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Abstract

Incorporation of electron correlation to improve the accuracy of computations remains

a driving force in quantum chemical method development. Traditionally, electron

correlation effects are divided into static and dynamic correlation parts, and the

inclusion of both results in methods that are impractical for large chemical systems.

The goal of this doctoral research is to develop a method that efficiently accounts

for both components of electron correlation in a separate but balanced manner. The

approach focuses on combining a geminal method, called the antisymmetrized product

of singlet-type, strongly orthogonal geminals (SSG), with dynamic correlation by

either density functionals or a recently developed, linear, two particle, correlation

operator.

The SSG method is a quantum chemical method that groups all electrons in

a chemical system into pair functions called geminals. Within geminals, electrons

can adapt multiple electronic configurations which allows the method to incorporate

most static correlation. However, between geminals, the electron-electron repulsion

is mean-field and a strong orthogonality constraint forbids intergeminal electron ex-

citation. Combining SSG with electron correlation from a density functional, imple-

mented in SSG(DFT), is shown to improve optimized properties of main group di-

atomic molecules at small basis sets. However, overcorrelation due to double counting

of dynamic correlation is observed at larger basis sets. The SSG(Ĉ) method improves

the situation by describing dynamic correlation while negating the double counting

error inherent in SSG(DFT). In addition, the SSpG method is developed to relax

the strong orthogonality constraint and allow intergeminal electronic excitation. The
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method provides a small portion of dynamic correlation energy unaccounted for in the

aforementioned methods. The SSpG method is compared to non-orthogonal geminal

methods and is shown to be a viable method to relax the constraint. Performance of

all methods is analyzed from applications to representative sets of atoms and small

molecules and compared to other electronic structure methods as benchmarks.
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Chapter 1

Introduction

1.1 The Schrödinger Equation and the Wavefunction

In quantummechanics, all chemical systems evolve in time according to the Schrödinger

equation.

i~
∂Ψ(r, t)
∂t

= ĤΨ(r, t) . (1.1)

Equation 1.1 is a partial differential equation describing the time evolution of the

mathematical representation of any chemical system, which is called a wavefunction

and denoted by Ψ. If the wavefunction is known for a system under study, we can

determine all of its properties and how they will evolve in time. Unfortunately,

outside of a few simple systems, there are no known analytical wavefunctions, and

approximations are needed to make use of the Schrödinger equation.

When quantum mechanics is applied to chemistry, theoretical chemists are often

interested in the structure of the ground state. The ground state wavefunction is

defined as the lowest energy wavefunction for a specific nuclear configuration and

number of electrons. In the absence of external forces, the ground state wavefunction

will not change with time and will solve the time-independent Schrödinger equation:

ĤΨ(r) = EΨ(r) , (1.2)

Ĥ ≡ T̂n + T̂e + V̂nn + V̂ee + V̂Ne . (1.3)
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In equation 1.2, Ψ is now the time-independent wavefunction. The Hamiltonian

operator Ĥ is the sum of kinetic energy operators for nuclei T̂n and electrons T̂e, as

well as, the potential energy operators for interactions between nuclei V̂nn, electrons

V̂ee, and both V̂ne. Now, instead of a partial differential equation, the Schrödinger

equation takes on the form of an eigenvalue equation. While this simplifies the search

for the ground state wavefunction, this equation is still too complicated to be solved

due to the positional interdependence of the last three terms in expression 1.3.

A further simplification, the Born-Oppenheimer approximation [6], assumes that

electronic and nucleic motion are separable within a chemical system. The Born-

Oppenheimer approximation is usually adequate because electrons are much lighter

and travel much faster than nuclei, which allows electronic positions to adapt instan-

taneously to nucleic motion. Thus, in the Born-Oppenheimer approximation, the

kinetic energy of the nuclei is assumed to be very small in comparison to the kinetic

energy of the electrons, and the first term in equation 1.3 is neglected. Therefore,

the Schrödinger equation can be solved for each nuclear configuration which specifies

V̂nn. The surviving terms form the electronic Hamiltonian operator.

Ĥ = T̂e + V̂ne + V̂nn + V̂ee . (1.4)

In addition to these simplifications, another widely used assumption is that rela-

tivity has little effect on the chemistry of common chemical systems. Relativity, in

fact, only starts to strongly affect electronic structure when heavy metals are consid-

ered [7]. In the context of this research, we accept all of these approximations and

choose to search for the solutions to the time-independent, non-relativistic, electronic

form of the Schrödinger equation.
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1.2 The Hartree-Fock Method

For multi-electron systems, the aforementioned electronic Schrödinger equation has

no analytical solution due to electron-electron repulsion. Thus, further approxima-

tions must be made to determine the ground state wavefunctions. Such approxima-

tions form the quantum chemical methods implemented in computational chemistry

programs. For instance, the Hartree-Fock method, the cornerstone of electronic struc-

ture theory, is founded upon the mean-field approximation. The mean-field approx-

imation simplifies the search for the ground state wavefunction from an N-electron

problem, where N is the number of electrons, to N one-electron problems, and the

resulting Hartree-Fock wavefunction structure is:

ΨHF (r1, r2...rN) = Â[φi(r1)φj(r2)...φN(rN)] . (1.5)

ΨHF is an antisymmetrized product of one-electron functions called molecular or-

bitals and denoted by φi. The term “Antisymmetric” means that the sign of the wave-

function must change if any two electrons are interchanged. The antisymmetrization

operator Â is a sum over all such permutations, and the antisymmetric wavefunc-

tions satisfy the Pauli exclusion principle. To simplify notation, equation 1.5 can be

written as a normalized Slater determinant.

ΨHF (r1, r2...rN) = |φi(r1)φj(r2)...φN(rN)| . (1.6)

The molecular orbitals used to build the Hartree-Fock wavefunction are formed

as a linear combination of atomic orbital basis functions:

φi(r) =
∑
λ

Ci,λχλ(r) . (1.7)

In equation 1.7 the molecular orbital, denoted as φi, is a spin up, or α, orbital,

and throughout the rest of this dissertation, an overbar over a molecular orbital φ̄i
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denotes a spin down, or β, spin orbital. The Hartree-Fock wavefunction, unless stated

otherwise, is built using spin-restricted orbitals, which means that β spin orbitals are

restricted to be spatially identical to α spin orbitals. Spin unrestricted orbitals do

not have to be identical spatially and often break symmetry if a molecule is stretched

to bond breaking distances.

The atomic orbital basis functions, denoted in equation 1.7 as χi(r), used in mak-

ing the molecular orbitals comprise a basis set which must be chosen when performing

electronic structure calculations[8]. Most quantum chemical methods use standard

basis sets which combine with the overall accuracy of the method to determine the

level of accuracy of the calculation. However, larger basis sets, which produce higher

levels of accuracy, are more computationally expensive. Therefore, when choosing

a basis set, we want to choose the smallest basis set that will produce desired ac-

curacy. There is a variety of carefully designed basis sets available today with the

most popular being either the gaussian basis sets created by Pople [9] or the correla-

tion consistent basis sets created by Dunning[10]. In gaussian basis sets, each basis

function is made from a linear combination of gaussian functions of varying widths.

χl(r) =
∑
g

Bgrle−αgr2
. (1.8)

It is important to note from equation 1.8 that these gaussian functions can rep-

resent s-,p-,d-,f-, or g-type orbitals by changing l, which is the angular momentum

quantum number. The widths of the gaussian functions are controlled by changing

the size of the α component in the exponential. A larger exponent creates a narrower

gaussian. In reality, a variety of gaussian widths are used to closely mimic the more

accurate, but less computationally efficient Slater atomic orbitals [11].

The coefficients in equation 1.7, denoted as Ci,λ, are optimized according to the

variational principle to give the lowest energy Hartree-Fock wavefunction. The vari-

ational principle [11] establishes the Hartree-Fock energy as an upper-bound to the
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exact energy.

1.3 Electron Correlation

Traditionally, electron correlation energy is defined as the energy neglected in the

Hartree-Fock method within a basis set.

Ecorr = Eexact − EHF . (1.9)

Here, the exact energy Eexact is the energy of the exact, non-relativistic, ground

state wavefunction within the Born-Oppenheimer approximation using a specific ba-

sis set. Whereas, EHF is the energy of the computed Hartree-Fock wavefunction

within the same basis set. A long-standing goal of electronic structure is to recover

this missing electron correlation energy without incurring impractical computational

expense.Thus, it is instructive to consider the failures of the mean-field approximation

in Hartree-Fock and the possible corrections to such problems.

First, the Hartree-Fock wavefunction represents one electronic configuration. In

comparison, the exact ground state wavefunction Ψ consists of a linear combination

of all possible electronic configurations, which is the form of the Full Configuration

Interaction method (FCI) wavefunction.

ΨFCI(r1, r2...rN) =
∑
a

Ca|φa1(r1)φa2(r2)...φaN(rN)| . (1.10)

Each determinant contributes to a lowering of energy of the FCI wavefunction,

and the CI coefficients Ca are determined that give the lowest FCI energy. Thus,

the Hartree-Fock wavefunction, being the lowest energy portion of this wavefunction,

is the electronic configuration with the greatest CI coefficient. However, it must

be noted that the number of determinants in the FCI wavefunction is exponentially

dependent on the number of electrons in the system, and the determination of the

CI coefficients increases impractically with system size. Therefore, we cannot use
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the FCI method to determine the ground state wavefunction in most cases. On the

other hand, it can be surmised that the use of a single configurational wavefunction

to describe a chemical system gives rise to a multiconfigurational error.

Correlation energy within a given basis set is usually divided into two types

called static and dynamic correlation energy. Correcting the multiconfigurational

error accounts for static correlation energy. The classic example of static correlation

is observed when stretching the bond in the hydrogen molecule. When a hydrogen

molecule is stretched to an infinite bond length, the two hydrogen atoms do not in-

teract. Thus, the energy of an infinitely stretched hydrogen molecule should equal

the sum of the energy of two hydrogen atoms. However, when the Hartree-Fock

method is used, this is not the case. The Hartree-Fock method is thus not size-

consistent, which means the infinitely stretched hydrogen molecules have a spurious,

non-physical mutual interaction. This interaction is due to both electrons occupying

the bonding orbital in hydrogen even when infinitely stretched. This size consistency

can be restored through the use of unrestricted molecular orbitals which will allow

orbitals to break spatial symmetry upon stretching. However, the preferred method

of accounting for static correlation is through the use of multiple configurations which

allows fractional population of both the antibonding and bonding orbital. The result

is a lowering of energy, or addition of correlation energy, at long bond distances to

recover the atomic limits.

In contrast, dynamic correlation can be thought of as coordinate-based electron

correlation. The Hartree-Fock method makes use of the mean-field approximation

to simplify the search for an approximate wavefunction. Within the mean-field ap-

proximation, each electron experiences the average repulsion from all other electrons.

However, each electron should experience repulsion from each individual electron.

The type of correlation only increases as electrons are brought closer together. Thus,

dynamic correlation energy does play a larger role at closer interelectronic distances

6



akin to coulombic repulsion.

1.4 Geminal-based Total Electron Correlation Methods

Multiconfigurational methods are meant to recover static electron correlation by in-

cluding multiple electronic configurations within their wavefunctions. However, the

multiconfigurational methods which do incorporate said correlation without incur-

ring FCI expense are still considerably expensive and require careful consideration

when building the multiconfigurational portion of the wavefunction. For example,

the multiconfigurational self consistent field theory (MCSCF), which is a simple lin-

ear combination of more than one electronic configuration, often employs a complete

active space simplification to its wavefunction. This simplification uses a subset of

orbitals, called active orbitals, to create multiple electronic configurations. These

active orbitals are deemed the greatest contributors to molecular bonding and reac-

tivity. The remaining subset of orbitals, which are core orbitals, contribute to all

electronic configurations included in the wavefunction. However, there is no well

defined method to determine how many and which molecular orbitals are the most

“active”. Therefore, methods like these must use enough electronic configurations to

be able to include sufficient static correlation while also avoiding crippling expense.

As a remedy, a family of well defined, computationally inexpensive, multicon-

figurational methods based on two-electron geminals has emerged as an attractive

alternative. The advantages of geminal methods can be visualized if we once again

consider the Hartree-Fock wavefunction. The Hartree-Fock method builds its wave-

function from the one-electron orbitals. In contrast, geminal theory takes a step

beyond the Hartree-Fock method by introducing a wavefunction built of multiconfig-

urational, two-electron functions called geminals.

ψA(r1, r2) =
∑
i

Di|φi(r1)φ̄i(r2)| . (1.11)
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In equation 1.11, Di are the geminal expansion coefficients, which are similar to

the familiar CI coefficients, and ψA represents a single geminal A. These geminals are,

in fact, solutions to the two-electron Schrödinger equation as each geminal by itself is

an FCI wavefunction for a two-electron system. However, beyond two electrons, the

general form of the geminal wavefunction yields problems. First, the most general

geminal method, named the antisymmetric product of geminals (APG), which is

analogous to the Hartree-Fock method for geminals, is nearly as complicated as an

FCI wavefunction.

ΨAPG(r1, r2...rN) = |ψA(r1, r2)ψB(r3, r4)...ψNg(r2Ng−1, r2Ng)| . (1.12)

This necessitates the use of an approximation to reduce the computational ex-

pense. The most popular constraint placed on geminal wavefunctions is called strong

orthogonality.

∫
ψa(r1, r2)ψb(r1, r3)dr1 = 0 a 6= b . (1.13)

This constraint simplifies the search for the best geminal wavefunction by making

each orbital pair "choose" which geminal they populate. Strong orthogonality, thus,

eliminates electron correlation between orbitals on different geminals which simplifies

normalization. The antisymmetrized product of these strongly orthogonal geminals

is appropriately called the antisymmetrized product of strongly orthogonal gemi-

nals method (APSG). However, APSG still requires a significant amount of chemical

knowledge a priori due to decisions regarding the number of electron configurations

included in each geminal. A variant of APSG which optimizes the number of deter-

minants within a geminal, the geminal expansion coefficients, and molecular orbital

coefficients was introduced recently as a solution to this quandry [12]. This method,

named the antisymmetrized product of Singlet-type Strongly orthogonal Geminals
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(SSG), is the multiconfigurational wavefunction of interest in the rest of this disser-

tation.

While the SSG method is attractive due to its simplicity, it still has problems

due to the form of the wavefunction. First, the use of the strong orthogonality

constraint reduces computational cost by sacrificing some dynamic correlation. A

true description of electron correlation could not hope to be complete without this

missing correlation. Second, the mean-field approximation is used intergeminally

which causes each geminal to feel the mean-field repulsion of all other geminals.

This separate portion of dynamic correlation, the dominant portion, also needs to be

recovered in order to improve the accuracy of SSG calculations.

The first part of this dissertation describes how we address the latter question

of recovering dynamic correlation energy beyond the mean-field repulsion of gemi-

nals. This portion of correlation energy can be recovered either by the formulation

of a method-specific perturbation theory, as has already been established for SSG as

SSG(EN2)[13], or by using inexpensive standard density correlation functionals. We

choose to explore the latter in the SSG(DFT) method described in the next chapter.

We continue the study of SSG(DFT) by the exploring the use of more orbital depen-

dent types of correlation with the creation of SSG(PBEα) in chapter three and the

SSG(Ĉ) method in chapter four. Subsequently, the second part of the dissertation will

describe how the dynamic correlation associated with the use of strong orthogonal-

ity is recovered. This new method uses a quick, perturbation-like, geminal-at-a-time

approach outside of SSG optimization loops and is called SSpG.
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Chapter 2

Density Functional Model of Multireference

Systems Based on Geminals1

2.1 Abstract

In this chapter, a density functional model based on the variationally optimized, mul-

ticonfigurational wavefunction created from strongly orthogonal singlet-type electron

geminals, also called SSG, is presented. A rescaled correlation-only PBE functional

is used to account for dynamic correlation absent in the geminal wavefunction. The

performance of the model is assessed from geometry optimizations on the G2/97

test set diatomics, using two different basis sets. The results presented here are en-

couraging for the development of a geminal hybrid that approximates total electron

correlation in a computationally efficient manner. Some of the results included in

this chapter have been reproduced from information in reference [14], and permission

for the reproduction of these results is granted by the publisher.

2.2 Introduction

Density Functional Theory and Dynamic Correlation

Density Functional Theory (DFT) is a theory meant to circumvent problems associ-

ated with the search for the correct ground state wavefunction for a chemical system.

1Cagg, B. A.; Rassolov, V. A. Chem. Phys. Lett. 2012, 543 , 205-207. Reprinted here with
permission from the publisher.
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In fact, instead of searching for the ground state wavefunction, the ground state

electron density ρ is the principle quantity of interest in DFT.

ρ ≡ ρ(r1) =
∫

Ψ(r1, r2, ...rN)∗Ψ(r1, r2, ...rN)δr2δr3...δrN (2.1)

In equation 2.1, the square of the N-electron wavefunction Ψ is integrated over all

electron coordinates save one. Usually, the wavefunction used to produce the electron

density is assumed to be a Hartree-Fock-like, single-determinant wavefunction to

simplify the search. It is important to note here that the electron density is a local

variable of three spatial coordinates. In contrast, the wavefunction is a function

of 3N spatial coordinates. The search for the ground state density as opposed to

the corresponding wavefunction is justified because the classical terms in the energy

expression for a ground state wavefunction are actually functionals of the ground

state density.

EDFT = T [ρ] + Vext[ρ] + J [ρ] +XC[ρ] (2.2)

In equation 2.2, The first three terms are the kinetic energy functional, external

potential energy functional, and interelectron repulsion functional. The external po-

tential energy Vext actually results from the familiar nuclear interactions with other

nuclei and the electrons. Similarly, the interelectron potential J [ρ] and T [ρ] are

respectively the Vee and Te from equation 1.4. Thus, the only unfamiliar term in

the DFT energy expression is the last term XC[ρ] which is called the exchange-

correlation density functional. The exchange-correlation functional houses all of the

energy arising from quantum effects, which include, for example, the effects of the

Pauli-exclusion principle. Unfortunately, although it is theorized to exist [15], the

correct universal exchange-correlation functional that precisely predicts the ground

state density for any chemical system is not known. Therefore, DFT researchers have
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created a number of approximate exchange-correlation functionals designed to search

for the best approximate ground state density.

The standard exchange-correlation density functionals are often designed as the

sum of two separate functionalsX[ρ] the exchange functional, and C[ρ] the correlation

functional. The exchange functional is designed to mimic the antisymmetric nature of

a single-determinant wavefunction. In contrast, the correlation functional attempts

to modify the electron density by adding missing dynamic correlation missing. This

makes DFT potentially more accurate than the Hartree-Fock method while avoiding

some of the expense involved in searching for the ground state wavefunction. However,

since the exchange and correlation functionals are only approximate, DFT runs into

problems that are not encountered in Hartree-Fock. The most famous example is

the spurious self-interaction of electrons treated with DFT. A possible correction and

excellent introduction to self-interaction in DFT is provided in reference [16].

Nonetheless, Density Functional Theory is viewed as sufficiently accurate for

chrmical properties and has gained widespread use. The popularity of Density Func-

tional Theory in computation of molecular properties [17] arises due to both the qual-

itative accuracy of the mean-field model in many chemical applications and progress

in defining models of electron correlation that are useful to non-specialists [18]. In

fact, the approximate correlation functionals, which are derived from these models,

have become increasingly dependent on input quantities beyond just the electron

density. The popular PBE correlation functional [19], used later in this chapter, uses

both the density and the gradient of the density ∇ρ in its formulation to provide

an account for the change in electron correlation with change in the density. This

provides information about electron correlation in the “neighborhood” of the electron

which is usually termed semi-local correlation information.
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Providing Dynamic Correlation to the SSG Wavefunction

As mentioned in the previous chapter, the use of multiconfigurational (MC), or mul-

tireference (MR), wavefunctions is complicated by the need to properly account for

static correlation efficiently while neglecting as few dynamic correlation effects as

possible. Therefore, it is highly desirable to combine a DFT-like description of dy-

namic correlation effects with a simple well defined MC wavefunction ansatz. Such a

combined model must separate correlation effects into two non-overlapping domains:

(i) correlation effects arising from explicit interaction of configurations, and (ii) those

described by the density-based functional of interest. This can be performed in coor-

dinate space based on range-separation [20, 21, 22], or in configuration space based

on orbital classification [23, 24]. In fact, one of the simplest MR wavefunctions in the

form of the Generalized Valence Bond using Perfect Pairing (GVB-PP) [25] was used

in combination with a Local Spin Density Approximation (LSDA) density functional

by Kraka [26] to study dissociation energies of diatomics. The LSDA functional pro-

vides correlation based solely on the electron density and thus is the simplest form

of DFT correlation functional. It was found that the LSDA functional improves the

GVB results only modestly, and this deficiency was attributed to the shortcomings

of the GVB wavefunction.

In our first attempt at creating a multireference-DFT hybrid, we combine a SSG

and correlation energy from a density functional in a new method called SSG(DFT).

For development purposes, we focused solely on studying the unrestricted version of

SSG(DFT) called USSG(DFT) but it was formulated in such a way that we could

have chosen any form of spin restriction of SSG. Unlike GVB, the spin-unrestricted

SSG (USSG) wavefunction describes essentially all static correlation, as indicated

by the smallness of perturbative amplitudes when second-order perturbation theory

is applied to USSG describing known MR systems [13]. The USSG wavefunction

is well defined, rigorously size consistent and, unlike most other MR methods, can
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be optimized in the efficient Atomic Orbital (AO) representation. This makes it

a suitable candidate for a reference wavefunction to be combined with the DFT

description of dynamic correlation.

Our ultimate goal is to formulate the simplest computational model applicable to

MR systems with the accuracy and degree of empiricism comparable to mainstream

DFT models. Because two-electron integrals are required for the SSG model, the use

of exact exchange, as apposed to approximate exchange, does not incur additional

computational costs. In single reference DFT, use of pure exact exchange with cor-

relation functionals, while tempting due to the latter being a small fraction of the

former, leads to poor accuracy in geometry optimizations [27]. This may not be the

case for the SSG reference. Therefore in the present work we explore the use of a

correlation-only functional combined with exact SSG energy components. Absence

of approximate exchange functionals avoids most of the self-interaction error. For

simplicity we use the correlation functional outside of the SCF optimization cycles,

and evaluate it at the end of wavefunction optimization. Including the correlation

functional in the self-consistent search for the ground state wavefunction is not tech-

nically difficult, but the self-consistent search in the similar GVB-LSDA method by

Kraka has shown it should make little difference energetically.

In addition, it should be noted that since the SSG wavefunction describes two-

electron systems exactly in the complete basis set limit, a suitable correlation func-

tional to be used with SSG need not be derived based on a two-electron system, as

is done in the Lee-Yang-Parr LYP functional [28]. Instead, we choose the original

Perdew-Burke-Ernzenhof, PBE, functional [19] based on its popularity in chemical

applications and our positive experience with the PBEsol version of it [29] in transi-

tion metal applications [30].
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2.3 The SSG(DFT) Method

The original PBE functional is designed to recover all dynamic correlation energy. The

SSG model describes some of it, typically 20 - 30 % in a given basis [31, 32, 12]. Ex-

pressed in the language of the correlation hole, the SSG model describes the medium

to short range contribution of the correlation hole to the correlation energy. De-

scription of the shortest range depends on the presence of high angular momentum

functions in the basis set, and ,therefore, is strongly basis set dependent. This is

likely similar to the O(l−4) dependence of the atomic correlation energy [33, 34] on

the limiting angular momentum quantum number l of the basis set. Description of

the long range contribution depends on the degree of localization of geminals. It is

probably relatively basis set independent, but does depend on the system, particu-

larly on the bond lengths. Construction of the universal DFT correlation functional

compatible with the SSG model is, therefore, challenging. As a simple, exploratory,

well defined approach we rescaled PBE correlation energy by a basis set dependent

factor, computed by matching the atomic correlation energies for the first and second

row atoms [35, 36]. It is important that we do not match the total energies, in order

to avoid compensating for the basis set incompleteness on the mean-field level.

Our model is defined as a three step process. First, the SSG wavefunction, ΨSSG,

is computed as in the ab initio SSG model by minimizing the expectation value, ESSG,

of the exact Hamiltonian, Ĥ, with respect to variation of all parameters (molecular

orbitals, geminal expansion coefficients, and assignments of orbital pairs to individual

geminals).

ESSG = 〈ΨSSG|Ĥ|ΨSSG〉
〈ΨSSG|ΨSSG〉

, (2.3)

Second, the one-electron spin density and dimensionless density gradient are evalu-

ated for ΨSSG and used to compute EPBE
C according to the traditional DFT procedure
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[19]. Finally, the final energy is defined as a sum of the two components, with DFT

scaled by a basis set-dependent factor.

ESSG(PBE) = ESSG + λPBEE
PBE
C , (2.4)

The rescaling parameter λPBE is defined to minimize the root-mean-square devi-

ation of atomic correlation energies, as computed by Chakravorty et al [36], from our

model correlation energy. The model correlation energy is defined as the difference

between ESSG(PBE) and spin-unrestricted mean-field energy EUHF evaluated in the

same basis. The parameter λPBE is the only new parameter in the model.

In testing SSG(PBE) we used the popular 6-31G* basis set and a much larger

G3MP2large set [37]. The rescaling parameter values were found to be 0.9695 for

6-31G* set and 0.8674 for G3MP2large set.

2.4 Results

One of the most practical indicators of the quality of chemical models describing the

molecular ground state is equilibrium geometry. Therefore, we examined the bond

lengths of all 28 diatomic molecules from the G2/97 test set [38]. The results are

summarized in Table 2.1 for both 6-31G* and G3MP2large basis sets. The resulting

bond lengths are compared to experimental values.

The experimental bond length of each molecule is given in the first column and the

results of both methods are seen as a difference in bond length between experiment

and the method compared. It was noted in earlier studies [12] that the SSG method

was superior to MP2, HF, and CCSD if only the diatomics with elements of moderate

electronegativity were considered. The worst predictions for molecular geometry came

when diatomics of extreme electronegativity such as F2 and Na2 were considered.

This problem is now resolved by applying the PBE correlation correction to the

SSG calculation: Addition of DFT correlation energy makes the SSG(PBE) method
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superior to SSG and to other methods when calculating these highly electronegative

diatomic molecules at the 6-31G* basis set, as shown by root mean square deviations

of computed geometries from the experimental ones in Table 2.2.

Table 2.1 The deviations from experimental bond length [1] for SSG(PBE) and

SSG methods using the 6-31G* and G3MP2large basis sets. The ∆R and ∆R′

values correspond to 6-31G* and G3MP2large respectively. The experimental bond

lengths and deviations are reported in angstroms.

molecule Re(exp) ∆R(SSG(PBE)) ∆R(SSG) ∆R′(SSG(PBE)) ∆R′(SSG)

LiH 1.5957 0.035 0.057 -0.008 0.013

BeH 1.3429 0.000 0.009 -0.006 0.001

CH 1.1199 -0.012 0.000 -0.018 -0.010

NH 1.0362 -0.006 0.009 -0.018 -0.008

OH 0.9697 -0.005 0.006 -0.018 -0.007

FH 0.9168 0.000 0.013 -0.016 -0.007

HCl 1.2746 -0.009 0.008 -0.017 -0.005

Li2 2.6729 0.016 0.058 -0.014 0.030

LiF 1.5639 -0.015 -0.005 -0.012 0.009

CN 1.1718 -0.012 -0.003 -0.024 -0.015

CO 1.1283 -0.012 -0.002 -0.021 -0.012

N2 1.0977 -0.008 0.003 -0.018 -0.010

NO 1.1508 -0.015 -0.001 -0.025 -0.011

O2 1.2075 -0.043 0.019 0.048 -0.025

F2 1.4119 0.021 0.092 0.006 0.079

Na2 3.0788 0.013 0.088 0.085 0.144

Si2 2.2460 -0.057 -0.022 -0.070 -0.045

P2 1.8934 -0.010 0.022 -0.029 -0.004

S2 1.8892 -0.020 0.030 -0.027 0.019

Cl2 1.9879 -0.030 0.083 -0.039 0.007

NaCl 2.3608 0.003 0.044 0.004 0.049

SiO 1.5097 -0.026 -0.008 -0.036 -0.022

SC 1.5349 -0.021 0.007 -0.026 -0.014

SO 1.4811 -0.020 -0.008 -0.050 -0.033

ClO 1.5696 -0.001 0.111 -0.003 0.048

FCl 1.6283 -0.001 0.058 -0.035 0.010

H2 0.7414 -0.001 0.005 -0.003 0.001

HS 1.3400 -0.011 0.007 -0.017 -0.006
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Table 2.2 Root mean squared deviation and average bond length deviations for the

compared methods using 6-31G* basis and G3MP2large basis sets. All values are in

angstroms.

method RMSD6−31G∗ RMSDG3MP2L 〈Re〉6−31G∗ 〈Re〉G3MP2L

SSG(PBE) 0.0201 0.0313 -0.009 -0.018

SSG 0.0424 0.0372 0.023 0.006

B3LYP 0.0263 0.0136 0.014 0.002

PBE 0.0338 0.0185 0.028 0.014

HF 0.0743 0.1117 0.004 0.007

MP2 0.0289 0.0445 0.019 -0.006

CCSD 0.0332 0.0280 0.020 -0.009

Part of the high accuracy of the new method is fortuitous, as seen from the larger

G3MP2large basis set results. The G3MP2large set yields bond lengths that are on

average 0.018 Å too short, leading to RMSD that is comparable (but slightly inferior)

to CCSD, better than SSG and MP2, and worse than traditional DFT.

We plot the bond length dependence of the CO molecule energy to explain the

results. The SSG(PBE) bond energy computed with 6-31G* basis is compared to

other methods in Figure 2.1.
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Figure 2.1 Potential energy surface of CO molecule at the 6-31G* basis set.

Calculations with SSG(PBE) model are compared with SSG and CCSD. All energies

are given relative to dissociated energies and computed with the same methods.

Compared to the coupled-cluster methods, which probably follow the exact cor-

relation energy fairly well near the equilibrium bond distance, the PBE contribution

vanishes too fast as the bond is stretched. This causes shortening of the equilibrium

bonds. This shortcoming of the model is consistent with the PBE correlation func-

tional being overly sensitive to the medium-range correlation hole, which changes the

most rapidly as the bond breaks. It is also consistent with the better performance of

our model using a smaller basis set, in which SSG recovers an insignificant fraction

of the dynamic correlation. It is likely that a modification of a correlation functional

is required to fix the problem.
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2.5 Conclusion and Possible Corrections

Our goal is to formulate a DFT-like practical method applicable to MR chemical

systems, and, therefore, based on a MR wavefunction. We argue that the spin-

unrestricted geminal model USSG is a promising functional form as a reference, as it

is shown to incorporate most static correlation, when applied to MR systems such as

ozone or transition metal hydrides [13]. Here, we present a simple approach of using a

standard correlation-only density functional with the SSG wavefunction. In the new

method, called SSG(DFT), the DFT correlation energy is evaluated outside of wave-

function optimization loops, and scaled to avoid double counting of correlation effects.

The resulting model is size-consistent and is largely free from self-interaction error

due to use of exact exchange. When used with the widely popular 6-31G* basis set

to optimize diatomic geometries, the model is superior to other traditional methods.

The use of a larger basis set indicates that this accuracy is partially fortuitous, but

the proposed method will likely achieve higher accuracy after modification of stan-

dard functionals. The main effect of the PBE correction is to shorten the bonds, and

it has the most pronounced effects on the diatomics with extremely electronegative

atoms, which are poorly described by the SSG model.

It is clear there are two deficiencies that must be solved if the SSG(DFT) method

is to become more accurate. First, correlation energy cannot be cleanly separated as

we propose in the introduction. SSG describes some small amount of dynamic corre-

lation which is double counted in SSD(DFT) in all cases. This is partially reduced by

the rescaling parameter in SSG(DFT) but must be mitigated more rigorously. Cer-

tainly at short distances there is substantial double counting of dynamic correlation

within the method that worsens with basis set size. Second, SSG(DFT) must attempt

to capture more non-local forms of electron correlation to recover neglected energy

highlighted in figure 2.1. The latter correction is the focus of the next chapter.
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Chapter 3

SSG(PBEα): Inclusion of Orbital Dependent

Dynamic Correlation

3.1 Abstract

An orbital dependent density functional correction to the SSG(DFT) method is pre-

sented. The α functional, a custom made density functional based on the α inho-

mogeneity parameter used in the TPSS and MGGA_MS2 functionals, is mixed with

the PBE functional to create the modified SSG(DFT) method we call SSG(PBEα).

This is done to reduce an error inherent in the SSG(PBE) method arising due to

the semi-local character of PBE. Geometric optimizations are performed on the 28

diatomic molecules from the G2/97 test set at the 6-31G* and G3MP2large levels of

theory. The mixing of α and PBE is optimized to give the best results for each basis

set, and the results of both basis sets improve from the original SSG(PBE) method.

3.2 Introduction

The (SSG) method has been shown to be a rather good starting approximation to

the Full Configuration Interaction (FCI) method based on graded orthogonality argu-

ments [3] due to its recovery of configurational-based, static correlation energy. In the

last chapter the accuracy of the SSG method was shown to improve by approximately

adding the remaining portion of correlation energy using a correlation density func-

tional. This method, the SSG(DFT) method, added neglected dynamic correlation

energy via scaled down contributions from standard DFT correlation functionals out-
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side of SSG optimization loops which showed great promise for geometry optimization

at small basis sets. However, those promising results deteriorated when calculations

were performed at larger basis sets. The large basis set problem was diagnosed to be

two-fold. First, the empirical scaling parameter for DFT functionals used to reduce a

well-known, correlation double counting error was not sufficient to completely negate

the error. At small basis sets, the resulting overcorrelation was small enough that the

results were not substantially affected. However, at large basis sets, the residual dou-

ble counting error resulted in dramatically shortened bond lengths when compared

to experiment. A second error became obvious when analyzing the potential energy

surface, reproduced in figure 2.1, for the carbon monoxide molecule at 6-31G*. Here,

the SSG(DFT) curve displayed a steep loss of correlation energy just outside of equi-

librium relative to the highly accurate CCSD method. This showcased a particular

failure in PBE, and most density correlation functionals, to account for longer range

correlation effects.

In this chapter, we address the latter problem in SSG(PBE) by mixing in the

energy calculated from a custom made, orbital dependent functional we call the α

functional. The α functional is a functional built on a semi-local building block used

for the meta-GGA functionals created by Perdew and coworkers [39, 40] and is chosen

due to its apparent sensitivity to bond character within a molecule[41]. The resulting

SSG(PBEα) method is then used to geometrically optimize the same 28 diatomic

molecules from the G2/97 test set as in the previous chapter at the 6-31G* and

G3MP2large levels of theory.

3.3 The PBEα Functional

The orbital dependent density functional α is based on the inhomogeneity parame-

ter used in the well known TPSS functional[39] and MGGA_MS2 [40] meta-GGA

functionals. These meta-GGA functionals form the third rung in the Jacob’s ladder
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metaphor used extensively by Perdew in describing the accuracy of density functionals

in comparison to experiment[39]. In the metaphor, the Local Spin Density Approx-

imation is the lowest rung and uses only the electron density described in equation

2.1 in the formulation of density functionals. The second rung uses the Generalized

Gradient Approximation (GGA), on which PBE is formulated, and makes use of the

density and the gradient of the density. The meta-GGA functionals described here

use another semi-local ingredient in the formulation of density functionals called the

kinetic energy density τ .

τ(r) =
occ∑
i,σ

|∇φi,σ(r)|2
2 . (3.1)

It should be noted, in equation 3.1, that the kinetic energy density depends on

the gradient of the molecular orbitals and that the sum runs over occupied molecular

orbitals of α and beta spin. In practice, the kinetic energy density, like electron

density in DFT, is calculated on a spatial grid. However, like the density gradient

∇ρ, kinetic energy density is a semi-local term. In some applications, as in the PKZB

functional [42], it is used in conjunction with the Weiczacker kinetic energy density

to reduce the self-interaction error inherent in DFT.

τw = |∇ρ|
2

8ρ . (3.2)

However, the kinetic energy density is of interest in this chapter because it is

shown to be the main ingredient in an important and sensitive density functional

parameter called the α parameter.

α = τ − τw

τunif
. (3.3)

In equation 4.4, the τunif is the kinetic energy density of the uniform electron

gas; the fundamental model system upon which all density correlation functionals are

based. The α parameter provides a sensitive measure of bond character due to the
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comparisons between these three forms of kinetic energy density. The Wieczacker

kinetic energy density is the kinetic energy density of a single orbital, and the kinetic

energy density of the uniform electron gas most resembles kinetic energy density

resulting from metallic bonding. Thus, if the kinetic energy in the bonding region of

a molecule is much less than unity, the bond is covalent. If the kinetic energy density

in such regions is close to unity, the bonding is more metallic.

As was shown in the SSG(PBE) method, density functionals, when combined

with SSG, have an overall inability to recover correlation effects at intermediate bond

lengths when bonds are starting to break. We believe that the sensitivity to changes in

bond character that the α functional exhibits may be the key to correcting this error

within SSG(DFT). However, we keep the computational simplicity of SSG(DFT)

by converting the α parameter into a density functional to mix with the density

functional chosen in the SSG(DFT) method.

A few changes have been made to the α parameter in order to work within the

SSG formulation. First, we modify the kinetic energy density τ to correctly calculate

the kinetic energy density of SSG as opposed to a single-determinant method. The

original definition of the kinetic energy density is applied to only occupied orbitals

and assumes whole occupation of said orbitals. In comparison, the SSG wavefunction

partially occupies all orbitals and a sum over all orbitals φi is required with an

inclusion of the geminal expansion coefficients Di.

τG =
∑
i,σ

|∇φi,σ|2D2
i

2 . (3.4)

We call this modified version of kinetic energy density the geminal kinetic energy

density and signify it as τG. In addition, the Wieczacker kinetic energy density is

modified to make a spin dependent version.

τwsd =
∑
σ

|∇ρσ|2

8ρσ
. (3.5)
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We choose this spin dependent τwsd in our studies due to a better linear fit of the

spin dependent α functional to atomic correlation results for open shell atoms. The

α parameter is also made dimensionless and multiplied by total density to produce

the resulting α functional.

α(ρ) = τG − τwsd
ρ2/3 . (3.6)

The DFT dynamic correlation calculation is performed outside of self consistent

loops on the resulting SSG wavefunction with the separate PBE and α functionals.

The functionals are both scaled down to reproduce known atomic correlation energies

for elements of atomic number 2-17 [35, 36] as was done previously for SSG(PBE)

calculations. The scaling is done independently, and the coefficients are basis set

specific. The resulting scaled down results are then mixed together using optimized

mixing prefactors b and b’ with the sum of these prefactors being equal to unity.

ESSG(PBEα) = bEPBE + b′Eα . (3.7)

The mixing prefactors are optimized empirically with respect to root mean squared

deviation (RMSD) from equilibrium bond length for the 28 diatomic molecules in the

G2/97 test set[38]. In this way, the created α functional attempts to provide the best

possible correction to SSG(PBE) by adding more non-local correlation at intermediate

bond lengths.

3.4 Results and Conclusions

The previous SSG(PBE) calculations showed promise for the small 6-31G* basis set

by reducing the RMSD for the G2/97 test set diatomics in half when compared with

SSG[14]. These same calculations were performed with new wavefunctions that were

re-optimized and the results were nearly the same as can be seen from figure 3.1 with

only two molecules, ClO and SC, being significantly different. The RMSD worsens
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with these new wavefunctions to 0.0214 from the previously stated 0.0202 but it is still

superior to all other methods compared as stated previously. These new re-optimized

wavefunctions were used for testing the new SSG(PBEα) calculation with 6-31G*.

The remarkable improvement in RMSD for 6-31G* for SSG(PBE) over SSG was

deemed at least partly fortuitous because of the equally remarkable disintegration of

RMSD to 0.0313 using the large G3MP2large [37] basis set. The α functional was

designed to improve upon SSG(PBE) results by provide missing electron correlation

energy at intermediate bond lengths. This lack of correlation energy in SSG(PBE)

can be visualized from the steep ascent in the potential energy surface of carbon

monoxide relative to CCSD right outside of equilibrium. The SSG(α) curve on the

other hand has a much slower rise in energy at the same bond lengths as seen in figure

3.4. However, if the potential energy surface of SSG(α) is analyzed at extended bond

lengths it is observed that a spurious long range interaction occurs between the carbon

and oxygen atoms. This is not unique to the carbon monoxide molecule and indeed

is a feature of the use of the α functional. Thus, we use α as a small correction

to SSG(PBE) to add a small amount of intermediate bond length correlation while

only allowing a minimal amount of this spurious interaction. Finally, it should be

noted that while SSG(α) requires that molecules be stretched significantly farther

than standard SSG(DFT) to obtain atomic limits, SSG(α)), as well as SSG(PBEα),

retain the size consistency of SSG.
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Table 3.1 The deviations from experimental bond length [1] for SSG(PBE) with

original and re-optimized wavefunctions using 6-31G* basis set. ∆R(SSG(PBE))

corresponds to calculations with original wavefunctions, while ∆R(SSG(PBE))′

corresponds to corrected deviations from re-optimized wavefunctions. The

experimental bond lengths and deviations are reported in angstroms.

molecule Re(exp) ∆R(SSG(PBE)) ∆R(SSG(PBE))′

LiH 1.5957 0.035 0.036

BeH 1.3429 0.000 0.000

CH 1.1199 -0.012 -0.012

NH 1.0362 -0.006 -0.006

OH 0.9697 -0.005 -0.007

FH 0.9168 0.000 0.001

HCl 1.2746 -0.009 -0.008

Li2 2.6729 0.016 0.016

LiF 1.5639 -0.015 -0.018

CN 1.1718 -0.012 -0.015

CO 1.1283 -0.012 -0.011

N2 1.0977 -0.008 -0.007

NO 1.1508 -0.015 -0.015

O2 1.2075 -0.043 -0.042

F2 1.4119 0.021 0.021

Na2 3.0788 0.013 0.013

Si2 2.2460 -0.057 -0.056

P2 1.8934 -0.010 -0.009

S2 1.8892 -0.020 -0.021

Cl2 1.9879 -0.030 -0.030

NaCl 2.3608 0.003 0.004

SiO 1.5097 -0.026 -0.025

SC 1.5349 -0.021 -0.012

SO 1.4811 -0.020 -0.020

ClO 1.5696 -0.001 0.042

FCl 1.6283 -0.001 0.000

H2 0.7414 -0.001 -0.001

HS 1.3400 -0.011 -0.010
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Figure 3.1 Potential energy surface of CO molecule using the 6-31G* basis set.

Calculations with SSG(α) SSG, SSG(PBE) and CCSD are shown. All energies are

given relative to dissociated energies, computed with the same methods.

Optimizing the mixing prefactors b and b′ in SSG(PBEα) produced a slight im-

provement in the small 6-31G* basis set compared to SSG(PBE) with a mixing of 0.17

α to 0.83 PBE. The RMSD improved from 0.0214 to 0.0200 with notable improve-

ments to LiH, Si2, P2, and S2 as seen in table 3.2. A more significant improvement

is observed when the larger G3MP2large basis set is used. When mixing 0.15 α

and 0.85 PBE, the RMSD improves from 0.0313 using SSG(PBE) to 0.0270 using

SSG(PBEα). It is interesting to point out that the most significant improvement is

observed in Na2 which improved from 0.085 Å in deviation to 0.028 Å. In this case,

SSG(PBEα) shortened the bond, which may be due to the weak character of the

disodium bond. All save seven molecules either improved slightly or stayed the same

in the larger basis set. This improvement makes SSG(PBEα) slightly better than
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Table 3.2 The deviations from experimental bond length [1] for SSG(PBEα) and
SSG(PBE) using the 6-31G* and G3MP2large bases. The ∆R(SSG(PBEα)) and
∆R(SSG(PBE)) columns are results for the 6-31G* basis sets, while the
∆R(SSG(PBEα))′ and ∆R(SSG(PBE))′ columns are the results for the
G3MP2large basis set. The experimental bond lengths and deviations are reported
in angstroms.

molecule Re(exp) ∆R(SSG(PBEα)) ∆R(SSG(PBE)) ∆R(SSG(PBEα))′ ∆R(SSG(PBE))′

LiH 1.5957 0.021 0.036 -0.018 -0.008
BeH 1.3429 -0.004 0.000 -0.009 -0.006
CH 1.1199 -0.011 -0.012 -0.018 -0.018
NH 1.0362 -0.003 -0.006 -0.016 -0.018
OH 0.9697 -0.005 -0.007 -0.015 -0.018
FH 0.9168 0.004 0.001 -0.013 -0.016
HCl 1.2746 -0.006 -0.008 -0.015 -0.017
Li2 2.6729 -0.014 0.016 -0.024 -0.014
LiF 1.5639 -0.031 -0.018 0.033 -0.012
CN 1.1718 -0.012 -0.015 -0.021 -0.024
CO 1.1283 -0.009 -0.011 -0.020 -0.021
N2 1.0977 -0.005 -0.007 -0.016 -0.018
NO 1.1508 -0.013 -0.015 -0.024 -0.025
O2 1.2075 -0.039 -0.042 -0.045 -0.048
F2 1.4119 0.029 0.021 0.012 0.006

Na2 3.0788 0.013 0.013 0.028 0.085
Si2 2.2460 -0.047 -0.056 -0.066 -0.070
P2 1.8934 0.000 -0.009 -0.023 -0.029
S2 1.8892 -0.014 -0.021 -0.022 -0.027
Cl2 1.9879 -0.028 -0.030 -0.037 -0.039

NaCl 2.3608 -0.005 0.004 0.011 0.004
SiO 1.5097 -0.022 -0.025 -0.034 -0.036
SC 1.5349 -0.008 -0.012 -0.026 -0.026
SO 1.4811 -0.017 -0.020 -0.049 -0.050
ClO 1.5696 0.048 0.042 0.001 -0.003
FCl 1.6283 0.006 0.000 -0.033 -0.035
H2 0.7414 0.001 -0.001 -0.009 -0.003
HS 1.3400 -0.008 -0.010 -0.016 -0.018

CCSD in both bases while DFT is superior only at larger basis sets.

Although improvement for both basis sets are observed using the α functional,

there is still a significant deterioration in RMSD at larger basis sets. This may

be due to the the aforementioned double counting error which was not a focus in

creation of the SSG(PBEα) method. However, it must be pointed out that the double

counting error can never be completely eliminated using standard density functionals

due to a lack of wavefunction information included in the electron density. On the

other hand, the results show that if these SSG hybrid methods can incorporate some

significant amount of orbital dependent information into their formulation we can

see a dramatic improvement in results. The α functional does an adequate job at

correcting a few of the worst behaving diatomics observed in the G3MP2large basis
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for SSG(PBE), but cannot improve beyond the remarkable RMSD of 6-31G* and

cannot compete with GGA or hybrid DFT functionals at large bases as seen in table

3.2. It is obvious that using an explicitly orbital dependent functional is useful in

regaining some intermediate correlation behavior lost in using standard semi-local

density functionals. A more robust, custom-built, non-local functional or operator

must be considered if any further significant improvements are to be made. Such an

operator is studied in the next chapter.
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Chapter 4

SSG(Ĉ): A Dynamically Correlated

Multireference Method that Completely

Avoids the Double Counting Error1

4.1 Abstract

SSG is combined with a recently developed, linear, two-particle operator that ap-

proximates dynamic correlation in a chemical system. The use of the operator, which

we call the correlation operator, or Ĉ, allows the selective inclusion of correlation en-

ergy intergeminally where interactions are mean-field. The resulting hybrid method

is the first combination of a multireference (MR) wavefunction with DFT-like corre-

lation component that excludes the double counting error that manifests in all other

MR-DFT combinations. In addition, the correlation operator is explicitly orbital

dependent and recovers correlation effects at intermediate bond lengths much more

effectively than previous incarnations of SSG(DFT). The SSG(Ĉ) method is tested

by predicting the dissociation energies of the twenty-eight diatomic molecules in the

G2/97 test set, as well as, the ten, first-row, diatomic, transition metal hydrides at

the 6-31G* and G3MP2large basis sets. The results illuminate that the use of the

correlation operator outside of optimization loops show promise for a balanced de-

scription of main group and transition metal systems. However, work still needs to

be done if the correlation operator is to be used in optimizing the wavefunction.

1Cagg, B. A.; Rassolov, V. A. To be submitted to J. Chem. Phys.
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4.2 Introduction

As described in previous chapters, there are two problems that plague SSG(DFT) as a

computational method. First, DFT was used in conjunction with SSG in SSG(DFT)

to account for needed intergeminal dynamic correlation inexpensively. However, some

dynamic correlation is already included intrageminally as SSG accounts for total

electron correlation energy for any two-electron system at the complete basis set

limit. Due to this inclusion of dynamic correlation within geminals, any SSG(DFT)

method using standard density functionals will double count the intrageminal portion

of dynamic correlation energy. This double counting of correlation energy cannot be

completely excluded without modification to standard density functionals due to the

dependence on the electron density which contains no information about the specific

geminal population of the molecular orbitals. Second, current standard density corre-

lation functionals rely too heavily on local and semi-local information. Most standard

density functionals rely on a three dimensional, local electron density along with the

gradient of density and other semi-local quantities in order to make predictions. It

is, therefore, difficult to recover dynamic correlation with appreciable accuracy at

intermediate bond lengths in molecules. In fact, if we combine a standard density

functional with a correction that adds some amount of semi-local orbital dependent

correlation in an SSG(DFT), as was done in SSG(PBEα) geometric optimization

results improve as seen in the previous chapter.

In this chapter, we continue to make progress towards an efficient dynamic corre-

lation correction for SSG by addressing both deficiencies in SSG(DFT) at once. We

do so by combining the SSG method with a recently developed DFT-like approxima-

tion to dynamic correlation energy that is explicitly orbital dependent and non-local.

This approximation takes the form of a linear, two-electron operator, dubbed the

correlation operator or Ĉ. The correlation operator has been shown to provide a

balanced description of excited states for a single determinant wavefunction[43] but
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has yet to be applied to a multiconfigurational wavefunction. Unlike standard density

functionals, the correlation operator utilizes an abundance of wavefunction informa-

tion to add dynamic correlation to an electronic structure method. In fact, since

the operator is not electron density dependent the new method can use information

about geminal structure to exclusively add said correlation intergeminally where in-

teractions are mean-field. Thus, this new SSG(Ĉ) method promises to provide a

computationally inexpensive method to account for total electron correlation while

avoiding the double counting of correlation effects. Additionally, the new method is

capable of recovering non-local correlation energy due to the orbital dependence of

the correlation operator. The results of dissociation energy calculations with SSG(Ĉ)

on a set of twenty-eight main group and ten transition metal hydride diatomics are

presented at two different basis sets. The results from SSG(Ĉ) are then compared

with SSG(PBE) and a host of other ab initio and density functional based methods.

4.3 Computational Methods

The Formulation of the Correlation Operator

The correlation operator has been formulated semi-empirically [44], in the harmonic

eigenbasis [45], and based on physical arguments [46]. However, it has proved diffi-

cult to evaluate the correlation operator matrix elements over atomic centered basis

functions. In order to reduce the computational complexity, the current form of the

correlation operator takes on the form of a two-electron operator that approximates

electron correlation based on the expectation value of the overlap of an adaptive

gaussian function with the wavefunction, which produces two electron terms as seen

in equation 4.1 [43].
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〈Ψ|Ĉ|Ψ〉 =
occupied∑

i,j

〈φi(r1)φj(r2)|Ĉ|φi(r1)φj(r2)〉 − 〈φi(r1)φj(r2)|Ĉ|φj(r1)φi(r2)〉 .

(4.1)

In principle, in order to calculate the maximum overlap of the operator with any

combination of two molecular orbitals, an infinite number of gaussian functions of

varying widths would need to be incorporated into the correlation operator. Instead,

a gaussian function with an adaptive exponent α0 is used to adjust the width of the

operator gaussian to the varying widths of the atomic basis functions that make up

the molecular orbitals. This is done by first reformulating equation 4.1 in terms of

atomic orbital basis functions and setting α0 to be proportional to the average widths

of any combination of gaussian primitives, described by equation 1.8, that make up

these basis functions.

〈Ψ|Ĉ|Ψ〉 =
∑

λ,µ,ν,η

Pλ,µPν,η〈χλ(r1)χµ(r2)|Ĉ|(χν(r1)χη(r2)− δχη(r1)χν(r2))〉 . (4.2)

In equation 4.2, the molecular orbitals are expanded in terms of a linear combina-

tion of atomic orbitals as proposed in equation 1.7 to produce an expectation value

over a combination of four atomic orbitals. The equation has been simplified by the

use of one-electron density matrices Pλ,µ and Pν,η.

Pλ,µ =
∑
σ

occupied∑
i,j

Ci,λ,σCj,µ,σ . (4.3)

the density matrices are summed over both spin up and spin down electrons with

the spin variable denoted as σ. The delta function in equation 4.2 is zero when spins

of electron one and two are different and one when they are the same.

The adaptive width, α0, can now be set proportional to the average widths of the

four basis functions its comparing.
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α0 = 1
2

√
α1α2α3α4

α1 + α2 + α3 + α4
( 1
α1

+ 1
α2

+ 1
α3

+ 1
α4

) . (4.4)

In equation 4.4, the exponents αx, where x=1, 2, 3, 4 are the average gaussian

exponents that make up all four gaussian basis functions as explained in the introduc-

tion chapter. This makes the matrix elements of the correlation operator simple to

calculate and, in fact, the elements are analytically derived for all combinations of ba-

sis functions. In addition to the use of an adaptive gaussian operator, the correlation

operator is formulated to depend on relative electron coordinates r12, which is the

modulus of the distance between electronic coordinates r1 and r2. The dependence

of the operator on only r12 forces the operator to be rotationally and translationally

invariant which is a condition met by the universal two-electron correlation operator.

In other words, a rotation or shift in cartesian coordinates of a molecule should not

change the expectation value of the operator. Thus, a correlation operator which uses

an s-type operator gaussian would resemble equation 4.5.

Ĉs =
∑
i,j

Ci,j|exp(−αir2
12)〉〈exp(−αjr2

12)| . (4.5)

The total correlation operator is, in practice, taken to be the sum of the expecta-

tion values of the s-type Ĉs and p-type Ĉp gaussian operator.

Ĉ = Ĉs + Ĉp . (4.6)

In theory, gaussians of even higher angular momentum are used, but the de-

pendence of the correlation energy on the angular momentum quantum number l

decreases very rapidly according to studies with tight hookium [45]. Therefore, con-

tributions from the p-type operator gaussian are included as a first order correction

to the dominant contribution from the s-type gaussian.
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Finally, it should be noted that for both the s-type and p-type operator the is

a normalization constant included with the operator. These coefficients are set to

reproduce exact correlation energy for the helium and argon atoms.

Combining SSG and Ĉ

It should be noted that in the previous section we developed the correlation opera-

tor formalism relative to a single determinant wavefunction. When the correlation

operator acts on a single determinant wavefunction, it is designed to approximately

account for all dynamic correlation energy. The main goal of this chapter is to com-

bine this complete description of dynamic correlation with SSG just as we have in

the previous chapters dealing with the SSG(DFT) methods. However, in contrast to

density functional theory, the correlation operator accounts for electron correlation

using expectation values over the entire wavefunction instead of the electron density.

This gives the correlation operator two advantages which promise an improvement

over SSG(DFT). First, unlike the density functionals, the correlation operator is com-

pletely non-local and should provide a more accurate description of correlation energy

that was missing at intermediate bond lengths in SSG(PBE). Second, the correlation

operator can easily distinguish between intergeminal and intrageminal orbitals. If

we only add electron correlation between orbitals that are intergeminal to one an-

other, then the double counting error encountered in the previous two chapters can

be completely eliminated.

However, combining the correlation operator with SSG requires that we design

the correlation operator to work with multiconfigurational wavefunctions. In single

determinant wavefunctions, the correlation operator provided electron correlation to

only occupied orbitals. In an SSG wavefunction, all molecular orbitals are partially

occupied and multireference one-electron density matrices will have to be used.
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Pα,A
λ,µ =

∑
a∈A

D2
aC

a
λC

a
µ , (4.7)

P β,A
λ,µ =

∑
a∈A

D2
aC̄

a
λC̄

a
µ , (4.8)

Pα,I
λ,µ =

openshell∑
i

Ci
λC

i
µ , (4.9)

P 0,T
λ,µ =

∑
A

[Pα,A
λ,µ + P β,A

λ,µ ] + Pα,I
λ,µ , (4.10)

P ε,A
λ,µ =

∑
a∈A

DaC
a
λC̄

a
µ . (4.11)

The first two density matrices, Pα,A and P β,A, sum over all alpha and beta spin

molecular orbitals in a geminal respectively. The density matrix Pα,I is the familiar

one electron density matrix of single reference orbitals applied to the open shell

orbitals of geminals, and the sum of the first three matrices over all geminals in a

molecule results in the P 0,T density matrix. The last density matrix is defined in

the seminal SSG article [12] and is used to calculate intrageminal energies. The Da

coefficients in each density matrix are the geminal expansion coefficients and the Ca

and Ci are the molecular orbital coefficients. The bars over the coefficients denote

the orbital as being a β spin orbital. These density matrices are used to create an

analogous correlation energy expression to 4.2 which is a multireference correlation

operator energy expression.

ESSG(Ĉ) = ESSG + EĈ −
∑
A

EA
Ĉ
. (4.12)

The energy expression for SSG(Ĉ) in equation 4.12 is the sum of the SSG en-

ergy and expectation value of the correlation operator. It should be noted that the

correlation provided by the correlation operator will include dynamic correlation of
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intrageminal electrons. These electrons are already dynamically correlated and this

intrageminal correlation will need to be subtracted. Fortunately, this is easily done by

excluding correlation operator contributions from orbitals included within the same

geminals. Thus, the true correlation operator contribution to SSG in equation 4.12 is

shown as the sum of total correlation operator energy with the sum of intrageminal

correlation contributions EA
Ĉ
over all geminals subtracted out.

4.4 Results

In this section, the dissociation energy for the diatomic molecules in the G2/97 test

set and the ten, first-row, neutral, transition metal hydride diatomics predicted by

the non-iterative, SSG(Ĉ), and iterative, SSGĈ, combinations of SSG and the corre-

lation operator are presented. The predicted dissociation energies at the 6-31G* and

G3MP2large levels of theory are compared with experimental values and the devia-

tion is reported for all molecules. All calculations were performed at experimental

geometries provided by [47] for main group molecules and [48] for the transition metal

hydrides.

The dissociation energy calculations in this section are performed by first sub-

tracting the molecular energy of the dissociating molecule from the atomic energy of

dissociated fragments. An example calculation on the carbon monoxide molecule is

shown below in equation 4.13.

DCO
0 = EC + EO − ECO . (4.13)

Here EC and EO are the energies of the carbon and oxygen atoms calculated

with the same testing method at the same basis set. The energy of carbon monoxide

ECO is then the energy calculated at the experimental bond length with the same

method and basis set. If the molecule is bound in the method and basis set tested,

then the atomization energy DCO
0 will be positive and represents the non-relativistic
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energy needed to dissociate the molecule. It should be noted here that the correlation

operator in conjunction with SSG carries its size consistency.

The experimental dissociation energy, for comparison, is taken from equation 4.14

where D0 is the atomization energy[47], EZPE is the zero-point energy[48, 49] , and

ESO is the spin-orbit coupling energy for each molecule.

De = D0 − EZPE − ESO . (4.14)

For testing purposes, we compare the dissociation energy results of SSG(Ĉ) and

SSGĈ with those provided from the SSG and SSG(PBE) methods to visualize the

improvement of the new methods. In order to gauge the overall success of the method,

we also compare to three wavefunction based methods (HF, MP2, and CCSD) as well

as two density functional methods (B3LYP and PBE).

The Non-iterative SSG(Ĉ) Method

Initially, testing was performed with the correlation operator perturbatively as was

done with SSG(DFT). However, the goal of this research is to incorporate the cor-

relation operator in the optimization of the wavefunction where it is then able to

improves the geminal structure.

First, we choose to limit our discussion to those of main group dissociation energy

results. The results are reported in table 4.1 for the 6-31g* basis set and table 4.2 for

the G3MP2large basis set. The numbers shown for each method are the deviation

from experimental dissociation energy as calculated in equation 4.14 in kcal/mol.

Here, a negative value would mean that the predicted dissociation energy is less than

experimental. The numbers at the bottom of each column are the overall root-mean-

squared deviation (RMSD) for each method. From both tables we can confirm that

SSG(PBE) is certainly a notable improvement over SSG in both basis sets as it halves

the RMSD of SSG. However, it is also obvious that these results are not comparable in

39



accuracy to any of the other wavefunction based or density functional based methods.

It is also curious to see that the RMSD for SSG(PBE) does not noticeably change

between basis sets.

On the other hand, SSG(Ĉ), outperforms SSG(PBE) at both bases and consid-

erably improves at the larger G3MP2large basis. In fact, the new SSG(Ĉ) method

outperforms the popular wavefunction based CCSD method at both basis sets. Fur-

thermore, SSG(Ĉ) also outperforms the PBE at the G3MP2large basis set. However,

the B3LYP density functional method and perturbation theory method in the form

of MP2 seem to set the pace in accuracy for main group chemistry at larger bases.
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Table 4.1 Deviation from experimental dissociation energies for SSG, SSG(PBE) and SSG(Ĉ) with five other methods using
the 6-31g* basis set. All dissociation energies are calculated with respect to experimental ground state geometries, and all
values are in kcal/mol. Root mean squared deviation is provided for each method at the bottom of the table.

molecule DeExpt. ∆De(SSG) ∆De(SSG(PBE)) ∆De(SSG(Ĉ)) ∆De(HF ) ∆De(MP2) ∆De(CCSD) ∆De(B3LY P ) ∆De(PBE)
LiH 57.81 -12.11 3.73 -18.55 -25.77 -16.28 -12.01 -0.97 -5.8
BeH 49.64 -12.74 -6.11 -1.61 1.89 -1.49 -8.43 8.29 5.97
CH 83.89 -12.44 8.51 -0.42 -30.07 -16.33 -13.38 -0.73 -0.99
NH 83.51 -23.07 7.22 -1.39 -36.07 -18.41 -16.45 0.96 1.61
OH 106.63 -28.72 -3.77 -20.5 -43.91 -16.95 -17.62 -4.7 -2.94
FH 141.14 -39.61 -14.52 -12.2 -53.49 -17.79 -21.58 -13.08 -10.3
HCl 107.11 -29.02 -7.08 -4.42 -35.74 -18.1 -17.99 -7.3 -5.68
Li2 24.43 -3.42 9.73 -17.33 -22.15 -10.1 -3.06 -4.21 -4.97
LiF 139.3 -40.2 -17.64 -14.77 -52.79 -8.42 -15.17 -6.91 -4.04
CN 179.22 -69.04 -19.32 -8.82 -92.4 -27.63 -23.47 -2.91 16.04
CO 259.63 -66.84 -24.21 -14.44 -88.61 -3.24 -20.82 -7.16 7.45
N2 228.62 -78.76 -10.07 -26.39 120.55 -15.6 -34.21 -6 8.77
NO 153.17 -75.95 -23.92 -29.07 -104.72 -13.61 -27.47 -0.73 17.17
O2 121.01 -83.57 -48.21 -38.56 -91.52 -2.73 -20.25 3.7 24.81
F2 39.25 -36 -17.63 6.86 -74.45 -1.16 -10.08 2.86 19.47

Na2 16.8 -1.86 9.65 15.76 -17.68 -6.38 -1.18 0.21 0.98
Si2 75.58 -29.38 -5.1 22.21 -54.02 -14.64 -19.22 -4.89 1.99
P2 117.26 -55.29 -9.76 17.28 -90.18 -23.57 -33.26 -8.91 -2.47
S2 102.86 -64.67 -33.21 17.12 -62.34 -17.85 -25.9 -7.46 4.41
Cl2 59.65 -46.94 -24.66 13.34 -49.05 -17.71 -21.87 -11.84 -2.43

NaCl 98.8 -27.85 -5.27 5.41 -29.74 -10.62 -13.39 -8.46 -6.78
SiO 192.95 -66.9 -30.12 -23.05 -91.02 -8.29 -25.72 -12.57 -2.9
SC 171.97 -68.2 -29.95 -0.72 -79.49 -10.35 -22.83 -10.26 3.57
SO 129.81 -84.65 -51.14 -21.14 -87.34 -17.2 -30.984 -13.42 1.44
ClO 65.43 -57.94 -30.41 -12 -66.18 -19.1 -22.12 -6.41 8.2
FCl 62.69 -45.23 -23.37 6.01 -58.57 -7.89 -15.18 -6.4 5.15
H2 109.24 -11.84 7.27 -11.84 -27.48 -16.58 -11.85 0.53 -4.42
HS 88.16 -21.74 -0.2 -0.81 -31.59 -18.85 -17.04 -3.65 -3.54

RMSD 48.27 21.57 16.54 65.02 14.97 20.29 7.1 8.78
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Table 4.2 Deviation from experimental dissociation energies for SSG, SSG(PBE), and SSG(Ĉ) and five other methods using
the G3MP2large basis basis set. All dissociation energies are calculated with respect to experimental ground state geometries,
and all values are in kcal/mol. Root mean squared deviation is provided for each method at the bottom of the table.

molecule DeExpt. ∆De(SSG) ∆De(SSG(PBE)) ∆De(SSG(Ĉ)) ∆De(HF ) ∆De(MP2) ∆De(CCSD) ∆De(B3LY P ) ∆De(PBE)
LiH 57.81 -2.46 12.33 -0.82 -23.8 -7.16 -1.56 0.5 -4.51
BeH 49.64 -5.83 -0.01 5.37 0.72 2.91 -1.23 8.2 5.72
CH 83.89 -2.38 16.47 9.5 -27.15 -6.11 -3.31 1.43 0.71
NH 83.51 -15.41 14.08 -2.62 -32.45 -7.16 -5.08 4.28 4.67
OH 106.63 -21.31 0.86 2.6 -38.4 -3.03 -4.6 1.28 2.89
FH 141.14 -30.82 -8.9 -3.61 -44.33 1.1 -4.98 -2.26 0.38
HCl 107.11 -22.25 -1.88 2.19 -30.25 -3.05 -5.12 -2.19 -0.91
Li2 24.43 -2.34 9.74 0.06 -20.7 -7.04 -0.6 -3.45 -4.03
LiF 139.3 -38.39 -17.99 -4.47 -48.72 2.17 -6.87 -2.8 -0.79
CN 179.22 -64.3 -16.94 -4.08 -99.6 -7.25 -16.05 -0.21 17.95
CO 259.63 -65.16 -26.52 0.75 -85.32 7.74 -13.24 -4.57 8.95
N2 228.62 -70.41 -3.93 -16.44 -113.42 2.23 -18.76 0.44 14.28
NO 153.17 -72.82 -23.32 -8.58 -100.01 0.18 -16.22 1.6 18.6
O2 121.01 -84.05 -51.61 -9 -88.09 6.13 -13.28 2.41 22.37
F2 39.25 -42.63 -24.91 1.69 -77.16 0.53 -11.64 -2.98 12.85

Na2 16.8 2.89 13.28 -6.86 -17.09 -3.43 0.24 0.69 1.56
Si2 75.58 -16.52 5.9 20.35 -48.31 -5.68 -13.3 -0.8 5.65
P2 117.26 -53.9 -12.92 3.64 -79.15 -6.43 -18.91 -1.47 4.15
S2 102.86 -58.3 -28.68 20.37 -51.95 -1.19 -13.28 -0.19 11.56
Cl2 59.65 -40.96 -18.65 20.91 -41.59 -1.07 -10.23 -5.12 4.98

NaCl 98.8 -24.83 -4.71 6.39 -28.26 0.35 -4.98 -5.79 -4.11
SiO 192.95 -56.73 -23.46 0.97 -81.89 6.34 -14.2 -4.96 3.27
SC 171.97 -62.96 -27.43 4.18 -74.74 2.26 -15.37 -5.86 7.28
SO 129.81 -75.48 -44.89 6.86 -74.74 -0.45 -16.87 -3.68 10.46
ClO 65.43 -53.58 -27.92 8.03 -60.39 -6.44 -12.22 0.09 15.08
FCl 62.69 -45.96 -25.55 5.32 -55.64 0.48 -10.46 -3.43 7.85
H2 109.24 -1.79 15.55 1.79 -25.55 -6.86 -1.79 0.89 -4.79
HS 88.16 -13.63 5.78 4.69 -27.2 -6.46 -5.33 -0.04 -0.32

RMSD 45.56 21.17 8.80 61.11 4.79 10.98 3.3 9.32
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From the results, there are two groups of molecules that can be highlighted as

problematic. First, from the 6-31G* data it is obvious that the SSG(Ĉ) are the worst

for oxygen containing molecules with the worst being that of O2. The second group,

with contributions to the error in both bases, comes with respect to homonuclear

diatomic molecules. We will hold off discussing these problems and a possible solution

until the next section.

In switching our focus from main group diatomics to transition metal hydrides,

the are some aspects of the data analysis that must be noted. First, we are interested

in testing the SSG methods on transition metal systems because these systems need

a multiconfigurational description[50]. The other methods we use for comparison are

not multireference and shouldn’t fare as well on such systems. Second, the results

for 6-31G* are reported here mostly for completeness. It is known that Hartree-Fock

results are inaccurate for transition metal atoms using 6-31G* due to the diffuseness

of the atomic basis functions [51]. These basis set inaccuracies manifest in SSG, as

they do in Hartree-Fock calculations, as incorrect ground state energies for the first

row transition metals. Therefore, the results are shown here to give some qualitative

insight on the error in the respective methods. Third, the experimental data on

transition metal systems varies within the literature. We take experimental values

from another computational study on these transition metal hydride systems as the

experimental values we use [48].

From the RMSD of 6-31G* data reported in table 4.3, it can be assumed that, like

main group molecules, SSG(Ĉ) is an improvement upon both SSG and SSG(PBE)

and may even be competitive with the most accurate methods compared in this

study. However, it must be noted that the basis set inaccuracies certainly muddle

the conclusions at this basis as SSG error in dissociation energy prediction should be

lower than the Hartree-Fock method.

More representative conclusions can be drawn from the G3MP2large basis set re-
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Table 4.3 Root mean squared deviation from experimental dissociation energies for
the first row diatomic transition metal hydrides using SSG, SSG(PBE) and SSG(Ĉ)
at the 6-31G* basis set. Results for wavefunction and density functional based
methods are included for comparison. All RMSD are calculated with respect to
experimental ground state geometries, and all values are in kcal/mol.

method RMSD6−31G∗
SSG 24.31

SSG(PBE) 22.91
SSG(Ĉ) 11.31
B3LYP 10.6
PBE 11.45
HF 20.11
MP2 22.06
CCSD 18.64

sults that do not suffer from these same inaccuracies. The results for the G3MP2large

basis are shown in table 4.4. Here the RMSD for SSG(PBE) shows a substantial im-

provement more in line with the improvement made by SSG(Ĉ). We believe this is

somewhat due to the fair accuracy of the parent SSG method with respect to such

calculations. Nonetheless, both hybrid methods are also comparable to the PBE

functional and perturbation theory. SSG(Ĉ) is slightly more accurate and presents a

slight improvement over SSG(PBE). In fact, SSG(Ĉ) is just two kcal/mol worse on

average than B3LYP for these simple transition metal systems. It is also important

to note that the accuracy of SSG(Ĉ) is relatively unchanged in the G3MP2large basis

between calculations on transition metal and main group diatomics.
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Table 4.4 Deviation from experimental dissociation energies for the first row diatomic transition metal hydrides using SSG,
SSG(PBE) and SSG(Ĉ) at the G3MP2large basis set. Results for five other methods are included for comparison. All
dissociation energies are calculated with respect to experimental ground state geometries, and all values are in kcal/mol. Root
mean squared deviation is provided for each method at the bottom of the table.

molecule DeExpt. ∆De(SSG) ∆De(SSG(PBE)) ∆De(SSG(Ĉ)) ∆De(HF ) ∆De(MP2) ∆De(CCSD) ∆De(B3LY P ) ∆De(PBE)
ScH 50.39 -7.3 0.43 0.44 -14.03 -9.05 -7.03 3.94 4.37
TiH 50.55 -5.66 5.29 11.77 -9.35 -3.99 0.26 8.33 14.16
VH 51.88 -5.85 5.42 14.93 -9.25 -1.59 4.47 11.22 21.98

CrH 46.94 -3.7 7.42 1.87 -22.38 -17.77 2.02 8.27 5.7
MnH 41.14 -2.66 6.49 13.69 -6.15 -4.52 -1.87 -1.78 4.09
FeH 39.63 -13.03 -1.4 10.07 -15.5 -10.66 1.1 15.85 16.98
CoH 48.91 -24.97 20.48 -1.99 -27 -18.98 -1.32 9.99 13.02
NiH 62.72 -39.72 -26.4 -16.84 -40.4 -29.36 -0.69 3.3 4.57
CuH 63.17 -16.5 0.23 -2.02 -31.34 -2.15 -3.3 0.06 1.8
ZnH 22.02 -0.79 10.01 17.06 -2.06 -1.59 1.35 1.35 1.07

RMSD 16.68 11.72 11.12 21.22 13.14 3.05 8.04 11.11
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The Iterative USSGĈ and RUSSGĈ Methods

Calculations with iterative use of the correlation operator to optimize geminal struc-

ture were also performed and are shown in table 4.5 and 4.6. In the preceding subsec-

tion it was mentioned that there are two classes of molecules that need an improved

description. First, the class of homonuclear diatomic molecules in the G2/97 test set

seems to cause problems in both basis sets. Upon further examination, the core set

of geminals in these molecules were on average too delocalized. When a molecule

is stretched, the valence geminals will change drastically, but the core geminals will

be remain unchanged and should resemble atomic geminals even at equilibrium ge-

ometry. This is not the case for these delocalized core geminals. The problem is

exacerbated by the sensitivity of the correlation operator. Since the electrons in

core geminals at equilibrium geometry are spread out over the entire molecule, the

correlation operator will overcorrelate these core geminals and thus predict a larger

dissociation energy than experimental. This is corrected in our iterative calculations

by forcing the core geminals to be Hartree-Fock-like single determinant geminals and

providing them intrageminal correlation via the correlation operator. This reduces

the amount of correlation these core geminals can add to the molecular dissociation

energies. This remedy is shown to improve these results in table 4.5.

Second, the class of oxygen containing molecules presents a problem. The itera-

tive correlation operator method is used with respect to two spin restrictions placed

upon the geminal wavefunctions called USSG and RUSSG . The first is the same

unrestricted formulation discussed in chapter one. We have used this formulation in

SSG(DFT) which could easily be called USSG(DFT) in all research discussed so far.

USSG requires the use of α and β molecular orbitals that can be different spatially.

The RUSSG formalism uses a partially restricted formulation that is only applicable

to pair based wavefunctions like SSG. In RUSSG, intergeminal α and β molecular

orbitals are restricted to be spatially orthogonal. The advantage of using a par-
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tially restricted formulation of SSG can be surmised from comparing the USSGĈ and

RUSSGĈ at 6-31G* in table 4.5. The nearly 5.5 kcal/mol improvement in RMSD

stems from the improvement in oxygen containing molecules. This is due to the abil-

ity of RUSSG to optimize molecules and atoms to chemically accurate states. USSG,

while accurate in most cases, can sometimes allow incorrect states by introducing spin

contamination into the wavefunction. This spin contamination allows the lowering

of energy by the interaction of unrestricted intergeminal orbitals. The partial spin

restriction reduces the amount of spin contamination which allows the chemically

correct states to be predicted more frequently. Despite this improvement, there is

not an similarly impressive improvement for G3MP2large due to some of these same

oxygen containing molecules.

In transition metal hydrides, the iterative correlation problems seems to have great

difficulty with the later transition metal hydrides as shown in table 4.6. The NiH and

CoH molecules seem to be the most difficult molecules to describe. The problem is

not corrected by the use of either USSGĈ or RUSSGĈ and warrants further study.
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Table 4.5 Deviation from experimental dissociation energies using USSG(Ĉ), USSGĈ, and RUSSGĈ for the G2/97 test set
diatomic molecules at 6-31G* (left) and G3MP2large (right) basis sets. All dissociation energies are calculated with respect to
experimental ground state geometries, and all values are in kcal/mol. Root mean squared deviation is provided for each
method at the bottom of the table.

molecule DeExpt. ∆De(USSG(Ĉ)) ∆De(USSGĈ) ∆De(RUSSGĈ) ∆De(USSG(Ĉ)) ∆De(USSGĈ) ∆De(RUSSGĈ)
LiH 57.81 -18.55 -11.24 -11.24 -0.82 -1.02 -1.01
BeH 49.64 -1.61 -4.12 -6.23 5.37 2.95 0.18
CH 83.89 -0.42 -4.32 -5.29 9.5 5.77 4.57
NH 83.51 -1.39 -0.30 -6.11 -2.62 -11.49 3.30
OH 106.63 -20.5 -16.33 -7.64 2.6 -1.98 0.57
FH 141.14 -12.2 -19.02 -15.60 -3.61 -10.07 -5.09
HCl 107.11 -4.42 -12.25 -6.83 2.19 -4.55 -8.68
Li2 24.43 -17.33 -2.93 -2.93 0.06 -0.63 -0.13
LiF 139.3 -14.77 -14.60 -11.18 -4.47 -11.85 -6.87
CN 179.22 -8.82 -5.75 -11.29 -4.08 0.33 -4.02
CO 259.63 -14.44 -23.58 -10.71 0.75 -17.07 -6.51
N2 228.62 -26.39 -9.10 -7.05 -16.44 3.64 7.43
NO 153.17 -29.07 -19.78 -12.38 -8.58 -7.35 -6.26
O2 121.01 -38.56 -35.93 -23.55 -9.00 -25.17 -30.71
F2 39.25 6.86 -8.69 -1.85 1.69 -14.47 -4.50

Na2 16.8 15.76 0.04 0.05 -6.86 1.59 1.59
Si2 75.58 22.21 -6.82 -8.04 20.35 2.54 10.57
P2 117.26 17.28 2.99 6.29 3.64 -12.42 -13.07
S2 102.86 17.12 -0.25 0.47 20.37 3.88 -8.00
Cl2 59.65 13.34 -9.70 1.14 20.91 -0.85 -9.10

NaCl 98.8 5.41 0.28 5.70 6.39 1.13 -3.00
SiO 192.95 -23.05 -34.66 -18.69 0.97 -19.57 -4.40
SC 171.97 -0.72 -18.75 -11.00 4.18 -11.67 -7.23
SO 129.81 -21.14 -30.14 -21.71 6.86 -10.55 -22.77
ClO 65.43 -12 -23.58 -11.36 8.03 -11.61 -16.08
FCl 62.69 6.01 -14.29 -5.45 5.32 -14.50 -13.64
H2 109.24 -11.84 -11.84 -11.84 -1.79 -1.83 -1.79
HS 88.16 -0.81 -6.55 -3.73 4.69 -0.05 -2.18

RMSD 16.54 15.98 10.54 8.80 10.01 9.96
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Table 4.6 Deviation from experimental dissociation energies using USSG(Ĉ), USSGĈ, and RUSSGĈ for the test set of
transition metal hydrides at 6-31G* (left) and G3MP2large (right) basis sets. All dissociation energies are calculated with
respect to experimental ground state geometries and all values are in kcal/mol. Root mean squared deviation is provided for
each method at the bottom of the table.

molecule DeExpt. ∆De(USSG(Ĉ)) ∆De(USSGĈ) ∆De(RUSSGĈ) ∆De(USSG(Ĉ)) ∆De(USSGĈ) ∆De(RUSSGĈ)
ScH 50.39 -2.45 -8.29 0.08 0.44 3.20 4.32
TiH 50.55 0.33 7.89 -5.67 11.77 2.92 2.74
VH 51.88 -1.86 -9.43 -9.95 14.93 2.89 3.04
CrH 46.94 12.06 11.31 7.53 1.87 3.57 4.11
MnH 41.14 6.21 -9.88 -13.67 13.69 2.26 -1.49
FeH 39.63 -4.12 -15.21 -14.95 10.07 -1.45 -5.37
CoH 48.91 -23.29 -20.62 -27.55 -1.99 -21.45 -20.36
NiH 62.72 -21.71 -33.52 -42.23 -16.84 -34.65 -30.68
CuH 63.17 -0.51 2.60 2.72 -2.02 -33.17 -15.91
ZnH 22.02 7.32 1.70 -5.30 17.06 3.06 0.28

RMSD 11.31 14.95 17.82 11.12 16.78 13.01
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4.5 Conclusions

The results reported for the new hybrid geminal method SSG(Ĉ) and its iterative

analogs USSGĈ and RUSSGĈ warrants further study for two reasons. First, they are

the first dynamic correlation corrected multireference methods to completely avoid the

double counting error and account for longer range dynamic correlation effects while

keeping a Hartree-Fock-like expense. The improvement of the correlation operator

can be visualized from the consistently more accurate results provided by SSG(Ĉ)

over the flawed SSG(PBE) method. Second, the consistent accuracy between main

group molecules and transition metal molecules is a welcome development in response

to the known inconsistencies with respect to density functional theory. In fact, in

transition metal systems the accuracy of the SSG(Ĉ) method rivals the accuracy

of the immensely popular B3LYP DFT method. A further improvement could be

realized with the use of the iterative combinations USSGĈ and RUSSGĈ as they

correct two of the main problems for the perturbative method at small basis sets.

However, improvement is still needed in describing open shell molecules and atoms.
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Chapter 5

SSpG: A Strongly Orthogonal Geminal Method

with Relaxed Strong Orthogonality1

5.1 Abstract

In this final chapter, the second correlation deficiency discussed in chapter 1 related

to the strong orthogonality condition placed on SSG wavefunctions is studied. Strong

orthogonality is an important constraint placed on geminal wavefunctions in order

to make variational minimization of the wavefunction tractable. However, strong

orthogonality prevents certain, possibly important, excited configurations from con-

tributing to the ground state description of chemical systems. The method presented

in this chapter lifts the strong orthogonality constraint from a geminal wavefunc-

tion by computing a perturbative-like correction to each geminal independently from

the corrections to all other geminals. Comparisons of this new SSpG method are

made to the non-orthogonal AP1roG and the unconstrained GMFCI method using

small atomic and molecular systems. The correction is also compared to DMRG

calculations performed on long polyene chains in order to assess its scalability and

applicability to large strongly correlated systems. The results of these comparisons

demonstrate that although the perturbative correction is small, it may be a necessary

first step in the systematic improvement of any strongly orthogonal geminal method.

Some of the results reproduced in this chapter can be found in [52] and permission

1Cagg, B. A.; Rassolov, V. A. J. Chem. Phys. 2014, 141 , 164112. Reprinted here with
permission from the publisher.
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to reproduce them is granted by the publisher.

5.2 Introduction and Motivation

Geminal formalism

Geminal theory is a conceptually simple and intuitive model that can describe many

chemical phenomena which are difficult, if not impossible, to represent using single

reference methods such as DFT. In its most general form, the geminal wavefunction

is written as an antisymmetrized product of two-electron functions, or geminals. This

antisymmetrized product wavefunction may also include any number of single electron

orbitals in order to describe open-shell species. In addition, individual geminals may

be explicitly correlated by inclusion of a functional dependence on relative electron

coordinates, rk − rm , [53] or have an implicit correlation through the expansion in

products of one-electron orbitals [54]. The geminal energy is then often computed by

the variational minimization of the expectation value of a Hamiltonian applied to a

geminal wavefunction with respect to the parameters of the geminals.

Unfortunately, the variational minimization of the most general geminal wavefunc-

tion, the APG wavefunction shown in 1.12 is a computationally intractable problem,

as it is likely to have an exponential dependence on the system size. However, as was

mentioned in the first chapter, in small model systems where an exact (in a given

basis) Full Configuration Interaction (FCI) wavefunction can be feasibly determined,

the geminal wavefunction often yields energies and dipole moments that are tanta-

lizingly close to FCI results [3]. Therefore, utilizing approximations to simplify the

variational search for the best possible geminal wavefunction is desirable.

The two most widely used geminal methods, which are comparable in computa-

tional expense to the simplest forms of the Multiconfigurational Self-Consistent Field

(MCSCF) methods, are based on different approximations that constrain the con-
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struction of geminals. The Antisymmetrized Geminal Power (AGP) assumes that

all geminals are functionally identical. The Antisymmetrized Product of Strongly

Orthogonal Geminals (APSG), on the other hand, assumes all geminals to be as dif-

ferent as possible by imposing strong orthogonality between geminals as in equation

1.13. It has been shown by Arai [55] that enforcing strong orthogonality is equivalent

to requiring different geminals to be expanded in mutually orthogonal one-electron

orbital sets.

Both of the aforementioned geminal methods have their particular strengths and

weaknesses. The AGP method is particularly useful for the description of delocalized

electron pairs, as in the BCS model of superconductivity [56]. However, it is not size-

consistent, meaning that AGP energy of two non-interacting subsystems is not equal

to the sum of their individual AGP energies. The APSG wavefunction, on the other

hand, is rigorously size-consistent provided that only the opposite-spin orbitals are

coupled into geminals and that the orbitals themselves are spin-unrestricted and fully

optimized [12]. Moreover, the APSG wavefunction optimization can be performed in

the Atomic Orbital (AO) basis, making the APSG wavefunction optimization problem

to scale with the number of basis functions N better than O(N5).

Intra-Geminal Correlation and Strong Orthogonality

It is convenient to subdivide all electron correlation into an intra-geminal part and

the rest, which we define as inter-geminal correlation. The SSG model omits all inter-

geminal correlation, and describes all intra-geminal correlation exactly, subject to the

following discussion.

Consider the case of helium gas in a strong external field that may perturb in-

dividual atoms. In the case of non-overlapping wavefunctions of individual atoms,

all electron correlation effects in this system separate into intra-atomic correlations

and van der Waals-type inter-atomic correlation. All other electron correlation effects
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vanish due to zero overlap between atomic wavefunctions. The SSG model describes

each helium atom in such a system exactly, and omits all inter-atomic interactions be-

yond the mean-field. For this system, the intra-geminal and intra-atomic correlations

are the same.

Now let us consider an atom of beryllium, which is one of the simplest chemical

systems with strong static correlation. The mean-field, Hartee-Fock, description of

the ground state is a 1s22s2 configuration. The dominant correlation effects arise

due to strong coupling of 1s22p2 configurations to the ground state. The APSG

wavefunction describes this correlation via a geminal ψ2s = D2s
0 φ2sφ̄2s+D2s

1 φ2pxφ̄2px+

. . ., where D are variationally optimized geminal expansion coefficients. With a

very large basis set, this geminal will also include many other terms corresponding

to excitation of 2s electrons to high energy orbitals. Such excitations collectively

describe dynamic correlation of the 2s electrons. At the same time, the other geminal

describes the 1s electrons, and in a sufficiently large basis it contains some highly

excited orbitals a, which describe core correlation: ψ1s = D1s
0 φ1sφ̄1s +D1s

1 φaφ̄a + . . ..

The APSG wavefunction for beryllium is Ψ = Â[ψ1sψ2s]. Compared to the exact

wavefunction, the configurations corresponding to excitations of 1s electrons into 2p

orbitals are missing from it. Considering each geminal as a correlated two-electron

object, the 1s → 2p excitations are intergeminal and, therefore, are not part of the

exact description of the intra-geminal correlation in ψ1s. However, from the chemical

point of view, the 1s electron pair correlation should include all important excitations,

including those into 2p orbitals. Therefore, the APSG description of the 1s electrons

in beryllium is not exact.

The goal of the method presented here is to account for such excitations, as was

mentioned in the previous example, in a computationally efficient manner. Such nom-

inally inter-geminal excitations violate strong orthogonality, thus we test our method

in comparison to two other geminal methods that provide corrections to the strong
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orthogonality approximation. The first is the Geminal Mean-Field Configuration In-

teraction (GMFCI) method [57] developed by Cassam-Chenaï. GMFCI is based on

the graded orthogonality concept[58], with a variationally optimized wavefunction

written as a product of non-strongly orthogonal geminals. The other is the AP1roG

method developed in the Ayers group [2]. It relies on identifying one orbital pair in

each geminal as a reference pair, and allows for the coupled-cluster-like excitations

of this pair to all other non-reference orbital pairs in the system. We also provide

a comparison to the calculations of all-trans-polyenes based on the Density Matrix

Renormalization Group (DMRG) as developed in the Chan group [4]. The method

is applicable to any APSG wavefunction, including RUSSG. We investigate its per-

formance in application to RSSG and USSG.

5.3 SSpG Formulation

Consider a converged SSG calculation for a system of nα electrons, that are spin up,

and nβ electrons, that are spin down (we assume nα ≥ nβ), and uses N one-electron

basis functions. This system contains nβ geminals and nα−nβ open-shell uncorrelated

orbitals. In the SSG model, each of the converged molecular orbitals φi, i = 1 . . . N

ends up in one and only one geminal, with the exception of the nα − nβ spin down

orbitals φ̄k that are counterparts to the occupied open-shell φk spin up orbitals, which

are left unoccupied. Each geminal, here labeled with A, can then be expanded as

ψA =
∑
i∈A

Di|φiφ̄i|,
∑
i∈A

D2
i = 1 . (5.1)

In order to simplify the notation and not to consider the open-shell and correlated

geminal orbitals as separate cases with separate energy expressions, we note that a

product of two uncorrelated orbitals φkφ̄k can be viewed as a geminal with Dk = 1.

Furthermore, setting to zero all energy matrix elements that involve φ̄k makes the

energetics of this orbital product identical to the energetics of the single orbital φk.
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Therefore, to simplify the coding and the formula derivation, each open-shell orbital

φk is considered to be part of a special uncorrelated geminal with single expansion

coefficient Dk = 1 and with all energy matrix elements involving φ̄k being zero. This

converts the SSG wavefunction from the product of nβ geminals and nα−nβ open-shell

orbitals, to the product of nα geminals (with “special” uncorrelated nα − nβ single-

product geminals, each containing β-spin orbitals not contributing to the energy).

Using geminal wavefunction Eq. 1.12 with each geminal given by Eq. 5.1, we get for

the SSG energy

ESSG = 〈ΨSSG|Ĥ|ΨSSG〉 =
∑
n

D2
nhnn +

∑
A>B

∑
a∈A,b∈B

D2
aD

2
b < ab||ab >

+
∑
A

∑
m,n∈A

DmDn < mm̄||nn̄ > , (5.2)

where the first sum runs over all spin orbitals, the second sum runs over all pairs

of geminals (including the unpaired orbitals), hkk is the expectation value of the

one-electron part of the hamiltonian over spin orbitals φk, and the last term has a

summation over the spatial orbitalsm and n, with spins given explicitly in the term by

the bars labeling beta spin orbitals. Here < ij||kl >=
∫
φi(r1)φj(r2) 1

r12
φk(r1)φl(r2)−∫

φi(r1)φj(r2) 1
r12
φl(r1)φk(r2), with integration running over both the spatial and the

spin coordinates.

Now let us have one geminal, Z, break the strong orthogonality condition by

allowing its expansion in all orbitals of the system, while keeping all other geminals

frozen

ψ̃Z =
N∑

i,j=1
D̃i,j|φiφ̄j|

Ψ̃Z = Â[ψA . . . ψ̃Z . . .]

ẼZ = 〈Ψ̃|Ĥ|Ψ̃〉 (5.3)

∆EZ = ẼZ − ESSG

For normalized Ψ̃Z the energy expression with respect to the coefficients D̃i,j is bi-

linear, so the variational energy minimization is straightforward. The challenge is
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in computation of the Hamiltonian matrix elements for this minimization. The ex-

citation of geminal Z into orbital spaces of other geminals breaks the mean-field

approximation, and individual terms in the interacting geminals must be considered

explicitly. Details of these computations are given in the Appendix.

The essence of the proposed method is to consider breaking of strong orthogonal-

ity by all geminals independently from each other, in the spirit of the Independent

Electron Pair Approximation (IEPA)[59, 60]. The total energy is defined as

ESSpG = ESSG +
nα∑
Z=1

∆EZ

The density matrix of the system is also defined as the SSG density matrix plus the

sum of all geminal corrections, with each correction defined as the difference between

the reference density and the density of the wavefunction from Eq. 5.3. In the present

work, we limit our investigation of the new method to energies and energy differences.

Note that Ψ̃Z is normalized to unity. It is also possible to define it in intermediate

normalization of 〈Ψ̃Z |ΨSSG〉 = 1. We investigate both normalizations, and for the

test systems studied here we see no qualitative difference in results. Both forms of

Ψ̃Z lead to fully size-consistent energy. This is in contrast to widely used ab initio

formulations such as coupled cluster theory or Møller-Plesset perturbation theory,

where intermediate normalization is required. Size consistency of the method follows

from localization of geminals on the non-interactive fragments, leading to a size-

consistent description of strong orthogonality correction in each geminal.

In the new method the correction to each geminal is determined variationally, but

the corrections of different geminals are not coupled to each other. Also, the excita-

tions from a corrected geminal Z to different geminals are not coupled to each other,

as explained in the Appendix. In addition, during the optimization of the geminal Z

all other geminals remain unmodified, apart from elimination of doubly occupied sin-

gle orbitals in each configuration due to antisymmetrization. Therefore, the proposed

method is fully variational with respect to the correction of a single geminal, but is
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perturbative with respect to interaction between the geminals. Therefore, we label

the new method SSpG for (antisymmetrized product) of the Singlet-type Strongly

orthogonal-perturbatively corrected Geminals.

We emphasize the following differences with IEPA: (i) The SSpG method uses

only nα independent excitations, in contrast to (nα +nβ)((nα +nβ − 1)/2 excitations

in IEPA. Thus, the SSpG method accounts for a relatively small fraction of the total

correlation energy that corresponds to a correlation within each localized electron

pair. (ii) The excitations in the SSpG arise from correlated and localized electron

pairs, making the approximation of their independence less severe than in IEPA.

The SSpG method is designed to correct for a specific deficiency in the APSG

wavefunction related to strong orthogonality, in a computationally efficient manner

with better than or close to O(N5) effective scaling with the number of basis functions.

To account for all electron correlation missing in APSG, a number of approaches have

been developed over the years, see recent discussion [61]. Here we want to emphasize

two approaches. Our group has developed a perturbative correction that includes all

double excitations from the APSG reference state [13]. The number of configurations

that have to be considered leads to approximately O(N6) scaling, with significant

scratch space requirements to store contracted integrals. It is possible to reduce the

number of excitations further by using an effective one-body Hamiltonian in the for-

mulation of perturbative equations, as was done by Rosta and Surján [32]. The have

also included all intra-geminal two-body terms into the reference Hamiltonian, leading

to much more accurate results at the expense of the demanding scaling requirements

with the system size, if geminal spaces are large.

5.4 Results

The effectiveness of the SSpG correction is evaluated by comparison to two geminal

methods, AP1roG and Geminal Mean Field Full Configuration Interaction (GMFCI),
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in which strong orthogonality is not imposed, for several small atomic and molecular

systems. GMFCI is a product of fully unconstrained geminals that has an exponential

scaling with the system size. AP1roG [2], on the other hand, is a method with

polynomial scaling. It is based on the subdivision of the orbital pairs within each

geminal into a single reference pair, constrained to be occupied in a single geminal,

and all other orbital pairs, which can have non-zero occupations in all geminals,

thus lifting a strong orthogonality constraint. By comparing SSpG with AP1roG and

GMFCI we can examine the significance of the strong orthogonality constraint and

compare two different approaches of approximate relaxation of this constraint. All

calculations are performed using a modified version of Q-Chem [62] and all systems are

studied using the same basis sets and geometries used in the comparative literature.

Comparison to AP1roG

SSpG calculations are performed on three H10 chains with different intermolecular

distances. The results are shown in Table 5.1. Since all methods used in this section

are, in principle, bound by the RSSG energy from above, we compare the difference

between the energy of a given method, and RSSG. AP1roG and SSG are nearly equiv-

alent for these simple systems with the biggest energy difference of only 0.75 mh. Since

the minimal STO-6G basis has very few virtual orbital pairs in a single-determinant

reference ground state, and since the difference between SSG and AP1roG is mainly

in the treatment of these reference virtual orbitals, the discrepancy in this basis is

small. The negligible difference is further highlighted by the small difference between

the SSG and the Full CI energy.

The strong orthogonality correction yields considerable improvement in the energy

for these hydrogen chains. At an intermolecular distance of 2.5 bohr, over nine mh

is regained which is over a third of the energy error in SSG. SSpG becomes even

more accurate as intermolecular distance increases. Conversely, AP1roG recovers a
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Table 5.1 Total energy of alternating H10 chain, relative to SSG, given in
millihartrees. The distances between H2 units are given in bohrs, and the distances
within H2 are constrained at 2 bohrs. Calculations are performed at the STO-6G
basis set, and the methods are discussed in the text.

Rinter FCI AP1roG SSpG
2.5 -25.6522 -0.7591 -9.2977
3 -10.9849 -0.1833 -4.7898
4 -1.9876 0.1850 -1.0841

smaller and smaller fraction of FCI energy and becomes nearly equivalent to SSG at

4 bohr intermolecular distance. The slight energy error in AP1roG is likely due to

incomplete orbital optimization.

In Table 5.2, we compare the total energy calculated for four other chemical sys-

tems with AP1roG, RSSG, and RSSpG. Neon was studied with three basis sets to

investigate the basis set dependence of the proposed method. There is much more

interaction between orbital pairs in these systems than in hydrogen chains with the

minimal basis. Therefore, we expect a greater differentiation between the methods.

Indeed, both geminal methods are significantly worse than FCI, and provide only

modest improvement over SSG. The SSpG is closer to FCI than AP1roG, and its

relative performance improves as the basis size is increased.
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Table 5.2 Total energy, relative to SSG, given in millihartrees. He-He distance is

at 4 bohrs, as in Ref. [2]. The methane geometry is optimized at the Hartree-Fock

level.

System Basis FCI AP1roG SSpG

Ne 6-31G -73.8302 -1.2142 -1.1384

Ne 6-311G* -161.4802 -13.4660 -17.0642

Ne cc-PVTZ -206.5669 -13.1737 -20.0516

CH4 6-311G* -94.521 -4.4535 -13.4397

He2 6-31G* -0.3227 -0.0004 -0.2215

Be 6-31G -0.5663 -0.05188 -0.2672

Finally in Figures 5.1 and 5.2 we show the potential energy surfaces for the sym-

metric stretch of both O-H bonds in H2O as well as the stretching of the triple bond in

N2. Due to the spin restriction used in the previously published graph of AP1roG and

its comparable methods[5], our SSpG method can only be compared to these other

methods near equilibrium, where there is no spin polarization in USSG. It can be

observed in both surfaces that near equilibrium SSpG is consistently lower in energy

than AP1roG at all points along the potential energy surface. However, the difference

between SSpG and SSG near equilibrium is only 1̃0 mh. Interestingly, the SSpG sur-

faces are smooth, despite different sizes of orbital subspaces in geminals. This is likely

due to the (i) the SSG potential energy surface being continuous by construction [12],

(ii) the re-assignment of orbital pairs between the geminals in practice only involve

very weakly occupied orbitals, and (iii) the SSpG wavefunction being less dependent

on the definition of the geminal orbital subspaces than the SSG wavefunction, due to

relaxed strong orthogonality in the former.
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Figure 5.1 Potential energy surface of the symmetric stretching of water,

computed with 6-311G** basis. The energy is reported relative to FCI atomic

fragments and is measured in hartrees. The molecular angle is set to 104.6 degrees

throughout and the bond distances are reported in Å. The lines are drawn through

the computed points without interpolation, so sufficiently dense grid is used for

smooth appearance.
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Figure 5.2 Potential energy surface of N2, computed with cc-pVTZ basis. The

energy is reported in hartrees relative to the atomic fragments calculated by

NEVPT2 and taken from [5].The lines are drawn through the computed points

without interpolation, so sufficiently dense grid is used for smooth appearance.

Comparison to the Completely Non-orthogonal GMFCI

Method

In table 5.3, equidistant hydrogen chains are used as a benchmark to compare RSSpG

with the single-step GMFCI method. The GMFCI is based on fully unconstrained

geminals. With the single-step version, strong orthogonality is relaxed for only one

geminal. In the smallest 6 atom chain considered, SSpG recovers slightly less correla-

tion energy than the single-step GMFCI method (both methods recover about 25%

of the energy missing in SSG). In larger chains the SSpG energy is below single-step

GMFCI. The unpublished GMFCI data on this systems indicates that optimization

of more than one geminal in GMFCI drives its energy below that of the SSpG, as

expected.
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Table 5.3 Total energy, relative to SSG, given in millihartrees. All calculations use

the STO-3G basis and the bond-lengths are taken from Ref. [3]: R(Li-Li)=2.673,

R(Li-H)=1.5957, R(Be-H)=1.340, R(B-H)=1.2324, R(Be-Be)=2.460,

R(H-H)=1.000, in Å. The GMFCI calculations on the hydrogen chains relax strong

orthogonality in a single geminal only, as described in Ref. [3].

System ∆EFCI ∆EGMFCI ∆ESSpG

H10 -61.3694 -7.0264 -13.8799

H8 -45.5595 -7.0575 -10.3601

H6 -30.0830 -8.1250 -7.8346

LiH -0.1894 -0.1694 -0.0852

Be -0.0254 -0.0254 -0.0238

Li2 -0.7560 -0.5300 -0.1463

BeH2 -6.2310 -6.0850 -1.8852

BH -2.0362 -2.0292 -0.7927

Be2 -22.8749 -21.7419 -3.4660

The full GMFCI and RSSpG energies become substantially different in the systems

where different electron pairs have larger differential overlap, allowing for stronger

interaction between them. This is observed in the six molecules at the bottom of

Table 5.3. In some systems, such as the beryllium atom, both methods give nearly

exact energy. In the beryllium dimer, on the other hand, GMFCI is relatively close

to being exact, while SSpG recovers only about 15 % of the energy missing in SSG.

Such systems as the beryllium dimer are unlikely to be described with high accuracy

by a computationally cheap general purpose method such as SSpG.
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Table 5.4 Energies for all-trans polyene chains at fixed geometry. All calculations
use STO-3G basis, with geometries from [4]. Except for LDMRG, all calculations
correlate all orbitals. The last column shows SSpG energies based on the
intermediate normalization of corrected geminals (see text). All energies are in
hartrees.

Molecule ERHF ∆EMP2 ∆EDMRG ∆EUSSG ∆EUSSpG ∆ERSSG ∆ERSSpG ∆E′
RSSpG

C8H10 -304.88939 -0.486896 -0.177127 -0.354404 -0.379816 -0.353744 -0.380439 -0.380455
C40H42 -1519.962544 -2.414667 -0.857935 -1.646457 -1.804361 -1.626526 -1.815888 -1.816225
C48H50 -1823.730875 -2.896671 -1.028113 -1.981566 -2.161978 -1.944683 -2.174951 -2.175365

Comparison to DMRG

Finally, we use long all-trans polyene chains, with geometries used by Hachmann et

al [4] as test systems. The minimal STO-3G basis is used in all polyene calculations.

Since DMRG results are based on a π-electron active space, while SSG correlates all

electrons, direct energy comparison between the methods is less informative. The

results for both are nonetheless provided in Table 5.4 for general comparison.

It’s important to compare the energy gained by RSSpG and USSpG on top of their

respective uncorrected counterparts to the reference MP2 calculations provided. From

Table 5.4 it is observed that uncorrected USSG calculations yield more correlation

energy to the polyene systems than their RSSG counterparts. The perturbative

corrections for both spin treatments recovers a small fraction, 20% , of the remaining

dynamic correlation, which compares well with similar systems of extended hydrogen

chains. However, it is interesting to note that the RSSpG correction brings the total

energy much closer to USSpG.

The last column in Table 5.4 presents RSSpG results based on the intermediate

normalization of geminal corrections, as described in Sec. 5.3. All other SSpG results

in this work are based on normalized geminals. Comparison of last two columns shows

that the difference in results is marginal, because each geminal correction is quite

small. It is consistent with our observation that, in general, strong orthogonality

constraint is a relatively mild approximation, provided that the orbitals are fully

optimized.
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As a note on numerical cost, for the longest C48H50 chain studied the computation

of the energy correction of the single geminal took ca. 300 s running on a single core,

slightly longer but comparable to the single SCF iteration in the optimization of

the SSG wavefunction. It is significantly shorter than a ca. 5000 s required for the

transformation of the integrals from atomic to molecular orbitals.

5.5 Conclusions

We have presented in this chapter a perturbative-like correction to the computation-

ally inexpensive SSG method that lifts the strong orthogonality constraint placed

on the wavefunction. The resulting approximation to the energy of a nonorthogonal

geminal method is called SSpG. In every system compared, SSpG energy is shown

to be superior to that of the nonorthogonal AP1roG method. It’s also shown that

the energy neglected in the strong orthogonality constraint is usually relatively small

compared to total dynamic correlation in systems. Comparisons with GMFCI cal-

culation demonstrate that lifting the strong orthogonality constraint alone is not

sufficient to obtain highly accurate energies in some systems. Analysis of extended

polyene systems shows that improvements to conjugated π-bonded systems are simi-

lar to improvements on extended hydrogen chains. It is also shown that the proposed

method scales well with the system size, and is applicable to large strongly correlated

systems. Finally, we conclude that the new SSpG method provides a consistent im-

provement over SSG as it provides a leading correction to the strong orthogonality

approximation in SSG. Further work in our group focuses on computationally cheap

ways of including dynamic correlation energy into SSpG.
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Appendix A

The Computation of SSpG Matrix Elements

In this Appendix, we briefly introduce the computation of matrix elements described

in the SSpG formulation section of chapter five. To streamline the notation, we

use indices a, b, c, d to label the orbitals of geminal A, z, x, y to label the orbitals of

geminal Z, and p, q, s to label the orbitals of geminal P , i is the running index over

the orbitals of geminal A, j is the running index over the orbitals of geminal B, and

k runs over the orbitals of all other geminals. No more than three geminals need to

be considered.

In computation of the Hamiltonian matrix elements, it is convenient to normalize

each wavefunction in the summation in Eq. 5.3. First, let us consider a specific

term in the geminal Z: ψ̃a,b̄Z = |φaφ̄b| corresponding to the overall wavefunction

Ψ̃Z,a,b̄ = Â[ψA . . . ψ̃a,b̄Z . . .]. Geminal A is expanded in a set of its orbitals (see Eq

5.1), but the antisymmetrizing operator eliminates the terms in this expansion that

have the orbital(s) φa or φ̄b occupied, keeping all other terms intact. Therefore,

one can view Ψ̃Z,a,b̄ as a wavefunction based on strongly orthogonal geminals, with

the geminal Z being uncorrelated and built out of a product |φaφ̄b|, and geminal

A written as ∑i∈A,i 6=a,bD
a,b̄
i |φiφ̄i|, with coefficients Da,b̄

i = Di/
√

1−∑i∈A,i 6=a,bD
2
i .

Thus, the standard APSG equations apply to the calculation of the diagonal matrix

elements.

For the off-diagonal elements, definitions of both A and Z geminals are different

in 〈bra| and |ket〉 wavefunctions, and one has to examine each term in the summation

of the terms in the modified geminal A explicitly. The one-particle density matrix
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element between two terms different by one orbital is

〈Ψ̃Z,a,b̄|Γ̂(1)|Ψ̃Z,a,c̄〉 = Γb̄c̄S̃A − ΓbcDa,b̄
c Da,c̄

b , (A.1)

where Γbc is a one-particle matrix element between α-spinorbitals φb and φc, Γb̄c̄ is

the matrix element between β-spinorbitals, and S̃A = ∑
i 6=a,b,cD

a,b̄
i Da,c̄

i is the overlap

of geminal A, different from unity due to difference in 〈bra| and |ket〉 wavefunctions,

and dependent on the excitation orbitals a, b, c. Note the negative sign in the last

term in Eq. A.1. The two-particle matrix element is

〈Ψ̃Z,a,b̄|Γ̂(1, 2)|Ψ̃Z,a,c̄〉 =
∑
k/∈A,Z

D2
k

(
(Γb̄c̄,kk + Γb̄c̄,k̄k̄)S̃A − (Γbc,kk + Γbc,k̄k̄)Da,b̄

c Da,c̄
b

)
+

∑
k∈A,k 6=a,b,c

(Γb̄c̄,kk + Γb̄c̄,k̄k̄)D
a,b̄
k Da,c̄

k −
∑

k∈A,k 6=a,b
Γc̄k̄,bkD

a,b̄
k Da,c̄

b(A.2)

−
∑

k∈A,k 6=a,c
Γb̄k̄,ckD

a,c̄
k Da,b̄

c + Γb̄c̄,aaS̃A − Γbc,aaDa,b̄
c Da,c̄

b ,

where antisymmetrization is implied in the 2-particle density matrix terms Γ contain-

ing all four orbitals of the same spin.

Other matrix elements in the case of excitations to a single geminal A are

〈Ψ̃Z,a,b̄|Γ̂(1, 2)|Ψ̃Z,b,c̄〉 = S̃AΓab,b̄c̄ +Da,b̄
c Db,c̄

a Γcb,b̄ā (A.3)

〈Ψ̃Z,a,b̄|Γ̂(1, 2)|Ψ̃Z,d,c̄〉 = S̃AΓad,b̄c̄ +Da,b̄
c Dc,z̄

a Γb̄ā,cd −Da,b̄
c Dd,c̄

b Γda,cb

+ Da,b̄
d Dd,c̄

b Γd̄c̄,ba −D
a,b̄
d Dd,c̄

a Γd̄ā,b̄c̄ (A.4)

All other cases involving two geminals can be reduced to these equations, either by

interchanging spins (for the case 〈Ψ̃Z,b,ā|Γ̂(1, 2)|Ψ̃Z,c,ā〉 to reduce to Eq. A.2), or by

considering the orbitals from geminal Z belonging to geminal A with expansion coeffi-

cients D = 0. For example, 〈Ψ̃Z,a,x̄|Γ̂(1)|Ψ̃Z,a,ȳ〉 is reduced to Eq. A.1 by substituting

b = x and c = y and assuming Da,x̄
y = Da,ȳ

x = 0.

The unique matrix elements that involve excitations from Z to two different gem-

inals A and P are

〈Ψ̃Z,a,p̄|Γ̂(1)|Ψ̃Z,a,q̄〉 = S̃A(S̃PΓq̄p̄ −Da,p̄
q Da,q̄

p Γqp) , (A.5)
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〈Ψ̃Z,a,p̄|Γ̂(1, 2)|Ψ̃Z,a,q̄〉 =
∑

k/∈A,P,Z
D2
k

[
S̃AS̃P (Γq̄p̄,kk + Γq̄p̄,k̄k̄)

− S̃ADa,p̄
q Da,q̄

p (Γqp,kk + Γqp,k̄k̄)
]

+ S̃A(S̃PΓaa,q̄p̄ −Da,p̄
q Da,q̄

p Γqp,aa)

+
∑

i∈A 6=a
S̃PDa,p̄

i Da,q̄
i (Γii,q̄p̄ + Γī̄i,q̄p̄)

+
∑

j∈B 6=p,q
S̃ADa,p̄

j Da,q̄
j (Γjj,q̄p̄ + Γj̄j̄,q̄p̄)

−
∑

i∈A 6=a
Da,p̄
i Da,p̄

q Da,q̄
i Da,q̄

p (Γqp,ii + Γqp,̄īi)

− S̃A
∑

j∈B 6=p,q
(Da,p̄

q Da,q̄
j Γp̄j̄,qj +Da,p̄

j Da,q̄
p Γpj,q̄j̄)

− S̃ADa,p̄
q Da,q̄

p (Γqp,p̄p̄ + Γqp,q̄q̄) , (A.6)

〈Ψ̃Z,a,p̄|Γ̂(1, 2)|Ψ̃Z,b,q̄〉 = S̃AS̃PΓba,q̄p̄ +Da,p̄
b Da,p̄

q Db,q̄
a D

b,q̄
p Γb̄ā,qp

− S̃ADa,p̄
q Db,q̄

p Γba,qp − S̃PDa,p̄
b Db,q̄

a Γb̄ā,q̄p̄ . (A.7)

Overall, there are O(N4) matrix elements for each geminal Z, leading to O(N6)

scaling of the computational cost based on matrix diagonalizations, with N being the

number of one-electron orbitals in the system. To make the model computationally

cheaper and the debugging easier, we set most of the matrix elements to zero based

on the geminals involved. Specifically, we assume that a matrix element between

Ψ̃Z,a,b̄ and Ψ̃Z,c,d̄ is zero unless either both orbitals in the pair (φa, φc) belong to the

same geminal, or at least one of them is in the orbital subspace of geminal Z. The

same criterion applies to the orbital pair (φ̄b, φ̄d). Physically, this is equivalent to

uncoupling of excitations from Z to two different geminals, with excitations of α and

β spin electrons considered separate. This approximation becomes exact in the limit

of fully localized geminals, with zero differential overlap between the orbitals of two

different geminal subspaces. In practice, geminal orbitals have substantially smaller
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differential overlaps than canonical orbitals due to their spatial localization. The

numerical cost of matrix computation and diagonalization is reduced to under O(N5)

for large systems. In practice, the timing and storage requirements are dominated by

O(N5) atomic to molecular orbitals 2-particle integral transformation.
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Appendix B

Permission to Reprint

B.1 Chapter 2: Density Functional Model of Multireference Sys-

tems Based on Geminals

Permission is granted to all authors to include published work in a dissertation or the-

sis; as seen on: http://www.elsevier.com/about/policies/author-agreement#authors-

rights accessed on 4/21/15.
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B.2 Chapter 5: SSpG: A Strongly Orthogonal Geminal Method with

Relaxed Strong Orthogonality

Permission is granted to all authors to include published work in a dissertation

or thesis; as seen on: http://publishing.aip.org/authors/copyright-reuse accessed on

4/21/15.
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