
University of South Carolina University of South Carolina 

Scholar Commons Scholar Commons 

Theses and Dissertations 

2015 

Factors Contributing to Interannual Variability in the Abundance of Factors Contributing to Interannual Variability in the Abundance of 

Bay Anchovy (Anchoa Mitchilli) Larvae Bay Anchovy (Anchoa Mitchilli) Larvae 

Steven B. Vega Jr. 
University of South Carolina 

Follow this and additional works at: https://scholarcommons.sc.edu/etd 

 Part of the Marine Biology Commons 

Recommended Citation Recommended Citation 
Vega, S. B.(2015). Factors Contributing to Interannual Variability in the Abundance of Bay Anchovy 
(Anchoa Mitchilli) Larvae. (Master's thesis). Retrieved from https://scholarcommons.sc.edu/etd/3578 

This Open Access Thesis is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and 
Dissertations by an authorized administrator of Scholar Commons. For more information, please contact 
digres@mailbox.sc.edu. 

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/etd
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F3578&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1126?utm_source=scholarcommons.sc.edu%2Fetd%2F3578&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/3578?utm_source=scholarcommons.sc.edu%2Fetd%2F3578&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu


Factors contributing to interannual variability in the abundance of bay anchovy 

(Anchoa mitchilli) larvae 

 

by 

 

Steven B. Vega Jr. 

Bachelor of Science 

University of South Carolina Beaufort, 2013 
 

 

Submitted in Partial Fulfillment of the Requirements 

For the Degree of Master of Science in 

Marine Science 

College of Arts and Sciences 

University of South Carolina 

2015 

Accepted by: 

Ryan Rykaczewski, Director of Thesis 

Dennis Allen, Reader 

Stephen Borgianini, Reader 

Lacy Ford, Senior Vice Provost and Dean of Graduate Studies 

 

 



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by Steven B. Vega Jr., 2015 

All Rights Reserved. 

 

 



iii 
 

Dedication 

To my fiancée Sarah.  Thank you for your love and support. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

Acknowledgements 

 This work would not have been possible without contributions from my 

committee Drs. Ryan Rykaczewski, Dennis Allen, and Stephen Borgianini.  A special 

thank you to faculty and staff of the Belle Baruch Institute of Marine and Coastal Science 

who have diligently maintained the data sets used in my analysis.  An additional thank 

you to the U.S. Geological Survey for providing supplementary data used in my analysis.  

I would like to thank fellow graduate students John Bartlett and Brian Grieve for 

providing comments and answering my questions on a day-to-day basis.  Also, 

undergraduates Craig Raffenberg, Vikki Knapp, and Tricia Perez for assisting in the 

processing and collection of data used.  I would also like to thank my parents, Steve and 

Melissa, and their significant others for their support and assistance.  A special thank you 

to my fiancée Sarah and her family for their continued words of encouragement.    

 

 

 

 

 

 

 



v 
 

Abstract 

Coastal ecosystems have been subject to increasing stressors over recent decades due to 

coastal development, human population growth, and climate change.  Improving 

scientific understanding of the environmental factors which influence the productivity of 

fish populations in coastal ecosystems is vital to their prudent management, especially as 

the potential influence of anthropogenic climate change grows.  Estuaries serve as critical 

habitats for many fishes of primary ecological, economic, and recreational importance.  

One such fish, the planktivorous Bay Anchovy (Anchoa mitchilli), is abundant along the 

Atlantic and Gulf coasts of the US and is a key prey resource for many estuarine and 

coastal piscivores.  Within North Inlet-Winyah Bay estuary Georgetown, SC, the bay 

anchovy historically was one of the most abundant fishes in the system.  However, recent 

surveys have suggested their populations have declined over the past 30 years.  To 

determine what has contributed to the interannual variability in the fish’s abundance, I 

used a suite of long-term data sets collected between 1981 and 2002 including biweekly 

collections of anchovy larvae, mesozooplankton including a calanoid copepod (Acartia 

tonsa), and chlorophyll-a (Chl-a) concentration as well as monthly river discharge. Here I 

explored how variability in the timing of life events (phenology) of A. mitchilli’s prey (as 

measured by copepod density) influenced interannual variability in larval abundance.  I 

also tested how differences between A. mitchilli and copepod phenology could contribute 

to variability in A. mitchilli larval abundance.  The influence of freshwater discharge on 

the interannual variability of A. mitchilli larval abundance was also explored.   
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I hypothesized that lower discharge rates could lead to decreased nutrient supply and 

therefore contribute to declines in Chl-a concentrations and copepod abundances, which 

would have negative influences on A. mitchilli larval abundance.  Analysis revealed that 

river discharge and A. mitchilli larval density were inversely correlated, contradictory to 

what was hypothesized.  Lack of significant relationship between copepods and A. 

mitchilli larval density may suggest that copepods are not a significant source of food for 

larval and adult bay anchovy within the system.  Future work is required to fully assess 

the factors which contribute to the interannual variability in A. mitchilli larval density.
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Chapter 1 

Interannual variability in phenology of a copepod species; implications in larval fish 

abundance 

1.1 Introduction 

 Coastal ecosystems have been subject to increasing stressors over the past 

several decades due to coastal development, human population growth, and climate 

change (Kennish, 2002; Paerl et al., 2006).  Improving scientific understanding of the 

environmental factors which influence the productivity of fish populations in coastal 

ecosystems is vital to their prudent management and utilization, especially as the 

potential impacts of anthropogenic climate change grows in the future.  Estuaries act as 

critical habitat for many fish of primary ecological, economic, and recreational 

importance (Boehlert and Mundy, 1986). Use of these habitats by fish during their larval 

stages is well documented (Boehlert and Mundy, 1986; Allen and Barker, 1990; Beck et 

al. 2001).  However, understanding the factors that influence interannual variability in the 

recruitment of coastal fishes continues to elude scientists as it has over the past century 

(Hjort, 1914).  Cushing (1975) proposed a hypothesis to address this variability, 

suggesting that interannual variation in the survival and eventual recruitment of larval 

fishes could be explained by the degree to which the timing of plankton production 

coincides with larval fish production.  Thus, Cushing’s match-mismatch hypothesis 

proposes that year class strength is dependent on phenological variability (i.e., the timing 

of life events) between trophic levels.  More recently, the hypothesis has been extended 
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to piscivorous fish species and their associated prey (Durant et al., 2013), to subtropical 

regions (Cushing, 1990), and to investigate how climate change may affect trophic 

dynamics (Durant et al., 2007).  A common response of phenology to climate variability 

is shifts in the seasonal timing of arrival or maximum abundance (Edwards and 

Richardson, 2004, Thackeray, 2012).  Additional research has revealed the importance of 

high levels of prey in promoting high survival rates during the larval fish period 

(Cushing, 1990, 1995; Lasker, 1985; Rilling and Houde, 1999) considering low prey 

levels could lead to slow larval growth, introduce poor nutritional condition, and increase 

predation risk (Houde, 2008).  Phenological shifts in the prey of the larvae could 

therefore result in de-synchronization between larval stages of the predator and their 

associated prey and this mismatch could result in reduced recruitment (Thackeray, 2012). 

 Larvae of members from Sciaenidae, Clupeidae, and Engraulidae families 

can be found throughout intertidal creeks of North Inlet Estuary, Georgetown, SC (Allen 

and Barker, 1990).   One species of the Engraulidae family, the Bay Anchovy (Anchoa 

mitchilli) is particularly abundant and represents a critical trophic link in estuarine food 

webs (Jonhson et al., 1990; Scharf et al., 2002).  The fish has a large geographic range 

within the Western Atlantic and Gulf of Mexico.  It is short lived (<2 years) and highly 

iteroparous with >90% of the egg production within a season coming from age-1 females 

(Peebles et al., 1996).  Within North Inlet estuary, SC (USA), adults primarily feed on 

crab megalopae, crab zoea, veliger larvae, and calanoid copepod species (adults and 

copepodids) (Johnson et al., 1990).    Populations of A. mitchilli are also highly abundant 

in other systems including Chesapeake Bay (Rilling and Houde, 1999) and Tampa Bay 

(Peebles et al., 1996).   
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 Ogburn et al. (1988) conducted a 4-year study which revealed A. mitchilli 

to be the most abundant fish species in spring and summer within North Inlet.  Although 

historically abundant in North Inlet (Allen and Barker, 1990), scientific surveys have 

suggested their populations have declined over the past 30 years.   Similar declines of this 

species have been noted in additional systems including Chesapeake Bay (Kimmel et al., 

2012).  Kimmel et al. (2012) proposed that the fish’s long-term decline was due to 

reduction in their prey, Acartia tonsa ultimately in response to increased eutrophication, 

hypoxia occurrence, and predator abundance.  The importance of A. tonsa in the diet of 

adult and larval bay anchovy has been well studied (Detwyler and Houde, 1970; Johnson 

et al., 1990; Peebles et al. 1996).   Peebles et al. (1996) suggests adult A. mitchilli that are 

income spawners (i.e., their fecundity is reliant on prey levels at and shortly before 

spawning) and that A. tonsa was their primary prey in the Tampa Bay system.  The 

seasonality of A. mitchilli is relatively fixed, typically occurring between April and 

September in Winyah Bay (Allen et al. 2008), and coincides with that of A. tonsa in 

southeastern estuaries (Sullivan et al., 2007).  Yet, the extent to which food availability, 

specifically the timing of food availability relative to the period of peak larval production, 

could influence the interannual variability in recruitment of the bay anchovy has yet to be 

studied.   

 Improved understanding of how changes in the timing of seasonal events 

influences the survival of A. mitchilli may offer insight to the sensitivity of the coastal 

ecosystems to phenological shifts associated with climate variability.  Here I use a suite 

of long-term data sets to explore if changes in the timing of production, as measured by 

abundance, of a calanoid species, A. tonsa, is correlated with variability in the abundance 
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of the bay anchovy on interannual timescales.  Biweekly collections of A. tonsa from 

1981-2003 allowed us to characterize dates of maximum abundance in each year and 

compare those dates to annual larval bay anchovy densities.  I hypothesized that large 

differences between dates of maximum occurrence of copepodids and adults and arrival 

dates of anchovy larvae could contribute to declines in larval anchovy abundance.   

1.2 Methods 

1.2.1 Study Area 

 The North Inlet-Winyah Bay NERR is located within Georgetown County 

along the coast of South Carolina.  The Winyah Bay (WB) watershed is the third largest 

watershed along the east coast of the US; only Chesapeake Bay, VA and Pamlico-

Albermarle, NC systems are larger.  The watershed is approximately 46619 km
2
 and 

extends across portions of Virginia, North Carolina, and South Carolina (Buzzelli et al., 

2004).  Nearly 25% of South Carolina’s and nearly 20% of North Carolina’s total land 

area are included within the watershed.  The main source of freshwater input into the 

system is received through the Pee Dee-Yadkin river system (>85%) (Patchineelum et al., 

1999).  The estuary itself is approximately 65-km
2 

with a mean depth of about 4.2-m.  

Adjacent land usage can be characterized as industrial, agricultural, forested, natural, and 

managed wetland (Buzzelli et al., 2004). 

 The North Inlet (NI) (33°20’ N, 79°10’ W) watershed is much smaller 

than WB; only comprising approximately 38-km
2
.  However, its surrounding areas are 

much less developed; only about 2% are developed.  It is connected to WB by a shallow 

basin known as Mud Bay.  Through this connection, WB acts as a source of freshwater 

input to NI as do some small streams and groundwater seepage.  The estuary is a Spartina 
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alterniflora dominated salt marsh with a tidal range of approximately 1.5-m.  It is a well-

mixed system with salinities typically ranging from 30-35.   

 Biological time series data were collected at two sites within NI.  

Zooplankton collections were made at one site at the long term sampling site BB; a 

subtidal channel which has an depths range between 2.5 and 4 m at low tide (Allen and 

Barker, 1990).  BB is located at the confluence of two creeks, Town and Clambank (CB) 

(Fig. 1.1).  It is positioned approximately 2-km from the mouth of NI and 3 km from 

WB.  The bottom can be described as muddy with growths of soft coral and sponges.  

The site is located about 3.5-km west of the mouth of NI.  It can be characterized as a 

narrow tidal creek surrounded by oyster reefs and S. alterniflora (Buzzelli et al. 2004).  

1.2.2 Biological Sampling 

 Ichthyoplankton and mesozooplankton collections were made every 10-16 

days between 1000 and 1600 hours approximately 1.5 hours before the predicted low tide 

beginning in January of 1981.  Ichthyoplankton samples were collected with an 

epibenthic sled consisting of a rectangular steel frame (51 x 30 cm), fitted with a         

365-μm-mesh net.  Skis were mounted to the frame so that the apparatus could be towed 

along the bottom. The sled was fitted with a General Oceanics flowmeter to estimate 

water volume filtered.  Tows were made from a small boat and were made in the same 

direction of the ebbing tidal current.  Three sequential tows were made along 100-m 

paths which are marked by stakes at site BB.  Collections were preserved in formalin and 

stained with rose bengal (0.5 g L
-1

).  Physical data including bottom and surface 

temperature and salinity were measured simultaneously using a YSI.  In the laboratory, 

typically entire samples were analyzed and the total number of larval fish was counted.  
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In some cases, a Folsom splitter was used to produce a subsample no less than 12.5% of 

the original sample.  Larvae were first identified to the genus level and therefore both 

Anchoa mitchilli and Anchoa hepsetus were included in counts and labeled as Anchoa 

spp.  More recently, larvae have been identified to species level which has allowed us to 

characterize the taxonomic composition.  Of the 434 individual samples in which larval 

Anchoa spp. were identified between 1981 and 2013, 283 contained A. mitchilli while A. 

hepsetus were only present in three.  Thus, for our analysis I assume that all larvae 

captured are A. mitchilli.  For each tow larval densities were calculated by dividing total 

number of larvae by the total volume of water filtered. Larval densities for an individual 

date represent an average of the three replicates. Larval fish data were available for the 

years of 1981-2013.  However, for our analysis I only consider data collected between 

1981 and 2002 due to the availability of mesozooplankton data.                  

 Mesozooplankton samples were collected using 0.5-m ring nets fitted with 

a      153-μm-mesh net and a General Oceanics flowmeter.  Weights were attached to nets 

so that they would reach the bottom of the water column.  A release mechanism was 

installed on each net so that it remained closed until it reached the bottom.  Two 

simultaneous tows were completed at site BB.  Nets were towed with the current and 

remained on the bottom for 5 minutes after which they were raised to just below the 

surface for an additional 5 minutes.  Collections were preserved in formalin and stained 

with rose bengal (0.5 g L
-1

).  For laboratory processing, each sample was filtered through 

a 153-μm sieve, and the total sample volume was brought up to 100 mL or 200 mL 

depending on sample density.  A 2-mL Stempel pipette was used to take a subsample, 

and the total number of A. tonsa adults and copepodids and total number of all copepods 
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were counted.  The total number was multiplied by a multiplication factor determined by 

the total sample volume (e.g., 50x if the sample volume was 100-mL).  Densities were 

calculated for each replicate by dividing total counts corrected with dilution factor by the 

total volume of water filtered.  Densities for an individual date represent an average of 

the two replicates.  Mesozooplankton data were processed for the years of 1981-1991, 

1996-1998, and 2001-2002.                    

1.2.3 Data Analysis 

 The densities (number m
-3

) of Acartia tonsa adults and copepodids and 

Anchoa mitchilli larvae were calculated for each sample.  Raw densities were log 

transformed to normalize the distribution prior to averaging.  These logged abundance 

values were used to calculate monthly and yearly averages.  Date of first occurrence 

within a given year for bay anchovy larvae represent the date of sampling in which their 

abundance exceeded 0 for two consecutive sampling dates.  Date of first occurrence 

within a given year for adults and copepodids was determined by using a threshold of 

1000 individuals m
-3

. Houde, (1978) showed that nauplii densities of 100,000 individuals 

m
-3

 promoted survival through metamorphosis of 10% of A. mitchilli larvae in incubation 

experiments.  Based on defined a ratio of nauplii to adult A. tonsa (100:1) within the 

Patuxent River estuary, this equates to 1,000 individuals m
-3 

(Heinle, 1966).
 
 When 

densities exceeded the threshold for two consecutive sampling dates, the corresponding 

date to first exceed 1000 individuals m
-3

 were recorded as the date of first occurrence.  

For years when densities did not exceed the established threshold, the date of maximum 

abundance was used as the date of first appearance.  The date of maximum abundance for 

A. tonsa adults and copepodids and larval anchovy was determined for each sampling 
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year for which data was available.  The values represent the Julian date that the yearly 

maximum value was collected.  Significant relationships were tested using Pearson’s 

correlation test with a confidence interval set at 95%.  Long-term trends were tested for 

significance using linear regression analysis.       

1.3 Results 

1.3.1 Long-term Trends 

 A significant negative trend (p<0.01) was noted in yearly average 

densities of A. tonsa adults and copepodids and monthly average densities of A. mitchilli 

larvae from 1981-2002.  A. tonsa adult’s maximum density was recorded on 06/29/1981 

(~24561 individuals m
-3

) and copepodids maximum density was recorded on the same 

date and measured approximately 48,616 individuals m
-3

.  The overall average density of 

adults and copepodids was approximately 1317 and 3670 individuals m
-3

 respectively.  

The maximum number of Anchoa larvae was recoded 4/30/1981 (~10 individuals m
-3

) 

(Fig. 1.2).    

1.3.2 Phenological Dates  

 No long-term trends in date of maximum occurrence were noted for A. 

tonsa adults and copepodids between 1981 and 2002 (Fig. 1.3A).  The average date of 

maximum occurrence for A. tonsa adults and copepodids was the 172
nd

 day (June 21) and 

181
st
 day (June 30) respectively.  The latest date of maximum occurrence for both A. 

tonsa adults and copepodids was 09/11/1985.    The earliest date of maximum occurrence 

for adults and copepodids was 05/06/1986 and 04/29/1988 respectively.  A close to 

significant increase in date of maximum occurrence was noted for A. mitchilli (r=0.398, 

p=0.067).  Their average date of maximum abundance was the 163
rd

 day (June 12). The 
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latest date of maximum occurrence was recorded on 07/11/1996, and the earliest was 

recorded on 04/24/2002.    

 No long-term trends in date of first occurrence were noted for A. tonsa 

adults abundances (Fig. 1.3B).  A significant increase in date of first occurrence was 

recorded for A. tonsa copepodids (r=0.56, p<0.05).  Average date of first occurrence for 

A. tonsa adults and copepodids was the 144 (May 24) and 120
 
(April 30) respectively.  A 

significant increase in date of first occurrence was recorded for A. mitchilli (r=0.504, 

p<0.05). Average arrival day for anchovy larvae was the 113
th

 day (April 23).  The 

earliest day of first occurrence was recorded on 04/3/1985 and the latest on 06/09/1983.   

1.3.3 Phenological Dates and Interannual Variability in Abundance 

 The date of maximum occurrence for A. tonsa adults and copepodids was 

compared to yearly averages of A. mitchilli, and no significant relationship was detected 

during the 1981 and 2003 period (Fig. 1.4).  The difference between date of first 

occurrence anchovy larvae and date of maximum occurrence for A. tonsa adults and 

copepodids was calculated.  No significant correlation between the difference in 

phenological dates and yearly anchovy densities was found (Fig. 1.5).  Similar, non-

significant results were present when comparing differences in date of maximum 

occurrence for each group and yearly averages of larval density (Fig. 1.6).  When 

compared to yearly larval densities, comparisons of the difference in date of maximum 

occurrence of A. mitchilli larvae and arrival date of copepodids and adults did not exhibit 

a significant relationship (Fig. 1.7).  Comparisons of differences in arrival dates for each 

group also displayed no significant relationship to larval average density (Fig. 1.8).   
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1.4 Discussion 

 Cushing (1975) proposed a hypothesis which aimed to address why there 

was such large interannual variability in larval fish recruitment.  He argued that year class 

strength is reliant on the degree to which larval first feeding coincides with peak plankton 

production.  More recently, marine plankton production cycles have been widely reported 

to be shifting in response to climate change (Root et al., 2003; Thackeray et al., 2012).  

As a result, there has been concern for de-synchronization between key seasonal species 

interactions (George, 2012; Thackeray et al., 2012).  In most coastal estuaries, copepods 

dominate the mesozooplankton and act as a critical link between phytoplankton and 

upper trophic levels, specifically larval fish (Ji et al., 2010).   

 Within NI-WB one of those species of copepod, A. tonsa, is highly 

abundant and is documented to be a component of adult bay anchovy prey (Johnson et al. 

1990).  Using multiple long-term data sets, it was my goal to explore if there was a 

match/mismatch dynamic operating between bay anchovy and A. tonsa within North 

Inlet. The dates of first appearance and maximum abundance were determined for each 

species between 1981 and 2002.  I hypothesized that phenological differences between 

the two groups may contribute to reduced larval fish production and therefore be related 

to the interannual variability in larval abundance.  Drawing quantitative conclusions 

relating changes in phenology of marine species directly to abundance of higher trophic 

species has proven to be difficult (Ji et al., 2010).  This fact is reflected in our own 

results.  No significant, linear relationship between phenology differences of A. tonsa and 

A. mitchilli abundances    were present.     
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 It was also our goal to explore phenological shifts in relation to the 

interannual variability noted in A. mitchilli densities between 1981 and 2002.  Despite a 

temporal sampling strategy adequate to resolve phenological variability (biweekly, as 

defined by Edwards and Richardson, 2004; Ji et al., 2010), my analysis only revealed a 

long-term trend increase in A. tonsa copepodid arrival and A. mitchilli date of maximum 

abundance. I express phenological dates as days of the year and although Edwards and 

Richardson (2004) established that biweekly samples are adequate to describe phenology 

of marine organisms, I suggest that weekly values will allow for a more precise analysis 

especially when comparing across trophic levels.  Although trends in anchovy phenology 

were found, no relationship with A. tonsa was established.  Lack of a relationship 

between zooplankton phenology, larval anchovy phenology, and larval abundance may 

indicate that there is an alternative mechanism which could be contributing to the 

interannual variability in larval fish abundances.  It may also be possible that the measure 

used for phenology within this study may not have been optimal.  I characterized the date 

of arrival and maximum abundance for both species.  Multiple alternative phenological 

dates could have been used, see Ji et al. (2010) for review.  Additionally, the threshold 

used to determine date of first occurrence for A. tonsa adults and copepodids (1000 

individuals m
-3

) could have affected our calculation of  the date of first appearance.  

Alternative thresholds could have been used and may have yielded alternative results.  

Ultimately, this analysis would have benefited from a combination of more temporal 

inclusive data and alternative thresholds.   

 Due to the limitations of using available data, I used larval abundance to 

attempt to draw conclusions about the stock as a whole.  The logic stemmed from the 
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established relationship between A. tonsa abundance and egg production by female 

anchovy within Tampa Bay (Peebles et al., 1996).  From this I assumed that more 

copepods were indicative of more eggs and therefore more larvae.  If long-term datasets 

of adult stock or recruitment (e.g., juvenile abundance index) were available within this 

system, my hypothesis may not have been rejected.  I am also assuming that A. tonsa is 

the primary food source for both adult and larvae A. mitchilli. Johnson et al. (1990) 

conducted a study to characterize prey selection by adult bay anchovy relative to prey 

availability within NI.  They found that although A. tonsa comprised nearly 47% of the 

total zooplankton collected, they only accounted for approximately 7% of the adult diet.   

In this study, A. tonsa comprised only 35% of total copepod density on average.  Thus, 

this study would have benefited from knowledge of what adults are consuming while 

spawning and what larvae are eating after fully consuming their yolk sac. 

 Factors contributing to interannual the variability in larval fish recruitment 

have been the focus of many studies over the past century (Hjort, 1914; Cushing, 1975; 

Lasker, 1985; Boehlert and Mundy, 1988).  Here it was my goal to contribute to the 

knowledge of recruitment dynamics of an ecologically significant planktivorous species, 

the bay anchovy.  Although, no significant evidence was discovered supporting 

Cushing’s (1975) match/mismatch hypothesis within this system, some conclusions can 

be drawn.  Coastal estuaries are highly diverse systems and the processes which act on 

the organisms which reside there are not only numerous but also complex (Wetz et al., 

2011). Thus, there is most likely an alternative mechanism influencing the interannual 

variability in larval abundance and contributing to this long-term decline.  Additionally, 

although the phenological timing of A. tonsa production seems to not be related to larval 
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abundance, it is possible that the magnitude of its densities could be.  In Chapter 2 I 

explore the extent to which the interannual variability in copepod abundance could 

influence the interannual variability in larval A. mitchilli abundance.      
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Figure 1.1 Map of North Inlet Georgetown, SC.  Stations of long-term sampling (OL, 

CB, and BB) are designated by white markers.  Major creeks are also indicated.  
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Figure 1.2 Time series of monthly average A. tonsa adults (ad.) and copepodids (cop.) 

(primary y-axis) and Anchoa mitchilli. larval densities (secondary y-axis) between 1981 

and 2002.    
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Figure 1.3 Dates of maximum abundance (A) and arrival (B) for Acartia tonsa adults and 

copepodids and for Anchoa mitchilli densities.   
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Figure 1.4 Date of maximum occurrence for A. tonsa adults (A) and copepodids (B) and 

detrended yearly average Anchoa mitchilli densities for data between March and 

September.    
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Figure 1.5 Difference in date of first appearance of Anchoa mitchilli and date of 

maximum occurrence A. tonsa adults (A) and copepodids (B) against detrended yearly 

average A. mitchilli densities.  
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Figure 1.6 Difference in date of maximum occurrence of Anchoa mitchilli and A. tonsa 

adults (A) and copepodids (B) against detrended yearly average A. mitchilli densities for 

data between March and September.    
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Figure 1.7 Difference in date of maximum occurrence of Anchoa mitchilli and arrival 

date A. tonsa adults (A) and copepodids (B) against detrended yearly average A. mitchilli 

densities for data between March and September.    
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Figure 1.8 Difference in arrival date of Anchoa mitchilli and A. tonsa adults (A) and 

copepodids (B) against detrended yearly average A. mitchilli densities for data between 

March and September.    
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Chapter 2 

Long-term decline in bay anchovy larvae (Anchoa mitchilli) in a Southeastern 

estuary; influence of freshwater discharge 

2.1 Introduction 

 Coastal estuaries have been subject to increasing stressors over the past 

several decades due to coastal development, human population growth, and climate 

change (Kennish, 2002; Paerl et al., 2006).  More specifically, freshwater delivery to 

coastal systems have been directly altered in recent years through increased human 

modification of hydrologic regimes and climate change (Flemer and Champ 2006; Wetz 

et al., 2011).  In addition to freshwater, rivers also deliver nutrients which support 

productive and diverse coastal ecosystems (Whitall et al., 2003; Wetz et al., 2011).  

Drought or low flow conditions during recent years may be associated with lower 

biological productivity in coastal waters (Nixon and Buckley, 2002).  Wetz et al. (2011) 

showed that decreases in freshwater input to the Neuse River Estuary, NC led to declines 

in nutrient levels and mesozooplankton abundances during a period of drought.  These 

changes have the potential to influence upper-trophic level organisms through altering 

food supply (Wetz et al., 2011; Sheldon and Burd, 2014).      

 North Inlet, SC (NI) is one region reliant on nutrient delivery to support 

coastal production; work by Dame et al. (1986) showed that there was a net import of 

chlorophyll a (Chl-a) into the system from the adjacent coastal ocean  meaning that 

concentrations of Chl-a within the estuary are dependent on coastal production.  NI’s 



26 
 

adjacent estuary, Winyah Bay (WB) delivers the majority of freshwater into the local, 

coastal waters.  The entire watershed of WB is the third largest along the east coast of the 

US (Buzzelli et al., 2004).  Nearly 25% of South Carolina’s total land area and nearly 

20% of North Carolina’s total land area are included within the watershed.  The main 

source (>85%) of fresh water input into the system is received through the Pee Dee-

Yadkin river system (Patchineelum et al., 1999).              

 Coastal estuaries act as critical habitat for many fish species of primary 

ecosystem and economic importance (Boehlert and Mundy, 1986).  Larvae of members 

from Sciaenidae, Clupeidae, and Engraulidae famalies can be found throughout intertidal 

creeks of NI (Allen and Barker, 1990).   One species of the Engraulidae family, the bay 

anchovy (Anchoa mitchilli) is particularly abundant and represents a critical trophic link 

in estuarine food webs (Jonhson et al., 1990; Scharf et al., 2002).  Ogburn et al. (1988) 

conducted a four year study which revealed A. mitchilli to be the most abundant fish 

species within NI during spring and summer, however scientific surveys indicated that 

their populations have declined over the past 30 years (Allen and Barker, 1990).  Within 

NI, adults primarily feed on crab megalopae, crab zoea, veliger larvae, and calanoid 

copepod species (adults and copepodids) (Johnson et al., 1990).  Acartia tonsa, a 

documented prey item, is a calanoid species whose production may be dependent on 

primary production  (Durbin et al. 1983).  The importance of A. tonsa in the diet of adult 

and larval bay anchovy has been well studied (Detwyler and Houde, 1970; Johnson et al., 

1990; Peebles et al. 1996).   Peebles et al. (1996) produced work suggesting that bay 

anchovy are income spawners (i.e., their fecundity is reliant on prey levels at and shortly 

before spawning) and that A. tonsa was their primary prey in the Tampa Bay system.  
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 Improving scientific understanding of the environmental factors which 

influence the productivity of fish populations in coastal ecosystems is vital to their 

prudent management and utilization, especially as the potential influence of 

anthropogenic climate change grows in the future.  Here, I intend to contribute to this 

understanding by considering how changes in river discharge can influence larval 

abundance, offering insight to how the ecosystem might respond as precipitation and 

flow patterns continue to vary.  I first sought to answer how lower trophic levels as 

measured by copepod density and Chl-a concentration would respond to reduced river 

discharge.  It was my primary goal to explore the extent to which copepod abundance 

contributed to the interannual variability in larval abundance in order to relate freshwater 

and larval anchovy abundance in NI.  Yearly averages of river discharge and Chl-a 

concentrations were compared to address the relative contribution of changes in flow to 

changes in production.  Similar comparisons were completed for Chl-a and copepod 

density and copepod density and A. mitchilli density.   I hypothesized that during a period 

of low flow, primary production (as measured by Chl-a concentration) and populations of 

higher trophic-organisms would be reduced thus contributing to the long-term decline in 

A. mitchilli abundance.  Because A. tonsa is a primary food source of A. mitchilli (Peebles 

et al., 1996), and A. tonsa production is reliant on primary production (Durbin et al., 

1983), I suggest the following relationship; reduced Chl-a concentrations resulted in 

lower copepod densities and therefore reduced egg production in A. mitchilli over an 

interannual time scale (Fig. 2.1). Lower than average copepod densities reduced survival 

and subsequent recruitment, diminished the number of one-year females, and contributed 

to lower larval abundance in subsequent years.   I utilized a suite of long-term datasets 
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including A. tonsa and larval A. mitchilli densities, Chl-a concentrations, discharge rates, 

and surface salinity to address the aforementioned hypotheses.   

2.2 Methods 

2.2.1 Study Area 

 Time series data were collected in NI.  The estuary is a Spartina 

alterniflora dominated salt marsh and is protected through the National Estuarine 

Research Reserve System (NERRS).  It is a well-mixed system with mean salinities 

ranges from 30-35 ppt.  Zooplankton collections were made at one site (BB) in Town 

Creek; a subtidal channel which has a typical depth between 2.5-4 m at low tide (Allen 

and Barker, 1990).  The sampling site (BB) is located at the confluence of two creeks, 

Town and Clambank (CB).  The site has been described in detail by Allen et al. (2008), 

and Buzzelli et al. (2004).  Chl-a data were measured from samples collected at the 

NERR long-term sampling site (Oyster Landing-OL) within Crab Haul Creek (33°20’58” 

N, 79°11’34” W) (Fig. 1.1).  The site has been described in detail by Buzzelli et al. 

(2004).  For full description of study area refer to Chapter 1. 

2.2.2 Biological Sampling 

 Multiple time series were utilized, including measurements of 

mesozooplankton, larval bay anchovy density, and Chl-a concentrations.  For complete 

description of methods used in the collection of larval fish and mesozooplankton, refer to 

Chapter 1. Collections for Chl-a analysis were made daily beginning April of 1983 at OL 

and data were available for the years of 1983-2002.  Data available from Clam Bank were 

temporally limited (i.e., only available for the years 1983-1993) and monthly averages for 

this period were correlated to the monthly averages at OL (r=0.91 p<0.01) (Fig. 2.2).  
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Individual values represent the measured Chl-a concentrations the day prior to the 

biweekly mesozooplankton sampling.  A 1-L surface water sample was collected at 

approximately 1000 hours EST.  Between 10 to 20-mL of this water sample were filtered 

through a 2.5-cm, 0.7-μm (nominal pore size) GFF.  The filter was placed into a 

scintillation vial with 1 mL of saturated magnesium carbonate (MgCO3).  After freezing, 

samples were removed and 9 mL of 100% acetone was added, and then refrigerated for 

24 hours.  After 24 hours, the samples were removed, shaken, and returned to the fridge 

for an additional 24 hours.  After extraction was complete, a Turner Model 101 

Fluorometer samples to analyze collected between 1983 and 1994.  A new Sequoia-

Turner Model 450 Digital fluorometer was used with a NB440 nanometer filter beginning 

with the January 8, 1994 sample event.  Use of a 430-nm filter makes Chl-a and 

phaeophytin indistinguishable thus, for the samples collected between 1983 and 1993, 

hydrochloric acid was added to obtain a phaeophytin a value which was then subtracted 

from the total to give a Chl-a value.  These steps were not necessary for samples 

collected after January 8, 1994 as the NB440 filter used in analysis is specific to  Chl-a.  

2.2.3 Pee Dee River Discharge 

 For analysis including river discharge data, I used mean monthly and 

yearly discharge data recorded at U.S. Geological Survey (USGS) station 02131000 

located on the Pee Dee River in Pee Dee, SC.  The inclusive Pee Dee-Yadkin river 

system accounts for greater than 85% of freshwater input into the watershed, with the Pee 

Dee being the largest contributor (>60%) (Patchineelum et al., 1999).  Due to its large 

percentage of input into NI-WB relative to other river systems, I chose to focus our 

analysis on data only taken from this site.      
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2.2.4 Data Analysis 

  The densities (number of individuals m
-3

) of A.  tonsa adults and 

copepodids and A. mitchilli larvae were calculated for each sample.  These abundance 

values and individual Chl-a concentrations were used to calculate monthly and yearly 

averages.  Yearly averages were used to make comparisons over an interannual time 

scale.  Only sampling dates between the months of March and September were included 

in yearly averages due to the seasonal occurrence of A. mitchilli (April-September).  

Monthly averages were utilized in order to address the contribution to variability during 

peak spawning period.  The main focus of monthly comparisons was June averages 

which represents the average date of maximum occurrence for larval bay anchovy (See 

Chp. 1).   Monthly data were detrended prior to correlation analyses to remove similar 

long-term trends by fitting a line over the given time period and model values were 

produced from the fitted line.  These model values were subtracted from the original 

values to achieve detrended values.  Long-term trends and correlations were determined 

using linear regression and Pearson two-tailed correlation tests respectively.   

2.3 Results        

2.3.1 Long-term Trends 

 A significant negative trend (p<0.01) was noted in monthly average 

concentrations of Chl-a, monthly average densities of A. tonsa adults and copepodids, 

and monthly average densities of A mitchilli larvae from 1981-2002.  A. tonsa adults 

maximum density was recorded on 06/29/1981 (24561 individuals  m
-3

) and copepodids 

maximum density was recorded on the same date and measured approximately 48616 

individuals m
-3

.  The overall average density of adults and copepodids was approximately 
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1317 and 3670 individuals/L respectively.  The maximum number of A. mitchilli larvae 

was recoded 4/30/1981 (10 individuals m
-3

).  Chl-a concentrations reached their 

maximum value 07/09/1991 (29.53 µg/L).  Time series reveal similar seasonal cycles for 

each group; peaks in late spring and summer each year (Fig. 2.3).  

 Significant negative trends (p<0.05) were also noted in monthly average 

concentrations of Chl-a and copepodid densities in the months of April, May and June 

between the years of 1981 and 2003 (Fig. 2.4).  Yearly averages (March-September) also 

revealed significant negative trends (p<0.05) for Chl-a concentrations and copepodid and 

adult densities (Fig. 2.5A).   Detrended yearly averages of Chl-a concentrations were 

correlated to detrended adult densities (r=0.81 p<0.01) (Fig. 2.5B) and copepodid 

densities (r=0.72 p<0.01) (Fig. 2.5C) between the years of 1983-2002.  Additionally, a 

long-term decline was noted for yearly average anchovy densities (r=-0.79, p<0.05) (Fig. 

2.6).   

2.3.2 Relationship Between Copepods and Larval Density 

 It was my primary goal to assess the relative contribution of A. tonsa 

densities to the interannual variability in larval abundance.  Monthly and yearly 

detrended densities of A. tonsa copepodids and adults and larval bay anchovies were 

compared but I found there was no significant relationship between copepods and 

anchovies on an interannual timescale.  Given that A. mitchilli are considered income 

spawners, I was motivated to compare densities of copepods and fish larvae during the 

fish’s peak spawning period (i.e., June) (See Chp. 1). Thus, I compared densities of A. 

tonsa and larval during the month of June.  I found no statistical relationship between the 

densities of larval A. mitchilli and copepods when comparing detrended time series (Fig. 
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2.7A).   However, a significant relationship was present between the two time series prior 

to removing the trend (r=0.715, p<0.05)(Fig 2.7B).  It is important to note that the 

statistical significance of this relationship is reliant on the shared long-term trend between 

the two groups.  All other individual months were compared and revealed no significant 

relationship (data not shown).  I tested the interannual relationship between larval 

anchovy and A. tonsa densities through comparing yearly averages which included data 

from between the months of March and September, there was no significant relationship 

present (Fig. 2.8) 

 Throughout the time series, A. tonsa comprised nearly 35% on average of 

total copepods.  Other copepods may be suitable prey and could supplement the diets of 

both adult and larval bay anchovy.  Therefore, I also investigated the relative contribution 

of total copepods to the interannual variability in larval abundance.  Similar to A. tonsa, 

there was no significant relationship between total copepods larval abundance for yearly 

June averages or yearly averages unless time series are not detrended (r=0.78 p<.05) 

(Fig. 2.9).   

2.3.3 River Discharge 

 River discharge measured at U.S. Geological Survey (USGS) station 

02131000 (Pee Dee River) varied greatly between 1981 and 2002 (Fig. 2.10A).  Between 

the years of 1983 and 2003 a significant decline in discharge was noted (r= -0.472, 

p<0.05).  Mean yearly discharge between 1981 and 2003 was approximately 2666.7 m
3
/s 

with a standard deviation of nearly 1025.4 m
3
/s.  Yearly average discharge between the 

months of March to September were significantly correlated with average salinities 

within NI for the same period (r= -0.801, p<0.05) (Fig. 2.10B).  Yearly average discharge 



33 
 

was also compared to Chl-a concentrations, copepod densities, and A. mitchilli densities.  

Of all the groupings, a significant relationship was present only between A. mitchilli 

larval density and river discharge (r=-0.447, p<0.05) (Fig 2. 11).  

2.4 Discussion  

 I attempted to assess the relative influence that interannual variability in 

freshwater discharge could have on A. mitchilli larval abundance.  By comparing a suite 

of long-term data sets, I noted a significant negative trend (p<0.01) in monthly average 

concentrations of Chl-a, monthly average densities of A. tonsa adults and copepodids, 

and monthly average densities of Anchoa mitchilli larvae from 1981-2002.  I 

hypothesized that the interannual variability in A. mitchilli could be attributed to changes 

in their food supply (i.e., A. tonsa) which would be a response to variability in river 

discharge.   

 The idea that prey availability may have a significant influence on larval 

fish survival and eventual recruitment is not novel.  The factors contributing to 

interannual variability in larval recruitment have perplexed scientists for over a century 

(Hjort, 1914).  Various hypotheses have been proposed to explain why there is such great 

variability between sequential recruitment classes (Houde, 2008), and a focus has been 

placed on the availability of prey (Lasker, 1985; Cushing, 1990).  However, drawing 

quantitative relationships between recruitment and prey abundance has proven to be 

difficult (Cushing, 1995).  In my own results, no relationship between A. mitchilli larval 

abundance and A. tonsa density was noted at interannual scales, which may be due to 

multiple possibilities.  In Tampa Bay, Florida A. mitchilli egg production was correlated 

to A. tonsa abundance leading the authors to suggest that the fish is an income spawner 
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with a spawning rate sensitive to the availability of A. tonsa (Peebles et al., 1996).  

Within NI, it is possible that A. tonsa is not a substantial food source for adult and larval 

anchovy.  Johnson et al. (1990) conducted a study to characterize prey selection by adult 

bay anchovy relative to prey availability within NI.  Their study found that although A. 

tonsa comprised nearly 47% of the total zooplankton collected, A. tonsa only accounted 

for approximately 7% of the adult diet.   In the samples used for this study, A. tonsa 

comprised approximately 35% of total copepod density on average. The lack of 

significant relationship between A. tonsa and anchovy larvae and the lower percentage 

which A. tonsa comprises of total copepods, could suggest an alternative food source.  To 

address the possibility of an alternative food source I tested the interannual relationship 

between total copepods and A. mitchilli abundance.  Yet, similar results were produced.  

This may suggest that copepods may not be the most substantial food source in terms of 

promoting egg production in adults and/or larval survival on an interannual scale or that 

starvation is not a major source of mortality.          

 In another system, Chesapeake Bay, a similar decline has been seen in A. 

tonsa and A. mitchilli abundance (Kimmel et al., 2012).   These authors attribute the long-

term decline in A. tonsa to increased eutrophication and a subsequent increase in the 

predator Mnemiopsis leidyi.   A decline in A. mitchilli was attributed to the availability of 

A. tonsa.  However, Kimmel et al. (2012) attributes the decline in A. mitchilli to a 

decrease in its prey A. tonsa yet, offered no statistical evidence of the interannual 

relationship between anchovy and A. tonsa.    Additionally, they neglect the fact that M. 

leidyi also exerts pressure on A. mitchilli through predation on their eggs (Monteleone 

and Duguay, 1988).  This is most likely due to the fact that the data on M. leidyi 
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population is limited within Chesapeake Bay (Kimmel et al., 2012).  A significant 

relationship between Chl-a and A. tonsa densities within NI may reveal an influence of 

prey availability on production within the system.  The two regions (i.e., NI and 

Chesapeake Bay) differ substantially.  Most notably, NI has not seen an increase in 

eutrophication events in recent years, and there has been no reported increase in M. leidyi 

or other predators of A. tonsa and A. mitchilli.  Additionally, NI is under limited direct 

human influence.  With greater than 95% of the surrounding land area still in its natural 

state and limited fishing within the estuary, NI could be seen as a representation of a 

pristine, model coastal estuary.   

 Within NI, I attribute the decline in A. tonsa to be bottom up controlled 

and suggest the reduction in Chl-a concentrations over the 20 year period has led to 

decreased copepod production (Fig. 2.5).  Originally, I anticipated that these declines in 

Chl-a concentrations and A. tonsa densities may be associated with changes in A. 

mitchilli populations.  Peebles et al. (1996) showed that egg production by A. mitchilli 

and A. tonsa abundance were correlated within the Tampa Bay system suggesting they 

are income spawners (i.e., fecundity is dependent on prey availability).  In reference to 

my hypothesized conceptual model (Fig. 2.1), if we assume that egg production by bay 

anchovy is dependent on the density of A. tonsa, then we expect anchovy which spawn in 

prey rich waters to produce more eggs and the larvae which hatch from these eggs to be 

less likely to starve during the critical period. This would result in a positive correlation 

between A. tonsa and larval bay anchovy abundance; something not reflected by the 

current data.  Because most of the egg production comes from year-one females (Peebles 

et al., 1996), subsequent poor year classes could contribute to this long-term decline.  



36 
 

Although our results produce no concrete evidence linking copepod and anchovy larval 

abundance, there are multiple possibilities to explain this lack of relationship. One 

possibility is that using A. tonsa and total copepods abundance as a representative of 

lower trophic level and primary food source of bay anchovy may not be ideal given the 

lack of significant relationships.  Future studies may benefit from characterizing the 

mesozooplankton catch more specifically as well as characterizing what prey is contained 

within adult and larval anchovy guts throughout the spawning season.  Additionally, egg 

production and larval abundance are not always related due to spatial patchiness and high 

mortality between the life stages (Houde and Lovdal, 1985; McGurk, 1986).  This could 

lead to spatial mismatch between predator and prey and possibly introduce larvae to 

conditions of low prey density despite high levels in other regions.     

  Winyah Bay supplies a significant amount of freshwater and the 

accompanying nutrients to the adjacent coastal region.  Dame et al. (1986) showed that 

there is a net import of Chl-a into North Inlet from the coastal region.  A decline in 

freshwater discharge may have led to reduction in nutrient delivery to the adjacent coastal 

waters (Whitall et al., 2003; Wetz et al., 2011).  This reduction would support less 

productive waters which can be seen in the long term declines of Chl-a, A. tonsa, and A. 

mitchilli (Fig. 2.2).  Here I provided evidence of long-term change within an estuary 

under low human influence.  However, no relationships could be established on the 

interannual scale between larval anchovy and copepod densities.  Additionally, an inverse 

relationship between river discharge and anchovy density was present (Fig. 2.11).  Thus, 

my original hypothesis is rejected.  The presence of a negative relationship may suggest 

that there may be a larger scale process influencing both or that variability in discharge 
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may be contributed to the processes which control reproductive success of A. mitchilli.  

As the potential of future climate change to alter global and regional river flow patterns 

grows, it is vital to further explore possible biological impacts in our coastal estuaries.      
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Figure 2.1 Suggested relationship between phytoplankton, A. tonsa, and A. mitchilli. 

within Winyah Bay System.  The abundance of copepods directly influences spawning 

intensity and larval survival in other systems.   
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Figure 2.2 Relationship between monthly Chl-a average concentrations at OL(X-axis) 

and CB(Y-axis) between the years of 1983 and 1993.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r=0.91 p<0.05 
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Figure 2.3 Average monthly (March-September) concentrations of Chl-a (μg/L) and 

densities of A. tonsa copepodids (cop), A. tonsa adults (ad.), and A. mitchilli. larvae 

(number m
-3

) from  1981-2002.  
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Figure 2.4 Average monthly concentrations of Chl-a from 1983-2003 for the months of 

April, May, and June.(A)  Average monthly densities of A. tonsa copepodids  from 1981-

1991, 1996-1998, and 2001-2002 for the months of April, May, and June.(B) 
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Figure 2.5 Time series of yearly averages (March-September) for Chl-a , A. tonsa adults 

,and A. tonsa copepodids (A).  The relationship between detrended yearly averages of 

Chl-a concentrations and A. tonsa Adults (B) and copepodids (C) densities from 1983-

1991, 1996-1998, and 2001-2002. 
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Figure 2.6 Yearly average A. mitchilli larval densities for the months of April and May 

from 1981-2002.    
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Figure 2.7 Detrended yearly averages of A. mitchilli (y-axis) larvae for the month of June 

and A. tonsa copepodids (x-axis) (A).  Yearly average densities of A. tonsa copepodids 

(x-axis) and A. mitchilli larvae (y-axis) for the month of June (B).  
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Figure 2.8 Detrended yearly averages of A. mitchilli (y-axis) and A. tonsa adults (A) and 

copepodids (B) (x-axis). 

 

 

r=-0.04 p=0.89 

r=0.16 p=0.54 

B. 

A. 



49 
 

 

Figure 2.9 Detrended yearly averages of A. mitchilli (y-axis) and total copepods for the 

month of June (x-axis) (A).  Yearly averages of A. mitchilli larvae (y-axis) and total 

copepods for the month of June (x-axis)(B) 
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Figure 2.10 Time series of river discharge and salinity between 1983 and 2003 (A). 

Detrended yearly average (March-September) Pee Dee River discharge and surface 

salinity within North Inlet (B). 
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Figure 2.11 Detrended yearly averages of Pee Dee river discharge and Chl-a 

concentrations (A) and larval anchovy densities (B). 
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