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Abstract

Negatively skewed survival data arise occasionally in public health fields and in

statistical research. Standard distributions such as the exponential, generalized

F, generalized gamma, Gompertz, log-logistic, lognormal, Rayleigh, and Weibull

distributions are not always well suited to this data. The primary goal of this

dissertation is to find a viable alternative for modeling negatively skewed survival

data such as the time to first remission for pediatric patients with frequently relapsing

or steroid dependent nephrotic syndrome.

We begin with a brief introduction of survival analysis and the nature of pediatric

nephrotic syndrome. A meta-analysis on atopy and pediatric nephrotic syndrome using

worldwide studies is performed. We introduce the reflected-shifted-truncated-gamma

(RSTG) distribution as an alternative model for survival data whose event times

arise from a negatively skewed distribution. Explicit expressions are provided for

the mean, variance, hazard function, survival function and quantile function of the

RSTG distribution. A simulation study verifies the consistency of maximum likelihood

estimates of model parameters. Using maximum likelihood methods, we compare the

RSTG distribution to the exponential, generalized F, generalized gamma, Gompertz,

log-logistic, lognormal, Rayleigh, and Weibull distributions for modeling negatively

skewed complete (uncensored) data, right-censored data and interval-censored data

using well-known data sets. We then apply the RSTG distribution to pediatric

nephrotic syndrome data from the Clinical Data Warehouse from Health Sciences of

South Carolina and from the Robert Wood Johnson Medical School in New Jersey

using covariate adjusted accelerated failure time (AFT) models with and without
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frailty. We include a brief example of the RSTG distribution applied to a 1972 study

on diabetic retinopathy.

Our research shows that the RSTG distribution is superior to the eight aforemen-

tioned distributions for modeling negatively skewed survival data. The results from

applications of this distribution and future goals are discussed.
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Chapter 1

Background and Significance

1.1 Survival Analysis

Survival analysis is a statistical method for data analysis in which the outcome variable

is the time to the occurrence of an event (John P. Klein and Moeschberger, 2003).

Time-to-event data, or survival time data, is common in medical research. Examples

of events of interest include relapse of cancer, remission of nephrotic syndrome,

recurrence of a tumor, development time from HIV infection to an AIDS diagnosis

for HIV patients, or death. The definition of event time should be made clear at

the start of the study. In studying the nature of the disease, for example, we must

specify whether the time of origin is when the symptoms start, when the biological

identification of the disease happens, or when the diagnosis is made. The time scale

and the origin of the event must also be identified.

Survival times can either be censored or uncensored. Uncensored observations are

commonly referred to as complete data and are observed exactly. Censored observations

are not observed exactly and can be left-censored, right-censored, or interval-censored.

If the event of interest occurs prior to the start of a study, the observation time is

left-censored. An observation is right-censored if a subject withdraws from a study or

if the study ends before the event of interest has occurred. An observation is interval-

censored if the event of interest is only known to have occurred within a given interval

of time. In this dissertation, we will assume that all censoring is non-informative, or

unrelated to the study.
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Survival analysis techniques make use of the incomplete data collected from

censored event times. The event times are subject to random variation, and, like any

random variables, form a distribution (Lee and Wang, 2003). The distribution of

survival times is usually characterized by three functions: (1) the survival function, (2)

the probability density function, and (3) the hazard function. These three functions

are mathematically equivalent. If one of them is known, the other two can be derived.

1.1.1 Basics of Survival Analysis

A function f(u) is a probability density function (pdf) of a random variable U if

and only if

1. f(u) ≥ 0 for all u

2.
∞∫
−∞

f(u)du = 1.

The cumulative distribution function, or cdf, of a random variable U , denoted

by F (u), is defined by

F (u) = P (U ≤ u),

=
u∫

−∞

f(x)dx.

The area under the curve of f(u) can give interval probabilities. For example,

P (a < U < b) =
b∫
a
f(u)du = F (b) − F (a). If f(u) is continuous, the Fundamental

Theorem of Calculus gives the additional relationship

d

du
F (u) = f(u).

The survival function gives the probability that a person survives longer than

some specified time t. Let T denote a nonnegative random variable whose individual

values t represent the time to an event of interest. The survival function of T , denoted

by S(t), is given by S(t) = P (T > t), 0 < t < ∞. Theoretically, the survival

2



function is a non-increasing continuous function such that S(0) = 1 and S(∞) = 0. If

the random variable T has some underlying probability density function f(u), then

S(t) =
∞∫
t
f(u)du, 0 < t <∞. Note that S(t) = 1− F (t).

The hazard function gives the instantaneous potential per unit time for the

event to occur, given that the event has not occurred up to time t. It is given by

h(t) = lim
∆t→0+

P (t ≤ T < t+ ∆t|T ≥ t)
∆t

= lim
∆t→0+

P (t ≤ T < t+ ∆t) ∩ P (T ≥ t)
P (T ≥ t)

∆t

= lim
∆t→0+

P (t ≤ T < t+ ∆t)
∆t · 1

P (T ≥ t)

= lim
∆t→0+

F (t+ ∆t)− F (t)
∆t · 1

P (T ≥ t)

= d

dt
F (t) · 1

P (T ≥ t)

= f(t)
S(t) ,

where 0 < t <∞. The hazard function is sometimes called a conditional failure rate

(Kleinbaum and Klein, 2006).

The cumulative hazard function is defined as H(t) = P (T ≤ t) =
t∫

0
h(u)du,

0 < t <∞,

and can be derived from the density and survival functions as follows:

h(t) = f(t)
S(t)

=

d

dt
F (t)
S(t)

=

d

dt
(1− S(t))
S(t)

=
−

d

dt
(S(t))

S(t) .

3



Therefore, we can express H(t) =
t∫

0
h(u)du = − logS(t).

1.1.2 Goals of Survival Analysis

The goals of survival analysis include estimation of the survival and/or hazard functions,

comparison of the survival and/or hazard functions, and assessment of the relationship

between explanatory variables (covariates) and survival time. Survival data consists

of a time of event, generally denoted by ti, the values of any covariates that are

considered valuable to the model, generally denoted by xi, and a censoring indicator,

δi, in which

δi =


1 if the event of interest is observed

0 if the event of interest is not observed
.

One of the first steps in analyzing survival data is presenting a numerical or graphical

summary of the data. This summary may be used to suggest a survival model for

the data. Non-parametric models are widely used models in the literature. The most

common of these, the Kaplan-Meier estimator of the survival function, is actually

a step function in which the estimated survival probabilities are constant between

adjacent event times and decrease with each event time. If there is no censoring,

the function is simply a step function equal to the proportion surviving an instant

after time t. One common use of the Kaplan-Meier estimated survival function is to

compare the survival probabilities of two groups. A major disadvantage of this type

of model is its inability to estimate survival probabilities at all time points.

The Cox proportional hazards (PH) model is most common for modeling

survival data to assess the effect of covariates on survival probabilities. The Cox model

is often deemed as semi-parametric because no assumptions are made concerning a

baseline hazard function; consequently, no assumptions are made on the distribution

of the survival times. It is assumed that all subjects in the study have a common

baseline hazard; thus, the ratio of the hazards of two subjects is some constant that is

4



independent of time. The model is specified as h(t) = h0(t)eβx , where 0 < t < ∞,

x = (x1, x2, . . . , xn) represents the vector of covariates of interest, eβ represents the

hazard ratio between groups and h0(t) represents the baseline hazard function. An

advantage of this model is its considerable flexibility since full specification of the

baseline hazard function is not required. Fully parametric proportional hazards

models, which assume that the baseline hazard function can be fully parametrized,

can also be used. A disadvantage of both the semi-parametric and the fully parametric

proportional hazards models is the necessity of the assumption of proportional hazards,

which may not be valid for some time-to-event data. Alternative versions of the

standard Cox proportional hazards model can be used when the proportional hazards

assumption is not satisfied. These include the time dependent Cox model and the

stratified Cox model. The time dependent Cox model introduces a time dependent

variable to accommodate the variable that does not satisfy the proportional hazards

assumption. The stratified Cox model allows the model to be stratified on the variable

that does not satisfy the proportional hazards assumption. Either model can limit

the overall interpretability of the parameters as the variable that has been modified

to accommodate the proportional hazards assumption is no longer interpretable.

The accelerated failure time (AFT) model is a general parametric model for

survival data that has been used more frequently in recent years. In the accelerated

failure time model, covariates have a direct effect on the survival time while in the

proportional hazards model, the covariates have a multiplicative effect on the hazard

function. The covariate effects change the timescale in the AFT model and, therefore,

accelerate or decelerate the time to the event of interest. The general model for

accelerated failure time is S(t) = S0(γt) where S0(t) represents a baseline survival

function and γ represents an acceleration factor. Parametric AFT models provide a

useful alternative to the PH model when modeling survival data (Wei, 1992). The

AFT approach models the survival times directly and gives summary measures that
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are interpreted in terms of the survival curve (Hutton and Monaghan, 2002; Orbe,

Ferreira, and Núñez-Antón, 2002; Patel, Kay, and Rowell, 2006; Pourhoseingholi et al.,

2007). Common applications of the parametric AFT model in the literature include

aging research (Swindell, 2009), kidney transplant survival (Lambert, Collett, Kimber,

and Johnson, 2004), and coronary heart disease (Chen, Zhang, and Zhang, 2013). The

parametric AFT model can incorporate a wide range of survival distributions.

One of the main advantages of using parametric survival models is the complete

specification of the survival, hazard, and density functions. Also, the parametric

model is smooth and continuous. The parametric approach can estimate “between

point” probabilities whereas the non-parametric approach can only give stepwise-

estimates using the time points actually reported in the study. Nevertheless, parametric

survival models are historically not as popular as non-parametric or semi-parametric

models. Derivations of the survival and hazard functions of parametric models may be

computationally intensive, and the true nature of a distribution may be hard to verify

in practice. However, it is generally agreed that if a parametric form can capture

the true nature of data, the results and implications will be far more precise (Collett,

2015).

1.2 Pediatric Nephrotic Syndrome

“Idiopathic” nephrotic syndrome, or nephrotic syndrome that arises spontaneously, is

a rare disease syndrome that commonly has a relapsing course. Pediatric idiopathic

nephrotic syndrome, a condition listed in the Rare Diseases Clinical Research Network,

a division of the National Institute of Health, is a condition that about 2-7 of

every 100,000 children are living with today (Kerlin, Haworth, and Smoyer, 2014).

According to the National Institute of Diabetes and Digestive and Kidney Diseases,

pediatric nephrotic syndrome is a set of signs or symptoms that may indicate kidney

dysfunction. The nephrotic syndrome describes a triad of hypoalbuminemia (low levels

6



of protein in the blood), edema (swelling resulting from buildup of salt and water),

and hyperlipidemia (high levels of protein in the urine)(Saleem, 2013). Other signs

include less frequent urination and weight gain from excess fluid. Pediatric nephrotic

syndrome can occur at any age but most commonly occurs between the ages of 11
2

and 5 years of age and affects boys more than girls (Childhood Nephrotic Syndrome,

2016).

Prior to the initiation of steroid treatment in the 1960s, the risk of morbidity

and mortality from pediatric nephrotic syndrome was extremely high (Soyka, 1967).

It is now the widely accepted standard that the best first line treatment for the

initial diagnosis of idiopathic nephrotic syndrome in children is a high dosage corticos-

teroid treatment (Fomina, Pavlenko, Englund, and Bagdasarova, 2011; Noer, 2005;

Richardson, 2012; Pasini et al., 2015). However, prolonged and repeated corticosteroid

treatment may induce serious steroid toxicity such as growth retardation and cataracts

(A. Takeda, Matsutani, Niimura, and Ohgushi, 1996). Other significant side effects of

these treatments include high blood pressure, increased appetite and significant weight

gain, restlessness, behavioral changes, reduction in the body’s ability to fight infection,

cosmetic side effects such as increased hair growth on the face or body, swollen or

painful gums, and, less commonly, painful urination (CVS Pharmacy, 2016).

In general, if a relapse occurs several times within a given time frame, the diagnosis

of nephrotic syndrome is further classified as either steroid dependent (sometimes

referred to in earlier literature as steroid responsive) or frequently relapsing. In this

case, a second line of medication is introduced to reduce the risk of steroid toxicity

and to achieve a lasting remission. If a first remission is still not achieved within a

given time frame, the diagnosis becomes steroid resistant, and alternative treatment

methods are applied (Lombel, Gipson, and Hodson, 2013). Definitions of the common

classifications of pediatric nephrotic syndrome are given in Appendix A. Previous

findings suggest that the majority of pediatric patients will relapse after the initial
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remission. Thus, other medicines are studied to determine their effectiveness in

achieving and maintaining a remission for as long as possible (Fomina et al., 2011;

Mishra, Abhinay, Mishra, Prasad, and Pohl, 2013; A. Takeda et al., 1996). Current

treatment strategies in addition to the high dose of prolonged steroid treatment

include cyclophosphamide, chlorambucil, cyclosporine A, mycophenolate mofetil and

other immunosuppressive agents (Fomina et al., 2011). More recently, rituximab,

an intravenous drug used to treat rheumatoid arthritis and B-cell non-Hodgkin’s

lymphoma, has been used and is under study for the difficult-to-treat nephrotic

syndrome (Sinha et al., 2015).

Studies suggest that almost all proposed and currently used treatments carry

significant side effects (Latta, von Schnakenburg, and Ehrich, 2001; Iijima et al., 2002;

Tullus and Marks, 2013). Researchers urgently need to better understand the nature

of the disease and to identify specific risk factors that would foster better treatment

decisions. The pediatric patient diagnosed with frequently relapsing nephrotic syn-

drome or steroid dependent nephrotic syndrome provides a special challenge to the

parent and health care provider since the risk of adverse events from prolonged or

repeated medication is much higher.

1.2.1 Previous Findings and Methods

Much of the literature involving pediatric idiopathic nephrotic syndrome originates

in areas other than the U.S. In a recently documented multicenter retrospective

study, six pediatric nephrology units in Italy collected data and studied the regimens

for management of the disease (Pasini et al., 2015). This study highlights the vast

differences in treatment strategies and efforts to prevent acute complications from the

disease, while shedding light on many of the epidemiological, clinical, and laboratory

parameters of pediatric patients diagnosed with idiopathic nephrotic syndrome. Studies

have been conducted in Bangladesh (Sarker et al., 2012) with more concentration on
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age, socioeconomic status and rate of infection. A study of immunosuppressive agents

in pediatric nephrotic syndrome was also conducted in Australia (Durkan, Hodson,

Willis, and Craig, 2001).

Sixteen institutions in North America conducted a large cross sectional study on

patient reported outcomes with change in nephrotic syndrome relapse or remission

status (D. S. Gipson et al., 2013). According to a division of the U.S. National

Institute of Health, there are also several active or recruiting clinical trials for research

on pediatric nephrotic syndrome (Pediatric Nephrotic Syndrome, 2016). One of those

is a large scale observational cohort study known as INSIGHT (Insight into Nephrotic

Syndrome: Investigating Genes, Health and Therapeutics). It is currently studying

and recruiting patients in Canada (Hussain et al., 2013). Only five of the studies

listed by the U.S. National Institute of Health involve U.S data, and only one has

been completed with published results.

Literature suggests that relapses within the first year of diagnosis are highly

predictive of the subsequent course of the disease. This finding was confirmed in India

(Mishra et al., 2013), Japan (A. Takeda et al., 1996), China (Wang, Liu, Dai, Yang,

and Tang, 2005), Indonesia (Noer, 2005) and the Ukraine (Fomina et al., 2011). Other

factors, including gender, age at onset, and the tapering regimen for steroid therapy,

were found to be insignificant in predicting subsequent relapse. Numerous reports

have suggested an association between atopy and nephrotic syndrome (Thomson,

Stokes, Barratt, Turner, and Soothill, 1976; Meadow and Sarsfield, 1981; Rebien,

Müller-Wiefel, Wahn, and Schärer, 1981; Yap et al., 1983; Hilmanto, 2007; Abdel-

Hafez, Shimada, Lee, Johnson, and Garin, 2009). Past analysis efforts for pediatric

nephrotic syndrome have included basic univariate analyses, logistic regression, use

of the Kaplan-Meier survival model, and use of the Cox proportional hazards model.

These measures were taken to describe the overall characteristics of the patient, to

assess the relative contribution of factors affecting the relapse status of the patient,
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and to analyze the efficacy of various treatment strategies (ISKDC; Tarshish, Tobin,

Bernstein, and Edelmann, 1997; Constantinescu, Shah, Foote, and Weiss, 2000; Wang

et al., 2005; Debbie S. Gipson et al., 2009; Fomina et al., 2011; Ishikura et al.,

2012). Studies also assess predictors for and frequency of relapse (A. Takeda et al.,

1996; Fomina et al., 2011; Mishra et al., 2013; Sureshkumar, Hodson, Willis, Barzi,

and Craig, 2014). Gadegbeku et al. (2013) state that the ability to effectively treat

nephrotic syndrome is hindered by a lack of understanding of disease mechanisms and

lack of predictors to identify clinical course and therapeutic responsiveness.

For the pediatric patient whose diagnosis is frequently relapsing or steroid de-

pendent nephrotic syndrome, studies suggest that the time to initial remission is

significantly longer than those diagnosed with other, more manageable forms of the

disease, such as infrequently relapsing or non-relapsing nephrotic syndrome (Vivarelli,

Moscaritolo, Tsalkidis, Massella, and Emma, 2010; Yap, Han, Heng, and Gong, 2001;

Letavernier et al., 2008; Fujinaga, Hirano, and Nishizaki, 2011; Nakanishi et al., 2013;

Constantinescu et al., 2000; Harambat et al., 2013; Sureshkumar et al., 2014). No

prior studies address the possible effect of a covariate to accelerate or decelerate

the time to first remission. None of the literature to date has analyzed predictors

for remission using the accelerated failure time model. Furthermore, since there

are distinct geographical, economic, technological, and cultural differences between

the U.S. and other regions, researchers need to perform more studies on the U.S.

population.

1.3 Pediatric Nephrotic Syndrome Data Sources

1.3.1 South Carolina

Health Sciences of South Carolina (HSSC), the first statewide biomedical research

collaborative in the United States, has established a database that includes data

on pediatric nephrotic syndrome (Research, 2016). This statewide Clinical Data
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Warehouse (CDW) system is a part of its mission to improve the health of all South

Carolinians. The creation of the CDW and the data management platform support

the goal of significant growth in clinical trials and medical research by facilitating

collaboration across HSSC member organizations (Clinical Data Warehouse, 2016).

The data include demographics, visits/encounters, diagnoses, procedures, labs, and

medications. The database will contain 3.2 million patients of all ages with various

ailments and diseases across South Carolina. It includes longitudinal data files with

real time updates. Current data is reflective of 2004-2015. We obtained data on

pediatric nephrotic syndrome patients from this database for use in our analysis. All

permissions were obtained for data access and use.

1.3.2 New Jersey

The Robert Wood Johnson Medical School in New Brunswick, N.J. is one of the

nation’s leading comprehensive medical schools. Previously an academic unit of

the University of Medicine and Dentistry of New Jersey, Robert Wood Johnson

Medical School transferred to Rutgers University as part of the New Jersey Medical

and Health Sciences Education Restructuring Act, on July 1, 2013 (About RWJMS,

2016). Pediatric nephrologists from Robert Wood Johnson Medical School in New

Jersey performed a retrospective chart review of all pediatric patients with nephrotic

syndrome that were followed up for at least one year (Constantinescu et al., 2000).

The data collected at the initial diagnosis of NS included gender, race, age, hematuria

status, days to remission, and pattern of relapses in the first year after diagnosis. Data

necessary for the analysis were obtained from the study authors.

1.4 Dissertation Goals

In this dissertation, we concentrate on survival methods for modeling negatively

skewed data. Pediatric nephrotic syndrome is used as a motivating example for our
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research. We begin in Chapter 2 by assessing the relationship between atopy and

nephrotic syndrome using a meta-analysis of worldwide studies. We provide a brief

descriptive analysis of both the South Carolina pediatric nephrotic syndrome data

and the New Jersey data in Chapter 3. In Chapter 4, we develop the reflected-shifted-

truncated-gamma (RSTG) distribution for use in modeling negatively skewed data.

Also in Chapter 4, we provide explicit expressions for the mean, variance, hazard

function, survival function and quantile function of the RSTG distribution. We

estimate the model parameters by maximum likelihood methods based on complete,

right-censored and interval-censored survival data. We assess the performance and

verify the consistency of the maximum likelihood estimators of the RSTG distribution

by conducting a simulation study with various sample sizes, and we compare the

RSTG distribution to the exponential, generalized F, generalized gamma, Gompertz,

log-logistic, lognormal, Rayleigh, and Weibull distributions when modeling negatively

skewed data in three real data sets.

In Chapter 5, we use the RSTG distribution in an accelerated failure time model,

apply it to the pediatric nephrotic syndrome data and draw conclusions. We use the

RSTG distribution in an accelerated failure time model with frailty in Chapter 6.

Finally, we summarize our research and discuss future work in Chapter 7.
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Chapter 2

Atopy and Pediatric Nephrotic Syndrome: A

Meta-Analysis

2.1 Introduction

Pediatric nephrotic syndrome has been sporadically studied in many different countries

for over 30 years. An association between nephrotic syndrome and atopic activity

has been noted in multiple studies (studies 4-23 in Appendix B), but identification

of allergies as a specific risk factor was not always a primary goal of the study.

Furthermore, the definition of allergy/atopy was not standardized and the wide

heterogeneity in terminology used to define allergy could make results unclear.

Allergies are a common public-health concern. A proclivity to allergies may cause an

individual’s immune system to operate in a more heightened state than normal. Natural

mechanisms of the body that fight foreign antigens produce antibodies that may react

in other places in the human body. These reactions could cause adverse effects. For

example, the antibodies could bind to membranes in the kidneys, causing damage and

leakage that potentially leads to kidney disorders such as nephrotic syndrome (National

Institute of Health, 2014). Moreover, medications commonly used to treat nephrotic

syndrome work to suppress the immune system and might inadvertently suppress the

ability of the body to police the role of the antibodies (National Institute of Health,

2014). These medications, such as prednisone, chlorambucil, and cyclosporine, may

be nephrotoxic themselves.
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The connection between the pediatric nephrotic syndrome and atopy, or more

generally the immune system, requires further study. This study quantifies the

association between atopy and nephrotic syndrome by analyzing previous studies

on atopic activity and the presence or absence of nephrotic syndrome in pediatric

patients.

2.2 Methods

2.2.1 Literature Search

Published reports involving pediatric nephrotic syndrome and atopy were acquired

from searches conducted from February 2014 to June 2014. The searches were

conducted using NIH (National Institutes of Health) registry of studies, the Cochrane

Collaboration, PubMed and PubMed Central, Embase, Google Scholar, Medline,

CDSR (Cochran Database of Systematic Reviews), NICE (National Institute for

Health and Care Excellence), Medscape and ProQuest. The following medical subject

headings and terms were used: nephrotic syndrome, pediatric nephrotic syndrome,

allergy, and atopy. Other sources were found in the references section of the retrieved

articles and from two pediatric nephrologists known to be actively involved with

pediatric nephrotic syndrome. 173 publications were obtained. No location, language

or time restrictions were applied.

2.2.2 Study Selection

Any study article that referenced a relationship between nephrotic syndrome in the

pediatric population and atopy was included in the first phase of study selection.

The pediatric population was limited to individuals between 0 and 18 years of age.

From the 20 studies selected in this phase, we excluded studies without adequate

information to calculate an odds ratio and corresponding 95% confidence interval,

studies that selected controls with regard to exposure status, and studies that included
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Articles identified (n=173)

Studies retrieved for de-
tailed evaluation (n=20)

Case-control studies selected
for meta-analysis (n=5)

Articles excluded after title or
brief abstract review (n=153)

Excluded:

- Insufficient information for
odds ratio (n=12)

- Data not extractable (n=1)

- Controls selected with regard
to exposure status (n=2)

Figure 2.1: Flow chart demonstrating studies chosen for the meta-analysis.

adults whose results could not be distinguished from the children’s results (studies

5-9, 11, 13-20, and 23 in Appendix B) (Figure 2.1).

2.2.3 Data Extraction

The following information was extracted from each study article: author, journal,

participant ages, location, year, ethnicity, sample size, study accrual period, disease

status at the time of investigation, study design, matching or adjustments, type of

NS studied, exposure/type of allergy studied, primary study goal, secondary study

goal, and statistics to calculate the odds ratio and corresponding confidence interval.

The exposure variable included any terms used to define and characterize atopy in

the studies, such as serum IgA, IgE, IgM and IgG levels, history of asthma, eczema,

urticaria, hay fever, common household allergens, and allergic rhinitis. The outcome

variable, nephrotic syndrome, was more uniformly defined and is consistent with

KDIGO (Kidney Disease–Improving Global Outcomes) and ISKDC (International

Study of Kidney Disease in Children) guidelines. Patients in selected studies were

identified as having some form of idiopathic nephrotic syndrome: frequently relapsing

(FRNS), steroid responsive (S.R.N.S) or minimal change disease (MCD). Steroid
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dependent (SDNS), S.R.N.S., and steroid sensitive (SSNS) are sometimes used in-

terchangeably in the literature although there are slight variations in the nature of

relapse for each group (Appendix A).

2.2.4 Statistical Assessment

Because of the limited number of studies, no subgroup analysis was conducted to

determine if the effect of allergy on nephrotic syndrome is consistent across the three

categories of the syndrome included in this analysis or across the initial state and the

relapsed state of the syndrome. We assume no distinction in characteristics between

the initial state and the relapsed state regardless of the syndrome category.

Data was accumulated from sources comprising differing cultures and levels of

advancement, different time periods, and different researchers operating independently.

Assuming the studies are not functionally equivalent and that the effect size may

differ in each study, we choose a random effects model for the analysis. The odds

ratio, computed as OR = ad
bc

(Table 2.1), is used as the effect size. The within study

variance in log-units is computed as VYi = 1
a

+ 1
b

+ 1
c

+ 1
d
, where Yi = lnOR. We

compute an estimate for the between-studies variance, τ 2, using the DerSimonian and

Laird method (Borenstein, Hedges, Higgins, and Rothstein, 2011). This estimate is

computed as

T 2 = Q− df
C

,

where Q =
k∑
i=1

WiY
2
i −

(
k∑
i=1

WiYi

)2

k∑
i=1

Wi

, df = k − 1, C =
k∑
i=1

Wi −

(
k∑
i=1

W 2
i

)
k∑
i=1

Wi

, k is the

number of studies, and Wi is the weight of the ith study. The negative value of T 2

impies that the between-studies variability is 0. A Q-test for heterogeneity, formally

testing the hypothesis that all studies share a common effect size, also suggests that
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Table 2.1: Nomenclature of the 2 x 2 tables for nephrotic syndrome and atopy.

Nephrotic Non-Nephrotic Total
Atopic a b n1
Non-atopic c d n2

the between studies variability is negligible (Q=0.59, p=0.9643, Figure 2.2). Thus,

the random effects analysis is reduced to a fixed effects analysis.

The summary effect in log units isM =

k∑
i=1

WiYi

k∑
i=1

Wi

, with the variance of the summary

effect estimated as VM =
1

k∑
i=1

Wi

(as the between studies variability is 0). The 95%

confidence interval for the summary effect, in log units, is given by M ± 1.96
√
VM .

We exponentiate the endpoints of this interval to convert to the odds ratio scale.
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Figure 2.2: Forest plot and summary effect.
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We performed all analyses using the open source software R (R Core Team, 2016).

Results were considered statistically significant for two-tailed p-values < 0.05.

2.3 Results

Five case control studies were selected from the 20 full text studies comprehensively

assessed. These studies were published between 1976 and 2007 with a total of 257

cases of pediatric nephrotic syndrome and 298 controls (studies 4, 10, 12, 21, and

22 in Appendix B). The included studies documented some form of atopic history

and included age-matched controls (Table 2.2). In each study, information on the

atopic history of the patients was obtained through parent questionnaires. Three

of the five studies in the analysis used hospital or clinic-based controls (Hilmanto,

2007; Yap et al., 1983; Thomson et al., 1976), one study used healthy children from

a nearby village (Meadow and Sarsfield, 1981), and one study did not indicate the

source population for the controls (Rebien et al., 1981). Meta-analysis of the five

case-control studies shows that a history of atopy in pediatric patients is significantly

associated with higher odds of idiopathic nephrotic syndrome (OR: 2.7; 95% CI: (1.77,

3.99); Figure 2.2). The odds of NS for atopic pediatric patients is 2.7 times higher

than the odds of NS for non-atopic pediatric patients.
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Table 2.2: Characteristics of included studies.

First Year Location Cases Controls Exposure Characteristics OR (95% CI) Diagnosis
Author Classification of Controls
Thomson 1976 London 40 40 History of asthma, Age-matched 2.83 (1.00,7.98) S.R.N.S.

eczema, or hayfever
Meadow 1981 Leeds 77 45 History of atopy Age, sex-matched 3.31 (1.24,8.84) MCD

S.R.N.S.
Rebien 1981 Heidelberg 42 30 History of atopy Similar age range 1.80 (0.43,7.62) MCD

(36/42)
Yap 1983 Singapore 59 100 History of atopy Similar age range 2.40 (1.18,4.89) Classical

S.R.N.S
Hilmanto 2007 Indonesia 39 83 History of atopy Similar age range 2.83 (1.29,6.20) FRNS
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2.4 Discussion

The implication of an association between some form of atopy and nephrotic syndrome

is well-documented (studies 4-23 in Appendix B). We used a meta-analysis to pool the

results from various studies to reach a more definitive conclusion on this association.

Our findings show that there is a significant association between atopy and odds of

nephrotic syndrome in pediatric patients.

Other findings of the studies used in the meta-analysis are noteworthy. The

Thomson study (1976) concluded that children with both Human Leukocyte Antigen

(HLA-2) and a history of atopy have a risk of S.R.N.S. that is thirteen times greater

than the risk for those with neither factor. The Rebien study (1981) concluded that

although IgE mediated hypersensitivity in children, measured by in vitro tests, may

coexist with nephrotic syndrome, it is not more prevalent than in a control population.

The study also suggests that a positive atopic history should be confirmed by skin

test or a radioallergosorbent test (RAST) before a subject is labeled as atopic (Rebien

et al., 1981). In two later studies (Meadow and Sarsfield, 1981; Yap et al., 1983), skin

tests, blood tests, RAST, and other forms of atopic identification were used contingent

upon parental consent, but those results were not investigated in our analysis. The

study by Meadow and Sarsfield (1981) found that some children with very high IgE

levels did not have an indication of history of an atopic disorder, and no significant

association existed between the frequency of certain HLAs and nephrotic syndrome.

In the Hilmanto study (2007), the author concluded that HLA Class II and atopy

together had an association with FRNS. These individual findings may be helpful in

the continued study of pediatric nephrotic syndrome and atopy.

Patterns of relapse of the nephrotic syndrome may be significantly associated with

atopy. One study reported that atopic children, particularly those suffering with

eczema, relapse sooner than non-atopic children (Trompeter, Barratt, Kay, Turner,

and Soothill, 1980). Another study reported that those treated at an older age
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relapsed less readily (Barratt, Osofsky, Bercowsky, Soothill, and Kay, 1975), but

the age effect is smaller when accounting for HLA-B12 and atopy (Trompeter et al.,

1980). Further studies which quantify atopy and the severity of allergic disease may

establish a predictive model for responsiveness to steroids as well as the nature of

relapse. The hyper-responsive immune function may be correlated with the risk of

relapse or time to initial remission, which would allow prospective stratification of

individuals with nephrotic syndrome. This prospective stratification could lead to

more precise treatment, which could reduce steroid toxicity and open up new domains

of therapeutics.

There are several limitations to this study. To begin with, differences in the

geographical locations of the studies may cause pediatric populations to vary widely.

The time differences in the studies are a source of bias due to advancements in medicine

and technology over the thirty-year period. In some studies, the relationship between

atopic activity and nephrotic syndrome was not a primary goal, which could contribute

to a form of selection bias. Particularly problematic is the assessment of the atopic

activity, which varied from study to study. Furthermore, having only five studies may

limit the accuracy or reliability of detecting true differences between studies (Hardy

and Thompson, 1998).

The significant association detected between atopy and pediatric nephrotic syn-

drome warrants further study. The study of the association between atopy and

pediatric nephrotic syndrome has been sporadic, and the term ‘atopy’ is not well-

defined; however, the results presented here can lead to new ideas and hypotheses that

encourage new, better defined and controlled studies. Case-control studies should be

initiated with well-defined atopic parameters to further study the association between

atopy and idiopathic nephrotic syndrome.
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Chapter 3

Pediatric Nephrotic Syndrome Data Description

3.1 South Carolina Data

In January 2016, data was retrieved for 436 pediatric patients with over 2000 visits

from the HSSC CDW database. Thirty-nine of the pediatric patients were diagnosed

with pediatric nephrotic syndrome, specifically, nephrotic syndrome with unspecified

pathological lesion in kidney (ICD 9 code 581.9). These diagnoses occurred between

July 2007 and August 2015. There were 19 females and 20 males with ages ranging

from 0-16 years at the time of diagnosis (Figure 3.1). The median age at diagnosis was

five years. There were ten African-Americans, two Asians, twenty Caucasians, three

Hispanic or Latino, and four classified as other or more than one race. Twenty-seven

were from a medium metropolitan area, 3 from a small metropolitan area, and 9 from

a non-metropolitan area. Twenty-seven of the patients were initially diagnosed in

the spring and summer months (March —August), while the remaining twelve were

diagnosed in the fall and winter months (September —February). Patients diagnosed

between 3 and 7 years of age accounted for over half of the diagnoses.

Fourteen of the patients identified retrospectively had accompanying lab data with

the date of diagnosis. One of the females is excluded from the analysis because of the

limited lab data available. The 8 females and 5 males are summarized in Table 3.1.

The lab data obtained are a part of a standard comprehensive metabolic panel

that can be routinely performed on patients. According to the U.S. National Library

of Medicine (2016), abnormal results can be due to a variety of medical conditions,
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Figure 3.1: Age distribution of SC pediatric nephrotic syndrome patients
at initial diagnosis.

Table 3.1: Summary lab data for 13 SC pediatric nephrotic syn-
drome patients.

Lab Mean (SD) Median Range UOM
Potassium Bld 5.42∗ (2.88) 4.6 4 - 14.7 mmol/L
Sodium Bld 138.38 (3.84) 138 133-145 mmol/L
CO2 Ser Pl 21.27 (6.89) 21 6 - 22 mmol/L
Anion 10.08 (5.11) 7 6 - 23 mmol/L
Chloride 107.92 (3.28) 107 103-113 mmol/L
BUN 31.92∗(40.09) 15 8 - 129 mg/dL
Calcium 8.12 (0.86) 8.1 5.8-9.3 mg/dL
Glucose 103.85∗(24.48) 94 75 - 156 mg/dL
Ser Albumin 1.78∗∗ (0.90) 1.6∗∗ 0.5 - 3.7 g/dL
* high based on normal range (U.S. National Library of Medicine,
2016)

** low based on normal range (U.S. National Library of Medicine,
2016)

including kidney failure. On average, patients in this study had elevated potassium

levels, which may be indicative of kidney disorders. Patients also had elevated blood

urea nitrogen (BUN) values, which could suggest the presence of kidney injury or

disease, and elevated glucose levels. Levels of albumin, one of the most abundant
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proteins in the body, were on average lower for the pediatric nephrotic syndrome

patient. Lower serum albumin levels are indicative of the nephrotic syndrome, where

the damaged kidney filtering system allows the protein to leak into the urine.

3.2 New Jersey Data

The medical records for children seen by the pediatric nephrologists at Robert Wood

Johnson Medical School before March 1997 and followed for at least one year were

reviewed by study authors (Constantinescu et al., 2000). There were nineteen females

and thirty-four males ranging in age from 1-13 years at the time of diagnosis (Figure

3.2). Twenty-five of the patients received a diagnosis of SDNS, nine were diagnosed

with FRNS, seventeen with infrequently relapsing nephrotic syndrome (IFRNS) and

two with SRNS. The median age at diagnosis was 3.5 years. The median number

of days to remission was 10, with remission defined by the study as protein-free

urine. The initial study reported a race distribution of 76.9% white, 8.9% black, 7.1%

Hispanic and 7.1% other.

Reported lab data included cholesterol level, creatinine level and the presence or

absence of hematuria. A summary of the lab data is presented in Table 3.2. Thirty of

the patients showed no hematuria at initial diagnosis, sixteen had micro-hematuria,

and seven exhibited macro-hematuria. The average cholesterol level for the group

was much higher than the upper bound of the normal range for cholesterol levels in

children and adolescents (American Academy of Pediatrics, 2015). High cholesterol

may result from a number of conditions, including kidney disease (Dietz and Stern,

2011).

3.3 Discussion

Pediatric nephrotic syndrome is classified as a part of the Rare Disease Clinical

Research Network (National Institute of Health, 2016). The pediatric nephrotic
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Figure 3.2: Age distribution of NJ pediatric nephrotic syndrome patients
at initial diagnosis.

Table 3.2: Summary lab data for NJ pediatric nephrotic
syndrome patients.

Lab Mean (SD) Median Range UOM
Cholesterol 424.16∗ (18.85) 387 201-799 mg/dL
Creatinine 0.49 (0.03) 0.5 0.1-1.0 mg/dL
* high based on normal range for children (American Academy
of Pediatrics, 2015)

syndrome data studied here are the result of retrospective chart reviews and are

limited by access to clinical data that have been recorded and are available.
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Chapter 4

The reflected-shifted-truncated-gamma

distribution with application to negatively

skewed survival data

4.1 Introduction

The two-parameter gamma distribution has been used extensively in survival analysis.

It is useful for modeling survival processes that do not fit into a symmetric distribution

(X. Liu, 2012). Although flexibility is allowed by this unimodal two-parameter

distribution, the basic shape ranges from positively skewed for small values of the

shape parameter to approximately normal for large values of the shape parameter

for a fixed value of the scale parameter (Johnson, Kotz, and Balakrishnan, 2002;

Ofungwu, 2014). The Weibull, exponential, lognormal, and normal distributions

are alternative standard distributions commonly employed to model data that is

approximately normal to positively skewed (Hougaard, 1999).

The generalized gamma distribution is a three-parameter distribution that was

first presented by Stacy (1962) and includes as special sub-models the exponential,

Weibull, gamma and Rayleigh distributions. Variations of the generalized gamma

distribution have been proposed in recent years to enhance its modeling capability.

These include the Kumaraswamy generalized gamma distribution (de Pascoa, Ortega,

and Cordeiro, 2011), the exponentiated generalized gamma distribution (Cordeiro,

Ortega, and Silva, 2011), and the transmuted generalized gamma distribution (Lucena,

27



Silva, and Cordeiro, 2015). These variations were designed to provide more flexibility

to the gamma distribution by allowing the capability of modeling both monotone and

non-monotone failure rates (Lucena et al., 2015). Despite the improved flexibility, the

distributions are generalizations of the standard two-parameter gamma distribution

and are still mainly utilized for positively skewed data.

The Gompertz distribution is a standard distribution for modeling negatively

skewed survival data. It was originally developed in 1825 to model human mortality

(Gompertz, 1825). A major drawback of the Gompertz distribution is that it fits

only adult mortality sufficiently (Thatcher, 1999). Several variations or extensions of

the Gompertz distribution have also been introduced in response to the modeling of

human mortality data (Cooray and Ananda, 2010).

Aside from the Gompertz distribution and its extensions, variations of the normal

distribution have been proposed to model negatively skewed data. These include the

skew normal (Azzalini, 1985), the power normal (Gupta and Gupta, 2008), the tilted

normal (Maiti and Dey, 2012), and a generalized normal distribution (Robertson

and Allison, 2012). Nevertheless, the applicability of these distributions is limited.

Practical difficulties of estimating the skewness parameter for small to moderate

sample sizes have been noted with the skew normal distribution, as well as problems

with goodness of fit for the power normal distribution (Maiti and Dey, 2012). The

tilted normal distribution is derived using a Marshall-Olkin transformation to induce

skewness; however, this transformation applied to a unimodal symmetric density

results in a distribution that is not flexible enough to handle data presenting high or

moderate skewness (Rubio and Steel, 2012). The generalized normal distribution was

constructed to model human longevity and distributional properties involve constraints

relevant only to life table data (Robertson and Allison, 2012).

We propose a reflected, shifted, truncated version of the two-parameter gamma

distribution as an alternative distribution for modeling negatively skewed survival data
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and demonstrate the applicability of this distribution using three types of survival

data: complete, where the event of interest is observed exactly; right-censored, where

the event of interest is only known to have not occurred by a given time point; and

interval-censored, where the event of interest is only known to have occurred in a

particular interval of time.

4.2 The Reflected-Shifted-Truncated-Gamma Distribution

The reflected-shifted-truncated-gamma (RSTG) distribution is constructed through a

series of transformations to the two-parameter gamma distribution. The probability

density function of the two-parameter gamma distribution is

f(t|α, θ) = 1
Γ(α)θα e

− t
θ tα−1, 0 < t <∞.

Here, α > 0 represents the shape parameter and θ > 0 represents the scale parameter.

Reflecting the two-parameter gamma distribution about the y-axis and shifting it

k > 0 units to the right gives a probability density function of

f1(t|α, θ, k) = 1
Γ(α)θα e

− (−t+k)
θ (−t+ k)α−1,−∞ < t < k;α, θ > 0.

The cumulative distribution function of this three-parameter reflected, shifted gamma

distribution is

F1(t|α, θ, k) =
t∫

−∞

1
Γ(α)θα e

− (−x+k)
θ (−x+ k)α−1dx

= 1
Γ(α)

[
Γ
(
α,
−t+ k

θ

)]

for t < k where Γ(a) =
∞∫
0
ta−1e−t dt is the gamma function and Γ(a, b) =

∞∫
b
ta−1e−t dt

represents the upper incomplete gamma function.

Truncating the reflected, shifted gamma distribution at 0 effectively restricts the

new distribution to the interval [0, k). The probability density function for this RSTG

29



distribution is

f ∗(t|α, θ, k) = 1
F1(k)− F1(0)

(
1

Γ(α)θα

)
e−

(−t+k)
θ (−t+ k)α−1

= 1
θα
(
Γ(α)− Γ(α, k

θ
)
)e− (−t+k)

θ (−t+ k)α−1 α > 0, θ > 0, 0 ≤ t < k,

(4.1)

with cumulative distribution function given by

F ∗(t|α, θ, k) = 1
θα
(
Γ(α)− Γ(α, k

θ
)
) t∫

0

e−
(−x+k)

θ (−x+ k)α−1 dx

=
Γ
(
α, −t+k

θ

)
− Γ

(
α, k

θ

)
Γ(α)− Γ

(
α, k

θ

) .

Complete derivations of the density and distribution functions are given in Appendix

C.

Plots of the probability density function for values of α, θ and k are given in Figure

4.1.
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Figure 4.1: Probability density function of the RSTG distribution with varying α, θ;
k=90.
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4.2.1 Quantile Function and Moments of the RSTG Distribution

The quantile function of the RSTG distribution is defined as Q(p) = inf{t : F ∗(t) ≥ p}

for p ∈ (0, 1]. It can be obtained by solving the following equation for t:

Γ
(
α,
−t+ k

θ

)
= p

[
Γ(α)− Γ

(
α,
k

θ

)]
+ Γ

(
α,
k

θ

)
. (4.2)

For a given p ∈ (0, 1], tp = Q(p) represents the 100pth percentile.

The quantile function of the distribution can be used to construct quantile analogs of

standard moment-based descriptive measures and to extend those standard descriptive

measures (Gilchrist, 2000). We can use this function to generate random data that

describe the density given in Equation (4.1).

The nth raw moment of the RSTG distribution is given by

E[T n] = 1
θα
(
Γ(α)− Γ(α, k

θ
)
) k∫

0

tne−
(−t+k)

θ (−t+ k)α−1 dt

=
n∑
j=0

(−1)j
(

n

n− j

)
kn−jθj

(
Γ (α + j)− Γ

(
α + j, k

θ

))
Γ(α)− Γ(α, k

θ
)

.

In particular, the first moment is

E[T ] = 1
θα
(
Γ(α)− Γ(α, k

θ
)
) k∫

0

te−
(−t+k)

θ (−t+ k)α−1 dt

= k −
θ
(
Γ(α + 1)− Γ

(
α + 1, k

θ

))
(
Γ(α)− Γ

(
α, k

θ

))
and the second moment is

E[T 2] = 1
θα
(
Γ(α)− Γ(α, k

θ
)
) k∫

0

t2e−
(−t+k)

θ (−t+ k)α−1 dt

= k2 − 2kθ
θ
(
Γ(α + 1)− Γ

(
α + 1, k

θ

))
(
Γ(α)− Γ

(
α, k

θ

))
+ θ2

θ
(
Γ(α + 2)− Γ

(
α + 2, k

θ

))
(
Γ(α)− Γ

(
α, k

θ

))


where α > 0, θ > 0, and k > 0. Hence, the mean of the RSTG distribution is

E(T ) = k −
θ
(
Γ(α + 1)− Γ

(
α + 1, k

θ

))
(
Γ(α)− Γ

(
α, k

θ

)) ,
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with variance

V (T ) = E[T 2]− (E[T ])2

= θ2


Γ(α + 2)− Γ

(
α + 2, k

θ

)
Γ(α)− Γ

(
α, k

θ

)
−

Γ(α + 1)− Γ
(
α + 1, k

θ

)
Γ(α)− Γ

(
α, k

θ

)
2 .

Pearson’s coefficient of skewness (CS) and kurtosis (CK) are given by

CS = E

[(
T − µ
σ

)3]

= E[T 3]− 3µE[T 2] + 2µ3

σ3

CK = E

[(
T − µ
σ

)4]

= E[T 4]− 4µE[T 3] + 6µ2E[T 2]− 3µ4

σ4

where µ = E[T ]. Plots of the mean, variance, skewness, and kurtosis functions of the

RSTG distribution with α = 1 and k = 96 are shown in Figure 4.2.

4.2.2 Survival and Hazard Functions of the RSTG Distribution

The survival and hazard functions of the RSTG distribution are

S∗(t) = 1− F ∗(t) =
Γ (α)− Γ

(
α, −t+k

θ

)
Γ (α)− Γ

(
α, k

θ

) , for α > 0, θ > 0, 0 < t < k (4.3)

and

h∗(t) = f ∗(t)
S∗(t) = e−

(−t+k)
θ (−t+ k)α−1

θα
(
Γ(α)− Γ

(
α, −t+k

θ

)) , for α > 0, θ > 0, 0 < t < k (4.4)

respectively. Plots of the survival and hazard functions for values of α and θ for a

fixed k are shown in Figure 4.3.

4.3 Parametric Estimation

Both frequentist and Bayesian approaches can be used to estimate the parameters of a

survival model (Pradhan and Kundu, 2011). Typically, parametric estimation follows
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Figure 4.2: The mean, variance, skewness and kurtosis of the RSTG distribution
with α = 1 and k = 90.

the frequentist approach and is based on likelihood methods (Lee and Wang, 2003;

Kalbfleisch and Prentice, 2011). Parametric estimation for the RSTG distribution

will use the method of maximizing the log-likelihood function.

4.3.1 Maximum Likelihood Estimation for Complete Data

Let t1, t2, ..., tn be a random sample of size n with probability density function given

by equation (4.1). The likelihood function for the parameter vector Θ = (α, θ, k)

based on the observed sample is proportional to
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Figure 4.3: Survival function and hazard function of the RSTG distribution with
various α, θ; k = 90.

L(Θ) =
n∏
i=1

f ∗(ti|Θ)

= 1(
θα
(
Γ(α)− Γ(α, k

θ
)
))n e−

∑n

i=1(−ti+k)
θ

n∏
i=1

(−ti + k)α−1.

Without loss of generality, the corresponding log-likelihood function is written as

l(Θ) = lnL(Θ)

= −n
[
α ln θ + ln

(
Γ(α)− Γ

(
α,
k

θ

))]
−
∑n
i=1 (−ti + k)

θ

+ (α− 1)
n∑
i=1

ln (−ti + k) .

(4.5)

We assume that the parameters α, θ and k are unknown. We obtain the normal

equations for the unknown parameters by taking partial derivatives of equation (4.5)

with respect to α, θ and k and equating each to zero. The resulting equations, in

which l = l(Θ), are

dl

dα
= −n

{
ln θ +

[
Γ′(α)− Γ′

(
α, k

θ

)]
[
Γ(α)− Γ

(
α, k

θ

)] }+
n∑
i=1

ln (−ti + k) = 0, (4.6)
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where Γ′(α) = dΓ(α)
dα

= d
dα

(ln Γ(α))Γ(α), and Γ′(α, k
θ
) = dΓ(α, k

θ
)

dα
=
∞∫
k
θ

ln(y)yα−1e−ydy,

dl

dθ
= −n

{
α

θ
+
−1
θ

(
k
θ

)α
e−

k
θ

Γ(α)− Γ
(
α, k

θ

)}+
∑n
i=1(−ti + k)

θ2 = 0. (4.7)

and
dl

dk
=
−n
k

(
k
θ

)α
e−

k
θ

Γ(α)− Γ
(
α, k

θ

) − n

θ
+

n∑
i=1

α− 1
(−ti + k) = 0. (4.8)

The solutions of equations (4.6), (4.7) and (4.8) are candidates for the maximum

likelihood estimates (MLEs) of the parameters α, θ and k. The maximum is attained

at the candidate values α̂, θ̂, and k̂ if the Hessian matrix (Appendix D) is negative

definite at those candidate values.

Although the MLEs of the unknown parameters can be obtained, we cannot obtain

the exact distribution of the MLEs. We use the large sample approximation. Assuming

regularity conditions are satisfied, the asymptotic confidence intervals can be obtained

by using the observed Fisher information matrix.

For parameter vector Θ = (α, θ, k), the observed Fisher information matrix is

given by

I (Θ) = −


H11 (Θ) H12 (Θ) H13 (Θ)

H21 (Θ) H22 (Θ) H23 (Θ)

H31 (Θ) H32 (Θ) H33 (Θ)

 =


a b c

b d e

c e f

 ,

where Hij (Θ) represents the ijth entry of the Hessian matrix (Appendix D). The

variance-covariance matrix of the parameter estimates can be approximated by the

inverse of the information matrix

I−1 (θ) = 1
K
·


a b c

b d e

c e f



∗

.
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where K = a(df − e2)− b(bf − ec) + c(be− cd) and ()∗ represents the adjoint of the

matrix. The standard errors of the estimates are given by

σα̂ =
√
df − e2

K
, σθ̂ =

√
af − c2

K
, and σk̂ =

√
ad− b2

K
. (4.9)

We can use equation (4.9) to derive approximate 100(1− τ)% confidence intervals

for the MLEs of the parameters α, θ and k of the forms

(
α̂± z τ

2
σα̂
)
,
(
θ̂ ± z τ

2
σθ̂

)
, and

(
k̂ ± z τ

2
σθ̂

)
(4.10)

where zτ/2 is the upper 100(τ/2)th percentile of the standard normal distribution.

The MLEs cannot be solved for explicitly here and must be found by numeric

methods such as Newton-Raphson’s algorithm. Details of the Newton-Raphson

algorithm and other numeric methods can be found in textbooks on numerical methods

for optimization, such as Iterative Methods for Optimization by Carl Kelley (1999).

We use iterative methods in R to obtain the MLEs and standard errors.

4.3.2 Maximum Likelihood Estimation for Right-Censored Data

Let t1, t2, ..., tn be a right-censored random sample of size n with probability density

function given by equation (4.1). The censoring indicator δi is such that

δi =


1 if the event of interest is observed

0 if the event of interest is not observed (event time is right-censored)
.

The likelihood function for right-censored data is proportional to

L(Θ) =
n∏
i=1

f ∗(ti|Θ)δiS∗(ti|Θ)1−δi

=
n∏
i=1

 1
θα
(
Γ(α)− Γ(α, k

θ
)
)e− (−ti+k)

θ (−ti + k)α−1

δi Γ (α)− Γ
(
α, −ti+k

θ

)
Γ (α)− Γ

(
α, k

θ

)
1−δi
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and the corresponding log-likelihood function is

l(Θ) = lnL(Θ)

=
n∑
i=1

δi

{
−
[
α ln θ + ln

(
Γ (α)− Γ

(
α,
k

θ

))]
− −ti + k

θ
+ (α− 1) ln (−ti + k)

}

+
n∑
i=1

(1− δi)
{

ln
[
Γ (α)− Γ

(
α,
−ti + k

θ

)]
− ln

[
Γ (α)− Γ

(
α,
k

θ

)]}
.

(4.11)

We calculate partial derivatives of equation (4.11) with respect to α, θ and k to

obtain the normal equations for the unknown parameters and equate each to zero.

The resulting equations are

dl

dα
=

n∑
i=1

δi

− ln θ −
Γ′ (α)− Γ′

(
α, k

θ

)
Γ(α)− Γ

(
α, k

θ

) + ln(−ti + k)


+
n∑
i=1

(1− δi)
Γ′ (α)− Γ′

(
α, −ti+k

θ

)
Γ(α)− Γ

(
α, −ti+k

θ

) − Γ′ (α)− Γ′
(
α, k

θ

)
Γ(α)− Γ

(
α, k

θ

)
 = 0,

with Γ′(α), and Γ′(α, k
θ
) as defined in equation (4.6),

dl

dθ
=

n∑
i−1

δi

−α
θ

+
1
θ

(
k
θ

)α
e−

k
θ

Γ(α)− Γ
(
α, k

θ

) + −ti + k

θ2



+
n∑
i−1

(1− δi)

−1
θ

(
−ti+k
θ

)α
e−

−ti+k
θ

Γ(α)− Γ
(
α, −ti+k

θ

) +
1
θ

(
k
θ

)α
e−

k
θ

Γ(α)− Γ
(
α, k

θ

)
 = 0,

and

dl

dk
=

n∑
i=1

δi

 − 1
k

(
k
θ

)α
e−

k
θ

Γ(α)− Γ
(
α, k

θ

) − 1
θ

+ (α− 1)
−ti + k



+
n∑
i=1

(1− δi)

 1
−ti+k

(
−ti+k
θ

)α
e−

−ti+k
θ

Γ(α)− Γ
(
α, −ti+k

θ

) − 1
k

(
k
θ

)α
e−

k
θ

Γ(α)− Γ
(
α, k

θ

)
 = 0.
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We obtain the MLEs, standard errors and confidence intervals using methods

discussed in Section 4.3.1.

4.3.3 Maximum Likelihood Estimation for Interval-Censored Data

Let t1, t2, ..., tn be a random sample such that ti ∈ [li, ri), li ≤ ri, where li is the left

limit of the ith censored data point and ri is the right limit of the ith censored data

point. The likelihood function for interval-censored data is given by

L(Θ) =
n∏
i=1

(S∗(li|Θ)− S∗(ri|Θ))

= 1(
Γ (α)− Γ

(
α, k

θ

))n n∏
i=1

(
Γ
(
α,
−ri + k

θ

)
− Γ

(
α,
−li + k

θ

))

The log-likelihood can be written as

l(Θ) = lnL(Θ)

= −n ln
(

Γ (α)− Γ
(
α,
k

θ

))
+

n∑
i=1

ln
(

Γ
(
α,
−ri + k

θ

)
− Γ

(
α,
−li + k

θ

))

(4.12)

To obtain the normal equations for the unknown parameters, we calculate partial

derivatives of equation (4.12) with respect to α, θ and k and equate each to zero. The

resulting equations are

dl

dα
= −n

Γ′ (α)− Γ′
(
α, k

θ

)
Γ (α)− Γ

(
α, k

θ

)
+

n∑
i=1

Γ′
(
α, −ri+k

θ

)
− Γ′

(
α, −li+k

θ

)
Γ
(
α, −ri+k

θ

)
− Γ

(
α, −li+k

θ

) = 0,

with Γ′(α), and Γ′(α, k
θ
) as defined in equation (4.6),

dl

dθ
= −n

 −1
θ

(
k
θ

)α
e−

k
θ

Γ(α)− Γ
(
α, k

θ

)
+

n∑
i=1

 1
θ

(
−ri+k
θ

)α
e−

−ri+k
θ − 1

θ

(
−li+k
θ

)α
e−

−li+k
θ

Γ(α, −ri+k
θ

)− Γ
(
α, −li+k

θ

)
 = 0,

and

dl

dk
=
−n
k

(
k
θ

)α
e−

k
θ

Γ(α)− Γ
(
α, k

θ

) +
n∑
i=1

 −1
−ri+k

(
−ri+k
θ

)α
e−

−ri+k
θ + 1

−li+k

(
−li+k
θ

)α
e−

−li+k
θ

Γ(α, −ri+k
θ

)− Γ
(
α, −li+k

θ

)
 = 0.
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We again obtain the MLEs, standard errors and confidence intervals using methods

discussed in Section 4.3.1.

4.4 Simulations

A series of Monte Carlo simulations are conducted to assess the performance and

consistency of the maximum likelihood estimators for the RSTG distribution. Bias

and mean squared error (MSE) criteria are used for comparison purposes. For each of

1000 samples, we generate n = 20, 40, 60, 80, 100 and 200 random variables Ti, i = 1...n,

from the RSTG distribution with shape parameter α = 2, scale parameter θ = 2, and

shift parameter k = 96 using equation (4.2).

To generate right-censored data values, administrative censoring is used following a

method by Michael and Lambert (Crowther and Lambert, 2013) so that the censoring

percentage is approximately 10−20%. To generate interval-censored data, we generate

n values from the RSTG distribution to serve as left endpoints of each interval. We

sort the values and use a pre-specified probability from the uniform distribution to

determine which of the two adjacent ordered values will serve as the right endpoint.

We fit each complete, right-censored, and interval-censored sample using the RSTG

distribution.

The mean values of the parameter estimates, bias, and MSE for each sample

size are presented in Table 4.1. Standard errors were calculated using the bootstrap

method.
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Table 4.1: Estimated standard error, bias and MSE of MLE of parameters based on 1000 simulations of complete, right-censored
and interval-censored data of the RSTG(2,2,96) distribution with n=20, 40, 60, 80, 100, and 200.

Complete Right-censored Interval-censored
n MLE (se) Bias MSE MLE (se) Bias MSE MLE (se) Bias MSE
20 α 1.63 (1.59) -0.37 2.653 3.41 (1.74) 1.41 4.990 3.78 (2.44) 1.78 9.118

θ 2.94 (1.23) 0.94 2.410 2.20 (1.16) 0.20 1.387 1.61 (0.81) -0.39 0.808
k 95.65 (0.62) -0.35 0.504 96.63 (1.15) 0.63 1.729 95.62 (0.65) -0.38 0.560

40 α 1.87 (1.49) -0.13 2.233 3.04 (1.73) 1.03 4.990 2.99 (2.14) 0.99 5.562
θ 2.49 (1.28) 0.49 1.881 1.94 (0.82) -0.07 0.679 1.77 (0.74) -0.23 0.607
k 95.85 (0.59) - 0.15 0.372 96.49 (0.95) 0.49 1.145 95.67 (0.62) -0.33 0.488

60 α 1.89 (0.93) -0.11 0.885 2.66 (1.63) 0.66 3.109 2.65 (1.90) 0.65 4.040
θ 2.29 (1.07) 0.29 1.230 1.94 (0.69) -0.06 0.478 1.88 (0.62) -0.12 0.395
k 95.87 (0.35) -0.13 0.142 96.31 (0.98) 0.31 1.065 95.72 (0.47) -0.28 0.295

80 α 1.91 (0.53) -0.09 0.291 2.55 (1.21) 0.55 1.769 2.49 (1.49) 0.49 2.46
θ 2.18 (0.85) 0.18 0.747 1.95 (0.65) -0.05 0.431 1.92 (0.61) -0.08 0.374
k 95.90 (0.24) -0.10 0.066 96.28 (0.94) 0.28 0.968 95.74 (0.48) -0.26 0.298

100 α 1.90 (0.53) -0.10 0.286 2.48 (1.16) 0.48 1.578 2.44 (0.25) 0.44 0.255
θ 2.14 (0.60) 0.14 0.375 1.95 (0.55) -0.05 0.307 1.92 (0.38) -0.08 0.152
k 95.90 (0.21) -0.10 0.052 96.26 (0.74) 0.26 0.623 95.79 (0.005) -0.21 0.045

200 α 1.93 (0.28) -0.07 0.085 2.18 (0.64) 0.18 0.444 2.40 (0.16) 0.40 0.189
θ 2.08 (0.33) 0.08 0.115 1.98 (0.31) -0.02 0.099 1.94 (0.19) -0.06 0.039
k 95.93 (0.15) -0.07 0.027 96.10 (0.42) 0.10 0.190 95.85 (0.004) -0.15 0.021

40



As the sample size increases for all three censoring scenarios, the bias and mean

squared error decreases, verifying the consistency of the estimators (Table 4.1).

4.5 Applications

In this section, we present three real data sets to demonstrate the flexibility and

potential of the RSTG distribution in modeling negatively skewed data. We compare

the performance of the RSTG distribution to the exponential, generalized F, generalized

gamma, Gompertz, log-logistic, lognormal, Rayleigh andWeibull distributions. Density

functions of the compared distributions are given in Appendix E. We use four

discrimination criteria methods based on the log-likelihood function evaluated at

the MLEs. Letting p be the number of parameters to be fitted, n the sample size,

and l(α̂, θ̂, k̂) the log-likelihood function, the criteria we consider are the following:

Akaike information criteria AIC = −2l(α̂, θ̂,k̂) + 2p, corrected Akaike information

criterion AICC = AIC + 2p(p+1)
(n−p−1) , Hannan-Quinn information criterion HQIC =

−2l(α̂, θ̂, k̂) + 2p log(log(n)), and the consistent Akaike information criterion CAIC =

−2l(α̂, θ̂, k̂) + p(log(n) + 1) (Anderson, Burnham, and White, 1998; Hannan and

Quinn, 1979). An advantage in using information-theoretic criteria is that it is valid

even for non-nested models (Burnham and Anderson, 2002). Burnham and Anderson

suggest that an AIC difference of between 3 and 7 units indicates that a candidate

model has considerably less support than the model with the minimum AIC value,

while a difference of more than 10 units indicates that a candidate model is highly

unlikely.

4.5.1 Badenscallie Burial Data

In this first example, ages of death for 59 males members of the Scottish McAlpha

clan were collected in June 1987 from the burial ground at Badenscallie in the Coigach

district of Wester Ross, Scotland (Sprent and Smeeton, 2007). The ages are recorded
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Figure 4.4: Data distribution and survival functions of the four best models of the
Badenscallie data.

in complete years, e.g. 0 means before the first birthday and 75 means after the 75th

but before the 76th birthday. The negative skew of this distribution is verified by the

skewness coefficient of −0.79. The distribution of death times is shown in Figure 4.4.

We compare the performance of the RSTG distribution with the aforementioned

distributions. Information theoretic criteria, parameter estimates and standard errors

for each of the fitted distributions are given in Table 4.2. A graphical summary of

four model fits, relative to the Kaplan-Meier survival curve, is shown in Figure 4.4.

Based on the AIC, AICC, HQIC and CAIC values, the RSTG distribution provides

a better fit than all other distributions. The RSTG distribution has an AIC value

that is more than 10 units lower than the other distributions in Table 4.2 and is thus

superior to the compared distributions for modeling negatively skewed complete data.

4.5.2 Diabetic Data

In this second example, survival times were collected for the first 40 diabetic patients

enrolled in an Oklahoma Indian diabetes study (Cooray, 2005). This data is a part

of a larger sample of 1012 Oklahoma Indians with non-insulin-dependent diabetes
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Table 4.2: Model fitting results of the Badenscallie data.

Model Par MLE (se) AIC AICC HQIC CAIC
Exponential λ 0.016 (0.002) 606.69 606.76 607.50 609.77
Generalized F µ 4.432 (0.041) 546.99 547.73 550.23 559.30

σ 0.174 (0.042)
Q 4.376 (1.045)
P 0.833 (1.515)

Generalized µ 4.550 (0.044) 541.69 542.13 544.12 550.92
Gamma σ 0.133 (0.026)

Q 28.3 (161)
Gompertz a 0.050 (0.007) 539.68 539.89 541.30 545.84

b 0.001 (0.0006)
Log-logistic α 0.542 (0.121) 625.34 625.55 626.96 631.50

β 57.74 (0.113)
Lognormal µ 3.730 (0.188) 655.37 655.58 656.99 661.53

σ 1.450 (0.133))
Rayleigh b 4.210 (0.065) 592.49 592.56 593.30 595.57
Weibull λ 1.709 (0.208) 592.49 592.56 593.30 595.57

γ 66.331 (5.146)
RSTG α 1.083 (0.392) 526.83 527.27 529.26 536.06

θ 42.709 (28.261)
k 95.065 (0.409)

mellitus who were examined in 1972 –1980 and had a follow-up study conducted

in 1986–1989 (Lee and Wang, 2003). Some of the survival times are right-censored.

The skewness coefficient of −1.30 verifies the negative skew of the distribution. The

distribution of survival times is shown in Figure 4.5.

We compare the performance of the RSTG distribution with the aforementioned

distributions. Information theoretic criteria, parameter estimates and standard errors

for each of the fitted distributions are given in Table 4.3. A graphical summary of

four model fits, relative to the Kaplan-Meier survival curve, is presented in Figure 4.5.

The RSTG distribution has an AIC value that is more than 10 units lower than the

other distributions and is thus superior to the compared distributions for modeling

negatively skewed right-censored data.
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Figure 4.5: Data distribution and survival functions of the four best models of the
diabetic data.

4.5.3 Breast Retraction Data

In a final example, times to breast retraction were collected from a retrospective study

on 46 early breast cancer patients treated with radiation therapy at the Joint Center

for Radiation Therapy in Boston between 1976 and 1980 (Finkelstein and Wolfe,

1985). The breast retraction times are interval-censored. We use the midpoints of

each interval-censored observation to calculate a skewness coefficient of −0.71, which

verifies the negative skew of the distribution.

The parameter estimates and corresponding standard errors, and the information

theoretic criteria for the RSTG, exponential, generalized F, generalized gamma,

Gompertz, log-logistic, lognormal, Rayleigh and Weibull distributions are given in

Table 4.4. A graphical summary of the RSTG model and the four best models based

on the AIC values, relative to the Kaplan Meier survival curve, is shown in Figure 4.6.

Based on the information theoretic criteria, the RSTG distribution provides a better

fit than the compared distributions.
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Table 4.3: Model fitting results of the diabetic data.

Model Par MLE(se) AIC AICC HQIC CAIC
Exponential λ 0.089 (0.014) 275.56 275.59 276.78 279.56
Generalized µ 2.70 (0.005) 215.60 215.88 220.48 231.62
F σ 0.008(0.005)

Q 6.87 (4.50)
P 0.021(1.32)

Generalized µ 2.73 (0.023) 213.00 213.17 216.66 225.01
Gamma σ 0.025 (0.073)

Q 21.7 (62.9)
Gompertz a 0.396 (0.060) 210.18 210.26 212.62 218.19

b 0.002 (0.002)
Log-logistic α 2.767 (0.395) 269.39 269.47 271.83 277.40

β 1.056 (1.014)
Lognormal µ 2.191 (0.186) 305.83 305.91 308.27 313.84

σ 0.886 (0.056)
Rayleigh b 2.48 (0.079) 247.93 247.96 249.15 251.93
Weibull λ 2.561 (0.375) 247.32 247.40 249.76 255.33

γ 12.177 (0.766)
RSTG α 0.232 (0.054) 149.06 149.22 152.72 161.07

θ 46.317 (39.525)
k 15.447(0.907)

4.6 Discussion

The flexibility, applicability and better fit of the RSTG distribution as compared

to eight standard distributions has been demonstrated when modeling negatively

skewed complete, right-censored and interval-censored survival data by AIC, AICC,

HQIC, and CAIC criteria. The data sets used in Examples 4.5.1 and 4.5.2 were

previously modeled with extensions of the Gompertz distribution. The Gompertz-sinh

family was constructed to model highly negatively skewed survival data with thick

lower tails, such as the Badenscallie data used in Example 4.5.1. This data set was

analyzed using the Gompertz-sinh and the exponentiated Gompertz-sinh distributions.

(Cooray and Ananda, 2010). A logistic-sinh distribution, designed for negatively

skewed distributions with long thin tails, has been proposed to model the subset

of the diabetic data presented in Example 4.5.2. In addition to its superiority over
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Figure 4.6: Data distribution and survival functions of the four best models of the
breast retraction data.

the compared standard distributions, the RSTG distribution is comparable to the

Gompertz-sinh family for negatively skewed survival data with thick tails and performs

better than the Gompertz-sinh family and the logistic-sinh distribution when modeling

negatively skewed distributions with thin tails. The RSTG distribution is a viable

alternative when researchers encounter negatively skewed survival data.
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Table 4.4: Model fitting results of the breast retraction data.

Model Par MLE(se) AIC AICC HQIC CAIC
Exponential λ 0.032(0.005) 215.02 215.11 215.73 217.89
Generalized µ 3.688(0.080) 185.45 186.38 188.28 196.93
F σ 0.311(0.084)

Q 1.628(0.571)
P 0.912(1.231)

Generalized µ 3.860(0.022) 162.44 162.99 164.56 171.05
Gamma σ 0.077(0.031)

Q 7.777(2.940)
Gompertz a 0.077(0.047) 176.58 176.85 177.99 182.32

b 0.004(0.002)
Log-logistic α 2.54(0.115) 209.58 209.85 210.99 215.32

β 29.21(9.219)
Lognormal µ 3.258(0.107) 210.97 211.24 212.38 216.71

σ 0.706(0.081)
Rayleigh b 3.55(0.075) 190.52 190.61 191.23 193.39
Weibull λ 2.17(0.30) 192.17 192.44 193.58 197.91

γ 35.33(0.35)
RSTG α 1.940(1.325) 138.98 139.25 140.39 144.72

θ 23.234(12.234)
k 70.545(16.059)

47



Chapter 5

An Accelerated Failure Time Model Using the

RSTG Distribution with Application to

Pediatric Nephrotic Syndrome

5.1 Introduction

The classical accelerated failure time (AFT) model (Kalbfleisch and Prentice, 2011)

provides an attractive alternative to the Cox proportional hazards model (D. R. Cox,

1972) in survival analysis due to its direct physical interpretation. We can express

the survival time of one patient as being accelerated or decelerated by some factor as

compared to another patient while taking into account covariates that contribute to

the change in survival time. Accelerated failure time models allow for a wide range

of parametric forms for the survival functions. A fully parametric model has the

advantage of a simple framework for maximum likelihood estimation. The parameter

estimates then have desirable properties such as asymptotic normality. The suitability

of the parametric distribution to the data can easily be assessed using graphical

methods, and inference will be far more precise (Collett, 2015).

In Chapter 4, we demonstrated that the RSTG distribution provides a better

model fit for negatively skewed complete, right-censored and interval-censored survival

data than the exponential, generalized gamma, generalized F, lognormal, log-logistic,

Rayleigh, Gompertz and Weibull distributions. In this chapter, we use the RSTG

distribution in an accelerated failure time model and apply it to the pediatric nephrotic
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syndrome data. The AFT model is our model of choice as we expect that some of

the explanatory variables suggested by the literature will actually decelerate the time

to remission for the frequently relapsing or steroid dependent nephrotic syndrome

patient.

5.2 The Model

The accelerated failure time model has a log-linear representation as

log Ti = β0 + β1x1i + β2x2i + .. . . .+ βpxpi + σεi, (5.1)

where Ti is the random variable associated with the survival time of the ith

individual, β0 is the true intercept term, β1, . . . , βp are the regression coefficients of

interest, xji is the jth explanatory variable (covariate) for the ith individual (i =

1, 2, . . . , n; j = 1, 2, . . . , p), σ is a scalar, and εi is a random disturbance term assumed

to be identically and independently distributed with density function f(εi).

The regression coefficients of the model in equation (5.1) are interpreted as follows:

If we increase the value of xki by 1 and hold all other covariates fixed, the change in

survival time will increase (if βk > 0) or decrease (if βk < 0) by a factor of eβk . In

other words, 100eβk represents the percentage change in median survival time.

Following the log-linear model formulation in equation (5.1), we express time T as

T = ex
T β+σε = ex

T β(eεσ) = ex
T β(T0).

We assume that T0 = eσε follows the RSTG distribution, with density function

(4.1), survival function (4.3), and hazard function (4.4).
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Given Θ = (α, θ,β, k), we write the survival function for the RSTG AFT model as

SA(t|x,Θ) = P (T ≥ t) = P (exT β(T0) ≥ t)

= P (T0 ≥ e−x
T βt)

= P (T0 ≥ g(t))

=
∞∫

g(t)

1
θα
(
Γ(α)− Γ(α, k

θ
)
)e− (−x+k)

θ (−x+ k)α−1dx

= 1− F ∗(g(t))

= S∗(g(t))

(5.2)

Thus, SA(t|x,Θ) = Γ(α)−Γ(α,−g(t)+k
θ )

Γ(α)−Γ(α, k
θ

) , where g(t) = e−x
T βt.

The density function of the RSTG AFT model is

fA(t|x,Θ) = −d(SA(t))
dt

= −d (S∗(g(t)))
dt

= f ∗(g(t)) · g′(t)

= 1
θα
(
Γ(α)− Γ(α, k

θ
)
)e− (−g(t)+k)

θ (−g(t) + k)α−1 · g′(t),

with hazard function

hA(t|x,Θ) = fA(t)
SA(t) = f ∗ (g(t)) · g′(t)

S∗ (g(t))

= h∗ (g(t)) · g′(t)

= e−
(−g(t)+k)

θ (−g(t) + k)α−1

θα
(
Γ(α)− Γ

(
α, k

θ

)) · g′(t),

where g′(t) = e−x
T β.

Without loss of generality, we use SA(t), fA(t) and hA(t) to represent SA(t|x,Θ),

fA(t|x,Θ) and hA(t|x,Θ).
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5.3 Parametric Estimation

Several approaches have been proposed for the estimation and inference of the semi-

parametric AFT model. One method involves rank-based estimators as first discussed

in the literature by Prentice (1978), and another is the method of Buckley and

James (1979), which provides an accommodation of the least-squares estimator. The

asymptotic properties of the two estimators have been studied by many authors

(Tsiatis, 1990; Ritov, 1990; Jin, Lin, Wei, and Ying, 2003). Classically, the estimation

of the parameters in a fully parametric AFT model is performed by maximizing the

log-likelihood equation (David Roxbee Cox and Oakes, 1984; Robins, 1992). We will

use maximum likelihood methods for estimation of the parameters of the RSTG AFT

model.

For data that contains both complete and right-censored information, the likelihood

function of the RSTG AFT model for the parameter vector Θ = (α, θ,β, k) is

proportional to

L(Θ) =
n∏
i=1

fA(ti)δiSA(ti)1−δi

=
n∏
i=1

 1
θα
(
Γ(α)− Γ(α, k

θ
)
)e− (−g(ti)+k)

θ (−g(ti) + k)α−1 · g′(ti)
δi

×

Γ (α)− Γ
(
α, −g(ti)+k

θ

)
Γ (α)− Γ

(
α, k

θ

)
1−δi

,

where g(t) = e−x
T βt. The censoring indicator δi is such that

δi =


1 if the event of interest is observed

0 if the event of interest is not observed (event time is right-censored)
.
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The corresponding log-likelihood function is given by

l(Θ) = lnL(Θ)

=
n∑
i=1

δi

{
−
[
α ln θ + ln

(
Γ (α)− Γ

(
α,
k

θ

))]
− −g(ti) + k

θ

+ (α− 1) ln (−g(ti) + k) + ln g′(ti)
}

+
n∑
i=1

(1− δi)
{

ln
[
Γ (α)− Γ

(
α,
−g(ti) + k

θ

)]
− ln

[
Γ (α)− Γ

(
α,
k

θ

)]}
.

(5.3)

We take partial derivatives of equation (5.3) with respect to α, θ, k, and each βj

to obtain the normal equations for the unknown parameters and equate each to zero.

Without loss of generality, we let l = l(Θ). The resulting equations are

dl

dα
=

n∑
i=1

δi

− ln θ −
Γ′ (α)− Γ′

(
α, k

θ

)
Γ(α)− Γ

(
α, k

θ

) + ln(−g(ti) + k)


+
n∑
i=1

(1− δi)
Γ′ (α)− Γ′

(
α, −g(ti)+k

θ

)
Γ(α)− Γ

(
α, −g(ti)+k

θ

) − Γ′ (α)− Γ′
(
α, k

θ

)
Γ(α)− Γ

(
α, k

θ

)
 = 0,

(5.4)

where Γ′(α) = dΓ(α)
dα

= d
dα

(ln Γ(α))Γ(α), and Γ′(α, k
θ
) = dΓ(α, k

θ
)

dα
=
∞∫
k
θ

ln(y)yα−1e−ydy,

dl

dθ
=

n∑
i=1

δi

−α
θ

+
1
θ

(
k
θ

)α
e−

k
θ

Γ(α)− Γ
(
α, k

θ

) + −g(ti) + k

θ2



+
n∑
i=1

(1− δi)

−1
θ

(
−g(ti)+k

θ

)α
e−

−g(ti)+k
θ

Γ(α)− Γ
(
α, −g(ti)+k

θ

) +
1
θ

(
k
θ

)α
e−

k
θ

Γ(α)− Γ
(
α, k

θ

)
 = 0,

(5.5)

dl

dk
=

n∑
i=1

δi

 − 1
k

(
k
θ

)α
e−

k
θ

Γ(α)− Γ
(
α, k

θ

) − 1
θ

+ (α− 1)
−g(ti) + k



+
n∑
i=1

(1− δi)

 1
−g(ti)+k

(
−g(ti)+k

θ

)α
e−

−g(ti)+k
θ

Γ(α)− Γ
(
α, −g(ti)+k

θ

) −
1
k

(
k
θ

)α
e−

k
θ

Γ(α)− Γ
(
α, k

θ

)
 = 0,

(5.6)
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and

dl

dβj
=

n∑
i=1

δi

(
−xje−x

T βti
θ

+ (α− 1) xje
−xT βti

−e−xT βti + k
− xj

)

+
n∑
i=1

(1− δi)
{
− xje−x

T βti

(1
θ

(
−e−xT βti + k

))α

× e
1
θ

(
e−xT βti−k

)
Γ(α)

(
e−xT βti − k

)
+ Γ

(
α, 1

θ

(
−e−xT βti + k

)) (
−e−xT βti + k

)} = 0.

(5.7)

Techniques discussed in Section 4.3.1 can be applied to equations (5.4), (5.5), (5.6),

and (5.7) to find the MLEs. These equations cannot be solved explicitly. We use

iterative methods in R to obtain the MLEs and standard errors.

5.4 Application to Pediatric Nephrotic Syndrome

An illustration of the superior performance of the proposed RSTG AFT regression

model (5.1) compared to AFT regression models with other distributional assumptions

is given in Appendix F. The comparisons are based on information theoretic criteria

and standard errors of the parameter estimates. We now apply the RSTG AFT model

to the pediatric nephrotic syndrome data from HSSC and from the Robert Wood

Johnson Medical School.

5.4.1 HSSC Data

To demonstrate the applicability of the RSTG distribution to real negatively skewed

data, we first analyze pediatric nephrotic syndrome data from the HSSC CDW

described in Chapter 3.

Hospital readmission, particularly in the pediatric population, has been the focus of

previous studies (Feudtner et al., 2009; Gay, Hain, Grantham, and Saville, 2011). The

times to the first hospital visit within the first 30 days after diagnosis of pediatric NS

were recorded from a retrospective analysis of the HSSC data. We choose 30 days as a

censoring point to account for possible scheduled return visits, and because previous
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literature suggests that only a small percentage of pediatric nephrotic syndrome

patients have not entered remission after 4 weeks (Constantinescu et al., 2000).

Previous literature also suggests that the time to remission for the frequently relapsing

or steroid dependent nephrotic syndrome patient is longer than that of the infrequently

relapsing patient (Constantinescu et al., 2000; Nakanishi et al., 2013). According to

one American study, 52% of IFRNS patients achieved initial remission by 7 days after

diagnosis, while only 21% of the FRNS and SDNS patients achieved initial remission by

7 days (χ2 = 4.5; p = 0.03) (Constantinescu et al., 2000). We hypothesize that those

whose time to initial remission is longer, i.e. the FRNS or SDNS patient, are more

likely to have a return hospital visit within a 30-day period. This return visit could be

prompted by complications arising from the body being in the state of the nephrotic

syndrome, such as severe edema, hypertension, or bacterial peritonitis (Richardson,

2012; Debbie S. Gipson et al., 2009). The return visit could also occur because of

adverse events resulting from the prolonged use of high dosage corticosteroid therapy

which is classically used for the initial diagnosis of idiopathic pediatric nephrotic

syndrome.

We use the continuous covariate age and categorical 0/1 covariates representing the

season of diagnosis (with spring being the referent level) to identify predictive factors

for the time to the first hospital visit after diagnosis of the nephrotic syndrome. We

define season of diagnosis as: fall (August, September, October); winter (November,

December, January); spring (February, March, April) and summer (May, June, July).

The distribution of times to first hospital visit after diagnosis has skewness coefficient

−0.88 (Figure 5.1).

The AFT model for this data is given by

log(Ti) = β0 + β1agei + β2winteri + β3summeri + β4falli + σεi. (5.8)

where Ti represents the time to first hospital visit for the ith patient, i = 1, .., n.
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Figure 5.1: Distribution of times to first hos-
pital visit after initial diagnosis of pediatric
nephrotic syndrome from HSSC CDW.

We analyze the data under the accelerated failure time framework with different

distributional assumptions. Results are presented in Appendix F.

To assess the suitability of a model, graphical checks may be preferred over formal

statistical tests of lack of fit because the formal tests tend to have low power for

small-sample sizes or they always reject a given model for large sample sizes (Klein

and Moeschberger, 2003). Cox-Snell residuals, Martingale residuals and deviance

residuals are three types of residuals that are commonly used to assess the fit of a

model graphically (see John P. Klein and Moeschberger (2003) and Collett (2015)

for a discussion of each). We evaluate the accuracy of the RSTG AFT model using

a diagnostic plot of the deviance residuals. The deviance residuals, first introduced

by Terry M. Therneau, Grambsch, and Fleming (1990), can be expected to be

symmetrically distributed about zero when an appropriate model has been fit. The

deviance residuals are defined as rDi = sgn(Mi)[−2{Mi + δi log(δi −Mi)}]
1
2 , where δi

is the censoring indicator, Mi = δi + log ŜA(ti) , and sgn(·) is a function that simply
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Figure 5.2: Deviance residual plots of the RSTG AFT model for the HSSC CDW
pediatric nephrotic syndrome data.

Table 5.1: RSTG AFT model for pediatric
nephrotic syndrome patients in South Car-
olina.

Distribution Parameter MLE(se)
RSTG β1 0.046 (0.060)

β2 3.153 (2.820)
β3 1.384 (1.499)
β4 3.138 (4.420)

takes the sign of the argument. A plot of the deviance residuals indicates that the

RSTG AFT model provides a good fit for the data (Figure 5.2).

No significant predictors of the time to first hospital visit after diagnosis were

detected by the RSTG AFT model (Table 5.1).

5.4.2 Robert Wood Johnson Medical School Data

As a second example demonstrating the applicability of the RSTG distribution to

negatively skewed data, we use the New Jersey data described in Chapter 3. Previous

analyses of the New Jersey data reported a median time to initial remission of 7 days

for IFRNS patients and a median time to initial remission of more than 7 days for
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the FRNS and SDNS patients (Constantinescu et al., 2000). These median remission

times coincide with those of a later study by Vivarelli et al. (2010). The original study

of this data analyzed odds ratios between the IFRNS group and the FRNS/SDNS

group. Each group was assessed for time to first remission with censoring after 7

days (Constantinescu et al., 2000). A significant association was found between initial

remission times less than 7 days and an IFR diagnosis for those patients who did not

have hematuria at diagnosis. Study authors also report that they did not take into

account the histopathology found on renal biopsy.

The objective of our study of the New Jersey data is to identify early prognostic

factors for idiopathic nephrotic syndrome, particularly FRNS or SDNS. We use the

RSTG AFT model to examine predictors of the time to first remission for pediatric

nephrotic syndrome patients. The variables age at diagnosis, hematuria (0 = not

present at diagnosis, 1 = present at diagnosis), and creatinine level (mg/dL) are used

to determine their effects on the accelerated or decelerated time to initial remission.

All patients were initially treated with the standard corticosteroid therapy. Following

the ideas of the original study authors, we fit the model using censoring at 7 days

after diagnosis. Censoring at 7 days results in a negatively skewed distribution of

initial remission times with skewness coefficient −2.68.

The AFT model for this data is given by

log(Ti) = β0 + β1agei + β2hematuriai + β3creatininei + σεi, (5.9)

where Ti represents the time to first remission for the ith patient, i = 1, .., n. Censoring

at 7 days for the RSTG AFT model did not detect significance of any predictors of

the time to first remission (β1 = −0.012, SE = 0.026; β2 = −0.330, SE = 0.201; β3 =

0.102, SE = 0.562). We explore later censoring times to determine if any significant

effects are present.

Further review of the New Jersey data reveals that the mean time to first remission

for FRNS and SDNS patients is 10 days and the median time is 11.5 days. Study
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Figure 5.3: Deviance residual plots of the RSTG AFT model for the New Jersey
pediatric nephrotic syndrome data.

findings also indicate that 75% of IFRNS patients are in remission at 14 days. Because

the objective is to identify as early as possible significant predictors of NS patients

who tend toward a FR or SD course, we use the study the data for up to 14 days

after diagnosis. This is consistent with a startup study with follow-up time of 14 days.

This convention results in a negatively skewed distribution of initial remission times

with skewness coefficient −0.40. We apply the RSTG AFT model to the data. A

plot of the deviance residuals indicates the presence of outliers that may affect model

fit (Figure 5.3). One outlier corresponds to an individual who entered spontaneous

remission while the other corresponds to an individual with a very low creatinine level

at diagnosis. The model was refit without the outliers and neither the magnitude nor

significance of the parameter estimates changed substantially. Original model fitting

results are given in Table 5.2.

Based on the parameter estimates and standard errors, the model suggests that age

at diagnosis is a significant indicator of the time to first remission (β1 = −0.172, SE =

0.052). After controlling for hematuria status and creatinine level, the time to first

remission for pediatric NS patients decreases by 16%(95% CI : 7%−24%) for each one
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Table 5.2: RSTG AFT model for pediatric
nephrotic syndrome patients in New Jersey.

Distribution Parameter MLE(se)
RSTG β1 -0.172 (0.052)

β2 0.396 (0.592)
β3 5.158 (3.245)

year increase in age at diagnosis. This finding supports the findings of R. F. Andersen

et al. (2010), who suggested that early age at debut in a significant predictor of SDNS

and FRNS.

5.5 Discussion

Potential two-way interactive effects were explored in the Robert Wood Johnson

medical school data. No interactions were found to be significant.
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Chapter 6

Frailty Models using the RSTG Distribution

with Application to Pediatric Nephrotic

Syndrome and Diabetic Retinopathy

6.1 Introduction

In practice, there can exist either unobserved or unmeasurable effects that cause an

individual or group of individuals to experience an event sooner or later than expected.

These non-measured random effects, commonly referred to as frailties, may evoke

significant changes in survival probabilities if accounted for in the modeling process.

The concept of frailty was introduced as early as 1979 in a discussion of the impact of

heterogeneity of individual frailty on the dynamics of mortality (Vaupel, Manton, and

Stallard, 1979). The underlying logic of frailty models is that some subjects (or groups

or clusters) are intrinsically more or less prone to experience an event of interest than

are others, and that the distribution of these effects can be at least approximated

(Box-Steffensmeier and De Boef, 2006).

Frailty models in survival analysis are commonly used to quantify the association

between individual survival times within a subgroup (John P. Klein and Moeschberger,

2003). For example, there may be a shared genetic structure or a shared environmental

factor that leads to dependence among the event times. This shared frailty concept

was first introduced by Clayton (1978) and has been studied more extensively by many

researchers, most within the framework of the PH model (Oakes, 1989; McGilchrist
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and Aisbett, 1991; Hougaard, 1986b; John P Klein, Moeschberger, Li, Wang, and

Flournoy, 1992; Keiding, Andersen, and Klein, 1997; John P. Klein and Moeschberger,

2003; Terry M Therneau, Grambsch, and Pankratz, 2003; Chen et al., 2013). While

the shared frailty model accounts for unobserved covariates that operate at categorized

levels above the individual unit, the individual frailty model accounts for heterogeneity

among individual units (Gutierrez et al., 2002). The individual frailty model can

be used to model the effect of important covariates that have not been observed

(Wienke, 2010). The correlated frailty model, in which the frailties of individuals in a

cluster are correlated but not necessarily shared, is a natural extension of both the

individual and the shared frailty model concept (Wienke, 2010). Correlated frailty

models have been used in multiple studies, including studies of diabetic retinopathy

(Huster, Brookmeyer, and Self, 1989), studies of acquisition of both Hepatitis A and

Hepatitis B (Hens, Wienke, Aerts, and Molenberghs, 2009), and studies of kidney

infection (Hanagal, Pandey, and Ganguly, 2015). Frailty models can also be used

to model event dependence arising from repeated occurrence of the same type of

event within an individual. Examples include recurrent hospitalizations for transplant

candidates with kidney disease, pulmonary exacerbations in cystic fibrosis asthma

attacks, or relapse of diseases (Greenwood and Yule, 1920; Box-Steffensmeier and

De Boef, 2006; L. Liu, Wolfe, and Huang, 2004; Oakes, 1992).

The choice of frailty distribution plays an important role in the survival model.

Theoretically, any non-negative distribution can be used as a frailty distribution. The

most commonly used distributions are the gamma and the lognormal, but others

include the inverse Gaussian, inverse gamma and the positive stable distribution

(Aalen, 1994; P. K. Andersen, Klein, Knudsen, and y Palacios, 1997; Balakrishnan and

Peng, 2006; Duchateau and Janssen, 2007; Wienke, 2010; Hougaard, 1986, 2012). The

choice of the frailty distribution is often driven by mathematical convenience (Chen et

al., 2013). The effects of different frailty distributions have been investigated by several
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authors, including Pickles and Crouchley (1995) and Hanagal and Sharma (2015).

The use of gamma distributed frailty in univariate survival models is supported by the

results of Abbring and Van Den Berg (2007), who showed that, under some regularity

assumptions, frailty among survivors converges against a gamma distribution even if

the original distribution is not a gamma distribution.

The use of frailties in the AFT framework has seen increased usage by researchers

over the past fifteen years. These researchers include Pan (2001), Lambert et al.

(2004), Zhang and Peng (2007), and Chen et al. (2013). In this chapter, we investigate

the performance of the individual frailty AFT model using the RSTG distribution as

the baseline survival distribution with a gamma frailty distribution. An expectation-

maximization (EM) algorithm is used for parameter estimation. We apply the

algorithm to an individual frailty model using the New Jersey pediatric nephrotic

syndrome data. A brief example of the applicability of the RSTG distribution in the

correlated frailty model is also presented. We use the correlated frailty model on the

1972 Diabetic Retinopathy study data and compare findings to previously published

findings from this data.

6.2 The Frailty Model

The log-linear formulation of the accelerated failure time model is written as

log Tij = β0 + β1x1ij + β2x2ij + .. . . .+ βpxpij + σεij,

where Tij is the random variable associated with the survival time of the jth

individual in the ith cluster. We introduce ωi to represent either an individual random

effect or the random effect shared by individuals in the ithcluster. The new model is

expressed as

log Tij = β0 + β1x1ij + β2x2ij + .. . . .+ βpxpij + ωi + σεij. (6.1)
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Following the log-linear model formulation in equation (6.1), we express time T as

T = ex
T β+ω+σε

= ex
T β ∗ eω ∗ (eεσ)

= ex
T βeω(T0)

(6.2)

where z = eω is the multiplicative frailty term. A frailty value greater than one

implies an increased hazard of the event of interest occurring while a frailty value less

than one implies a decreased hazard of the event of interest occurring. The variance

of the frailty distribution summarizes the degree of heterogeneity among clusters

(John P. Klein and Moeschberger, 2003).

We assume that T0 = eσε follows the reflected-shifted-truncated-gamma distribu-

tion, with density f ∗(t|α, θ, k) given by equation (4.1), survival function S∗(t|α, θ, k)

given by equation (4.3) and hazard function h∗(t|α, θ, k) given by equation (4.4).

Given the parameter vector Θ = (α, θ,β, k), we express the survival function for

the AFT RSTG frailty model as

SA(t|x,Θ) = P (T ≥ t) = P (exT βeω(T0) ≥ t)

= P (T0 ≥ e−x
T βe−ωt)

= P (T0 ≥ g(t))

=
∞∫

g(t)

1
θα
(
Γ(α)− Γ(α, k

θ
)
)e− (−x+k)

θ (−x+ k)α−1dx

= 1− F ∗(g(t))

= S∗(g(t))

Thus, SA(t|x,Θ) = Γ(α)−Γ(α,−g(t)+k
θ )

Γ(α)−Γ(α, k
θ

) , where g(t) = e−x
T βe−ωt.
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The density function of the AFT RSTG frailty model is

fA(t|x,Θ) = −d(SA(t))
dt

= −d (S∗(g(t)))
dt

= f ∗(g(t)) · g′(t)

= 1
θα
(
Γ(α)− Γ(α, k

θ
)
)e− (−g(t)+k)

θ (−g(t) + k)α−1 · g′(t),

with hazard function

hA(t|x,Θ) = fA(t)
SA(t) = f ∗ (g(t)) · g′(t)

S∗ (g(t))

= h∗ (g(t)) · g′(t)

= e−
(−g(t)+k)

θ (−g(t) + k)α−1

θα
(
Γ(α)− Γ

(
α, k

θ

)) · g′(t),

where g′(t) = e−x
T βe−ω.

6.3 Parametric Estimation

For a fully parametric model with right-censored observations and no random effects,

the likelihood function of the parameter vector Θ for the observations in the ith cluster

is proportional to

Li(Θ) =
ni∏
j=1

fA(tij)δiSA(tij)1−δi

The censoring indicator δi is such that

δi =


1 if the event of interest is observed

0 if the event of interest is not observed (event time is right-censored)
.

For the model with random effects ωi, the effects are not known but are assumed

to be independent and identically distributed realizations of a random variable with

probability density f(ωi). The complete likelihood function can be written as
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L(Θ) =
n∏
i=1

ni∏
j=1

fA(tij)δiSA(tij)1−δif(ωi)

Where n is the number of clusters and ni is the number of elements in the ith

cluster.

We assume gamma frailty for the model, specifically zi = eωi ∼ Γ(λ, 1
λ
). The

density function of z is given by f(z) = 1
( 1
λ

)λΓ(λ)z
λ−1e−λz. This distribution has mean

1 and variance 1
λ
.

The density function of ωi = ln zi is

f(ωi) = eωi(λ−1)e−λe
ωi

( 1
λ
)λΓ(λ) eωi

= eλωie−λe
ωi

( 1
λ
)λΓ(λ) .

The likelihood function of the RSTG AFT frailty model is then proportional to

L(Θ) =
n∏
i=1

ni∏
j=1

 1
θα
(
Γ(α)− Γ(α, k

θ
)
)e− (−g(tij)+k)

θ (−g(tij) + k)α−1 · g′(tij)
δij ·

Γ (α)− Γ
(
α, −g(tij)+k

θ

)
Γ (α)− Γ

(
α, k

θ

)
1−δij

· e
λωie−λe

ωi

( 1
λ
)λΓ(λ)

(6.3)

where g(tij) = e−x
T
ijβe−ωitij and g′(tij) = e−x

T
ijβe−ωi .

The corresponding log-likelihood function is given by

l(Θ) = lnL(Θ) =
n∑
i=1

{
ni∑
j=1

δij

{
−
[
α ln θ + ln

(
Γ (α)− Γ

(
α,
k

θ

))]

− −g(tij) + k

θ
+ (α− 1) ln (−g(tij) + k) + ln (g′(tij))

}

+ (1− δij)
{

ln
[
Γ (α)− Γ

(
α,
−g(tij) + k

θ

)]
− ln

[
Γ (α)− Γ

(
α,
k

θ

)]

+ λωi − λeωi − λ ln
(1
λ

)
− ln Γ(λ)

}}
.

(6.4)
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For ease of computation, we write the function l(Θ) = l1(α, θ, k, λ)+ l2(β, α, θ, k, λ)

where

l1(α, θ, k, λ) =
n∑
i=1

{
ni∑
j=1

δij

{
−
[
α ln θ + ln

(
Γ (α)− Γ

(
α,
k

θ

))]}

− (1− δij)
{

ln
[
Γ (α)− Γ

(
α,
k

θ

)]
+ λωi − λeωi − λ ln

(1
λ

)
− ln Γ(λ)

}}
.

and

l2(β, α, θ, k, λ) =
n∑
i=1

{
ni∑
j=1

δij

{
− −g(tij) + k

θ
+ (α− 1) ln (−g(tij) + k) + ln (g′(tij))

}

+ (1− δij) ln
[
Γ (α)− Γ

(
α,
−g(tij) + k

θ

)]}
.

Without loss of generality, we write l1(α, θ, k, λ) as l1 and l2(β, α, θ, k, λ) as l2.

Due to the unknown random variable ωi, we cannot maximize the logarithm of the

complete likelihood function directly. Following methods similar to those employed

by Chen et al. (2013), we use an EM algorithm. The EM algorithm, first introduced

by Dempster, Laird, and Rubin in 1977, is an iterative optimization algorithm that

alternates between an expectation step (E-step) and a maximization step (M-step).

It is a popular approach for finding maximum likelihood estimates of parameters in

statistical models that depend on unobserved or unknown random variables.

E-step:

The E-step will calculate the conditional expectation of the log-likelihood with respect

to the conditional distribution of the random variable ωi, given the observed data and

the estimates of the parameters. We use equation (6.3) and Bayes’ Theorem to find

the posterior density of ωi. The probability of ωi conditional on ti is

π(ωi|ti) = L(ti|ωi)f(ωi)
P (ti)

,

where L(ti|ωi) represents the likelihood of the ith event for a fixed ωi, f(ωi) is the

probability of a given value of ωi and P (ti) is the marginal probability of the data
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obtained by integrating L(ti|ωi)f(ωi) with respect to ωi (Collett, 2015) . Ignoring

terms in L(ti|ωi) that do not involve ωi, the posterior density of ωi is proportional to

ni∏
j=1

e−
(−g(tij) + k)

θ (−g(tij) + k)α−1 · g′(tij)


δij (

Γ (α)− Γ
(
α,
−g(tij) + k

θ

))1−δij

× eλωie−λeωi .

(6.5)

The conditional expectation of l(Θ) can be written as E(l(Θ)) = E(l1) + E(l2),

where

E(l1) =
n∑
i=1

{
ni∑
j=1

δij

{
−
[
α ln θ + ln

(
Γ (α)− Γ

(
α,
k

θ

))]}

− (1− δij)
{

ln
[
Γ (α)− Γ

(
α,
k

θ

)]
+ λE(ωi)− λE (eωi)− λ ln

(1
λ

)
− ln Γ(λ)

}}

and

E(l2) =
n∑
i=1

{
ni∑
j=1

δij

{
− E (−g(tij)) + k

θ
+ (α− 1)E (ln (−g(tij) + k)) + E (ln (g′(tij))

}

+ (1− δij)E
(

ln
[
Γ (α)− Γ

(
α,
−g(tij) + k

θ

)])}
.

Since E (ln (x)) ≤ ln (E(x)) by Jensen’s Inequality, the following relationship also

holds.

E(l1) + E(l2) ≤ E(l1) +
n∑
i=1

ni∑
j=1

δij

{
− −(e−xTijβtij)E(e−ωi) + k

θ

+ (α− 1) ln
(
−
(
e−x

T
ijβtij

)
E(e−ωi) + k

)
− xTijβ − E(ωi)

}

+ (1− δij) ln
Γ(α)− E

Γ
α, −(e−xTijβtij)(e−ωi) + k

θ


The conditional expectations of ωi and its functions do not have closed form

representations. Based on the conditional distribution of ωi, which is proportional to

(6.5), we sample ωi using a Metropolis-Hastings algorithm. The Metropolis algorithm
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was originally introduced by Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller in

1953 and was generalized by Hastings in 1970. The algorithm generates samples from

a distribution from which direct sampling is difficult. We use the generated samples

to approximate the needed expectations.

M-Step:

The M-step is used to maximize E(l(Θ)) = E(l1) + E(l2)with respect to the unknown

parameters by making use of the quantities found in the E-step. We make use of the

fully specified survival, hazard and density functions.

Estimation procedure

Step 1: Choose initial values α0, β0, θ0, k0, λ0.

Step 2: Sample ωi from the posterior distribution and compute E(ωi),E(eωi) and

E(e−ωi).

Step 3: Estimate new parameter values α∗,β∗, θ∗, k∗, λ∗ by maximizing the likelihood

function.

Step 4: Update the values of α,β, θ, k, λ and repeat steps 2 and 3 until the estimates

converge.

6.4 Application to Pediatric Nephrotic Syndrome

In this section, we revisit the pediatric nephrotic syndrome data from New Jersey.

We use the concept of individual frailty to assess the impact that unmeasured or

non-measurable covariates at the individual level may have on the time to initial

remission. The algorithm discussed in the previous section is used to find the maximum

likelihood estimates and standard errors given in Table 6.1. We compare estimates

from the frailty model to those of the AFT RSTG model without frailty given in
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Table 6.1: RSTG AFT frailty model for pe-
diatric nephrotic syndrome patients in New
Jersey.

Distribution Parameter MLE(se)
RSTG β1 -0.042 (0.010)

β2 0.152 (0.036)
β3 1.089 (0.165)
λ 8.192 (0.046)

Table 5.2. Age remains significant in the presence of individual frailty, but the effect

is less pronounced. The decrease in time to first remission per one year increase in age

is only 4%(95% CI :2%− 6%) after controlling for hematuria status and creatinine

level and accounting for individual frailty. Hematuria status and creatinine level

become significant in the presence of individual frailty. After controlling for age and

creatinine level and accounting for individual frailty, the time to first remission for

pediatric NS patients who exhibit hematuria at diagnosis is 16% longer (95% CI:

9%− 25%) than that of patients who do not exhibit hematuria at diagnosis. After

controlling for age and hematuria status and accounting for individual frailty, the time

to first remission for the pediatric NS patient increases by approximately 12%(95%

CI:8%− 15%) for each 0.1 mg/dL increase in creatinine level at diagnosis. The frailty

variance is significantly larger than 0 in this model and suggests the presence of

significant unobserved heterogeneity at the individual level (λ = 8.192, SE = 0.046).

The effect of hematuria status, which is the most influential of the covariates

assessed on time to initial remission, supports findings of the original study.

6.5 The Correlated Frailty Model for Bivariate Data with

Application to Diabetic Retinopathy

In this section, we evaluate a study on diabetic retinopathy in both juvenile and adult

patients. The Diabetic Retinopathy Study (DRS) was begun by the National Eye
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Institute in 1972 to study the effectiveness of laser photocoagulation in delaying the

onset of blindness in patients with diabetic retinopathy. Patients were followed over

several years for the occurrence of blindness in the left and right eye. The total study

size was 1742. We consider the 50% sample (N = 197) of both juvenile and adult high

risk patients as defined by DRS criteria that was first analyzed in 1989 by Huster

et al. For each eye, the event of interest was the time from initiation of treatment to

the time when visual acuity dropped below 5/200 for two consecutive visits (defined

as "blindness"). Thus there is a built-in lag time of approximately 6 months (visits

were every 3 months). Survival times in this dataset are the actual time to blindness

in months, minus the minimum possible time to event (6.5 months). Censoring was

caused by death, dropout, or end of the study.

Covariates considered are the laser photocoagulation treatment (0 = xenon, 1

= argon), age (in years), and diabetes diagnosis type (0=juvenile, 1=adult), with

follow-up time given in months. The censoring indicator of each patient (0=censored,

1=blind) is also recorded. The distribution of times is negatively skewed with skewness

coefficient of −0.33. For illustrative purposes, we consider in the first phase of analysis

the times to blindness of the treated eye for each patient. We then account for the

association between eyes of each patient by considering times to blindness in both the

treated and untreated eye using a correlated frailty model.

6.5.1 The RSTG AFT model without frailty

We analyze the DRS data under the accelerated failure time framework with different

distributional assumptions. We consider the covariates laser type, diabetic diagnosis

type and the interaction. The AFT model is given by

log(Ti) = β0 + β1laseri + β2diagnosisi + β3laseri × diagnosisi + σεi, (6.6)

where Ti represents the time to blindness in the treated eye of the ith patient, i = 1, ..., n.

Plots of the deviance residuals for the RSTG AFT model indicate no outliers, but
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Figure 6.1: Deviance residual plots for the RSTG AFT model for the 1972 Diabetic
Retinopathy Study.

Table 6.2: RSTG AFT model for the 1972
Diabetic Retinopathy Study.

Distribution Parameter MLE(se)
RSTG β1 -0.003 (0.422)

β2 0.581 (0.517)
β3 -0.919 (0.641)

suggest slight inadequacies in the model fit as the model tends to predict slightly

longer times to blindness than are observed (Figure 6.1). This may be due to the 73%

censoring rate present in the data set. The RSTG distributional assumption is best of

the compared distributions (Appendix F).

No significant relationships between the time to blindness in the treated eye and

laser type, diabetic diagnosis type or their interaction were detected by the model

(Table 6.2).

6.5.2 The Correlated Gamma Frailty Model using the RSTG distribution

A fundamental consideration in choosing a strategy for the analysis of paired survival

data is whether the correlation within a pair is a nuisance parameter or a parameter
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of intrinsic scientific interest (Huster et al., 1989). In this section, we analyze the

DRS data under the correlated gamma frailty model, a model introduced by Yashin,

Vaupel, and Iachine (1995), using the RSTG survival function. We consider the

time to blindness in both the treated and the untreated eye while adjusting for the

correlation between the left and right eye of each patient. A primary goal of the DRS

study was to assess the effectiveness of the photocoagulation treatment. The DRS

Research Group (1976) reported that either photocoagulation treatment as carried

out in this study was beneficial in reducing severe visual loss over a two-year period.

This data set was later analyzed by Huster et al. (1989) and by Terry M Therneau

and Grambsch (2000) under the proportional hazards framework with semiparametric

Gaussian and gamma frailty models. The DRS data was also analyzed using a shared

inverse Gaussian frailty model by Hanagal and Sharma (2013). Refer to the respective

articles for a complete discussion of the results.

Following the methods discussed by Wienke (2010) for bivariate data, we note the

following representation of the correlated gamma frailty model:

S(t1, t2) = S1(t1)1−ρS2(t2)1−ρ

(S1(t1)−σ2 + S2(t2)−σ2 − 1)
ρ

σ2
(6.7)

where ρ represents the frailty correlation between the left and right eye of each patient,

Sj(t), j = 1, 2 represents the survival functions for the left eye and right eyes, and

σ2 represents the variance of the frailty random variable that is assumed to be the

same for both eyes of each respective patient. Partial derivatives of the bivariate

survival function can be found in the appendix of the Wienke text (2010). We use the

simplifications S(t) = S1(t) = S2(t) and use the RSTG baseline survival function. We

obtain parameter estimates using the method of maximum likelihood (Table 6.3).

The results show a significant positive frailty correlation between the left and

right eyes of each patient. A significant positive correlation was also noted in other

studies (Sahu and Dey, 2000; Hanagal and Sharma, 2013). The inclusion of correlated

frailty in the model produces a change in the significance of the laser type and the
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Table 6.3: The RSTG distri-
bution in a correlated gamma
frailty model for the 1972 Di-
abetic Retinopathy Study.

Parameter MLE(se)
β1 1.288 (0.386)
β2 0.071 (0.381)
β3 1.419 (0.306)
ρ 0.403 (0.131)
σ2 1.405 (1.310)

interaction of laser type and diagnosis type. The risk of blindness is significantly

higher for those treated with the argon treatment as opposed to the xenon treatment

(β1 = 1.288, SE = 0.386) after controlling for diagnosis type. The risk is even more

pronounced when patients are diagnosed with adult diabetes as opposed to juvenile

diabetes (β3 = 1.419, SE = 0.306) . The analysis by Hanagal and Sharma (2013)

and Terry M Therneau and Grambsch (2000) both found a higher risk of blindness

in the argon group and in the adult group individually, but the results were not

statistically significant and did not include an interactive effect. Later analysts

of diabetic retinopathy reported that treatment with xenon was associated with a

higher rate of complications than argon laser and thus recommended argon laser

photocoagulation treatment (Paulus and Blumenkranz, 2013).

6.6 Discussion

The model developed in Section 6.2 can serve as an individual frailty model in which

the frailty represents either an unobserved individual effect or the event dependence of

repeated events for each individual. In either case, the individual serves as a clustering

unit. The developed model can also represent a shared frailty model in which the

frailty is related to a specific characteristic that is shared by a group of individuals.
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The current study makes use the gamma frailty distribution, but other flexible

frailty distributions will be considered in future research. We employ the bootstrap

method for variance estimation of the parameters in the individual frailty model.

Further research is needed to investigate non-simulation based variance estimation

techniques. Parameter estimates were obtained using the method of maximum

likelihood, but the maximum likelihood approach may encounter difficulty when

used in the frailty model (Hanagal et al., 2015). Bayesian approaches for parameter

estimation are also viable options for frailty models (Ibrahim, Chen, and Sinha, 2005;

Santos and Achcar, 2010).
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Chapter 7

Summary and Future Goals

7.1 Summary

Negatively skewed survival data arise in medical research when data cluster near an

upper limit. Simulation studies and comparisons using existing data sets show that

the RSTG distribution performs better than the exponential, generalized gamma,

generalized F, lognormal, log-logistic, Rayleigh, Gompertz and Weibull distributions

when modeling negatively skewed data. The RSTG distribution also performs well

when compared to the Gompertz-sinh family and the logistic-sinh family, which are

two current alternative distributions designed to handle negatively skewed survival

data. The RSTG distribution performs well as a baseline distribution for the general

AFT model, for the AFT frailty model with gamma frailty, and for the correlated

gamma frailty model. The brief example presented on the RSTG distribution used

in a correlated gamma frailty model and applied to the 1972 DRS data had findings

similar to those reported from previous analysis of the data.

Pediatric nephrotic syndrome is a rare disease syndrome that commonly has a

relapsing course. Patients diagnosed with FRNS or SDNS, who previous research

suggests experience a longer time to first remission, pose a greater challenge to

healthcare providers in terms of disease management. Using a meta-analysis of

worldwide studies, we detected a significant relationship between atopy and pediatric

nephrotic syndrome. A study of South Carolina pediatric NS data was conducted

with the RSTG AFT model to determine possible age or seasonal predictors of time to
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first hospital visit after an NS diagnosis, but no significant predictors were found. Our

study of the New Jersey pediatric NS data, conducted with the RSTG AFT model

with individual frailty, shows that higher creatinine levels at diagnosis, presence of

hematuria at diagnosis, and a younger age at diagnosis are indicative of a longer time

to first remission for pediatric NS patients.

7.2 Future Goals

The majority of data on pediatric NS originates in areas outside of the U.S. We will

provide a descriptive analysis of pediatric NS in South Carolina using the HSSC CDW

and continue to search for predictive factors of the syndrome.

Patterns of relapse are a point of interest for pediatric NS patients. Previous studies

suggest that relapse in the first year is a powerful independent predictor of subsequent

relapse regardless of the duration of the illness (Atsushi Takeda, Takimoto, Mizusawa,

and Simoda, 2001). More recent studies have concluded that a decrease in time from

remission of the syndrome to first recurrence of symptoms predicts for a frequently

relapsing course (Sureshkumar et al., 2014). Relapse of NS is almost universally defined

as having proteinuria for three consecutive days after initial remission. Proteinuria can

be detected outside of a clinical setting with the use of prescribed reagent strips for

urinalysis, or in the clinical setting with urinalysis or blood tests. Another factor that

may indicate relapse of the nephrotic syndrome is the presence of edema. While there

is some discrepancy in the literature involving the nature of the edema, it is a condition

that will most likely present itself if the nephrotic syndrome is left untreated and may

be the first indication in the absence of a urinalysis that a relapse of the syndrome

has occurred. Regardless of the method of detection, the relapse will have most likely

occurred before an official clinical diagnosis was made, but within a time frame that

was close to the time of diagnosis. Hence, we expect that the time-to-relapse originates
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from a finite interval over which the distribution of times is negatively skewed. The

RSTG distribution may be suitable to model these interval-censored event times.

Frailty models will be studied further to identify predictive factors of relapse or

remission of the syndrome. A shared frailty model that uses sites such as the Robert

Wood Johnson medical site as a clustering unit will be investigated. A repeated

measures frailty model will be used on time-to-relapse data.

Additional properties of the RSTG distribution will be investigated. Alternative

parameter estimation techniques for the RSTG distribution in the AFT model are

other goals for continued study of this distribution. Also, the efficacy of the RSTG

distribution in the Cox proportional hazards model and the other regression models

will be investigated. The RSTG distribution can be used in any application as a

distribution of choice for modeling event times arising from a negatively skewed

distribution. An R package will be created to house the RSTG distribution and its

associated functions.
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Appendix A

Nephrotic Syndrome Definitions

Steroid Sensitive Nephrotic Syndrome - complete remission within 4 weeks af-

ter initiation of standard corticosteroid therapy

Minimal Change Disease - term used to classify the most common biopsy charac-

terization of the disease

Steroid Responsive Nephrotic Syndrome - also referred to as Steroid Sensitive

Nephrotic Syndrome

Steroid Resistant Nephrotic Syndrome - persistent edema and proteinuria (fail-

ure to achieve complete remission) after 8 weeks of standard corticosteroid

therapy.

Steroid Dependent Nephrotic Syndrome - two consecutive relapses during cor-

ticosteroid therapy, or within 14 days of ceasing therapy

Frequently Relapsing Nephrotic Syndrome - two or more relapses within 6

months of initial response to corticosteroid therapy, or four or more relapses in

any 12-month period.

Infrequently Relapsing Nephrotic Syndrome - one relapse within 6 months of

initial response to corticosteroid therapy, or one to three relapses in any 12-month

period.
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Appendix C

Derivations of the RSTG Distribution

Functions

C.1 Probability Density Function

The two-parameter gamma distribution is given by

f(t|α, θ) = 1
Γ(α)θα e

− t
θ tα−1, 0 < t <∞,

where α > 0 represents the shape parameter and θ > 0 represents the scale parameter.

Reflecting the two-parameter gamma distribution about the y-axis and shifting it

k > 0, the shift parameter, units to the right gives a probability density function of

f1(t|α, θ, k) = 1
Γ(α)θα e

− (−t+k)
θ (−t+ k)α−1,−∞ < t < k, α, θ > 0.

The cumulative distribution function of this reflected, shifted gamma distribution is

F1(t|α, θ, k) =
t∫

−∞

1
Γ(α)θα e

− (−x+k)
θ (−x+ k)α−1dx

=
t∫

−∞

(−x+ k)α−1

Γ(α)θα e−
(−x+k)

θ dx

= 1
Γ(α)

t∫
−∞

(−x+ k)α−1

θα−1 · θ
e−

(−x+k)
θ dx

= 1
Γ(α)

t∫
−∞

[1
θ

(−x+ k)
]α−1

· e−
(−x+k)

θ · 1
θ

dx
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Let u = 1
θ
(−x + k). Then du = −1

θ
dx. Changing the limits of integration from

those in terms of x to those in terms of u we have

F1(t|α, θ, k) = 1
Γ(α)

−t+k
θ∫
∞

uα−1e−u(−du)

= 1
Γ(α)

∞∫
−t+k
θ

uα−1e−udu

= 1
Γ(α)

[
Γ
(
α,
−t+ k

θ

)]

for t < k where Γ(a) =
∞∫
0
ta−1e−t dt is the gamma function and Γ(a, b) =

∞∫
b
ta−1e−t dt

represents the upper incomplete gamma function.

We now truncate the reflected, shifted gamma distribution on the left at 0,

restricting the interval for t to [0, k]. To achieve a valid probability density function,

we divide by the area that remains after the truncation, F1(k)− F1(0).

The probability density function of the reflected-shifted-truncated-gamma (RSTG)

distribution, then, is

f ∗(t|α, θ, k) = 1
F1(k)− F1(0)

(
1

Γ(α)θα

)
e−

(−t+k)
θ (−t+ k)α−1

= 1
Γ(α)
Γ(α) −

Γ(α, k
θ

)
Γ(α)

(
1

Γ(α)θα

)
e−

(−t+k)
θ (−t+ k)α−1

= 1
Γ(α)−Γ(α, k

θ
)

Γ(α)

(
1

Γ(α)θα

)
e−

(−t+k)
θ (−t+ k)α−1

= Γ(α)
Γ(α)− Γ(α, k

θ
)

(
1

Γ(α)θα

)
e−

(−t+k)
θ (−t+ k)α−1

= 1
θα
(
Γ(α)− Γ(α, k

θ
)
)e− (−t+k)

θ (−t+ k)α−1 α > 0, θ > 0, 0 ≤ t < k
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C.2 Cumulative Distribution Function

The CDF of the RSTG distribution is given by

F ∗(t|α, θ, k) = 1
θα
(
Γ(α)− Γ(α, k

θ
)
) t∫

0

e−
(−x+k)

θ (−x+ k)α−1 dx

= 1(
Γ(α)− Γ(α, k

θ
)
) t∫

0

(−x+ k)α−1

θα
e−

(−x+k)
θ dx

= 1(
Γ(α)− Γ(α, k

θ
)
) t∫

0

(−x+ k)α−1

θα−1 · θ
e−

(−x+k)
θ dx

= 1(
Γ(α)− Γ(α, k

θ
)
) t∫

0

[1
θ

(−x+ k)
]α−1

· e−
(−x+k)

θ · 1
θ

dx.

Let u = 1
θ
(−x + k). Then du = −1

θ
dx. Changing the limits of integration from

those in terms of x to those in terms of u we have

F ∗(t|α, θ, k) = 1(
Γ(α)− Γ(α, k

θ
)
)

−t+k
θ∫
k
θ

uα−1 · e−u (−du)

= 1(
Γ(α)− Γ(α, k

θ
)
)

k
θ∫

−t+k
θ

uα−1 · e−u du

= 1(
Γ(α)− Γ(α, k

θ
)
)[ ∞∫

0

uα−1 · e−udu−

−t+k
θ∫

0

uα−1 · e−udu

−
∞∫
k
θ

uα−1 · e−u du
]
.

The lower incomplete gamma function is given by γ(a, b) =
b∫
0
ta−1e−t dt. Thus,

F ∗(t|α, θ, k) = 1(
Γ(α)− Γ(α, k

θ
)
) [Γ(α)− γ

(
α,
−t+ k

θ

)
− Γ

(
α,
k

θ

)]
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θ
)
) [Γ(α)−

[
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(
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θ

)]
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(
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k

θ

)]

=
Γ
(
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θ

)
− Γ

(
α, k

θ

)
Γ(α)− Γ

(
α, k

θ

) .
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Appendix D

Hessian Matrix of the RSTG Distribution

The Hessian matrix can be written as

H (α, θ, k) =



∂2l

∂α2
∂2l

∂α∂θ

∂2l

∂α∂k

∂2l

∂θ∂α

∂2l

∂θ2
∂2l

∂θ∂k

∂2l

∂k∂α

∂2l

∂k∂θ

∂2l

∂k2


=


H11 (α, θ, k) H12 (α, θ, k) H13 (α, θ, k)

H21 (α, θ, k) H22 (α, θ, k) H23 (α, θ, k)

H31 (α, θ, k) H32 (α, θ, k) H33 (α, θ, k)

 .

with entries defined as

H11 (α, θ, k) = −n
{(Γ(α)− Γ

(
α, k

θ

)) [
Γ′′ (α)− Γ′′

(
α, k

θ

)]
−
(
Γ′ (α)− Γ′

(
α, k

θ

))2

(
Γ(α)− Γ

(
α, k

θ

))2

}
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{

1
θ

+

(
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(
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θ
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−1
θ
e−

k
θ ln

(
k
θ

) (
k
θ
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(
Γ (α)− Γ

(
α, k

θ

))2

}

− n
{(1

θ

(
k
θ

)α
e−

k
θ

) [
Γ′ (α)− Γ′

(
α, k

θ

)]
(
Γ (α)− Γ

(
α, k

θ

))2

}

H13 (α, θ, k) = −n
{(Γ(α)− Γ

(
α, k

θ

)) [
1
k

ln
(
k
θ

) (
k
θ

)α
e−

k
θ

]
(
Γ (α)− Γ

(
α, k

θ

))2

}

− n
{[Γ′ (α)− Γ′

(
α, k

θ

)] [
1
k

(
k
θ

)α
e−

k
θ

]
(
Γ (α)− Γ

(
α, k

θ

))2

}
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H22 (α, θ, k) = −n
{
− α

θ2 +
kα

θα+2 e
− k
θ

(
− k
θα

+ α + 1
) (

Γ (α)− Γ
(
α, k

θ

))
+ k2α

θ2(θ+1) e
− 2k
θ(

Γ (α)− Γ
(
α, k

θ

))2

}

− 2∑n
i=1(−ti + k)

θ3

H23 (α, θ, k) = −n
{(Γ(α)− Γ

(
α, k

θ

)) [
1
kθ2

(
k
(
k
θ

)α
e−

k
θ − αθ

(
k
θ

)α
e−

k
θ

)]
(
Γ (α)− Γ

(
α, k

θ

))2

}

− n
{ −1

θ

(
k
θ

)α
e−

k
θ

1
k

(
k
θ

)α
e−

k
θ(

Γ (α)− Γ
(
α, k

θ

))2

}
+ n

θ2

H33 (α, θ, k) =

(
Γ (α)− Γ

(
α, k

θ

)) [
n
k

(
k
θ

)α−1 (1
θ

)
e−

k
θ

(
k
θ

+ α− 1
)]
− n

k2

(
k
θ

)2α
e−

2k
θ(

Γ (α)− Γ
(
α, k

θ

))2

where Γ′(α) = dΓ(α)
dα

= ψ(α)Γ(α), Γ′′(α) = d2Γ(α)
d2α

= Γ(α)ψ(α, 1) + ψ2(α)Γ(α),

Γ′(α, k
θ
) = dΓ(α, k

θ
)

dα
=
∞∫
k
θ

ln(y)yα−1e−ydy, and Γ′′(α, k
θ
) = d2Γ(α, k

θ
)

d2α
=
∞∫
k
θ

ln2(y)yα−1e−ydy.

Also, ψ(α) = dΓ(ln(α))
dα

and ψ(α, 1) = dψ(α)
dα

.

We assume the existence of Clairut’s theorem on the equality of mixed partial

derivatives.

Theorem 1 (Clairut’s Theorem). If f is a function of x and y such that ∂2f
∂x∂y

and
∂2f
∂y∂x

are continuous on an open disc R, then, for every (x, y) in R,

∂2f

∂x∂y
= ∂2f

∂y∂x
.

This theorem applies to a function f of three or more variables as long as the

second partial derivatives are continuous (Larson, Hostetler, Edwards, and Heyd,

2002).
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Appendix E

Common Continuous Distributions

Distribution Density Function f(t) Parameters

Exponential λe−λt λ > 0

Generalized
δ
(
s1
s2

)s1
es1w

σt
(
1 + s1

ew

s2

)s1+s2
B(s1, s2)

µ,Q, P ∈ R, σ > 0

F s1 = 2(Q2 + 2P +Qδ)−1

s2 = 2(Q2 + 2P −Qδ)−1

δ = (Q2 + 2P ) 1
2

w = (log t−µ)δ
σ

Generalized |Q|(Q−2)Q−2

σtΓ(Q−2) exp[Q−2(Qw − eQw)] σ > 0, µ,Q ∈ R

Gamma w = log(Q2γ)/Q
and γ ∼ Gamma(Q−2, 1)

for t = exp(µ+ σw)

Gompertz beate
b
a

(1−ebt) a ∈ R
b > 0

Log-logistic
α
β

(
t
β

)α−1

(
1 +

(
t
β

)α)2 α, β > 0

Lognormal 1
σt
√

2π
e

−(log t−µ)2

2σ2 µ ∈ R

σ > 0

Rayleigh t

b2 e
− t2

2b2 b > 0

Weibull λγtγ−1e−λt
γ

λ, γ > 0
* 0 ≤ t <∞, B(·) is the beta function, γ(·) is the incomplete gamma function
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Appendix F

Simulation Study and Comparative Model Fits

of the RSTG AFT Model

F.1 Simulation Study

For each of 1000 repetitions, we simulate 200 negatively skewed survival times, a

continuous covariate x1 ∼ N(2, 0.12) and a categorical covariate x2 ∼ Bin(2, 0.5).

Following an assumption used by Crowther and Lambert (2013) to simulate biologically

plausible data, we assume administrative censoring to achieve a less than 20% censoring

rate.

We fit an accelerated failure time model to the simulated data using the RSTG,

exponential, generalized gamma, generalized F, lognormal, log-logistic, Rayleigh,

Gompertz and Weibull baseline distributions. We compare them in Table F.1 using

the information theoretic criteria as defined in Chapter 4. The average covariate

parameter estimate, average standard error of the parameter estimate, and average

AIC values of the simulations are reported in Table F.1.

The covariate parameter estimates of the RSTG distribution appear to be more

stable than the parameter estimates given by the comparison models. We note that

while the Gompertz model is commonly used for left skewed distributions, the AIC

value of the RSTG model is more than 10 units lower than that of the Gompertz

model and of other compared models. The RSTG AFT model is the superior model

based on the simulated right-censored data.

102



Table F.1: Model fitting results for simulated data.

Distribution Par MLE(se) AIC AICC HQIC CAIC
Exponential β1 0.0442 (1.9220) 648.25 648.29 649.78 651.86

β2 0.0009 (0.9467)
Generalized β1 0.0526 (0.1644) 507.45 507.59 508.98 521.87
F β2 -0.0019 (0.0273)
Generalized β1 0.0224 (0.1429) 500.51 500.62 502.04 511.33
Gamma β2 -0.0039 (0.0232)
Gompertz β1 -0.0066 (0.1529) 476.60 476.68 478.13 483.81

β2 0.0016 (0.0257)
Log-logistic β1 -0.0214 (0.3290) 564.93 565.00 566.46 572.14

β2 0.0028 (0.0563)
Lognormal β1 0.0384 (0.8458) 664.40 664.47 665.93 671.61

β2 -0.0037 (0.1445))
Rayleigh β1 -0.0074 (0.9624) 570.39 570.43 571.92 573.00

β2 -0.0017 (0.4741)
Weibull β1 -0.0052 (0.2540) 533.12 533.19 534.65 540.33

β2 0.0022 (0.0431)
RSTG β1 -0.0230 (0.0242) 465.37 465.44 466.89 472.58

β2 0.0251 (0.0225)

F.2 Comparative Model Fits for HSSC Data

The RSTG distributional assumption is more appropriate than the compared distri-

butional assumptions for the HSSC data based on the AIC and information theoretic

criteria (Table F.2). The AIC value of the RSTG distribution is more than 10 units

lower than the compared distributions.

F.3 Comparative Model Fits for DRS Data

The RSTG AFT model provides the best fit for the DRS data based on the AIC and

other information theoretic criteria of the compared distributions (Table F.3). The

AIC value of the RSTG distribution is more than 10 units lower than the compared

distributions.
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Table F.2: Model fitting results for the HSSC pediatric nephrotic syndrome
data.

Distribution Par MLE(se) AIC AICC HQIC CAIC
Exponential β1 -0.037 (0.056) 206.75 207.27 208.03 219.80

β2 0.413 (0.530)
β3 -0.381 (0.608)
β4 -0.554 (0.785)

Generalized β1 0.071 (0.006) 188.16 189.05 189.44 209.05
F β2 -0.079 (0.063)

β3 -0.363 (0.088)
β4 -0.474 (0.087)

Generalized β1 0.070 (0.002) 184.50 185.26 185.78 202.78
Gamma β2 -0.085 (0.035)

β3 -0.358 (0.038)
β4 0.469 (0.048)

Gompertz β1 -0.009 (0.017) 188.16 188.79 189.44 203.83
β2 0.184 (0.152)
β3 -0.191 (0.216)
β4 -0.198 (0.266)

Log-logistic β1 -0.026 (0.023) 195.17 195.80 196.45 210.84
β2 0.146 (0.248)
β3 -0.153 (0.247)
β4 -0.302 (0.311)

Lognormal β1 -0.037 (0.024) 194.82 195.45 196.10 210.49
β2 0.153 (0.255)
β3 -0.070 (0.242)
β4 -0.323 (0.319)

Rayleigh β1 0.022 (0.027) 194.90 195.42 196.18 207.95
β2 -0.245 (0.265)
β3 0.212 (0.305)
β4 0.312 (0.392)

Weibull β1 -0.017 (0.021) 193.45 193.97 194.73 206.50
β2 0.200 (0.684)
β3 -0.170 (0.757)
β4 -0.246 (0.808)

RSTG β1 0.046 (0.060) 169.84 170.73 171.12 190.73
β2 3.153 (2.820)
β3 1.384 (1.499)
β4 3.138 (4.420)
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Table F.3: Model fitting results for treated eyes of patients in the 1972 Diabetic
Retinopathy Study.

Distribution Par MLE(se) AIC AICC HQIC CAIC
Exponential β1 0.201 (0.002) 647.18 647.26 648.84 668.60

β2 -0.495 (-0.417)
β3 -0.030 (0.579)

Generalized β1 -0.348 (0.565) 640.20 640.33 641.86 674.47
F β2 0.802 (0.560)

β3 -0.180 (0.831)
Generalized β1 -0.538 (0.485) 637.42 637.54 639.08 667.41
Gamma β2 0.636 (0.517)

β3 -0.029 (0.750)
Gompertz β1 0.201 (0.335) 653.09 653.17 654.75 674.51

β2 -0.495 (0.417)
β3 -0.030 (0.578)

Log-logistic β1 0.223 (0.459) 647.22 647.30 648.88 668.64
β2 -0.694 (0.544)
β3 0.015 (0.760)

Lognormal β1 0.286 (0.476) 643.52 643.62 645.18 669.22
β2 -0.721 (0.550)
β3 0.028 (0.775)

Rayleigh β1 -0.123 (0.168) 727.53 727.61 729.19 748.95
β2 0.235 (0.208)
β3 0.073 (0.289)

Weibull β1 0.244 (0.425) 649.03 649.11 650.69 670.45
β2 -0.620 (0.532)
β3 -0.009 (0.732)

RSTG β1 - 0.003 (0.422) 599.96 600.08 601.62 629.94
β2 0.581 (0.517)
β3 -0.919 (0.641)
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