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Figure 6.3 (A) hMSC proliferation on scaffolds showed a normal cell growth 

curve. (B) ALP expression by hMSCs on TCPS, PLGA scaffolds and PLGA 

scaffolds with resveratrol nanoparticles. (C) ALP expression by hMSCs on 

TCPS, PLGA scaffolds and PLGA scaffolds with resveratrol nanoparticles. * 

denotes significantly higher as compared to groups denoted by **. ** denotes 

significantly higher as compared to groups denoted by ***. 
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6.7: Discussion  

Our study addresses fundamental issues facing osseointegration of biomaterial 

grafts in an inflammatory microenvironment. We set out to engineer an 

immunomodulatory and osteoinductive scaffold that can harness the osteogenic and 

wound healing potential of immune cells, as well as program hMSCs towards bone tissue 

formation. To accomplish this goal, we demonstrated the ability of resveratrol to control 

macrophage phenotype from inflammatory to wound healing as well as stimulate 

osteogenic differentiation of hMSCs. Building on these 2D and 3D proof-of-concept 

experiments, we designed a specific resveratrol nanoparticle release profile within PLGA 

scaffolds that would i) control macrophage phenotype and subsequent cytokine secretion 

and ii) drive the osteogenic differentiation of hMSCs. This resveratrol nanoparticle 

incorporated scaffold is a novel approach to enhance graft integration and assimilation 

with native tissue. 

Researchers have explored many options to modulate the immune response to 

prevent biomaterial rejection, such as using polymeric coatings, steroidal anti-

inflammatory drugs, and angiogenic factors. These methods have faced many limitations 

due to immunogenicity, decomposition during the manufacturing process, and poor 

adhesion characteristics. Anti-inflammation pharmaceutical drugs only temporary 

suppress inflammation and have been known to reduce angiogenic factors which in turn 

delays wound healing. Finally, despite their important role in inflammatory cascade of 

events, the use of angiogenic growth factors is only partially effective due to its 

physiologic side effects.  
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Instead of trying to counteract inflammation, our approach aims to utilize a 

natural polyphenol to regulate immune cell behavior and use their expressed signaling 

molecules to drive the osteogenic differentiation of hMSCs. Our methods build on the 

central concepts of the anti-inflammatory and osteogenic properties of resveratrol as well 

as the known angiogenic signaling molecules produced by macrophages. To this end, we 

fabricated resveratrol nanoparticle-incorporated scaffolds with a controlled release profile 

that have the potential to revolutionize biomaterial assimilation with native bone tissue. 

Our 2D proof of concept experiments described in Chapter 5 signify that  M1 

macrophages secrete less IL-6 and TNF-α when exposed to resveratrol.  Furthermore, we 

found that M1 macrophages produce higher levels of anti-inflammatory markers VEGF, 

IL-10, and MRC-1 after 48 hours of culture with the anti-inflammatory polyphenol. From 

our results, we determined that 25 μM resveratrol tempers inflammation to the greatest 

extent as compared to the other concentrations. However, the optimized time scale and 

amount of resveratrol released from the nanoparticles should account for the target 

temporal concentration for both osteogenesis and macrophage phenotype polarization.  

The use of resveratrol as a stimulator of osteogenesis has been previously 

demonstrated for hMSCs, human adipose derived stem cells (hADSCs), and pre-

osteoblastic MC3T3-E1 cells [308-311, 318-323]. Furthermore, studies have shown 

resveratrol to affect proliferation and osteogenesis in a dose-dependent manner. hADSCs 

cultured with 12.5 μM, 25 μM, and 50 μM resveratrol showed the highest proliferation 

rate when exposed to 12.5 μM resveratrol, and the highest levels of ALP when cultured 

with 25 μM resveratrol. Doses of 50 μM resulted in extremely low cell numbers and ALP 



 

 88   

production. ADSCs cultured with resveratrol exhibited the highest levels of osteocalcin 

and osteoprotegerin at a concentration of 12.5 μM [318]. Another study concluded that 

doses of 25 μM resveratrol are potentially cytotoxic, and that 12.5 μM resveratrol results 

in the greatest mineralized matrix after 4 weeks in vivo [310]. Additionally, hMSCs 

cultured with varying doses of resveratrol produced the highest calcium deposition and 

greatest proliferative capabilities when exposed to a concentration of 10 μM [323]. Based 

on these studies, and the fact that M1 macrophages switch phenotype to M2 when 

exposed to doses as low as 1 μM resveratrol, we selected a target resveratrol 

concentration of 12.5 μM to stimulate osteogenesis of hMSCs in 2D. Consistent with 

these, we observed the greatest calcium deposition and ALP expression from cells 

cultured in osteogenic medium + 12.5 μM. Furthermore, OCN levels were the highest for 

hMSCs cultured in osteogenic medium + 12.5 μM. To optimize macrophage control and 

osteogenic differentiation of hMSCs, we targeted a nanoparticle release profile of 

approximately 1-3 μM resveratrol per day for days 1-7, then approximately 5-12.5 μM 

resveratrol per day for days 7-21. 

To design a biomaterial that allows for modulation of immune response, one must 

first determine how specific aspects of inflammation, such as macrophage phenotype, 

influence wound healing and osteogenesis. Preliminary investigations on total joint 

replacement materials and the surrounding tissue histology from either i) joints that had 

become loose due to osteolysis, and ii) joints implanted in osteoarthritic patients, have 

found that the former tissue produced many pro-inflammatory M1 macrophages while the 

latter demonstrated wound healing M2 macrophages [324, 325]. In another recent study, 
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porosity was found to drive a higher ratio of M2/M1 macrophages when compared to the 

non-porous control [326]. Furthermore, scaffolds composed of natural ECM can switch 

macrophage phenotype to predominantly wound healing by 7-14 days after implantation 

[327-329]. The common thread that relates all these findings is that they all rely on 

altering the cytokine release profile by monocyte and macrophages to attenuate the 

inflammatory response to the biomaterial [330, 331].  

Although chronic inflammation is detrimental to wound healing and assimilation 

of graft with native tissue, recent studies have demonstrated the benefits of monocytes 

and macrophages in stimulating osteogenic differentiation of stem cells. In a recent 

published work, hMSCs were cultured in conditioned medium (CM) from M1 

macrophages, M2 macrophages, and monocytes, and analyzed for hallmark osteogenic 

markers such as RUNX2, ALP, and bone morphogenetic protein-2 (BMP-2). hMSCs 

cultured with M1 CM expressed the highest levels of RUNX2, ALP, and BMP-2 [332]. 

Another study demonstrated that a member of the IL-6 pro-inflammatory cytokine 

family, Oncostatin M (OSM), produced by M1 macrophages promoted osteogenic 

differentiation of hMSCs and inhibited adipogenesis [333]. Macrophages secrete several 

osteogenic signaling molecules such as bone morphogenic protein-2 (BMP-2), 1, 25-

dihydroxyvitamin D3, interleukin-1 beta (IL-1β), and IL-6 [334-336]. During fracture 

healing, cytokine members of the TGF- β superfamily, such as BMP, promote different 

stages of wound repair. BMP-2 peaks in expression levels early in the healing process, 

mediates a cascade of other BMPs associated with intramembranous and endochondral 

ossification [337]. TNF-α is another cytokine secreted by macrophages during the initial 
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inflammatory response that is responsible for recruiting hMSCs, and promoting cell 

survival [338]. Additionally, macrophages secrete angiogenic growth factors such as 

VEGF and PDGF, and these cytokines are important mediators in bone remodeling. 

Specifically, the VEGF family recruits endothelial cells, osteoblasts, and osteoclasts, and 

can promote microvascular endothelial cells to secrete BMPs in a hypoxic 

microenvironment found in fractured bone tissue [339-341].  

In our proof of concept 3D experiments, we were able to successfully engineer a 

scaffold with a specific resveratrol release profile. M1 macrophages and hMSCs were 

individually placed on the scaffolds and cultured for 21 days. The gene expression profile 

of the macrophages showed moderately high expression of IL-6 for day 3 and day 7, and 

was significantly reduced by day 14. VEGF expression levels were relatively low until 

day 14, but significantly increased by day 21. This in itself overcomes a critical factor in 

tissue engineering approaches since lack of vascularization generally leads to failure of 

the graft. Our method of inducing endogenous VEGF secretion from native macrophages 

keeps levels physiologically relevant, therefore the risk of overexposing surrounding 

tissue to high levels of this angiogenic growth factor is almost nonexistent. 

Stem cells cultured on the resveratrol-incorporated scaffolds expressed the highest 

levels of calcium and ALP, demonstrating the effectiveness of the controlled resveratrol 

release. The mechanism by which resveratrol induces osteogenesis is under deep 

investigation. Preliminary work by scientists has shown resveratrol to trigger Wnt 

signaling pathway leading to the upregulation of RUNX2 expression, the transcription 

factor essential for cell differentiation into osteoblasts [308, 342]. Resveratrol also 
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promotes osteogenesis through SIRT-1, and it has been shown that FOXO3A protein 

expression and SIRT-1 activation operate synergistically to mediate RUNX2 gene 

transcription [309, 322]. When embryonic stem cell-derived mesenchymal progenitors 

are cultured in adipogenic medium containing resveratrol, RUNX2 and OCN are 

upregulated while adipogenic genes PPARγ2 and LEPTIN are suppressed [322]. This is 

extremely important because PPARγ2 can prevent RUNX2 transcription and inhibit 

osteogenesis [343, 344]. Further studies are warranted to illucidate the temporal effect of 

resveratrol of osteogenic signaling pathways using appropriate in vitro and in vivo 

models. 

 

6.8: Conclustions 

For the first time, we demonstrated a novel approach based on the use of 

resveratrol to concurrently modulate inflammation, stimulate angiogenic growth factor 

release, and promote osteogenesis. Our results demonstrated the polarization of M1 

macrophages from pro-inflammatory to wound healing M2 macrophages releasing pro-

angiogenic growth factor VEGF.  Resveratrol also accelerated the osteogenic 

differentiation of hMSCs in both 2D and 3D tissue engineering culture systems. 

Strikingly, the temporal release profile and amount of resveratrol can be tuned at the 

same time to concurrently promote osteogenesis and M2 polarization. Together, this 

study introduces a ground breaking synergistic method to overcome prolonged 

inflammation in response to implanted biomaterials in bone tissue engineering strategies, 
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and to harness the inflammatory response towards effective osseointegration and graft 

success. 
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CHAPTER 7: SUMMARY OF FINDINGS 

 

The results of the research presented in this dissertation show methods of 

directing stem cell differentiation towards bone tissue using 3D engineered substrates. 

Additionally, these findings demonstrate a novel approach for harnessing inflammation to 

accelerate wound healing and promote osseointegration of implanted scaffolds with 

native host tissue. This was accomplished by three main studies.  

The first investigated the use of decellularized scaffolds containing native bone 

extracellular matrix to direct hESC differentiation towards osteogenic lineage. 

Osteomimetic PLGA scaffolds were fabricated by utilizing a microsphere-sintering 

technique, followed by seeding hOBs on the substrates for 14 days in order to deposit 

bone ECM on the surface of the polymer. Analysis of the scaffold following hOB 

decellularization indicated that the deposited ECM had a similar composition to that of 

bone ECM found in vivo. The potential of these scaffolds as bone graft substitutes was 

evaluated by the in vitro differentiation of hESCs on the osteomimetic substrates. The 

decellularized scaffolds promoted cell adhesion, proliferation, and osteogenic 

differentiation. Incorporating native components of bone ECM with PLGA scaffolds has 

proven to be a successful approach to tissue engineering bone, however a more 

meticulous study is warranted to parse the in vivo mechanisms by which ECM proteins 

regulate osteogenesis.  
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The next study determined the effectiveness of resveratrol as a modulator of 

inflammation and promoter of osteogenesis in 2D. Our experiments investigating the 

dose dependent regulation of inflammatory cytokines by resveratrol demonstrated that 

M1 macrophages produce less IL-6 and TNF-α when cultured with resveratrol. This is 

paired with greater expression levels of anti-inflammatory markers VEGF, IL-10, and 

MRC-1 after 48 hours of exposure to the anti-inflammatory polyphenol. M1 macrophages 

cultured with 25 μM resveratrol demonstrated the greatest expression of wound healing 

markers VEGF, MRC-1 and IL-10. Consistently, M1 macrophages cultured with 25 μM 

resveratrol exhibited the lowest amount of inflammatory cytokine TNF-α. Inflammatory 

marker IL-6 reduction by resveratrol was not statistically different between the 10 μM 

and 25 μM groups. After investigating the immunomodulatory effects of resveratrol, we 

examined how resveratrol influences hMSC lineage commitment. To analyze osteogenic 

differentiation of hMSCs, we cultured cells in basal medium, basal medium with 12.5 μM 

resveratrol, osteogenic medium, and osteogenic medium with 12.5 μM resveratrol. Cells 

exposed to osteogenic medium supplemented with resveratrol expressed significantly 

higher levels of calcium, alkaline phosphatase, and osteocalcin as compared to the 

controls. These results altogether show the exciting potential for resveratrol to be used in 

tissue engineering approaches for attenuating host inflammation and stimulating 

osteogenic differentiation, and can be applied to a 3D scaffold design to integrate 

resveratrol. 

The last study investigated the incorporation of resveratrol in 3D scaffolds, and 

observed the efficacy of these scaffolds for immunomodulation and osteogenesis. For the 
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first time, we demonstrated a novel approach based on the use of resveratrol to 

concurrently modulate inflammation, stimulate angiogenic growth factor release, and 

promote osteogenesis. Our results indicated the phenotypic switch of M1 macrophages 

from pro-inflammatory to wound healing M2 macrophages on the resveratrol-

incorporated scaffolds. Along with secreting anti-inflammatory cytokines, the M2 

macrophages released pro-angiogenic growth factor VEGF.  Furthermore, resveratrol 

integrated scaffolds accelerated the osteogenic differentiation of hMSCs as compared to 

cells on control PLGA and TCPS. The temporal release profile and amount of resveratrol 

leaving the nanoparticles can be tuned to concurrently promote osteogenesis and 

macrophage polarization. This study introduces a ground breaking synergistic method to 

overcome inflammation in response to implanted biomaterials in bone tissue engineering 

strategies, and to harness the inflammatory response towards successful osseointegration 

of the graft with host tissue. 
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CHAPTER 8: FUTURE WORK 

 

• Parse the in vivo mechanisms by which ECM proteins regulate osteogenesis  

• Determine which ECM components have the greatest effect on osteogenic 

differentiation of hESCs cultured on osteomimetic PLGA  

• Implant osteomimetic scaffold in animal model to study in vivo capabilities of the 

graft to repair a critical size defect in bone  

• Investigate the interplay between hMSCs and macrophages (M0, M1 and M2) in 2D  

• Determine how macrophages regulate the osteogenic differentiation of hMSCs on 3D 

resveratrol-incorporated scaffolds 

• Implant resveratrol PLGA scaffolds in animal model to investigate how the scaffold 

modulates the in vivo inflammation response as well as promotes osteogenesis and 

osseointegration 
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