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Fig. 8.4  Cauchy stress-strain curves from collagen fiber tensile tests. 

 

Table 8.1 Diameter, strain at failure and ultimate strength from fiber tensile tests. 

  FB-1 FB-2 FB-3 FB-4 FB-5 FB-6 Mean S.D. 

Diameter, D (µm) 28.6 11.1 16.8 39.5 32.3 12.4 23.5 10.7 

Strain at failure (%) 32 23 8 24 26 25 23.00 7.30 

Ultimate Strength (MPa) 10.81 156.88 50.29 28.34 32.35 211.82 81.75 75.14 

 

8.5.2 CZM Parameter Values of Fiber-Fiber Interface 

   The CZM parameter values for the interface across the fibers were obtained through 

a numerical identification procedure that matches simulation predictions of the load vs. 

load-point displacement curve with the experimental measurements (Leng et al., 2015b; 

Leng et al., 2016; Shazly et al., 2014), as shown in Fig. 8.5. The tangential modulus and 

ultimate tensile strength quantified from the fiber tensile tests were used as input data as 

the modulus 𝐸 of fibers and interfacial strength 𝜎𝑐 of fiber-fiber interface in the parameters 

identification procedure, respectively. The initial guess of critical energy release rate 𝐺𝑐 

was chosen according to the critical energy release rate of fibrous cap delamination tests 
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(Leng et al., 2016). The value of Poisson’s ratio 𝜈 of fibers was taken to be 0.3 (Genin et 

al., 2009).  

   In the numerical identification process, the modulus and Poisson’s ratio of fibers 

and the CZM parameter values of interface across fibers were considered “acceptable” 

when the root mean square error satisfies  

  𝑓𝑟 =
√ 𝜒2

𝑁−𝑀

𝐹𝑎𝑣𝑔
< 0.005 , with 𝜒2 = ∑ [(𝐹𝑒𝑥𝑝 − 𝐹𝑠𝑖𝑚)𝑖

2
]𝑁

𝑖=1   (50) 

where 𝐹𝑠𝑖𝑚  and 𝐹𝑒𝑥𝑝  are the simulation predicted and the experimentally measured 

resultant loads; 𝐹𝑎𝑣𝑔  is the sum of all experimentally measured forces divided by the 

number of data points; 𝑁 is the number of data points on the load-displacement curve 

which were used in the parameter value identification procedure; and 𝑀 is the number of 

parameters whose values were determined from the identification procedure.  

A proper set of modulus and Poisson’s ratio of fibers and the CZM parameter values 

of interface across fibers is shown in Table 8.2. It is noted that the values for K and 𝜆 were 

assumed equal to 1 N/mm3 and 1, respectively. These values are reasonable since the K 

value is sufficiently large that artificial compliance from the cohesive interface can be 

prevented and the values for mixity parameter 𝜆 is reasonable for the mode I fracture 

process of collagen fiber breakage process (Leng et al., 2015b; Leng et al., 2016). 

Table 8.2  Modulus and CZM parameter values of collagen fibers 

  FB-1 FB-2 FB-3 FB-4 FB-5 FB-6 Mean S.D. 

Modulus, E (MPa) 28.02 850 534.38 118.08 105.14 781.28 402.82 334.33 

𝐺𝑐 (N/mm) 0.005 0.32 0.21 0.1 0.15 0.47 0.209 0.151 

𝜎𝑐 (MPa) 11.32 160.82 55.75 28.34 29.39 211.82 82.91 75.71 

𝑓𝑟   0.0003  0.0023  0.0009  0.0047  0.0037 0.0008   0.0021  0.0016 
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Fig. 8.5  The simulation predicted load-displacement curves of tensile tests of collagen 

fibers are compared with the experimental measured curves. 

8.6 Parametric Studies 

A micromechanical model was proposed to characterize the arterial delamination 

mechanics at the fibrous cap-underlying plaque tissue interface in terms of the mechanical 
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properties and geometry of fibrous components including bridging fibers. A 3D unit cell 

containing a set of fibers between two arterial tissue layers was considered (Fig. 8.6).  

 

Fig. 8.6  Schematic representation of 3D unit cell models distributed in the fibrous cap 

delamination path.  

 

The top and bottom arterial tissue layers were modeled as hyperelastic anisotropic 

materials (HGO model) and the fibers were treated as a linear elastic material. In order to 

investigate the factors affecting the traction-separation response of delamination process at 

the micro scale, the parametric studies based on the 3D unit cell model was implemented, 

which considering: (1) the bonding strength of interface across the fibers; (2) variations in 

the fibers’ stress-strain behavior; (3) initial gap of the interface. 

8.6.1 3D Unit Cell Model for the Arterial Tissue Delamination 

Geometrical Modeling 

The geometry values are shown in Fig. 8.7, which are chose according to the 

average value of diameters of fibers in Table 1.  
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Fig. 8.7  Finite element model of the 3D unit cell model for micromechanical study of 

fibrous cap delamination: (a) left section view of 3D unit cell model, the collagen fibers 

connecting fibrous cap and underlying plaque tissue (the red line shows a zero thickness 

layer of cohesive elements assigned to the interface across fibers at the middle of fibers); 

(b) front view of 3D unit cell model; (c) collagen fibers; (d) top section view of 3D unit 

cell model. 

 

Meshing 

The eight-node brick elements (C3D8H) are implemented for the matrix part 

(contains collagen fibers and smooth muscle cells, etc.). The interface across the fibers is 

placed with zero thickness eight-node 3D user-defined elements. The meshed geometric 

model of 3D unit cell is shown in Fig. 8.7. 

Boundary conditions 
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The unit cell has symmetry conditions on the left and right vertical boundaries of 

the layers and is loaded in tension at the top and bottom boundaries by a uniform 

displacement. The 3D unit cell can be taken as a small part inside the human fibrous cap 

delamination model (Fig. 8.6). The boundary conditions should according to the stress 

states in the macro model. To this end, the front and back surfaces (perpendicular to the x 

axial) of the fibrous cap and underlying plaque tissue of the unit cell model were 

constrained along x direction (Constrain the deformation along the direction of length of 

fibrous cap, as shown in Fig. 8.6); and the left and right surfaces (perpendicular to the y 

axial) were set with restriction of y direction along the width of the fibrous cap and 

underlying plaque tissue during delamination test. The total reaction loads are determined 

from finite element solutions. The resulting relation between the applied displacement and 

the reaction load was used to analyze the traction-separation relation of the cohesive 

interface between the two arterial layers.  

The material parameter values of HGO model for matrix material are shown in 

Table 8.3 (Leng et al., 2016).      

Table 8.3  Material parameter values of HGO model 

 μ (kPa) 𝑘1 (kPa) 𝑘2(-) κ (-) 𝑟 (degree) 

Plaque   49.45 23.7 2630 0.226 30 

Fibrous cap 21.89 93.63 7957 0.226 17.22 

 

The linear elastic model was used to characterize the mechanical behavior of bulk 

material of collagen fibers, which includes parameters such as the elastic modulus and 

Poisson’s ratio. A CZM model was adopted to describe the stiffening and softening 
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behavior of collagen fibers during the tensile tests. The reference material parameter values 

of elastic modulus, interfacial strength and critical energy release rate for the 3D unit model 

were set equal to the average values of the parameters obtained from the experiment as 

shown in Table 8.3 (𝐺𝑐=0.209 N/mm, 𝜎𝑐=82.91 MPa, 𝐸=402.82 MPa and 𝜈=0.3) . 

One set of the traction-separation curves from simulation predictions using 3D unit 

cell model is shown in Fig. 8.8a. Traction is obtained through dividing the resultant force 

by the area of the fibrous cap-underlying plaque tissue interface (0.023mm2) and the 

separation is the load-point displacement. At the beginning of the traction-separation curve, 

the traction increases because of the resistance force from the interface across fibers and 

the matrix material. Further, the maximum traction occurs when the stress of interface 

across fibers equal to the interfacial strength. At last, the traction decreases to zero when 

the cohesive elements of the interface across fibers are completely damage. 

8.6.2 Bonding Strength of Interface across the Fibers 

Collagen fibers are the major load-bearing structural constituents in the vascular 

tissue, which increase strength exponentially at higher strains. Hence, collagen fiber 

breakage is considered as the main contribution to the arterial tissue failure (Pal et al., 

2014). In this section, we focus on the effects of bonding strength of interface across the 

collagen fibers to study the traction-separation relationship of the interface between two 

arterial layers including fiber bridging. To gain some insight into the effect of 𝐺𝑐 , five 

values for the 𝐺𝑐 are considered: 0.01 N/mm, 0.05 N/mm, 0.1 N/mm, 0.209 N/mm and 0.4 

N/mm. Furthermore, to investigate the effect of the interfacial strength on simulation 

predictions, five values of 𝜎𝑐 are considered: 50 MPa, 82.91 MPa, 100 MPa, 150 MPa and 

200 MPa. All other aspects of the simulation model keep the same.  
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Fig. 8.8  Traction-separation curves from simulation predictions with five different values 

of (a) critical energy release rate 𝐺𝑐 and (b) interfacial strength 𝜎𝑐.  

The predicted traction-separation curves are shown in Fig. 8.8. It is seen that the 

traction increases with increasing critical energy release rate 𝐺𝑐. Moreover, the traction is 

largely affected by the interfacial strength that the traction increases with increasing 𝜎𝑐, but 

the stiffness is not affected by the interfacial strength.  

8.6.3 Variations in the Fibers’ Stress-strain Behavior 

In order to gain insight into the effect of the elastic modulus 𝐸  on traction-

separation relation for unit cell model, five values are considered: 402.82 MPa, 500 MPa, 

600 MPa, 700 MPa and 800 MPa. Furthermore, to investigate the effect of the Poisson’s 

ratio 𝜈 on simulation predictions, five values of 𝜈 are considered: 0.1, 0.2, 0.3, 0.4 and 

0.499. Using these elastic modulus and Poisson’s ratio, ten simulations were carried out 

(as shown in Fig. 8.9), each with a different 𝐸 or 𝜈. Other values are kept the same in all 

simulations. The simulation predicted traction-separation curves are shown in Fig. 8.9. It 

is seen that the traction and the stiffness increase with increasing of elastic modulus and 

the traction decreases with increasing of Poisson’s ratio.  
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Fig 8.9  Traction-separation curves from simulations with five different values of (a) elastic 

modulus 𝐸 and (b) Poisson’s ratio 𝜈.  

8.6.4 The Initial Gap of the Interface  

Considering the effect of the initial gap of the interface 𝑙𝑔 on traction-separation 

relation for unit cell model, five values are considered: 0 mm, 0.05 mm, 0.1 mm, 0.15 mm 

and 0.2 mm. All other aspects of the simulation model are kept the same. 

 

Fig. 8.10  Traction-separation curves from simulations with five different values of initial 

gap of the interface 𝐿𝑔. 
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 The simulation predicted traction-separation curves are shown in Fig. 8.10. It is 

seen that the stiffness increases with decreasing of initial gap of the interface and the 

predicted maximum traction is only slightly affected by the initial gap of the interface. 

8.7 Discussion 

For the tensile tests, the fibers is composed of several bundles of collagen fibers. 

During the collagen fiber breakage process, the lamellae sliding occurred and it was also 

associated with fibril pulling out and breakage (Ikoma et al., 2003). Because some of the 

collagen fibers are attached to the matrix and connected to other collagen fibers (Fig. 8.1b), 

the arterial failure process may contain separation of matrix material and collagen fiber 

pull-out. Thus, the debonding and slippage of fibers embedded within the matrix may occur, 

but the main contribution of the micromechanical behavior of arterial delamination is the 

breakage of fibers perpendicular to the delamination interface (Pal et al., 2014).  

In the present study, the fibers contain bundles of collagen fibers (the diameters of 

fibers in the current study are larger than that of collagen fibers which ranged from 1 to 10 

µm (Miyazaki and Hayashi, 1999)). It was found that the strain at failure, ultimate strength 

and elastic modulus of fibers are 23.00 ± 7.3 %, 81.75 ± 75.14 MPa and 402.82 ± 334.33 

MPa, respectively. Miyazaki and Hayashi (Miyazaki and Hayashi, 1999) have observed 

the mechanical properties of single collagen fibers isolated from rabbit patellar tendon and 

the  failure strain, ultimate strength and elastic modulus are 21.6±3.0 %, 8.5±2.6 MPa and 

54.3±25.1 MPa, respectively. Except for the values of strain at failure obtained in this study 

are in line with those from tensile tests of single collagen fibers, the ultimate strength and 

elastic modulus obtained from tensile tests of bundles of collagen fibers from porcine aorta 

are larger than the values from Miyazaki’s research. Yamamoto et al. (Yamamoto et al., 
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1999) acquired the tensile properties of collagen fascicles (consists of collagen fibrils, 

fibers, interfibrillar matrix and fibroblasts (Miyazaki and Hayashi, 1999), the diameter is 

approximately 300 µm (Yamamoto et al., 1999)) from rabbit patellar tendons, and the strain 

at failure, ultimate strength and elastic modulus are 10.9±1.6 %, 17.2±4.1 MPa and 216±68 

MPa, respectively. The values of strain at failure, ultimate strength and elastic modulus are 

less than those from the present study. The differences may attribute to the different tissue 

source of the collagen fibers, the different geometric or structural properties of the samples.   

For the identification of CZM parameter values of interface across collagen fibers, 

the deformation of fibers should correlate to that from tensile tests. It was noted that the 

fibers was stretched during the tensile test until the fiber breakage occurred at the last time 

point with load completely dropping to zero. Moreover, the maximum effective 

displacement when the interface is damaged completely is very small compared to the 

length of fibers. Experimental results show a nonlinearity of the mechanical response 

which is attributed to the nonlinear mechanical response of elastin and the gradually 

recruited load-bearing collagen fibers as they straighten out with increasing strain. At the 

last stage, the softening behavior of the interface across the fibers occurs and the interface  

damage completely with the traction dropping to zero.  

For the 3D unit cell model, the parts of matrix material including fibrous cap and 

underlying plaque tissue were created according to the dimension of the arterial layers. The 

thickness, length and width should be small enough to attain a good numerical efficiency 

and also to eliminate the effects from the boundary conditions. For the parametric studies, 

the material parameter values for the CZM model and elastic model of fibers were chosen 

within the range of the values obtained from the experiments (Table 8.1and Table 8.2) in 
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order to simulate the actual failure process. The predicted maximum traction is largely 

affected by the critical energy release rate, interfacial strength and Poisson’s ratio while 

the stiffness of the traction-separation curves is affected by the elastic modulus of fibers 

and the initial gap of the interface. The damage accumulates as the fibers be elongated and 

its magnitude reaches 1 when the tractions of the 3D unit cell model as well as the tractions 

of cohesive elements decrease to zero after attaining the maximum values. Meanwhile, the 

cohesive element is completely damage and the two layers of the 3D unit cell model are 

separated.  

In one reference (SIMPSON and BOUCEK, 1983), It mentioned that the medicine 

act by decreasing the aortic tensile strengths to increase the high percentage of the animal 

death from the aortic dissecting aneurysms. It is noted that the drugs increase the 

ultrastructural disruption of collagen and decrease the arterial strength. For this reason, the 

increasing of critical energy release rate and interfacial strength of interface across fibers 

will increase the traction of the unit cell along the failure path, which will inhibit the arterial 

failure. Meanwhile, the effective displacement when the maximum traction of unit cell 

attained will increase, which will also prevent the damage of arterial tissue under certain 

deformation. The arterial stiffness increased with age and was taken as one factor to 

increase the cardiovascular disease (Janić et al., 2014). From the parametric studies, when 

the modulus of collagen fibers increases and the initial gap of the interface decreases, the 

stiffness of the interface prone to failure will increase, which will accelerate the damage of 

the interface under a certain small deformation. Therefore, the parametric studies using 3D 

unit cell will provide a possibility to investigate the mechanism of drug treatments to the 

arterial tissue failure. 
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Despite the novelty of some experimental observations and the encouraging 

predictive power of the proposed micromechanical model of the arterial tissue, certain 

limitations in our study should be recognized. Firstly, the fibers are assumed with constant 

cross-section area along the longitudinal direction, but actually the area of cross-section 

varies with irregular shape. Additionally, the fibers are composed of bundles of collagen 

fibers twisted together. Secondly, the cross-section of fibers were assumed to be a smooth 

interface perpendicular to the axial direction in the simulation of fiber breakage process. 

But, the breakage area may not be an ideal cross-section because the fibril pull-out and 

breakage occur inside the fibers.  

8.8 Conclusions  

In the current study, a 3D unit cell model was developed and applied successfully 

to do the parametric studies of the arterial tissue failure process at the microscopic scale. 

The mechanical behavior of the arterial layers (including parts of fibrous cap and 

underlying plaque tissue), collagen fibers and the interface across the fibers were 

represented by HGO anisotropic constitutive mode, linear elastic model and exponential 

CZM model, respectively. The CZM parameter values and elastic parameter values of 

fibers were obtained through material identification method that matching the load-

displacement curve from simulation predictions of tensile tests of bundles of collagen 

fibers with the experimental measurements. The identified parameter values were then 

applied in the parametric studies using 3D unit cell model to investigate the cohesive 

traction-separation relation affected by factors at the micromechanical scale.  

Comparisons of simulation predictions of the load-displacement curve with 

experimental measurements revealed that the simulation predictions were able to capture 
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the essential features of the load-displacement curve from the collagen fiber tensile tests 

and show good quantitative agreement with the experimental measurements. The results 

from the simulation predictions of fiber breakage provide a validation for the proposed 

CZM based approach for modeling and simulating collagen fiber breakage events. 

Furthermore, the parametric studies using 3D unit cell model provide a method to 

investigate the traction-separation relationship of fiber bridging across the arterial layers at 

the micromechanical scale. Considering the predicted maximum traction, it is largely 

affected by the critical energy release rate, interfacial strength and Poisson’s ratio. For the 

stiffness of the traction-separation curve, it is affected by the elastic modulus of fibers and 

the initial gap of the interface. 
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CHAPTER 9 

CONCLUSIONS AND FUTURE WORK 

 

A cohesive zone model-based computational approach for modeling and simulating 

delamination experiments on atherosclerotic plaque, media and fibrous cap as well as the 

fibrous cap model I tearing and collagen fibers breakage events have developed and applied 

successfully to characterize arterial tissue failure.  

    For the simulations of plaque rupture at the plaque-media interface. The aortic wall 

is treated as a fiber-reinforced, highly deformable, incompressible material, and the 

Holzapfel-Gasser-Ogden (HGO) model is adopted for the aortic bulk material behavior.  

Cohesive elements are placed along the plaque-media interface along which delamination 

occurs. The 3D specimen geometric models are created based on images from the 

experiments and certain simplifying approximations. A set of HGO and CZM parameter 

values is determined based on values suggested in the literature and through matching 

simulation predictions of the load vs. load-point displacement curve with experimental 

measurements for one loading-delamination-unloading cycle. Using this set of parameter 

values, simulation predictions for four other loading-delamination-unloading cycles are 

obtained, which show good agreement with experimental measurements. The findings of 

the current study demonstrate the applicability of the CZM approach in arterial tissue 

failure simulations. 
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The delaminated mechanical responses of the porcine abdominal aorta under mix-

mode and mode I delamination are quantified via mechanical testing. Mechanical data are 

used to parameterize and validate the structure-motivated constitutive model and the 

exponential cohesive zone model approach for simulations of the arterial wall delamination. 

This integrated theoretical-experimental approach is demonstrated by comparing the 

loading-delamination-unloading curve and the crack front between numerical simulation 

predictions and experimental measurements for two types of experiments. In addition, the 

mixed-mode delamination reveals a shear mode dominated fracture event whereas mode I 

delamination is purely an opening failure process. Experimental data and theoretical 

predictions of the arterial delamination provide a comprehensive description of the arterial 

delamination and aid in the predictions of abdominal aortic dissection.   

In order to describe the hysteresis phenomenon of diseased arterial tissue, a 

viscoelastic anisotropic (VA) model for the bulk material behavior is extended from 

existing HGO constitutive model. A finite element model is developed for the fibrous cap 

delamination experiments, in which arterial layers (including fibrous cap and underlying 

plaque tissue) are represented by 3D solid elements based on the VA model and fibrous 

cap-underlying plaque tissue interface is characterized by interfacial CZM elements. Using 

the set of parameter values from fibrous cap delamination experiments and material 

parameter identification process, simulation predictions for fibrous cap delamination 

events are conducted, which match well with the experimental measurements. Results of 

this study demonstrate the applicability of the viscoelastic anisotropic model and the CZM 

approach for the simulation of diseased arterial tissue failure processes.  
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    An inverse analysis method with finite element modeling and simulation approach 

is presented, which enables the analysis of fibrous cap Mode I tearing experiments for the 

purpose of acquiring the interfacial strength and critical energy release rate of the fibrous 

tissue across the thickness. A cohesive zone model (CZM) approach is applied to simulate 

the tearing of the fibrous cap tissue under uniaxial tensile tests along the circumferential 

direction and a fibers reinforced hyperelastic model (Holzapfel-Gasser-Ogden) is 

implemented for the mechanical response of bulk material. With the material parameter 

values of HGO model from inverse analysis process as the input for the bulk material, the 

interfacial strength and critical energy release rate along the tearing path or failure zones 

are obtained through the same method as material identification process of HGO model. 

Results of this study quantificational demonstrate the fibrous cap tissue mode I tearing 

failure processes. 

In order to demonstrate the arterial tissue failure at the microscale, a cohesive CZM 

based approach is applied to develop a micromechanical model for arterial delamination 

along the interface between the fibrous cap and the underlying plaque tissue. A 3D unit 

cell containing an individual collagen fibers between two arterial tissue layers is considered. 

An exponential cohesive zone model (CZM) is applied to describe the stiffening and 

softening behaviors of fibers (bundles of collagen fibers) between the two arterial layers. 

The CZM parameter values and elastic parameter values of fibers are obtained through a 

material parameter identification method that matches the load-displacement curve from 

simulation predictions of tensile test of collagen fibers with experimental measurements. 

The identified parameter values are applied in the 3D unit cell model. Using the unit cell 

model, micromechanical factors affecting the resulting traction-separation relation for the 
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unit cell are investigated using a parametric approach, which considers CZM model 

parameters, elastic model parameters and the initial gap of the interface. Through this 

investigation, CZM parameter values that describe the fiber failure process and the tensile 

properties of the fibers are obtained. Results of the parametric studies demonstrate the 

applicability of the 3D unit cell model approach for studying the micromechanical 

mechanisms of arterial tissue failure processes.  

The CZM approach developed in the current studies are not limited to simulating 

plaque delamination from the aortic wall, fibrous cap delamination from the underlying 

plaque tissue and so on. If proper experimental data are available so that CZM parameter 

values can be calibrated, the simulation procedure can be equally applied to rupture failure 

inside the plaque tissue or the arterial layers. This said, it is noted that the current studies 

seek to demonstrate and validate the numerical modeling approach for simulating material 

separation failure events in arterial tissues, which will provide a strong basis for its 

application to more clinically relevant arterial tissue failure events. The case of plaque 

delamination, fibrous cap delamination, aortic media delamination, fibrous cap tearing and 

collagen fiber breakage are chosen in these studies because these are the cases in which 

experimental data are available. These studies try to establish the credibility and viability 

of the CZM-based approach, so that it can be applied to more clinically relevant failure 

events of arterial tissue in the future. 

Based on this dissertation, several open questions are proposed: 

1) So far, a cohesive zone model was developed to simulate the mouse atherosclerotic 

plaque delamination and human fibrous cap delamination. However, the oscillation 
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of load from the delamination phase of loading-unloading cycles cannot be captured 

by the implementation of CZM method. Hence, a more reasonable model needs for 

further study. The fracture toughness of different tissue along the delamination path 

will be acquired through inverse analysis. The histological structures of specimens 

from the delamination tests will be used for creating geometry model with local 

tissue distribution. With the critical energy release rate for local materials, a structure 

based cohesive zone model will developed to mimic the oscillation of load during 

the delamination procedure. 

2) Based on the validated CZM method, a 3D idealized diseased carotid artery model 

will be created, and cohesive elements will be inserted on the interfaces prone to 

failure from clinical observations. This model will be used to study the arterial tissue 

failure process during angioplasty and stenting. 

3) The cohesive zone model will be employed to simulate three failure mechanisms at 

the microscopic scale: matrix (plaque and arterial wall) material separation, collagen 

fiber pull-out, and collagen fiber breakage. The plaque and arterial tissue forming 

the matrix material contain tiny fibers, presumably collagenous, which seem to be 

the dominant contributions to the adhesive strength of the interface between the 

plaque and arterial wall. According to this observation, a Micromechanical Cohesive 

Zone Model (MCZM) containing a set of fibers embedded in the matrix material will 

be considered. The failure of this MCZM has four stages as increasing tensile force 

is applied to it: (i) the separation of the matrix material; (ii) the fiber breakage; (iii) 

the combination of fiber breakage and fiber pull-out; (iv) the fiber pull-out. 
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APPENDIX A – DERIVATION OF TANGENTIAL MODULUS 

 

The use for the user material subroutine of viscoelastic material model in ABAQUS 

needs the tangent modulus for Newton-Rapson iteration procedures, and an approximation 

of the tangent modulus was implemented (Miehe, 1996; Sun et al., 2008). The Jaumann 

rate can be expressed as  

  𝝉
𝛁 = �̇� −𝑾𝝉 − 𝝉𝑾𝑻 = ℂ𝝉𝑱: 𝑫   (A.1) 

where ℂ𝜏𝐽 is the tangent modulus tensor for the Jaumann rate of the Kirchhoff stress. 𝑾 

and 𝑫 are spin tensor and rate of deformation gradient tensor, which are the antisymmetric 

and symmetric part of the spatial velocity gradient, respectively(Sun et al., 2008). 

The linearized incremental form of Jaumann rate is given by 

 ∆𝝉 − ∆𝑾𝝉 − 𝝉∆𝑾𝑻 = ℂ𝝉𝑱: ∆𝑫   (A.2) 

where 

 ∆𝑾 =
1

2
(∆𝑭𝑭−𝟏 − (∆𝑭𝑭−𝟏)𝑻)   (A.3) 

 ∆𝑫 =
1

2
(∆𝑭𝑭−𝟏 + (∆𝑭𝑭−𝟏)𝑻)   (A.4)  

The perturbation of the deformation gradient can be written as 

  ∆𝑭𝒊𝒋 =
𝜀

2
(𝒆𝒊⨂𝒆𝒋𝑭 + 𝒆𝒋⨂𝒆𝒊𝑭)   (A.5) 
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where 𝜀 is a small perturbation parameter and 𝒆𝑖, 𝑖 = 1,2,3 represents the unit vectors in 

the spatial description. 

With the relation of (A.5), we can obtain  

 ∆𝑾𝒊𝒋 =
1

2
[
𝜀

2
(𝒆𝒊⨂𝒆𝒋𝑭 + 𝒆𝒋⨂𝒆𝒊𝑭)𝑭

−𝟏 − (
𝜀

2
(𝒆𝒊⨂𝒆𝒋𝑭 + 𝒆𝒋⨂𝒆𝒊𝑭)𝑭

−𝟏)
𝑻

] = 𝟎 (A.6) 

 ∆𝑫𝒊𝒋  =
𝟏

𝟐
[
𝛆

𝟐
(𝒆𝒊⨂𝒆𝒋𝑭 + 𝒆𝒋⨂𝒆𝒊𝑭)𝑭

−𝟏 + (
𝜀

2
(𝒆𝒊⨂𝒆𝒋𝑭 + 𝒆𝒋⨂𝒆𝒊𝑭)𝑭

−𝟏)
𝑻

] =

𝜀

2
(𝒆𝒊⨂𝒆𝒋 + 𝒆𝒋⨂𝒆𝒊)       (A.7) 

So, ∆𝝉 can be approximated in another form through the difference between the 

perturbed and unperturbed Kirchhoff stresses and we find that 

 ∆𝝉 ≈ 𝝉(�̂�𝒊𝒋) − 𝝉(𝑭)    (A.8) 

Where �̂�𝑖𝑗 = 𝑭 + ∆𝑭𝑖𝑗  is the perturbed deformation gradient.  With the expression of 

equations (A.2), (A.6) and (A.7), we find that ∆𝝉 = ℂ𝜏𝐽: ∆𝑫 , hence (A.8) can be written 

as (Sun et al., 2008) 

  𝝉(�̂�𝒊𝒋) − 𝝉(𝑭) ≈ ℂ𝝉𝑱
𝒊𝒋
:
𝜀

2
(𝒆𝒊⨂𝒆𝒋 + 𝒆𝒋⨂𝒆𝒊)     (A.9) 

The numerical approximation of the tangential modulus would be acquired through 

the application of symmetry properties: 

 ℂ𝝉𝑱
𝒊𝒋
≈

1

𝜀
[𝝉(�̂�𝒊𝒋) − 𝝉(𝑭)]   (A.10) 

The tangential modulus used in the ABAQUS subroutine has the expression as 

follow 
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 ℂ𝒎𝑱
𝒊𝒋
≈

1

𝐽𝜀
[𝝉(�̂�𝒊𝒋) − 𝝉(𝑭)]  (A.11)
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APPENDIX B – DERIVATION OF ELASTIC TENSOR 

 

The first-order partial derivatives of effective opening displacement 𝛿 with respect 

to 𝛿𝑠1, 𝛿𝑠2 and 𝛿𝑛 are written as (Roy and Dodds, 2001) 

 
𝜕𝛿

𝜕𝛿𝑠1
=

𝜕𝛿

𝜕𝛿𝑠

𝜕𝛿𝑠

𝜕𝛿𝑠1
=

𝜆2𝛿𝑠1

𝛿
    (B.1) 

 
𝜕𝛿

𝜕𝛿𝑠2
=

𝜕𝛿

𝜕𝛿𝑠

𝜕𝛿𝑠

𝜕𝛿𝑠2
=

𝜆2𝛿𝑠2

𝛿
 (B.2) 

 
𝜕𝛿

𝜕𝛿𝑛
=

𝜕𝛿

𝜕𝛿𝑛
=

𝛿𝑛

𝛿
 (B.3) 

And also the second-order partial derivatives of effective opening displacement 𝛿 

with respect to 𝛿𝑠1, 𝛿𝑠2 and 𝛿𝑛 are expressed as 

 
𝜕2𝛿

𝜕𝛿𝑠1𝜕𝛿𝑠1
= −𝜆2𝛿𝑠1

𝜆2𝛿𝑠1
 
 

𝛿3
+
𝜆2

𝛿
 (B.4) 

 
𝜕2𝛿

𝜕𝛿𝑠2𝜕𝛿𝑠2
= −𝜆2𝛿𝑠2

𝜆2𝛿𝑠2 
𝛿3

+
𝜆2

𝛿
 (B.5) 

 
𝜕2𝛿

𝜕𝛿𝑛𝜕𝛿𝑛
= −𝛿𝑛

𝛿𝑛
 
 

𝛿3
 (B.6) 

The individual traction components can be expressed using the chain rule as 

 𝑡𝑖 =
𝜕𝜑

𝜕𝛿

𝜕𝛿

𝜕𝑣𝑖
= 𝜑′

𝜕𝛿

𝜕𝑣𝑖
= 𝑡

𝜕𝛿

𝜕𝑣𝑖
   (B.7) 

where subscripts 𝑖 = 1, 2  and 3 represent s1 , s2 , and 𝑛 , respectively. To maintain 

consistent notation, let the relative displacements, (𝑣1,   𝑣2, 𝑣3) = (𝛿𝑠1,   𝛿𝑠2, 𝛿𝑛). 

Under conditions of loading, the relationship between effective traction, 𝑡  and 

effective displacement, 𝛿 can be specified as 
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  𝑡1 = 𝑡
𝜕𝛿

𝜕𝛿𝑠1
= 𝑡

𝜆2𝛿𝑠1

𝛿
  (B.8) 

 𝑡2 = 𝑡
𝜕𝛿

𝜕𝛿𝑠2
= 𝑡

𝜆2𝛿𝑠2

𝛿
   (B.9) 

 𝑡3 = 𝑡
𝜕𝛿

𝜕𝛿𝑛
= 𝑡

𝛿𝑛

𝛿
   (B.10) 

The tangent modulus matrix, 𝑫 can be derived as 

 𝐷𝑖𝑗 =
𝜕𝑡𝑖

𝜕𝑣𝑗
=

𝜕(𝜑′
𝜕𝛿

𝜕𝑣𝑖
)

𝜕𝑣𝑗
=

𝜕𝜑′

𝜕𝑣𝑗

𝜕𝛿

𝜕𝑣𝑖
+ 𝜑′

𝜕2𝛿

𝜕𝑣𝑗𝜕𝑣𝑖
= 𝜑′′

𝜕𝛿

𝜕𝑣𝑗

𝜕𝛿

𝜕𝑣𝑖
+ 𝜑′

𝜕2𝛿

𝜕𝑣𝑗𝜕𝑣𝑖
   (B.11) 

And with the properties shown as  

 𝐷𝑖𝑗 = 𝐷𝑗𝑖   (B.12) 

Using (B.7), (B.11) gives 

 𝐷11 = 𝜑
′′ 𝜕𝛿

𝜕𝛿𝑠1

𝜕𝛿

𝜕𝛿𝑠1
+ 𝜑′

𝜕2𝛿

𝜕𝛿𝑠1𝜕𝛿𝑠1
=

𝜑′𝜆2

𝛿
+
𝜆4𝛿𝑠1

2

𝛿2
[𝜑′′ −

𝜑′

𝛿
]   (B.13) 

 𝐷12 = 𝐷21 = 𝜑
′′ 𝜕𝛿

𝜕𝛿𝑠1

𝜕𝛿

𝜕𝛿𝑠2
+ 𝜑′

𝜕2𝛿

𝜕𝛿𝑠1𝜕𝛿𝑠2
=

𝜆4𝛿𝑠1𝛿𝑠2

𝛿2
[𝜑′′ −

𝜑′

𝛿
]   (B.14) 

 𝐷13 = 𝐷31 = 𝜑
′′ 𝜕𝛿

𝜕𝛿𝑠1

𝜕𝛿

𝜕𝛿𝑛
+ 𝜑′

𝜕2𝛿

𝜕𝛿𝑠1𝜕𝛿𝑛
=

𝜆2𝛿𝑠1𝛿𝑛

𝛿2
[𝜑′′ −

𝜑′

𝛿
]   (B.15) 

 𝐷22 = 𝜑′′
𝜕𝛿

𝜕𝛿𝑠2

𝜕𝛿

𝜕𝛿𝑠2
+𝜑′

𝜕2𝛿

𝜕𝛿𝑠2𝜕𝛿𝑠2
=

𝜑′𝜆2

𝛿
+
𝜆4𝛿𝑠2

2

𝛿2
[𝜑′′ −

𝜑′

𝛿
]   (B.16) 

 𝐷23 = 𝐷32 = 𝜑′′
𝜕𝛿

𝜕𝛿𝑠2

𝜕𝛿

𝜕𝛿𝑛
+ 𝜑′

𝜕2𝛿

𝜕𝛿𝑠2𝜕𝛿𝑛
=

𝜆2𝛿𝑠2𝛿𝑛

𝛿2
[𝜑′′ −

𝜑′

𝛿
]   (B.17) 

 𝐷33 = 𝜑′′
𝜕𝛿

𝜕𝛿𝑛

𝜕𝛿

𝜕𝛿𝑛
+ 𝜑′

𝜕2𝛿

𝜕𝛿𝑛𝜕𝛿𝑛
=

𝜑′

𝛿
+
𝛿𝑛

2

𝛿2
[𝜑′′ −

𝜑′

𝛿
]   (B.18) 

And 𝜑′′ is defined as 

 𝜑′′ =
𝜑′

𝛿
[1 −

𝛿

𝛿𝑐
]   (B.19) 

For unloading, 

 𝜑′ = (
𝑡𝑚𝑎𝑥

𝛿𝑚𝑎𝑥
) 𝛿   (B.20) 

and  

 𝜑′′ = (
𝑡𝑚𝑎𝑥

𝛿𝑚𝑎𝑥
)   (B.21) 

For purposes of display of results, we shall find it convenient to define a damage 

parameter 
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 𝑑 =
𝜑(𝛿𝑚𝑎𝑥)

𝐺𝑐
   (B.22) 

   

        Evidently, 𝑑 ranges from 0 to 1, with these limits corresponding to an intact and a 

fully damaged cohesive surface, respectively. Furthermore, it follows that 

 �̇� ≥ 0   (B.23) 
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 APPENDIX C – INVERSE ANALYSIS METHOD 

 

Inverse analysis assumes that the history of variables (e.g., force, displacement and 

stress) are given in a test (e.g., uniaxial tensile test) and it attempts to obtain a set of 

parameter values which would generate a good fit to the given variables history after a 

direct analysis by using these parameter values (Lei and Szeri, 2007). The objective 

function describes the variations between the predicted and experimental results, is defined 

to be 

  𝑓 = ∑ [𝐹𝑝𝑖 − 𝐹𝑒𝑖]
2𝑛

𝑖=1   (C.1) 

where 𝐹𝑝𝑖 and 𝐹𝑒𝑖 are predicted and experimental results (forces), respectively, at the ith 

increment. A reasonable set of parameters values would yield when the objective function 

is minimized to an acceptable value.  

The routine “lsqnonlin” of MATLAB is used to solve the nonlinear least-squares 

analysis in order to obtain a set of optimized results through direct calculations with an 

arbitrary initial set of parameter values passing to the target set of values. A python program 

generates input file for ABAQUS with initial guess of material parameter values. A 

MATLAB code calls an external finite element program ABAQUS to run the direct 

analysis with the input file and an output file .odb will be yielded. An output file is 

generated with another Python program by using .odb file and the predicted results are used 

for the comparison with the experimental results. Later, a new set of parameter values will 
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be found through the routine “lsqnonlin” and will be transferred to the input file for another 

direct analysis. A series of cycles will generate an optimized set of parameter values when 

the criteria met.  

 

 

 

 

 

 

 


