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Abstract

The set-wise summation operation is perhaps one of the most fundamental and widely

used operations in scientific applications. In these applications, maintaining the ac-

curacy of the summation is also important as floating point operations have inher-

ent errors associated with them. Designing floating-point accumulators presents a

unique set of challenges: double-precision addition is usually deeply pipelined and

without special micro-architectural or data scheduling techniques, the data hazard

that exists. There have been several efforts to design floating point accumulators

and accurate summation architecture using different algorithms on FPGAs but these

problems have been dealt with separately. In this dissertation, we present a general

purpose reduction circuit architecture which addresses the issues of data hazard and

accuracy in set-wise floating point summation. The reduction circuit architecture

is parametrizable and can be scaled according to the depth of the adder pipeline.

Also, the dynamic scheduling logic we use in this makes it highly resource efficient.

Further, the resource requirements for this design are low. We also study various

methods to improve the accuracy of summation of floating point numbers. We have

implemented four designs. The reduction circuit architecture serves as the framework

for these designs. Two of the designs namely AEC and AECSA are based on com-

pensated summation while the two designs called EPRC80 and EPRC128 implement

set-wise floating point accumulation in extended precision. We present and compare

the accuracy and cost- operating frequency and resource requirements- tradeoffs as-

sociated with these designs. On the basis of our experiments, we find that these

designs achieve significantly better accuracy. Three of the designs– AEC, EPRC80

v



and EPRC128– operate at around 180MHz on Xilinx Virtex 5 FPGA which is com-

parable to the reduction circuit while AECSA operates at 28% less frequency. The

increase in resource requirement ranges from 41% to 320%. We conclude that accu-

racy can be achieved at the expense of more resources but the operating frequency

can be maintained.
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Chapter 1

Introduction

The floating point summation operation– or accumulation–, S =
n∑
i=1

ai is one of the

most widely used operations in scientific applications such as computational fluid

dynamics, structural modeling, power networks and it also forms the core of most of

the basic linear algebra subroutines(BLAS)[39]. In a simplistic scenario, accumulation

can be performed using the following snippet of code:

for ( i = 1 ; i < n+1; i++) {

S = S + a [ i ] ;

}

In many applications, like sparse matrix vector multiplication, it is required to

accumulate streaming datasets of different sizes. The applications also require high

numerical accuracy. Achieving high performance for the accumulation operation

presents two challenges. Firstly, on a parallel computer, the summation can be per-

formed using a parallel “reduction” operation. In this operation, multiple additions

are performed concurrently, producing multiple “partial” sums that are maintained

separately until they are eventually added into a final result. The problem with this

approach is that since floating point addition is not associative and different orders in

which the additions are performed lead to different rounding errors. This means that

the error encountered during the reduction is associated with its runtime behavior.

The second challenge arises from the fact that floating point adders are deeply

pipelined. If a new input is delivered to the adder every clock cycle, it cannot pro-

vide the sum of the current inputs before the next value arrives, thus creating a data
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hazard. In such a case, the designer cannot use a simple feedback-based accumulator

as it may result in addition of values belonging to different sets. In order to accu-

mulate multiple sets of different sizes and deal with data hazard, a special circuit

with proper scheduling techniques around floating point adders is required. This re-

quirement leads to control overhead which may require additional resources and may

reduce the hardware utilization.

Implementing parallel reduction operations on FPGAs provides some unique op-

portunities to maintain and improve the accuracy and resolve the issue of data hazard.

A rich set of tradeoffs can be made between error bound and resource usage through

the design of customized floating point units. Also, very fine-grained control logic

can be used to reduce the overheads of data dependent behavior.

Several methods have been developed and studied in order to improve the accuracy

of summation. Some of these methods rely on the ordering of the values in the

dataset. These methods require a priori knowledge of the dataset according to which

the dataset can be sorted. Methods have also been developed in which the error

during addition is extracted using floating point operations. This error is incorporated

in the summation results. Another way to improve accuracy is to perform all the

intermediate calculations in extended precision which mitigate the effect of shift and

round operations by proving more guard bits during addition. Some of the accuracy

improving techniques have also been implemented on FPGA based coprocessors. Also,

there have been several efforts to implement streaming set-wise reduction on FPGAs.

All the methods to improve accuracy come at the cost of increased number of

operations. Techniques which require reordering the inputs are not practical for im-

plementation on FPGAs as the upfront cost of reordering is very high which affects the

overall throughput adversely. Also, these methods are not suitable where streaming

datasets are used as reordering the dataset is not possible. Other methods in which

the errors are calculated and incorporated in the result(s) require additional floating

2



point operations to extract the error and hence the latency can be large. Perform-

ing intermediate calculations in extended precision requires wider and deeper adder

unit. Also, conversion units are required to convert the input to extended precision

and output to native precision format. Methods which rely on error extraction and

compensation as well as those in which extended precision is used are comparatively

less expensive than reordering as dataset need not be pre-processed. Also, a priori

knowledge of the dataset is not required.

The motivation of this research arises from the observation that previous works ad-

dress the problem of improving accuracy and streaming set-wise reduction of floating

point values separately. In this dissertation, we present a high performance general

purpose reduction circuit which addresses the issue of data hazard and scheduling

associated with set-wise floating point accumulation. This reduction circuit achieves

nearly 100% utilization regardless of the structure of the input dataset. We also ex-

amine methods to leverage custom hardware in order to place tighter error bounds on

the accumulation operation. On the basis of our analysis, we have implemented four

designs for accurate summation of set-wise data. Our reduction circuit architecture

serves as the basic framework for these designs. Two of the designs are based on com-

pensated summation methods while in two designs we perform all the intermediate

operations in extended precision.

In compensated summation methods, additional floating point operations are re-

quired which essentially increase the overall latency of the adder network. Due to

the increased latency, additional resources are required to store the partial sums and

the control logic becomes complex. In order to reduce the number of floating point

operations, we have designed a custom floating point adder which not only adds two

input values but also produces the rounding error which occurs during the floating

point addition. The designs in which we emulate compensated summation methods,

make use this custom adder to obtain the error required for compensation.
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We analyze these designs and evaluate these in terms of accuracy, cost and perfor-

mance. Though, we require more resources for all these designs, but we observe less

impact on the overall performance in terms of operating frequency. We also report

and compare the accuracy of results from simulation of these designs with simula-

tion of original reduction circuit and software model of extended precision recursive

summation. We conclude that new designs achieve better accuracy than the original

reduction circuits and simple recursive summation method.

The rest of the document is organized as follows: The Chapter 2, we introduce

FPGAs, IEEE-754 floating point standard and floating point addition. In Chapter 3,

various methods to improve accuracy of floating point summation and implemen-

tations on FPGAs and implementations of set-wise accumulation of floating point

values have been studied. Chapter 4 describes the design our reduction circuit. In

Chapter 5, we present the implementation details of the new designs for improving

the accuracy of set-wise floating point summation. In Chapter 6, we discuss the ac-

curacy parameters based on our experiments and the tradeoffs associated with the

designs.In Chapter 7, we summarize the dissertation, and discuss the conclusion and

future work.
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Chapter 2

Background

2.1 Field Programmable Gate Array

Field programmable gate arrays (FPGAs) are configurable logic devices which con-

sist of arrays of configurable logic blocks (CLBs) connected through programmable

interconnects. Modern FPGAs also consist of hardwired logic blocks such as RAMs

and DSPs. Application specific logical functions can be implemented and updated

on these devices.

In reconfigurable computing, kernel computations are performed using special

purpose architectures that are implemented on one or more FPGAs. Designs on FP-

GAs generally achieve better performance than software implementations on general

purpose processors because as every hardware component is dedicated to the compu-

tation. It is similar to designing application specific integrated circuits (ASIC) except

that the resultant frequency on FPGA(s) is about 10x slower than ASICs.

2.2 Floating Point Representation- IEEE-754 Standard

IEEE-754 floating point standard has been developed in order to simplify the arith-

metic algorithms designed for floating points[16]. The standard has been widely

adopted and thus it ensures interoperability and portability of algorithms on differ-

ent machines. The representations are characterized by base(β), precision(p) and

exponent range. It allows representation of floating point numbers using base 2 (bi-

nary) and base 10 (decimal). IEEE-754 single and double precision binary formats

5



Figure 2.1: Binary Interchange Format

are widely used while the support other formats is still limited.

In IEEE-754 binary formats, apart from special cases, the digit to the left of

the binary point is 1 which is often referred as leading one. This notation is called

normalized form. Figure 2.1 depicts the encoding for a floating point number in the

binary standard. It is called the binary interchange format in which each number has

only one encoding. It has three fields- sign, exponent and significand. The leading

one is not included but is implied in calculations. Also, in order to simplify operations

for exponents like comparison, a bias is used such that the exponent can be treated

as an unsigned integer.

A floating point number A encoded in IEEE-754 format can be calculated as

Â = (−1)Sign × (1 + Significand)× 2(Exponent−Bias). (2.1)

where Â is the floating point representation of A. Since the number of digits or bits

used for representing a fraction is fixed and limited, all numbers cannot be represented

exactly in these formats. Thus the encoding of a number in floating point format its

approximation to the nearest floating point number. That is why floating point format

is often termed as limited precision floating point format as well. For example,

0.062371 = 6.2371× 10−2 with 5 digit precision,

0.062371 = 6.24× 10−2 with 3 digit precision.

6



Apart from these standard formats, in order to increase the precision, IEEE-754

also allows extended precision format in which the precision and range of exponent

is defined by the user.

2.3 Floating Point Addition

A number of steps are involved in addition of two floating point values[21, 36]. The

implied one, not included in the representation, is also taken into account. Flowchart

in figure 2.2 depicts the algorithm for addition of two floating point numbers.

First, the exponents of the values are compared. If the exponent of the first input

is smaller then the operands are swapped so that the following shift operation is

restricted in one path of the hardware unit. Then the significand of number with

smaller exponent aligned is with the other significand and the significands are added.

The result is then normalized by shifting it either to left or right and the shift amount

is added or subtracted from the exponent. The resultant is rounded so that it can

be put back in the standard format. Rounding is used to represent the result in

the nearest possible floating point format. Multiple iterations may be required to

round the result properly as the rounded result may require normalization. When

implementing this floating point addition in hardware, extra bits can be used in

order to improve the accuracy. IEEE-754 standard supports various rounding modes

such as round-ties-to-even, round-ties-to-away, round-toward-positive, round-toward-

negative and round-toward-zero. In this dissertation, we only consider round-ties-to-

even as the methods we use work only with round-to-nearest mode. The reasons have

been explained later.

During floating point addition, extra bits namely guard (G), round (R) and sticky

(S) are used to perform addition of mantissas. Guard bit is the 2nd, round bit is the

1st and sticky bit is the 0th bit in the extended mantissa. In round-to-nearest mode,

we consider values of 3rd least significant bit (including the extra bits) of mantissa, L

7



Figure 2.2: Floating Point Addition Algorithm

and G, R and S bits. The direction of rounding- round-up or round-down- is decided

as depicted in Table 2.1.

It can be observed that when G is 0, sum is rounded down i.e. towards zero. If G

is 1, then R and S are also considered in the rounding decision. L is only considered

in case of a tie i.e. when G=1, R=0 and S=0, L, otherwise it is in “don’t care” (X)

state.

Since floating point addition involves a number of atomic operations, it is generally

8



Table 2.1: Round To Nearest

L G R S Round
X 0 X X Roun Down
X 1 0 1 Round Up
X 1 1 0 Round Up
X 1 1 1 Round Up
0 1 0 0 Round Down (Tie)
1 1 0 0 Round Up (Tie)

implemented as deeply pipelined hardware unit where each step may take one of more

clock cycle for completion. Thus, the latency of a floating point adder is more than

one cycle.

2.3.1 (In)Accurate Floating Point Addition

Methods, in which large floating point datasets are used, may deliver wrong results

due to different sources of errors. Stability of numerical algorithms is an important

topic of research in the field of numerical analysis and much of the focus has been

given to the accuracy of floating point operations [1, 2, 3].

Rounding errors, also called round-off errors, are unavoidable due to prevalence

of finite precision floating point arithmetic[12]. Rounding error can be introduced in

two ways- shift and carry. The error due to shift operation of smaller operand during

addition causes shifting error. A nonzero carry which results the significand width to

be more than the allowed bits causes carrying error.

Real numbers are represented as the nearest possible approximation to a floating

point representation but floating point operations are performed as if the intermediate

results are correct to infinite precision and then rounded for the given format. Thus

the error in a floating point operation involving two numbers can be calculated using

the following equation.

fl(a
⊙

b) = (1 + ε)(a · b), |ε| 6 ε, ε = 1
2β

1−t (2.2)
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where fl(a ⊙ b) is a floating point operation ⊙ ∈ {⊕,	,⊗,� } equivalent to the

exact operation · ∈ {+,−,×, / } and β is the base. This is the standard model for

numerical error analysis attributed to Wilkinson[19]. ε is called machine precision or

unit roundoff. It gives an upper bound for relative error due to rounding in floating

point arithmetic. It is 2−24 for single precision and 2−53 for double precision.

Equation 2.2 is true only for rounding to nearest rounding mode. In this rounding

mode,

2.3.2 Rounding Error in Summation

As the number of additions increase, the total error in the result also increases.

As shown in figure 2.3, floating point addition is not associative hence each of the

possible orderings may produce a different summation and the corresponding error

may vary greatly as well. Conversely, the summation calculated in one way may be

more accurate than the summation calculated in another way. The error bound for

recursive summation is given by the following equation[2]:

|En| 6 (n− 1)ε
n∑
i=1
|ai|+O(ε2) (2.3)

This error bound has been deduced by taking into consideration the error intro-

duced in each iteration step of the recursive addition and thus is dependent on the

number of terms being added. It is independent of the order in which the values are

added. In order to reduce the error in the result, the input values can be reordered

such that the final summation is more accurate and the error bound given by the

equation is minimized.

Given a set of n numbers, the number of ways in which they can be added is given

by:

Cn = 1
(n+ 1)

(
2n
n

)
= (2n)!

(n+ 1)!n! (2.4)

10



Figure 2.3: Non-associativity of Floating Point Addition

where Cn is called the Catalan number. Since this number grows very large even with

small number of values, it is not possible to try every possible ordering and choose

the one which results in the least error.

11



Chapter 3

Previous Work

In this chapter, we summarize various methods to improve accuracy of floating point

summation, implementations of these methods on FPGAs and implementation of

set-wise floating point summation on FPGAs.

3.1 Methods to Improve Accuracy of Floating Point Summation

In this section, we discuss different methods to improve accuracy. First, we discuss

the dependence of error bounds and relative error on the distribution of value in

a dataset. Then, we explain the effects of reordering the data on the summation

error. Then we discuss the methods in which the error encountered during floating

point addition is calculated and incorporated into the final summation. We also

present a method in which extended precision is used to improve the accuracy of the

intermediate operations.

3.1.1 Relative Error and Condition Number

In numerical error analysis, the error bounds are derived as if the worst case error

occurs always and is propagated throughout the computation. For this to happen,

rounding during all intermediate operations should be in same direction. In general,

the rounding direction is random and the errors often cancel out each other. Thus

the magnitude of final error can be very small. Also, the magnitude of error also

depends on the order of values being added. Hence, the relative error with respect

to summation result is taken into consideration instead of the absolute value of the

12



error. The relative error is the ratio of the error,|En| and the summation calculated

with infinite precision as depicted in equation 6.2. In this equation, the error, |En|

is the difference between the exact summation calculated with infinite precision, |Sn|

and the recursive summation in floating point precision, Sn.

|En|
|Sn|

= |Sn| − Sn
|Sn|

(3.1)

The ratio of summation of absolute values and the recursive summation denotes

the condition number, κ, of the dataset and is calculated as in equation 6.1.

κ =
∑n
i=1 |ai|
|∑n

i=1 ai|
(3.2)

If a dataset consists of only positive values then κ = 1.0 while κ > 1.0 denotes

that the dataset consists of both positive and negative values. The relative error

bound of summation methods is proportional to κ. If κ� 1.0, the relative error can

be large even for methods used for achieving high accuracy. Thus, a low error bound

does not always lead to low relative error.

3.1.2 Reordering Inputs to Achieve Better Accuracy

In floating point summation, the error in final result has been attributed to several

factors. Catastrophic cancellation occurs when the final result is much smaller than

the intermediate sums. It is due to the presence of large intermediate sums with

opposite signs. A method has been proposed in which the numbers are added to

numbers with same sign and the final sum is calculated by adding the result from each

group of numbers. Though this method eliminates the intermediate cancellations, it

results in a cancellation at the end and hence is not effective in error correction.

Large relative errors can also occur when the intermediate results become much

larger than the individual operands. This is caused by the presence of several inter-

vals in the data-sets. In order to reduce such errors, the numbers can be arranged

13



Table 3.1: Mean Square Errors for Different Orderings
Distribution Increasing Random Decreasing Insertion Pairwise
Uniform(0, 2µ) 0.20µ2n3σ2 0.33µ2n3σ2 0.53µ2n3σ2 2.6µ2n2σ2 2.7µ2n2σ2

Exp(µ) 0.13µ2n3σ2 0.33µ2n3σ2 0.63µ2n3σ2 2.6µ2n2σ2 4.0µ2n2σ2

Note: This is based on the assumption that relative errors in floating point addition
are statistically independent and have zero mean and finite variance σ2. Uniform dis-
tribution, Unif(0, 2µ), and exponential distribution, Exp(0,µ) have mean µ.

according to their intervals. Operations can be performed within those intervals and

final result can be calculated by adding results from those intervals[14]. For distribut-

ing the values in intervals and adding the values from different intervals, the values

and summation of intervals can be reordered in different ways to reduce the overall

error.

Several possible orderings have been studied for improving the accuracy of the

summation. It has been observed that if the numbers are added in absolute ascend-

ing order, the error bound is minimized. This results in addition of operands having

similar magnitude and hence reduces the carrying error[20]. But if the dataset con-

tains both positive and negative numbers, this method results in a greater error.

Absolute descending order is more beneficial when there is lot of cancellation i.e.

positive and negative numbers are evenly present in the dataset as it reduces the

carrying error.

Another method applicable to positive numbers called the insertion method has

been proposed in which the intermediate partial sum is inserted in the sorted list

of numbers. This is effective in reducing the shifting error but does not work well

for dataset having both positive and negative numbers[6]. In pairwise summation,

operands are added in pairs. This method is suited for parallel implementation with

binary tree of adders. The final result can be calculated in log2n steps as opposed to

n-1 steps required for serial recursive summation at the expense of resources[3, 5].

Table 3.1 lists the mean square errors over uniform and exponential distributions

for different methods as studied in [13].
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In the above mentioned methods, certain orderings were considered so as to reduce

the amount of error in the final result. These methods do not calculate or take into

consideration the error which occurs. The input set size and magnitudes have to

be known a priori. Also, these methods require sorting and arrangement of data

which are expensive operations and require more resources. Due to the upfront cost

of sorting the input data, the throughput of the summation is affected adversely.

Further, the error bounds of these methods are data dependent. Thus these methods

are not suitable for high performance implementations.

3.1.3 Compensated Summation

Several methods have been developed where the error during each floating point ad-

dition can be calculated and incorporated into intermediate and the final results[15].

Such methods are categorized as compensated summations. Compensated summa-

tions are based on error free transformation which is a transformation in which

a+ b = x+ e, x = fl(a
⊕

b). (3.3)

Here x is the rounded floating point sum of two floating point numbers a and b

represented in base 2 and e is the error incurred during addition. The error e can be

recovered using floating point operations. During addition, the operand with smaller

exponent, b is shifted by the exponent difference for alignment. The low order bits of

b, bl are discarded. These bits form the error term. Figure 3.1 shows the general idea

behind the recovering bl [1]. Floating point operation, x - a results in high order bits

of b, bh. Subtracting b from bh results in the low order bits of bl. The recovered low

order bits can be incorporated in subsequent additions to get more accurate result.

Algorithm 1 lists Kahan’s compensated summation algorithm which calculates

and applies the correction in each iteration for recursive summation[17]. In this

algorithm, the error term e - the approximation to the rounding error, is subtracted

from the next input value in subsequent iteration. Another step can be added to this
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Figure 3.1: Error Free Transformation- Error Recovery

algorithm in which S + e can be calculated at the end of the loop [18]. It has been

shown that this algorithm improves the error bound and gives almost ideal result.

Equation 3.4 gives the error bound for Kahan’s compensation algorithm which is

independent of n if n ε < 1.

|En| 6 (2ε+O(nε2))
n∑
i=1
|ai| (3.4)

Equation 3.5 gives the relative error bound for Kahan’s compensation algorithm.

|En|
|Sn|

6 (2ε+O(nε2))
∑n
i=1 |ai|
|∑n

i=1 ai|
(3.5)

Another version of compensated summation has been developed where the error

terms calculated after each addition are accumulated and the correction is applied

at the end of the summation. The error at each step of recursive addition can be

calculated using Fast2Sum[11] algorithm as depicted in algorithm 2. Algorithm 3

can be used to calculate the final sum. Equation 3.6 shows the error bound for this

algorithm.

|En| 6 (2ε+O(n2ε2))
n∑
i=1
|ai| (3.6)

The relative error for this method is given by equation 3.7.

|En|
|Sn|

6 (2ε+O(n2ε2))
∑n
i=1 |ai|
|∑n

i=1 ai|
(3.7)

16



Algorithm 1 Kahan’s Compensated Summation Algorithm
1: input(a1, a2, ..., an)
2: S = a1
3: e = 0.0
4: for i = 2 : n do
5: if |S| < |ai| then
6: swap(ai, S)
7: end if
8: y = ai − e
9: St = S + y
10: et = St − S
11: e = et − y
12: S = St
13: end for
14: Return(S)

Algorithm 2 Fast2Sum Algorithm
1: Input(a, b)
2: if |a| < |b| then
3: swap(a, b)
4: end if
5: x = a+ b
6: bt = x− a
7: e = b− bt
8: Return(x, e)

Algorithm 3 Error Compensation with Fast2Sum
1: Input(a1, a2, ..., an)
2: S = a1
3: e = 0.0
4: for i = 2 : n do
5: (S, ei) = Fast2Sum(S, ai)
6: e = e+ ei
7: end for
8: S = S + e
9: Return(S)

Kahan’s compensation method can also be expressed using Fast2Sum as depicted

in algorithm 4.

It must be noted that Kahan’s compensation algorithm and Fast2Sum algorithm
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Algorithm 4 Kahan’s Compensated Summation with Fast2Sum
1: Input(a1, a2, ..., an)
2: S = a1
3: e = 0.0
4: for i = 2 : n do
5: y = ai + e
6: (S, e) = Fast2Sum(S, ai)
7: end for
8: Return(S)

require that |a| > |b|. This essentially creates a branch in software implementations

of these algorithms but when implementing these in hardware, the swap operation in

floating point adder eliminates the need of this check and thus accurate summation

can be calculated with three additional steps.

Several other variations compensated summation techniques have been developed

but require significantly more number of floating point operations [4, 7, 8, 9, 10, 35].

It can be observed that in compensated summation methods, additional steps are

required to recover the error encountered during the alignment operation. But these

do not require a priori knowledge of the data hence they are more suitable and less

expensive for hardware implementation.

3.1.4 Intermediate Operations in Extended Precision

Performing the intermediate calculations in higher precision can also be useful in

achieving higher accuracy [22, 23]. For example, on x86 CPUs, the floating point

numbers denoted in single and double precision are converted to 80-bit extended

precision format and the operations are performed in this format. Computations in

extended precision format lead to results at least as accurate as 64-bit results. In

other words, the error in result from extended precision cannot be more than that

from double precision. This is because extended precision format ensures presence of

more guard bits and hence improves the rounding error. The numbers are converted

back to respective format before storing them. Use of extended precision format can
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lead to more accurate results without much impact on the performance.

All the aforementioned methods to improve the accuracy of summation opera-

tions require additional additional operations. Methods which require reordering the

dataset need sorting which is a complex task. Compensated summation methods

require additional floating point operations for calculating and incorporating the er-

ror. Wider adder and intermediate storage units are required during calculations in

extended precision. Thus all the methods to improve accuracy come at additional

cost of resources and floating point operations.

3.1.5 Implementation on FPGAs

There have been several attempts to implement the methods which improve the accu-

racy of floating point summation on FPGAs. When designing accurate accumulators,

approaches can be broadly divided in two categories- those that reorder the inputs

to reduce the errors and those that use error free transformations to find and correct

the errors.

In the reordering approach the properties of the set to be accumulated-sign and

magnitude of values and size of the input set- are known a priori in order to pre-

process the data. A group from Texas A&M University designed a custom adder for

accumulation[32]. In this implementation, exponents of all the inputs are compared

and the significands are aligned for the greatest exponent. Then the significands are

added as fixed point numbers. Though this method reduces the error bound, it comes

with the overhead of sorting and storing all the inputs. Also, wide integer addition is

a slow operation, hence width of the aligned significands becomes a limiting factor.

Another approach has been described in [31] to get the same results as in-order

inputs. The sum is calculated using parallel prefix reduction network and verified

after each reduction step. If the addition is not same as in-order sum, the calculated

error is propagated in the reduction network in a recursive manner until equal result

19



is achieved. While this leads to the final summation equal to that in original order but

multiple cycles may be required to converge to zero error. Further, static scheduling

is required along with a fixed number of inputs in a set. Also, this does not reduce

the error in the summation operation.

In order to achieve better accuracy in floating point summation, an iterative distil-

lation algorithm involving Fast2Sum for error free transformation was implemented

on FPGAs in [33]. The number of iterations required to achieve the accuracy de-

pends on the number of values and nature of the data in the set. A custom adder was

also developed to reduce the number of floating point operations and dependence on

data set but the resource utilization was reported to be 47% and 121% higher than

Fast2Sum implementation for single and double precision custom adders respectively.

Also, the performance remains the same for single precision and degrades for double

precision. Thus, this approach does not scale well with precision.

The most recent approach to implement accurate summation operation has been

described in [34]. Here, a binary tree network is used for summation. Custom

adders have been used in the binary tree which output the residue error resulting

from the shift operation in addition along with the sum of inputs. These errors are

accumulated using another binary tree and are added to the result emerging from

the main binary tree iteratively. The number of iterations required for convergence

of error are not bound and may vary significantly with data. Also, two binary tree

networks are used and hence the number of resources required are very high.

3.2 Set-wise Floating Point Summation on FPGAs

In large system solvers such as Conjugate Gradient, in which sparse input data is used,

the data is divided into multiple sets and these sets are generally of different sizes. The

input values generally have a DII of one cycle and and sets are not intermixed. We

refer to them as streaming datasets. The implementations for improving the accuracy
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of summation do not address the issue of data hazard and cannot handle streaming

datasets. In order to accumulate different data sets represented in floating point

values, a special architecture is required which not only is able to handle multiple

sets simultaneously but also addresses the issue of data hazard which occurs due to

deeply pipelined floating point adders. In this section, we discuss such architectures.

There have been several attempts in designing FPGA-based double precision ac-

cumulators for streaming data. These approaches can be broadly divided in two

categories- static scheduling and dynamic scheduling.

3.2.1 Static Scheduling Approach

A notable example of static scheduling approach was presented by deLorimier et

al[30]. Here the input values and partial sum belonging to different sets are interleaved

such that consecutive values belonging to each set are delivered to the accumulator

at a period corresponding to the pipeline latency of the adder. The accumulator

in this case can be designed as a simple feedback adder. This allows the adder to

accept a new value every clock cycle while avoiding the accumulation data hazard

among values in the same accumulation set. Unfortunately, this method requires a

large up-front cost in scheduling input data and is not practical for large data sets.

The requirement of computation and communication scheduling technique makes the

architecture’s performance highly dependent on the structure of the input data. Also

the memory requirement for such designs is high in order to save the partial sums.

3.2.2 Dynamic Scheduling Approach

The second approach is to use a dynamic scheduling technique that selects the input to

the adder in runtime. This requires managing the progress of each active accumulation

set using a controller which manages the input to the adder. Dynamic scheduling

approach can be divided in two categories- those which use standard adder and those
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in which the reduction circuit is integrated within custom floating point adder. In

the following sections, we discuss designs based on these two approaches.

3.2.2.1 Reduction Circuit Around Standard Adder

Prasanna’s group at the University of Southern California as written several seminal

papers in this area [24, 25]. Their first design was a collapsed a binary adder tree

organized as a linear series of adders where the number of adders scaled up as a

logarithmic function of the maximum number of expected input values to be accu-

mulated. Each adder in the system saw an exponentially lower utilization than the

adder before it. This design also had a long latency, had to be flushed between input

sets, and the maximum input set size was fixed at design time. As a result, this

design was resource inefficient and had very low adder utilization.

Their follow-up design was based on the notion of using a single adder to coalesce

an accumulation set while another adder begins reading the next input set. This

design required only two adders, but its FIFO would overflow when the size of the

input sets were, on average, less than α dlog2α + 1e values each, where α is the adder

latency. Also, the controller complexity required by this reduced its maximum speed

by nearly 20%, relative to the maximum speed of the floating-point adder that it was

built around.

Their final design overcame this limitation and required only one adder but also

required two memories of size α2 and a control overhead speed reduction of about

3%. Both of these designs had extremely complex controller overhead which limited

their operating speed and effective throughput.

An implementation from UT-Knoxville and Oak Ridge National Laboratory used

the collapsed binary tree approach but with a parallel–as opposed to a linear–array

of α adders. This implementation striped each consecutive input across each adder

in turn, achieving a fixed utilization of 1/α for each adder. This design consumes
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significantly more resources as it requires multiple adders. Also, the resources are

poorly utilized.

Huang et al[26] present three reduction circuit designs based which also use the

collapsed binary tree approach. The first design- modular fully pipelined architecture

has dlog2α e + 1 adders connected in a chain. There is a buffer associated with each

of the adders where the incoming value (first adder) or partial sum from the previous

adder is stored and added to the next value. The last adder has a feedback loop

associated with it. This approach is very similar to a collapsed binary tree of adders

and provides pairwise addition of input values. The utilization ratio of each adder

is reduced at each stage of the chain. Also, the accumulator is allowed to reduce

only one set at a time hence the following sets have to wait for complete reduction

of one set. The second design uses two adders- one as partial sum generator while

the other as accumulator. But it has a chain of FIFOs connected with the first adder

which are used to delay the incoming values so in order to match the latency of the

floating point adder. Role of adder in the accumulator remains the same. The third

design is similar to the AeMFPA but changes the structure of FIFOs used. These

three designs do not allow multiple sets to enter the accumulator stage thus require

chain of adders or FIFOs to compensate for the latency of accumulate operation.

Further the utilization of the adders is not optimal as they remain ideal for several

cycles during the reduction process. Also, the resource utilization is very high due to

the requirement of multiple adders and FIFOs. Thus the overall throughput of the

reduction circuit suffers.

An improved single-adder streaming reduction architecture was later developed at

the University of Twente[28, 29]. This design requires less memory and less complex

control than the designs discussed previously. In this design, the adder is connected

to two deep input and output buffers. The inputs to the adder are governed by a set

of rules in order of priority.
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Table 3.2 summarizes the some of the above discussed architectures in terms of

resources- adders, buffers and latency. Note that we do not compare resource usage

and performance because these factor vary with the change in platform used for

implementation.

Table 3.2: Comparison of Different Reduction Circuits

Reduction Circuit # Adders Buffer Size Latency
FCBT[24, 25] 2 3dlog2ne 2n + (α-1)dlog2ne
DSA[24, 25] 2 αdlog2α + 1e αdlog2α + 1e
SSA[24, 25] 1 2α2 2α2

Gerards[28, 29] 1 3α + αdlog2αe + 2 2α + αdlog2αe + 1
MFPA[26] α dlog2αe + 1 < n + αdlog2α + 2e
AeMFPA[26] 2 α log2α + 2α < n + αdlog2α + 2e

3.2.2.2 Integrated Reduction with Custom Floating Point Adder

In each of the above discussed work, standard adders (usually generated with Xilinx

Core Generator) have been used as the core of the accumulator. Another approach

is to design a custom adder such that the de-normalization and significand addition

steps have a single cycle latency, which makes it possible to use a feedback without

scheduling. To minimize the latency of denormalize portion, which includes an expo-

nent comparison and a shift of one of the significands, both inputs are base-converted

to reduce the width of exponent while increasing the width of the mantissa[27]. This

reduces the latency of the denormalize while increasing the adder width. Since wide

adders can be achieved cheaply with carry-chained DSP48 components, these steps

can sometimes be performed in one cycle. This technique is best suited for single

precision operands but can be extended to double precision as well as shown in [37].
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Chapter 4

Preliminary Work

In this section we present an approach to overcome the issue of data hazard in set-wise

accumulation of floating point values. Apart from this primary goal, we also focus

on simplifying the control logic and reducing the amount of memory and resources

required in order to achieve high performance. While designing the reduction circuit,

we consider the following set of constraints:

i. Input values are delivered serially, with a data introduction interval(DII) of one

cycle,

ii. output order need not match the arrival order of accumulation sets,

iii. the accumulation sets are contiguous, meaning that the values from different

accumulation sets are not intermixed and there is a set ID associated with each

incoming value, and

iv. the size of the accumulation sets is not known a priori.

Figure 4.1a shows the design of a simple feedback based accumulator. Since

floating point adder is deeply pipelined and the sum is not available in one cycle,

there exists a hazard as shown in Figure 4.1b. Values belonging to different set may

be added together and hence the results will be wrong. In order to solve this problem,

we can allow just one set to be in the accumulator at any point of time until it is

reduced completely. With this approach, we will have to use on-chip memory to store
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(a) A Simple Accumulator

(b) Feedback based Accumulator with Pipelined Adder

(c) Reduction Circuit with Scheduling

Figure 4.1: Accumulators
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other incoming sets. Also, the pipeline will be idle for many cycles while its waiting

for the results. Thus, this approach is not only resource intensive but also inefficient.

A special circuit with proper scheduling techniques around floating point adder,

as shown in Figure 4.1c is required. In this chapter, we present a reduction circuit

which is designed around deeply pipelined double precision floating point adder and

addresses the issue of hazard and input scheduling.

4.1 Reduction Circuit Architecuture

The idea behind our reduction circuit design is to expose and exploit parallelism.

Pipelining allows multiple additions within an adder to take place simultaneously. We

also allow accumulation of multiple sets simultaneously. Thus, we exploit both inter-

set and intra-set parallelism. There are various tradeoffs associated with the datapath

design around floating point adder. Depth of the floating point adder pipeline affects

the design parameters such as complexity of control logic, number of buffers required;

i.e., if we increase the depth of the adder, resources-LUTs and registers required on

the FPGA- and the multiplexer fan-in increases, and hence the overall performance

of the circuit in terms of clock frequency goes down. While designing the reduction

circuit we have taken into consideration all these issues.

The reduction circuit has been designed by adding control logic- comparators,

counters, and buffers- around a standard deeply pipelined double precision adder in

order to form a dynamically scheduled accumulator. In this design, we have combined

the input and output buffers and refer them as buffers.

4.1.1 Datapath Components

As shown in Figure 4.2, the reduction circuit architecture can be broadly divided

into five interdependent components namely Input, Buffers, Adder pipeline, Counter

Mechanism and Control Logic. While all these components work in conjunction,

27



Datapath Rules in Control Logic govern the functioning of the other components. In

this section, we describe each of the components.

Figure 4.2: Reduction Circuit Components

In order to describe the rules in a more concise manner, we represent the incoming

input value to the accumulator as input.value and input.set, buffer n as bufn.value

and bufn.set, the value emerging from the adder pipeline as adderOut.value and

adderOut.set, the inputs to the adder pipeline addIn1 and addIn2 and the reduced

accumulated sum as result.value and result.set. Also, we represent the number of

partial sums belonging to set s as numActive(s).

4.1.1.1 Input

The Input component consists of two FIFOs of equal depth- one for the input set ID

and the other for input value. The setID FIFO is 32 bit wide while the Val FIFO is

64 bit wide. The write_enable signals for both the FIFOs are enabled or disabled

simultaneously by external mechanism depending on the supply of input data. The

read_enable signal is controlled by the control unit in the reduction circuit. Thus,
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reduction circuit is supplied the input values along with the respective set ID using

these FIFOs.

4.1.1.2 Buffers

The Buffer component consists of multiple buffer triplets. Each triplet has three

registers- one for set ID (32 bit), one for value (64 bit) and one for valid signal (1 bit)

referred to as buffers. The valid buffer signifies whether the value in the Val buffer is

valid or not. An invalid value is not considered for reduction and can be overwritten.

The buffers are enabled simultaneously for writing. If a value in the triplet is valid,

the triplet can be overwritten only after it has been read. Further, if a valid value

is not available for writing after reading the triplet, the triplet is invalidated. The

bufn.in.valid signal is set by the control logic while bufn.valid signal is used in control

logic to determine the inputs to the adder where n denotes the triplet number which

we refer to buffer number.

4.1.1.3 Adder Pipeline

The Adder Pipeline consists of two delay lines and a double precision floating point

adder. The set delay line is used for keeping track of the set ID currently in the

floating point adder. The valid delay line checks whether the value in the pipeline

is valid or not. Thus, the set ID propagate through the delay line while the sum is

being calculated. The input to the adder pipeline is decided by Datapath Rules while

the output set ID is used for determining the course of next inputs. The depth of

delay lines is equal to the depth of floating point adder.

4.1.1.4 Datapath Rules

The reduction circuit consists of a set of data paths that allow input values and the

adder output to be delivered into the adder or buffered based on their corresponding
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accumulation set ID and the state of the system. Data paths are established by the

control unit according to five basic rules as listed below:

Rule 1 : Combine the adder output with a buffered value. Buffer the incoming

value.

Rule 2 : Combine two buffered values. Buffer the incoming value. Buffer the adder

output (if necessary).

Rule 3 : Combine the incoming value with the adder output.

Rule 4 : Combine the incoming value with a buffered value. Buffer the adder output

(if necessary).

Rule 5 : Combine the incoming value with 0 to the adder pipeline. Buffer the adder

output (if necessary).

We modeled this behavior of reduction circuit and tested various input combina-

tions for different pipeline latency in order to find the maximum number of buffers

required. We found that for a 14 stage adder, 9 buffers are required such that there

is no overflow and all the sets are reduced correctly. The number of comparisons

required and the fan-in to the adder makes it difficult to place and route the design

and hence we use 4 buffers and an input 32 stage deep FIFO in the reduction circuit.

In order to reduce the number of buffers, we added a special rule which is applied if

all the buffers are occupied and rules 1-5 cannot be applied. The special case is listed

below:

Rule 6 : Combine the adder output with 0.

Figure 4.3 shows various configurations of the reduction circuit: a) the output

of the pipeline belongs to the same set as a buffered value; b) two buffered values

belong to the same set c) the incoming value and adder output belong to the same
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set; d) the incoming value and buffered value belong to the same set; e) the incoming

value does not match the set of the pipeline output or any of the buffered values;

f) all the buffers are occupied. Algorithm 5 describes the datapath rules.

Figure 4.3: Reduction Circuit Rules

4.1.1.5 Reduction Status of Sets

In order to know when a set has been reduced completely, the entries associated with

the sets must be tracked. Since the number of entries per set is not known a priori

and multiple sets undergo reduction at the same time, we use the corresponding set

ID to track of the entries. We have implemented a counting mechanism which notifies

the control logic if the set coming out of the adder has been reduced completely.

As shown in Figure 4.4, we use three small dual-ported memories, each with a

corresponding counter connected to the write port, in order to determine when a set

ID has been reduced (accumulated) into a single value. Together, these memories

keep track of the number of active values belonging to each set ID in each cycle, i.e.
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Algorithm 5 Reduction Circuit Rules
1: if ∃n : bufn.set = adderOut.set then . Rule 1
2: addIn1 = adderOut
3: addIn2 = bufn
4: if input.valid then
5: bufn = input
6: end if
7: else if ∃i, j : bufi.set = bufj.set then . Rule 2
8: addIn1 = bufi
9: addIn2 = bufj
10: if input.valid then
11: bufi = input
12: end if
13: if numActive(adderOut.set) = 1 then
14: result = adderOut
15: else
16: bufi = adderOut
17: end if
18: else if input.valid then . Rule 3
19: if input.set = adderOut.set then
20: addIn1 = input
21: addIn2 = adderOut
22: end if
23: else if input.valid then . Rule 4
24: if ∃n : bufn.set = input.set then
25: addIn1 = input
26: addIn2 = bufn
27: if numActive(adderOut.set) = 1 then
28: result = adderOut
29: else
30: bufn = adderOut
31: end if
32: end if
33: else if input.valid then . Rule 5
34: addIn1 = input
35: addIn2 = 0
36: if numActive(adderOut.set) = 1 then
37: result = adderOut
38: else
39: if ∃n : bufn.valid = 0 then
40: bufn = adderOut
41: else
42: ERROR
43: end if
44: end if
45: else . Rule 6
46: addIn1 = AdderOut
47: addIn2 = 0
48: end if
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numActive(). These memories cannot be reset once the reduction circuit has been

activated.

Note that these memories must contain at least n locations, where n is the maxi-

mum possible number of active sets, in order to recycle locations in these memories.

At this time each memory has a depth of 256, which we experimentally verified to be

sufficient for all the datasets that we have tested. Thus, we use the least significant

8 bits of the set ID as input to each of the memories.

Figure 4.4: Tracking Set ID

The write port of each memory is used to increment or decrement the current value

in the corresponding memory location. The write port of one memory is connected to

input.set and always increments the value associated with this set ID corresponding

to the incoming value. Thus, whenever a value belonging to a particular set arrives,

this counter is enabled.

The write port of the second memory is connected to adderIn.set and always

decrements the value associated with this set ID whenever two values from this set
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enter the adder. This occurs under all rules except for 5, since each of these rules

implement a reduction operation. Hence, whenever two valid values enter the input

pipeline, this counter is enabled.

As said before, we use the least significant 8 bits of the set ID and the memories

used in the counters cannot be reset and hence, after every 256 set IDs, a memory

location will be reused while the old counter values are still there. In order to deter-

mine correct reduction, we require the third counter. In the third counter, the write

port of the third memory is connected to adderOut.set and always decrements the

value associated with this set ID whenever the number of active values for this set ID

reaches one. In other words, this counter is used to decrement the number of active

values for a set at the time when the set is reduced to single value and subsequently

ejected from the reduction circuit.

The read port of each memory is connected to adderOut.set, and outputs the

current counter value for the set ID that is currently at the output of the adder.

These three values are added to produce the actual number of active values for this

set ID. When the sum is one, the controller signals that the set ID has been completely

reduced. When this occurs, the set ID and corresponding sum is output from the

reduction circuit.

Figure 4.5 shows the reduction circuit module. Apart from the clock and reset

signal, the inputs to the reduction circuit are value (input), set ID (set_idin), valid_in

and an enable (en) signal. The valid_in signal denotes whether the input is valid.

When the en signal is de-asserted, the reduction circuit is disabled and the state

is preserved. This signal facilitates disabling the reduction circuit when the input

stream is discontinued. The outputs of this architecture are the summation of dataset

(output), set ID (set_idout) and a valid_out signal which denotes whether the output

is valid or not.

In this chapter, we presented a novel streaming reduction circuit for set-wise
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Figure 4.5: Reduction Circuit Module

floating point dataset accumulation. This is designed around a deeply pipelined

floating point adder. The inputs to the adder are scheduled dynamically according to

the rules we defined earlier. In this reduction circuit, apart from the adder, an input

FIFO, 4 buffers, 3 counters and simple control logic is required. Also, the resources

are utilized efficiently as the adder does not remain idle. We discuss the performance

aspects- operating frequency and resource requirements- of this design in Chapter 6.
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Chapter 5

Research Implementation

As discussed previously, in order to improve the accuracy of summation, we may

need to reorder the input values. These methods are not suitable for high per-

formance implementations as sorting algorithms are compute intensive and require

prior knowledge of datasets. Compensated summation methods provide another av-

enue for improvement of accuracy but require additional floating point operations

and comparisons between two input values to extract error. Accuracy can also be

improved by performing the intermediate operations in extended precision but wider

thus deeper adder and wider buffers to store intermediate results are required. Thus

all the methods to improve accuracy come at the cost of increased number of floating

point operations and complexity. But compensated summation methods and inter-

mediate operations in extended precision do not require upfront processing and a

priori knowledge of dataset, these are suitable for high performance implementations

on FPGAs.

Compensated summation when implemented in software, require explicit com-

parison of input values and the values may be swapped. This translates to branch

operations and hence more dependencies. Implementing these methods in hardware

necessarily increases the number of resources required. Also, the control logic to re-

solve dependencies may become more complex which can result in slower operating

frequency. As such, the number of floating point operations per unit of time may

be more than that for simple recursive summation but this does not translate to

improved throughput as the number of operations per result is more hence overall
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performance degrades.

While making a choice for implementation in hardware, we must consider factors

such as resource requirement and complexity of control logic. For high performance

applications on FPGAs, techniques which require reordering the input data are not

practical as the upfront cost of sorting is very high. Further, these methods require

more on-chip memory. Lack of sufficient on-chip memory increases the off-chip com-

munication which itself is a bottleneck.

Methods in which the errors are calculated and incorporated in the results i.e.

compensated summation methods are comparatively less expensive. Utilizing ex-

tended precision in intermediate operations for improving accuracy is also an attrac-

tive option.

In this dissertation, we present a set-wise floating point accumulation framework

for FPGAs which not only reduces multiple streaming sets efficiently but also im-

proves the accuracy of the results. The objective of this is to evaluate various design

tradeoffs such as resource usage and working frequency for different methods. Our

goal is to achieve high throughput while maintaining high accuracy and keeping the

resource requirement low. The reduction circuit architecture described in the previous

chapter serves as the foundation for this framework.

The designs we have implemented for improving the accuracy of the results can be

categorized in two approaches. Firstly, we present two designs based on compensated

summation. As mentioned earlier, compensated summation methods require addi-

tional floating point operation to extract the rounding error. In order to eliminate

the additional operations for extracting the error, we have designed a custom floating

point adder which along with the sum of two floating point numbers outputs the error

as well. This error is incorporated in the result.

In the second approach, we use an extended precision adder in the current re-

duction circuit design. In this implementation, the inputs are converted to extended
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precision values and all the intermediate calculations are performed in extended pre-

cision.

These designs have been designed targeting Xilinx Viretx 5 LX330 FPGA but

can be ported to other FPGAs as well without any significant changes. In order to

verify the results of the architectures, we to compare the results with the results from

software model of Kahan’s compensated summation method and software version of

recursive summation with extended precision using MPFR library. We also report

the resource usage and working frequency for an Xilinx Viretx 5 LX330 FPGA.

In the following sections, we discuss the implementation details of the custom

floating point adder, the two designs based on compensated summation and the

design based on extended precision.

5.1 Custom Floating Point Adder with Error Output

Compensated summation algorithms such as those based on Fast2Sum provide more

accurate result for summation but require additional floating point operations. These

may seem attractive for implementation in software but when implementing these in

hardware with standard floating point units, the overall latency of the reduction

operation increases hence the resource requirements and complexity of control logic

governing the inputs also increases and hence the performance is adversely affected.

Figure 5.1 shows the adder network for hardware implementation of the Fast2Sum

algorithm using standard double precision adders for extracting the error during

addition. Here, the order of operations requires the comparison between the absolute

values of input operands a and b. If |a| < |b| then we swap these values and supply

them to the adder network. This comparison is in effect the comparison between

the exponents of operands and during addition, the operand with smaller exponent

is shifted. The adder network consists of three double precision adders and output

of the third adder is the required error output. Thus, the latency of Fast2Sum
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algorithm, when implemented in hardware is more than three times the depth of an

adder including the cycles required to compare the two inputs. Though, this approach

is simple as standard adders can be used but the resource requirement is quite high.

Also, if we were to use this approach along with the reduction circuit architecture for

set-wise accumulation, the number of buffers required would have been high. Also,

we would require a deeper input FIFO. Due to an increase in the number of buffers,

more comparisons would be required. The control logic would become more complex

and slow.

Figure 5.1: Fast2Sum Algorithm in Hardware

Our goal is to implement compensated summation algorithms such that the overall

latency and the resource requirement of the reduction circuit is optimal.

As described previously, compensated summation methods recover the rounding

error which may consists of the shifted out portion of smaller operand or the difference

between the rounding and the shifted out bits. We have designed a custom double

precision floating point adder which takes two input values and outputs the error

encountered during the addition along with the sum of two input values. We used

the double precision floating point adder generated using FloPoCo[41] framework.

Instead of using three adders for recovering the error, we can just use one adder and

thus, the latency and resource requirements are greatly reduced.

Here, we describe the design of a custom double precision adder, which takes into

consideration the shifted out bits of the smaller operand and the rounding direction

39



of the final result on the basis of which computes and outputs the appropriate error

term.

5.1.1 Error Extraction

The rounding error in summation is constituted either by the shifted out bits of the

smaller operand or the difference between round value and shifted out bits. The error

depends on the direction of rounding and sign of the operands. Thus, for calculating

the error we need to know whether the result was rounded up or down and whether

the sign of operands are same or different. There are four possible cases:

Case 1: a and b have same sign, result is rounded down: In this case, b is shifted

right for alignment and effective addition is performed. Shifted-out bits of b, sh(b)

with exponent of a form the error term in unnormalized form. In order to normalize

it, we need to find the leading number of zeros and shift the bits to left by the

number of zeros and subtract the leading zero count from exponent of a. The

sign of the error is same as sign of a. The error is added to the final result for

compensation as the rounding operation caused the sum to be less than the exact

value.

If during the normalization of addition of a and b, right shift operation is performed,

the shifted out bit becomes the most significant bit of the error term and the

exponent of the adder is adjusted appropriately.

Case 2: a and b have same sign, result is rounded up: In this case, b is shifted right

for alignment and effective addition is performed. Since the result is rounded up,

the error term is derived from subtraction of shifted out bits from round bit. More

precisely, the error is equal to 2exp(a)−t − sh(b). Sicne round up caused the sum to

be more than the exact value, the sign of the error is opposite that of sign of a. The
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error is subtracted from the final result for compensation. Here, t is the number of

bits in the mantissa and t = p - 1 with precision p.

Case 3: a and b have different sign, result is rounded down: In this case, b is

shifted right for alignment and effective subtraction is performed. The error term

is calculated as (2exp(a)−t − sh(b)). Sign of error is same as the sign of a. The error

is added to the final result for compensation as the rounding operation caused the

sum to be less than the exact value.

Case 4: a and b have different sign, result is rounded up: Here, b is shifted to

right and effective subtraction takes place. The error term is equal to 2exp(a)−t −

(2exp(a)−t−sh(b)) i.e. sh(b). The sign of the error is opposite that of a. The error is

subtracted from the final result for compensation as the rounding operation caused

the sum to be more than the exact value.

All these cases have been illustrated in Figure 5.2 with the help of examples.

For the sake of simplicity, we have used less number of bits but similar procedure

is followed for double precision format. During addition, the mantissas of input

operands are stored in wider registers. The extra bits consist of the implied 1, one

bit for carry bit and guard, round and sticky bits. Thus, for double precision, we use

56 bits during intermediate addition. Rounding depends on the least significant bit

(LSB) of mantissa, and guard, round and sticky bits, which are highlighted in the

figure.

5.1.2 Custom Hardware Implementation

In order to design a custom adder for rounding error extraction, we need to consider

all the above described cases. In the adder design, the algorithm for floating point

addition described previously is followed but in order to add the error output func-

tionality and cover all the cases, we have made modifications to the design. Figure 5.3
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Figure 5.2: Rounding Error due to Round and Shift

depicts this new adder which has additional components. To be more specific, an in-

teger subtractor, two leading zero counter and shifters and logic to predict rounding,

preserve shifted out bits of smaller operand and select the appropriate value as error

is required.

In the first stage of this adder, the exponents of the two input values, a and b,

are compared and if exp(a) < exp(b), then the values are swapped. Signal SignX is
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Figure 5.3: Custom Floating Point Adder with Error Output

assigned the sign of the input with greater exponent. Also, the difference between

the exponents, expdiff is calculated.

In the second stage, the smaller of the two values is shifted to the right by expdiff.

The shifted out bits (SOB) are preserved along with the exponent of the smaller

value if expdiff is less than 52. Since we are targeting FPGAs and designing custom

hardware, we have the flexibility of using wider registers. Thus, all the bits which

have been shifted out can be preserved but if the difference between the exponents is

greater than 52, all the bits of b are effectively shifted out. In such a case, we do not

consider the shifted out bits for error. SOB is not normalized at this stage.
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Normalization and subtraction used for calculating rounding error in later stages

take multiple cycles. In order to limit the latency of the error outputting adder to

that of original adder, we anticipate the round operation. In order to achieve this,

we set a bit at expdiff ’s place in another register, PREDICT_RND.

In the subsequent stage, difference between PREDICT_RND and SOB, RND_ERR

is calculated. This result is normalized using a leading zero counter and shifter unit

(LZOC_shift). Also, SOB is normalized and is termed as SHIFT_ERR. Depend-

ing on whether the final result is rounded or not and the signs of a and b, one of

RND_ERR and SHIFT_ERR with necessary calculations is chosen as the final error.

In this design, we make use of two addition LZOC_Shift units one of which is

used for normalization of shifted out bits and the other one is used for normaliza-

tion of anticipated rounding result. We anticipate rounding and perform the error

calculations in accordance with this. This is done because rounding is performed

towards the end of the addition process. Using the anticipation approach, the error

is available for output along with the sum of input values. Thus the latency of the

adder remains the same. If we were to perform error calculations after the rounding

decision, the error would have been available several cycles after the sum. This would

have essentially increased the overall latency of the the adder.

It can be observed that we require additional resources and logic in the floating

point adder design. This not only leads to increased resource utilization but also low-

ers the operating frequency of the adder. We elaborate and discuss the performance

and resource requirements in the next chapter.

In order to incorporate the error during floating point summation in the designs,

we use this custom adder in the following designs where we implement compensated

summation methods. Using this adder essentially reduces the number of floating

point operations in the algorithms and hence reduces the overall latency of the adder

network in our designs.
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5.2 Accumulated Error Compensation

Using this custom adder, we implement an algorithm in which the errors during

addition of values is calculated. The errors are accumulated. Once the set has been

reduced completely, we add the accumulated error to the summation value of the set.

We call this approach accumulated error compensation(AEC).

Though this approach may seem similar to the one in algorithm 3, the major

difference is the order of addition of values. In algorithm 3, recursive summation is

performed but the reduction circuit does not necessarily perform recursive summa-

tion as it generates partial sums which can be added together during the course of

reduction. Thus the order of summation and error generation differs.

Figure 5.4 shows the architectural overview of AEC. In this design, two reduction

circuits are required. First reduction circuit is for the summation of dataset values.

This reduction circuit also outputs the errors as the adder used in this is the custom

adder. We call this Value Reduction Circuit (VRC). The second reduction circuit

accumulates the errors being generated from the first reduction circuit. We call this

Error Reduction Circuit (ERC). Once the set is completely reduced, the accumulated

error can be added to the final sum using another floating point adder. It must be

noted that ERC also performs set-wise accumulation of error values and error values

belonging to different sets are not added together.

In VRC, the floating point adder has been replaced by the error outputting custom

adder which was described in the previous section. VRC gets the inputs from the

input stream while the errors generated by the adder in VRC make the input stream

for ERC.

In order to accumulate the error term generated by the adder in the reduction

circuit, we need another reduction circuit- error reduction circuit (ERC). Though,

ERC is based on the same set of rules as used for the reduction circuit but we need

to modify the architecture so that the errors are reduced correctly. This is due to
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Figure 5.4: Error Accumulation and Compensation

the difference in data introduction interval in VRC and ERC. In VRC, the sets are

delivered contiguously but at the same time, multiple sets are reduced simultaneously.

Consecutive outputs from the adder may belong to different sets. Hence, ERC does

not necessarily receive the values belonging to the same set in contiguous manner.

Because of this, there may arrive a situation where the valid flag in ERC is raised,

signifying a set reduction for errors, while the main set is still being reduced in VRC.

Also, when Rule 5 and 6 are applied in VRC, the output error values are 0, but

if supplied to ERC, the number of error terms to be reduced will be greater than

the main set size. Though 0’s do not affect the functionality of ERC but lead to

additional floating point operations hence poor throughput.

We have made modifications to the original reduction circuit architecture in order

to accommodate these situations. Figure 5.5 shows the modified module for the VRC

and gives an overview of ERC.

In VRC, we have added logic such that it supplies error terms outputted from

the adder to ERC only when the adder output is valid and rule 5 or rule 6 were not

applied. The valid signal is already present in the original reduction circuit. We have

added a delay line whose input is a signal rule_5_or_6 and is asserted when rule 5
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Figure 5.5: Module for Error Accumulation and Compensation

or 6 is applied. The depth of this delay line is equal to the depth of the adder pipeline

which is 14 stages. Thus, the valid signal for the error term can be described using

the following equation:

err.valid = adderOut.valid and not(adderOut.rule_5_or_6) (5.1)

It must be noted that the overall behavior of VRC remains the same as the original

reduction circuit. Also, the number of errors to be reduced by ERC is one less than

the total number of values in the corresponding dataset.

In ERC, we need to add mechanism such that it is able to deal with non-contiguous

supply of data and is still able to reduce the errors correctly. In order to deal with

this situation, the status of set in VRC needs to be checked whether it has been

completely reduced. This can be checked using the valid_out signal when an error

term is supplied to ERC. If the valid_out signal is asserted, then the main set has been

completely reduced and the last error value has been supplied to ERC. This signal

is synchronized with the input FIFO in ERC and is stored in a dual ported memory

in ERC. In order to assert valid_out_err in ERC, this signal must be asserted and

the sum of outputs of the three counters must be 1. Due to this additional check

behavior of other components namely the control logic including the rules and the

counters does not change in ERC. In ERC, we need to add mechanism such that

it is able to deal with non-contiguous supply of data and is still able to reduce the
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errors correctly. In order to deal with this situation, the status of set in VRC needs

to be checked whether it has been completely reduced. This can be checked using

the valid_out signal when an error term is supplied to ERC. If the valid_out signal

is asserted, then the main set has been completely reduced and the last error value

has been supplied to ERC. This signal is synchronized with the input FIFO in ERC

and is stored in a dual ported memory in ERC. In order to assert valid_out_err in

ERC, this signal must be asserted and the sum of outputs of the three counters must

be 1. Due to this additional check behavior of other components namely the control

logic including the rules and the counters does not change in ERC.

Also, the final summation of the main set from VRC is stored in another dual

ported memory in ERC as the final error cannot be available immediately after the

set reduction. Once the error terms belonging to a set have been reduced, the final

sum is calculated by applying the error correction by adding it to the error term from

the adder and main set sum from the memory. For this we need another floating

point adder.

Thus, in AEC we emulate compensated summation algorithm in hardware without

requiring the comparison between the inputs and explicit floating point hardware for

calculating the rounding error. Also, since the error extraction is integrated within

the floating point adder, the pipeline depth of VRC and ERC is same as the original

reduction circuit.

We discuss the accuracy results, resource requirements and the performance in

terms of operating frequency of this design in the next chapter.

5.3 Adaptive Error Compensation in Subsequent Addition

We have implemented a modification to the approach described in algorithm 1. We re-

fer to this approach as adaptive error compensation in subsequent addition(AECSA).

In this design, we calculate the errors during summation and if possible apply a cor-
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rection as well. If it is not possible to apply the correction because of unavailability

of corresponding error, we accumulate the error. Once the set has been reduced com-

pletely, we add the final accumulated error term and the result. This approach has

been depicted in Figure 5.7.

Figure 5.6 shows the pipeline required for implementing one iteration of compen-

sated summation algorithm which compensates for the error in subsequent addition.

In this implementation, error term, e calculated in the previous iteration is required

as an input to the first adder. Due to the depth of the adder network, it is not possi-

ble to have this error every cycle. Error will not be available for each addition even if

we replace the two adders with one custom adder which generates error. The values

from different sets can be scheduled in an interleaved manner but this will require lot

of on-chip resources, complex control logic and upfront processing of data.

Figure 5.6: Error Compensation in Subsequent Addition

Figure 5.8 shows an overview of AECSA. In this design, we require two reduction

circuits but unlike AEC, the application of rules in ERC depends on the availability of

errors to VRC. Further, since the error compensation may take during accumulation

of values, two adders connected sequentially are required in VRC. The first adder

is for error correction which adds the error to an input value while the other adder

adds the output of the first adder with the second input value. The second adder

also generates the error term.

A comparator at the input of the adder pipeline is required in order to compare
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Figure 5.7: Adaptive Error Compensation in Subsequent Addition

the input values. If |a| >|b|, a and b are swapped. Thus, the overall adder pipeline

depth in VRC is more than two times of that in AEC and original reduction circuit.

Here, we increase the size of the input FIFO but keep the number of buffers same as

the original reduction circuit in order to keep the control logic simple.

As discussed previously, due to the depth of adder pipeline and simultaneous

accumulations from the same set, there may arrive a situation where we may not be

able to compensate for the error using the first adder. In such a case, we accumulate

the error using ERC. Errors can also be supplied from ERC to VRC in order to

maximize the chances of error compensation in VRC. After set reduction, the final

error term from ERC can be added to summation to obtain the final result.

The major difference between AEC and AECSA is, in AEC the rules in ERC

are independent of conditions in VRC while in AECSA, a check for set ID match is

performed and if a match is found then that error value is supplied to VRC. In other

words, the set ID of error term in ERC is equal to the set ID which is being input

the adder pipeline in VRC, the corresponding value from ERC is supplied to VRC

for error compensation.

In ERC, if conditions for a rule are satisfied but the set ID of error source matches

in VRC then that rule is not applied. In such a case, some other rule is applied. Error
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Figure 5.8: Module for AECSA

accumulation in ERC is performed only when is it not possible to supply the errors

to VRC as input. Thus, error input to VRC is prioritized. The rules in ERC have

been modified in accordance with this policy.

There are four sources of the input error in VRC- the output of the custom floating

point adder in VRC, FIFO output in ERC, buffers in ERC and output of adder in

ERC. When applying Rule 1, Rule 2, Rule 3 and Rule 4, the set ID of the error

outputs is checked compared with the adder input set ID. If a match is found, the

respective error term is supplied as input. If the error output from the custom adder

in VRC serves as the input error, this error term is not supplied to ERC and err_valid

line is de-asserted. If the error term comes from ERC, it is invalidated in ERC and is

not considered for accumulation. The rule to be applied in ERC depends on whether

the corresponding error term has been invalidated or not. For example, in ERC, if

the set ID of adder output matches the set ID of one of the buffers (Rule 1), but at

the same time, in VRC, the set ID is the same as set ID of adder output in ERC,

then Rule 1 won’t be applied in ERC and the error term from output of the adder

pipeline in ERC is supplied to VRC. In such a case, some other rule is applied in
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ERC. Algorithm 6 describes the control logic in VRC. It is evident that the number

of compare operations per cycle is significantly more and the application of a rule in

ERC is dependent on the logic decision from VRC. This essentially levies a timing

challenge and the performance in terms of operating is affected adversely due to this.

Also, the rules in ERC have been modified to accommodate the condition for

potential set ID match in VRC. The control logic for ERC is shown in algorithm 7.

In the original reduction circuit, we have three counters- the first counts up when

a new value arrives in the reduction circuit, the second counts down when two values

are supplied to the adder while the third counter counts down when a set has been

reduced. Since ERC also supplies error terms back to VRC, the number of valid error

term decreases even when there is no reduction. In order to account for the error terms

supplied to VRC from ERC and keep track of the number of errors belonging to a

particular set in ERC, we need a fourth counter. This counter counts down whenever

an error term is supplied to VRC from ERC. In the absence of this counter, the error

reduction will not be correct. Example in Figure 5.9 depicts the working of counters

in ERC. The subscripts in the example represent the counter which is activated.

Thus, when two error terms are added in ERC, counter 1 is activated. Similarly, if a

value is supplied from ERC to VRC from either the input FIFO, buffers or output of

adder, counter 4 is activated.

In ERC, similar to AEC, the error values belonging to a particular set are not

contiguous hence we need to check the status of the set VRC. This can be checked

using the valid_out signal when an error term is supplied to ERC. If valid_out signal

is asserted, then the main set has been completely reduced and the last error value

has been supplied to ERC. This signal is synchronized with the input FIFO in ERC

and is stored in a dual ported memory in ERC. In order to assert valid_out_err in

ERC, this signal must be asserted and the sum of outputs of the three counters must

be 1.
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Algorithm 6 AECSA VRC Rules
1: if ∃n : bufn.set = adderOut.set then . Rule 1
2: rule1 = 1
3: addIn1 = adderOut
4: addIn2 = bufn
5: if input.valid then
6: bufn = input
7: end if
8: else if ∃i, j : bufi.set = bufj.set then . Rule 2
9: rule2 = 1
10: addIn1 = bufi
11: addIn2 = bufj
12: if input.valid then
13: bufi = input
14: end if
15: if numActive(adderOut.set) = 1 then
16: result = adderOut
17: else
18: bufi = adderOut
19: end if
20: else if input.valid then . Rule 3
21: if input.set = adderOut.set then
22: rule3 = 1
23: addIn1 = input
24: addIn2 = adderOut
25: end if
26: else if input.valid then . Rule 4
27: if ∃n : bufn.set = input.set then
28: rule4 = 1
29: addIn1 = input
30: addIn2 = bufn
31: if numActive(adderOut.set) = 1 then
32: result = adderOut
33: else
34: bufn = adderOut
35: end if
36: end if
37: else if input.valid then . Rule 5
38: addIn1 = input
39: addIn2 = 0
40: if numActive(adderOut.set) = 1 then
41: result = adderOut
42: else
43: if ∃n : bufn.valid = 0 then
44: bufn = adderOut
45: else
46: ERROR
47: end if
48: end if
49: else . Rule 6
50: addIn1 = AdderOut
51: addIn2 = 0
52: end if
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53: if rule1 OR rule2 OR rule3 OR rule4 then
54: if not(adderOut.rule_5_or_6_out) then
55: addErrIn = addererrOut
56: errInput.disable = 1
57: else if errInput.set = adderOut.set then
58: addErrIn = errInput
59: errInput.errEn = 1
60: else if errAdderOut.set = adderOut.set then
61: addErrIn = errAdderOut
62: errAdderOut.errEn = 1
63: else if ∃n : errBufn.set = adderOut.set then
64: addErrIn = errBufn
65: errBufn.errEn = 1
66: else
67: addErrIn = 0.0
68: end if
69: else
70: addErrIn = 0.0
71: end if
72: if count1 + count2 + count3 = 1 then
73: redCktOut.valid = 1
74: redCktOut.set = adderOut.set
75: redCktOut = adderOut
76: end if
77: if not(errInput.disable)ornot(adderOut.rule_5_or_6_out) then
78: redCktOut.Err = adderOut.Err
79: redCktOut.errV alid = adderOut.valid
80: redCktOut.errSet = adderOut.set
81: end if

Figure 5.9: Working of Four Counters in AECSA-ERC
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Algorithm 7 AECSA ERC Rules
1: if ∃n : errBufn.set = errAdderOut.set and
2: not (errBufn.errEn or errAdderOut.errEn) then . Rule 1
3: rule1 = 1
4: errAddIn1 = errAdderOut
5: errAddIn2 = errBufn
6: if errInput.valid then
7: errBufn = errInput
8: end if
9: else if ∃i, j : errBufi.set = errBufj .set and
10: not (errBufi.errEn or errBufj .errEn) then . Rule 2
11: rule2 = 1
12: errAddIn1 = errBufi
13: errAddIn2 = errBufj
14: if errInput.valid then
15: errBufi = errInput
16: end if
17: if numActive(adderOut.set) = 1 then
18: result = errAdderOut
19: else
20: bufi = errAdderOut
21: end if
22: else if errInput.valid then . Rule 3
23: if errInput.set = errAdderOut.set and
24: not (errInput.errEn or errAdderOut.errEn) then
25: rule3 = 1
26: addIn1 = errInput
27: addIn2 = errAdderOut
28: end if
29: else if errInput.valid then . Rule 4
30: if ∃n : errBufn.set = errInput.set and
31: not (errInput.errEn or errBufn.errEn) then
32: rule4 = 1
33: errAddIn1 = errInput
34: errAddIn2 = errBufn
35: if numActive(errAdderOut.set) = 1 then
36: result = errAdderOut
37: else
38: bufn = errAdderOut
39: end if
40: end if
41: else if errInput.valid then . Rule 5
42: errAddIn1 = errInput
43: errAddIn2 = 0
44: if numActive(errAdderOut.set) = 1 then
45: result = errAdderOut
46: else
47: if ∃n : errBufn.valid = 0 then
48: errBufn = errAdderOut
49: else
50: ERROR
51: end if
52: end if
53: else . Rule 6
54: errAddIn1 = errAdderOut
55: errAddIn2 = 0
56: end if
57: if errCount1 + errCount2 + errCount3 + errCount4 = 1 andvrc.set.done = 1 then
58: errOut.valid = 1
59: errOut.set = adderOut.set
60: errOut = adderOut
61: end if
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Also, the summation of the main set is stored in a dual ported memory. Once

the error terms belonging to a set have been reduced, the final sum is calculated by

adding the error term from the adder and main set sum from the memory. For this

another floating point adder is required.

In AECSA, the overall behavior of VRC does not change. Rules are applied in

the original order of priority even when an error term is not available from any of the

sources.

5.4 Extended Precision Reduction Circuit

As described in the background section, we can achieve higher accuracy if the working

precision of a floating point numbers is increased. For example, double precision

generally offers more accuracy than single precision. Also, modern processors, such

as Intel’s X86 architecture utilize this technique where the floating point operations

are performed using 80 bit registers.

In order to implement extended precision, we use a wider adder in the origi-

nal reduction circuit architecture. We call this design Extended Precision Reduction

Circuit (EPRC). We have implemented two versions of EPRC, namely EPRC80 and

EPRC128. In EPRC80, we use an 80 bit extended precision format while in EPRC128,

128 bit extended precision format has been used.

Figure 5.10 shows the architectural overview of EPRC. The input values are con-

verted to extended precision and are then supplied to the reduction circuit. Thus, we

require a wider input FIFO in the reduction circuit. In the reduction circuit, all the

intermediate summation operations for calculating the partial sums are carried out

using wider floating point adder. The inputs and partial sums are stored in wider

buffers. Once a set has been completely reduced, the final sum which is in extended

precision is converted back to double precision format.

If we were to use this reduction circuit in some application utilizing double preci-
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Figure 5.10: Extended Precision Reduction Circuit

sion, the intermediate operations performed in extended precision would be transpar-

ent to the application as the outputs are converted back to double precision values.

EPRC offers, though does not guarantee, better accuracy than the original reduc-

tion circuit. It may offer better accuracy because less number of bits are discarded

during denormalization of smaller operand during intermediate operations. It is gen-

erally the case that more number of guard bits are available with a wider adder since

the original inputs are in double precision.

Since the outputs are converted back to double precision, the results go through

double rounding in EPRC and extended precision arithmetic in general. The first

rounding operation is performed during addition while the second is performed dur-

ing conversion of output to double precision. Though the effect of rounding during

addition is mitigated by the use of extended precision as rounding may be required

less number of times, but rounding during conversion may be the cause of error. As

suggested in the literature, this error cannot be worse than the overall error with

double precision summation. Hence, extended precision offers at least as much accu-

racy as double precision; in general results from operations performed with extended

precision are better.
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In EPRC, the inputs and outputs are in double precision, hence during the con-

version process of inputs, we do not modify the number of exponent bits i.e. the

number of exponent bits in the extended precision values is 11. Extra mantissa bits

are appended towards the least significant portion of the mantissa. Figure 5.11a

shows the 80 bit extended precision used in EPRC80 and Figure 5.11b depicts 128

bit extended precision format used in EPRC128. The width of exponent in both the

formats is 11 bits while the mantissa width used in EPRC80 is 68 bits and that in

EPRC128 is 116biths. Input and outputs values are in double precision and assume

mantissa of 52 bits.

(a) 80 Bit Extended Precision Format for EPRC80

(b) 128 Bit Extended Precision Format for EPRC128

Figure 5.11: Extended Precision Floating Point Format

In double precision addition, only 3 bit shift can be tolerated with guard, round

and sticky bits. If exponent difference is larger than 3, shifted out bits are discarded.

Extending mantissa to 68 bits can effectively tolerate and preserve 16 least significant

bits of the smaller input operand while using 116 bits for mantissa preserves 64 bits.

Thus, the error due to shift during the intermediate operations is mitigated completely

if the exponent difference is less than or equal to 16 for 80 bit format and 64 for 128

bit format. This does not include the padding offered by guard, round and sticky
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bits. The mantissa can be extended further but the depth of the adder also increases

with the width of input operands.

An extended precision format necessarily requires wider integer adder and wider

shift units which may require additional cycles to effectively pipeline these operations.

Thus, the overall latency of a wider floating point adder is more than that of a double

precision adder. In EPRC, we use a deeper input FIFO to accommodate a deeper

adder. The latency of adder in EPRC80 is 19 cycles while that in EPRC128 is 26

cycles. The overall behavior and rules for both these designs is the same as our

original reduction circuit.

5.5 Summary of Designs

In this chapter, we presented a custom double precision adder design for error ex-

traction and three designs for improving the accuracy of set-wise summation. All

these designs are based on our reduction circuit. Thus, these exploit inter-set and

intra-set parallelism for streaming datasets by allowing accumulation of multiple sets

simultaneously.

In Accumulated Error Compensation (AEC), the errors generated by VRC are

accumulated in ERC. Once the set is reduced completely in VRC, the accumulated

error from ERC is added to the summation to obtain the final result with error

correction.

In Adaptive Error Compensation in Subsequent Addition (AECSA), the errors

generated during addition can be compensated in VRC using another adder. Thus

two adders are required in VRC. ERC can also supply errors to VRC. If it is not

possible to consume the error in VRC, they are accumulated in ERC. In order to

calculate the final result, the accumulated error from ERC is added to the sum from

VRC.

In EPRC80, we use 80 bit while in EPRC128, 128 bit adders is used in our
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reduction circuit in order to perform all the intermediate operations in extended

precision format. Wider buffers are required to store the intermediate results. The

double precision values are converted to 80 bit and 128 bit extended precision values

respectively. The final result is converted back to double precision.

Thus, all the designs we presented require additional resources on top of the

original reduction circuit. In the next chapter, we discuss the resource requirements,

performance and accuracy parameters of these designs in detail.
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Chapter 6

Experiments and Results

In this chapter, we discuss resource requirements, performance and accuracy param-

eters of the new designs with respect to the original reduction circuit.

6.1 Resource Requirements and Operating Frequency

In the previous chapter we presented the design of a custom floating point adder

which outputs the roundoff error incurred during floating point addition and four

designs for achieving better accuracy for set-wise floating point summation.

In order to characterize the tradeoffs of these designs in terms of operating fre-

quency and resource requirements of the designs, we synthesized, placed and routed

the designs using Xilinx ISE 14.4 for the Xlinix Virtex 5 LX330 FPGA. We report

the resource usage and frequency from place and route results.

6.1.1 Custom Floating Point Adder

First we discuss and compare the custom floating point adder design. We added

necessary components to double precision floating point adder to extract the error

which occurs during floating point addition. The error be constituted by the the

shifted out bits of the smaller operand or it can be due to the rounding. In order

to calculate the error, we need an integer adder (subtractor) which calculates the

difference between rounding bits and shifted out bits after necessary appropriations

as explained in the previous chapter. Also we need a leading zero bit counter and

shifter to normalize the error. Since the rounding decision- whether the result is
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rounded up or down- is made towards the end of the addition operation. In order

to keep the latency the same as the original floating point adder (14 cycles), we

anticipate the round operation and choose the error when rounding decision is made.

To facilitate this, we require extra components. Thus, we require two leading zero

counter and shifter units, and an integer subtractor for extracting the error.

Table 6.1 shows the resource and frequency comparison between the FloPoCo

double precision adder and our custom floating point adder which outputs the error.

It can be observed that there is a significant increase in the resource requirements

and the resources required are almost twice that of the original design. We attribute

this increase to the two leading zero counter and shifter units, the integer subtractor

and the logic required to choose the appropriate error term.

It can be seen that the operating frequency is also reduced by 28%. This is due

to the additional control logic for error extraction in the floating point adder unit.

Table 6.1: Custom Floating Point Adder

Design Slice Register Change Frequency %Change
FP Adder 1130 330 MHz

Custom Adder 2310 2.04X 235 MhZ -28.7%

6.1.2 Reduction Circuits for Improving Accuracy

The reduction circuit, as described in chapter four, has input FIFOs for set ID (32 bit

wide, 32 deep) and input values (64 bit wide, 32 deep), 4 buffer triplets each with one

1-bit register for valid, 32-bit register for set ID and 64-bit register for value and an

adder network with a double precision floating point (14 deep), a delay line for valid

signal and a delay line for set ID. We described four designs described in chapter 5

for improving the accuracy of set-wise floating point summation which are based on

this reduction circuit architecture.
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Two of the designs– AEC and AECSA– are based on the principle of compensated

summation. In both the designs, two reduction circuits are required. The error is

calculated using the custom floating point adder in value reduction circuit (VRC)

and is accumulated using the error reduction circuit (ERC). In AEC, ERC acts in-

dependently while in AECSA, ERC can supply partially accumulated errors to VRC

and the rules in ERC are applied accordingly. Thus, for AEC and AECSA at least

twice as many resources than the original reduction circuit are required. Additional

logic to accumulate the error properly makes the control logic complex.

In EPRC80 and EPRC128, we use 80 bit and 128 bit extended precision floating

point adder with pipeline depth of 19 and 26 respectively. All the intermediate

calculations are carried out in the extended precision format. The wider adder and

reduction circuit value registers in buffer triplet, the conversion units and a deeper

input FIFO (64 deep) increase the device utilization in both these designs.

In this section, we discuss the resource requirements for AEC, AECSA, EPRC80

and EPRC128 and compare it with the original reduction circuit design.

AEC and AECSA are based on the principle error free transformation which forms

the basis of compensated summation methods. In both these designs we emulate the

compensated summation. But these designs do not implement recursive summation.

It is because, in the reduction circuit, addition of two partial sums as well as addition

of two input values is possible while in recursive summation, there is only one partial

sum which is added to the input value.

Accumulated Error Compensation (AEC)

In AEC, we need two reduction circuits- the value reduction circuit (VRC) accumu-

lates the input values. The custom adder is used for outputting the errors. These

errors are supplied to the error reduction circuit (ERC). ERC may receive the errors

belonging to a set in non-contiguous manner. In order to reduce the errors correctly,
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we have added status memories in ERC. Also, another adder is required for adding

the final sum and the accumulated error value. In AEC we require three adders,

two of which are standard adders while the adder in VRC is the custom adder. As

such, in AEC, we require more than twice the resources than the original reduction

circuit. We also require logic and resources for the two reduction circuit and addition

memories in ERC for status check. Thus the control logic becomes more complex.

Apart from the status check of the set in VRC, the accumulation of errors in ERC

does not depend on VRC.

Adaptive Error Compensation in Subsequent Addition (AECSA)

Similar to AEC, in AECSA, we require two reduction circuits and an adder outside

those reduction circuits. But unlike AEC, in AECSA, two adders are required in the

adder pipeline in VRC. The first adder serves the purpose of error compensation while

the second adder, which is custom adder, outputs the error. In order to avoid buffer

overflow due to increased latency, the depth of the FIFO in VRC has to be doubled.

The errors from ERC can be supplied to VRC for error compensation. In order to do

this, the set ID in VRC must be matched against the set IDs in ERC. Since there are

six sources of error in ERC– four buffers, input FIFO and output of the adder– the

number of comparisons carried out for error in VRC per cycle increases significantly.

This manifolds the complexity of control logic. Thus, AECSA utilizes more resources

and has more complex control logic than AEC.

Although, in AECSA, error compensation is done in subsequent addition similar

to Kahan’s compensated summation algorithm but unlike Kahan’s algorithm in soft-

ware, AECSA does not replicate the behavior of recursive summation because of the

scheduling. Also, for Kahan’s compensated summation algorithm, the error gener-

ated in the previous iteration is compensated in the current iteration but in AECSA,

as discussed earlier, the error value may not be available for compensation due to the
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depth of the adder pipeline and scheduling in the reduction circuit.

Extended Precision Reduction Circuits: EPRC80 and EPRC128

We have also implemented two extended precision reduction circuits- EPRC80 and

ERPC128. In these designs, in order to perform all the computations in extended

precision, we require wider adders, wider registers in the buffer triplets to store the

partial sums and a wider and deeper input value FIFO. In EPRC80, an 80 bit floating

point adder having latency of 19 cycles is used while in EPRC128, 128 bit floating

point adder with pipeline depth of 26 cycles is used. Due to the increase in pipeline

depth, we require deeper FIFO to avoid buffer overflow. Also, we require conversion

units for converting the input values from double precision to extended precision and

output values from extended precision to double precision. The complexity of control

logic remains the same as the original reduction circuit as the set ID width does not

change, but the resource requirement increases.

6.1.2.1 Resource Requirements

In this section we discuss the resource requirements for Table 6.2 depicts the number

of comparisons for set ID that are required in each of the designs. These are based

on the number of comparisons required per rule. Please note that these only include

the comparison between set IDs from the input FIFO, buffers and the output of the

error and do not include the check for valid signal and other conditions.

Table 6.2: Number of Comparisons for Designs

Reduction Circuit AEC AECSA EPRC80 EPRC128
VRC ERC VRC ERC

Comparisons 15 15 15 41 15 15 15

In the reduction circuit, Rule 1 requires four comparisons (output of adder com-

pared with four buffers), Rule 2 requires six comparisons (four buffers), Rule 3 re-

quires one comparison (input and output of the adder) and Rule 4 requires four
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comparisons (four buffers and input). Thus, 15 comparisons are required in the re-

duction circuit. Since the behavior of VRC and ERC in AEC is the same as the

reduction circuit, the number of comparison for application of rules is 15 in each.

Also, the number of buffers do not change in EPRC80 and EPRC128, the number

of comparison remains the same. In AECSA, we need six additional comparisons for

Rule 2 and Rule 4 while seven additional comparisons are required for Rule 1 and

Rule 3 for error compensation. Thus, 41 comparisons are required in VRC while 15

are required in ERC in AECSA. Thus, the control logic for AECSA is more complex

than the other designs.

Table 6.3 shows the resource requirements and operating frequency for AEC,

AECSA, EPRC80 and EPRC128. We also compare these with the original reduc-

tion circuit. It can be observed that AECSA requires 300% more resources than the

original reduction circuit and suffers 28.2% loss in the operating frequency. This can

be ascribed to the complex control logic as described previously. EPRC80 requires

on 41.8% more resources, while AEC and EPRC128 require almost 150% more re-

sources. The operating frequency of AEC, EPRC80 and EPRC128 is slightly less

than the original reduction circuit. Thus all the designs implemented for improving

the accuracy of set-wise floating point accumulation require additional resources. Due

to increased resources and complexity of the control logic, the operating frequency is

affected adversely but the impact is not severe except for AECSA.

Table 6.3: Resource Requirements and Operating Frequency

Design Slice Registers % change Frequency % change
Reduction Circuit 1873 188.5

AEC 4743 153.2% 176.2 -6.5%
AECSA 7938 323.8% 135.4 -28.2%
EPRC80 2656 41.8% 181.8 -3.6%
EPRC128 4600 145.6% 182.5 -3.2%
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6.2 Accuracy

In this section, we present the numerical accuracy attributes of AEC, AECSA, EPRC80

and EPRC128. We compare the results from these designs with the software imple-

mentation of extended precision recursive summation. The objective of the exper-

iments is to study the effect of dataset parameters such as condition number and

exponent difference on the relative error.

6.2.1 Datasets

In order to test the numerical efficacy of the new designs– AEC, AECSA, EPRC80

and EPRC128– we generated different random datasets using uniform pseudo-random

number generation functions in Matlab[40]. These datasets cover a wide range of

values and exponents. Some of these datasets contain only positive numbers while

some contain well distributed positive and negative numbers. Thus the condition

number of datasets is also varied. We also use sparse matrices from the University of

Florida sparse matrix collection[39] as test cases on real scientific data with variable

input set sizes.

Generated datasets and sparse matrices can be divided categorized as well con-

ditioned and ill conditioned datasets. The condition number(κ) for a dataset can be

defined as the ratio of summation of absolute values and summation of input values

as given by Equation 6.1. A dataset is said to be well-conditioned for which the con-

dition number, κ, is close to 1.0. If all the values in a dataset have the same sign, κ

= 1.0. If κ � 1.0, the dataset is said to be ill-conditioned and has good distribution

of positive and negative values. Generally, if a dataset is well conditioned, the rela-

tive error encountered during summation is small even without accuracy preserving

measures, while the relative error is large for ill-conditioned data. In ill-conditioned

datasets, due to the presence of almost equal values with opposite sign, catastrophic

cancellation occurs. Thus, using ill-conditioned datasets, the effect of catastrophic
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cancellation on relative error can also be studied. We have used both well-conditioned

and ill-conditioned datasets for our tests.

κ =
∑n
i=1 |ai|
|∑n

i=1 ai|
(6.1)

In order to study the effect of shift during addition on the errors, we have used

datasets with different exponent ranges. If dataset has values with wide range of

exponents, the error due to shifting should be large. If the exponent difference in a

dataset is small, error due to shifting is expected to be small. We have used datasets

with known exponent ranges to measure the effect of shifting. The occurrence and

magnitude of the error due to rounding operation cannot be predicted on the basis

of the exponent range. The generated datasets consists of 1000000 entries and each

is divided in sets of size 100 and 10000 values. The sparse matrices already have well

defined rows thus check the designs for correct functionality with variable set sizes.

6.2.2 Experimental Setup

In order to measure the accuracy of results from our designs, we calculate the recursive

summation of the sets in datasets in extended precision using GNU Multiple Precision

Floating-Point Reliable Library (MPFR) with 2048 bit mantissa[38]. MPFR provides

subroutines for arbitrary precision arithmetic on floating point numbers and is used

to implement multi-precision floating point arithmetic in software. The precision can

be chosen by the user.

In IEEE-754 double precision, the maximum permissible exponent is 1023 and the

least exponent value is -1024. The maximum difference between exponents thus can be

2047. Thus, with 2048 bit mantissa, all the bits of the operand with smaller exponent

are preserved and are not discarded during the shift operation. Also, rounding is not

required because the results are not required to be truncated as sufficient precision is
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available. Thus all the calculations in extended precision with 2048 bit mantissa can

be considered infinitely precise with respect to the IEEE-754 double precision format.

For results from software, we first convert the double precision input values to

extended precision values with 2048 bit mantissa. In recursive summation, where

the sum (partial) of all the previous inputs is added to the current input value, all

the intermediate operations are performed on values represented in this extended

precision. The final results are converted to double precision format. These results

are compared against the results from our designs. We report the number of incorrect

bits with respect to the results from extended precision results. The relative error

can be calculated using Equation 6.2.

|En|
|Sn|

= |Sn| − Sn
|Sn|

(6.2)

The number of erroneous bits in the result can be calculated using Equation 6.3.

NumberofErrorneousBits = lg(2× |En|
ε.|Sn|

) (6.3)

The intermediate calculations in 2048 bit precision mitigate the effect of shifting

and rounding if the original inputs are in double precision as the shift amount can-

not be more than 2047 bits and the partial results need not to be rounded. This

approach suffers from loss of accuracy only once when the conversion is done from

extended format to double precision format but the overall effect of this conversion

is significantly less than multiple rounding operations and loss of bits due to shift

when in double precision. We use the results from recursive summation in the 2048

bit extended precision as exact results for calculating the relative error.

In order to generate the results from our designs, we simulated the designs using

Modelsim SE 6.6a. Text files containing the data is read by the top level module.

This module then supplies the data to the designs. The output from the designs are

stored in different files. The results from these files and those from software version

of extended precision recursive summation are compared using Perl scripts.
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6.2.3 Results

6.2.3.1 Random Datasets

In this section, we report the average number of erroneous bits for datasets generated

using uniform random number generator. We report the condition number, exponent

difference and error with respect to results from software expressed in terms of ma-

chine precision for each of the designs. The exponent range denotes the maximum

possible exponent difference in the dataset. We can divide the datasets into three

categories– κ = 1.0 and increasing exponent difference, κ = ∞ and increasing expo-

nent range and increasing κ and fixed exponent range. It must be noted that the

exponent range may vary during the summation of the dataset.

Table 6.4a show the average erroneous bits for set size of 100 and κ = 1.0 while

Table 6.4b shows the average erroneous bits for set size of 10000. It can be observed

that the error for set size of 100 is very small for all the designs. The effect of

increasing the set size is evident on the results from the reduction circuit and AECSA.

The reduction circuit suffers the most while the effect on AECSA is restricted to 3

bits. The results from AEC, EPRC80 and EPRC128 can be termed 100% accurate

for both the set sizes as the error for set size of 100 is less than 1 bit for these designs.

Table 6.5a and Table 6.5b depict the number of erroneous bits for κ = ∞ and

increasing exponent range. The erroneous bits have been calculated using absolute

error En. These results show that the error increases as we increase the exponent

range. Also, the effect of catastrophic cancellation is evident on results from the

reduction circuit as it reports large erroneous bits for both set sizes. AEC and AECSA

produce almost identical results and have the error restricted to 2 bits. EPRC128

have 100% accurate results while EPRC80 produces 100% accurate results in all but

one case. This can be attributed to few large errors contributing to the average.
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Table 6.4: Erroneous Bits for κ = 1.0 and Varying Exponent Difference

(a) Set Size=100
κ Exponent Range Reduction Ckt. AEC AECSA EPRC80 EPRC128

1 2 0.9 0.0 0.1 0.0 0.0

1 4 0.8 0.0 0.0 0.0 0.0

1 8 1.4 0.0 0.3 0.0 0.0

1 16 1.8 0.6 0.7 0.1 0.1

1 32 1.7 0.0 1.0 0.0 0.0

1 64 1.9 0.6 0.8 0.3 0.3

(b) Set Size=10000
κ Exponent Range Reduction Ckt. AEC AECSA EPRC80 EPRC128

1 2 14.2 0.0 2.1 0.0 0.0

1 4 14.5 0.0 2.8 0.0 0.0

1 8 16.96 0.0 2.1 0.0 0.0

1 16 17.61 0.0 3.0 0.0 0.0

1 32 18.87 0.0 3.2 0.0 0.0

1 64 18.51 0.0 3.2 0.0 0.0

Table 6.5: Erroneous Bits for κ =∞ and Varying Exponent Difference

(a) Set Size=100
κ Exponent Range Reduction Ckt. AEC AECSA EPRC80 EPRC128

∞ 2 4.3 1.0 1.1 0.0 0.0

∞ 4 4.8 1.1 1.1 0.0 0.0

∞ 8 5.1 1.4 1.5 0.0 0.0

∞ 16 5.9 1.4 1.6 0.0 0.0

∞ 32 5.9 1.5 2.1 0.0 0.0

∞ 64 8.3 1.8 2.3 0.0 0.0

(b) Set Size=10000
κ Exponent Range Reduction Ckt. AEC AECSA EPRC80 EPRC128

∞ 2 8.2 1.8 2.2 0.0 0.0

∞ 4 9.2 2.8 3.2 0.0 0.0

∞ 8 11.5 4.8 5.3 0.0 0.0

∞ 16 15.5 5.7 5.9 0.0 0.0

∞ 32 23.3 6.9 7.1 1.7 0.0

∞ 64 26.2 9.7 9.7 0.0 0.0
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Table 6.6a and 6.6b shows that if datasets have all the values with equal ex-

ponent, the increase in the condition number does not affect designs with accuracy

improvement mechanisms much but the error for the reduction circuit increases as

the condition number is increased. Please note that the condition number reported

in these tables is the average condition number for the sets.

Table 6.6: Erroneous Bits for Varying κ and Exponent Range = 0

(a) Set Size=100
Exponent Range κ Reduction Ckt. AEC AECSA EPRC80 EPRC128

0 10.2 1.9 0.3 0.6 0.0 0.0

0 99.6 3.4 0.4 0.6 0.0 0.0

0 651.3 4.6 0.7 0.8 0.1 0.1

0 1793.5 6.3 0.7 0.9 0.3 0.2

0 5896.2 8.5 1.0 1.0 0.8 0.7

0 11552.0 10.5 1.1 1.3 1.0 1.0

(b) Set Size=10000
Exponent Range κ Reduction Ckt. AEC AECSA EPRC80 EPRC128

0 10.9 6.7 1.2 1.6 0.6 0.5

0 95.0 7.0 1.7 1.5 0.7 0.5

0 602.1 7.8 1.9 1.8 1.0 1.0

0 1796.5 9.3 1.9 2.1 1.2 1.1

0 5902.4 10.1 2.4 2.4 1.8 1.6

0 11603.4 10.5 2.8 3.1 1.8 1.7

Table 6.7a and Table 6.7b show that error reported by AEC, AECSA, EPRC80

and EPRC128 are significantly less that that from the reduction circuit even if we

increase the exponent range. As such, the error reported by all the designs increases

with the condition number. Also, as the set size increases, the number of erroneous

bits also increase.

It can be observed from the results that in all the cases, the designs with accuracy

improving mechanisms perform significantly better than the reduction circuit which

does not employ any such mechanism. Also, the errors reported by AEC and AECSA

are restricted to 4 bits or less in all the cases while EPRC80 and EPRC128 have 3 or

less erroneous bits on average in all the cases. This clearly shows that these designs
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Table 6.7: Erroneous Bits for Varying κ and Exponent Range = 32

(a) Set Size=100
Exponent Range κ Reduction Ckt. AEC AECSA EPRC80 EPRC128

32 10.9 1.6 0.0 0.0 0.0 0.0

32 95.0 3.5 0.3 0.3 0.2 0.2

32 803.4 4.2 0.6 0.7 0.3 0.3

32 1612.5 7.7 0.7 0.9 0.4 0.4

32 5983.2 7.9 1.1 1.4 1.1 0.9

32 10972.8 8.3 1.6 2.5 1.4 1.4

(b) Set Size=10000
Exponent Range κ Reduction Ckt. AEC AECSA EPRC80 EPRC128

32 10.2 10.6 2.8 2.8 2.7 2.7

32 95.8 10.3 3.2 3.2 3.2 3.2

32 801.2 11.7 2.5 3.0 2.3 2.2

32 1603.5 12.5 3.9 4.1 3.0 2.8

32 6002.7 13.2 3.7 4.1 3.1 2.9

32 10998.5 14.1 4.0 4.0 3.2 3.2

are not prone to the effects of cancellation and large shift amount. These designs

offer significantly more accurate results.

Among AEC, AECSA, EPRC80 and EPRC128, AECSA produces most number of

erroneous bits. This can be attributed to the large difference between the input and

error term as the error compensation takes place in subsequent addition. EPRC80 and

EPRC128 enjoy the advantage of having large number of extra bits and less number

of bits are discarded during alignment operation. This also reduces the number of

times rounding is required. Thus these designs produce the best results.

6.2.3.2 Sparse Matrices

In order to test the correctness of AEC, AECSA, EPRC80 and EPRC128 with variable

length datasets and real scientific data, we simulated these designs for 10 different

sparse matrices. The sparsity of these matrices does not affect the overall functionality

of these designs. We calculate summation of each row for the sparse matrices. All

the designs operate as expected and produce correct results for the sparse matrices.
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In Table 6.8a, we report the properties of sparse matrices including dimensions,

average number of non-zero entries per row (NZ). We present the condition number

(for rows), κ, the average number of incorrect bits for reduction circuit, AEC, AECSA,

EPRC80 and EPRC128 in Table 6.8b. On the basis of results for the sparse matrices,

we can draw similar observations as drawn for randomly generated datasets. It can

be seen that the relative error of the reduction circuit, AEC and AECSA, the error is

high for matrices with large condition number of the rows. EPRC80 and EPRC128

provide more accurate results as compared to the other designs. If we compare the

designs based on compensated summation, the results from AEC have lesser error

than those from AECSA.

As such, the difference between the relative errors from the reduction circuit and

the new designs is more than 50%. For the reduction circuit, the error increases with

increasing condition number in all but one case. The anomaly can be attributed to

the exponent difference.
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Table 6.8: Relative Errors for Sparse Matrices

(a) Properties of Sparse Matrices
Matrix Dimension NZ NZ/Row

psmigr_3 3140x3140 543162 172.9

cari 400x1200 152800 382.0

qc2534 2534x2534 463360 182.9

rat 3136x9408 268908 85.7

conf5.0-00l4x4-2200 3072x3072 119808 39.0

raefsky1 3242x3242 294276 90.8

heart 2339x2339 682797 291.9

qc354 324x324 26730 82.5

fidap 441x441 26831 60.8

fp 7548x7548 848553 112.4

(b) Number of Incorrect Bits for Sparse Matrices
Matrix κ Exponent

Range
Reduction
Ckt.

AEC AECSA EPRC80 EPRC128

psmigr_3 1 19 1.5 0.1 0.1 0 0

cari 1.4 14 1.3 0 0 0 0

qc2534 2.5 24 1.6 0.1 0.2 0.1 0.1

rat 3.5 12 1.7 0.3 0.5 0.2 0.2

conf5.0-
00l4x4-2200

2.10E+01 17 2.8 1.1 1.3 0.9 0.7

raefsky1 2.20E+02 72 4.9 1.9 2.4 1.7 1.4

heart2 1.30E+03 36 9.4 2.3 2.9 2 1.9

qc354 2.50E+04 20 12.7 3.2 4.1 2.5 2.3

fidap002 2.80E+16 75 15.1 5.9 6.3 3.7 3.5

fp 3.50E+16 57 14.5 5.8 6.3 3.7 3.6
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

The goal of this research was to study methods for improving the accuracy of summa-

tion and implement such methods for streaming set-wise floating point summation on

FPGAs. To the best of our knowledge, this is the first effort to implement the com-

pensated summation methods for set-wise floating point summation on FPGAs. In

this dissertation, we studied methods to improve the accuracy of floating point sum-

mation. We presented a novel reduction circuit which is designed around a deeply

pipelined floating point adder and dynamically accumulates the set-wise data. We

implemented the designs for improving the accuracy of summation using the reduc-

tion circuit as the basic framework. We presented a custom floating point adder

which along with the sum also output the floating point error. We use this adder

in the two designs based on compensated summation namely AEC and AECSA in

order to reduce the overall latency. We use different approaches in AEC and AECSA.

We also presented two designs namely EPRC80 and EPRC128 where we use wider

adder to perform all the intermediate additions in extended precision floating point

format. We compared these designs with the original reduction circuit and found that

these designs achieve significantly more accurate results at the expense of increased

resource requirement. Barring AECSA, rest of the designs operate at a frequency

which is comparable to the original reduction circuit. This demonstrates that better

accuracy in floating point summation can be achieved without sacrificing the overall
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performance.

Our experiments show that the condition number has significant impact on the

relative error. The difference between the error for the designs with accuracy improv-

ing techniques and the reduction circuit is significant. Although AEC and AECSA

are prone to the cancellation during summation, the effect is marginal when compared

to the reduction circuit. EPRC80 and EPRC128 are less prone to this effect. This

shows the effect of condition number on the error in floating point summation. Also,

the error can be reduced using the compensated summation and extended precision.

The compensated summation methods are prone to the cancellation during float-

ing point addition in such cases. AEC, which provides more accurate results with

less relative error than AECSA, is also a viable option as the operating frequency is

only slightly less than the original reduction circuit.

Our designs in which we used techniques to improve accuracy not only have sig-

nificantly less relative error but also produce high number of exact results i.e. the

number of erroneous bit is zero. We expected EPRC128 to give 100% exact results

in all the test cases for both the sparse matrices and randomly generated datasets.

This can be attributed to the presence of partial sums with opposite signs and the

rounding which takes place when converting back to double precision format. This

effect is not evident for randomly generated datasets.

Table 7.1 summarizes the designs implemented for improving accuracy and com-

pares them with the reduction circuit. EPRC128 provides the best results amongst

all the designs for all the test cases but requires almost three times the resources.

Amongst the designs based on compensated summation, AEC performs better than

AECSA contrary to the initial prediction. This is because the magnitude of error for

compensation is very small in many cases and it remains unaccounted for. Also, the

error compensation does not take place in every reduction as explained earlier. In

such cases, the error is accumulated but partially accumulated errors have not proven
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Table 7.1: Comparison of Designs

Design Resources Operating
Frequency

Accuracy

AEC Almost 3 times than
that for reduction
circuit

Slightly
less

Relative errors are significantly
less.

AECSA Almost 4 times than
that for reduction
circuit

Significantly
less

Errors comparable to AEC.

EPRC80 Almost 1.5 times
than that for reduc-
tion circuit

Slightly
less

Control logic is the same as origi-
nal reduction circuit. Results are
better than AEC and AECSA.

EPRC128 Almost 3 times than
that for reduction
circuit

Slightly
less

Control logic is the same. Re-
sults are better than AEC,
AECSA and EPRC80.

to be as effective as compensation in subsequent addition for AECSA.

Our experiments suggest that all the designs implemented achieve significantly

better results than those from the reduction circuit. But for datasets having very

large condition number, designs with extended precision– EPRC80 and EPRC128–

perform better than the designs with compensated summation methods. It can be

used in applications where it is not feasible to use extended precision floating point

adder.

7.2 Future Work

In this dissertation, we considered two compensated summation methods for imple-

mentation on FPGAs. We realize there is a room for improvement. In the future,

we would explore other compensated summation methods which are less prone to the

effects of cancellation. The basic concern with compensated summation methods is

the number of floating point operations and the overall latency of the network. Due

to the increased latency, the control logic for error compensation becomes complex

as seen in AECSA. We would target reducing the latency of the floating point adder

without affecting its performance. Also, we plan to integrate these designs in the
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system for sparse matrix vector multiplication.
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