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ABSTRACT 

 This dissertation describes fundamental and applied studies that have advanced 

the understanding and application laser induced breakdown spectroscopy (LIBS) to the 

deep-ocean environment and to operation on a deep-ocean submersible. Chapter one is an 

overview of LIBS including a brief history, LIBS theory, the instrumentation typically 

used, and a specific application. Chapter two analyzes the effect that monodisperse 

suspended particles have on LIBS emission intensity and on the formation of a LIBS 

plasma. This chapter demonstrates that for particle concentrations similar to those found 

in the neutrally buoyant regions around hydrothermal vents there is little effect on the 

LIBS emission intensity. Also, this chapter shows that by using 532 nm excitation and a 

180˚ collection geometry, strong stimulated Raman of water appears at 649 nm in the 

spectrum. Chapter three describes an investigation into the use of hydrogen and oxygen 

as an internal standard for lithium and potassium in bulk aqueous solution. These 

investigations reveal that the precision in the measured LIBS signal for Li and K is 

improved by using H or O as an internal standard, with oxygen providing up to a 9-fold 

improvement in the relative standard deviation (RSD). Finally, chapter four describes the 

construction and tests of a super critical CO2 LIBS cell for LIBS measurements of 

samples in a Venus-type atmosphere. 
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CHAPTER 1 

REVIEW OF LASER INDUCED BREAKDOWN SPECTROSCOPY

 

1.1  BACKGROUND ON LIBS 

Since first being reported in a meeting abstract by Brech and Cross in 1962 there 

have been many characteristics that make LIBS an appealing spectroscopic technique for 

elemental analysis.[1] This relatively simple measurement yields simultaneous sensitivity 

to many elements in the parts-per-million (ppm) range for solids, liquids, gases and 

aerosols. LIBS is effectively non-invasive due to the very small sampling region 

(typically, pg to ng of material are transformed to plasma), no sample preparation 

required, and LIBS can be used in a standoff mode without perturbing the target. It is also 

fast, requiring under 1 s for a measurement, and hence is essentially a real-time 

measurement. These characteristics are some of the greatest advantages of LIBS 

compared to other analytical approaches.[2, 3] No other sensor is capable of detecting all 

classes of chemical compounds and all types of matter like LIBS. However, LIBS has 

never been tested at deep ocean hydrothermal vents.  

Figure 1.1 shows a basic experimental setup for high pressure underwater LIBS. 

A laser pulse having energy of a few tens of mJ and a pulse width of a few ns, can 

produce a power density larger than the breakdown threshold of most materials 

(typically, GW/cm2).[4] This laser ablates and atomizes the sample material. The atoms 

continue to gain energy from the laser and a high temperature plasma is formed. The 



2	  

excited atoms in the plasma go from an excited energy level to a lower energy and emit 

photons. The light is collected and focused onto a fiber optic, which is connected to a 

spectrometer with a gated intensified charged coupled device (ICCD) detector.[5] The 

power densities used for LIBS depend on the particular application and the breakdown 

threshold of the material being analyzed. Breakdown thresholds are typically lower for 

condensed phases of matter and must be determined for each particular set of conditions.  

Radiation from a laser-induced plasma is generally categorized into three types; 

inverse Bremsstrahlung radiation, recombination radiation, and line emission.[4] The 

plasma is initiated on the picosecond time scale by weak multiphoton ionization and 

grows as energy is absorbed for the remainder of the laser pulse through cascade 

ionization. Ionization is high at the beginning of the plasma, and the emission signal is 

mostly composed of a broad continuum. This continuum is due to inverse 

Bremsstrahlung and recombination events. Inverse Bremsstrahlung, or “breaking 

radiation”, is the emission of photons by free electrons that are accelerated or decelerated 

in collisions.[3,6,7] Recombination radiation is when a free electron goes from a higher 

ionic or atomic energy level to the ground state and in the process emits a photon. The 

continuum is a broad spectral emission that overwhelms the atomic line emission that 

may be present at the beginning of the plasma and acts as a noise source in the LIBS 

spectra. As the electrons recombine with ions and the plasma cools, line emission 

becomes more dominant because continuum emission typically decays at a faster rate 

than line emission. [8] Emission lines provide information about the atomic composition 

of the sample. The line wavelengths and intensities exhibited by the atoms in the plasma 
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can be compared to standard libraries of spectral data maintained by NIST. The emission 

lines can also be calibrated against samples of known makeup. 

Since continuum emission from early in the plasma cannot be reduced by 

averaging, detector gating is used to select a delay time when the continuum has decayed, 

making line emission clearly visible.[5] The key parameters for time-resolved detection 

are the gate delay (td) and the gate width (tw). The gate delay is the time between plasma 

formation and when the ICCD is turned on. The gate width is the ICCD exposure time. 

These parameters must be optimized for the best signal-to-noise ratio for each element 

and emission line.[2,9,10] Figure 1.2 shows the timing of a SP-LIBS experiment and how 

proper gating can reduce the continuum emission. Plasma lifetimes for solids at 

atmospheric pressure is typically 30-50 µs, but as short at 50-650 ns in liquids and at high 

pressure because of severe plasma quenching. 

 

1.2  LIBS IN BULK AQUEOUS SOLUTION FOR DEEP OCEAN MEASUREMENTS 

Applications of LIBS to aqueous samples have not been as plentiful as for solids. 

Sampling approaches used for LIBS of liquids include the measurement of aerosols, 

surface measurements, frozen aqueous solutions, and bulk under water measurements of 

solutions. LIBS of aerosols is difficult because the individual droplets act as micro-

lenses, causing premature laser breakdown.[11,12] This sampling technique has been 

applied to the detection of heavy metals in drinking water and reported limits of detection 

(LOD) for cadmium, lead, and zinc have been reported at  ~ 0.20 ppm.[11]  

Sampling the surface of the solution is a simple approach that has been used by 

many researchers. This method is similar to sampling the surface of a solid. It is only 
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suitable for applications where the surface of the solution is a homogeneous 

representation of the whole solution and is complicated by sample splashing.[13,14]  

Sampling frozen solutions can be used as an alternative to liquid solutions in 

some cases. There are many advantages, such as no sample splashing or reduction of 

emission intensity due to quenching. However there are several drawbacks such as; 

practicality, sample handling, and adaptability to remote analysis.[15] This type of sample 

analysis has been carried out to measure sodium and aluminum in real environmental 

samples finding a LOD of 1 and 2 ppm, respectively.[15] None of these techniques are 

applicable to deep ocean underwater LIBS measurements.  

Bulk analysis is characterized by focusing the laser pulse under a liquid surface to 

create the analytical plasma. Bulk solution LIBS is done in two ways, using single pulse 

(SP) or dual pulse (DP) excitation. LIBS has been investigated for measurements in bulk 

aqueous solutions since 1969. At that time it was to study the fundamentals of the 

“explosion” formed in water by a single laser pulse.[16] However, bulk aqueous-phase 

research on LIBS was on the decline until Cremers et al. demonstrated DP-LIBS in 

solution for the first time in 1984. This work showed that by using two laser pulses 

separated in time by a short delay (~50 ns), an increase in detection limit is observed. The 

first laser pulse forms a gaseous bubble and the second pulse forms a plasma at the liquid 

gas interface,[17] raising the effective pulse energy.[17-20]. DP-LIBS provides significant 

emission intensity enhancement in solution over SP-LIBS at atmospheric pressure. DP-

LIBS has been studied in high-pressure bulk aqueous solution with emission 

enhancements at pressures up to ~100 atm at which point the bubble formed by the first 

laser pulse quickly collapses.[6, 9, 21, 22] This is depicted below in Figure 1.3. Angel et al. 
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also showed that the emission intensity and peak widths for SP-LIBS are unaffected by 

solution pressure up to ~300 atm.[9, 23]  

There are many difficulties associated with LIBS analysis in bulk solution. It has 

been shown that water quenches the plasma (much of the plasma energy goes into 

vaporizing the liquid) resulting in a decrease in the emission intensity for most elements. 

[2, 6, 7] This means the duration of the spectral emission is very short (microseconds) 

compared to tens of microseconds in air.[7] Compared to solids, the breakdown threshold 

is also much greater in aqueous solutions. The LIBS emission in solution also exhibits 

spectral line broadening due to Stark broadening and collisional broadening effects.[6, 24]  

 

1.3  HYDROTHERMAL VENTS  

Hydrothermal vents are located at mid-ocean ridges on the ocean floor at depths 

of 800-3600 m. The fluid that exits hydrothermal vents is very hot (~623 K), under 

extreme pressure (147-361 atm), and is very corrosive.[2, 6, 25] As seawater seeps through 

the permeable ocean crust, there is an exchange of ions between the fluid and the 

surrounding rock. As the fluid goes deeper, magma chambers begin to heat the fluid, 

making it buoyant and it rises back through the crust. Again, ions are exchanged as the 

temperature changes until the fluid exits the crust through a hydrothermal vent site.[2, 6, 25] 

This cyclic process is depicted in Figure 1.4.  

The physical and chemical dynamics of hydrothermal vents are studied by either 

collecting samples or using a chemical sensor. Collecting samples and bringing them 

back to the lab for analysis is not ideal because changes in temperature and pressure 

affect the chemistry of the samples and only a limited number of samples can be obtained 
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each time. Few chemical sensors have been developed that can survive the conditions at 

the vents. One of the few types of chemical sensors that have been used at the vents 

includes voltammetric sensors. These sensors have been used to detect O2(aq), Fe(II), and 

H2S in situ.[26] These compounds have been suggested to control biological communities 

at hydrothermal vent sites.[26] Voltammetric sensors have slower acquisition times than 

LIBS.[26] 

 

1.4 APPLICATION OF LIBS TO HYDROTHERMAL VENT STUDIES 

The ongoing long-term goal of this project is to apply LIBS to vent chemistry 

measurements. Two specific deep-ocean hydrothermal vent experiments drive the 

laboratory studies. First, determining the spatial and temporal distribution of vent plumes 

using Li as a tracer. Secondly, measuring the changes in key vent chemical 

concentrations caused by phase separation events.  

Hydrothermal vents expel buoyant plumes of hot water and this water rises to 

heights of hundreds of meters above the seafloor. The physical and chemical dynamics of 

the plumes are poorly understood despite their importance in dispersing vent fluids into 

the oceans.[27] Lithium can be used as a tracer for hydrothermal vent fluids because in 

seawater it is at a very low concentration (0.18 ppm). However, in vent waters it has been 

shown to be as high as 9 ppm because it is leached from the host rock in the vent fluid 

cycle.[28] Monitoring lithium in situ would allow oceanographers to track streams of fluid 

exiting the vents in the ocean. 

The elemental concentration of hydrothermal vent fluids can change rapidly 

between one phase and the other.[29] Under the high temperature and pressure conditions 
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at hydrothermal vents, a lower-salinity vapor phase may separate and move away from 

the higher-salinity liquid phase. Each phase contains a distinctly different combination of 

dissolved materials. Table 1.1 shows elemental concentrations at the 9˚ N area on the 

East Pacific Rise measured in 1991 and again in 1994.[30] The low concentrations in 1991 

correspond to a vapor phase right after an eruption event. In 1994 samples were again 

taken and correspond to a high salinity liquid phase being released. The limits of 

detection (LOD) for LIBS are low enough that studying changes in element 

concentrations following phase separation events at the vents should be possible. 
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Table 1.1. Element concentrations in ppm for the EPR at 9˚ N in 1991 and 1994 [20] 
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Figure 1.1. Single-pulse LIBS high-pressure setup
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Figure 1.2. Important timing periods in a LIBS measurement; gate delay (td) and gate 
width (tw).[10]
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Figure 1.3. The size and lifetime of the LIBS bubble decreases, as the surrounding 
pressure is increased.[1] 
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Figure 1.4. Hydrothermal vent fluid cycle. 
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CHAPTER 2 

THE EFFECT OF SUSPENDED PARTICLES ON UNDERWATER 
LASER INDUCED BREAKDOWN SPECTROSCOPY FOR 

MEASUREMENTS OF DISSOLVED SPECIES 

 

2.1 ABSTRACT 

In this work, the effect of suspended particles on underwater laser induced 

breakdown spectroscopy (LIBS) of dissolved species in water is being investigated. The 

emission intensity for dissolved elements decreases linearly with the scattering 

coefficient of the solution, but the slope is different for different particle sizes. There is 

little to no effect, on the LIBS emission intensity, for the range of suspended particles 

(0.8 µm, 2 µm, 6 µm, 12 µm) at concentrations corresponding to the region of neutrally 

buoyant fluids around hydrothermal vents. For the size and concentration of suspended 

particles seen at hydrothermal vents the LIBS emission intensity no more than ~10%.  

 

2.2 INTRODUCTION 

Since being first reported by Brech and Cross in 1962,1 laser-induced breakdown 

spectroscopy (LIBS), has become a widely used analytical method. It is a relatively 

simple technique that allows for rapid multi-elemental analysis of solids, liquids, and 

gases with little or no sample preparation. LIBS is also effectively nondestructive, only 

ablating picogram to nanogram amounts of material with each laser pulse. LIBS is well 

suited for in situ and remote elemental analysis,2-20 and is particularly useful for 
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applications in extreme, hostile, and inaccessible environments.10-18, 21-34  Our interest lies 

in using LIBS for multi-elemental analysis of high-pressure aqueous solutions, which can 

be found in the deep ocean at hydrothermal vent sites. 31-34  

Hydrothermal vents are thought to control much of the oceans chemistry.38 These 

vent sites occur at mid-ocean ridges on the ocean floor at depths of 800 - 3600 m and 

pressures of 147-361 atm and expel fluid at extremely high temperatures (200-405 °C).35 

Water seeps through the semi-permeable ocean crust where there is an exchange of ions 

between the fluid and the surrounding rocks. This ion rich fluid is eventually expelled at 

one of the vent sites where many of the dissolved species precipitate out to form vent 

chimneys. Due to the extreme pressure at these depths and the irreversible changes 

samples undergo when brought back to the surface, and the corrosive nature of the vent 

fluids, analytical measurements in these environments are difficult.  

Despite the high potential of applying LIBS to underwater measurements, there 

are limited reports on this subject due to the many difficulties. The work of Cremers et al. 

has showed that LIBS can be used to detect Li, K, Na, Ca, B, Al, Cs, Be, and Rb in bulk 

aqueous solutions, typically on the part-per-million (ppm) level.30 The emission intensity 

under water is greatly reduced, compared to ambient air, due to quenching by the 

liquid.16,30,31,33 Additionally, plasma emission lines are usually very short lived, on the 

order of 1 µs or less compared to ambient air in which typical lifetimes are 5 – 20 µs.  

Around hydrothermal vents, lithium can be in the 10s of ppm due to it being 

leached out of rocks in the Earth’s crust by hot vent fluids.35 Lithium is normally found in 

the ocean at trace levels, below 1 ppm,35 which makes it a useful tracer of vent fluids and 

is useful to map their extent. Large changes in lithium, potassium and several other 
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element concentrations at vent sites have been shown to be associated with phase 

separation events with concentrations over 2000 ppm reported.35-37 Precipitates crash out 

of vent fluids very quick once they come into contact with the cold deep ocean water (2 

C˚). These precipitates are what give the vents the appearance that smoke is being 

expelled, and hydrothermal vents are often referred to as “black smokers”. This can cause 

the surrounding area to have increased levels of particulates, which could scatter both the 

laser light and the LIBS emission.  

 Suspended particles can be an issue in LIBS, where particle scatter can reduce 

both the laser and emission intensity, or interfere with formation of a strong plasma. 

Baker et al. measured the amount and size of suspended particles extending out from 

plumes over hydrothermal vent at Juan de Fuca Ridge and found that above and outside 

the plume boundaries the particle size was ~3 µm with a volume concentration of < 20 

ppb. Particles in the neutrally buoyant zone around vent plumes range from .56 µm to 10 

µm with a mean particle concentration of 100 ppb.36-37 The effect of particle scattering on 

LIBS emission has not be reported. Studies have been carried using monodisperse latex 

spheres (0.8 µm, 2µm, 6µm, 12µm) suspended in lithium and potassium solutions to see 

the effect particles have on the LIBS emission.  

 

2.3 EXPERIMENTAL 

The experimental setup used in these studies, shown in Figure 2.1, has been 

previously described in earlier work.30 All measurements were made at ambient pressure 

using a Continuum Surelite III Nd:YAG laser for excitation operated at both 1064 nm 

and 532 nm with a repetition rate of 1 Hz. A laser power of ~115 mJ/pulse for 1064 nm 
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and ~70 mJ/pulse for 532 nm was typically used for these underwater LIBS 

measurements. The laser was directed into a custom stainless steel cell with 25.4 mm 

quartz windows, by reflection from a 45° dichroic mirror (M) and focused ~15 mm into 

the solution using a 25.4 mm diameter, f/2 fused silica lens. Analyte emission was 

collected back through the same lens and focused using a second 25.4 mm diameter f/2 

lens on to a 2 mm core diameter optical fiber, which was coupled to a f/4 dispersive 

spectrometer (Chromex Model 250IS/RF) with 300 gr/mm grating blazed at 1 µm, which 

allowed for a ~200 nm spectral window with about 2.5 nm spectral resolution. The 

collection system consisted of a gated 1064x256 pixel ICCD (Princeton Instruments I-

Max 1024-E).  

Test solutions were made by dissolving LiCl (Sigma-Aldrich 255572) in 

deionized water. To each solution, 1 µL/mL of Triton X-100, a surfactant, was added in 

order to keep the standardized monodisperse polystyrene latex particles, 0.8 µm, 2 µm, 6 

µm, 12 µm ( Sigma-Aldrich LB8, 80177, 89756, 88511), suspended. An aliquot of the 

particles was added to 100 mL of the analyte solution. The scattering coefficient was 

calculated by measuring the laser transmission of the analyte solution in a 30.1 mm path 

length cell and subtracting a blank, which contained the same solutions without added 

particles. The lithium 670 nm and potassium 766 nm emission lines were used for all 

studies shown. 

 

2.4 RESULTS AND DISCUSSION  

 The presence of particles can effect LIBS emission by attenuation at the laser 

wavelength and at the atomic emission wavelength by absorption and scattering. Particles 



19	  

can also change the nature of plasma formation because the breakdown threshold for 

LIBS on solid particles is lower than water.40 Attenuation of LIBS emission by particle 

absorption or scattering is a logarithmic type relationship as shown in Eqn. 1, where m is 

the combined absorption and scattering loss (i.e., a loss coefficient) at the emission 

wavelength (me) caused by particles in solution and L is the optical pathlength. 

Attenuation of the laser by particle absorption or scattering leads to two effects. A simple 

light attenuation effect that follows the same form as Eqn. 2.1, and a more complex effect 

due to the nonlinear nature of LIBS plasma formation. Over certain ranges of laser 

power, it has been shown, LIBS emission intensity is linearly proportional to laser power. 

For this case, an attenuation of emission intensity caused by particle absorption and 

scattering at the laser wavelength (mL) would also follow Eqn. 2.1. The total attenuation, 

TT, of the emission signal from both effects is shown by Eqn. 2.2.  

                   Eqn. 2.1 

                  Eqn. 2.2 

If the optical pathlength is the same for the laser and emission, Eqn. 2 can be written as 

shown in Eqn. 2.3. If there are no particle affects other than simple attenuation of the 

laser and LIBS emission, a plot of ln(Iem/L), where Iem is the measured LIBS emission, 

versus the loss coefficient at the laser wavelength should be linear with an intercept equal 

to the loss coefficient at the emission wavelength. Attenuation at the laser wavelength is 

done by measuring the laser transmittance through the measurement cell. Attenuation at 

the emission wavelength is complicated by the LIBS plasma. 

                 Eqn. 2.3 
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Figure 2.2 shows the effect of increasing the number of particles of various sizes 

in solution on the 1064 nm excited LIBS emission of the 670 nm lithium line for 500 

ppm Li (Figure 2.2a) and 12.5 ppm Li (Figure 2.2b). In Figure 2.2, the Li emission is 

plotted as the ln(Ip/Ibl), versus number of particles per mL of solution, where Ip is 

emission intensity with added particles and Ibl is emission intensity for a blank sample 

(i.e., no added particles). Plotted in this way the Li emission drops linearly with particle 

concentration over a concentration range of several orders of magnitude. The latex 

particles used are transparent, so the biggest optical effect is attenuation of the laser and 

LIBS emission by scattering. The 0.8 µm particles are smaller than the laser wavelength, 

but longer than the 670 nm Li emission wavelength. Thus, both Rayleigh and Mie 

scattering might be significant for the smaller particles while Mie should dominate for the 

larger particles. Rayleigh scales as the 3rd power of particle diameter while Mie scattering 

scales as diameter squared. The data in Figure 2.2 shows a linear relationship of emission 

with number of scattering particles over a wide range of concentrations. As expected 

larger particles show a much larger attenuation of the LIBS emission at lower 

concentrations of particles, consistent with Rayleigh or Mie scattering.  

Looking more closely at the magnitude of this effect, Figure 2.2a shows a 19-fold 

reduction in the LIBS emission intensity for 2 µm versus 0.8 µm particles. This is a little 

larger than the16-fold reduction in intensity that would be expected if Rayleigh scattering 

were dominant (i.e., Mie scattering would be much smaller) and the difference might 

suggest other sources of light emission attenuation. In Figure 2.2a, for particles 

significantly larger than the wavelength of light (6 µm and 12 µm) a 4-fold difference in 

emission attenuation is expected from Mie scattering and that is what is observed. The 
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same basic trends are observed in Figure 2.2b for 12.5 ppm Li, with a 13-fold emission 

attenuation difference between the 0.8 and 2 µm particles and a 5-fold difference for the 

6 µm and 12 µm particles. However, there is a significant vertical offset in the plot for 2 

µm particles, suggesting a second source of emission attenuation that is dependent on the 

Li concentration.  

Similar to Figure 2.2, Figure 2.3 shows the effect of increasing the number of 

particles in solution on the 532 nm excited 670 nm lithium LIBS emission for 500 ppm Li 

(Figure 2.3a) and 12.5 ppm Li (Figure 2.3b), plotted as ln(Ip/Ibl), versus number of 

particles per mL of solution. In Figure 2.4a, the point marked by a circled cross shows the 

Li emission attenuation for 0.8 µm particles at 20 ppb (1.07x105 particles/mL), the 

concentration reported by Baker et al for the most abundant size particles (i.e., 2 µm) 

found in the neutrally buoyant region of the Juan de Fuca hydrothermal vent.36  As 

indicated, only a slight reduction, ~5-10%, in the 670 nm Li emission was observed. The 

2, 6 and 12 µm particles at ~20 ppb gave similar results.  

In Figure 2.3, all the measured particles were significantly larger than the 532 nm 

laser wavelength, thus mostly Mie type scattering is expected. This is consistent with the 

slopes of the lines being closer together than the 1064 nm excited data shown in Figure 

2.2. Using 1064 nm excitation, the slope of the 0.8 µm particle line is much less than 

using 532 nm excitation. Mie scattering should lead to a 6-fold difference in LIBS 

emission attenuation for the 0.8 µm and 2 µm particles, but only a 3-4-fold decrease is 

observed in Figure 2.3a. A 9-fold difference is expected for the 2 µm and 6 µm particles, 

but only a ~3-fold difference was measured. Clearly, scattering doesn’t completely 

explain the slope differences. 
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In Figure 2.3b (12.5 ppm Li) the slope differences are similar to Figure 2.3a, ~4 

fold difference for the 0.8 µm and 2 µm particles, and ~2-3 fold for the 6 µm and 12 µm 

particles. However, at the lower Li concentration the attenuation of the Li emission is 

much larger for the two smaller particle sizes.  

These measurements were also made for potassium solutions and the same trend 

is seen. Again, Mie scattering should lead to a 6-fold difference in the potassium LIBS 

emission, however, only a ~3-fold difference was measured for 0.8 µm and 2 µm 

particles. This indicates that more than just simple light scattering is effecting the 

potassium emission.  

Figure 2.4 shows the Li emission, plotted as ln(Ip/Ibl), versus scattering coefficient 

for 0.8, 2, 6 and 12 µm size particles using 532 nm excitation, for 500 ppm (Figure 2.4a) 

and 12.5 ppm (Figure 2.4b) Li. The scattering coefficient is directly related to the total 

number of particles. For a given particle concentration the scattering coefficient scales 

roughly as the square of the particle diameter. For 500 ppm Li (Figure 2.4a) the y 

intercept is zero, but the slopes increases as the particles get smaller, indicating decreased 

Li emission for the smaller particles, for a constant scattering coefficient at the laser 

wavelength. There is essentially no change in Li emission for the 12 µm particles and the 

slope is only about -0.35. The reason for this is clear by examining the plasma images 

shown in Figure 2.5. The images were measured for solutions of all four particle sizes 

with a scattering coefficient of ~0.25 and lithium concentration of 500 ppm. As particle 

size increases the plasma become ~2 times more elongated and there are more unique 

points of breakdown, reducing the optical path length from 3.01 cm to 2.02 cm in the 

solution. The images also suggest that the slope differences for different size particles is a 
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combination of changing optical path as well as changes in scattering losses at the Li 670 

nm emission wavelength. In Figure 2.4b there is clear separation between the smaller 0.8 

and 2 µm particles and the larger 6 and 12 µm particles and there is a significant y-

intercept for the smaller particles. This suggests a second source of emission attenuation 

that is dependent on the Li concentration. The reason for this effect has not yet been 

investigated.  

For LIBS measurements using 532 nm excitation, with 180˚ collection, a strong 

band at 649 nm appears, seen in Figure 2.6. The 649 nm band has been reported as 

stimulated Raman for the OH-stretch band of water.39 Simulated Raman emission from a 

LIBS plasma is highly directional and propagates counter to the direction of the incident 

laser beam.[39] In Figure 2.4b, the dotted lines (right axis) show the ln(IOH,P/IOH,bl) of the 

649 nm simulated Raman signal versus scattering coefficient for each particle size. 

Where IOH,P is the OH-stretch intensity with particles added and IOH,bl is OH-stretch 

intensity without any particles added to the solution. The SR signal is independent of 

particle size and the intensity decreases quicker than the lithium LIBS emission. This is 

consistent with generation of the SR signal early in plasma formation before plasma 

growth. This also suggests that the differences in emission attenuation between the 500 

ppm and 12.5 ppm solutions, results from changes in position and intensity of the LIBS 

plasma.  

 

2.5 CONCLUSIONS 

For particles of the size and concentration found in the neutrally buoyant part of 

hydrothermal vent plumes, there is little effect on the intensity of LIBS emission (at most 
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a ~10% reduction). This work was also extended to particle concentrations several orders 

of magnitude higher to simulate conditions closer to a vent site. The LIBS emission was 

linear with increased particles, however the deviation of emission attenuation suggests 

that another mechanism to be taking place. This could be described by the differences in 

plasma formation as particle sizes increase and is also a function if the analyte 

concentration. 
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Figure 2.1 Experimental laser induced breakdown spectroscopy set-up. L1 & L2 are f/2 
convex lenses, M is a dichroic mirror, C is the sample cell. 
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Figure 2.2. Normalized Li intensity verses the total number of latex particles added to the 
solution using 1064 nm excitation containing monodisperse polystyrene latex particles, 
0.8 m (), 2 µm (), 6 µm (☐), 12 µm (); (a) 500 ppm Li solution (b) 12.5ppm Li 
solution. 
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Figure 2.3. Normalized Li intensity verses the total number of monodisperse polystyrene 
latex particles added to the solution using 532 nm excitation, 0.8 m (), 2 µm (), 6 µm 
(☐), 12 µm ();(a) 500 ppm Li solution and realistic ocean values ().(b) 12.5ppm Li 
solution 
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Figure 2.4. Normalized Li LIBS emission verses solution scattering coefficient using 532 
nm laser excitation, 0.8 m (), 2 µm (), 6 µm (☐), 12 µm (); (a) 500 ppm Li solution 
and realistic ocean values (). (b) 12.5 ppm Li solution and dotted line showing the 
stimulated Raman OH-stretch intensity verses scattering coefficient (dotted lines, right 
axis) for all particle sizes.  
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Figure 2.5. Laser wavelength of 532 nm plasma images for each particle size (0.8 µm, 2 
µm, 6 µm, and 12 µm) with a scattering coefficient of ~0.245 and lithium concentration 
of 500 ppm. The plots show column summed cross sections at each particle size 
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Figure 2.6. Representative spectra for a 12.5 ppm Li solutions with 0.8 µm particles, 
showing the decrease in Li intensity with increased scattering coefficient, also the 
appearance of the stimulated Raman OH-stretch peak when using 532 nm excitation and 
180˚ collection. Inset shows the stimulated Raman signal decreased as the square 
compared to the Li emission intensity 
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CHAPTER 3 
HYDROGEN AND OXYGEN AS INTERNAL STANDARDS FOR 
SINGLE-PULSE LIBS MEASUREMENTS IN BULK AQUEOUS 

SOLUTIONS

 

3.1 ABSTRACT 

Hydrogen and oxygen line emission is investigated as an internal standard for 

single-pulse (SP) LIBS measurements of Li and K in bulk aqueous solutions. 

Simultaneous measurements of hydrogen, oxygen, lithium, and potassium emission lines 

are made using a short detector delay time and relatively long gate width. These 

investigations show improved precision in the measured LIBS signal for Li and K using 

the 656 nm H (α) or the 777 nm O (I) lines as internal standards, with the O (I) line 

providing up to a 7.5-fold improvement in the relative standard deviation (RSD).  

	  

3.2 INTRODUCTION 

Laser-induced breakdown spectroscopy (LIBS), first reported by Brech and Cross 

in 1962 [1], is a relatively simple spectroscopic technique that allows rapid multi-

elemental analysis of solids, liquids and gases with little or no sample preparation. LIBS 

is well suited for in situ and remote elemental analysis,[2-20] and is particularly useful for 

applications in extreme, hostile, and inaccessible environments.[10-18, 21-33] Of particular 

interest to our research group is using LIBS for multi-elemental analysis of high-pressure 
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bulk aqueous solutions, with the goal of applying LIBS to in situ elemental analysis in the 

deep ocean,[31-33] particularly at hydrothermal vent sites. 

 Hydrothermal vents occur at mid-ocean ridges where seawater circulates through 

the semipermeable ocean crust, exchanging ions along the way. Hot mineral-laden water 

eventually is expelled at vent orifices at temperatures of 200−405 °C, and at ambient 

pressures from 8.1x106 to 3.6x107 Pa, corresponding to ocean depths of 800–3600 m.[34]  

Conventional analytical measurements of vent fluid is difficult due to high temperatures 

and pressures at the vent sites, corrosive nature of the vent fluids, difficulty of taking 

samples at these depths, and irreversible changes in composition that occur when they are 

removed to the surface. 

 Aqueous LIBS measurements have been reported for submerged solid materials in 

water,[16] on the water surface or in thin films,[17–22] and in liquid jets, droplets, and 

flowing solutions,[23–29] but there are limited reports of LIBS studies in bulk aqueous 

solutions.[30–32]  Pioneering work by Cremers et al. [30] showed that LIBS could be used to 

identify Li, Na, K, Rb, Cs, Be, Ca, B, and Al in aqueous solutions with varying detection 

limits, but typically at the parts-per-million level. LIBS measurements of dissolved 

species in bulk aqueous solution are complicated by water quenching of the LIBS plasma 

and a reduction in the time during which the plasma emission can be observed as 

compared to that in air.[16, 30, 31, 33, 40]  The plasma lifetime is typically < 1 µs in bulk 

liquids, whereas at an air–liquid interface it averages 5–20 µs. Laser-induced plasmas 

formed in solution are also characterized by a reduction in the plasma emission 

intensity.[31] This leads to reduced measurement precision. 
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 Potentially convenient internal standards for bulk aqueous solution LIBS 

measurements are hydrogen and oxygen, since these elements are produced by laser 

decomposition of water during a LIBS measurement, and the density of water in the deep 

ocean is relatively constant. Fichet, et al, demonstrated the use of H as an internal 

standard for LIBS surface measurements of a variety of metal species dissolved in water 

and oil.[18] They also demonstrated the use of O as an internal standard for Al. Samek, et 

al, also used H as an internal standard for LIBS surface measurements for a range of toxic 

heavy metals.[38] They also studied the effect of plasma parameters and line shape 

functions. Mohamed, et al, describe the use of H as an internal standard for LIBS surface 

measurements for seawater solution.[39]  Although using H as an internal standard for 

LIBS measurements of aqueous solutions has been reported for surface measurements, [18, 

38, 39] the use of H or O as internal standards for bulk aqueous LIBS measurements has not 

been reported. Underwater LIBS is quite different from surface measurements because of 

rapid water quenching of the LIBS plasma, within a few hundred nanoseconds, and 

because the spectra are dominated by continuum emission.[40]  Thus the behavior of H 

and O as internal standards might be different for underwater LIBS. In the following 

studies, the 656 nm hydrogen-α and 777 nm oxygen emission lines are compared as 

internal standards for LIBS measurements of Li and K for underwater LIBS.  

 

3.3 EXPERIMENTAL 

The experimental setup (see Figure 1) used in this study has been previously 

described,[31-33] and is presented here only briefly. For these experiments a Continuum 

Surelite III Nd:YAG laser operated at 1064 nm, with a 9 ns pulse width and a repetition 
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rate of 1-Hz was used for excitation. The laser was directed into the cell by reflection 

using a 45° dichroic mirror and focused about 1-inch into the solution using a 25-mm 

diameter, f/2 fused silica lens. Plasma emission was collected and collimated by the same 

lens, transmitted through the dichroic mirror, and focused by another f/2 lens onto a 2-

mm diameter core optical fiber, which was used to direct the emission to an f/4 

spectrograph (Chromex Model 250IS/RF) with an ICCD detector. The spectral resolution 

of the spectrometer was 2.5 nm using a 100-micron slit and a 300 gr/mm diffraction 

grating, blazed at 1 µm. The ICCD (1024 x 256 pixel, 2D array, Princeton Instruments I-

Max 1024-E) gave a spectral range of about 200 nm.  

The plasma in bulk water solution is very short-lived and proper detector gating is 

essential. The detector delay time, td, the time at which the detector is turned on following 

the laser pulse, and the gate width (i.e., exposure time), tw, the time the detector is on, 

were optimized to give the strongest emission intensity. The reported emission intensities 

for all lines are baseline subtracted. The baseline was determined by taking the average 

value of the baseline at two wavelengths on either side of the line of interest. Solutions 

were made, by dissolving LiCl and KCl (Sigma-Aldrich ACS certified, 99%, and 99.42% 

purity, respectively) in 17.7MΩ deionized water. All concentrations are given in parts per 

million (mass/volume). All measurements were made ~1-in below the surface in bulk 

aqueous solution. Relative standard deviation (RSD) values were calculated using three 

sets of 200, single-shot spectra.  
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3.4 RESULTS AND DISCUSSION 

 Lithium is normally found in the ocean at trace levels, below 1 ppm.[34]  However, 

localized high concentrations of Li associated with hydrothermal vent sites can be in the 

10s of ppm, because of leaching from rocks by the hot vent fluids.[35] Thus Li is a useful 

tracer of vent fluids and is useful to map their extent. Potassium at ~400 ppm, is the sixth 

most abundant element in seawater. It has a conservative distribution, its concentration 

varying due to differences in evaporation or precipitation in surface water that sinks to 

deeper waters. Large changes in potassium concentrations at vent sites have been shown 

to be associated with phase separation events with concentrations over 2000 ppm 

reported.[35-37]   

 Figure 2 shows the LIBS spectrum of a solution that contains ~50 ppm Li and 

~1000 ppm K. The Li and K emission lines are observed at 671 nm and 766 nm, 

respectively. Table 3.1 shows the observed wavelength, transition probabilities (Aki), and 

upper (Ek) and lower (Ei) state energies for the Li, K, H and O lines used in this study 

(taken from NIST Atomic Spectra Database). Note the Li and K transitions are to the 

ground state, while H and O emission is to a very high-energy state. The LIBS emission 

for these two Li and K lines is strong; however, the LIBS emission intensity varies as 

much as 15% from shot-to-shot. This large variation is partly the result of laser shot-to-

shot power fluctuations. It is also the result of large variations in the size, location and 

intensity of the underwater LIBS plasma. Changes in the plasma properties from shot-to-

shot effects the width of the H(α) emission line, as shown below. Figure 3 shows two 

different Li calibration curves, for solutions containing 1000 ppm K and Li at 

concentrations ranging from 1.7 to 53 ppm. One plot (solid line, open circles) shows the 
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raw emission intensity (left axis) and the other plot (dashed line, open triangles) shows 

the ratio of Li emission to K emission (right axis). The residuals are shown at the bottom 

of the figure (solid line Li, dashed line Li/K ratio). As expected, the precision of the Li/K 

ratio is better than Li emission alone. However, for LIBS measurements of deep-ocean 

hydrothermal vent fluids, it is desirable to have an internal standard with a fixed or 

known concentration.  

 To be useful as an internal standard, H and O emission should be measured 

simultaneously with the analyte. However, H and O emission in solution is very short 

lived relative to Li and K.[31] The high-energy H and O lines are quenched much more 

quickly than Li emission in water, requiring a very short detector gate delay, compared to 

Li. Figure 4 (top) shows the LIBS emission lines for H (656 nm) and O (777 nm) in 25 

ppm Li solution at 1 Bar and 300 Bar using a 192 ns gate delay with a 1 µs gate width. 

The lower spectrum was measured similarly for a K solution at 1 Bar. The combination 

of a short detector gate delay with a wide width allows the short H and O lines to be 

measured simultaneously with the Li or K emission. Figure 5 shows the time profile of 

these H, O and Li emission lines. The emission of the H and O lines reaches a maximum 

at ~120-140 ns after the laser pulse, then decays quickly, while Li emission is not 

observed at all at ~125 ns, reaching a maximum at ~175-200 ns. The time profiles are 

similar for K and for solution pressures up to 300 Bar.  

Figure 6 shows Li (top) and K (lower) calibration curves up to 500 ppm plotted as 

Li and K emission intensity (open squares), Li/H and K/H intensity ratios (open circles), 

and Li/O and K/O intensity ratios (open triangles). These measurements were made using 

a laser energy of 192 mJ per pulse, and each measurement is the average of 200 laser 
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shots. Measurements were made in triplicate and the error bars show plus or minus one 

standard deviation. The Li/H and Li/O ratios both track the Li intensity well, with the 

Li/O ratio showing lower variability between measurements at a given concentration than 

the Li/H ratio. The K/O ratio tracks the K emission well with significantly improved 

variability between measurements at a given concentration. However, the K/H ratio did 

not track the K emission intensity well and showed relatively poor reproducibility 

between measurements.  

In a study to compare the variability for single-shot LIBS measurements of the Li 

emission intensity with the Li/H and Li/O ratios, and the K emission intensity with the 

K/H and K/O ratios, the standard deviations of the Li and K emission intensities for 200, 

single-shot LIBS spectra were calculated. The sets of 200-shot measurements were done 

in triplicate and the pooled standard deviation for all 600 shots was used to calculate the 

relative standard deviation of the emission intensity, and the H and O intensity ratios for 

Li and K. This was done for different Li and K concentrations and laser pulse energies. 

The RSD results are tabulated for 5 ppm Li and 100 ppm K solutions in Table 3.2 and 

Table 3.3, respectively. At any specific concentration it was found that the RSDs of the H 

and O ratios were lower for both Li and K, at all laser pulse energies used. The O ratio 

worked better than the H ratio for both elements. In the case of Li, the lowest Li/O RSD 

was 2%, improved up to 7.5-fold compared to the RSD of the Li intensity alone. The 

maximum Li/H improvement in the RSD was 6%, a ~2-fold improvement compared to 

the RSD of the Li intensity alone. In the case of K, the lowest Li/O RSD was 4%, a ~3-

fold improvement compared to the RSD of the K intensity alone. There was little 

improvement using the K/H ratio. The H(α) line is very broad due to Stark broadening 
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and the width of this line varied considerably from shot to shot in this study, on the order 

of 8%. The O line is relatively narrow and the width varied only about 4%. Because of 

the broadness of the H line and the variability in its width, the H intensity was sometimes 

difficult to determine. This lead to a larger variation in the Li/H and K/H ratios and larger 

RSD values compared to the Li/O and K/O ratios.  

Figure 7 shows the RSD for Li emission intensity at three different 

concentrations, compared to the Li/H and Li/O emission intensity ratios. While there was 

some variation in the Li RSD with concentration, the ratio measurements did not vary 

much with concentration. A similar result was seen for K.  

 As shown in Tables 3.2 and 3.3, the RSD of all measurements improved as the 

laser pulse energy was increased. On the other hand, the intensity of all of the emission 

lines decreased exponentially with increasing pulse energy as shown in Figure 8. This 

effect could be the result of plasma shielding, potentially an issue using the 180º 

backscatter configuration. The larger effect for the H and O lines compared to Li and K 

emission is consistent with increasing electronic temperature at higher laser power, 

leading to reduced concentrations of neutral species. The much higher ionization energy 

of H and O might lead to a larger relative change in neutral species concentrations as the 

laser power is increased. At the higher laser power the H and O emission intensity is very 

insensitive to changes in laser power. This could explain why the RSD values were lower 

at higher laser power. 
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3.5 CONCLUSIONS 

 Hydrogen and oxygen emission can be measured simultaneously with Li and K 

emission using LIBS in bulk aqueous solution, up to 300 bar pressure. Calibration plots 

using Li/H, Li/O, K/H, and K/O emission ratios track the Li and K emission intensity 

calibration curves very well. As internal standards, H and O both improve the precision 

of replicate Li and K measurements, with the O ratio showing the largest improvement. 

The biggest improvement is seen at the higher laser pulse energies tested, even though 

emission of all species decreased with increasing laser pulse energy. 
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Table 3.1. Observed wavelength, transition probabilities (Aki), and upper (Ek) and lower 
(Ei) state energies for the Li, K, H and O lines used in this study (taken from NIST 
Atomic Spectra Database). 
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Table 3.2. RSD values of the 671 nm Li line intensity, the Li/H emission ratio and the 
Li/O emission ratio for triplicate measurements of 200, single-shot LIBS spectra, for 5 
ppm Li, measured at 145 mJ, 166 mJ, 192 mJ, 222 mJ, and 260 mJ laser pulse energy. 
 

	  

	  

Laser Power 145 mW 166 mW 192 mW 222 mW 260 mW
Li Signal RSD 0.24 0.22 0.15 0.14 0.13

Li Signal Ratioed 
to H Signal RSD 0.16 0.15 0.09 0.06 0.08

Li Signal Ratioed 
to O Signal RSD 0.10 0.03 0.02 0.03 0.02

Lithium Concentration 5 ppm



48	  

Table 3.3. RSD values for triplicate measurements of 200 laser shots each, of K emission, 
the K/H emission ratio and the K/O emission ratio for 100 ppm K, measured at 145 mJ, 
166 mJ, 192 mJ, 222 mJ, and 260 mJ laser pulse energy. 
 

	  

Laser Power 145 mW 166 mW 192 mW 222 mW 260 mW
K Signal RSD 0.24 0.19 0.13 0.11 0.10

K Signal Ratioed 
to H Signal RSD 0.18 0.18 0.17 0.12 0.09

K Signal Ratioed 
to O Signal RSD 

0.17 0.08 0.07 0.04 0.08

Potassium 100 ppm 
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Figure 3.1. Experimental laser induced breakdown spectroscopy set-up for the studies of 
hydrogen and oxygen as internals standards. L1 & L2 are f/2 plano convex lenses, M is a 
dichroic mirror, C is the sample cell.	  
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Figure 3.2. Bulk aqueous solution, SP LIBS spectrum of a solution containing ~50 ppm 
Li and ~1000 ppm K measured using a 1064 nm pulsed laser. 
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Figure 3.3. Calibration curves for Li, plotted as Li emission (open circles, solid line) and 
as the Li/K ratio (open triangles, dashed line) where the K concentration was 1000 ppm 
for all solutions. The residuals are also plotted, for Li emission (closed circles, solid line) 
and the Li/K ratio (closed triangles, dashed line).	  
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Figure 3.4. Bulk aqueous solution, SP LIBS spectra of a 25 ppm Li solution at 1 Bar and 
300 Bar pressure (Top), and a 100 ppm K solution at 1 Bar.  The detector gate delay and 
gate width were 192 ns and 1 ms, respectively. 
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Figure 3.5. Plots of emission intensity versus gate delay for the 671 nm Li, 656 nm H and 
777 nm O lines measured using a 5 ppm Li solution.
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Figure 3.6. Calibration curves for Li (top) and K (lower) solutions using the 671 nm Li 
and 766 nm K emission line intensities and the Li/H and Li/O intensity ratios (top) and 
K/H and K/O intensity ratios (lower), using 192 mJ per pulse. Error bars show ±1 
standard deviation for triplicate measurements. 
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Figure 3.7. RSD values for lithium emission (Li) and the Li/H and Li/O ratios for 5 ppm, 
25 ppm and 100 ppm Li solutions, using 192 mJ per pulse laser energy.  The RSD values 
were calculated based on the standard deviation of the intensity for 200, single-shot 
measurements.  The RSD was calculated by pooling the standard deviation for three sets 
of 200-shots. 
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Figure 3.8. Emission intensity for the 671 nm Li (open squares), 766 nm K (filled 
squares), 656 nm H(α) (open circles) and 777 nm O (open triangles) lines, versus laser 
pulse energy, for a solution containing 5 ppm Li and 25 ppm K. 
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CHAPTER 4 
DESIGN AND TESTING OF A SUPER CRITICAL CO2 CELL

 

4.1 INTRODUCTION 

Mars and Venus are the two bodies in our solar system that are most similar to 

Earth, however Mars has little to no atmosphere and Venus has the most powerful 

greenhouse effect found in the solar system, which makes them ideal to study.[1] The 

National Aeronautics and Space Administration (NASA) has landed four different rovers 

on the surface of Mars, with the most recent being the Mars Science Laboratory rover 

Curiosity. ChemCam on Curiosity is the first LIBS instrument to be operated on another 

planet and is capable of sample analysis up to 7 m away.[1-4] The success of this 

instrument has aided in the idea of using LIBS for other planetary missions such as on the 

surface of Venus. 

Venus has dense clouds above the surface that makes orbital surveys difficult 

requiring the need for a lander mission. Missions to Venus using a rover that lands on the 

surface will be no easy feat due to the extremely harsh environment. The Venusian 

atmosphere is 97% CO2 with a surface pressure of 90 bars and surface temperature of 

~735K. This causes the CO2 to be in a super critical state (P >72.9 bar, T >304.25 K) at 

the surface.[1,2] While Venus has many similarities in size, mass, and the amount of solar 

energy from the sun, there is a significant difference in the surface conditions. These 
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differences drive scientist to want to better understand why Venus is the planet it is 

today.[4]  

	   Soviet Venusian surface probes have had an operational lifetime of ~2 hours. A 

LIBS instrument has several key characteristics that make it suitable for measurements 

under the extreme environmental conditions of Venus. LIBS is standoff capable allowing 

it to perform from the safety of the lander. Eliminating the risks of drilling, collecting, 

delivering a sample with a contact instrument. LIBS is also able to make several thousand 

measurements of the surrounding landing site during the lifetime of a Venus lander.  

 LIBS has been proposed for measurements on Venus before, however when 

forming the plasma in supercritical CO2 there will be a refractive index change and it will 

interfere with the emission. Therefore, a supercritical CO2 setup has been designed and 

build to make measurements under these conditions.  

 

4.2  EXPERIMENTAL 

 Figure 4.1 illustrates the experimental setup for super critical CO2 measurements. 

For safety of the operator, a containment chamber was built around the entire setup using 

3/4” thick ultra impact resistant clear polycarbonate (McMaster-Carr, 84805K32). In 

order to produce super critical CO2 all the valves (V) start in the closed position. The 

high-pressure cell is wrapped in heat tape and set to a temperature of 50 C˚ (Brisk Heat, 

SDC120JC-A) and allowed to equilibrate for ~5 hours. The CO2 cylinder is opened. The 

pressure exiting the cylinder is ~52 atm, which is less then the pressure need to be super 

critical, therefore a high pressure pump is utilized. For all measurements V4 was opened 

so the 100 atm blow off valve was being used and not the 290 atm blow off. The high-
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pressure cell is initially charged to ~52 atm by opening V1. Once the pressure reaches 

~52 atm then V1 is closed isolating the sample cell. V2 is then opened and the pump is 

filled with CO2. V2 is then closed and V3 is opened so the pump can increase the pressure 

of the cell to a pressure <80 atm.  

All measurements were made using a Continuum Surelite III Nd:YAG laser for 

excitation operated at 1064 nm with a repetition rate of 1 Hz. The laser was directed into 

a custom stainless steel cell with 25.4 mm dia x 6.35 mm thk sapphire windows (Meller 

Optics Inc., SCD3789-02B) and PTFE seals (1.6 mm thk), by reflection from a 45° 

dichroic mirror (DM) and focused into the super critical CO2 using a 25.4 mm diameter, 

f/2 fused silica lens (L1). LIBS emission was collected back through the same lens and 

focused using a second 25.4 mm diameter f/2 lens (L2) on to a 2 mm core diameter 

optical fiber, which was coupled to a f/4 dispersive spectrometer (Chromex Model 

250IS/RF) with 600 gr/mm grating blazed at 750 nm, which allowed for a ~95 nm 

spectral window and resolution of ~1.5 nm. The collection system consisted of a gated 

1064x256 pixel ICCD (Princeton Instruments I-Max 1024-E).  

 

4.3 RESULTS AND DISCUSSION  

Figure 4.2 shows shadowgraph images of the laser induced plasma formed in 

super critical CO2 at a pressure of 85 atm and temperature of 40 ˚C, at td= 350 ns, as well 

as the formation of a cavitation bubble formed starting at a later time and finally 

collapsing at 5 µs. These results are similar to what is seen in shadowgraph images in 

bulk aqueous solution under pressure.[5] Figure 4.3 shows a LIBS spectrum of  

supercritical CO2 showing the strong 777 nm oxygen(I) line. In Figure 4.4 shows the 
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supercritical CO2 cell, which has been wrapped in heat tape with an olivine sample. The 

olivine sample was held in place in the cell using an 18/10 stainless steel spring clamp. 

Figure 4.5 shows the LIBS spectrum of olivine in super in supercritical CO2 at 80 atm 

and 40 C˚, relevant to measurements of minerals on Venus. This spectrum was stitched 

together from 9 separate spectra, since the spectrometer spectral window was only ~95 

nm. The more intense lines were assigned using NIST Atomic spectral database.  

One of our interests is possible pressure effects on the LIBS emission. Figure 4.6 

shows that in the pressure range of 73 to 120 atm there are no significant pressure effects 

on the position and width of the, 767 nm, 778 nm, and 781 nm Fe lines. These initial tests 

on the new supercritical CO2 LIBS emission cell do not show any issues related to large 

changes in refractive index, or cloudiness when the plasma was formed in supercritical 

CO2, however, further studies need to be done. 

 

4.4 REFERENCES 

1. Moroz, V.I.;  Studies of the atmosphere of Venus by means of spacecraft: Solved and 
unsolved problems, Adv. Space Res., 2002. 29; 215-225. 
 
2. Clegg, S.; Wiens, R.; Misra, A.; Sharma, S.; Lambert, J.; Bender, S.; Mewell, R.; 
Nowak-Lovato, K.; Smrekar, S.; Dyar, M.; Maurice, S.; Planetary Geochemical 
investigations Using Raman and Laser-Induced Breakdown Spectroscopy, Appl. Spec., 
2014. 68; 925-936. 
 
3. Sharma, S.; Misra, A.; Singh, U.; Remote Raman Spectroscopy of Minerals at Elevated 
Temperature Relevant to Venus Exploration, SPIE 7153, Lidar Remote Sensing for 
Environmental Monitoring IX, 8 December 2008; doi: 10.1117/12.806371. 
 
4. Sharma, S.; Misra, A.; Clegg, S.; Barefield, J.; Weins, R.; Acosta, T.;Time-resolved 
remote Raman study of minerals under supercritical CO2 and high temperatures relevant 
to Venus exploration, Phil. Trans. R. Soc. A, 2010. 368; 3167-3191. 
 



	  

61	  

5. Angel, S.M.; Bonvallet, J.; Lawrence-Snyder, M.; Pearman, W.F.; Register, J.; 
Underwater measurements using laser induced breakdown spectroscopy. J. Anal. At. 
Spectrom., 2016. 31; 328-336. 



	  

62	  

	  
 

Figure 4.1. Experimental set up for super critical CO2 measurements. 
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Figure 4.2. Shadowgraph images of the plasma and cavitation bubble formation in 
supercritical CO2 (T= 40 C˚, P= 85 atm) 
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Figure 4.3. Spectrum of supercritical CO2, with a strong oxygen emission at 777 nm. 
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Figure 4.4. Supercritical CO2 cell wrapped in heat tape with a piece of olivine held in the 
center.
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Figure 4.5. Spectrum of the mineral olivine  
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Figure 4.6. Plot of Fe line (767 nm, 778 nm, 781 nm) intensities in olivine as a function 

of pressure. 
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