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ABSTRACT 

 Modeling of indoor radio channels has been a dynamic area of research in recent 

years because of the increasing demand for indoor wireless communications. In order to 

efficiently deploy such indoor systems, a good knowledge of the indoor wireless 

channel’s characteristics are required. One important characteristic is an accurate 

propagation path loss model. For developing such models various measurements have 

been carried out. In modeling propagation path loss in complex indoor environments, 

accurate and fast algorithms for estimating the local mean signal level are essential; these 

are also of use for power control and handoff decisions. These local mean power levels 

are typically characterized statistically. This thesis seeks to add to the body of knowledge 

regarding indoor channels by determining important parameters for estimating local mean 

power in line-of-sight (LOS) conditions. 

 In this thesis, a set of indoor channel measurements was taken, and from these 

measurements, statistical channel characteristics were derived. These characteristics, or 

parameters, include the spatial averaging window length (2L), interval between spatial 

samples (dmin), and the number of sampling points (Nmin) within the window. These 

parameters are used in estimating the local mean value of a radio signal. Measurements 

were conducted in a LOS condition in a corridor at a frequency of 5.725 GHz, at nine 

different link distances (from 4.57 m to 41.15 m). A window based weighed sample 

average power estimator was used to determine the statistical characteristics of local
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 average power at each link distance. Computer simulations were also performed in order 

to verify the algorithm’s performance before application to the measured data set. A set 

of relationships among 2L, dmin and Nmin were also established. It was observed that as the 

link distance increases in our LOS corridor environment, the number of sampling points, 

Nmin and averaging window length 2L tend to decrease. The decrease with link distance is 

not perfectly monotonic due to inhomogeneities in the environment, yet the general trend 

is as expected due to the wave guiding effect of the corridor. Future work in this area 

would include additional measurements in different corridors, and in different LOS 

indoor settings, with the aim of determining general guidelines for the estimation 

parameter values in such environments. 
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CHAPTER 1  

INTRODUCTION 

1.1 Brief History of Wireless Communication 

Wireless communication is considered to be one of the most revolutionary 

engineering breakthroughs in the course of human civilization. The rapid technological 

advancement of wireless communication has facilitated a variety of applications and 

standards. For examples, mobile communication, wireless sensor networks, satellite, 

radar and navigation, local area networks, body area networks, etc., are often viewed as 

blessings to mankind in the modern era. However, if we look back to some of the earliest 

communication systems such as the transmission and interpretation of sounds by different 

species or the use of lighthouses to navigate ships in the ocean, these systems also did not 

require any wires or cables for an effective communication. The oldest “electromagnetic” 

(optical) communications such as smoke signals are based on propagation of optical 

signals along a line-of-sight (LOS) path. Some other simple examples of wireless 

communications are flashing mirrors, signal flares, or semaphore flags [1]. 

The basis of electromagnetic wave propagation laid by Maxwell and Hertz 

instigated the access of modern wireless communication theory and practices. Just after 

their groundbreaking work, Tesla demonstrated the transmission of information via 

electromagnetic waves for the very first time, even though Marconi's demonstration of 

wireless communications from a boat to the Isle of Wight in the English Channel in the 

year 1898 was well-publicized [1]. 
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The invention of telegraph and telephone systems in 1838 and 1895, respectively, 

has laid the foundation of radio communication for its development and considerable 

expansion [2]. In 1915, the first wireless voice transmission was established [2]. 

However, the first radio mobile telephone invented in 1924 was a major development in 

mobile radio communication systems. During the two world wars, research and 

developments on radio increased by a large extent. In the 1950’s and 60’s, there were 

numerous advancements in the wireless field, out of which the main concept developed 

for commercial systems was the cellular concept. The first and foremost, significant, 

scientific (and manufacturing) work intended at providing wireless communication 

broadly to the entire world was the development of the cellular concept by Bell 

Laboratories in the 1960’s and 1970’s [3]. By using this cellular concept, a larger number 

of users could operate on the same frequencies without significantly disturbing one 

another. This was possible via the frequency re-use concept, which enabled a given 

portion of frequency spectrum to be reused after a sufficient separation distance. The first 

cellular concept design was tested and deployed in Chicago in 1983, and this opened the 

field for new opportunities to use wireless technologies [2]. 

In the early 1980's, when users were inexperienced at using mobile radio 

telephones, the 1st generation (1G) cellular was developed based on analog technology, 

primarily to carry narrow band circuit-switched voice services using frequency 

modulation (FM ) and frequency division multiple access (FDMA) techniques [2]. The 

first commercial “1
st
 generation” (1G) cellular telephone system in the US, the Advanced 

Mobile Phone Services (AMPS) system, was deployed in 1983. Popular systems using 

1G were the Nippon Telephone and Telegraph (NTT) system, Nordic Mobile Telephone 
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(NMT), Total Access Cellular System (TACS), Radiocom 2000, Japanese Total Access 

Cellular System (JTACS), and the Narrowband Total Access Cellular System (NTACS) 

[4]. 

After 1G voice communication systems, the second generation (2G) mobile 

systems evolved from the 1G system in the early 1990’s. These could provide email, 

voice mail, and paging services using digital modulation schemes, and both time division 

multiple access (TDMA) and code division multiple access (CDMA). The Global System 

for Mobile Communications (GSM), the Interim Standard 136 (IS-136) (also known as 

US Digital Cellular), Pacific Digital Cellular (PDC), and cdmaOne (IS-95) are some of 

the popular 2G standards [3]. 

In order to meet the larger required data rates and improve spectral efficiency,  

newer sets of cellular systems appeared as 3G systems [3]. The 3G systems enabled the 

single mobile customer to use not only voice calls but also conduct internet browsing and 

reception of streaming audio and video. The 3G systems were designed to accommodate 

a number of services: ubiquitous connectivity, worldwide roaming, increased data rates 

(up to 2 Mbps), and enhanced capacity. In a nutshell, the third generation (3G) mobile 

systems were the first broadband multimedia mobile telecommunications technologies. 

Coverage is provided by a combination of cell sizes ranging from indoor pico-cells to 

global satellite cells. CdmaOne, also known as Cdma 2000, was developed on the basis 

of the IS 95 and IS 95B standards. The wideband CDMA (W-CDMA) system was 

developed based on the GSM principles and is also called Universal Mobile 

Telecommunication Service (UMTS). CdmaOne provides high data rates and high 

quality of service compared to the older 2G and 2.5G standards.  
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While 3G networks are still on board, the next generation fourth generation (4G) 

communication system have been developed. Along with 3G systems, 4G systems 

(sometimes also called 3.9G) have developed with the capability of providing even more 

advanced mobile wireless communication. They are offering 100 times faster data 

transfer than the 3G systems [2]. For 4G networks, Multiple Input Multiple Output 

system-Orthogonal Frequency Division Multiplexing (MIMO-OFDM) is the modulation 

and multiplexing method of choice. Nowadays, access to TV programming (either live 

TV or prerecorded programs) from cell phones is one of the most popular, innovative 

features using 4G standards. In addition, most road and rail network manufacturers are 

concentrating on the use of 4G Long-Term Evolution (LTE) technology. Some other 

features of 4G systems include IP packet-switched networks, mobile ultra-broadband 

(gigabit speed) access and multi-carrier transmission. International Mobile 

Telecommunications Advanced (IMT-Advanced), and Wi-MAX are also using 4G 

technologies. 

1.2 Why Wireless Channel Modeling is Required 

 Even though modern 4G systems are able to provide higher data rates, there is 

still much focus needed to enhance the performance of indoor and outdoor radio coverage 

since the success of these systems still depends on how efficiently the mobile radio 

channel is utilized in these environments. For modeling such a channel, one of the most 

important factors is the attenuation of electromagnetic waves through the channel. A 

wireless signal confronts several channel features such as path loss (a synonym of 

attenuation), delay and phase shift, noise, and possibly shadowing, and interference, etc. 

[5]. Modeling of indoor/outdoor wireless channels helps in determining how the channel 
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affects the transmitted signal quantitatively in terms of estimating received signal power 

variation; wideband models also quantify any channel-induced distortion [6-9]. It is thus 

important to model channels in order to avoid difficulties in the design and 

implementation of networks and also to obtain a minimum system design cost without 

compromising the quality of service. Therefore, characterization and modeling of a 

channel is an essential step to analyze, evaluate and design a communication system. 

1.3 Overview of Indoor Channel Modeling 

  Characterization of indoor radio propagation channels began to receive a lot of 

attention with the advent of the 3G wide area wireless networks. The indoor radio 

channel differs from the traditional radio channel in two aspects: a smaller coverage 

distance and a relatively greater environmental variability. Thus, modeling an indoor 

mobile radio channel is challenging because of significant variation of the channel within 

a small distance. The indoor radio channel is affected by several factors including 

building structure, layout of rooms, and the type of construction materials used. From a 

communication link perspective , there are three major channel characteristics that are 

important in modeling an indoor wireless channel: path loss, small-scale fading 

(multipath), and shadowing (local mean power variation) [2]. Path loss is simply the ratio 

of the transmit power to the receive power, or in other words, the attenuation of the 

channel. Small scale fading occurs when there is fluctuation of the received signal over 

short distances (fraction of wavelength) due to the reception of multiple replicas of the 

transmitted signal that have traveled different paths. Shadowing (variation of the local 

mean power) is generally a more slowly varying large-scale fading, and occurs due to 

objects obstructing the propagation path between the transmitter and the receiver.
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 Therefore, estimation of the local mean power of a radio signal is of importance 

in mobile communication systems in order to properly design the systems. Such 

estimation enables the construction of path loss models that provide designers with 

expected channel attenuations, thus constraining link distances and transmitter and 

receiver parameters. Knowledge of path loss can improve the system performance and 

help provide requirements for channel access, handoff, power control, etc. The efficiency 

of the use of the wireless channel is hence in some sense dictated by the accuracy of local 

mean signal power estimation. 

1.4 Motivation 

 The aim of this work is to estimate the local average power (over a “small” area) 

for the purposes of determining effective and efficient methods of obtaining accurate 

local power estimates, specifically in line-of-sight (LOS) indoor settings. Experiments 

were conducted at a frequency of 5.725 GHz. The ultimate goal is to provide quantitative 

methods and guidelines that will help researchers develop accurate path loss models for 

line of sight (LOS) environments. For estimating local average power, it is necessary to 

determine three main parameters which are as follows: 

 the minimum number of wavelengths (2L) over which to evaluate (this is the 

“extent” of the local area); 

  the minimum value of the total number of points (N) within the 2L distance 

to average out small scale fading; 

 the minimum separation (d) between the N samples to ensure that they are 

uncorrelated. 



7 

 

1.5 Thesis Outline 

 This thesis is divided into five chapters. 

 Chapter 1 provides an overview of the growth of the wireless communications, 

why channel modeling is required, and the scope of the thesis. The motivation and 

objective of this thesis are also elucidated. 

 Chapter 2 provides a brief literature review related to the study on the local mean 

power estimation in different environments. 

 Chapter 3 discusses the measurement test equipments and briefly describes the 

measurement environment and measurement procedures.  

 Chapter 4 describes the steps of estimating local mean power and the comparison 

of the results observed by the measurements in this study.  

 Finally, a summary of the research is provided in Chapter 5 with the concluding 

remarks and suggestions for future works in further research directions. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 General Background 

Over the years, much research has been performed in order to model indoor 

channels for wireless communication systems. This chapter will briefly summarize the 

work performed in recent open literature, specifically as pertains to the topic of this 

thesis. Much attention has been paid to estimating the local mean power by adopting 

various methods such as:  

i) window based estimators: these include the sample averaging estimator [10], 

[11], [12], the maximum likelihood estimator [13], and the minimum variance unbiased 

mean estimator [14], [15];  

ii) Kalman filtering method [16], [17];  

and others. However, in each technique for estimating average signal power, a local 

optimum was claimed based on specific frequencies, indoor/outdoor conditions, line of 

sight/non line of sight criteria, etc. 

2.2 Studied Methods for Power Estimation 

 Among the studied methods, Lee's technique for estimating local mean signal 

power for wireless coverage is considered as the most representative and standard criteria 

[18]. Lee’s method estimated the local mean power within a spatial interval of 20λ to 40λ 

where λ is the signal wavelength. A sufficient number of samples required within that 
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interval ranged from 36 to 50, and this range of samples was based on a 90 percent 

confidence interval and less than 1 dB error in estimation. However, there were some 

assumptions for this. Lee assumed that 

 the signal (field) at adjacent sampled points is uncorrelated, 

 small scale fading has Rayleigh amplitude statistics. 

However, few queries have been raised from the above assumptions that Lee adopted: 

 how does one process when the signal samples are correlated? 

 how does one estimate the performance when the signal envelope obeys a 

distribution other than Rayleigh distribution i.e., Rician or Nakagami distribution? 

 The Rayleigh distribution generally presumes non-line of sight (NLOS) 

conditions, and Lee's study generally pertains to an urban setting. In later studies these 

queries were addressed by several authors along with different channel conditions, and 

also by considering different environments, such as, in line of sight (LOS) cases, 

indoor/outdoor, rural/sub-urban. In 1990, the authors in study [19] presented a 

conventional propagation model, including a path loss exponent, a local mean signal 

which follows a log-normal distribution and a fast-fading (small-scale) component in 

rural areas at a frequency of 900 MHz. However, attention was paid mainly on the 

measurement in order to determine these parameters without taking much consideration 

of the theoretical analysis of local mean average power estimation. 

 In [10], the authors studied the error statistics of real time power measurements by 

investigating the performance of two estimators along with the consideration of multipath 

and shadowing. In this investigation, they took into account a continuous time average 

estimator and a sample average estimator. They also considered two measurement 
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methods: filtering the squared envelope and filtering the logarithm of the squared 

envelope and two filter types: integrate-and-dump and RC (Resistor-Capacitor). To 

obtain accurate measurements, both linear and logarithmic filtering of the detected power 

was employed. However, they still followed the criteria proposed by Lee. 

In 1997, a study [9] was also conducted on various techniques such as measured 

small scale fading statistics, effects of circular averaging, and linear averaging of high 

resolution data to characterize the accuracy of propagation prediction at 900 MHz and 2 

GHz. For measured small scale fading statistics, it was observed that, the LOS small 

scale fading was significantly less severe than in obstructed (OBS) conditions, as 

expected. The depth of small scale fading approached Rayleigh statistics for heavily 

obstructed paths in NLOS cases. To observe the impact of the Tx and Rx antenna 

location, they explored the effect of circular averaging i.e., rotation of the transmitter or 

the receiver or both, and then compared the effect to the linear spatial averaging. The 

results revealed that, rotating both the dipole antennas was the most effective way to 

eliminate small scale fading. The study also compared the measured data with predicted 

ray tracing techniques in two ways: i) power sum of multipath components which was 

defined simply as the sum of the powers of multipath components, and ii) the vector sum 

of multipath components which was defined as the average of predicted powers using a 

large number of closely spaced points where the Radio Frequency (RF) power was 

proportional to the magnitude square of the vector sum of the electric field components. 

They observed that, the power sum ray tracing prediction technique is relatively more 

accurate than the vector sum technique for predicting local mean signal strength for 

indoor environment.  
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 In [20], the authors analyzed the received signal using two different methods: 

discrete cosine transform (DCT) based data compression and robust piecewise linear 

approximation (RPLA). They compared experimental results with an existing filtered 

derivative method in order to evaluate the performance of these two methods in detecting 

the changes in the local mean of a signal. They tested an ideal signal with an abrupt step 

using DCT method and found that, the DCT method is superior to the Filtered Derivative 

in detecting a step change for noisy signals with signal-to-noise ratios (SNR's) as low as 7 

dB. In case of the RPLA method, the authors tested two types of signals using this 

method, which showed that the RPLA method is capable of tracking both gradual and 

abrupt signal jumps for signals which have SNRs as low as 1 dB. 

In 1999, Wong and Cox [14] derived the optimal local mean signal level estimator 

for a Rayleigh fading environment and compared with the sample average estimator. 

They predicted the estimation variance using the unbiased mean estimator and sample 

average estimator and compared those with the Cramer-Rao Lower bound. The 5th and 

95th percentiles of the estimators were obtained by computer simulation. They also used 

Antilog Rayleigh (ALR) distribution to estimate the signal variation in a Rayleigh fading 

environment. It was observed that the optimum unbiased mean estimator for ALR-

distributed random variables required significantly fewer samples for a given estimation 

accuracy compared to that of the sample average estimator. 

Chai-Ko and Alouini in [15] adopted Lee's method [18], however, they 

considered the signal distribution over Nakagami fading channels instead of Rayleigh 

channels. They proposed two local mean power estimation techniques: maximum 

likelihood as well as minimum variance unbiased estimators. They also used Cramer–Rao 
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lower bounds similar to those Wong and Cox adopted for estimating the local mean, and 

confirmed that these estimators outperformed the sample mean estimator and readily 

approach the Cramer–Rao lower bounds. However, the difference between their study 

and Wong and Cox's is that Ko and Alouini assumed receiver signals with logarithmic 

amplification for the derivation of these estimators.  

In another study [21], Avidor and Mukherjee processed the measured data to 

investigate the possibility of obtaining better prediction of the path loss between a mobile 

and the surrounding base station. They estimated the current or near future value of the 

local mean received power, including the shadow loss, without assuming the position or 

velocity of the mobile; this is different from the assumptions attempted by the other 

studies in [18] and [14]. They investigated the mean-squared estimation error (MSEE) as 

a function of the normalized speed and found that the proposed algorithm performed 

better than the sample mean algorithm over a wide range of mobile speeds. 

De Jong and Herben in [22] adopted a two-dimensional ray tracing model for the 

computation of local mean power from individual multipath signals on the basis of an 

expression for the spatial average (SA) of the received power over each pixel area, in 

which they considered the spatial correlation between the signals. At larger distances 

from the transmitter, the method of summing all the individual ray powers no longer 

accurately predicts the local mean power, whereas the spatial average (SA) method 

provides a statistically valid approximation of the expected field strength at a random 

receiver position within a given observation area. They predicted that, using the SP 

method, the power of diffraction contributions added to the power of the direct wave 

resulted in an overestimation of the local mean power. The SA method handled the 
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contribution of diffracted ray signals to the local mean power in a correct manner, by 

taking into account its high correlation with the “direct” signal. They found that the SA 

method does not also require the calculation of the received power at many discrete 

points within each observation area or interval. They further indicate that poor 

performance of the SP method occurs particularly near the shadow boundaries associated 

with diffracted rays.  

The authors in [13] estimated the received signal power by analyzing two 

techniques: the maximum likelihood estimator (ML) and median filtering technique. 

They compared both of these techniques along with linear filtering and a uniformly 

minimum variance unbiased (UMVU) estimator for power estimation. In their study, they 

assumed the large scale signal was constant over the duration of averaging. They 

observed the least mean squared error in the UMVU estimator, and found the ML 

estimator to be very close to the UMVU performance as the number of available data 

points increases. They also found that, despite the impulsive nature of the multipath 

process, for the same window size, the median filtering algorithm outperformed the 

conventional linear filter, as well as the ML and UMVU alternatives when the correlation 

distance was finite.  

Wei and Goeckel in [23] characterized the error statistics for averaging power 

measurements and obtained the probability distribution of average received power on an 

“outdatedˮ measurement. By comparing various models, they also derived a number of 

novel power control algorithms to compute the estimation error and demonstrated that the 

power control algorithm based on their expression can minimize the average transmitted 

power required to achieve a desired outage probability. 
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The authors in [16] proposed a novel Kalman-Filter-based estimator for the local 

mean power on the basis of a first-order autoregressive (AR) model of the shadowing 

process assuming that the shadowing process is constant over the duration of the 

averaging window. They compared the Kalman-Filter-based estimator with various 

window-based estimators: sample average (SM) estimator, the uniformly minimum 

variance unbiased (UMVU) estimator, and the maximum likelihood (ML) estimator. 

They showed that the window-free KF either meets or exceeds the performance of 

conventional window-based causal estimators and observed that a relatively small 

sampling period yields better least square error (LSE) performance for Kalman filter 

(KF). However, they assumed the mean of the log-normal fading to be zero, and the 

variances of both the small scale and the large scale fading to be known. The path loss 

and the correlation coefficient between consecutive samples were also assumed to be 

known. The KF is also generally more complex to implement than the other methods. 

  Osorio and Huerta in [8] implemented an experimental technique to calculate the 

variation of the local mean power in an indoor environment at two different frequencies: 

900 and 1900 MHz. They also developed a comparison of the large scale fading estimates 

for the calculation of total quadratic (mean-square) error with the consideration of three 

factors: the distance-dependent average path loss, the variation in the local mean power, 

and the small-scale fading. The experimental technique for estimating local average 

power were demonstrated as SA technique. However, this technique (i.e., dividing the 

walk route into intervals and then averaging the samples of the received power in each 

interval) is similar to the window based sample average estimator proposed by prior 

authors. 
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In order to constrain the effect of fast fading on the statistical value of the signal 

within ±1 dB, the statistical interval was estimated to be larger than 40λ in a separate 

study by Lin et al. [24]. However this technique is to some extent different from the result 

proposed by Lee [18], in that averaging a segment of signal data with a length longer than 

40λ risks smoothing out the long-term fading information. Therefore, too long a statistical 

interval may smooth out not only small scale fading information, but also the large scale 

fading information one is trying to estimate. 

In 2006, the authors in [25] extended the Kalman filtering approach proposed in 

another study [16] to adaptive Kalman filtering by combining the Kalman filtering with 

the window based filtering and showed that the proposed method outperforms the 

window-based approaches and eliminates the Kalman filter’s parameter requirements. 

They found that a much smaller number of samples is required when compared to the 

median (by sorting the samples and taking the median value) case. For a standard 

deviation of 1 dB, 25 samples were required in the Kalman case, whereas it was 36 for 

the window based approach [18], resulting in a 30% decrease in the number of samples. 

The difference between the study of [16] with adaptive Kalman filtering is that the static 

Kalman filter provided the performance results for the case when all the parameters were 

exactly known. 

 La Vega et al. in [11] generalized Lee’s method for their analysis of the signal 

variability and proposed an algorithm to find the channel parameters. The authors studied 

determination of proper values of the parameters defined by the original method proposed 

by Lee, but made the process independent from the propagation channel, the frequency 

band and the reception conditions. They proposed a new methodology for obtaining the 
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“2L” parameter (physical averaging length) and followed the same procedure for the 

number of samples (N) and sampling interval (d) parameters as described by Parsons and 

Lee. For the parameters 2L and N, they obtained considerably smaller values (2L = 2.1, 

d = 0.17 and N = 8 samples) than those obtained by Lee and Parsons. This was due to 

the relationship between wavelength and the size of the obstacles that generated 

variations in the long-term signal, and in the case of N, to the lower signal variability in 

the medium wave AM broadcasting (MW) band, especially in rural and suburban 

environments. 

 Jiang et al. [26] also analyzed Lee's criteria in more detail. They modified the 

standard Lee method for estimating local mean signal power by considering the 

correlation relationship to compute the covariance between different sample points, the 

mutual influence between statistical interval and sampling interval. However, there are 

some problems in their derivation: 

 Considering only the neighboring samples to be correlated may be incorrect, since 

this can yield much higher variance errors.  

 They also proposed that, the longer the length of the statistical interval, the 

smaller the statistical error. However, most of the researchers on this topic 

demonstrated that, the longer the length of statistical interval, the more likely it is 

to smooth out the large scale fading characteristics, which causes an incorrect 

local mean estimation if the length of statistical interval is over some maximum 

length. 

In 2011, the authors in [12] established novel statistical criteria for obtaining the 

parameters proposed by Lee by adopting two more factors into consideration: confidence 
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level and the number of measurement runs. They also proposed an evaluation equation to 

determine the lower and upper bounds of the statistical interval. They established the 

following results: 

 There is no necessity for the sampling points to be uncorrelated. 

 The upper and lower bounds of the statistical interval are not limited to be within 

20λ to 40λ. The range can be larger than 40λ and smaller than 20λ. They 

considered 30λ to be appropriate in most conditions, but this is not true in every 

condition. 

 Jadhavar and Sontakke in [27] presented different propagation models within an 

indoor environment. They took measurements at 2.4 GHz using two different multi-

storied buildings, which included wall partitions, a number of floors and different 

building layouts. They proposed their study in modeling first order prediction of distance 

dependent mean signal strength inside a building. However, their models are only 

suitable for a particular type of building and there is no theoretical basis for their models.  

 In 2014, Pappas and Zohdy in [17] proposed an Extended Kalman filter (EKF) 

method to optimize the shadow power state estimation. They developed an accurate 

estimation of parameters, higher order state space prediction methods and an Extended 

Kalman filter (EKF) for modeling shadowing power in wireless mobile communications. 

Path-loss parameter estimation models were compared and evaluated and then compared 

to existing Kalman Filter (KF) methods with Gaussian and non-Gaussian noise 

environments and they established a conclusion that the Extended Kalman Filtering 

performs significantly better than Kalman Filtering at the expense of larger estimation 

complexity. 
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 What has not been thoroughly covered in the literature is specification of the 

estimation parameters (2L, Nmin, and dmin) for LOS settings, in either indoor or outdoor 

environments. Our work in this thesis addresses this gap for an indoor setting.  
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CHAPTER 3  

EQUIPMENT AND EXPERIMENTAL PROCEDURES 

3.1 Equipment Description 

In this thesis, a signal generator was employed as a transmitter (Tx) and a 

spectrum analyzer was used as a receiver (Rx) in order to measure received signal power. 

A frequency of 5.725 GHz was used for both the transmitter and the receiver. This was 

selected as it is a common band used for wireless local area networks (WLANS). The 

frequency span was set to 200 kHz, so as to measure only our transmitted signal of 

interest, and no other (extraneous) signals. The resolution bandwidth of the spectrum 

analyzer was set to 100 Hz in order to reduce the background noise, i.e., select only our 

transmitted signal. In subsequent sections, the equipment used for the measurements is 

briefly discussed.  

3.1.1 Signal Generator 

 The signal generator is a type of electronic test equipment that can generate 

multiple types of repeating or non repeating electronic signals. These test sets are also 

sometimes known as function generators, RF and microwave signal generators, etc. For 

this measurement, an Agilent N51821A signal generator (Figure 3.1) was employed, 

which has the following major characteristics: 

 Frequency range of 100 kHz to 6 GHz 
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 ≤ +23 dBm output power up to 3 GHz using a highly-reliable, fast-

switching electronic attenuator  

 ≤ 900 μs simultaneous frequency, amplitude, and waveform switching in 

list mode. 

 

Figure 3.1 Agilent N51821A Signal Generator. 
 

3.1.2 Spectrum Analyzer 

A spectrum analyzer measures the power of an input signal as a function of 

frequency within the full frequency range of the instrument. The spectral distribution of 

power of all received signals (e.g., known and unknown) can be measured. The display of 

a spectrum analyzer has frequency on the abscissa and the power (usually in a 

logarithmic, dB, scale) displayed on the ordinate. An Agilent N9342C spectrum analyzer 

(Figure 3.2) was employed, which has the following major characteristics: 

 Total frequency range of 9 kHz to 7 GHz   

 Amplitude accuracy of ±1.5 dB  

 < 0.4 s sweep time for 7 GHz full span 
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Figure 3.2 Agilent N9342C Spectrum Analyzer. 
 

3.1.3 Antennas 

Two Mobile Mark DM2-5500 Omni-directional quarter wave monopole antennas 

were used for the transmitter (Figure 3.3) and the receiver (Figure 3.4). The transmitter 

and the receiver antennas were placed on two equipment carts at the same elevation of 

1.5 m above the floor. The antennas are also covered by plastic radomes. A RZ-214 cable 

was used to connect the transmitting antenna to the signal generator and the losses of the 

cables were approximately 3.8 dB. Both the transmitter and the receiver have ~1.3 dB 

antenna gain as characterized by the manufacturer. These antenna gains are the measure 

of the antenna's radiation efficiency defined as the ratio of the maximum radiation in a 

given direction to that of a reference (isotropic) antenna for equal input power. The 

antennas were vertically polarized. Figure 3.5 shows the antenna pattern for the DM2-

5500. 
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Figure 3.3 Mobile Mark DM2-5500 Transmitter (Tx) Antenna (within white radome) 

mounted in cardboard box atop equipment cart. 
 

 

 

 

Figure 3.4 Mobile Mark DM2-5500 Receiver (Rx) Antenna, with extended ground plane, 

atop cardboard box and wooden board on cart. 
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Figure 3.5 Antenna patterns for DM2 5500. 
 

3.2 Measurement Procedure 

 The measurements for radio propagation were conducted along the hallway of the 

“D” wing in the second floor of Swearingen Engineering Center at the University of 

South Carolina on September 23rd, 2014. The main goal was to measure and then model 

the propagation path loss in this example indoor environment. The measurements were 

taken in a LOS environment without any blockages between Tx and Rx. A number of 

explicit distances were pre-marked with respect to the stationary Tx location along the 

hallway in order to position the Rx. 

3.2.1 Experimental Set Up and Procedure for Indoor Hallway Environment 

First the Tx signal generator (SG) was set up on a cart and configured to have a 

sine-wave output at a frequency of 5.725 GHz and a transmit power of 17 dBm which 

was the maximum power for the signal generator. The SG was powered with AC 

(alternating current) and connected to the Tx antenna. RF connectors were also aligned 

carefully before tightening. Figure 3.6 shows the set up for the signal generator. 
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Figure 3.6 Signal generator set up on the Tx side. 
 

 The measurement set up parameters for the signal generator are shown in Table 

3.1. After setting the SG as the Tx, the transmitting antenna was placed at a fixed position 

(centered) in the far end of the hallway (Figure 3.7). 

Table 3.1 Measurement set up parameters for the Signal Generator 

Measurement set up 

Carrier frequency (GHz) 5.725 

Resolution Band width (Hz) 100 

Transmit power (dBm) 17 

TX antenna height (m) 1.5 

RX antenna height (m) 1.5 

Cable Loss 3.8 
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Figure 3.7 Transmitter Antenna set up. 

  

 In order to average out the small scale fading effects, data (received power in 

dBm) was taken at specific link distances (from dL1=4.57 m to dL9 = 41.15 m) along the 

hallway. At each link distance, the Rx antenna was moved from the left point to the right 

point along an “arc” that represents the constant value of link distance. A conceptual 

diagram of this whole procedure and also a portion of the Swearingen second floor plan 

is shown in Figure 3.8. 
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Figure 3.8 A conceptual diagram of measurement procedure along with geometric 

parameters is on the left, a portion of the Swearingen second floor plan is on the right. 

  

 As indicated in Figure 3.8, the receiver antenna was fixed at each point along the 

arc at each link distance for 10 seconds to collect a set of received power samples. For 

example, at a link distance of 4.572 m, a total number of 220 data files was collected, 

where each file represents a number of received samples at a given Rx antenna position. 

In each file, approximately 75 to 85 samples were taken in 10 seconds at each of the 220 

antenna positions. The separation interval between each antenna position (the 

measurement points), denoted d, was 1 cm, or slightly less than /5 (where the 

wavelength, = c/f = 310
8
m/s/5.72510

9
 Hz = 5.24 cm). Figure 3.9 shows a photograph 

of the Rx antenna position at 4.57 m, with the Tx antenna fixed at the far end of the 

hallway. 
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Figure 3.9 Position of Rx Antenna. 

  

 As an example, the received amplitude of -54.35 dBm measured by the spectrum 

analyzer at a distance of 4.57 m away from Tx, for one measurement point, is shown in 

Figure 3.10. 

 

Figure 3.10 Received Power when Rx at a link distance of 4.57 m. 
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 A large number of received power values were collected at each distance along 

the hallway (e.g., 220 at d = 4.57 m). Received power values at nine different distances 

(from 4.57 m to 41.15 m at an interval of 4.57 m) were collected to evaluate the path loss 

as well as estimate the local average power. The path between transmitter and receiver 

was carefully monitored and measured data were collected in the condition where there 

was no obstacle obstructing the LOS. 
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CHAPTER 4  

ANALYSIS, RESULTS AND DISCUSSIONS 

4.1 Theoretical Analysis 

 As mentioned in section 1.3, there are three major channel characteristics that are 

important in modeling an indoor wireless channel: path loss, small-scale fading 

(multipath), and shadowing (local mean power variation). In this section, a brief 

discussion about these channel characteristics is provided. 

4.1.1 Path Loss Model 

 Usually shadowing or large-scale fading characteristics of any radio channel are 

determined by measurements of the path loss (PL). Path-loss values in dB are computed 

using the following link budget equation. 

PL = Pt + Gt + Gr − Lt − Lr − Pr (4.1) 

 In (4.1), Pt  is the transmitter power in dBm, Gt and Gr are, respectively, the Tx 

and Rx antenna gains in dB, Lt and Lr are the RF cable losses at Tx and Rx, in dB, and Pr 

is the local mean received power in dBm. Experimental path-loss data can be used to 

construct a path-loss model. In realistic indoor mobile radio channels, a widely used 

model, defined as the log-distance path loss model, is often used, which is as follows (in 

dB), 

PL(d) = PL(d0) + 10nlog (d/d0) + Xσ  (4.2)
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 In (4.2), PL(d0) is the path loss in dB at a reference distance d0 in m, and n is the 

dimensionless path loss exponent, which is obtained by fitting this one-segment model to 

the measured path loss samples. Xσ is a zero mean Gaussian distributed random variable 

of standard deviation σ which accounts for effects such as shadowing (by obstacles of 

sizes generally much larger than a wavelength), or in LOS cases, the average deviation of 

measurements from the linear model of the first two terms of equation (4.2). Figure 4.1 

shows the log-distance path loss model for the D-wing corridor in the building of 

Swearingen Center (second floor), University of South Carolina, along with the measured 

path losses prior to estimating the local mean power.  

 

Figure 4.1 Path loss model for indoor corridor in Swearingen Center (second floor), 

University of South Carolina, with all measured values at nine different  link distances 

from 4.57 m to 41.15 m. 
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 From linear fit in Figure 4.1, it was found that the path loss at the reference 

distance of 1 m was 62.8 dB, the path loss exponent  was 1.52, and the standard deviation 

was 5.66 dB. As expected in this corridor environment, a wave guiding effect of the 

corridor walls, floor, and ceiling yields a mean path loss that increases with distance less 

than in free space.  

4.1.2 Steps for Local Mean Power Estimation 

 The main objective of this thesis was to estimate the local mean received power 

Pr to obtain an accurate path loss model. To estimate the local mean, we assumed a 

widely accepted model for the received signal amplitude in the following product form: 

  r(y) = m(y)r0(y)  (4.3) 

 In equation (4.3), y is the distance along an arc at a constant value of link distance 

[Figure 3.8], r is the total received amplitude, m is the large-scale fading and r0 is the 

small-scale fading amplitude which is obtained by dividing the received instantaneous 

signal amplitude r by the estimated local means. In the following subsections, the 

important parameters for estimating local mean values are discussed. 

4.1.2.1 Determining the Averaging Interval 2L 

 In an indoor environment, the variation of the large scale signal is an important 

factor to be considered for obtaining an accurate estimation of local mean power by 

determining an appropriate averaging interval 2L. As proposed by the author in [18] (for 

outdoor, NLOS environments), the estimation of the local mean power is obtained by 

measuring over intervals of length in the range of 20 to 40 wavelengths, and then the 

samples are averaged inside each interval. However, this criteria might not appropriate 

for the case of indoor environments, particularly in the LOS case. An appropriate 
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averaging interval 2L, is that which is large enough to average out the small scale fading, 

but small enough so as not to smooth out the large-scale fading.  

 Our approach is described as follows (and will be clarified via the pertinent 

equations and an example). The calculation of the optimum range for 2L is based on 

amplitude segments of measured field strength samples, i.e., the received signal envelope 

r(y) mentioned above. For each segment, the estimated local means were computed by 

way of their running means. These estimated mean values were then normalized to the 

corresponding total mean values over the arcs at fixed link distance. Once the estimated 

means values were normalized by the approximate true mean values, the spread of the set 

of those normalized mean values was evaluated by computing their standard deviation. In 

the LOS, the variation of the large scale effect might be less than that of the small scale 

effects, and it is hence of most interest to obtain only the lower limit of the averaging 

window length (2L) range. 

 By considering different window sizes, the following steps are used to determine 

an appropriate value of 2L; as noted, this value should be large enough to eliminate the 

small scale fading, but small enough so as not to smooth out the large-scale fading. For a 

total of N amplitude values across the arc (at fixed link distance), select a test value of 

window length S (corresponding to 2L). 

 Compute  

    
  

 

      

    
                     ;  (4.4) 
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 In equation (4.4),    is the window-length-S mean amplitude, where the ij are the 

starting indices of each window, and a length-K vector of local (window-spanning) 

means s=[s1, s2, …sK] results. 

 Compute 

rnorm, j =  sj /  
  

 

 
    ;     (4.5) 

 In equation (4.5), the rnorm,j are the normalized window-length-S means or the 

normalized running means, i.e., to get a local value of 2L, each window-spanning mean sj 

is normalized with respect to the corresponding mean of the sj values across the entire arc 

at a given value of link distance. 

 Compute  

1σr_spread = 20 log 

            

            
 ; (4.6) 

In equation (4.6),         is the standard deviation of the normalized running means 

rnorm,j, and 1σr_spread is the spread in logarithmic scale (dB), both for the given test 

values of S and N.  

Repeat these steps for additional values of S (hypothesized values of 2L). 

 Finally, for obtaining the optimal length of 2L, Lee’s criterion was adopted, which 

is based on the condition that the 68% of the estimated mean values fall within a range of 

1 dB around their true mean. That is, the optimum value of 2L is when 1σr_spread = 1 dB 

or smaller. This algorithm is illustrated in Figure 4.2 with a simple example. 
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Figure 4.2 Illustration of algorithm computation steps, for N = 8, S = 3. 

 

 The window size S was varied from 0.38 to 41.79 to see the variation of sigma 

spread. Here, 41.79 is the window length over the entire set of N samples (the arc 

length for each link distance), i.e., if K = N-S+1, where N = total number of samples = 

220, S = window size = 220 then the sigma spread will go to zero. 

4.1.2.2 Determining Minimum Separation dmin between Uncorrelated Samples 

 After obtaining values for (the minimum of) 2L, it is necessary to know the 

minimum separation dmin between two adjacent samples by computing the autocorrelation 

among those samples. One of the important step consists of normalizing the samples, 

because the variation of the local means along the arc distance influences the 

autocorrelation coefficient. The estimate of parameter dmin will enable validation of the 
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2L value. If the distance relative to the autocorrelation first null is less than 0.2, the 

samples will be considered uncorrelated.  

To obtain dmin, the received amplitude for a specific window length was considered. For 

example, if N samples r1 through rN are obtained from a measurement track with a 

specific averaging window 2L, then the normalized autocorrelation function RXX (S) 

associated with that track is calculated as [28]: 

RXX (S) = 
         

   
   

   
  

   
   (4. 7) 

4.1.2.3 Determining Minimum Number of Samples Nmin within an Optimum 2L 

Interval 

 After determining 2L and dmin, the parameter Nmin can be obtained by the 

following equation (4.8), 

Nmin dmin = 2L   (4.8) 

 Nmin will be sufficient within 2L if it also satisfies the condition [5] in equation 

(4.9), which involves a Gaussian assumption regarding the estimation error. In (4.9), m 

and σr  are the approximate true mean and the true sigma of Sj, respectively for the 

calculated optimum window length, 2L. This inequality also implies that the maximum 

error should fall within a range of ± 1 dB around the estimated true mean, m. 

20log10 (m +1.65
  

     
) - 20log10 (m -1.65

  

     
) ≤ 2 dB  (4.9) 

4.2 Analysis of Simulated Data 

 To test the performance and accuracy of the local mean estimation algorithms, we 

created a computer simulation. Note that, ultimately we are using measured data for our 

evaluations; the simulation simply allows us to gain insight into the algorithm operation. 
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 The small scale amplitude, r0(y) and the large scale signal, m(y) were generated 

using a Rayleigh distribution and a simple sinusoidal function, respectively, and the 

functions were multiplied to generate the signal envelope r(y). Figure 4.3 shows a 

histogram of generated small scale signal samples which fits well by the Rayleigh 

probability density function (pdf).  

 

Figure 4.3 Small scale signal generation: histogram of generated Rayleigh random 

variables compared to the theoretical pdf. 

  

 The signal envelope r(y) was generated for 5000 random samples. Figure 4.4 

shows a small segment of 500 samples of the signal envelope along with the small scale 

signal and the large scale signal. Figure 4.5 shows normalized small scale field signal 

strength r0(y) in dB. 
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Figure 4.4 Received signal envelope and large-scale component as a function of sample 

number. 

 

Figure 4.5 Normalized small scale fading amplitude as a function of sample number. 

  

 We applied the algorithm to the simulated received signal envelope for 500 

samples with varying window sizes 2L (averaging window). As can be observed from 

Figure 4.6, the spread of sigma essentially monotonically decreased. As we are interested 
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in the minimum value of 2L such that the spread is < 1 dB, the minimum value appears as 

2L = 24.  

 

Figure 4.6 One-sigma spread vs. averaging window length 2L, for 500 simulated samples. 

One-dB threshold indicated by arrows. 

  

 The minimum separation between two neighboring points (dmin) was calculated 

using the equation 4.8. From Figure 4.7, the minimum separation or the sampling 

distance was calculated as dmin = 14/5.24 = 2.67which is larger than the theoretical 

value (dmin = 0.5) found by Lee [14]. Yet this is to be expected since this is a LOS 

environment: the spatial field is dominated by the LOS component. Thus using equation 

4.7, the required number of samples Nmin=2L/dmin= 24samples. 
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Figure 4.7 Autocorrelation coefficient for obtaining dmin. 

 

 The algorithm was also applied for a set of 220 simulated sample points since the 

total number of measurement points was 220. In this case, the spread goes below 1dB at 

2L = 15which is shown in Figure 4.8. Therefore, the required number of samples for 

220 points was calculated to (Nmin = 2Lopt/dmin = 15samples. 

 

Figure 4.8 One-sigma spread vs. averaging window length 2L, for 220 simulated samples. 

One-dB threshold indicated by arrows. 
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4.3 Analysis of Measured Data 

 As mentioned in Chapter 3, the measurement data was acquired for nine different 

values of link distance along the hallway to compute the spread of sigma vs. the 

averaging window length. The following sub-sections show plots of 1σr_spread as a 

function of 2L at each link distance from 4.57 m to 41.15 m. 

4.3.1 Rx Position of 4.57 m 

 It can be observed from Figure 4.9 that, the optimum averaging interval 2L at a 

point of sigma spread < 1 dB was obtained as 35at dL1 = 4.57 m. The dmin was 

calculated as 13/5.24 = 2.48using Figure 4.10. After obtaining 2L and dmin, the required 

number of samples within the averaging window of length 2L was calculated using 

equation 4.8, which is Nmin = 35/2.48= 15 samples.  

 

Figure 4.9 Spread of estimated local means as a function of 2L when dL1 was 4.57 m. 

One-dB threshold indicated by arrows. 
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Figure 4.10 Autocorrelation coefficient within a specific 2L interval. 

 

Figure 4.11 illustrates the received signal envelope along with the estimated large 

scale signal, m(y) using the calculated optimum window length, 2L = 35. It can be seen 

that m(y) is nearly constant (within  ~1 dB) for index values 50 to 110, and within around 

2 dB for index values 50-150 in the hallway center. As the local mean is expected to be 

exactly constant across the arc of the hallway—since the link distance is a constant, our 

estimate of m(y) confirms this. Variation of the local mean near the walls is also 

expected, as an “edge effect”. 
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Figure 4.11 Signal envelope using optimum averaging window length at dL1 = 4.57 m. 

 

4.3.2 Rx Position 9.144 m  

 At the link distance of 9.144 m, the spread of sigma as a function of optimum 

averaging length was computed, and is presented in Figure 4.12. 

0 50 100 150 200
-80

-75

-70

-65

-60

-55

-50

-45

-40

index

F
ie

ld
 S

ig
n

a
l 
S

tr
e

n
g

th
 (

d
B

m
)

Received signal envelop at Rx = 4.572m

 

 

r(y)

m(y)



43 

 

 

Figure 4.12 Spread of estimated local means as a function of 2L when dL2 was at 9.144 m. 

One-dB threshold indicated by arrows.  
  

The optimum window length 2L was obtained from Figure 4.12 as 28. Note that, 

at each link distance, the sampling interval dmin did not vary much and therefore the most 

frequent value of dmin was considered as 2.48 It again can be observed from Figure 4.13 

that m(y) was roughly constant (within ~1 dB) for index values 95 to 150, and within 

around 2 dB for index values 60-150 in the hallway center. 
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Figure 4.13 Signal envelope using optimum averaging window length at dL2 = 9.14 m. 
 

4.3.3 Rx Position 13.72 m  

 For this value of link distance, the optimum window length 2L was obtained as 

25at the point of sigma spread ~ 1 dB or less, showing in Figure 4.14.
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Figure 4.14 Spread of estimated local means as a function of 2L when dL3 was at 13.72 m. 

One-dB threshold indicated by arrows. 

 

The received signal envelope using the optimum length, 2L = 25 is shown in 

Figure 4.15 where, once more, m(y) is roughly constant (within ~1 dB) for index values 

80 to 150, and within around 2 dB for index values 60-150 in the hallway center. 
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Figure 4.15 Signal envelope using optimum averaging window length at dL3 = 13.72 m. 

 

4.3.4 Rx Position 18.28 m  

 For the 18.28 m link distance, 2L = 21 as observed from the Figure 4.16. The 

received signal envelope using the optimum length, 2L = 21 is shown in Figure 4.17 

and as at smaller values of link distance, it was found that m(y) is approximately constant 

(within ~1 dB) for index values 50 to 110, and within around 2 dB for index values 50-

170. 
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Figure 4.16 Spread of estimated local means as a function of 2L when dL4 was 18.28 m. 
One-dB threshold indicated by arrows. 

 

 

Figure 4.17 Signal envelope using optimum averaging window length at dL4 = 18.28 m. 
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4.3.5 Rx Position 22.86 m  

For the 22.86 m Rx position, the averaging window length was slightly larger 

than the value observed from figure 4.18. In this case, 2L = 26. The received signal 

envelope using the optimum length, 2L = 26 is shown in Figure 4.19. It can be observed 

again that m(y) is roughly constant (within ~2 dB) for index values 50 to 160. 

 

 

Figure 4.18 Spread of estimated local means as a function of 2L when dL5 was 22.86 m. 

One-dB threshold indicated by arrows.   
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Figure 4.19 Signal envelope using optimum averaging window length at dL5 = 22.86 m. 

 

4.3.6 At Rx position 27.43 m 

 At the 27.43 m Rx position, 2L was found to be  24as shown in Figure 4.20. 

The received signal envelope using this optimum length, 2L = 24 is shown in Figure 

4.21. Here, m(y) is again roughly constant (within ~2 dB) for index values 50 to 150 

exactly in the hallway center. 
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Figure 4.20 Spread of estimated local means as a function of 2L when dL6 was 27.43 m. 
One-dB threshold indicated by arrows. 

 

 

Figure 4.21 Signal envelope using optimum averaging window length at dL6 = 27.43 m. 
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4.3.7 Rx Position 32 m 

 From Figure 4.22, at this link distance, the optimum window length was found as 

2L = 8 

 

Figure 4.22 Spread of estimated local means as a function of 2L when dL7 was 32 m. One-

dB threshold indicated by arrows. 
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larger values of window length. Nonetheless, the local mean variation is still ~ 2 dB over 

the majority of the width of the hall. Worth pointing out is that for this link distance, 

another corridor extends perpendicularly from ours (see Fig. 3.8), allowing for more 

spatial field variation. 

 

Figure 4.23 Autocorrelation coefficient within a specific 2L interval. 
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Figure 4.24 Signal envelope using optimum averaging window length at dL7 = 32 m. 

  

4.3.8 Rx Position 36.58 m 

 Similarly Rx position at 36.58 m, the optimum averaging window from the Figure 

4.25 was, 2L = 33and the required number of samples was, Nmin = 13 samples while 

dmin = 2.48. The received signal envelope using the optimum length, 2L = 33 as shown 

in Figure 4.26. Here once again, m(y) is roughly constant (within ~2 dB) for index values 

50 to 120 exactly in the hallway center, although there is a noticeable slight downward 

trend from left to right. This effect would be a subject for future analysis. 
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Figure 4.25 Spread of estimated local means as a function of 2L when dL8 was 36.58 m. 

One-dB threshold indicated by arrows.   

  

 

Figure 4.26 Signal envelope using optimum averaging window length at dL8 = 36.58 m. 
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4.3.9 Rx position 41.15 m 

 From Figure 4.27, the optimum window length for our maximum value of link 

distance was, 2L = 27The autocorrelation coefficient for this link distance is shown in 

Figure 4.28 and the received signal envelope using the optimum length, 2L = 27 as 

shown in Figure 4.29. As in the previous cases, m(y) is approximately constant (within ~1 

dB) for index values 60 to 140 in the hallway center.

 

Figure 4.27 Spread of estimated local means as a function of 2L when dL9 was 41.15 m. 

One-dB threshold indicated by arrows.   
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Figure 4.28 Autocorrelation coefficient within a specific 2L interval. 
 

 

 

Figure 4.29 Signal envelope using optimum averaging window length at dL9 = 41.15 m. 
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 The sampling distance vs. the calculated window length at each link distance is 

shown in Figure 4.30 where the most frequent value for dmin (its mode) was found to be 

2.48 this value was used to determine the required number of samples within the 

averaging window at each link distance. To be most conservative with dmin, we could 

select the maximum value of 4. Similarly, the most conservative (maximum) value of 

Nmin is 15, so using (4.8), 2L = 154= 60 would be the most conservative value of 2L, 

which is here unnecessarily large, almost twice the largest value of 2L.  

 

Figure 4.30 Calculated sampling distance vs. window length. 
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distance. Table 4.1 summarizes the values of 2L, dmin, and Nmin for all the link distances 
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Figure 4.31 Calculated averaging window length 2L as a function of link distance, d. 

Trend line with distance also shown. 

 

 Table 4.1 Values of 2L, dmin and Nmin for nine different link distances 

Link Distance  

(m) 

Values of 2L 

(wavelengths) 

dmin 

(wavelengths) 

Nmin  

(samples) 

4.57 35 2.48 15 

9.14 28 1.53 12 

13.72 25 2.29 10 

18.29 21 2.48 9 

22.86 26 2.48 11 

27.43 24 2.09 10 

32.00 8 1.53 6 

36.58 33 2.48 13 

41.15 27 4.00 11 
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 Therefore, over the range of studied link distances, the window length 2L 

decreased from towith increasing link distance, although the decrease was not 

exactly monotonic, and the 8 value is likely anomalously small. As for Nmin (which 

decreased from 15 to 6 samples), we might expect it to also monotonically decrease with 

link distance if we had a perfectly smooth and uniform corridor, since that would produce 

strong waveguiding beyond some moderate value of link distance. This did occur for the 

first four of nine distances, but Nmin increased slightly for the link distance of 22.86 m and 

also for the largest two values of link distance, 36.58 m and 41.15 m. The reason for this 

is hypothesized to be the inhomogeneity of the environment, e.g., the corridor has doors 

and a few hallways extending from the side of the corridor near the Rx positions at 36.58 

m and 41.15 m. 
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CHAPTER 5  

CONCLUSIONS AND FUTURE WORK 

5.1 Concluding Remarks 

 The main objective of this study was to obtain the parameters required to estimate 

the local average power in line-of-sight (LOS) indoor settings at a frequency of 5.725 

GHz. The estimation of the local mean power in an indoor environment and some effects 

of the local mean variations were presented. The pivotal parameters for estimation are the 

spatial averaging window length, the spatial separation between two neighboring sample 

points, and the number of samples within that window length. These parameters were 

themselves estimated at different link distances with a fixed transmitter location. The 

method of sample average estimator was applied to the measurement data, and also to an 

example set of simulated fading data.  

For the measured data analysis, the averaging window length (2L) was found to 

be between 8 - 35 . We found the minimum number of samples (Nmin) to be 6 to 15 

samples, and the sample separation (dmin) to be 1.53 to 4. For our measured data set, 

the window length decreased monotonically until a link distance of 22.86 m and also for 

the largest two of the link distances, 36.58 m and 41.15 m, respectively. Our hypothesis 

for this increase is that the structure of the hallway becomes quite irregular at these larger 

values of link distance . 
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5.2 Future Work 

 In the future, this study could be further developed and extended to different 

corridors, in different LOS indoor settings. Measurements in different frequency bands 

would also be of interest. The algorithms themselves should be further studied and 

refined as well. It could be also interesting to see the effect of moving the mobile unit or 

receiver unit from outdoor to indoor or indoor to outdoor settings to study how the local 

mean power estimation would need to be modified. 
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