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Abstract

A word on the n-letter alphabet is a finite length string of symbols formed from a

set of n letters. A word is doubled if every letter that appears in the word appears

at least twice. A word w avoids a word u if there is no non-erasing homomorphism

h (a map that respects concatenation) such that h (u) is a subword of w. Finally,

a word w is n-avoidable if there is an infinite list of words on the n-letter alphabet

that avoid w. In 1906, Thue showed that the simplest doubled word, namely xx, is

3-avoidable. In 1984, Dalalyan showed that each doubled word is 4-avoidable and

that each doubled word on 6 or more letters is 3-avoidable. In 2013, Blanchet-Sadri

and Woodhouse, building on the work of Bell and Goh that is similar to Dalalyan,

strengthened the result by showing that all doubled words of length at least 12 are

3-avoidable. Cassaigne in his dissertation classified all the words on the 2-letter

alphabet and most of the words on the 3-letter alphabet, and as a result, showed that

each doubled word in which at most most 3 distinct letters appear is 3-avoidable.

These results leave 7441 doubled words in which exactly 4 or 5 distinct letters appear

to check for 3-avoidability. In this dissertation, we show that each doubled word in

which at least one letter occurs 3 or more times is 3-avoidable. This leaves only the

doubled words to check for 3-avoidability in which exactly 4 or 5 letters appear in the

word and each letter appears exactly twice. In fact, we give a list of just 99 doubled

words so that if each word on the list can be shown to be 3-avoidable, then we would

know that each doubled word is 3-avoidable.
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Chapter 1

Introduction

The study of the combinatorial properties of words traces back to 1906 when Axel

Thue showed that there exists an infinite squarefree word. Define the n-letter alphabet

to be the set X = {x0, x1, . . . , xn−1}. A word (or pattern) on the alphabet X is a

finite length string of symbols formed from letters in X. We denote by X∗ the set

of all words on the alphabet X, including the empty word ε. We denote by X+ the

set of all non-empty words on the alphabet X. If every letter in a word w appears at

least twice, we say that the word is doubled, and if every letter appears at least three

times, we say that it is tripled. For a word w, let |w| be the length of the word w, and

let α (w) be the set of all letters occurring in the word w. If w = uv for non-empty

words u and v on the same alphabet as w, we call u an initial segment (or prefix) of

w and v a final segment (or suffix) of w. A word w is said to be a subword of a word

u if u can be written as awb for some (possibly empty words) a and b.

Where · references the operation of concatenation, 〈X∗, ·, ε〉 is a free monoid gen-

erated by X, and the system 〈X+, ·〉 is a free semigroup generated by X. Any

homomorphism h : 〈X+, ·〉 → 〈Y +, ·〉 is uniquely determined by its restriction to X,

and any map from X into Y + extends uniquely to such a homomorphism. We some-

times call these homomorphisms non-erasing to ensure that no letter can be mapped

to the empty word. An erasing homomorphism removes the restriction that X maps

into Y + and instead is allowed to map into Y ∗. For example, suppose that we have a

homomorphism h : {e, n, t} → {i,m, p, s}+ defined by e 7→ ssi, n 7→ mi, and t 7→ ppi.

Then h (neet) = mississippi. This is illustrated in Figure 1.1.
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Figure 1.1 Example of a Homomorphism

The word u is said to encounter w if there is a homomorphism ϕ such that ϕ (w)

is a subword of u. For example, mississippi encounters xx using the homomorphism

x 7→ s or the homomorphism x 7→ ssi, among others. The word u is said to avoid w

if it does not encounter w. That is, u avoids w if there is no homomorphism ϕ such

that ϕ (w) is a subword of u. In this case, the word u is sometimes called an avoiding

word of w. A word w (or set of words S) is said to be n-avoidable if there is an infinite

list of words on the n-letter alphabet that avoid w (or avoid every word in S). If such

an n exists, then w is called avoidable, and if not, w is called unavoidable. Note that

if a word is unavoidable, then for any n, there are only finitely many words on the

n-letter alphabet that avoid w. Finally, the smallest n such that w is n-avoidable is

called its avoidability index.

Bean, Ehrenfeucht, and McNulty (1979) proved a characterization of unavoidable

words. They showed that a word is unavoidable if and only if it can be reduced to a

word of length 1 through an iterative process that at each step deletes all occurrences

of some letters in a set that satisfy specific constraints. In particular, they showed

that each unavoidable word contains a letter that appears only once. Thus, each

doubled and each tripled word is avoidable. Independently, Zimin (1982) gave the

same characterization and also gave a second characterization involving a special

group of unavoidable words.

The goal of this dissertation is to conclude how many letters are needed to avoid

doubled and tripled words. We break our discussion into two parts: avoiding doubled

and tripled individual words, and avoiding all doubled words on a particular given

2



alphabet simultaneously. Bean, Ehrenfeucht, and McNulty (1979) obtain results in

simultaneous avoidance of all words that give an exponential bound on the size of the

avoiding alphabet in terms on the number of letters in the alphabet. Zimin (1982)

obtains results that, upon extraction, yields a slightly better exponential bound.

Baker, McNulty, and Taylor (1989) reduced the bound of the avoidance of all words to

a linear bound in terms of the number of letters in the alphabet. The smallest known

result in the avoidability of all words simultaneously is attributed to Mel’nichuk, and

an exposition is given in (Lothaire 2002). This bound is 4bn2 c + 4, where n is the

size of the alphabet. Finally, Mel’nichuk (1985) gives the best linear bound currently

known for simultaneous avoidance of doubled words: 3bn2 c+ 3, where n is the size of

the alphabet.

Related to avoidability of the word w is counting the number of avoiding words

of w of a certain length on the m-letter alphabet. If this number is never 0 for

every length, then w is m-avoidable. We say that w exhibits exponential growth in

avoidability if there is an exponential lower bound on the number of avoiding words

of w of a certain length.

Dalalyan (1984) showed, among other results, that each doubled word exhibits

exponential growth in avoidability on the 4-letter alphabet, thus showing that each

doubled word is 4-avoidable. In recent years, Bell and Goh (2007) and Blanchet-

Sadri and Woodhouse (2013) have taken on the problem of individually avoiding

doubled words. Bell and Goh (2007), apparently independently of Dalalyan (1984),

recreate Dalalyan’s result on the 4-avoidability of doubled words, among other things,

and Blanchet-Sadri and Woodhouse (2013) strengthen the arguments of Bell and

Goh (2007), among other things. Each of these results is obtained by finding the

exponential lower bound, which seems to exist for most doubled words. Even xx,

shown to be 3-avoidable by Thue (1906), has an exponential lower bound, shown by

Brandenburg (1983) and Brinkhuis (1983).
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Cassaigne (1994) classified the avoidability index of all binary words (words on the

2-letter alphabet) and partially classifies the avoidability index of all ternary words

(words on the 3-letter alphabet), and Ochem (2006) finishes this classification. This,

coupled with the results of Dalalyan (1984), can be used to show that all tripled

words are 2-avoidable.

In my dissertation, I improve the results of Dalalyan (1984) and Blanchet-Sadri

and Woodhouse (2013). Prior to my results, there were 7441 doubled words in which

exactly 4 and 5 distinct letters appear whose 3-avoidability was yet to be shown. As

a consequence of my results, there are now only 99 doubled words in which exactly

4 or 5 distinct letters appear, each occurring exactly twice, not yet known to be

3-avoidable.

I also give an exposition of (Dalalyan 1984) and (Mel’nichuk 1985) due to the

difficulty to obtain and translate their results. The results of Dalalyan (1984) were

published in the Reports of the Academy of Sciences of the Armenian Soviet Socialist

Republic in 1984, and this journal is not widely available. The work of Mel’nichuk

(1985) also appeared in a collection of papers not in wide circulation in the west.

Moreover, it is difficult to understand due to being very terse, so I give a more full

exposition that fills in the details.
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Chapter 2

Avoiding Doubled Words Individually

2.1 Dalalyan’s Results

In 1984, A. G. Dalalyan published a result on the avoidability index of doubled and

tripled words that strengthened previous results of Bean, Ehrenfeucht, and McNulty

(1979). His approach was different from his predecessors in that he used a very

combinatorial approach. His results are presented here.

Theorem 2.1.1. Let w be a word on the n-letter alphabet with ri being the number

of times the letter xi appears for all i, and let r = min (r0, . . . , rn−1). If there exists

a λ that satisfies the constraints

• λ ≤ m

• λ > r
√
m

•
(
m− λ
λ

)
(λr −m)n ≥ mn,

then there are at least λ` words of length ` on the m-letter alphabet that avoid w.

In particular, w is m-avoidable.

Proof. Let λ satisfy the constraints above, and let γm (`) be the number of words

of length ` on the m-letter alphabet that avoid w. We desire to show that this

function is positive for all values `. To achieve this, we will show that λ satisfies

γm (`+ 1) ≥ λγm (`) for every natural number `. This shows that γm (`) ≥ λ` for all

5



`. If λ > 1, this also gives us that γ grows exponentially with `. We will induct on `

to prove our claim.

For the base step, we can easily see that γm (0) = 1 and γm (1) = m, so

γm (1) = m ≥ λ = λγm (0) .

So, assume for the sake of induction that γm (k + 1) ≥ λγm (k) for all k < `, and we

will show that γm (`+ 1) ≥ λγm (`).

Let δm (`+ 1) be the number of words of length `+1 such that each word’s initial

segment of length ` avoids w but the whole word encounters w. From this, we see

that γm (`+ 1) = mγm (`)− δm (`+ 1). We will work to achieve an upper bound on

δm (`+ 1).

First, notice that δm (`+ 1) is bounded above by the number of words of the form

uϕ (w) with length ` + 1, where u avoids w and ϕ is a nonerasing homomorphism.

Given a choice of ϕ, let `0 be the length of the image of x0, let `1 be the length of the

image of x1, and so on, finally letting `n−1 be the length of the image of xn−1. Then

we see that the length of ϕ (w) is ∑n−1
i=0 ri`i (which is less than `+ 1 by construction),

so the length of u is `+1−∑n−1
i=0 ri`i. Finally, this gives us that the number of possible

u’s is γm
(
`+ 1−∑n−1

i=0 ri`i
)
.

To count the number of possible homomorphisms, we can see that there are at

most m`0m`1 . . .m`n−1 possibilities of ϕ for a choice of (`0, . . . , `n−1). So, to find the

total number of possible homomorphisms, we’ll do a double sum, the outer of which

is the sum of the `i’s, and the inner of which sums over all choices of (`0, . . . , `n−1)

with a specific sum. Putting this all together, we get the following:

δm (`+ 1) ≤
`+1∑
j=n

 ∑
`0+···+`n−1=j

γm

(
`+ 1−

n−1∑
i=0

ri`i

)
m`0+···+`n−1

 .
Next, note that ∑n−1

i=0 ri`i ≥
∑n−1
i=0 r`i = rj. Also, note that the number of ways to

6



sum n positive integers to a total of j is given by
(
j−1
n−1

)
. This gives us:

δm (`+ 1) ≤
`+1∑
j=n

γm (`+ 1− rj)
∑

`0+···+`n−1=j
mj

=
`+1∑
j=n

γm (`+ 1− rj)
(
j − 1
n− 1

)
mj.

We now use our induction hypothesis, rewritten as λ−sγm (`) ≥ γm (`− s). This gives

us:

δm (`+ 1) ≤
`+1∑
j=n

λ1−rjγm (l)
(
j − 1
n− 1

)
mj

=
`+1∑
j=n

λγm (`)
(
j − 1
n− 1

)(
m

λr

)j

= λγm (`)
`+1∑
j=n

(
j − 1
n− 1

)(
m

λr

)j

≤ λγm (`)
∞∑
j=n

(
j − 1
n− 1

)(
m

λr

)j
.

Now, we use the second constraint that λ > r
√
m. Then m

λr < 1, and we will use the

geometric series. Note that as long as |x| < 1, this equation holds:
( 1

1− x

)n
=
( ∞∑
i=0

xi
)n

=
∞∑
i=0

(
n− 1 + i

n− 1

)
xi.

We can use this fact and rewrite our sum above by using j = n+ i as follows:

δm (`+ 1) ≤ λγm (`)
(
m

λr

)n ∞∑
i=0

(
n− 1 + i

n− 1

)(
m

λr

)i

= λγm (`)
(
m

λr

)n ( 1
1− m

λr

)n

= λγm (`)
(

m

λr −m

)n
.

Finally, we put this inequality back into our original expression.

γm (`+ 1) = mγm (`)− δm (`+ 1)

≥ mγm (`)− λγm (`)
(

m

λr −m

)n
= γm (`)

(
m− λ

(
m

λr −m

)n)

7



So, in order to finish our induction, we must have that m−λ
(

m
λr−m

)n
≥ λ. However,

this is nothing more than a rewriting of our third constraint. So, we have shown that

γm (`+ 1) ≥ λγm (`), and hence there are infinitely many words that avoid w on the

m-letter alphabet. Thus, w is m-avoidable.

With this theorem under our belt, we prove the main theorems of Dalalyan’s

paper, which are presented as corollaries to Theorem 2.1.1. The first 3 corollaries are

the main results of Dalalyan (1984), and the others follow from his results.

Corollary 2.1.2. Each doubled word is 4-avoidable.

Proof. Let m = 4, r ≥ 2, and λ =
√

12. Then
√

12 ≤ 4 and
√

12 >
√

4 ≥ r
√

4. For

the third constraint, we know that when n = 2, all doubled words contain a square

and are hence 3-avoidable. When n = 3, we see that(
4−
√

12√
12

)(√
122 − 4

)3
≈ 79.21 > 43 = 64.

For n > 3, notice that as long as λr −m ≥ m, the inequality still holds. To see this,

let Mn denote the left side of the third constraint, and assume that Mn ≥ mn. Then

Mn+1 = Mn · (λr −m) ≥Mn ·m ≥ mn ·m = mn+1.

So, in this case, we see that
√

122 − 4 = 8 ≥ 4, so the third constraint holds for all

n.

Corollary 2.1.3. Each doubled word on an alphabet of size at least 6 is 3-avoidable.

Proof. Let m = 3, let r ≥ 2, let λ =
√

8, and let n ≥ 6. Then
√

8 ≤ 3 and
√

8 >
√

3 ≥ r
√

3. For the third constraint,(
3−
√

8√
8

)(√
82 − 3

)6
≈ 947.82 > 36 = 729.

For n > 6, note that
√

82 − 3 = 5 ≥ 3.

8



Corollary 2.1.4. Each tripled word on an alphabet of size at least 4 is 2-avoidable.

Proof. Let m = 2, let r ≥ 3, let λ = 3
√

6, and let n ≥ 4. Then 3
√

6 ≤ 2 and
3
√

6 > 3
√

2 ≥ r
√

2. For the third constraint,(
2− 3
√

6
3
√

6

)(
3
√

63 − 2
)4
≈ 25.76 > 24 = 16.

For n > 4, note that 3
√

63 − 2 = 4 ≥ 2.

Corollary 2.1.5. Each tripled word is 3-avoidable.

Proof. Let m = 3, let r ≥ 3, and let λ = 2. Then 2 ≤ 3 and 2 > 3
√

3 ≥ r
√

3. For the

third constraint, (3− 2
2

) (
23 − 3

)
= 2.5 > 21 = 2.

For n > 1, note that 23 − 3 = 5 ≥ 3.

Corollary 2.1.6. Each word in which every letter appears at least r ≥ 4 times is

2-avoidable.

Proof. Let m = 2, let r ≥ 4, and let λ = 4
√

6. Then 4
√

6 ≤ 2 and 4
√

6 > 4
√

2 ≥ r
√

2. For

the third constraint, we know that when n = 1, A encounters a cube and is hence

2-avoidable. For n ≥ 2,(
2− 4
√

6
4
√

6

)(
4
√

6r − 2
)2
≥
(

2− 4
√

6
4
√

6

)(
4
√

64 − 2
)2
≈ 4.45 > 22 = 4.

For n > 2, note that 4
√

64 − 2 = 4 ≥ 2.

Note: In all of the corollaries above we have that the specified words are not only

m-avoidable but the growth function on their avoiding words is exponential.

Dalalyan’s proof can be analyzed for various assumptions that, if removed, can

tighten the result. One assumption that appears to be unnecessary is that a word in

δm (`+ 1) is bounded above by the number of words of the form uϕ (w) with length

` + 1, where u avoids w and ϕ is a nonerasing homomorphism. It is possible that

9



a word in δm (`+ 1) can be written in multiple ways, and hence this bound is an

overcount. Another assumption is when ri is replaced by r, and we see in the next

section that removing this assumption yields stronger results.

2.2 An Improvement on Dalalyan’s Results

We present here a number of stronger results derived by using the methods of Dalalyan

(1984) without using the assumption that r ≤ ri.

Theorem 2.2.1. Let w be a word on the n-letter alphabet with ri being the number

of times the letter xi appears for all i, and let r = min (r0, . . . , rn−1). If there exists

a λ that satisfies the constraints

• λ ≤ m

• λ > r
√
m

•
(
m− λ
λ

)
n−1∏
i=0

(λri −m) ≥ mn,

then there are at least λ` words of length ` on the m-letter alphabet that avoid w.

In particular, w is m-avoidable.

Proof. Let λ satisfy the constraints above, and let γm (`) be defined as in Dalalyan’s

proof. We again desire to show that this function is positive for all values ` by showing

that λ satisfies γm (`+ 1) ≥ λγm (`) for every natural number `. This will in turn

show that γm (`) ≥ λ` for all `. We will again induct on ` to prove our claim.

For the base step, we can easily see that γm (0) = 1 and γm (1) = m, so

γm (1) = m ≥ λ = λγm (0) .

So, assume for the sake of induction that γm (k + 1) ≥ λγm (k) for all k < `, and we

will show that γm (`+ 1) ≥ λγm (`).

10



Let δm (`+ 1) be defined as in Dalalyan’s proof, and we will again use the fact that

γm (`+ 1) = mγm (`)− δm (`+ 1) and work to achieve an upper bound on δm (`+ 1).

Again notice that δm (`+ 1) is bounded above by the number of words of the form

uϕ (w) with length ` + 1, where u avoids w and ϕ is a nonerasing homomorphism.

Given a choice of ϕ, again let `0 be the length of the image of x0, let `1 be the

length of the image of x1, and so on, finally letting `n−1 be the length of the image

of xn−1. Then the length of u is ` + 1 − ∑n−1
i=0 ri`i and the number of possible u’s

is γm
(
`+ 1−∑n−1

i=0 ri`i
)
. Also, there are again at most m`0m`1 . . .m`n−1 possibilities

for a choice of (`0, . . . , `n−1). So, to find the total number of possible homomorphisms,

we’ll do a double sum, the outer of which is the sum of the `i’s, and the inner of which

sums over all choices of (`0, . . . , `n−1) with a specific sum. Putting this all together,

we get the following:

δm (`+ 1) ≤
`+1∑
j=n

 ∑
`0+···+`n−1=j

γm

(
`+ 1−

n−1∑
i=0

ri`i

)
m`0+···+`n−1

 .
At this point, rather than use that fact that r ≤ ri for all the ri’s, we will go straight

into the induction hypothesis. We again rewrite it as λ−sγm (`) ≥ γm (`− s). This

gives us that:

δm (`+ 1) ≤
`+1∑
j=n

 ∑
`0+···+`n−1=j

λ1−
∑n−1

i=0 ri`iγm (`)m`0+···+`n−1


= λγm (`) ·

`+1∑
j=n

 ∑
`0+···+`n−1=j

m`0+···+`n−1

λr0`0+···+rn−1`n−1


= λγm (`) ·

`+1∑
j=n

 ∑
`0+···+`n−1=j

(
m

λr0

)`0 ( m
λr1

)`1
. . .
(

m

λrn−1

)`n−1


≤ λγm (`) ·
∞∑
j=n

 ∑
`0+···+`n−1=j

(
m

λr0

)`0 ( m
λr1

)`1
. . .
(

m

λrn−1

)`n−1


= λγm (`) ·
∞∑
`0=1

∞∑
`1=1
· · ·

∞∑
`n−1=1

(
m

λr0

)`0 ( m
λr1

)`1
. . .
(

m

λrn−1

)`n−1

= λγm (`) ·
∞∑
`0=1

(
m

λr0

)`0 ∞∑
`1=1

(
m

λr1

)`1
· · ·

∞∑
`n−1=1

(
m

λrn−1

)`n−1

.
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Now, we use the second constraint that λ > r
√
m. Then since r ≤ ri for all i < n, we

have that m
λri
≤ m

tr
< 1 for all i < n. So, by geometric series, we get:

δm (`+ 1) ≤ λγm (`) ·
(

m/λr0

1−m/λr0

)(
m/λr1

1−m/λr1

)
. . .

(
m/λrn−1

1−m/λrn−1

)

= λγm (`) ·
(

m

λr0 −m

)(
m

λr1 −m

)
. . .
(

m

λrn−1 −m

)

= λγm (`) ·mn
n−1∏
i=0

( 1
λri −m

)
.

Finally, we put this inequality back into our original expression.

γm (`+ 1) = mγm (`)− δm (`+ 1)

≥ mγm (`)− λγm (`) ·mn
n−1∏
i=0

( 1
λri −m

)

= γm (`)
(
m− λ ·mn

n−1∏
i=0

( 1
λri −m

))

So, in order to finish our induction, we must have that m− λ ·mn∏n−1
i=0

(
1

λri−m

)
≥ λ.

However, this is nothing more than a rewriting of our third constraint. So, we have

shown that γm (`+ 1) ≥ λγm (`), and hence γm (`+ 1) ≥ λn. Thus, there are infinitely

many words that avoid w on the m-letter alphabet, so w is m-avoidable.

Note in the third constraint that as long λ > 1, the value on the left will go up

if any ri is increased. So, to prove a few results, we define a partially ordered set

〈S,≤〉, where

S = {(r0, r1, . . . , rn−1) | ri is the number of times xi appears in w} .

and ≤ is defined by

(r0, r1, . . . , rn−1) ≤ (s0, s1 . . . , sn−1) if and only if ri ≤ si for all i < n.

It is clear that if a λ exists that satisfies the theorem for (r0, r1, . . . , rn−1) and

(r0, r1, . . . , rn−1) ≤ (s0, s1 . . . , sn−1) ,

then this λ also satisfies the theorem for (s0, s1 . . . , sn−1).

12



Corollary 2.2.2. Each doubled word on the n-letter alphabet in which some letter

appears at least 3 times is 3-avoidable.

Proof. Let m = 3, let r ≥ 2, and let λ =
√

8. Then
√

8 ≤ 3 and
√

8 >
√

3 ≥ r
√

3. We

note that when n = 2, all doubled words contain a square and are hence 3-avoidable.

When n = 3, consider the system (r0, r1, r2) = (3, 2, 2). Then(
3−
√

8√
8

)(√
83 − 3

)(√
82 − 3

)2
≈ 29.77 > 33 = 27,

and this value will not change if we consider a rearrangement of the values of r0, r1,

and r2. For n > 3 and the system (r0, r1, . . . , rn−1) = (3, 2, . . . , 2), notice that as long

as λr −m ≥ m, the inequality still holds. To see this, let Mn denote the left side of

the third constraint, and assume that Mn ≥ mn. Then

Mn+1 = Mn · (λr −m) ≥Mn ·m =≥ mn ·m = mn+1.

So, in this case, we see that
√

82 − 3 = 5 ≥ 3, so the third constraint holds for all

n.

In other words, each doubled word on the n-letter alphabet with length at least

2n+ 1 is 3-avoidable.

Corollary 2.2.3. Each tripled word on the 3-letter alphabet in which some letter

appears at least 4 times is 2-avoidable.

Proof. Let m = 2, let r ≥ 3, and let λ = 3
√

6. Then 3
√

6 ≤ 2 and 3
√

6 > 3
√

2 ≥ r
√

2.

When n = 3, consider the system (r0, r1, r2) = (4, 3, 3). Then(
2− 3
√

6
3
√

6

)(
3
√

64 − 2
)(

3
√

63 − 2
)2
≈ 14.34 > 23 = 8,

and this value will not change if we rearrange the values of r0, r1, and r2.

In other words, each tripled word on the 3-letter alphabet with length at least 10

(think 3n+ 1) is 2-avoidable.

To get other results, the following lemma is helpful.
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Lemma 2.2.4. For λ > 1 and i ≥ j+2, (λi −m) (λj −m) < (λi−1 −m) (λj+1 −m).

Proof. We start with the desired inequality and simplify it.

(
λi −m

) (
λj −m

)
<
(
λi−1 −m

) (
λj+1 −m

)
λi+j −mλi −mλj +m2 < λi+j −mλi−1 −mλj+1 +m2

−mλi −mλj < −mλi−1 −mλj+1

λi + λj > λi−1 + λj+1

λi − λi−1 > λj+1 − λj

λi−1 (λ− 1) > λj (λ− 1)

This is clearly true since λ > 1 and i− 1 > j.

Corollary 2.2.5. Each tripled word on the 2-letter alphabet in which some letter

appears at least 5 times or in which at least 2 of its letters appear 4 times is 2-

avoidable.

Proof. Let m = 2, let r ≥ 3, and let λ = 3
√

6. Then 3
√

6 ≤ 2 and 3
√

6 > 3
√

2 ≥ r
√

2.

When n = 2, consider the system (r0, r1) = (5, 3) or (r0, r1) = (4, 4). By Lemma 2.2.4,

we need only check the third constraint for (5, 3). Then(
2− 3
√

6
3
√

6

)(
3
√

65 − 2
)(

3
√

63 − 2
)
≈ 7.17 > 22 = 4,

and this value will not change if we rearrange the values of r0 and r1.

In other words, each tripled word on the 2-letter alphabet with length at least 8

(think 3n+ 2) is 2-avoidable.

These corollaries were discovered by analyzing pictures. We present a few graphs

of the constraints to more clearly show what we are looking for in using Corol-

lary 2.2.6. Figure 2.1 and Figure 2.2 show the left side of the third constraint of

Corollary 2.2.6. In these figures, we desire for the curve to lie above mn for some λ
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λ

y
√

3 3

33(
3−λ
λ

)
(λ3 − 3) (λ2 − 3)2

(
3−λ
λ

)
(λ2 − 3)3

Figure 2.1 Graph for 3-Avoidability of Doubled Words

between the lines
√
m and m. From these pictures, the λ chosen in each of the corol-

laries above were conveniently picked from where the curve lies above mn between
√
m and m.

Figure 2.1 shows the curves for when a doubled word on the 3-letter alphabet has

length 6 and length 7. We see that this method fails when the length is exactly twice

the number of letters, but works when adding a single letter. Figure 2.2 shows the

curves for tripled words. The blue curves represent the tripled words on the 3-letter

alphabet of lengths 9 and 10. We see that this method fails when the length is exactly

three times the number of letters, but works when adding a single letter. The red

curves represent the tripled words on the 2-letter alphabet of lengths 7 and 8. We

see that this method fails when the length is one more than three times the number

of letters, but works when adding two additional letters.

This result can also reprove Dalalyan’s results. We use his same values form, r, λ,

and m, but we mention the systems here for reference. Note that the third constraint

of Theorem 2.2.1 reduces to the third constraint of Theorem 2.1.1 when all the ri’s

are equal.

• For Corollary 2.1.2, the system is (2, 2, 2).

• For Corollary 2.1.3, the system is (2, 2, 2, 2, 2, 2).
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λ

y
√

2 2

23

22

(
2−λ
λ

)
(λ5 − 2) (λ3 − 2)

(
2−λ
λ

)
(λ4 − 2) (λ3 − 2)

(
2−λ
λ

)
(λ4 − 2) (λ3 − 2)2

(
2−λ
λ

)
(λ3 − 2)3

Figure 2.2 Graph for 2-Avoidability of Tripled Words

• For Corollary 2.1.4, the system is (3, 3, 3, 3).

• For Corollary 2.1.5, the system is (3).

• For Corollary 2.1.6, the system is (4, 4).

Note: In all of the corollaries above we have that the specified words are not only

m-avoidable but the growth function on their avoiding words is exponential.

Remark 2.2.1. This leaves the following types of doubled words to check if they are

3-avoidable: words in which exactly 3 distinct letters appear with length 6, words

in which exactly 4 distinct letters appear with length 8, and words in which exactly

5 distinct letters appear with length 10. To determine if these are 3-avoidable, we

create a list of all the words of this type, then remove the words that contain squares

and are hence 3-avoidable. We then remove words that are encountered by other

words in this list. Next, we remove words encountered by other doubled words that

are known to be 3-avoidable. Finally, we remove words that are a relettering of the

reverse of another word. In doing so, we arrive at 2 words in which exactly 3 distinct

letters appear with length 6, 11 words in which exactly 4 distinct letters appear with
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length 8, and 88 words in which exactly 5 disctint letters appear with length 10. The

words abacbc and abcacb were shown by Cassaigne (1994) to be 3-avoidable, so we are

left with 99 doubled words to check. A table of these words is given in Section 2.6.

Remark 2.2.2. This leaves the tripled words in which exactly 2 distinct letters appear

with length 6 or 7 and the tripled words in which exactly 3 distinct letters appear

with length 9 to check if they are 2-avoidable. To determine if these are 2-avoidable,

we create a list of all words of this type, then remove the words that contain cubes

and are hence 2-avoidable. We then remove the words that are encountered by other

words in this list. Finally, we remove words that are a relettering of the reverse of

another word. In doing so, we arrive at 4 words in which exactly 2 distinct letters

appear of length 6, 1 word in which exactly 2 distinct letters appear of length 7, and

101 words in which exactly 3 distinct letters appear of length 9. Using are careful

analysis of the tables provided by Cassaigne (1994) and Ochem (2006), we can show

that all of these words are 2-avoidable. We more carefully describe this proof in

Section 2.7.

Remark 2.2.3. This method cannot prove a theorem of the form “Each doubled word

on at an alphabet of size at least n is 2-avoidable”. To show this, let m = 2, let r ≥ 2,

and let λ be such that
√

2 < λ ≤ 2. Let the system be (r0) = (2). It is easy to check

through calculus that
(

2−λ
λ

)
(λ2 − 2) maximizes at 0.16 < 2 for any choice of λ in(√

2, 2
]
. Further, note that λ2−2 ≤ 2 = m, so moving up to a higher n will maintain

the < inequality. Thus, the third constraint can never be satisfied in order to make

a theorem of this form. This is illustrated in Figure 2.3, using an example of n = 2.

Note that as n gets larger, the distance between the curve and the line above only

grows proportionally.

However, we can find a basic result in the 2-avoidability of doubled words. First,

we present a corollary of Theorem 2.2.1 that is useful to find this result.
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√
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22

(
2−λ
λ

)
(λ2 − 2)2

Figure 2.3 Graph for Doubled Words on an Alphabet of Size 2

Corollary 2.2.6. Let w be a word on the n-letter alphabet with ri being the number

of times the letter xi appears for all i, and let r = min (r0, . . . , rn−1). If there exists

a λ that satisfies the constraints

• λ ≤ m

• λ > r
√
m

•
(
m− λ
λ

)(
λ|w|−r(n−1) −m

)
(λr −m)n−1 ≥ mn,

then there are at least λ` words of length ` on the m-letter alphabet that avoid w.

In particular, w is m-avoidable.

Proof. Using Lemma 2.2.4, we see that we can decrease each ri for i > 0 to r and

increase r0 by the sum of the decreases.

This corollary could also be proven from Theorem 2.2.1 by using modified form

of Lemma 3 in (Blanchet-Sadri and Woodhouse 2013). It is worth noting, however,

that Corollary 2.2.6 is not as strong as Theorem 2.2.1. For example, consider the

word xyxzxyxzxy. Then r0 = 5, r1 = 3, and r2 = 2. By Theorem 2.2.1, this word is

2-avoidable by applying λ = 1.97. However, using Corollary 2.2.6, there is no λ that

satisfies
(

2− λ
λ

)(
λ6 − 2

) (
λ2 − 2

)2
≥ 4.
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Corollary 2.2.7. For all n ≥ 2, there exists a length L dependent on n such that each

doubled word on the n-letter alphabet with length at least L has an exponential lower

bound on the number of their avoiding words on the 2-letter alphabet. In particular,

these words are 2-avoidable.

Proof. Let m = 2, let r ≥ 2, and let λ be such that r
√

2 ≤
√

2 < λ ≤ 2. Consider

r0 = |w| − r (n− 1). Then we want
(

2−λ
λ

)
(λr0 − 2) (λ2 − 2)n−1

> 2n. Every value in

this expression is fixed with respect to |w|, so we are free to make r0 as large as we

like without changing other parameters. In particular, note that λr0 − 2 is positive

since λ >
√

2 and r0 ≥ 2, so let r0 be the smallest value such that the inequality

holds. Then the desired length L is simply r0 + 2 (n− 1), and all words longer than

L will still satisfy the third constraint.

Remark 2.2.4. Corollary 2.2.7 lends itself to making a table of known lower bounds

for L using these methods. To use Corollary 2.2.6, we simply need to find a large

enough value of r0 so that the third constraint of Corollary 2.2.6 holds. A sample

of results based on Corollary 2.2.6 is given in Table 2.1, but these bounds are not

likely to be tight. In addition, some shorter words can be found to be 2-avoidable by

Theorem 2.2.1 (see the example of xyxzxyxzxy), but these words would be tedious to

classify. To get each bound, we manipulate the functions for graphs like Figure 2.1 and

increase r0 one increment at a time until the curve lies above mn. This is illustrated

in Figure 2.4, using an example of n = 3. For the case when n = 2 and n = 3, we

give a tight bound based on previous results.

Theorem 2.2.8. Each doubled word on the 2-letter alphabet with length at least 6 is

2-avoidable, and this is the smallest bound possible.

Proof. Roth (1992) proves that all words on the 2-letter alphabet with length at least

6 are 2-avoidable. Lothaire (2002) states that aabab is 2-unavoidable, which is easily

verified by backtracking. (See Theorem 2.5.1)
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Table 2.1 Minimal L for a Doubled Word on the n-letter Alphabet to be
2-avoidable

n Minimal r0
to get λ

Upper
bound for L

1 N/A ind (xx) = 3
2 6 8
3 7 11
4 7 13
5 8 16
6 8 18
7 8 20
8 8 22
9 8 24
10 8 26
11 9 29
12 9 31
13 9 33
14 9 35
15 9 37
16 9 39
17 9 41
18 9 43
19 9 45
20 9 47
21 9 49
22 9 51
23 10 54
24 10 56
25 10 58

n Minimal r0
to get λ

Upper
bound for L

26 10 60
27 10 62
28 10 64
29 10 66
30 10 68
31 10 70
32 10 72
33 10 74
34 10 76
35 10 78
36 10 80
37 10 82
38 10 84
39 10 86
40 10 88
41 10 90
42 10 92
43 10 94
44 10 96
45 10 98
46 11 101
47 11 103
48 11 105
49 11 107
50 11 109

λ

y
√

2 2

23

(
2−λ
λ

)
(λ7 − 2) (λ2 − 2)2

Figure 2.4 Graph for Doubled Words on an Alphabet of Size 3,
where r0 = 7
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Theorem 2.2.9. Each doubled word on the 3-letter alphabet with length at least 7 is

2-avoidable, and this is the smallest bound possible.

Proof. It is easy to show that the words aabccb, abaccb, abbacc, abbcac, abbcca, abcbca,

abccab, and abccba are all 2-unavoidable. We proceed using the classification of

ternary words started by Cassaigne (1994) and finished by Ochem (2006). Between

these two papers, we discover that all doubled words on 6 letters that are not listed

(other than reletterings) have avoidability index 2. Thus, if any word of length 7 or

more is to have avoidability index 3, it must contain as a prefix one of these listed

words. However, appending the letters a, b, and c to each of these words creates 24

words that all have avoidability index 2. This proves the proposition.

2.3 Bell, Goh, Rampersad, Blanchet-Sadri, and Woodhouse’s Results

Bell and Goh (2007) obtain results that, independent of the work of Dalalyan (1984),

include a proof that each doubled word has an exponential lower bound on the number

of words on the 4-letter alphabet of length ` that avoid it. Their theorem can be stated

in the following manner.

Theorem 2.3.1. (Bell and Goh (2007), Theorem 1, Restated) Let w be a doubled

word on the n-letter alphabet with ri ≥ 2 being the number of times the letter xi

appears for all i. If there exists a λ that satisfies the constraints

• λ ≤ m

• λ > r
√
m

•
(
m− λ
λ

)(
λ2 −m

)n
≥ mn,

then there are at least λ` words of length ` on the m-letter alphabet that avoid w.

In particular, w is m-avoidable.
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This is found in a similar fashion to Dalalyan by using a power series argument

to lower bound the number of words avoiding the doubled word.

Rampersad (2011) follows in a similar fashion to Bell and Goh (2007) in order to

prove the following theorem.

Theorem 2.3.2. (Rampersad (2011), Theorem 1) Let w be a word on the n-letter

alphabet. Then:

(1) If w has length at least 2n, then w is 4-avoidable.

(2) If w has length at least 3n, then w is 3-avoidable.

(3) If w has length at least 4n, then w is 2-avoidable.

Blanchet-Sadri and Woodhouse (2013) obtain a refinement of the results of Ram-

persad (2011). Using a few technical lemmas, they achieve the following result.

Theorem 2.3.3. (Blanchet-Sadri and Woodhouse (2013), Theorem 2) Let w be a

word on the n-letter alphabet. Then:

(1) If w has length at least 2n, then w is 3-avoidable.

(2) If w has length at least 3 (2n−1), then w is 2-avoidable.

In addition, they cite the existence of a word of length 2n−1 that is 3-unavoidable

and a word of length 3 (2n−1)−1 that is 2-unavoidable, thus noting that these bounds

are tight. Both of these theorems above also show an exponential lower bound on the

number of words of length ` avoiding the word with the desired properties.

In each of these three papers, they use a Theorem due to Golod and Šafarevič

(1964). In their paper, this theorem is stated in terms of ring theory. However,

Rampersad (2011) states and proves it in a more combinatorial fashion. We present

his formulation and proof here, with some modifications of the terminology.

22



Theorem 2.3.4. (Rampersad (2011), Theorem 2) Let S be a set of words over an

m-letter alphabet, each word of length at least 2. Suppose that for each ` ≥ 2, the set

S contains at most ci words of length i. If the power series expansion of

G (x) =
1−mx+

∑
i≥2

cix
i

−1

has nonnegative coefficients, then there are at least as many words of length ` over

an m-letter alphabet that contain no word in S as a subword as the coefficient of x`

in the power series expansion of G (x).

Proof. For two power series f (x) = ∑
i≥0 aix

i and g (x) = ∑
i≥0 bix

i, we write f ≥ g

to mean that ai ≥ bi for all i ≥ 0. Let F (x) = ∑
i≥0 aix

i, where ai is the number

of words on the m-letter alphabet that contain no word in S as a subword and

G (x) = ∑
i≥0 bix

i be the power series expansion of G (x) as defined above. We will

show that F ≥ G, and since the coefficients of G are non-negative, this finishes the

proof.

For ` ≥ 1, there are m` − a` words w of length n on the m-letter alphabet that

contain some word in S as a subword. Further, for any w of this form, observe that

either w = w′a, where w′ contains a word in S as a subword and a is a single letter,

or w = xy, where x has length ` − j and contains no word in S as a subword and

y ∈ S is a word of length j. Then there are at most
(
m`−1a`−1

)
m words of the first

form and at most ∑`
j=2 an−jcj words of the second form. Thus,

m` − a` ≤
(
m`−1 − a`−1

)
m+

∑̀
j=2

a`−jcj.

Rearranging, we get

a` − a`−1m+
∑̀
j=2

a`−jcj ≥ 0.
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Finally, consider the function

H (x) = F (x)
1−mx+

∑
i≥2

cix
i


=
∑
i≥0

aix
i

1−mx+
∑
i≥2

cix
i

 .
We see that the coefficient of x` in H (x) is a` − a`−1m + ∑`

j=2 a`−jcj, which was

just shown to be ≥ 0. We also see that the coefficient of x0 in H (x) is 1. Thus,

the inequality H ≥ 1 holds, and in particular, H − 1 has non-negative coefficients.

So, F = HG = (H − 1)G + G, and since H − 1 and G both have non-negative

coefficients, (H − 1)G has non-negative coefficients. Thus, (H − 1)G ≥ 0, so F ≥ G,

as desired.

Bell and Goh (2007) and Rampersad (2011) assume that every letter appears at

least r times, similar to that of Dalalyan (1984). Blanchet-Sadri and Woodhouse

(2013), however, tightens the work of Bell and Goh (2007). Their theorem can be

stated in the following manner.

Theorem 2.3.5. (Blanchet-Sadri and Woodhouse (2013), Lemma 3, Restated) Let

w be a doubled word on the n-letter alphabet with ri ≥ 2 being the number of times

the letter xi appears for all i. If there exists a λ that satisfies the constraints

• λ ≤ m

• λ > r
√
m

•
(
m− λ
λ

)(
λ|w|−2(n−1)

) (
λ2 −m

)n−1
≥ mn,

then there are at least λ` words of length ` on the m-letter alphabet that avoid w.

In particular, w is m-avoidable.

Theorem 2.3.5, though only usable for doubled words in its current form, allows

for the consideration of the length of the word rather than considering only the fact
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that each letter occurs at least twice. This theorem is very similar to Corollary 2.2.6,

as the only difference is the use of r rather than 2. However, Blanchet-Sadri and

Woodhouse (2013) only use their theorem to show the following results, one of which

was also given by Dalalyan (1984).

• Each doubled word on an alphabet of size at least 6 is 3-avoidable.

• Each doubled word on an alphabet of size at least 2 with length at least 12 is

3-avoidable.

Theorem 2.3.5 is strong enough to prove Corollary 2.2.2, but Blanchet-Sadri and

Woodhouse (2013) seem to only consider the fact that the constraint of the word

being on an alphabet of size at least 6 can be replaced by the word having length at

least 12.

2.4 A Second Proof of Theorem 2.2.1

We now proceed to give a second proof of Theorem 2.2.1 by modifying the arguments

used by Bell and Goh (2007) and Blanchet-Sadri and Woodhouse (2013).

Theorem 2.2.1. Let w be a word on the n-letter alphabet with ri being the

number of times the letter xi appears for all i, and let r = min (r0, . . . , rn−1). If there

exists a λ that satisfies the constraints

• λ ≤ m

• λ > r
√
m

•
(
m− λ
λ

)
n−1∏
i=0

(λri −m) ≥ mn,

then there are at least λ` words of length ` on the m-letter alphabet that avoid

w. In particular, w is m-avoidable.
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Proof. We will use the following Lemma of Bell and Goh (2007).

Lemma 2.4.1. Let n ≥ 1 and let w be a word on the n-letter in which each letter xi

in w occurs ri ≥ 1 times for all i. Then for ` ≥ 1, the number of words of length `

on the m-letter alphabet that are homomorphic images of w is equal to the coefficient

of x` in

C (x) =
∞∑
i1=1
· · ·

∞∑
in=1

mi1+···+inxr1i1+···+rnin .

Define S to be the set of all words on the m-letter alphabet that are homomorphic

images of w. Then by Lemma 2.4.1, the number of words of length ` in S is equal to

the coefficient of x` in

C (x) =
∞∑
i1=1
· · ·

∞∑
in=1

mi1+···+inxr1i1+···+rnin .

We will use Theorem 2.3.4, so define

B (x) =
∑
i≥0

bix
i = (1−mx+ C (x))−1

We will show by induction that bi ≥ λbi−1 for all i. In doing so, we see that bi ≥ λi

for all i, and hence all the coefficients of B are non-negative. So, by Theorem 2.3.4,

we get that there are at least λ` word of length ` that do not contain an element from

S, and by the construction of S, these words also avoid w.

In order to proceed, we will compute the coefficients of( ∞∑
i=0

bix
i

)1−mx+
∞∑
i1=1
· · ·

∞∑
in=1

mi1+···+inxrii1+···+rnin

 = 1.

The coefficient of x0 is b0 on the left and 1 on the right, so b0 = 1. Similarly, the

coefficients of x give us b1 − b0m = 0, so b1 = m. So, when n = 1, we see that

b1 = m > λ = λb0. Now, assume that bi ≥ λbi−1 for all i < `, and we desire to show

that b` ≥ λb`−1.

Computing the coefficient of xi in both sides of the equation above, we get the

equation

b` −mb`−1 +
∞∑
i1=1
· · ·

∞∑
in=1

mi1+···+inb`−r1i1−···−rnin = 0,
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where any values of i1, . . . , in in which ` − r1i1 − · · · − rnin < 0 are not included in

the sums. Hence,

b` = λb`−1 + (m− λ) bn−1 −
∞∑
i1=1
· · ·

∞∑
in=1

mi1+···+inb`−r1i1−···−rnin .

Thus, in order to show that b` ≥ λb`−1, we must show that

(m− λ) b`−1 −
∞∑
i1=1
· · ·

∞∑
in=1

mi1+···+inb`−r1i1−···−rnin ≥ 0.

By the inductive hypothesis, we have that b`−i ≤ b`−1
λi−1 for 1 ≤ i ≤ `. Thus,

∞∑
i1=1
· · ·

∞∑
in=1

mi1+···+inb`−r1i1−···−rnin ≤
∞∑
i1=1
· · ·

∞∑
in=1

mi1+···+in b`−1

λr1i1+···+rnin−1

= λb`−1

∞∑
i1=1

mi1

λr1i1
· · ·

∞∑
in=1

min

λrnin
.

Since λ >
√
m ≥ ri

√
m, we get

λb`−1

∞∑
i1=1

mi1

λr1i1
· · ·

∞∑
in=1

min

λrnin
= λb`−1

(
m

λr1 −m

)
. . .
(

m

λrn −m

)

= λb`−1

n∏
i=1

m

λri −m
.

Finally, we desire for the following to be true: m− λ ≥ λ
∏n
i=1

m
λri−m . However, this

is simply a rewriting of our third constraint. So, we have that

(m− λ) b`−1 −
∞∑
i1=1
· · ·

∞∑
in=1

mi1+···+inb`−r1i1−···−rnin

≥ λ
n∏
i=1

m

λri −m
b`−1 − λb`−1

n∏
i=1

m

λri −m

= 0.

Thus, b` ≥ λb`−1, which completes the proof.

2.5 Classification of All Binary and Ternary Words

The classification of all the binary words began with the work of Schmidt (1989),

who proved that all the binary words with length at least 13 are 2-avoidable. This
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classification was continued by Roth (1992), who proved that all the binary words

with length at least 6 are 2-avoidable. Finally, Cassaigne (1994) extended this work by

including a full classification of all the binary words as well as a partial classification

of all the ternary words. We include here his classification of the binary words, taken

from (Lothaire 2002).

Theorem 2.5.1. ((Lothaire 2002), Theorem 3.3.3) Binary words fall in three cate-

gories:

• The 7 binary words ε, a, b, ab, ba, aba, and bab are unavoidable.

• The 22 binary words aa, bb, aab, abb, baa, bba, aaba, aabb, abaa, abab, abba,

baab, baba, babb, bbaa, bbab, aabaa, aabab, ababb, babaa, bbaba, and bbabb have

avoidability index 3.

• All other binary words, and in particular all binary words of length 6 or more,

have avoidability index 2.

Also included in (Cassaigne 1994), Appendix A, is a partial classification of all

ternary words. Here, he states that what remains in the classification is the word

abcbabc for 3-avoidability and 103 words of lengths 6 through 10 for 2-avoidability.

Ochem (2006) completed this classification by using a new method to generate ho-

momorphisms to show that a word is avoidable on the desired alphabet. It turns out

that all of the above mentioned words are 2-avoidable, including abcbabc.

2.6 The 3-Avoidability of Doubled Words

Corollary 2.1.3, Corollary 2.2.2, and Cassaigne (1994) state that each doubled word

is 3-avoidable except possibly those in which there are exactly 4 or 5 letters with each

letter occurring exactly twice. We conjecture the following.

Conjecture 2.6.1. Each doubled word is 3-avoidable.
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Table 2.2 Doubled words Left to Be Shown to Be 3-Avoidable

abacbdcd abacdbdc abacdcbd abcadbdc
abcadcbd abcadcdb abcbdadc abcdacbd
abcdadcb abcdbadc abcdbdac

abacbdcede abacbdeced abacbdedce abacdbcede
abacdbdece abacdbeced abacdbedce abacdbedec
abacdcebde abacdcebed abacdcedbe abacdebced
abacdebdce abacdebedc abacdecbed abacdecebd
abacdedbce abacdedbec abacdedcbe abcacdebed
abcacdedbe abcadbecde abcadbeced abcadbedce
abcadbedec abcadcebed abcadcedbe abcadcedeb
abcadebdce abcadebecd abcadebedc abcadecbed
abcadecdbe abcadecebd abcadecedb abcadedbec
abcadedcbe abcadedceb abcbadeced abcbdaeced
abcbdaedec abcbdeaced abcbdeadce abcbdeaecd
abcbdeaedc abcbdecaed abcbdecdae abcbdecead
abcbdedace abcbdedaec abcbdedcae abcdaebdce
abcdaebdec abcdaebedc abcdaecbed abcdaecebd
abcdaecedb abcdaedbec abcdaedcbe abcdaedceb
abcdaedecb abcdbeaced abcdbeadec abcdbeaedc
abcdbecead abcdbedaec abcdbedeac abcdceaebd
abcdceaedb abcdeacbed abcdeacebd abcdeacedb
abcdeadbec abcdeadcbe abcdeadceb abcdeaebdc
abcdeaecbd abcdeaedcb abcdebaced abcdebaedc
abcdebdaec abcdebeadc abcdebecad abcdebedac
abcdecaebd abcdecaedb abcdeceadb abcdecebad

Table 2.2 is a list of 99 doubled words in which, if these words are shown to be

3-avoidable, the conjecture is proven. Each word seems to be 3-avoidable, evidenced

by the fact that each can be shown via a computer program to be avoided by a word

of length 200 on the 3-letter alphabet. Generally speaking, most 3-unavoidable words

have each avoiding word on the 3-letter alphabet of length at most 30.

See Remark 2.2.1 for how these words were found.
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2.7 The 2-Avoidability of Tripled Words

Dalalyan (1984) showed that each tripled word with at least 4 distinct letters is 2-

avoidable (see Corollary 2.1.5). Schmidt (1989) and Roth (1992), working on arbitrary

binary words, showed that all binary words of length 6 or more were 2-avoidable. This

shows that each tripled word with exactly 2 distinct letters is 2-avoidable. Finally,

Cassaigne (1994) and Ochem (2006) classified the avoidability index of all ternary

words. While Cassaigne and Ochem were not specifically searching for avoidability

indices of tripled words, examination of their results shows that each tripled word

with exactly 3 distinct letters is 2-avoidable. Thus, we arrive at the following.

Theorem 2.7.1. Each tripled word is 2-avoidable.
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Chapter 3

Avoiding Doubled Words Simultaneously

3.1 Previous Results

Bean, Ehrenfeucht, and McNulty (1979) and Zimin (1982) obtained several early

results of simultaneous avoidance of doubled words. For the first result, define the

mesh of a word w as a value k in which, whenever x is a letter and u is a word in

which x does not occur, if |u| > k, then xux is not a subword of w.

Theorem 3.1.1. (Bean, Ehrenfeucht, and McNulty (1979), Theorem 1.12) The set

of all doubled words on a denumerable alphabet of mesh k is (8k + 16)-avoidable.

This result is useful in that it is not dependent on the size of the alphabet of

the doubled words but simply how far apart the letters can be. Another desirable

result would be to find a bound on the avoidability index of all doubled words that

is dependent on their length. For the set of all doubled words on an alphabet of

size at most n, Bean, Ehrenfeucht, and McNulty (1979) gives a bound of 8 · 2n + 16.

The work of Zimin Zimin (1982) implicitly contains a bound of 6 · 2n + 14 on the

avoidability index of this set, though he did not prove any specific theorems about

doubled words.

Baker, McNulty, and Taylor (1989) gave two bounds on the avoidability index

of the set of all avoidable words on an alphabet of size at most n. These naturally

extend to bounds on the set of all doubled words on an alphabet of size at most n.

Theorem 3.1.2. (Baker, McNulty, and Taylor (1989), Theorem 1.2) The set of all

avoidable words on an alphabet of size at most n is (4 (n+ 2) dlog (n+ 2)e)-avoidable.
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Theorem 3.1.3. (Baker, McNulty, and Taylor (1989), Theorem 1.3) The set of all

avoidable words on an alphabet of size at most n is (9n+ 20)-avoidable.

In Lothaire (2002), Cassaigne states and proves a sharper bound on the avoid-

ability index of the set of all avoidable words on an alphabet of size at most n, which

he attributes to Mel’nichuk.

Theorem 3.1.4. (Lothaire (2002), Theorem 3.3.4) The set of all avoidable words on

an alphabet of size at most n is
(
4bn2 c+ 4

)
-avoidable.

Finally, Mel’nichuk (1985) establishes the smallest known linear bound on the size

of the alphabet that avoids the set of all doubled words on an alphabet of size at most

n, which we present in the next section.

3.2 Mel’nichuk’s Results

Theorem 3.2.1. The set of all doubled words on an alphabet of size at most n is(
3bn2 c+ 3

)
-avoidable.

Note 1: The value m = 3bn2 c+ 3 above cannot be replaced by a number less than

n + 1. If all doubled words are simultaneously avoided by an infinite set S of words

on the n-letter alphabet, then all doubled words are simultaneously avoided by an

infinite word U on the n-letter alphabet. We construct this word by forming a full

m-ary tree rooted with the empty word. At each node, we construct the next level

by branching into m new nodes, each labeled with one of the m letters. We consider

the word represented by each node as the concatenation of the letters going up the

branch to reach that node. Next, we remove any nodes whose represented word is

not in S or is not a prefix of a word in S. Now, we know that this tree is still infinite

since S is infinite, and since each node branches into finitely many new nodes as we

go up the tree, by König’s Infinite Lemma, there must be some infinite branch in the

tree. Let our infinite word U be the concatenation of the letters going up the branch.
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So, since U avoids every doubled word on an alphabet of size at most n, one letter

ξ must appear only once in U . If all letters appear twice, then U contains a doubled

word on the n-letter alphabet. However, the suffix of U that does not contain ξ still

avoids all the doubled words on an alphabet of size at most n, and this word only

has n − 1 letters. Similarly, in order for this to still avoid all the doubled words on

an alphabet of size at most n, it must have a suffix that still avoids all the doubled

words on an alphabet of size at most n and has only n − 2 letters. Continuing this

process, we arrive at an infinite word U ′ on only one letter, and this clearly encounters

a doubled word on an alphabet of size at most n. Thus, only finitely many words in

the list avoid all the doubled words on an alphabet of size at most n for each infinite

branch in the tree, so the list S is not actually infinite.

Note 2: Theorem 3.2.1 is also true when n = 1. The set of all doubled words on

the 1-letter alphabet is {xx, xxx, xxxx, . . . }. Thue (1906) showed xx is 3-avoidable,

and since all others in this list encounter xx, the set of all doubled words on the

1-letter alphabet is 3-avoidable. Finally, we note that m = 3b1
2c+ 3 = 3 when n = 1.

Proof. Fix a positive integer n > 1, and let m = 3bn2 c + 3. We consider the m-

letter alphabet X = {x0, x1, . . . , xm−1}. In order to prove this theorem, we desire to

generate an infinite list of words J0, J1, . . . on X+ that avoid all doubled words on

an alphabet of size at most n. We do so by forming a homomorphism Ψ : X → X+

such that J0 = x0 and Ji+1 = Ψ (Ji) for i ≥ 0. We focus our proof on showing the

following assertion, of which Theorem 3.2.1 easily follows.

Assertion 3.2.2. Let w be a doubled word on an alphabet of size at most n. If k > 1

and an image of w is a subword of Jk+1, then Jk contains an image of some doubled

word u satisfying α (u) ⊆ α (w), where α (u) 6= ∅.

In order to use Assertion 3.2.2, suppose that w0 is a doubled word on an alphabet

of size at most n that is encountered by Jk+1 for some k. Then there is a doubled
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word w1 on an alphabet of size at most n that is encountered by Jk, then a doubled

word w2 on an alphabet of size at most n that is encountered Jk−1, etc., and finally,

there is a doubled word on an alphabet of size at most n that is encountered by J0.

However, J0 = x0, which cannot encounter a doubled word. Thus, no doubled word is

encountered by Jk for any k, so the set of all doubled words is
(
3bn2 c+ 3

)
-avoidable.

Proof of Assertion 3.2.2. Let w be a doubled word on an alphabet of size at most

n, let k be such that Jk+1 encounters w, and let ϕ be such that ϕ (w) is a subword

of Jk+1. We seek to create a word u from w such that Jk encounters u. Figure 3.1

illustrates the setup of this problem. In the figure, ϕ can be any function, and the

images making up ϕ (w) may not line up with the natural breaks in the application

of Ψ to Jk. Thus, we need to carefully define Ψ so that ϕ can be modified into an

erasing homomorphism ϕ′ that maps the letters of w into the natural breaks between

images of Ψ. Note that in some cases, we may need to add an additional copy of a

letter in w in order to complete this definition of ϕ′. In doing so, we let u be the

word w with any letters removed that are erased by ϕ′ and any letters added that are

required to complete the definition of ϕ′. Then Jk will encounter u via ϕ′, as desired.

We define Ψ in the following manner. Let a0, a1, . . . , am−1 ∈ X+ with each ai

being of length m with each letter in X occurring exactly once and satisfying the

properties that will be listed below. Before stating these properties, we must state a

few definitions.

The word xipxiq is said to be basic if there exists j ∈ {0, . . . ,m− 1} such that

xipxiq is a subword of aj and ip is in a position that is ≡ 0 (mod 3). In this case,

xipxiq is said to be associated with aj. If ai = b1b2 and aj = c1c2 for b1, b2, c1, c2 ∈ X+,

then the word b2c1 is called adjacent.

We now assume that the ai’s satisfy the following properties. After we prove the

assertion under this assumption, we will carefully define ai for all i < m and prove

that they satisfy these properties.
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u
ξ0 ξ1 ξ3

. . .

ϕ′

Jkxi0 xi1 xi2 xi3
. . . xi`−1

Ψ

Jk+1
ψ (xi0) ψ (xi1) ψ (xi2) ψ (xi3) . . .

ψ
(
xi`−1

)
ϕ

w
ξ0 ξ1 ξ2 ξ3

. . .
ξj

Figure 3.1 Example of the Method to Simultaneously Avoid All Doubled Words

(a) Each basic word is associated with ai for only one i in the set {0, . . . ,m− 1}.

(b) The words ai, aj with i 6= j do not contain identical subwords of length greater

than 2.

(c) There are no adjacent words that are subwords of ai for any i ∈ {0, . . . ,m− 1}.

(d) If xipxiq appears in ai and aj for i 6= j, then suppose xipxiq is a basic word

associated with only one of ai or aj. If it is preceded by xir where it is not

associated, then xir directly follows xipxiq in its associated word.

(e) If a subword of ai has length ≡ 0 (mod 3), begins in a position ≡ 0 (mod 3),

is composed of images of letters in w of length 1 or 2, and has more images of

length 2 than length 1, then this subword contains a basic word.

(f) The word aiaj with i 6= j does not contain any image of any doubled word v as

a subword.
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Define Ψ (xi) = ai. We now seek to show that ϕ′ and u can be created using this

choice of Ψ.

Consider the set W = {a0, . . . , am−1} as an alphabet, and consider the words over

W , which we will call chains. Thus, a word ai regarded in X∗ has length m, but as a

chain in W ∗, it has length 1. Each chain over W ∗ naturally corresponds to a word in

X∗. A word v in W ∗ that is a subword of a chain C is called a subchain of C, and if

this v is an occurrence of ai in C, we call it a link. We say that the chains C and D

are graphically equal if they are graphically equal as words. Note that 2 links being

graphically equal does not mean that they are the same link.

Suppose we have an occurrence of the word v of X+ in the chain C = ai0 . . . aip−1 ,

where p > 1 and v is not contained in a single link. Then the word C can be written

as C = ai0 . . . airc1vc2aim . . . aip−1 , where c1, c2 ∈ X∗, where |c1| and |c2| < m, where

c1 is an initial segment of air+1 , and where c2 is a final segment of aim−1 . Let C (v)

be the smallest subchain air+1 . . . aim−1 of the chain C that contains an occurrence of

v. Let τ1 (v) and τ2 (v) denote the words of X+ such that c1τ1 (v) is the first link of

the chain C (v) and τ2 (v) c2 is the last link of this chain. In this manner, τ1 (v) is an

initial segment of v and τ2 (v) is a final segment of v. Note: If v starts a link, we do

not define τ1 (v), and if v ends a link, we do not define τ2 (v). Finally, if v is contained

in a single link, we do not define τ1 (v) and τ2 (v).

Let C be the smallest subchain of Jk containing ϕ (w). By Property (f), the chain

C contains more than two links. For each letter ξ of α (w), we consider each of its

occurrences, where ξ(p) denotes the pth occurrence of ξ. Let Cp (ξ) denote the smallest

subchain of C that contains ϕ
(
ξ(p)

)
.

Suppose Cp (ξ) has length at least 2 links for some ξ ∈ α (w). Let T1 denote the

set of links ai of C such that ai is the first link in Cp (ξ), and define τR (ai) to be

τ1
(
ϕ
(
ξ(p)

))
. Let T2 denote the set of links ai of C such that ai is the last link in

Cp (ξ), and define τL (ai) to be τ2
(
ϕ
(
ξ(p)

))
.
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Note: Property (c) implies that for any two occurrences, say the pth and rth, of

any letter ξ of α (w), the following holds:

(1) Chains Cp (ξ) and Cr (ξ) are the same length. If this were not the case, then

one chain could be at most one link longer by shifting the image of ξ. Suppose

without loss of generality that Cr (ξ) has an additional link to the right. Then

the occurrence ϕ
(
ξ(p)

)
must be shifted right when considering the occurrence

ϕ
(
ξ(r)

)
. Consider the word u that consists of the last letter in the next to last

link of Cr (ξ) and the first letter of its last link. Then this word appears in the

last link of Cp (ξ), contradicting Property (c).

(2) If the chain Cp (ξ) contains more than one link, then τ1
(
ϕ
(
ξ(p)

))
= τ1

(
ϕ
(
ξ(r)

))
and τ2

(
ϕ
(
ξ(p)

))
= τ2

(
ϕ
(
ξ(r)

))
. If this were not the case, then the image of

ξ would be shifted like in the previous claim, and this would again contradict

Property (c).

For the pth occurrence of the letter ξ in the word w define Clp (ξ), the closure of

the pth occurrence of ξ, a subchain of C, as follows.

(1) In the case when Cp (ξ) = aj,

Clp (ξ) =


aj if |ϕ (ξ)| ≥ 3 or ϕ (ξ) is a basic word

ε otherwise.

(2) In the case when Cp (ξ) = aj0 . . . ajq−1 ,

Clp (ξ) =



aj0 . . . ajq−1 if |τR (aj0)| ≥ 3 and
∣∣∣τL (ajq−1

)∣∣∣ ≥ 2

aj1 . . . ajq−1 if |τR (aj0)| < 3 and
∣∣∣τL (ajq−1

)∣∣∣ ≥ 2

aj0 . . . ajq−2 if |τR (aj0)| ≥ 3 and
∣∣∣τL (ajq−1

)∣∣∣ < 2

aj1 . . . ajq−2 otherwise.
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Lemma 3.2.3. For all ξ ∈ α (w), its pth and rth occurrences have the property that

Clp (ξ) = Clr (ξ).

Proof. By the note above, Cp (ξ) and Cr (ξ) are the same length, say q > 1 links.

Suppose that Cp (ξ) = ai0 . . . aiq−1 and Cr (ξ) = aj0 . . . ajq−1 . By the note above,

τR (ai0) = τR (aj0) and τL
(
aiq−1

)
= τL

(
ajq−1

)
. Thus, Clp (ξ) and Clr (ξ) are defined

by the same case in its definition. In particular, if q > 2, since ϕ (ξ) is the same

regardless of which encounter, we see that ai1 = aj1 , . . . , aiq−2 = ajq−2 . Considering

each case in the definition, ai0 = aj0 if |τR (ai0)| ≥ 3 by Property (b), and aiq−1 = ajq−1

if
∣∣∣τL (ajq−1

)∣∣∣ ≥ 2 by Property (a). These parts are omitted in the definition of Clp (ξ)

whenever the appropriate sizes of τR or τL are not reached, so Clp (ξ) = Clr (ξ). If

q = 2, the same arguments work, even if the center is empty.

If Cp (ξ) = Clp (ξ) = ai and Cr (ξ) = aj, then ϕ (ξ) is either a basic word or has

length at least 3. If ϕ (ξ) has length at least 3, then ai = aj by Property (b). Thus,

Clp (ξ) = Clr (ξ). If ϕ (ξ) is a basic word associated with ai, then suppose that ϕ (ξ)

is not associated with aj. Then by Property (d), we have that the letter xis that

comes after ϕ
(
ξ(p)

)
must come before ϕ

(
ξ(r)

)
. Thus, ϕ

(
ξ(p)

)
is preceded by xis and

followed by xis , and since it is basic and xis cannot be repeated in any one ai, this

means that xisϕ (ξ) is an adjacent word. Finally, this word must appear in aj since

ϕ
(
ξ(r)

)
is not basic, contradicting Property (c). Thus, ϕ (ξ) is associated with aj, so

by Property (a), ai = aj.

Let Cp (ξ) = ai and Clp (ξ) = ε. If Cr (ξ) = aj, then ϕ (ξ) has length at most 2 and

is not a basic word associated with xi. If ϕ (ξ) is a basic word associated with xj, we

arrive at the same contradiction as before. Thus, Clr (ξ) = ε as well.

With this lemma in place, we will now drop the subscripts and simply refer to

Cl (ξ) as the closure of ξ. Note also by this lemma that if an image of a letter ξ is

basic in some ai, then it is basic in every ai in which it appears.
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The word a in X+ is called composite if a satisfies the following:

(1) The word a is a subword of ai for some i ∈ {0, . . . ,m− 1}, and

(2) The word a = ϕ (ξi0) . . . ϕ
(
ξir−1

)
, and for each j ∈ {0, . . . , r − 1}, we have that∣∣∣ϕ (ξij)∣∣∣ ≤ 2 and ϕ

(
ξij
)
is not basic if

∣∣∣ϕ (ξij)∣∣∣ = 2. Note that being not basic

in one location requires that it not be basic in any location by the note above.

Lemma 3.2.4. The length of any composite word is less than 3bn2 c.

Proof. We begin by showing by induction on k that Jk avoids xx. For the base cases,

we have k = 0 and k = 1. Note that J0 = x0 and clearly avoids xx. Also, J1 = a0,

and a0 avoids xx because it has distinct letters. Now, assume that Jk avoids xx, and

suppose that UU appears as a subword of Jk+1. Let v be a minimal length subword of

Jk such that the chain Ψ (v) contains UU . By Property (f), Ψ (v) contains at least 3

links, and hence |v| ≥ 3. Thus, since v is minimal, UU sits in at least 3 links. Observe

that |U | ≥ m since each link avoids xx. Thus, some consecutive two of the links of

Ψ (v) contains the same subword of U that has at least 3 characters, so by Property

(b), these two links are graphically equal. Hence, v encounters xx, contradicting the

inductive hypothesis. So, Jk avoids xx for all k.

Now, let a be a composite subword of ai with a = ϕ (ξi0) . . . ϕ
(
ξir−1

)
. We denote

the set of letters
{
ξi0 , . . . , ξir−1

}
that make up a by M , the number of letters ξ of M

for which |ϕ (ξ)| = 1 by n1, and the number of letters of M for which |ϕ (ξ)| = 2

by n2. Suppose for the sake of contradiction that |a| ≥ 3bn2 c. Then the following

inequalities must be true:

(1) n1 + n2 ≤ n

(2) n1 + 2n2 ≥ 3bn2 c

(3) n2 ≤ bn2 c+ 1.
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For (1), note that r = n1 + n2. Since a is composed of images of letters in w, we

know that r ≤ n. For (2), we know by definition that |a| = n1 + 2n2, so (2) holds

since we’re supposing |a| ≥ 3bn2 c.

For (3), this uses Property (e), but a doesn’t necessarily start in a position of ai

that is ≡ 0 (mod 3). Suppose n2 is at least 3 more than n1. If a starts in a position

of ai that is ≡ 0 (mod 3), then the proof is done by Property (e). If a starts in

a position ≡ 2 (mod 3), then starting with an image of length 1 brings us back to

Property (e). If it starts with an image of length 2, then having another image of

length 2 takes us back to a position of ≡ 2 (mod 3), and we still have more images

of length 2 than images of length 1 and can finish with Property (e). If it starts

with an image of length 2 and then an image of length 1, we are done by an easy

induction argument. If a starts in a position ≡ 1 (mod 3), then starting with an

image of length 2 yields Property (e), and starting with an image of length 1 brings

us back to the case of a in a position ≡ 2 (mod 3) with even more images of length

2 than images of length 1.

So, with an additional 3 images of length 2 than images of length 1, this forces a

basic word to appear. If n2 = bn2 c+ 2, then n1 ≤ dn2 e − 2 by (1), and having 4 more

2’s than 1’s will result in one of the images being a basic word. Thus, n2 ≤ bn2 c+ 1.

Suppose that n2 ≤ bn2 c − 1, and consider n2 = bn2 c − 1− g for g ≥ 0. If n is even,

then by (1),

n1 ≤ n− n2 = n− n

2 + 1 + g = n

2 + 1 + g.

Similarly, by (2),

n1 ≥
3n
2 − 2

(
n

2 − 1− g
)

= n

2 + 2 + 2g.

However, these inequalities contradict each other. If n is odd, then by (1),

n1 ≤ n− bn2 c+ 1 + g = bn2 c+ 2 + g,
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and by (2),

n1 ≥ 3bn2 c − 2
(
bn2 c − 1− g

)
= bn2 c+ 2 + 2g.

If g > 0, these inequalities contradict each other. If g = 0, then n1 = bn2 c+ 2, so

n1 + n2 = bn2 c+ 2 + bn2 c − 1 = 2bn2 c+ 1 = n.

Thus, r = n, so by Property (f),

n1 + 2n2 > m = 3bn2 c+ 3.

However,

n1 + 2n2 = bn2 c+ 2 + 2
(
bn2 c − 1

)
= 3bn2 c,

contradicting the previous sentence. So, n2 > bn2 c − 1.

Suppose n2 = bn2 c. Then n1 ≤ dn2 e by (1) and n1 ≥ bn2 c by (2). We wish to show

that n1 = bn2 c. If n is even, then this is true. If n is odd, then suppose that n1 = dn2 e.

Then r = n again, and by (2),

n1 + 2n2 = dn2 e+ 2bn2 c = 3bn2 c+ 1.

Since this is not at least m, this contradicts Property (f). Thus, n1 = bn2 c, so if r = n,

then the proof is the same as above. So, suppose that there is one remaining letter

ξ ∈ α (w) such that ξ /∈ M . If |ϕ (ξ)| ≤ 2, then the proof is the same as above. So,

suppose that |ϕ (ξ)| ≥ 3, and let C1 (ξ) = aj0 . . . ajq−1 . Note that the letters named in

n1 and n2 have images whose lengths total to m− 3.

If q = 1, then since all other letters of w total m − 3, two consecutive links

contain ϕ (ξ). By Property (b), this says that two consecutive are graphically equal,

contradicting the fact that Jk+1 avoids xx. If q > 2, then by Properties (b) and (c),

all the links, except maybe the first and last, of C1 (ξ) and C2 (ξ) must be graphically

equal. In addition, this gives that τR (aj0) and τL
(
ajq−1

)
are the same for both ϕ

(
ξ(1)

)
and ϕ

(
ξ(2)

)
, if they exist. If you were to shift the image of ξ, this would force an
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adjacent word to appear in a link, contradicting Property (c). Consider the link in

which a appears, and without loss of generality, assume that a comes from the first

occurrences of its associated letters in w and a appears in the link x. We consider

the letters that appear in w after the associated letters in w. If the first letter is not

ξ, then a is at the end of the link x in order to avoid having the same letter appear

twice in x. If ξ appears at the beginning of w, then the last links of C1 (ξ) and C2 (ξ)

are graphically equal by Property (b). We have that ϕ (ξ) must begin in the link after

x since all the other letters total to m− 3. We also have that the first links of C1 (ξ)

and C2 (ξ) are graphically equal by Property (b). This gives an encounter of xx, so

we will instead assume that ξ does not appear at the beginning of w. However, we

still have that the first links of C1 (ξ) and C2 (ξ) are graphically equal by Property (b).

If the last links are graphically equal again, we arrive at a contradiction, so assume

that ϕ (ξ) extends into its last link with length 1. Then ϕ (ξ) must begin again in

the same link where it ended, giving the contradiction once more.

So, we have shown that the letter ξ must appear in w directly after the letters

associated with a. If |τR (x)| = 3, then the first links of C1 (ξ) and C2 (ξ) are again

graphically equal. In order to avoid the contradiction once again, we need the last

links to not be graphically equal, so we again assume that ϕ (ξ) extends into its last

link with length 1. If ϕ (ξ) begins again in this link, we are finished, so ξ must be

at the beginning of w. However, a starts the link, stopping ϕ (ξ) from extending 1

into that link. If τR (x) = 1, then the last links of C1 (ξ) and C2 (ξ) are graphically

equal. If ϕ (ξ) starts in the same link, then we again get an encounter of xx. So, ξ

must be the first letter in w, but this is enough to again get an encounter of xx by

not including the beginning link of the first occurrence of ξ. Finally, if |τR (x)| = 2,

then ϕ (ξ) cannot extend past its last link more than one to still avoid xx. We note

that if ϕ
(
ξij
)
has length 2 and appears in another link, then it cannot be basic.

Thus, by Property (d), any two links containing the same image of length 2 must be
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graphically equal in this setup. Thus, since m−3 characters must be filled in the link

after x before ξ can appear again, there must be an image of length 2. Hence, x and

the link after it are graphically equal, giving another contradiction. So, n2 6= bn2 c,

meaning that n2 = bn2 c+ 1.

With this in place, we get n1 ≤ dn2 e − 1 by (1) and n1 ≥ bn2 c − 2 by (2). If

n1 = dn2 e − 1, then r = n again and n1 + 2n2 = dn2 e − 1 + 2bn2 c+ 2 ≤ 3bn2 c+ 2 < m,

contradicting Property (f). If n1 = bn2 c − 2, then there are at least 3 more images

of length 2 than length 1, contradicting the fact that a is composite by the earlier

argument. If n1 = bn2 c−1 and n is even, we arrive at r = n and the same contradiction

of Property (f). If n1 = bn2 c − 1 and n is odd, then n1 + n2 = n − 1, meaning that

there is one remaining letter ξ ∈ α (w) such that ξ /∈ M . If |ϕ (ξ)| ≤ 1, then the

proof is the same as above since n1 + 2n2 = 3bn2 c + 1. So, suppose that |ϕ (ξ)| ≥ 2,

and let C1 (ξ) = aj0 . . . ajq−1 . Note that the letters named in n1 and n2 have images

whose lengths total to m− 2, and the remainder of the proof uses the same cases as

above.

Recall that T1 consists of the ai’s that show up as a first link of some occurrence

of ϕ (ξ) for some ξ ∈ α (w) and T2 consists of the ai’s that show up as a final link of

some other occurrence of ϕ (ξ) for some ξ ∈ α (w) (not necessarily the same ξ). Let

T = T1 ∩ T2.

Graphical equality on the set T is an equivalence relation. We let [x] denote the

equivalence class in T over graphical equality that contains the link x. Note that

two links x, y ∈ [x] may not necessarily have the same values for τL (x) and τR (x)

due to the fact that two graphically equal links are not the same link. Graphical

equality of two links simply means that the two links are the same when considered

as words. Let S1 be a subset of T consisting of links that are a closure for some

occurrence of some letter ξ in w. In other words, if x ∈ S1, since x = ai for some

i, we know that x either (1) contains either ϕ (ξ) as a basic word or with length at
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least 3 or (2) ϕ (ξ) extends past x by no more than 2 on the left and 1 on the right.

Assume that [S1] = ⋃
x∈S1 [x]. Next, let T ′ = T\ [S1]. We now define by the following

relation on elements of T ′: For links x, y ∈ T ′, we say that x ∼ y if τL (x) = τL (y) or

τR (x) = τR (y). Note that this relation is reflexive and symmetric but not generally

transitive.

Let S2 and S3 be subsets of T ′ such that S2 = {x | x ∈ T ′ and |τL (x)| = 1}, and

S3 = {x | x ∈ T ′ and |τR (x)| ≤ 2}. Note that if x ∈ S2 ∩ S3, then x = τL (x) aτR (x),

where |a| ≥ 3bn2 c. Since x /∈ S1, this says that ϕ
(
ξ(p)

)
appears in x with

∣∣∣ϕ (ξ(p)
)∣∣∣ ≤ 2

and ϕ
(
ξ(p)

)
not basic for any ξ and any p. Thus, a is composite, contradicting

Lemma 3.2.4, and hence S2 ∩ S3 = ∅. We now define sets Pi recursively in order to

finish our definition of Ind (x).

STEP 0: Let P0 = S2 ∪ S3.

By definition, each link of T ′\P0, since it is neither an element of S2 nor S3, can

be written as x = b1b2b3, where |b1| ≥ 2, |b3| ≥ 3, b1 = τL (x), b3 = τR (x), and b2 is

either composite or empty. Note that if x ∈ T ′\P0, y ∈ T ′, and x ∼ y, we have that x

and y are graphically equal by Properties (a) and (b). However, this does not imply

that τL (x) = τL (y) and τR (x) = τR (y).

STEP i+ 1: Denote

Pi+1 = {x | x ∈ T ′\ (P0 ∪ · · · ∪ Pi) and there exists y ∈ Pi such that x ∼ y} .

The set T is finite, so for some i we have Pi = ∅. For this i, denote P = P0∪· · ·∪Pi.

Next, we describe a relation, Ind (x), from the set T into the set {1, 2, 3} as follows:

Ind (x) =



1 if x ∈ [S1]

2 if x ∈ S2 or x ∈ T ′\P

3 if x ∈ S3

Ind (y) if x ∈ Pi+1 and y ∈ Pi with x ∼ y.
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We now determine a few properties about this relation in order to show that it is

actually a function.

Suppose that ai = b1b2b3b4, where b1, b4 ∈ X∗ and b2, b3 ∈ X+. Then the words

b2 and b3 are said to be adjacent. If aj = c1c2c3, where c1, c2, c3 ∈ X∗, and either

|c1| = 1 or |c3| ≤ 2, then the word c2 is called the middle.

Lemma 3.2.5. If Ind (x) = 2, then x has a middle subword adjacent to τR (x) that

is composite or empty. If Ind (x) = 3, then x has a middle subword adjacent to τL (x)

that is composite or empty. Further, for all x ∈ Pi+1, if x ∼ y and x ∼ z for y, z ∈ Pi,

then Ind (y) = Ind (z).

Note that the subword being composite here does not mean that the word satisfies

the composite properties within the link x but in some other link. Also, this means

that if the middle subword is empty, then x ∈ P0.

Proof. We will use induction on the formulation of Pi to prove the first claim. By the

construction of P0, if x ∈ P0, then |τR (x)| ≤ 2 or |τL (x)| = 1 and x /∈ [S1]. Thus, x is

not a closure of any image of any letter, so x = τL (x)mτR (x), where m is composite

or empty. Then m satisfies the lemma since |τR (x)| = 1 or |τL (x)| ≤ 2.

Suppose, for steps up to i the lemma holds. Let x ∈ Pi+1, and suppose that x ∼ y

for y ∈ Pi such that Ind (y) = 2. Then τL (x) = τL (y) or τR (x) = τR (y). Since

x ∈ T ′\P0, we know that |τR (x)| > 2 and |τL (x)| > 1. By the induction hypothesis,

y has a middle subword a′ adjacent to τR (y) that is either composite or empty. Note

again that if a′ is composite, it may not satisfy the composite properties in y, but by

the definition of composite, it must satisfy these properties in some link.

If τR (x) = τR (y), then x is graphically equal to y by Property (b). Hence,

a′ is a middle subword adjacent to τR (x) that is either composite or empty. Let

τL (x) = τL (y). Then x is again graphically equal to y by Properties (a) or (b). If

|τR (x)| ≥ |τR (y)|, note that x = τL (x)mτR (x), where m is composite or empty.
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Then m is a subword of a′, so consider a′ = m′mm′′, where m′ is a suffix of τL (x)

and m′′ is a possibly empty prefix of τR (x). Then m′m satisfies the lemma. If

|τR (x)| < |τR (y)|, then denote by a′′ the subword of x such that τR (y) = a′′τR (x).

Then a′′ is composite since x /∈ [S1], and hence, a′a′′ satisfies the lemma.

Now, suppose that x ∼ z for z ∈ Pi such that Ind (z) = 3. Then by the induction

hypothesis, z has a middle subword adjacent to τL (z) that is either composite or

empty, and using similar reasoning as that above, x has a middle subword adjacent

to τL (x) that is either composite or empty, finishing the second part of the lemma.

Finally, we wish to show the second part of the lemma by contradiction. Let

x ∈ Pi+1, and let x ∼ y and x ∼ z with y, z ∈ Pi. Suppose that Ind (y) = 2, and

Ind (z) = 3. Let m1 be the middle composite subword of x adjacent to τL (x) and

m2 be the middle composite subword of x adjacent to τR (x). Note that m1 and m2

are not empty since x /∈ P0. Consider the word m′1mm
′
2, where m1 = m′1m and

m2 = mm′2 for m possibly empty. If m is empty, then m1m2 is composite and has

length at least 3bn2 c, contradicting Lemma 3.2.4. If m is nonempty, then m′1mm′2 has

length at least 3bn2 c, and in order for m1 and m2 to be composite, we must have at

most 2 additional images of length 2 than images of length 1. In order to have this,

we must use at least n − 2 letters to make m1 and m2, so there can be no images

that go between m′1 and m or m and m′2. If such an image appeared, then we would

only have one image to make τR (x) and τL (x). By Property (c), any image that

crosses a boundary between links must always appear in the same place. With only

one image, all links have the same τR and τL, so in particular, Jk would encounter xx.

Thus, m′1mm′2 is composite and has length at least 3bn2 c, contradicting Lemma 3.2.4.

Hence, Ind (y) = Ind (z).

One particular consequence of this lemma is that Ind (x) is actually a function.

It is clear that Ind (x) is well-defined for x ∈ T ′\P or x ∈ [S1]. It is also clear since

S2 ∩ S3 = ∅ that if x ∈ P0, then Ind (x) is well-defined. Then if we assume Ind (y)
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is well-defined for all y ∈ Pi, then if x ∈ Pi+1, we know that any z ∈ Pi such that

x ∼ z will have the same index. Thus, Ind (x) is well-defined for x ∈ Pi+1, and hence

Ind (x) is well-defined for all x ∈ P by induction.

We now have enough properties built to create u. We will consider the closures

of each letter in α (w), parse them to remove overlaps without losing any links in C

(except maybe the first and last), and then associate these parsed closures with one

of the letters of α (w). First, we need the following claim:

Claim 3.2.6. Every link x of C, except maybe the first and the last link, occur in

closures of ϕ (ξ) for some occurrence of some ξ ∈ α (w).

Proof. Consider some link x of C that is not the first or last link, and suppose that

x does not occur in the closure of any occurrence of any letter. Let ξ ∈ α (a), and

consider the rth occurrence of ξ in w. If Cr (ξ) = x and Clr (ξ) = ε, then |ϕ (ξ)| ≤ 2

and ϕ (ξ) is not a basic word. If x is part of Cr (ξ) but Clr (ξ) does not include it,

then x must lie on the end of Cr (ξ) and either |τR (x)| ≤ 2 or |τL (x)| ≤ 1. With this

in mind, any part of an image of any ξ that appears in x must have length at most 2,

not be a basic word, and the first image or part of the image of a letter that appears

in x must have length 1. Thus, x is composite and has length 3bn2 c+ 3, contradicting

Lemma 3.2.4.

Let the chain that contains all the centers of the occurrences of ξ in w for all

ξ ∈ α (w) be denoted by Cl (w). Then Cl (w) is identical to C except possibly missing

the first or last link. Since C contains 3 links by Property (f), Cl (w) is not empty.

Define

M0 (C) = {y | y is a subchain of C such that Cl (ξ) = y for some ξ ∈ α (w)} .

Note that any two subchains yi and yj of M0 (C) with i 6= j can have at most one

common link. If it had two common links, then the first link would be filled with
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part of the image of its respective ξ but also would have to contain some part of the

image of the respective ξ of the other link. Also, note that every link of Cl (w) is a

link of some chain in M0 (C) by the definition of Cl (w) and the fact that every link

except maybe the first and last links of C are links in Cl (w). Finally, note that if

a link x is common for two subchains yi and yj of M0 (C) with i 6= j, then the link

x ∈ T . Let M (C) be the set of all subchains of C, including the chain of length 0

(denoted E). Construct mappings ψ0 : M0 (C)→M (C) as follows.

(1) Suppose that y = ai. Let

ψ0 (y) =


ai if ai ∈ [S1] or ai /∈ T1 ∪ T2

E if ai ∈ T1\T2 or ai ∈ T2\T1.

Note: If ai /∈ [S1], then ai /∈ T .

(2) Suppose y = ai0 . . . aiq−1 where q > 1. Let

ψ0 (y) =



ai1 . . . aiq−2 if Ind (ai0) ∈ {1, 2} and Ind
(
aiq−1

)
∈ {1, 3}

ai1 . . . aiq−1 if Ind (ai0) ∈ {1, 2} , and aiq−1 /∈ T or Ind
(
aiq−1

)
= 2

ai0 . . . aiq−2 if ai0 /∈ T or Ind (ai0) = 3, and Ind
(
aiq−1

)
∈ {1, 3}

ai0 . . . aiq−1 otherwise.

Claim 3.2.7. Two chains in ψ0 (M0 (C)) have no common links, and every link in

Cl (w) appears in ψ0 (M0 (C)).

Proof. To show that there are no common links, let y, z ∈M0 (C), and let y′ = ψ0 (y)

and z′ = ψ0 (z). Suppose that y′ and z′ share a common link x, and without loss

of generality suppose that x is the last link of y′ and the first link of z′. By above,

note that x must be unique since y and z can share at most one common link. Let

y = ai0 . . . aip−1 and z = aj0 . . . ajq−1 with p, q > 1. Then x = aip−1 = aj0 . Then since

x = aip−1 , we have that x /∈ T or Ind (x) = 2. Since x = aj0 , we know that x /∈ T
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or Ind (x) = 3. Thus, since Ind (x) maps to a single value, x /∈ T , but by the above

note, since x is common to y and z, we know that x ∈ T . If y = ai0 . . . aip−1 for p > 1

and z = aj, then x = aip−1 = z. So, x /∈ T or Ind (x) = 2 and x ∈ [S1] or x /∈ T1 ∪ T2.

If x /∈ T , then x /∈ T1 ∪ T2. Thus, the closure of every letter whose image makes up x

has length at most 1 link, so x is not the last link of y. So, Ind (x) = 2, which means

that x /∈ [S1] and x ∈ T . Thus, x 6= z. Similarly, x cannot be common to y′ and z′

if y = ai and z = aj0 . . . ajq−1 with q > 1. If y = ai and z = aj, then y = x = z and

thus y and z don’t share a common link. Hence, different subchains of ψ0 (M0 (C))

have no common links.

Next, suppose that some link x of Cl (w) does not belong to any subchain of

ψ0 (M0 (C)). Then by the definition of ψ0, since x is a link of some chain in M0 (C),

this says that x is on the beginning of the chain and Ind (x) ∈ {1, 2}, x is on the end

of the chain and Ind (x) ∈ {1, 3}, or x is a chain of M0 (C) and x ∈ (T1\T2)∪ (T2\T1).

If Ind (x) = 1, then x ∈ [S1], meaning that it is inM0 (C) and hence in ψ0 (M0 (C)). If

x is on the beginning of a chain y ∈M0 (C) and Ind (x) = 2, then by Lemma 3.2.5, x

has a middle subword m adjacent to τR (x) that is either composite or empty. By the

definition of y being a closure, |τR (x)| ≥ 3, so x = b1mτR (x), where |b1| = 1. If m

is empty, then |τL (x)| = 1 and hence x ∈ S3 and Ind (x) = 3, a contradiction. Thus,

m is nonempty, and |τ1 (x)| ≥ 2. So, x is on the end of the closure of the variable in

which its τR is defined, and since it has index 2, it is in the ϕ0 of that closure. If x is

on the end of the chain and Ind (x) = 3, the result holds similarly. If x ∈M0 (C) and

x ∈ (T1\T2)∪ (T2\T1), then either the first image of some ξ starts x or the last image

of some ξ ends x, but not both. Then, since x /∈ T , we know that x will be included

in one of the chains from the middle two cases in the definition of ϕ0.

We now have a means by which to parse Cl (w) into non-overlapping subchains

that are linked to closures of letters in α (w). Our final step is to determine how to

associate these chains with letters in α (w).
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Fix a homomorphism ϕ0 : [ψ0 (M0 (C))] → ψ0 (M0 (C)), satisfying if y = ϕ0 ([x]),

then y ∈ [x]. For each y ∈ ϕ0 ([ψ0 (M0 (C))]) select a random letter ξ of α (w)

such that ψ0 (Cl (ξ)) = y. We denote ξ by f0 (y). For each y ∈ ψ0 (M0 (C)) we set

ψ1 (y) = f0 (ϕ0 ([y])). In other words, ϕ0 is a choice function that takes an equivalence

class [x] for some x ∈ [ψ0 (M0 (C))] and outputs an element y ∈ ψ0 (M0 (C)) that is

graphically equivalent to x, and f0 is a choice function that randomly chooses a

letter ξ such that y is the closure of ξ after the reduction by ψ0. So, ψ1 takes an

element y ∈ ψ0 (M0 (C)) and associates every element in [y] with a letter ξ such that

ϕ0 (Cl (ξ)) is graphically equivalent to y. More concisely, ψ1 maps all graphically

equivalent outputs of ψ0 (M0 (C)) to the same letter ξ, which is what we need to

finish the proof.

Claim 3.2.8. ψ1 an invertible function, and the output of its inverse is a word over

W . (Recall that W = {a0, a1, . . . , am−1})

Proof. Let ξ ∈ α (w), and suppose that ψ1 (x) = ξ and ψ1 (y) = ξ. Then x is

graphically equivalent to ϕ0 (Cl (ξ)) and y is graphically equivalent to ϕ0 (Cl (ξ)), so

x is graphically equivalent to y. Thus, if a ξ is given, we can define ψ−1
1 (ξ) to be the

string of letters making up the subchain x, and this is clearly a word over W .

Since the chains of ψ0 (M0 (C)) are disjoint, we can order them in the same order as

in Cl (w). Finally, using the same ordering, concatenate the letters of ψ1 (ψ0 (M0 (C)))

to form u. We note that by Property (f), there must be at least 3 links in C, and

hence Cl (w) has at least one link. Thus, u is not empty since each link in Cl (w)

appears in ψ0 (M0 (C)).

Clearly, α (u) ⊆ α (w) since the range of ψ1 is α (w). If ξ ∈ α (u), then it is an

output of ψ1 at least as many times as the letter appears in w due to the use of consis-

tently choosing the same letter when graphical equality occurred. Thus, u is doubled.

Finally, for ξ ∈ α (u), define ϕ′ : α (u)→ X+ such that ϕ′ (ξ) = Ψ−1
(
ψ−1

1 (ξ)
)
, where
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Ψ−1 makes sense since ψ−1
1 (ξ) ∈ W+. Then Ψ (ϕ′ (u)) = Cl (w) since there are no

gaps and overlaps in ψ0 (M0 (C)), so ϕ′ (u) is encountered by Jk. This completes the

proof of Assertion 3.2.2, leaving only to formally define a0, a1, . . . , am−1 and show

that they satisfy Properties (a)-(f).

To define, a0, a1, . . . , am−1, consider in the symmetric group Sm, the permutations

of {0, . . . ,m− 1}. Define the following permutations.

g0 = identity permutation

g1 = (1, 2) (4, 5) . . . (m− 2,m− 1)

g2 = (0, 1) (3, 4) . . . (m− 3,m− 2)

f = (0, 3, 6, . . . ,m− 3)

Define m permutations σ0, . . . , σm−1 by σ3i+j = f igj for 0 ≤ i ≤ m
3 − 1, 0 ≤ j ≤ 2,

and let a1, . . . , am be defined by ai = xσi(1) . . . xσi(m) for all i.

Lemma 3.2.9. The words a0, a1, . . . , am−1 satisfy the following properties:

(a) Each basic word is associated with ai for only one i in the set {0, . . . ,m− 1}.

(b) The words ai, aj with i 6= j do not contain identical subwords of length greater

than 2.

(c) There are no adjacent words that are subwords of ai for any i ∈ {0, . . . ,m− 1}.

(d) If xipxiq appears in ai and aj for i 6= j, then suppose xipxiq is a basic word

associated with only one of ai or aj. If it is preceded by xir where it is not

associated, then xir directly follows xipxiq in its associated word.

(e) If a subword of ai has length ≡ 0 (mod 3), begins in a position ≡ 0 (mod 3),

is composed of images of letters in w of length 1 or 2, and has more images of

length 2 than length 1, then this subword contains a basic word.
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(f) The word aiaj with i 6= j does not contain any image of any doubled word v as

a subword.

Proof for Property (a). Suppose that a basic word xipxiq is associated with ac and

ad with c, d ∈ {0, 1, . . . ,m− 1}. Let σc = f c1gc2 and σd = fd1gd2 be the generating

permutations for ac and ad, respectively, and let p and p′ be positive integers such

that σc (p) = σd (p′) = ip and σc (p+ 1) = σd (p′ + 1) = iq. Note that p and p + 1

(resp. p′ and p′ + 1) are the positions of xip and xiq in ac (resp. ad), and also note

that p, p′ ≡ 0 (mod 3). We now break into cases depending the value of ip modulo 3.

Case: ip ≡ 0 (mod 3)

Neither permutation uses g2. Then, since p ≡ 0 (mod 3), we know that

ip = f c1 (gc2 (p)) = f c1 (p) .

Similarly,

ip = fd1 (gd2 (p′)) = fd1 (p′) .

Thus, f c1 (p) = fd1 (p′). If the permutations use different gi’s, suppose without loss

of generality that σc uses g0 and σd uses g1. Then

iq = f c1 (p+ 1) = p+ 1

and

iq = fd1 (g1 (p′ + 1)) = fd1 (p′ + 2) = p′ + 2.

Thus, p = p′ + 1, but this is a contradiction because p, p′ ≡ 0 (mod 3). If both

permutations use g0, then iq = p + 1 again and iq = fd1 (p′ + 1) = p′ + 1. If both

permutations use g1, then

iq = f c1 (g1 (p+ 1)) = f c1 (p+ 2) = p+ 2

and

iq = fd1 (g1 (p′ + 1)) = fd1 (p′ + 2) = p′ + 2.
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In either case, this says p = p′ and thus f c1 (p) = fd1 (p). Hence, c1 = d1 since we

know p ≡ 0 (mod 3), so σc = σd and ac = ad. Intuitively, the idea is that xiq appears

in the same positions, and xip can only precede xiq if the permutations are the same.

Case: ip ≡ 1 (mod 3)

Both permutations use g2. Then

ip = f c1 (g2 (p)) = f c1 (p+ 1) = p+ 1.

Since ip ≡ 1 (mod 3),

ip = g2 (p) = p+ 1.

Similarly,

ip = fd1 (g2 (p′)) = p′ + 1,

so p = p′. Next,

iq = f c1 (g2 (p+ 1)) = f c1 (p) ,

and similarly,

iq = fd1 (g2 (p′ + 1)) = fd1 (p′) .

So, f c1 (p) = fd1 (p) since p = p′, so by the same reasoning as above, ac = ad.

Intuitively, the idea is that xip appears in the same positions, and xiq can only follow

xip if the permutations are the same.

Case: ip ≡ 2 (mod 3)

It is not possible for any σ to take p to the desired ip since there is no σ that takes

a value ≡ 0 (mod 3) to a value ≡ 2 (mod 3).

Therefore, every basic word is associated with a unique ai.

Proof of (b). Suppose that the words ac and ad contain a common subword xipxiqxir

of length 3. Let σc, σd, p and p′ be defined as in the proof of Property (a), and note

that p, p + 1, and p + 2 (resp. p′, p′ + 1, and p′ + 2) are the positions of xip , xiq ,

and xir in ac (resp. ad). By Property (a), if xipxiqxir contains a basic subword, then
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ac = ad. So, suppose p, p′ ≡ 1 (mod 3). We now break into cases depending on the

value of ip modulo 3.

Case: ip ≡ 0 (mod 3)

Both permutations use g2. So,

iq = f c1 (g2 (p+ 1)) = f c1 (p+ 1) = p+ 1,

and similarly, iq = p′ + 1, so p = p′. Next,

ip = f c1 (g2 (p)) = f c1 (p− 1) ,

and similarly, ip = fd1 (p′ − 1). Since p − 1, p′ − 1 ≡ 0 (mod 3), we again have that

c1 = d1 and ac = ad.

Case: ip ≡ 1 (mod 3)

Both permutations use g0. So, ip = f c1 (p) = p and ip = fd1 (p′) = p′. So, p = p′.

Next, ir = f c1 (p+ 2) and ir = fd1 (p′ + 2). So, since p + 2, p′ + 2 ≡ 0 (mod 3), we

know that ir ≡ 0 (mod 3). Thus, since p = p′, c1 = d1, and hence ac = ad by the

same argument as Property (a).

Case: ip ≡ 2 (mod 3)

Both permutations use g1. So,

ip = f c1 (g1 (p)) = f c1 (p+ 1) = p+ 1,

and similarly, ip = p′ + 1, giving p = p′. Next,

ir = f c1 (g1 (p+ 2)) = f c1 (p+ 2) ,

and similarly, ir = fd1 (p′ + 2). Since p + 2, p′ + 2 ≡ 0 (mod 3), we again have that

c1 = d1 and ac = ad.

Intuitively, in each case, one of the letters are fixed in the same position in both

words, and in order for the other letters to fall in the right place, the permutations
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must be the same. Therefore, any two ai and aj with i 6= j have no common subwords

of length greater than 2.

Proof of (c). Suppose that v is an adjacent word contained in the word aj. Then by

the definition of v being an adjacent word, v can be broken down into v1v2, where v1 is

a final segment of ac and v2 is an initial segment of ad for some c, d ∈ {0, 1, . . . ,m− 1}.

Note that c 6= j and d 6= j since this would cause some letter to appear twice in the

same word, but it does not contradict the definition of adjacent word for c = d.

Then |v1| ≤ 2 or we contradict Property (b), and |v2| = 1 or we contradict Property

(a). Now, we’ll consider the location of where this adjacent word could occur by

considering the possible generators of ac.

Case: ac is generated by σc = f c1g0

Since m − 1 and m − 2 are not ≡ 0 (mod 3), the last two characters of ac are

xm−2xm−1. In order to retain that xm−2xm−1 appears in aj, we must have that σj

sends ` to m−1 for some ` 6= m−1 (if ` = m−1, then v1 ends aj and hence v doesn’t

appear in aj) and sends `− 1 to m− 2. If ` ≡ 1 (mod 3), then ` = m− 2 and σj uses

g1. In this case, `− 2 is not sent to m− 2, however. If ` ≡ 0 (mod 3), then there is

no permutation that will take ` to m− 1. If ` ≡ 2 (mod 3), then σj uses either g0 or

g2. If σj uses g2, then ` = m− 1, which is already a contradiction since ` 6= m− 1 in

order to ensure v appears in aj.

Case: ac is generated by σc = f c1g1

Since m − 1 and m − 2 are not ≡ 0 (mod 3), the last two characters of ac are

xm−1xm−2. In order to retain that xm−1xm−2 appears in aj, we must have that σj

sends ` to m − 2 for some ` (` 6= m − 1 as in the previous case) and sends ` − 1 to

m − 1. If ` ≡ 1 (mod 3), then ` = m − 2 and σj uses g0. In this case, ` − 1 is not

sent to m− 1. If ` ≡ 0 (mod 3), then ` = m− 3 and σj uses g2. In this case, `− 1 is

not sent to m− 1. If ` ≡ 2 (mod 3), then ` = m− 1.
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Case: ac is generated by σc = f c1g2

Since m−1 is not ≡ 0 (mod 3), the last two characters of ac are xim−2xm−1, where

im−2 ≡ 0 (mod 3). In order to retain that xim−2xm−1 appears in aj, we must have

that σj sends ` to m − 1 for some ` (again ` 6= m − 1) and sends ` − 1 to im−2. If

` ≡ 2 (mod 3), then ` = m− 1. If ` ≡ 0 (mod 3), then there is no permutation that

will take ` to m− 1. If ` ≡ 1 (mod 3), then ` = m− 2 and σj uses g1. In this case,

` − 1 can be sent to im−2, so we now consider the last letter of aj. Since σj uses g1,

we see that the last letter of aj is xm−2. This says that xm−2 is the first letter of ad.

However, there is no permutation that will send 1 to m− 2, a contradiction.

Thus, the adjacent word v = v1v2 cannot appear in any aj.

Proof of (d). Let ac and ad with c 6= d contain xipxiq . Let σc, σd, p and p′ be defined

as in (a), and note that p and p+ 1 (resp. p′ and p′ + 1) are the positions of xip and

xiq in ac (resp. ad).

Suppose that p 6≡ 0 (mod 3), and we will show that if p′ ≡ 0 (mod 3) and xipxiq

is preceded by xir in ac, then xipxiq is followed by xir in ad. First, we consider that

p ≡ 1 (mod 3) and break into cases with the generator of ac.

Case: ac is generated by σc = f c1g0

Then ip = 1 (mod 3) and iq ≡ 2 (mod 3). If ad uses g0, then ip = fd1 (g0 (p′)),

meaning that p′ ≡ 1 (mod 3). So, xipxiq is not a basic word associated with ad.

If ad uses g1, then ip = fd1 (g1 (p′)), meaning that p′ ≡ 2 (mod 3). So, xipxiq is

not a basic word associated with ad. If ad uses g2, then ip = fd1 (g2 (p′)). Since

ip ≡ 1 (mod 3), this says that p′ ≡ 0 (mod 3), and hence p′ + 1 ≡ 1 (mod 3). So,

iq = fd1 (g2 (p′ + 1)) = p′ ≡ 0 (mod 3), contradicting iq ≡ 2 (mod 3).

Case: ac is generated by σc = f c1g1

Then ip = 2 (mod 3) and iq ≡ 1 (mod 3). If ad uses g0, then ip = fd1 (g0 (p′)),

meaning that p′ ≡ 2 (mod 3). So, xipxiq is not a basic word associated with ad.
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If ad uses g1, then ip = fd1 (g1 (p′)), meaning that p′ ≡ 1 (mod 3). So, xipxiq is not

a basic word associated with ad. If ad uses g2, then ip = fd1 (g2 (p′)), meaning that

p′ ≡ 2 (mod 3). So, xipxiq is not a basic word associated with ad.

Case: ac is generated by σc = f c1g2

Then ip ≡ 0 (mod 3) and iq ≡ 2 (mod 3). If ad uses g0, then ip = fd1 (g0 (p′)).

Since ip ≡ 0 (mod 3), this says that p′ ≡ 0 (mod 3) and hence p′ + 1 ≡ 1 (mod 3).

So, iq = fd1 (g0 (p′ + 1)) ≡ 1 (mod 3), contradicting iq ≡ 2 (mod 3). If ad uses g1,

then ip = fd1 (g1 (p′)), meaning that p′ ≡ 0 (mod 3). Thus, xipxiq is a basic word

associated with ad. Further,

f c1 (g2 (p+ 1)) = fd1 (g1 (p′ + 1))

p+ 1 = p′ + 2.

Also,

f c1 (g2 (p)) = fd1 (g1 (p′))

f c1 (p− 1) = fd1 (p′) = fd1 (p− 1) .

This gives us that c1 = d1. Finally, consider the letter xir that appears directly before

xipxiq in ac. Then p− 1 is the position of xir in ac, and we wish to show that p′ + 2

is the position of xir in ad.

fd1 (g1 (p′ + 2)) = f c1 (g1 (p+ 1)) = p = f c1 (g2 (p− 1)) = ir,

as desired. If ad uses g2, then ip = fd1 (g2 (p′)), meaning that p′ ≡ 1 (mod 3). So,

xipxiq is not a basic word associated with ad.

Now, suppose that p ≡ 2 (mod 3), and we will proceed similarly.

Case: ac is generated by σc = f c1g0

Then ip ≡ 2 (mod 3) and iq ≡ 0 (mod 3). If ad uses g0, then ip = fd1 (g0 (p′)),

meaning that p′ ≡ 2 (mod 3), so xipxiq is not a basic word associated with ad. If ad
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uses g1, then ip = fd1 (g1 (p′)). Since ip ≡ 2 (mod 3), this says that p′ ≡ 1 (mod 3),

so xipxiq is not a basic word associated with ad. If ad uses g2, then ip = fd1 (g2 (p′)).

Since ip ≡ 2 (mod 3), this says that p′ ≡ 2 (mod 3), so xipxiq is not a basic word

associated with ad.

Case: ac is generated by σc = f c1g1

Then ip ≡ 1 (mod 3) and iq ≡ 0 (mod 3). If ad uses g0, then ip = fd1 (g0 (p′)),

meaning that p′ ≡ 2 (mod 3). So, xipxiq is not a basic word associated with ad. If

ad uses g1, then ip = fd1 (g1 (p′)), meaning that p′ ≡ 1 (mod 3). If ad uses g2, then

ip = fd1 (g2 (p′)), meaning that p′ ≡ 0 (mod 3). Thus, xipxiq is a basic word of ad.

Further,

f c1 (g1 (p)) = fd1 (g2 (p′))

p− 1 = p′ + 1.

Also,

f c1 (g1 (p+ 1)) = fd1 (g2 (p′ + 1))

f c1 (p+ 1) = fd1 (g2 (p− 1)) = fd1 (p− 2) .

This gives us that c1 = d1 − 1, possibly modulo n. Finally, consider the letter xir

that appears directly before xipxiq in ac. Then p− 1 is the position of xir in ac, and

we wish to show that p′ + 2 is the position of xir in ad.

fd1 (g2 (p′ + 2)) = f c1+1 (g2 (p)) = p = f c1 (g1 (p− 1)) = ir,

as desired.

Case: ac is generated by σc = f c1g2

Then ip ≡ 2 (mod 3) and iq ≡ 1 (mod 3). If ad uses g0, then ip = fd1 (g0 (p′)),

meaning that p′ ≡ 2 (mod 3). So, xipxiq is not a basic word associated with ad.
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If ad uses g1, then ip = fd1 (g1 (p′)), meaning that p′ ≡ 1 (mod 3). So, xipxiq is not

a basic word associated with ad. If ad uses g2, then ip = fd1 (g2 (p′)), meaning that

p′ ≡ 2 (mod 3). So, xipxiq is not a basic word associated with ad.

Proof of (e). This problem is equivalent to writing a sum of 1’s and 2’s, with more

2’s than 1’s, that adds up to multiple of 3, and we need to show that there is a

location in the sum where 2 is added and the sum before is a multiple of 3. We will

prove this by induction on the size of the sum as a multiple 3. For a sum of 3, it is

impossible to write this. For a sum of 6, the only form possible is 2 + 2 + 2, and the

first 2 satisfies the conclusion. So, suppose that the conclusion holds when summing

to b− 3 and that we are summing to b with more 2’s than 1’s. If we start with 2, we

are finished. If we start with 1 + 2, we are finished by the inductive hypothesis. If we

start with 1 + 1 + 1, we are again finished by the induction hypothesis. If we start

with 1+1+2+1+1 or 1+1+2+2, we are again finished by the inductive hypothesis.

Finally, if we start with 1 + 1 + 2 + 1 + 2, then the 1 + 2 does not contribute to the

problem. So, we can remove it, leaving us again in a smaller case. Hence, we are

again finished by the inductive hypothesis.

Before proving that that the ai’s satisfy Property (f), we state and prove a lemma.

Lemma 3.2.10. If a is an initial segment of ac, b is a final segment of ad, and

α (b) = α (a), then |a| = |b| = |ac|.

Proof. Let a be an initial segment of ac and b be a final segment of ad such that

α (a) = α (b). Then since ac and ad are composed of distinct letters, |a| = |b|. Let

σc and σd be defined as in (a), and consider the last letter of b, say xim−1 . Then

im−1 = f c1gc2 (m− 1). Note that for all possibilities of c2, the position im−1 is either

m − 1 or m − 2. Now, we know that xim−1 ∈ α (a) by assumption, so let m′ be the

position of xim−1 in ac. Then im−1 = fd1gd2 (m′). If im−1 = m − 1, then m′ is either

m − 1 or m − 2. If im−1 = m − 2, then m′ is either m − 1, m − 2, or m − 3. If
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ad, generated with g0

b

m− 1

xm−1

m− 2

xm−2

ac, generated with g1

(shown)a
m− 2

xm−1

m− 1

xm−2

Figure 3.2 Diagram for Case 1 in the Proof of Lemma 3.2.10

m′ = m − 1, then xim−1 is the last letter of ac, and hence |a| = |ac|. This leaves

us to handle 3 cases: (1) im−1 = m − 1 and m′ = m − 2, (2) im−1 = m − 2 and

m′ = m− 2, and (3) im−1 = m− 2 and m′ = m− 3. Before we go into the cases, note

that |b| = |a| ≥ m− 2 > 1 since n > 1, so we can always assume that the next to last

letter of ad is in b. (Note: In case 3, if n = 1, x2 can appear in the third letter of ad

and the first letter of ac, contradicting this conclusion.)

Case 1: im−1 = m− 1 and m′ = m− 2

Recall that m− 1 is the position of xim−1 in ac and m′ is the position of xim−1 in

ad. Since im−1 = m− 1, it must be that σd maps m− 1 to m− 1 and hence uses g0

or g2. Since m′ = m− 2, it must be that σc maps m− 2 to m− 1 and hence uses g1.

We now consider the next to last letter of b, which is xim−2 . So,

im−2 = fd1gd2 (m− 2) = m− 2.

Then xm−2 appears in a, so we desire to determine its position in ac, say m′′. Then

m− 2 = f c1 (g1 (m′′)) = g1 (m′′) = m′′ − 1

since m − 2 ≡ 1 (mod 3). So, m′′ = m − 1, meaning that xm−2 appears in b and is

the last letter of ac. Thus, |a| = |ac|, which is illustrated in Figure 3.2.

Case 2: im−1 = m− 2 and m′ = m− 2

Since im−1 = m− 2, it must be that σd maps m− 1 to m− 2 and hence uses g1.

Since m′ = m − 2, it must be that σc maps m − 2 to m − 2 and hence uses g0. We

60



ad, generated with g1

b

m− 1

xm−2

m− 2

xm−1

ac, generated with g0

(shown)a
m− 2

xm−2

m− 1

xm−1

Figure 3.3 Diagram for Case 2 in the Proof of Lemma 3.2.10

again consider the next to last letter of b. Then

im−2 = fd1 (g1 (m− 2)) = m− 1.

Let m′′ again be the position of xm−1 in a. Then

m− 1 = f c1 (g0 (m′′)) = m′′,

so m′′ = m− 1 again. Thus, |a| = |ac|, which is illustrated in Figure 3.3.

Case 3: im−1 = m− 2 and m′ = m− 3

Since im−1 = m− 2, it must be that σd maps m− 1 to m− 2 and hence uses g1.

Since m′ = m− 3, it must be that σc maps m− 3 to m− 2 and hence uses g2. Then

im−2 = fd1 (g1 (m− 2)) = m− 1,

and letting m′′ be the position of xm−1 in a, we have that

m− 1 = f c1 (g2 (m′′)) = g2 (m′′) = m′′

since m−1 ≡ 2 (mod 3). Thus, m′′ = m−1 and |a| = |ac| again, which is illustrated

in Figure 3.4.

Therefore, either the last or next to last letter of b is the last letter of ac and is in

a, so |a| = |b| = |ac|.

Proof of (f). Let c be an instance of the doubled word w, where |α (w)| ≤ n, and let

ϕ be the mapping such that ϕ (w) = c. Suppose that c is a subword of aiaj, where
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ad, generated with g1

b

m− 1

xm−2

m− 2

xm−1

ac, generated with g2

(shown)a
m− 3

xm−2

m− 2 m− 1

xm−1

Figure 3.4 Diagram for Case 3 in the Proof of Lemma 3.2.10

i 6= j. Then since the words ai and aj do not contain two occurrences of the same

letter, c = c1c2, where c1 is a final segment of ai, c2 is an initial segment of aj, and

α (c1) = α (c2). Then by Lemma 3.2.10, |c1| = |c2| = |ai|, so c1 = ai and c2 = aj.

So, since w is doubled, we have that w = w1w2, where c1 = ϕ (w1), c2 = ϕ (w2), and

hence w2 is a reordering of the letters of w1. Now, since |α (w)| ≤ n, we consider the

images of the letters in w. No image can have size greater than 2, as this will create

identical subwords in ai and aj, contradicting Property (b) since i 6= j.

Assume that |α (w)| = n. Then by the pigeonhole principle, since ai has m letters

and w1 has n letters, we must have m− n images of letters of ai of length 2. Now,

m− n = 3bn2 c+ 3− n ≥ 3n− 1
2 + 3− n = n+ 3

2 > dn2 e+ 1.

Thus, there are more images of letters of w of length 2 in ai than there are images of

length 1, even if |α (w)| ≤ n. So, by Property (e), there will be a letter ξ ∈ α (w) such

that ϕ (ξ) is a basic word, say ϕ (ξ) = xipxiq . Because α (w1) = α (w2), ϕ (ξ) appears

in aj. So, consider the permutations σi and σj that generate ai and aj, respectively,

and let p, p′ be such that σi (p) = σj (p′) = ip and σi (p+ 1) = σj (p′ + 1) = iq. By

definition of xipxiq being basic, we have that p ≡ 0 (mod 3).

Case: σi uses g0

We have that p + 1 = iq ≡ 1 (mod 3) and ip ≡ 0 (mod 3). If σj uses g1, then

p′ + 1 ≡ 2 (mod 3). Hence, p′ ≡ 1 (mod 3), so ip ≡ 2 (mod 3), contradicting the
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fact that ip ≡ 0 (mod 3). If σj uses g2, then since iq ≡ 1 (mod 3), we know that

p′+ 1 ≡ 0 (mod 3). Hence p′ ≡ 2 (mod 3), so ip ≡ 2 (mod 3), again a contradiction.

If σj uses g0, then p′+ 1 ≡ 1 (mod 3). Hence, p′ ≡ 0 (mod 3), so xipxiq is associated

with aj as a basic word. But, by Property (a), this says that i = j, contradicting the

hypothesis.

Case: σi uses g1

We have that p+1 = iq−1, so iq ≡ 2 (mod 3). Also, ip ≡ 0 (mod 3). If σj uses g0,

then since iq ≡ 2 (mod 3), we know that p′+ 1 ≡ 2 (mod 3). Hence p′ ≡ 1 (mod 3),

so ip ≡ 1 (mod 3), contradicting ip ≡ 0 (mod 3). If σj uses g1, then we know that

p′ + 1 ≡ 1 (mod 3). Hence p′ ≡ 0 (mod 3), so xipxiq is associated with aj as a basic

word, again contradicting i 6= j by appealing to Property (a). If σj uses g2, then by

Property (e), we see that if xipxiqxir appears in ai, then xirxipxiq appears in aj, and

this holds for every basic word xipxiq associated with ai. Consider another basic word

associated with ai, say xicxid , which is followed by xie , and suppose that it is split

between the images of two letters β and γ of w1. That is ϕ (β) ends in xic and ϕ (γ)

begins in xid . If |ϕ (β)| = 2, then the letter preceding xic is xie in aj but is not xie

in ai and aj. Similarly, if |ϕ (γ)| = 2, then since the letter succeeding xid is different

in ai and aj, we have a contradiction. So, we must have that |ϕ (β)| = |ϕ (γ)| = 1

for any basic word that is not the image of some letter of w1. With this in mind, the

images of every letter of w1 that is in a position ≡ 2 (mod 3) must have size 1 in

order to preserve the breakdown that every basic word is either the complete image

of one or two letters. Thus, there are at least as many images of length 1 as there

are images of length 2, meaning that ai has length at most 2bn2 c +
(
n− bn2 c

)
. But,

this is the same as

2
⌊
n

2

⌋
+
⌈
n

2

⌉
≤ 2

⌊
n

2

⌋
+
⌊
n

2

⌋
+ 1 = 3

⌊
n

2

⌋
+ 1 < m,

contradicting the length of ai.
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Case: σi uses g2

We have that p+ 1 = iq + 1, so iq ≡ 0 (mod 3). Also, ip ≡ 1 (mod 3). If σj uses

g0, then since iq ≡ 0 (mod 3), we know that p′ + 1 ≡ 0 (mod 3). Hence, we have

that p′ ≡ 2 (mod 3), so ip ≡ 2 (mod 3), contradicting ip ≡ 1 (mod 3). If σj uses g2,

then since iq ≡ 0 (mod 3), we know that p′+ 1 ≡ 1 (mod 3). Hence p′ ≡ 0 (mod 3),

so xipxiq is again associating with aj as a basic word, a contradiction. If σj uses g1,

then this proof is the same as when σi uses g1 and σj uses g2 by instead assuming

ϕ (ξ) is basic in σj.

In essence, if a letter is mapped to a basic word, in order for this mapping to still

hold in aj, the permutations must be similar enough to either contradict Property (a)

or contradict the construction of ai. Thus, c is not a subword of aiaj with i 6= j.

This completes the proof of the Theorem.

It is worth noting that the fact that w is doubled is only used in the proof of

Property (f). However, Property (f) is needed to ensure that the word u is non-

empty, among other things.
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Chapter 4

Conclusion

The power series methods from Chapter 2 seem to not be applicable to the 99 doubled

words remaining to check for 3-avoidability. These may not even have exponential

lower bounds on the number of avoiding words. Ochem’s approach to classifying all

ternary words may be useful to finish the check for the 3-avoidability of every doubled

word, but his approach generally does not imply any lower bound. Some new method

would likely be needed to show an exponential lower bound, if one exists. It could

be another power series argument that doesn’t use the geometric series. It could be

some variation on the methods of Brandenburg (1983) and Brinkhuis (1983). It could

be a further squeeze on the inequalities used, but it is not obvious how to do so.

In the work of Mel’nichuk, it remains to consider how this argument could be

squeezed. As noted at the end of Chapter 3, the only place in the proof that requires

that the word be doubled is in Property (f). How much does the proof of Property (f)

depend on the word being doubled? Could these methods be applied to find a bound

on the avoidability index of all tripled words simultaneously? Mel’nichuk’s result

on the avoidability index of all avoidable words simultaneously is rather close to the

bound on doubled words, but the methods are rather different. For even alphabets,

we get a bound of 2 (n+ 2) on avoidable words and a bound of 3
2 (n+ 2) on doubled

words. For odd alphabets, we get a bound of 2 (n+ 1) on avoidable words and a

bound of 3
2 (n+ 1) on doubled words. It remains to show whether these bounds could

be squeezed even further.
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