the Jacobian matrix corresponding to the change of variables has determi-

nant 1, the integration factor for this change of variables is 1. This fact coupled with

the observations given by (2.6), we observe that (2.5) becomes

1
π

∫ 1

−1

∫ √1−u2
1

−
√

1−u2
1

Um(u1 cos(φ) + u2 sin(φ))Un(u1)du2du1.

Therefore, by writing u = (u1, u2), the foregoing becomes

1
π

∫ ∫
D
Um(u · eφ)Un(u · e0)du2du1,

and so we achieve our desired result. That is,

〈Um (x · eα1) , Un (x · eα2)〉 = 〈Um (u · eφ) , Un (u · e0)〉,

where φ = α1 − α2, u = (u1, u2) ∈ R2.

We will now move on to the proof of orthonormality of the Ridge Chebvyshev

Polynomials of the Second Kind.

Theorem 2.7. The Ridge Chebyshev Polynomials of the Second Kind are orthonor-

mal in L2 (D).

Proof. Let m,n be positive integers and αi, αj ∈ Ωm, where 1 ≤ i, j ≤ m. Assume,

without loss of generality, that i > j. Let φ = αi−αj. By Lemma 2.6, it follows that

〈Um(x · eαi), Un(x · eαj)〉 = 〈Um(x · eφ), Un(x · e0)〉.

Now, observe that

〈Um(x · eφ), Un(x · e0)〉 = 1
π

∫ 1

−1

∫ √1−x2
1

−
√

1−x2
1

Um(x1 cosφ+ x2 sinφ)dx2

Un(x1)dx1.

Performing the substituion x1 = cos τ , it follows that dx1 = − sin τdτ and so the

foregoing becomes

1
π

∫ π

0

(∫ sin τ

− sin τ
Um(cos τ cosφ+ x2 sinφ)dx2

)
Un(cos τ) sin τdτ.

7

Subsequently setting u = cos τ cosφ + x2 sinφ, it follows that dx2 = du
sinφ and so we

obtain

1
π sinφ

∫ π

0

(∫ cos(φ−τ)

cos(φ+τ)
Um(u)du

)
Un(cos τ) sin τdτ.

Making yet another substitution, we let u = cos t. Then, du = − sin tdt and we

achieve

1
π sinφ

∫ π

0

(∫ φ+τ

φ−τ
Um(cos t) sin tdt

)
Un(cos τ) sin τdτ.

Applying (2.3) to the previous expression yields

1
π sinφ

∫ π

0

(∫ φ+τ

φ−τ
sin(mt)dt

)
sin(nτ)dτ

and so we have that

〈Um(x · eφ), Un(x · e0)〉 = 2 sin(mφ)
mπ sinφ

∫ π

0
sin(mτ) sin(nτ)dτ.

We now consider two cases.

• Case 1: Suppose m 6= n. Then,

〈Um(x · eφ), Un(x · e0)〉 = 2 sin(mφ)
mπ sinφ

∫ π

0
sin(mτ) sin(nτ)dτ

= 2 sin(mφ)
mπ sinφ

[∫ π

0
cos ((m− n)τ)− cos ((m+ n)τ) dτ

]
= 0.

Hence, from Lemma 2.6, it follows that

〈Um(x · eαi), Un(x · eαj)〉 = 0,

whenever m 6= n.

• Case 2: Suppose m = n. Then,

〈Um(x · eφ), Un(x · e0)〉 = 2 sin(mφ)
mπ sinφ

∫ π

0
sin2(nτ)dτ

= sin(mφ)
m sinφ . (2.7)

8

– Subcase 1: Suppose φ = 0, then (2.7) is undefined. Taking a limit tending

toward φ = 0 yields an indeterminate form. However, by using L’Hopital’s

rule, we find that (2.7) becomes

〈Um(x · eφ), Un(x · e0)〉 = 1.

Therefore, it follows from Lemma 2.6 that

〈Um(x · eαi), Un(x · eαj)〉 = 1,

whenever m = n and i = j.

– Subcase 2: Now, suppose φ 6= 0. Then, since φ = αi − αj, it follows that

〈Um(x · eφ), Un(x · e0)〉 = sin ((i− j)π)
m sinφ = 0.

Hence, from Lemma 2.6, we have that

〈Um(x · eαi), Un(x · eαj)〉 = 0,

whenever m = n and i 6= j.

To summarize, suppose we have a collection {Um(αi)}mi=1 and αi ∈ Ωm for all

i = 1, 2, . . . ,m. Then, for all x = (x1, x2) ∈ R2,

〈Um(x · eαi), Un(x · eαj)〉 =



0 if m 6= n

0 if m = n and i 6= j,

1 if m = n and i = j.

(2.8)

Using a dimensionality argument, we will now show that the Ridge Chebyshev

Polynomials of degree up to m− 1 span the space of polynomials Πm−1 . From here,

we will see that the Ridge Chebyshev Polynomials are dense in L2 (D). Coupling this

with their orthonormal properties will then provide the conclusion that the Ridge

Chebyshev Polynomials form an orthonormal basis for the space L2 (D).

9

Theorem 2.8. Let N ≥ 1. Then, the Ridge Chebyshev Polynomials of degree up to

N − 1 span the space of polynomials ΠN−1.

Proof. For each N ≥ 1, define

UN :=

f ∈ L2 (D) : f =
N∑
m=1

∑
θ∈Ωm

am(θ)Um(• · eθ)

 ,
where

am(θ) := 〈f, Um(• · eθ)〉. (2.9)

Now, it follows that

dimUN =
N∑
m=1

#Ωm

= N(N + 1)
2 ,

where #Ωm denotes the cardinality. Therefore, the dimension of the spaced spanned

by the Ridge Chebyshev Polynomials (of degree up to N−1) is N(N+1)/2. A simple

counting argument shows that

dim ΠN−1 = N(N + 1)
2 .

From (2.4), it follows that the space spanned by the Ridge Chebyshev Polynomials

of degree up to N − 1 is a subspace of the space spanned by ΠN−1. However, the

dimensions of each space are the same and so it follows that the Ridge Chebyshev

Polynomials span ΠN−1.

Theorem 2.9. Let f ∈ L2 (D). Then,

f =
∞∑
m=1

∑
θ∈Ωm

(∫
R
Rθf(s)Um(s)ds

)
Um(• · eθ). (2.10)

Proof. From Theorem 2.7, it follows that the Ridge Chebyshev Polynomials form

an orthonormal system on L2 (D). Theorem 2.8 tells us that for each N ≥ 1, the

space UN spans the space ΠN−1, and being that UN ⊆ ΠN−1, it follows then that

10

UN = ΠN−1. The well-known Weierstrass Approximation theorem asserts that the

space

∞⋃
N=1

ΠN−1

is dense in L2 (D). Hence, as an immediate corollary, the Ridge Chebyshev polyno-

mials are dense in L2 (D). Combining these results, we see that the Ridge Chebyshev

polynomials form an orthonormal basis for L2 (D).

Thus, following a similar construction scheme as seen in the famous proof of the

Weierstrass Approximation Theorem using Bernstein Polynomials, it follows that any

f ∈ L2(D) can be expressed as

f(x) =
∞∑
m=1

∑
θ∈Ωm

am(θ)Um(x · eθ), (2.11)

where am (θ) is defined as in (2.9). Therefore, we have that

am(θ) =
∫ ∫

R2
f(x1, x2)Um(x1 cosα + x2 sinα)dx1dx2. (2.12)

Using the change of variables x1 = s cosα− t sinα and x2 = s sinα+ t cosα, it follows

that (2.12) becomes

am(θ) =
∫
R

(∫
R
f(seθ + te⊥θ)dt

)
Um(s)ds.

Therefore, from (1.3), we obtain that

am(θ) =
∫
R
Rθf(s)Um(s)ds

and by subsequently applying the foregoing result to (2.11), it follows that

f =
∞∑
m=1

∑
θ∈Ωm

(∫
R
Rθf(s)Um(s)ds

)
Um(• · eθ).

This concludes the proof of the first of our two inversion formulas. This partic-

ular inversion formula is most relevant to the discussions of this paper, as we will

11

construct an additional inversion formula in Chapter 5 which is also based on alge-

braic reconstruction using the Chebyshev Polynomials of the Second Kind. However,

to give the reader a different flavor of the sort of inversion formulas which exist in

classical literature, we present in the next section an inversion formula for the Radon

transform based on the Fourier and Hilbert transforms. While the proof is given in

the two-dimensional case, these particular inversion formulas generalize rather nicely

to the n-dimensional case (and thus, this highlights a fundamental advantage over

the previous inversion formula).

2.2 Classical Fourier Inversion Formula

In this section, we will introduce an inversion formula for the Radon transform based

on the Fourier and Hilbert transforms.

Definition 2.10. Let h : R→ R. Then, the Hilbert transform of h is defined to be

(Hh)(x) := p.v.
∫ ∞
−∞

h(y)
x− y

dy (2.13)

= lim
ε→0

∫
|y−x|≥ε

h(y)
x− y

dy, x ∈ R, (2.14)

where p.v. stands for the principal value.

Definition 2.11. Let f ∈ C∞0 (Rn). Then, the Fourier transform of f is defined to

be

Ff(ξ) := 1
(2π)n/2

∫
Rn
f(x)e−ix·ξdx, ξ ∈ Rn. (2.15)

We sometimes use the equivalent notation

Ff(ξ) = f̂(ξ). (2.16)

Definition 2.12. Let f ∈ C∞0 (Rn). Then, we define the Inverse Fourier transform

of f to be

F−1f(x) := 1
(2π)n/2

∫
Rn
f(x)eix·ξdξ, x ∈ Rn. (2.17)

12

Again, we sometimes use the equivalent notation

F−1f(x) = f̌(x). (2.18)

One particular property of the Fourier and Inverse Fourier transforms that will

become useful is that for particularly well-behaved functions, the Inverse Fourier

transform of the Fourier transform of a function is the function itself. We elect to

omit the proof, but state the result here for future reference.

Lemma 2.13. Let f ∈ C∞0 (Rn). Then,

(
f̂
)ˇ =

(
f̌
)̂= f. (2.19)

In order to prove our inversion formula, we will first need a few important results.

The first of which is often referred to as the Fourier Slice Theorem.

Theorem 2.14. Let f ∈ C∞0 (R2) and let θ, θ⊥ be defined as in (1.2). Then,

R̂θf(σ) =
√

2πf̂(σθ), σ ∈ R.

Proof. Consider the Fourier transform (with respect to the variable s) of the Radon

transform (in the direction of θ) of f ,

Fs (Rθf) (σ) = 1√
2π

∫
R

(Rθf) (s)e−isσds.

Applying (1.3), from the preceding expression we obtain

1√
2π

∫
R

∫
R
f(sθ + tθ⊥)dte−isσds.

Letting x = sθ + tθ⊥, we obtain

1√
2π

∫ ∫
R2
f(x)e−iθ·xσdx.

A simple rearrangement yields

13

1√
2π

∫ ∫
R2
f(x)e−x·σθ.

Thus, we achieve our desired result:

R̂θf(σ) =
√

2πf̂(σθ), σ ∈ R.

We will also need this important relationship between the Fourier transform and

the Hilbert transform of a function, which states that the Fourier transform of the

Hilbert transform of a function is related to the Fourier transform of the function.

As this is a well-known result, the proof is omitted but the result is stated.

Lemma 2.15. Let h ∈ C∞0 (R2). Then,

(̂Hh)(ξ) = (−isign ξ)ĥ(ξ). (2.20)

We now begin with the primary result of this section.

Theorem 2.16. Let f ∈ C∞0 (R2) and θ, θ⊥ be defined as in (1.2). Then,

f(x) = 1
2(2π)3/2

∫ 2π

0

(
H (Rθf)′

)
(θ · x)dφ (2.21)

Proof. From (2.19), we obtain

f(x) =
(
f̂
)ˇ = 1

2π

∫
R2
f̂(ξ)eix·ξdξ. (2.22)

Expressing ξ in terms of polar coordinates,

ξ = (ρ cosφ, ρ sinφ),

14

it follows that (2.22) becomes

1
2π

∫ 2π

0

∫ ∞
0

f̂ (ρ cosα, ρ sinα) ρeiρθ·xdρdφ.

In the notation of (1.2), we obtain

f(x) = 1
2π

∫ 2π

0

∫ ∞
0

f̂ (ρθ) ρeiρθ·xdρdφ. (2.23)

Now, from (2.14), we know that

f̂(ρθ) = 1√
2π
R̂θf(ρ). (2.24)

Therefore, (2.23) can be expressed as

f(x) = 1
(2π)3/2

∫ 2π

0

∫ ∞
0

R̂θf(ρ)ρeiρθ·xdρdφ. (2.25)

Note that

Rθf(ρ) = R−θf(−ρ), (2.26)

by observing that the line integral over a line defined by a fixed distance ρ from the

origin in the direction of θ = (cosφ, sinφ) is the same as the line integral over a line de-

fined by the fixed distance −ρ from the origin in the direction −θ = (− cosφ,− sinφ).

In this sense, the Radon transform is an even function. Moreover, by a similar argu-

ment, the Radon transform is 2π periodic. That is,

R̂θf(ρ) = R̂θ+2πf(ρ). (2.27)

By applying (2.26) to (2.24), we obtain

f̂(ρθ) = 1√
2π
R̂−θf(−ρ)

Through the application of this result to (2.25), it follows that

f(x) = 1
(2π)3/2

∫ 2π

0

∫ ∞
0

R̂−θf(−ρ)ρeiρθ·xdrdφ. (2.28)

15

Letting r = −ρ and ω = −θ, this change of variables leads us to

1
(2π)3/2

∫ 2π

0

∫ 0

−∞
R̂ωf(r)(−r)e−irθ·xdrdφ.

However, since the Radon function is an even function, the foregoing results in

1
(2π)3/2

∫ 2π

0

∫ 0

−∞
R̂−ωf(−r)(−r)e−irθ·xdrdφ.

Therefore, an equivalent expression for f is

f(x) = 1
(2π)3/2

∫ 2π

0

∫ 0

−∞
R̂θf(ρ)ρe−iρθ·xdρdφ.

By adding (2.25) to the previous result, then subsequently dividing both sides by

two, we achieve

f(x) = 1
2(2π)3/2

∫ 2π

0

∫
R
R̂θf(ρ)|ρ|eiρθ·xdρdφ. (2.29)

Now, ρ = |ρ|sign ρ and so the right hand side of the previous equation becomes

1
2(2π)3/2

∫ 2π

0

∫
R
R̂θf(ρ)ρ(sign ρ)eiρθ·xdρdφ.

Since −i2 = 1, it follows that this expression is equivalent to

f(x) = 1
2(2π)3/2

∫ 2π

0

∫
R
(−isign ρ)

[
(iρ)R̂θf(ρ)

]
eiρθ·xdρdφ. (2.30)

Observe that for any function h ∈ C∞0 (R),

ĥ′(τ) = 1√
2π

∫
R
h′(x)e−ixτdx, τ ∈ R.

Then, by moving h′(x) into the differential and subsequently performing integration

by parts, it follows that

ĥ′(τ) = 1√
2π

∫
R
e−ixτdh(x)

= − 1√
2π

(−iτ)
∫
R
h(x)e−xτdx

= (iτ)ĥ(τ).

16

Therefore, for any function h ∈ C∞0 (R),

ĥ′(τ) = (iτ)ĥ(τ).

Applying this result to (2.30) yields

f(x) = 1
2(2π)3/2

∫ 2π

0

∫
R
(−i2ρ)Fρ

(
(Rθf)′

)
eiρθ·xdρdφ,

where (Rθf)′ denotes the derivative with respect to ρ. Now, from (2.20), the foregoing

expression becomes

1
2(2π)3/2

∫ 2π

0

(∫
R
Fρ (H(Rθf)′) eiρθ·xdρ

)
dφ

Now, the inner most integral is just an inverse Fourier transform, and so by (2.19),

we achieve

f(x) = 1
2(2π)3/2

∫ 2π

0
(H(Rθf)′) (θ · x)dφ.

17

Chapter 3

The Discrete Radon Transform

3.1 Discrete Analog of Classical Chebyshev Inversion Formula

Recall the classical Chebyshev Radon inversion formula given in the previous section:

f =
∞∑
m=1

∑
θ∈Ωm
〈f, Um (x · eθ)〉Um(• · eθ), f ∈ L2,

which has the approximate form

f ≈
M∑
m=1

∑
θ∈Ωm
〈f, Um (x · eθ)〉Um(• · eθ), f ∈ L2.

Narrowing our focus to functions f ∈ L2 (D), we will achieve a discretization of the

aforementioned approximate inversion formula from discretizing the integral appear-

ing in the inner product. Using the notation x = (x1, x2), consider that

〈f, Um (• · eθ)〉 = 1
π

∫ ∫
D
f(x)Um (x · eθ) dx1dx2

= 1
π

∫ 1

−1
Rf (θ, s)Um(s)ds.

Similar to the developments given in Chapter 2, we set s = cosα to obtain the

equivalent expression

1
π

∫ π

0
Rf (θ, cosα) sinmαdα.

Hence, a discretization is obtained by sampling values of α between 0 and π.

Letting αk = π (2K)−1 + (k − 1) πK−1, where K is the number of nodes used in the

sampling, we receive the following approximate discrete identity

〈f, Um (• · eθ)〉 ≈
1
K

K∑
k=1

Rf (θ, cosαk) sinmαk.

18

Thus, this naturally leads to

f(x) ≈ 1
K

M∑
m=1

∑
θ∈Ωm

(
K∑
k=1

Rf (θ, cosαk) sinmαk
)
Um (x · eθ) ,

αk = π

2K + (k − 1) π
K
.

To finish our computational framework, further sampling is required for values of

θ between 0 and π. For M ≥ 1, we let θj = jπM−1 for j = 1, 2, . . . ,M . Thus, it

follows that

f(x) ≈ 1
K

M∑
m=1

m∑
j=1

(
K∑
k=1

Rf (θj, cosαk) sinmαk
)
Um

(
x · eθj

)
,

θj = j
π

M
, αk = π

2K + (k − 1) π
K
. (3.1)

The approximate result (3.1) is only suitable for functions f ∈ L2 (D), where D

is the unit disk. Necessarily, any algorithm making use of this approximate identity

would need to allow for functions of more general sizes, say f : N × N → R. With

this in mind, we wish to scale (3.1) so that it can be applied to functions in the space

L2 (Dr), where Dr denotes the disk of radius r =
√

2N/2.

We begin with an alternate version of the classical Chebyshev inversion formula

and let f ∈ L2 (D):

f =
∞∑
m=1

∞∑
j=1

1
π

∫ ∫
D
f(y)Um

(
y · eθj

)
dyUm

(
• · eθj

)
.

We wish to find g ∈ Dr such that g(ry) = f(y), where y = zr−1 and |z| ≤ r. Consider

that, for |x′| ≤ 1,

g (rx′) =
∞∑
m=1

∞∑
j=1

1
π

∫ ∫
D
g (ry)Um

(
y · eθj

)
dyUm

(
x′ · eθj

)
.

Setting w = ry, a quick change of variables leads us to a rescaled version of (3.1),

g =
∞∑
m=1

∞∑
j=1

1
πr2

∫ ∫
Dr
g(w)Um

(
w

r
· eθj

)
dwUm

(1
r
• ·eθj

)
.

19

By approximating and using the same sampling scheme as in (3.1), we achieve

our desired rescaled approximate identity. Namely, for f ∈ L2 (Dr), it follows that

f(x) ≈ 1
rK

M∑
m=1

m∑
j=1

(
K∑
k=1

Rf (θj, r cosαk) sinmαk
)
Um

(1
r
x · eθj

)
,

θj = j
π

M
, αk = π

2K + (k − 1) π
K
. (3.2)

This naturally leads to an easy, albeit computationally slow, algorithm with which

one could use to compute the reconstruction of an image f from its projection data

Rf (θj, r cosαk), where j = 1, 2, . . . ,M and k = 1, 2, . . . , K. Of course, this is evident

so long as one has a method with which to compute said projection data. In the next

section, we present an informal discussion involving two algorithms which serve as

ways of computational data acquisition of the Radon transform, Rf (θ, s).

3.2 Data Acquisition Algorithms for the Discrete Radon Transform

Approximating the Radon transform Rf (θ, s) of a function f is a matter of approx-

imating the line integral of f along the line parameterized by an angle θ (from the

positive x-axis) and a distance s from the origin.

The general idea for approximation then is to begin by considering f ∈ L2 (Dr),

where r =
√

2N/2 for N ≥ 1, as an N ×N image. We consider f(i, j) to be the pixel

intensity at the point (i, j), where −dN/2e ≤ i, j ≤ dN/2e − 1. Then, the Radon

transform Rf (θ, s) can be thought of as the sum of the pixel intensities intersected

by the line parameterized by (θ, s). The pixel intensities may be weighted in some

manner relating to the length of the intersection. As we will discuss later in this

section, the algorithms given in A.1 and A.2 differ in the way we emphasize and

calculate such weights. For now, to make this idea more concrete, we will introduce

some definitions to help in developing a more formal language with which we can

discuss these topics.

20

Definition 3.1. An N ×N image region is a square whose center is at the origin of

the Cartesian plane, and which is subdivided into N2 equal pixels by an N2-element

grid.

Definition 3.2. An image f is a function of two variables whose value in the interior

region of any pixel of an N2-element grid is uniform.

Figure 3.1: A 8× 8 image region.

As shown in Figure 3.1, the center pixel (0, 0) of the image region has its lower-left

corner located at the origin of the Cartesian plane. For our purposes, we consider

gray-scale images f where f(i, j) represents the pixel intensity at the integral point

(i, j). The gray-scale Shepp-Logan phantom head, such as in Figure 3.2, can be

represented on such an image region. To see what this would look like, refer to

Figure 3.3, which shows a 32×32 image being represented on a 32×32 image region.

The height of each bar represents the intensity of the pixel at the lower-left corner of

the square it is defined on.

Returning our attention to the problem of acquiring the projection data Rf (θ, s),

we will denote by P(θ,s) the set of pixels intersected by the line with distance s from

the origin and angle θ from the positive x-axis. Let S = {−dN/2e, . . . , dN/2e − 1},

21

Figure 3.2: A 256× 256 Shepp-Logan phantom head.

Figure 3.3: A representation of a 32× 32 image on an image region.

then we define P(θ,s) as below.

P(θ,s) = {(x, y) ∈ Z2 | x, y ∈ S, pixel at (x,y) is intersected} (3.3)

Figure 3.4 shows an example of a set of pixels being intersected by one possible line.

Using this definition, we can define the line integral which will be used in our discrete

Radon transform algorithms in the following manner.

Definition 3.3. Let P (θ, s) be known within an image region of size N ×N . Then,

the discrete line integral of an image f along the line parameterized by a distance

22

Figure 3.4: The pixels intersected by the line parameterized by (θ, s).

s from the origin and an angle θ from the positive x-axis is approximated by the

weighted sum L̂f (θ, s) over the pixels in the interior of the image region. Specifically,

L̂f (θ, s) is defined as

L̂f (θ, s) :=
∑
i∈S

∑
j∈S

w(θ,s) (i, j) f(i, j), (3.4)

where

w(θ,s) (i, j) :=


l, if (i, j) ∈ P(θ,s)

0, if (i, j) /∈ P(θ,s),

(3.5)

and l is defined as the length of the intersection.

In this manner, we see that the problem of reconstructing an image f from its

projection data is a problem of solving a system of linear equations. Assuming we

acquire the projections of f along a set of lines parameterized by a set of angles

Θ = {θm}Mm=1 and distances from the origin Λ = {sk}Kk=1, we can express such

23

projection data as a system of linear equations,

L̂f (θ1, s1) = ∑
i∈S

∑
j∈S

w(θ1,s1) (i, j) f(i, j),

L̂f (θ1, s2) = ∑
i∈S

∑
j∈S

w(θ1,s2) (i, j) f(i, j),

· · ·

L̂f (θM , sK−1) = ∑
i∈S

∑
j∈S

w(θM ,sK−1) (i, j) f(i, j),

L̂f (θM , sK) = ∑
i∈S

∑
j∈S

w(θM ,sK) (i, j) f(i, j).

Thus, we can equivalently express the acquisition of projection data in terms of

matrices. Letting L denote the left-hand side of the above equations, W denote the

MK × N2 matrix containing the weights, and F denote the N2 × 1 image vector

containing the pixel intensity information for f , the above system of equations can

be rewritten as the matrix equation

L = WF. (3.6)

Figure 3.5: The length, l =
√

∆x2 + ∆y2, of an intersection.

The basic structure of an algorithm that can be used in order to compute the

set of projection data L is divided into several steps, detailed below. Note that

computation time can be cut by first determining the left, right, top, and bottom

most pixels intersected by a line within the image region. We call these pixels the

24

left, right, top, and bottom exits. Computing these locations as a first step makes it so

that we can restrict our search in terms of determining the weights of the intersections

by eliminating pixels which are most definitely not intersected. Though algorithms

A.1 and A.2 differ in a few respects, they both make use of the following general

outline.

• Step 1: For θ ∈ Θ and s ∈ Λ, compute P(θ,s).

• Step 2: Determine left, right, top, and bottom exits for the line parameterized

by (θ, s).

• Step 3: Scan through pixels between left, right, top, and bottom exits to deter-

mine the lengths of intersection.

• Step 4: Multiply the lengths by their respective pixel values (determined by f)

and add this to a running sum representing L̂f (θ, s).

• Step 5: Repeat the process for each θ ∈ Θ and s ∈ Λ.

The algorithms we present in A.1 and A.2 serve as ways of computing the discrete

line integral of an image f along a line parameterized by (θ, s). Both of these algo-

rithms make use of the fact that for θ ∈ (0, π/2), the line will be decreasing as we

move from the left exit to the right exit and therefore, the top exit will come before

the bottom exit. Alternatively, for θ ∈ (π/2, π), the bottom exit will occur before

the top exit as we move from the left exit to the right exit. In this manner, the way

we search through the potentially intersected pixels is characterized by the range in

which θ occurs.

If θ = 0 or θ = π, then the line is vertical and we merely use the distance s from

the origin to find the “column" in which the line occurs. Every pixel in this column

is intersected by the line and the length of the intersection is 1. Similarly, if θ = π/2,

then the line is horizontal and so we use the distance s to find the “row" in which

25

Figure 3.6: Some of the various ways a line can intersect a pixel.

the line occurs. Every pixel in this row is intersected by the line and the length of

the intersection is also 1. We should note that as θ gets close to 0 or π, the slope of

the line parameterized by θ goes towards infinity. This causes some blurring when

reconstructing f using the projection data, as we see in Figure 3.8.

Figure 3.7: Reconstruction of Shepp-Logan Phantom head using data from Algorithm
A.1.

Beyond this, the algorithms given in A.1 and A.2 essentially differ in the way we

characterized the weights assigned to the lengths of the intersection between a line

parameterized by (θ, s) and P(θ,s). Algorithm A.1 explicitly calculates the lengths of

the intersections for every point in P(θ,s), while Algorithm A.2 makes use of linear

interpolation. Algorithm A.2 first finds all of the x or y coordinates of the intersection

points, depending on what range θ is in, and then subsequently uses these values to

26

Figure 3.8: Reconstruction of Shepp-Logan Phantom head using data from Algorithm
A.2.

determine the y or x coordinates, respectively. From here, the algorithm uses these

coordinates to “split" the pixel, and subsequently places the pixel values (weighted

by the manner in which they were split) into bins of size 1.

Due to the fact that Algorithm A.1 explicitly calculates the lengths of the intersec-

tions, it naturally has to take into account the various ways pixels can be intersected

(see Figure 3.6). Hence, further conditionals are placed within the pixel search, which

causes computation time to increase. However, it should be noted that while Algo-

rithm A.2 is faster than Algorithm A.1, it is not as accurate due to the way we

calculate the weights of the intersections. It was found that this difference in accu-

racy was mostly evident when Λ = {sk}Kk=1 was chosen in a manner such that the

values sk were not uniformly distributed for k = 1, 2, . . . K.

On a final note, we would like to remind the reader that Algorithms A.1 and

A.2 merely only serve the function of calculating the discrete line integral of f for a

specific line. Algorithm A.3 ties this together by utilizing these algorithms in order to

calculate the projection data of a given image f for a given angle set Θ and distance set

Λ. Assuming |Θ| = M and |Λ| = K, the output of Algorithm A.3 is a K×M matrix,

which can then be converted into a MK × 1 vector serving as a representation of the

27

projection matrix L described in (3.6). From this point, an inverse radon transform

algorithm can be applied to reconstruct images, such as in Figures 3.7 and 3.8 where

MATLAB’s built-in inverse radon transform function was used.

28

Chapter 4

Sub-Exponential Localization Properties of

Needlets

In the next chapter, we will introduce a new inversion formula for the Radon trans-

form based on kernels and frames which we refer to as needlets. The term needlet

comes from the fact that kernels of the form (5.1) exhibit subexponential localization

properties (i.e. they are extremely well-localized). In this chapter, we develop and

illustrate these properties in rigorous detail. The discussion begins by introducing

the class of functions known as the Schwarz class.

Definition 4.1. Let f ∈ Rn, n ≥ 1. Then, f is said to be rapidly decreasing if for

every integer N ≥ 0, there exists a constant CN such that

|f(x)| ≤ CN

(1 + |x|)N

for all x ∈ Rn. We denote the space of rapidly decreasing functions by D (Rn).

Definition 4.2. The Schwartz class S is defined to be

S (Rn) := {f ∈ C∞ (Rn) | f, f ′, f ′′, . . . ∈ D (Rn)}. (4.1)

Recalling the form of the kernels of interest,

Ln(x, y) =
∞∑
j=1

â
(
j

n

)
Uj(x)Uj(y),

it will take a series of theorems, corollaries, and lemmas to prove the following result,

which is the primary claim of this chapter.

29

Theorem 4.3. Let 0 ≤ θ, φ ≤ π, and suppose â ∈ S (R) is an even function. Then,

for any σ > 0, there exists a constant cσ > 0 such that

|Ln (cos θ, cosφ)| ≤ cσn

(sin θ + n−1) (sinφ+ n−1) (1 + n |θ − φ|)σ .

It follows as an immediate corollary from our primary claim that for x, y ∈ R,

|Ln (x, y)| ≤ cσn(√
1− x2 + n−1

) (√
1− y2 + n−1

)
(1 + nρ (x, y))σ

, (4.2)

where ρ(x, y) = |arccosx− arccos y|.

Theorem 4.4. Let P be an arbitrary constant. For appropriate functions g,

∑
j∈Z

g(Pj) = 1
P

∑
j∈Z

ĝ(j).

The equation given by Theorem 4.4 is known as the Poisson summation formula

and is necessary to prove the following lemma.

Lemma 4.5. Consider the trigonometric polynomial given by

Fn(θ) =
∑
j∈Z

â
(
j

n

)
eijθ, (4.3)

where â ∈ C∞(R) and supp â ∈ [−2, 2]. Then, for any σ > 0, there exists cσ > 0

such that

|Fn(θ)| ≤ cσn

(1 + n |θ|)σ , θ ∈ [−π, π]. (4.4)

Proof. Let f be defined in terms of its Fourier transform

f̂(ξ) := â

(
ξ

n

)
eiξt.

Then, it follows that

f(y) = 1
2π

∫
R
f̂ (ξ) eiξydξ

= 1
2π

∫
R
â

(
ξ

n

)
eiξteiξydξ

= 1
2π

∫
R
â

(
ξ

n

)
eiξ(t+y)dξ.

30

Letting u = ξ/n, it follows that dξ = ndu and the former yields

f(y) = na (n (t+ y)) . (4.5)

Now,

|Fn(θ)| =

∣∣∣∣∣∣12
∑
j∈Z

â
(
j

n

)
eijθ

∣∣∣∣∣∣
=

∣∣∣∣∣∣12
∑
j∈Z

f̂ (j)

∣∣∣∣∣∣ .
From Theorem 4.4, we obtain

|Fn(θ)| = π
∑
j∈Z

f(2πj).

From here, (4.5) yields

|Fn(θ)| = πn
∑
j∈Z

a (n (θ + 2πj)) .

Now, â ∈ C∞ (R) is of compact support and so it follows that â ∈ S (R). To see

this, simply note that any derivative of â is supported on supp (â) and therefore also

has compact support. Hence, any derivative of â is thereby bounded by the Extreme

Value Theorem. Thus, it follows that for any σ > 0, there exists cσ > 0 such that

∑
j∈Z

â (n (θ + 2πj)) ≤
∑
j∈Z

cσ
(1 + n |θ + 2πj|)σ

= cσ
(1 + nθ)σ +

∑
j 6=0

cσ
(1 + n |θ + 2πj|)σ .

Recall that −π ≤ θ ≤ π. Then, the foregoing becomes

∑
j∈Z

â (n (θ + 2πj)) ≤ cσ
(1 + n |θ|))σ +

∑
j 6=0

cσ
(1 + n |πj|)σ .

From here, simple quantitative arguments yield our desired result:

∑
j∈Z

â (n (θ + 2πj)) ≤ cσ
(1 + n |θ|)σ +

∞∑
j=1

cσ
(|nj|)σ .

31

Lemma 4.6. Suppose 0 ≤ θ, φ ≤ π. Then, for any σ > 0 there exists a constant

cσ > 0 such that

|Fn (θ)| ≤ cσn

(1 + n |θ − φ|)σ . (4.6)

Proof. Let σ > 0 be given. We consider the following two cases.

• Case 1: Suppose θ + φ ≤ π. Then, θ + φ ≥ |θ − φ| and therefore, from (4.4) it

follows that

|Fn (θ + φ)| ≤ cσn

(1 + n |θ + φ|)σ

≤ cσn

(1 + n |θ − φ|)σ . �

• Case 2: Suppose θ + φ > π. Then, 0 < 2π − θ − φ ≤ π. Letting α = π − θ and

β = φ− θ, it follows that 2π − θ − φ = α + β. Furthermore, 0 ≤ α, β ≤ π and

α + β ≥ |α− β| = |θ − φ|. Coupling this with (4.4) and the fact that Fn is an

even function yields

|Fn (θ + φ)| = |Fn (2π − θ − φ)|

≤ cσn

(1 + n |2π − θ − φ|)σ

≤ cσn

(1 + n |θ − φ|)σ .

From above, we obtain the following corollary.

Corollary 4.7. Let 0 < θ, φ < π. Then, for any σ > 0 there exists a constant cσ > 0

such that

|Ln (cos θ, cosφ)| ≤ cσn

sin θ sinφ (1 + n |θ − φ|)σ (4.7)

32

Proof. From (5.1), we observe that for 0 < θ, φ < π,

Ln(cos θ, cosφ) =
∞∑
j=1

â
(
j

n

) sin(jθ) sin(jφ)
sin θ sinφ .

By adding/subtracting the term â(0)/2 to the aforementioned expression and subse-

quently applying a product-to-sum trigonometric identity, we obtain that

Ln(cos θ, cosφ) = 1
2 sin θ sinφ

∞∑
j=1

â
(
j

n

)
[cos (j(θ − φ))− cos (j(θ + φ))] .

Then, by (4.3), the former becomes

Ln(cos θ, cosφ) = 1
2 sin θ sinφ (Fn (θ − φ)− Fn (θ + φ)) , (4.8)

and therefore, from (4.6), it follows that

|Ln (cos θ, cosφ)| ≤ cσn

sin θ sinφ (1 + n |θ − φ|)σ .

Lemma 4.8. Let 0 ≤ θ, φ ≤ π. Then, for any σ > 0 there exists a constant cσ > 0

such that

|Ln (cos θ, cosφ)| ≤ cσn
3

(1 + n |θ − φ|)σ . (4.9)

Proof. An important formality we must address is that throughout the proof of this

lemma, the constant cσ may change and, hence, may represent a different constant

from instance to instance. However, cσ will always be dependent only on σ. The deci-

sion to leave its notation unchanged is a matter of choice based on visual organization

and aesthetic, and leaves the validity of the proof intact.

Let Gn be the function defined by

Gn(x) :=
∞∑
j=1

â
(
j

n

)
jUj(x), (4.10)

33

where Uj is a jth Chebyshev Polynomial of the Second Kind as defined in (2.3). Now,

from (4.3), it follows that

Fn(x) = â(0)
2 +

∞∑
j=1

â
(
j

n

)
Tj(x),

where Tj is jth Chebyshev Polynomial of the First Kind as defined in (2.2). Then,

Fn (cos θ) = â(0)
2 +

∞∑
j=1

â
(
j

n

)
cos jθ.

Taking the derivative with respect to θ yields

d

dθ
[Fn (cos θ)] = −

∞∑
j=1

â
(
j

n

)
j sin jθ,

and so it follows that

F ′n(x) =
∞∑
j=0

â
(
j

n

)
jUj(x) = Gn(x). (4.11)

We now recall the Markov inequality which states that for any Pm ∈ Πm, m ≥ 0

and a, b ∈ R,

‖P ′m‖L∞[a,b] ≤
2n2

b− a
‖Pm‖L∞[a,b].

Since Fn ∈ Π2n, it follows from (4.11) and the above Markov inequality that for

t ∈ [−1, 1],

‖Gn‖L∞[−1,t] = ‖F ′n‖L∞[−1,t]

≤ 2n2

t+ 1‖Fn‖L∞[−1,t].

From (4.6), the foregoing becomes

‖Gn‖L∞[−1,t] ≤
2n2

t+ 1

∥∥∥∥∥∥ cσn(
1 + n

√
1− •

)σ
∥∥∥∥∥∥
L∞[−1,t]

.

Note that if t ∈ [0, 1], then the function

h(x) := cσn(
1 + n

√
1− x

)σ

34

attains its maximum at t on the interval [0, t]. This follows from the fact that h is a

monotonically increasing function on [−1, 1]. This readily leads us to

‖Gn‖L∞[−1,t] ≤
2n2

t+ 1

∥∥∥∥∥∥ cσn(
1 + n

√
1− •

)σ
∥∥∥∥∥∥
L∞[−1,t]

≤ 2n2

t+ 1
cσn(

1 + n
√

1− t
)σ

= cσn
3

(t+ 1)
(
1 + n

√
1− t

)σ .
By similar reasoning, for all t ∈ [−1, 0], the aforementioned function h is bounded

above on the interval [−1, t] by the case when t = 0 and so it follows that

‖Gn‖L∞[−1,t] ≤
cσn

3

(1 + n)σ

≤ cσn
3(

1 + n
√

1− t
)σ ,

where the last inequality results from scaling of the constant cσ. Hence, it follows

that for all t ∈ [−1, 1],

‖Gn‖L∞[−1,t] ≤
cσn

3

(t+ 1)
(
1 + n

√
1− t

)σ . (4.12)

We now refer to a product formula for Gegenbauer polynomials, of which Cheby-

shev polynomials are a specific type, as presented in [5]. Specifically, it follows from

this product formula that for some constant c,

Uj (cos θ)Uj (cosφ)
Uj (1) = c

∫ 1

−1
Uj (cos θ cosφ+ u sin θ sinφ) du,

and so therefore,

Ln (cos θ, cosφ) =
∞∑
j=1

â
(
j

n

)
Uj (cos θ)Uj (cosφ)

= c
∫ 1

−1

∞∑
j=1

â
(
j

n

)
Uj (1)Uj (cos θ cos π + u sin θ sinφ) du.

Now, Uj (1) = limθ→0 (sin jθ/ sin θ) = j and so the former becomes

Ln (cos θ, cosφ) = c
∫ 1

−1

∞∑
j=1

â
(
j

n

)
jUj (cos θ cos π + u sin θ sinφ) du.

35

Letting t(u, θ, φ) = cos θ cosφ+ u sin θ sinφ and by using (4.12), we obtain that

|Ln (cos θ, cosφ)| ≤
∫ 1

−1

cσn
3(

1 + n
√

1− t(u, θ, φ)
)σ du. (4.13)

Note that for 0 ≤ θ, φ ≤ π, it follows that sin θ sinφ ≥ 0 and so

1− t(u, θ, φ) = 1− cos θ cosφ− u sin θ sinφ

≥ 1− cos θ cosφ− sin θ sinφ

= 1− cos(θ − φ)

= 2 sin2(θ − φ).

Furthermore, 2 sin2(θ − φ) is equivalent to (θ − φ)2 (up to some scalar value) when

0 ≤ θ, φ ≤ π. Combining this fact with the above inequality, (4.13) becomes

|Ln (cos θ, cosφ)| ≤ cσn
3

(1 + n |θ − φ|)σ .

Lemma 4.9. Let θ, φ ≥ 0. Then

(
θ + n−1

) (
φ+ n−1

)
≤ 3

(
θφ+ 1

n2

)
(1 + n |θ − φ|) , n ≥ 1. (4.14)

Proof. Without relevant loss of generality, suppose φ ≥ θ. Then, for some λ ≥ 1,

φ = λθ. Note that proving (4.14) is equivalent to proving the inequality

θφ+ 1
n2 + θ + φ

n
≤ 3θφ+ 3

n2 + 3θφn |θ − φ|+ 3 |θ − φ|
n

,

and so it suffices to prove that

θ + φ

n
≤ 2θφ+ 2

n2 + 3θφn |θ − φ|+ 3 |θ − φ|
n

. (4.15)

• Case 1: Suppose λ ≥ 3. Then, (θ + φ)n−1 ≤ (3 |θ − φ|)n−1 if and only if

λ + 1 ≤ 3 (λ− 1). Yet this is true if and only if 4 ≤ 2λ, which is equivalent to

the condition that λ ≥ 2.

Therefore, (θ + φ)n−1 ≤ (3 |θ − φ|)n−1 which implies (4.15).

36

• Case 2: Suppose that 1 ≤ λ < 3. Then,

θ + φ

n
≤ 2

(
θφ+ 1

n2

)

if and only if

(λ+ 1) θ
n

≤ 2
(
λθ2 + 1

n2

)
.

This inequality holds so long as

4θ
n
≤ 2

(
θ2 + 1

n2

)
,

which is equivalent to the condition that θ2 − 2θn−1 + n−2 ≥ 0. Factoring this

expression tells us that (θ − n−1)2 ≥ 0, which is clearly true. Therefore,

θ + φ

n
≤ 2

(
θφ+ 1

n2

)
,

implying the validity of (4.15).

We are finally ready to prove the primary localization result of this chapter.

Proof of Theorem 4.3. The proof is divided into three cases.

• Case 1: Suppose 0 ≤ θ ≤ 2π/3 and 0 ≤ φ ≤ π/2. Now, sin θ sinφ ∼ θφ (up to

some scalar value) and so from (4.7), it follows that

|Ln (cos θ, cosφ)| ≤ 2cσn
2θφ (1 + n |θ − φ|)σ . (4.16)

Furthermore, from (4.9), we achieve

|Ln (cos θ, cosφ)| ≤ 2cσn
2n−2 (1 + n |θ − φ|)σ . (4.17)

– Case 1a: Suppose θφ ≤ n−2. Then, θφ+n−2 ≤ 2n−2 and so it follows from

(4.17) that

|Ln (cos θ, cosφ)| ≤ 2cσn
(θφ+ n−2) (1 + n |θ − φ|)σ .

37

– Case 1b: Suppose that θφ > n−2. then, θφ + n−2 ≤ 2θφ and so by (4.16)

it follows that

|Ln (cos θ, cosφ)| ≤ 2cσn
(θφ+ n−2) (1 + n |θ − φ|)σ .

Combining Cases 1a and 1b, we obtain the inequality

|Ln (cos θ, cosφ)| ≤ cσn

(θφ+ n−2) (1 + n |θ − φ|)σ ,

and so therefore,

|Ln (cos θ, cosφ)| ≤ cσn

(θφ+ n−2) (1 + n |θ − φ|)σ

≤ 3cσn
3 (θφ+ n−2) (1 + n |θ − φ|) (1 + n |θ − φ|)σ−1 .

Letting σ′ = σ−1 and using the result given by (4.14), we achieve the following

result that

|Ln (cos θ, cosφ)| ≤ cσ′n

(θ + n−1) (φ+ n−1) (1 + n |θ − φ|)σ′
.

Since sin θ ∼ θ, sinφ ∼ φ, and σ is arbitrary, the foregoing yields

|Ln (cos θ, cosφ)| ≤ cσn

(sin θ + n−1) (sinφ+ n−1) (1 + n |θ − φ|)σ . �

• Case 2: Suppose that π/3 ≤ θ ≤ π and π/2 ≤ φ ≤ π. Then, 0 ≤ π −

θ ≤ 2π/3 and 0 ≤ π − φ ≤ π/2. Note that cos (π − θ) = − cos θ and

cos (π − φ) = − cosφ. Since Ln is an even function in two variables it follows

that Ln (cos (π − θ) , cos (π − φ)) = Ln (cos θ, cosφ). Hence, the result follows

from Case 1. �

• Case 3: Suppose that either 0 ≤ φ ≤ π/3 and π/2 ≤ θ ≤ π or 2π/3 ≤ θ ≤ π

and 0 ≤ φ ≤ π/2. Then, we have |θ − φ| ≥ π/6. Hence, by (4.9) and scaling of

the constant cσ,

|Ln (cos θ, cosφ)| ≤ 4cσn3

4 (1 + n)σ .

38

Yet, (sin θ + 1/n) (sinφ+ 1/n) ≤ 4 and so

|Ln (cos θ, cosφ)| ≤ cσn

(sin θ + n−1) (sinφ+ n−1) (1 + n |θ − φ|)σ .

From Cases 1, 2, and 3, the complete result follows.

As mentioned in the beginning of this chapter, the above proof yields (4.2) as an

immediate corollary. That is, for any σ > 0 there exists a constant cσ > 0 such that

|Ln (x, y)| ≤ cσn(√
1− x2 + n−1

) (√
1− y2 + n−1

)
(1 + nρ (x, y))σ

,

where ρ(x, y) = |arccosx− arccos y|.

39

Chapter 5

Ridgelet Inversion of the Radon Transform

5.1 Orthogonal Expansion using Chebyshev Polynomials

In this chapter, we are interested in kernels of the form

Ln(x, y) =
∞∑
j=1

â
(
j

n

)
Uj(x)Uj(y), (5.1)

where â ∈ S (R), the class of Schwarz functions on the real line (see (4.1)). The results

presented in Chapter 4 showed that kernels of this nature exhibit sub-exponential lo-

calization properties. These properties have implications relating to the speed at

which we can compute their values. Practically speaking, a Radon inversion for-

mula which is based on kernels of the above form would have greater advantages, in

terms of computation time, as opposed to methods which employ standard algebraic

reconstruction techniques.

The primary identity we will need is the following.

Theorem 5.1. Let f ∈ L2 (D). Then,

f(x) =
∞∑
m=1

m

2π2

∫ 2π

0

∫
D
f(y)Um (y · eα) dyUm (x · eα) dα.

Proof. We will use two intermediate identities to prove the claim. The first of which

is an inner product result which we developed in Chapter 2. Using the notation given

in (2.1),

1
π

∫
D
Um (x · eα)Um (x · eβ) dx = sinm (α− β)

m sin (α− β) (5.2)

40

The second identity we will use is the following.

1
2π

∫ 2π

0
Um (x · eα) sinm (β − α)

sin (β − α) dα = Um (x · eβ) . (5.3)

Denote the functional Qm by

Qmf(x) := m

2π2

∫ 2π

0

∫
D
f(y)Um (y · eα) dyUm (x · eα) dα. (5.4)

Note that it suffices to prove the claim for the case when f(x) = Um (x · eβ), since the

Chebyshev Polynomials of the Second Kind form an orthonormal basis on the space

L2(D). Now, by (5.2) and (5.3), it follows that

Qmf(x) = m

2π

∫ 2π

0

1
π

∫
D
Um (y · eβ)Um (y · eα) dyUm (x · eα) dα

= m

2π

∫ 2π

0
Um (x · eα) sinm (β − α)

m sin (β − α)dα

= Um (x · eβ) .

Therefore, using an orthogonal reconstruction f , the general result follows:

f(x) =
∞∑
m=1

m

2π2

∫ 2π

0

∫
D
f(y)Um (eα · y) dyUm (eα · x) dα.

Applying this to our usage of the Radon transform, observe that

∫
D
f(y)Um (y · eα) dy =

∫ 1

−1
Rf (α, s)Um(s)ds,

and so from the previous theorem,

f(x) = 1
2π2

∞∑
m=1

m
∫ 2π

0

(∫ 1

−1
Rf (α, s)Um(s)ds

)
Um (x · eα) dα. (5.5)

We now propose a computational framework for reconstructing f ∈ L2(D) using

the Chebyshev orthogonal expansion of f . While the approximate identity proposed

in this section does not exhibit sub-exponential localization properties, it will be from

41

the ideas presented in this section that will lead us to our desired result in the second

part of this chapter.

Now, for M ≥ 1, consider the kernel given by

ΦM(s, t) :=
2M∑
m=1

ϕ
(
m

M

)
mUm(s)Um(t). (5.6)

For our purposes, we will consider a specific cutoff function ϕb ∈ C∞ (D). Let φ̃b be

defined by

φ̃b(t) := π

2
(2b+ 1)!!

(2b)!!

∫ t

0
sin2b+1 (πv) dv, b ≥ 1

where b is an integer parameter.

Figure 5.1: Plot of φ4(t).

Subsequently denoting by φb the even extension of φ̃b, for a fixed parameter b we

define ϕ by

ϕ(t) :=


1, 0 ≤ t < 1,

φb (−t) , 1 ≤ t ≤ 2.
(5.7)

Using (5.5), we obtain a reconstruction of the form

f(x) = 1
2π2

∫ 2π

0

∫ 1

−1

[∞∑
m=1

mUm(s)Um(x · eα)
]
Rf (α, s)dsdα, (5.8)

42

Figure 5.2: Plot of ϕ(t).

and so (5.6) results in the approximate identity

f(x) ≈ 1
2π2

∫ 2π

0

∫ 1

−1
ΦM(s, x · eα)Rf (α, s)dsdα.

The discretization of previous expression is as follows. LetN ≥ 1, then discretizing

the outer integral yields

f(x) ≈ 1
2π2

2π
N

N−1∑
j=0

∫ 1

−1
ΦM

(
s, x · eαj

)
Rf (αj, s)ds, αj = 2πj

N
.

Letting s = cos θ, we have that

f(x) ≈ 1
πN

N−1∑
j=0

∫ π

0
ΦM

(
cos θ, x · eαj

)
Rf (αj, cos θ) sin θdθ.

The discretization of the remaining integral gives us

f(x) ≈ 1
πN

N−1∑
j=0

π

K

K−1∑
k=0

ΦM

(
cos θk, x · eαj

)
Rf (αj, cos θk) sin θk, θk = πk

K
,

where K ≥ 1.

Hence, it follows that

f(x) ≈ 1
NK

N−1∑
j=0

K−1∑
k=0

ΦM

(
cos θk, x · eαj

)
sin θkRf (αj, cos θk), (5.9)

where αj = 2πjN−1 and θk = πkK−1.

43

It now remains to develop a framework for computation of the values of ΦM .

Recalling the definition given in (5.6), we have that

ΦM (cos θ, cos β) sin θ =
2M∑
m=1

ϕ
(
m

M

)
m sinmθ · sinmβ

sin β

= 1
2 sin β

2M∑
m=1

mϕ
(
m

M

)
(cosm (θ − β)− cosm (θ + β))

= 1
2 sin β (HM (θ − β)−HM (θ + β)) ,

where HM is defined by

HM(t) :=
2M∑
m=1

mϕ
(
m

M

)
cos(t).

Therefore, from (5.9),

f(x) ≈ 1
NK

N−1∑
j=0

K−1∑
k=0

ΦM

(
cos θk, x · eαj

)
sin θkRf (αj, cos θk)

= 1
2NK

N−1∑
j=0

K−1∑
k=0

1
sin

(
arccosx · eαj

)[Hm

(
θk − arccos

(
x · eαj

))

−Hm

(
θk + arccos

(
x · eαj

))]
×Rf (αj, cos θk) .

(a) M = 100, s = −0.99 (near endpoint). (b) M = 100, s = 0.6.

Figure 5.3: Localization of Kernel ΦM .

44

Hence, it follows that

f(x) ≈ 1
2NK

N−1∑
j=0

K−1∑
k=0

1√
1−

(
x · eαj

)2

[
Hm

(
θk − arccos

(
x · eαj

))

−Hm

(
θk + arccos

(
x · eαj

))]
×Rf (αj, cos θk) . (5.10)

5.2 Construction and Computation of the Ridgelet Inversion For-

mula

Though we developed an additional Radon inversion formula in the previous section,

it doesn’t quite satisfy what we’ve set out to accomplish. Referring back to our

early discussions in this chapter, we wanted to obtain a method of reconstructing

f ∈ L2 (D) where the kernels used exhibited extremely well-localized properties. In

this sense, we are referencing the sub-exponential localization characteristics given

in Chapter 4. Using some of the results we presented in the previous section, we

will spend the remainder of this paper developing a reconstruction which satisfies our

primary goal. Recall the kernel used in (5.10),

HM(t) :=
2M∑
m=1

mϕ
(
m

M

)
cos(t).

While this kernel exhibits some localization properties, the ability to use the

results given in Chapter 4 are ruined by the fact that the function tϕ(t) is not differ-

entiable at t = 0, which then implies that tϕ(t) 6∈ S.

Our idea is to make use of ϕ, as defined (5.7), but instead incorporate a dyadic

structure and then subsequently incorporate a recursive definition to develop a new

cutoff function. As we will see, this new cutoff function eliminates the issue ϕ has

with smooth differentiability at t = 0. The method employed is commonly used when

constructing wavelets in various signal theoretic applications, and is well-known under

the title decomposition of unity.

45

Figure 5.4: Plot of tϕ(t).

Begin by defining ψ(t) := ϕ(t/2) − ϕ(t). For any integer ν ≥ 0 and t ∈ R,

subsequently define

ψν(t) :=


ϕ(t), ν = 0

ψ (t21−ν) , ν = 1, 2,
(5.11)

We now show that by taking an infinite sum over ν of ψν , the result is equivalent

to one.

Lemma 5.2. For ν ≥ 0, let ψν be as defined in (5.11). Then,

∞∑
ν=0

ψν(t) = 1.

Proof. Consider the mth partial sum,

m∑
ν=0

ψν(t) = ψ0(t) + ψ1(t) + . . .+ ψm(t)

= ϕ(t) +
(
ϕ
(
t

2

)
− ϕ(t)

)
+
(
ϕ
(
t

22

)
− ϕ

(
t

2

))
+ . . .

+
(
ϕ
(
t

2m
)
− ϕ

(
t

2m−1

))
= ϕ

(
t

2m
)
.

46

Therefore, by taking the limit as m tends towards infinity, we obtain
∞∑
ν=0

ψν(t) = lim
m→∞

m∑
ν=0

ψν(t)

= lim
m→∞

ϕ
(
t

2m
)
.

We argue that the right hand side of the final equality is equivalent to 1. Recall

from (5.7) that ϕ(t) is equal to 1 on the interval [0, 1]. Hence, ϕ (t2−m) is equal to

1 on the interval [0, 2m]. Thus, as m tends towards infinity, ϕ (t2−m) is equal to 1

on the interval [0,∞). Being that ϕ is compactly supported on [0, 2], it follows then

that for all t ∈ R,
∞∑
ν=0

ψν(t) = lim
m→∞

ϕ
(
t

2m
)

= 1.

From here, we define the function Ψν by

Ψν (s, t) :=
2ν∑

m=2ν−2

ψν (m)mUm (s)Um (t) . (5.12)

Figure 5.5: Plot of ψ0(t), ψ1(t), ψ2(t).

Denote by Σ1 the sum

Σ1 :=
∞∑
ν=0

2ν∑
m=2ν−2

ψν

(
m

2ν−1

)
mUm(s)Um(t), (5.13)

47

and by Σ2 the sum

Σ2 :=
∞∑
m=0

mUm(s)Um(t). (5.14)

The following lemma shows that these two summations are, in fact, equal.

Lemma 5.3. Let Σ1 and Σ2 be defined as above. Then, Σ1 = Σ2.

Proof. Note that since ψν (m21−ν) is compacty supported on the interval [0, 2ν], we

obtain the following equivalent definition to the one by (5.13),

Σ1 =
∞∑
ν=0

∞∑
m=0

ψν

(
m

2ν−1

)
mUm(s)Um(t).

Subsequently changing the order of integration and applying the result given in

Lemma 5.2 yields

Σ1 =
∞∑
m=0

∞∑
ν=0

ψν

(
m

2ν−1

)
mUm(s)Um(t)

=
∞∑
m=0

[∞∑
ν=0

ψν

(
m

2ν−1

)]
mUm(s)Um(t)

=
∞∑
m=0

mUm(s)Um(t).

Therefore, it follows from (5.14) that Σ1 = Σ2.

Applying the foregoing result to (5.8), we obtain another reconstruction identity

for f ∈ L2(D). Namely, for x ∈ R2,

f(x) = 1
2π2

∫ 2π

0

∫ 1

−1

∞∑
ν=0

Ψν (s, x · eα)Rf (α, s) dsdα. (5.15)

Hence, the above naturally leads to yet another approximate identity for f . For

L ≥ 1,

f(x) ≈ 1
2π2

∫ 2π

0

∫ 1

−1

L∑
ν=0

Ψν (s, x · eα)Rf (α, s) dsdα. (5.16)

48

To make the discretization of the above result easier, we let s = cos θ in order to

achieve

f(x) ≈ 1
2π2

∫ 2π

0

∫ 1

−1

L∑
ν=0

Ψν (s, x · eα)Rf (α, s) dsdα

=
L∑
ν=0

1
2π2

∫ 2π

0

∫ 1

−1
Ψν (s, x · eα)Rf (α, s) dsdα

=
L∑
ν=0

1
2π2

∫ 2π

0

∫ π

0
Ψν (cos θ, x · eα)Rf (α, cos θ) sin θdθdα. (5.17)

The resulting discrete analog to the above approximate identity is obtained by

discretizing the two integrals appearing in the expression. By sampling nodes for θ

and α, we obtain

f(x) ≈
L∑
ν=0

1
2π2

2π
2ν+1

2ν+1∑
j=1

π

2ν+1

2ν+1∑
k=1

Ψν

(
cos θk, x · eαj

)
Rf (αj, cos θk) sin θk,

which simplifies to

f(x) ≈
L∑
ν=0

1
22ν+2

2ν+1∑
j=1

2ν+1∑
k=1

Ψν

(
cos θk, x · eαj

)
Rf (αj, cos θk) sin θk. (5.18)

We now turn our attention to showing that the kernel

Ψν (s, t) :=
2ν∑

m=2ν−2

ψν (m)mUm (s)Um (t)

exhibits sub-exponential localization properties. Note that we can equivalently ex-

press the above as

Ψν (s, t) =
∞∑
m=1

ψ
(
m

2ν−1

)
mUm(s)Um(t),

since ψ (m21−ν) is supported on the interval [1, 2]. Denote by ω(t) := tψ (t). A quick

look at the figure below gives evidence that we have been relieved of the smoothness

issue t = 0.

Therefore, since ψ(t) ∈ C∞ (R), we have that ω(t) = tψ(t) ∈ C∞ (R). Con-

sequently, we can apply the localization result given by Theorem 4.3 to the kernel

Ψν .

49

Figure 5.6: Plot of ω(t).

Recalling Theorem 4.3, it follows that for all σ > 0 there exists a constant cσ > 0

such that

|Ψν (s, t)| ≤ cσ22ν(√
1− s2 + 2−ν

) (√
1− t2 + 2−ν

)
(1 + 2νρ (s, t))σ

, (5.19)

where ρ (s, t) =
√

arccos(s)− arccos(t).

Drawing our attention to (5.18), note the factor sin θk included in each iteration of

the inner sum. Though this factor does not cause any issues with the localization of

Ψν (and it in fact helps), we can make use of it to further clean up the aforementioned

bound. Consider that for 0 ≤ θ, φ ≤ 2π,

Ψν (cos θ, sinφ) sin θ = 2ν−1
∞∑
n=1

ω
(
m

2ν−1

)
sinmθ sinmφ

sinφ

= 2ν−1

sinφ

∞∑
m=0

ω
(
m

2ν−1

)
sinmθ sinmφ.

Since ω(t) ∈ C∞ (R), it follows from Lemma 4.5 that for all σ > 0 there exists a

cosntant cσ > 0 such that

|Ψν (cos θ, cosφ) sin θ| ≤ cσ22ν

|sinφ| (1 + 2ν |θ − φ|)σ .

50

Similarly, Lemma 4.8 yields

|Ψν (cos θ, cosφ) sin θ| ≤ cσ23ν

(1 + 2ν |θ − φ|)σ .

Therefore, combining the above two inequalities, we achieve that for all σ > 0, there

exists a constant cσ > 0 such that

|Ψν (cos θ, sinφ) sin θ| ≤ cσ22ν

(sinφ+ 2−ν) (1 + 2ν |θ − φ|)σ .

(a) ν = 6, s = 0.9 (near endpoint). (b) ν = 6, s = 0.3.

Figure 5.7: Localization of Kernel Ψν .

This concludes our discussions on the localization of the kernel Ψν , which was used

in the discrete version of the inverse Radon identity given in (5.18). From (5.19), it

follows that when cos θk and x·eαj are far apart, Ψν

(
cos θk, x · eαj

)
is extremely small.

This speeds up the computation time in evaluating the kernel Ψν since essentially only

points where cos θk and x · eαj are close together will yield non-zero values. In this

sense, Ψν is well-localized which gives the identity proposed in (5.18) advantages over

classical Chebyshev reconstruction results.

51

Bibliography
[1] Ali N Akansu and Richard A Haddad, Multiresolution signal decomposition:

transforms, subbands, and wavelets, Academic Press, 2001.

[2] Gregory Beylkin, Discrete Radon transform, IEEE Trans. Acoust. Speech Signal
Process. 35 (1987), no. 2, 162–172. 904961

[3] Martin L. Brady, A fast discrete approximation algorithm for the Radon trans-
form, SIAM J. Comput. 27 (1998), no. 1, 107–119 (electronic). 1614880

[4] Charles K. Chui, An introduction to wavelets, Wavelet Analysis and its Applica-
tions, vol. 1, Academic Press, Inc., Boston, MA, 1992. 1150048

[5] Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tri-
comi, Higher transcendental functions. Vol. II, Robert E. Krieger Publishing
Co., Inc., Melbourne, Fla., 1981. 698780

[6] W. A. Götz and H. J. Druckmüller, A fast digital Radon transform—an effi-
cient means for evaluating the Hough transform, Pattern Recognition 28 (1995),
no. 12, 1985–1992. 1365481

[7] Carsten Høilund, The radon transform, Aalborg University: Vision, Graphics
and Interactive Systems (VGIS) 12 (2007).

[8] Kamen Ivanov, Pencho Petrushev, and Yuan Xu, Sub-exponentially localized ker-
nels and frames induced by orthogonal expansions, Math. Z. 264 (2010), no. 2,
361–397. 2574981

[9] Jarkko Johansson, Radon transform in positron emission tomography, Turku
PET Center Image Processing Report Series 2 (2004).

[10] F. Natterer, The mathematics of computerized tomography, Classics in Applied
Mathematics, vol. 32, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2001, Reprint of the 1986 original. 1847845

52

[11] Pencho Petrushev and Yuan Xu, Localized polynomial frames on the interval with
Jacobi weights, J. Fourier Anal. Appl. 11 (2005), no. 5, 557–575. 2182635

[12] William H. Press, Discrete radon transform has an exact, fast inverse and gen-
eralizes to operations other than sums along lines, PNAS 103 (2006), no. 51.

53

Appendix A

Source Code

A.1 Discrete Line Integral: Algorithm 1

function r = d l I n t e g r a l 1 (f , theta , s)

% Input ~ f , N x N image

% Input ~ theta , an ang le between 0 and 180

% Input ~ s , a d i s t a n c e from the o r i g i n

% Output ~ r , sum of i n t e n s i t i e s o f p i x e l s i n t e r s e c t e d

% by the l i n e , weighted by l e n g t h s o f the

% i n t e r s e c t i o n .

N = s ize (f , 1) ; % Cal cu la t e dimensions o f image .

P = −N/2 :N/2 ; % Set mesh .

s inVal = sin (theta ∗pi / 1 8 0) ; % Compute v a l u e s f o r sine ,

cosVal = cos (theta ∗pi / 1 8 0) ; % and cos ine .

r = 0 ; % I n i t i a l i z e sum l i n e .

% I f t h e t a i s 0 or 180 , f i n d column and sum over rows .

i f (theta == 0 | | theta == 180)

i f (s >= −N/2 && s < N/2)

x = f loor (s)+N/2+1;

for y = 1 :N

r = r + f (x , y) ;

end

end

e l s e i f (0 < theta && theta < 90)

% X and Y coord ina te s o f the l i n e .

l ineX = (s − P∗ s inVal)/ cosVal ;

l ineY = (s − P∗ cosVal)/ s inVal ;

% Cal cu la t e l e f t , r i g h t , top , and bottom e x i t s .

l e f t E x i t = f loor (l ineX (N+1)+N/2) + 1 ;

r i g h t E x i t = f loor (l ineX (1)+N/2) + 1 ;

54

topExit = f loor (l ineY (1) + N/2) + 1 ;

botExit = f loor (l ineY (N+1) + N/2) + 1 ;

% Reset l e f t and r i g h t e x i t s i f out o f bounds .

i f (l e f t E x i t <= 0) , l e f t E x i t = 1 ; end

i f (r i g h t E x i t > N+1) , r i g h t E x i t = N+1; end

% Reset top and bottom e x i t s i f out o f bounds .

i f (topExit > N+1) , topExit = N+1; end

i f (botExit <= 0) , botExit = 1 ; end

% Search f o r p i x e l s to h i t r i g h t edges .

for i = l e f t E x i t : r i g h t E x i t

x = i ;

y = N/2 − f loor (l ineY (i)) ;

% Check i f p i x e l s are i n s i d e the image reg ion .

i f (x > 0 && x <= N && y > 0 && y <= N)

% Compute dX and dY.

dX = P(i) − l ineX (N+1 − (y−1)) ;

dY = 1 − l ineY (i)+ f loor (l ineY (i)) ;

% Cal cu la t e l e n g t h o f i n t e r s e c t i o n o f l i n e and p i x e l .

% Reset d i s t a n c e s i f be low 0 or above 1 .

i f (dX > 1 | | dX < 0) ; dX = 1 ; end

i f (dY > 1 | | dY < 0) ; dY = 1 ; end

pixLength = sqrt (dX^2+dY^ 2) ;

% Add p i x e l coord ina te s and we igh t s .

r = r + pixLength∗ f (x , y) ;

end

end

% Search f o r p i x e l s to h i t top edges .

for i = topExit :−1: botExit

x = f loor (l ineX (i)) + N/2 + 1 ;

y = N + 1 − i ;

% Check i f p i x e l s are i n s i d e the image reg ion .

i f (x > 0 && x <= N && y > 0 && y <= N)

% Compute dX and dY.

55

dX = lineX (i) − f loor (l ineX (i)) ;

dY = l ineY (x) − P(i) ;

% Cal cu la t e l e n g t h o f i n t e r s e c t i o n o f l i n e and p i x e l .

% Reset d i s t a n c e s i f be low 0 or above 1 .

i f (dX > 1 | | dX < 0) ; dX = 1 ; end

i f (dY > 1 | | dY < 0) ; dY = 1 ; end

pixLength = sqrt (dX^2 + dY^ 2) ;

% Add p i x e l coord ina te s and we igh t s .

r = r + pixLength∗ f (x , y) ;

end

end

e l s e i f (90 < theta && theta < 180)

% X and Y coord ina te s on the l i n e .

l ineX = (s − P∗ s inVal)/ cosVal ;

l ineY = (s − P∗ cosVal)/ s inVal ;

l e f t E x i t = f loor (l ineX (1)+N/2) + 1 ;

r i g h t E x i t = f loor (l ineX (N+1)+N/2) + 1 ;

topExit = f loor (l ineY (N+1) + N/2) + 1 ;

botExit = f loor (l ineY (1) + N/2) + 1 ;

% Reset l e f t and r i g h t e x i t s i f out o f bounds .

i f (l e f t E x i t <= 0) ; l e f t E x i t = 1 ; end

i f (r i g h t E x i t > N+1); r i g h t E x i t = N+1; end

% Reset top and bottom e x i t s i f out o f bounds .

i f (topExit > N+1); topExit = N+1; end

i f (botExit <= 0) ; botExit = 1 ; end

for i = l e f t E x i t : r i g h t E x i t

x = i ;

y = N/2 − f loor (l ineY (i)) ;

% Check i f p i x e l s are i n s i d e the image reg ion .

i f (x > 0 && x <= N && y > 0 && y <= N)

%Compute dX and dY.

dX = P(i) − l ineX (N+1 − (y−1)) ;

dY = 1 − l ineY (i)+ f loor (l ineY (i)) ;

% Cal cu la t e l e n g t h o f i n t e r s e c t i o n o f l i n e and p i x e l .

56

% Reset d i s t a n c e s i f be low 0 or above 1 .

i f (dX > 1 | | dX < 0) ; dX = 1 ; end

i f (dY > 1 | | dY < 0) ; dY = 1 ; end

pixLength = sqrt (dX^2+dY^ 2) ;

r = r + pixLength∗ f (x , y) ;

end

end

% Search f o r p i x e l s to h i t top edges .

for i = botExit : topExit

x = f loor (l ineX (i)) + N/2 + 1 ;

y = N + 1 − i ;

% Check i f p i x e l s are i n s i d e the image reg ion .

i f (x > 0 && x <= N && y > 0 && y <= N)

% Compute dX and dY.

dX = lineX (i) − f loor (l ineX (i)) ;

dY = l ineY (x) − P(i) ;

% Cal cu la t e l e n g t h o f i n t e r s e c t i o n o f l i n e and p i x e l .

% Reset d i s t a n c e s i f be low 0 or above 1 .

i f (dX > 1 | | dX < 0) ; dX = 1 ; end

i f (dY > 1 | | dY < 0) ; dY = 1 ; end

pixLength = sqrt (dX^2 + dY^ 2) ;

% Add p i x e l coord ina te s and we igh t s .

r = r + pixLength∗ f (x , y) ;

end

end

% I f t h e t a i s 90 , f i n d row and sum over columns .

e l s e i f (theta == 90)

i f (s>=−N/2 && s<N/2)

y = f loor (s)+N/2+1;

for x = 1 :N

r = r+f (x , y) ;

end

end

end

end

57

A.2 Discrete Line Integral: Algorithm 2

function r = d l I n t e g r a l 2 (f , theta , s)

% Input ~ f , N x N image

% Input ~ theta , an ang le between 0 and 180

% Input ~ s , a d i s t a n c e from the o r i g i n

% Output ~ r , sum of i n t e n s i t i e s o f p i x e l s i n t e r s e c t e d

% by the l i n e , weighted by l e n g t h s o f the

% i n t e r s e c t i o n .

N = s ize (f , 1) ; % Cal cu la t e dimensions o f image .

n = round(N/ 2) ; % Center o f the image .

r = 0 ; % I n i t i a l i z e sum l i n e .

% C a l c u l a t i o n o f l i m i t i n g p i x e l v a l u e s depends on

% what range the ang le i s in . Depending on the theta ,

% we may choose to use x or y as a known va lue and then

% s o l v e f o r the other .

i f (theta ~=180 && theta ~=0)

s inVal = sin (theta ∗pi / 1 8 0) ; % Compute v a l u e s f o r sine ,

cosVal = cos (theta ∗pi / 1 8 0) ; % and cos ine .

a = −cosVal / s inVal ; %Slope o f l i n e

b = s / s inVal ; %y−i n t e r c e p t

i f theta <=45

ymax = min(round(−a∗n+b) , n−1); % Limit search range

ymin = max(round(a∗n+b) , −n) ; % f o r p i x e l v a l u e s .

for y = ymin : ymax

x = (y−b)/ a ;

x f l o o r = f loor (x) ;

xup = x − x f l o o r ;

x lo = 1 − xup ;

x = x f l o o r ;

x = max(x,−n) ;

x = min(x , n−2);

r = r + xlo ∗ f (y+n+1,x+n+1) + xup∗ f (y+n+1,x+n+2);

end

e l s e i f (theta >45 && theta <=90)

xmax = min(round((−n−b)/ a) , n−1);

58

xmin = max(round ((n−b)/ a) , −n) ;

for x = xmin : xmax

y = a∗x+b ;

y f l o o r = f loor (y) ;

yup = y − y f l o o r ;

y lo = 1 − yup ;

y = y f l o o r ;

y = max(y,−n) ;

y = min(y , n−2);

r = r + ylo ∗ f (y+n+1,x+n+1) + yup∗ f (y+n+2,x+n+1);

end

e l s e i f (theta > 90 && theta <=135)

xmax = min(round ((n−b)/ a) , n−1);

xmin = max(round((−n−b)/ a) , −n) ;

for x = xmin : xmax

y = a∗x+b ;

y f l o o r = f loor (y) ;

yup = y − y f l o o r ;

y lo = 1 − yup ;

y = y f l o o r ;

y = max(y,−n) ;

y = min(y , n−2);

r = r + ylo ∗ f (y+n+1,x+n+1) + yup∗ f (y+n+2,x+n+1);

end

e l s e i f (theta > 135 && theta < 180)

ymax = min(round(a∗n+b) , n−1);

ymin = max(round(−a∗n+b) , −n) ;

for y = ymin : ymax

x = (y−b)/ a ;

x f l o o r = f loor (x) ;

xup = x − x f l o o r ;

x lo = 1 − xup ;

x = x f l o o r ;

x = max(x,−n) ;

x = min(x , n−2);

r = r + xlo ∗ f (y+n+1,x+n+1) + xup∗ f (y+n+1,x+n+2);

end

59

end

% I f t h e t a i s 0 or 180 , f i n d column and sum over rows .

else

i f (s >= −n && s < n)

y = f loor (s)+n+1;

for x = 1 :N

r = r + f (x , y) ;

end

end

end

end

A.3 Discrete Radon Transform

function r e s = myradon (f , theta , s , a l g)

% Input ~ f , an N x N image .

% Input ~ theta , a v e c t o r o f ang l e s (in degrees) .

% Input ~ s , a v e c t o r o f d i s t a n c e s from o r i g i n .

% Input ~ alg , a case modi f i e r to choose which a lgor i thm to run

% Output ~ res , A matrix conta in ing the p r o j e c t i o n data .

% The rows are the d i s t a n c e s and the columns

% are the ang l e s .

N = s ize (f , 1) ; % Cal cu la t e dimensions o f image .

%C a lc u la t e l e n g t h o f d i s t a n c e and t h e t a v e c t o r s .

sL = length (s) ;

tL = length (theta) ;

%I n i t i a l i z e radon transform matrix .

r e s = c a s t (zeros (sL , tL) , ’ double ’) ;

for j =1: tL

switch a lg

case 1

for i = 1 : sL

r e s (i , tL−j +1) = d l I n t e g r a l 1 (f , theta (j) , s (i)) ;

end

case 2

for i = 1 : sL

r e s (i , tL−j +1) = d l I n t e g r a l 2 (f , theta (j) , s (i)) ;

60

end

end

end

end

A.4 Classical Chebyshev Inversion Algorithm

function c o e f f M a t r i x = chebyCoef f (f ,M, a lg)

% Input ~ f , a S x S image .

% Input ~ M, degree o f approximation .

% Input ~ alg , a case modi f i e r to choose which a lgor i thm to run

% Output ~ coe f fMatr ix , a matrix conta in ing c o e f f i c i e n t s f o r

% Chebyshev r e c o n s t r u c t i o n .

S = s ize (f , 1) ; % Compute dimensions o f image .

K = 4∗M; % Compute s t e p s i z e o f a lpha sampling .

R = c e i l (sqrt (2)∗S / 2) ; % Cal cu la t e rad ius o f e n c l o s i n g c i r c l e .

c = c a s t (zeros (M,M,K) , ’ double ’) ; % I n i t i a l i z e c o e f f i c i e n t matrix .

% Prior to sum .

alpha = pi /(2∗K) : pi/K: (2∗K−1)∗pi /(2∗K) ;

s = R∗cos (alpha) ; % Sampling d i s t a n c e s from or ig in ,

switch a lg

case 1

for m = 1 :M

theta = 180/m:180/m: 1 8 0 ;

for j =1:m

for k=1:K

c (m, j , k) = d l I n t e g r a l 1 (f , theta (j) , s (k))∗ sin (m∗ alpha (k)) ;

end

end

end

case 2

for m = 1 :M

theta = 180/m:180/m: 1 8 0 ;

for j =1:m

for k=1:K

c (m, j , k) = d l I n t e g r a l 2 (f , theta (j) , s (k))∗ sin (m∗ alpha (k)) ;

end

end

end

61

end

% C o e f f i c i e n t matrix i n c l u d i n g sum .

c o e f f M a t r i x = sum(c , 3) ;

end

function f = iradonCheby (coe f fMatr ix ,N)

% Input ~ c , a matrix conta in ing Chebyshev c o e f f i c i e n t s .

% Input ~ N, s i z e o f f .

% Output ~ f , a r e c o n s t r u c t i o n to o r i g i n a l image .

M = s ize (coe f fMatr ix , 1) ; % Cal cu la t e degree o f approximation .

K = 4∗M; % Cal cu la t e s t e p s i z e o f a lpha sampling .

R = c e i l (sqrt (2)∗N/ 2) ; % Cal cu la t e rad ius o f e n c l o s i n g c i r c l e .

f = c a s t (zeros (N,N) , ’ double ’) ; % I n i t i a l i z e r e c o n s t r u c t i o n o f f .

% Scan through a l l p i x e l s .

for x = 1 :N

for y = 1 :N

s = x − N/2 ; %O f f s e t x and y coord ina te s .

l = y − N/2 ;

for m = 1 :M

theta = pi/m: pi/m: pi ;

for j = 1 :m

t = s ∗cos (theta (j))+ l ∗ sin (theta (j)) ;

u = real (chebyshev2nd (m, t /R)) ;

f (x , y) = f (x , y)+ c o e f f M a t r i x (m, j)∗abs (u) ;

end

f (x , y) = (1/(R∗K))∗ f (x , y) ;

end

end

end

end

% Values o f degree m − 1 Chebyshev polynomial o f 2nd kind .

function u = chebyshev2nd (m, t)

u = sin (m∗acos (t))/ sin (acos (t)) ;

end

62

	Chebyshev Inversion of the Radon Transform
	Recommended Citation

	tmp.1498236924.pdf.Hw6TT

