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Abstract

High-throughput proteomics analysis involves the rapid identification and char-

acterization of large sets of proteins in complex biological samples. Tandem mass

spectrometry (MS/MS) has become the leading approach for the experimental iden-

tification of proteins. Accurate analysis of the data produced is a computationally

challenging process that relies on a complex understanding of molecular dynamics,

signal processing, and pattern classification. In this work we address these model-

ing and classification problems, and introduce an additional data-driven evolutionary

information source into the analysis pipeline.

The particular problem being solved is peptide sequencing via MS/MS. The ob-

jective in solving this problem is to decipher the amino acid sequence of digested

proteins (peptides) from the MS/MS spectra produced in a typical experimental pro-

tocol. Our approach sequences peptides using only the information contained in the

experimental spectrum (de novo) and distributions of amino acid usage learned from

large sets of protein sequence data. In this dissertation we pursue three main objec-

tives: an ion classifier based on a neural network which selects informative ions from

the spectrum, a peptide sequencer which uses dynamic programming and a scoring

function to generate candidate peptide sequences, and a candidate peptide scoring

function. Candidate peptide sequences are generated via a dynamic programming

graph algorithm, and then scored using a combination of the neural network score,

the amino acid usage score, and an edge frequency score. In addition to a complete

de novo peptide sequencer, we also examine the use of amino acid usage models

independently for reranking candidate peptides.
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Chapter 1

Proteomics and Tandem Mass Spectrometry

1.1 Introduction

Proteins are the building blocks of the machinery of life. They are the principal

components of the protoplasm of all cells, and the principal components of the phys-

iological metabolic pathways of all cells. All proteins are built from chain-like poly-

mers whose subunits are the twenty amino acids. The amino acids can be connected

together in any order to form an infinite variety of proteins, or one of millions of

known proteins with a bewildering array of complex structure and function. The

backbone of a protein is a chain of carbon and nitrogen atoms having the pattern

N C C N C C N C C with the N C C subunit common to all amino acids. The

uniqueness of each amino acid is due to differences in the side chain that is attached

to the N C C group. The structure, chemical reactivity, and function of a protein is

determined by its folded three-dimensional structure, which is uniquely determined

by the sequence of amino acids.

Proteomics is the large-scale characterization and identification of proteins, in

particular their sequence, structure, and function. Unlike Genomics, where an organ-

ism’s genome is relatively constant, the proteome varies depending on cell type and

the physiological state of the cell. Through genetic variations, alternatively spliced

RNA transcripts, and posttranslational modifications, a single gene can code for many

different molecular forms of a protein (called proteoforms). Thus, the proteome is

defined as the proteins present in a tissue sample, organism, or cell culture at a par-
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Figure 1.1: Mycoplasma mycoides and its molecular machinery. Illustration by David
S. Goodsell, 2011, The Scripps Research Institute.

ticular point in time. Genomics begins with the gene and makes predictions about

its protein products, whereas proteomics begins with the in vitro protein and works

back to the gene or organism responsible for its production. While proteomics is

complementary to genomics, it is far more complex.

Mass spectrometry (MS) technology allows proteins to be analyzed rapidly and

with high sensitivity at a relatively low cost, and serves as the experimental founda-

tion of the study of proteins. In what is generally known as “bottom-up” proteomics,
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proteins are enzymatically digested into smaller peptides using a protease such as

trypsin. These peptides are then introduced into the mass spectrometer and iden-

tified by peptide mass fingerprinting or tandem mass spectrometry. Due to its

success in the postgenomic era, tandem mass spectrometry (MS/MS) has become

the established approach for the identification and characterization of protein pri-

mary sequence. High accuracy is generally achieved by comparing the proteolytic

peptide’s MS/MS spectra with theoretical spectra based on genomic predictions of

proteins from a sequence database, or by comparing the MS/MS spectra to spectra

in an annotated peptide spectral library. However there are significant drawbacks

to this “database” approach. This approach only works when the peptide is present

in a sequence database, i.e., the genome of the organism that produced the protein,

or a close homologue, has been published. If the organism is novel and there are

no homologous proteins having the exact amino acid sequence of the peptide as a

substring, then the database approach is unlikely to produce correct or reliable re-

sults. Even if the gene that produced the protein is present in a sequence database,

the database approach may fail due to modifications of the primary sequence that

cannot be predicted from the gene sequence. Not only does translation from mRNA

potentially cause differences, but many proteins are also subjected to chemical mod-

ifications after translation, which are critical to the protein’s function. In the event

of post translational modifications (PTMs) the database approach is again unlikely

to produce correct results.

The focus of this dissertation is de novo peptide sequencing, which attempts to

solve the above problems by sequencing the peptide using the MS/MS spectrum alone.

De novo approaches suffer from their own problems that will be discussed in more

depth in the following chapters. While protein identification via MS/MS has yielded a

diverse set of experimental methods over the years, analyzing the data remains a weak

point in the process. Noisy data and inadequate modeling of molecular dynamics
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create computational challenges that limit the accuracy of peptide sequencing via

MS/MS. Physicochemical and structural properties of proteins and peptides combined

with MS experimental conditions can yield unpredictable outcomes. The inability to

control or understand these cumulative effects makes peptide sequencing an inherently

difficult problem. In this dissertation I will describe several novel approaches and

algorithms to de novo peptide sequencing.

Our novel contribution to the field of computational mass spectrometry is a soft-

ware package called QuasiNovo, which is summarized as follows. First, an ion classi-

fier selects informative peaks from the MS/MS spectrum. Our approach uses a staged

neural network to model ion fragmentation patterns and estimate the posterior proba-

bility of each ion type. This work yielded two conference publications[6, 7] and a jour-

nal manuscript that is currently under peer review. Second, a novel scoring technique

is used for reranking candidate peptides produced by a modified standard dynamic

programming approach. The scoring function integrates the fragmentation model, an

amino acid usage model (making this approach a quasi de novo sequencing algorithm),

a novel edge-frequency score, and a pair-wise cleavage frequency score. Preliminary

results for reranking candidate peptides based on amino acid usage yielded a single

conference paper.[36]

1.2 Overview of Dissertation

The Dissertation is arranged as follows. Chapter 2 introduces MS/MS, the typical

experimental protocol, and the data generation process, specifically peptide fragmen-

tation via collision induced dissociation. Understanding peptide fragmentation is key

to developing an ion classifier. We will then outline existing approaches to peptide

sequencing.

The peptide sequencing problem is to derive the correct sequence of amino acids

for peptide given its MS/MS spectrum. De novo peptide sequencing follows a general

4



formulation: A peptide is fragmented in a mass spectrometer producing a mass spec-

trum. From this experimental spectrum peaks that likely correspond to b-/y-ions are

selected. Chapter 3 describes our novel ion classification (peak selection) approach.

These peaks are then used to generate candidate peptides (peptides that may have

generated the experimental spectrum). Finally, the candidate peptides are scored

and the best candidate is selected as the best peptide-spectrum match. Chapter 4

describes the procedure for creating a spectrum graph, which is used to generate

candidate peptides. Chapter 5 introduces a novel candidate peptide scoring function

that is used to select the most likely candidate peptide that generated the spectrum.

Chapter 6 explores amino acid usage models and their use in reranking sets of can-

didate peptides produced by arbitrary means. Chapter 7 concludes the dissertation

and discusses future work.
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Chapter 2

Background

2.1 MS/MS Experimental Protocol

A mixture of proteins is digested into peptides by enzymes. Peptides of interest are

then separated through various wet lab methods, and then analyzed via tandem mass

spectrometry. The MS/MS experiment consists of two sequential MS runs (Figure

2.1). The objective of the first run (MS) is to isolate peptides by their mass and

charge. The objective of the second run (MS/MS) is to analyze a peptide of interest.

In the first MS step the mass spectrometer ionizes the peptides and measures their

mass/charge (m/z) ratios yielding a mass spectrum. The x-axis corresponds to the

m/z ratio and the y-axis corresponds to the relative abundance of the ion. In the

second MS/MS run, a peptide (precursor ion) from the MS spectrum is selected

for analysis. Peptides with the m/z ratio corresponding to the selected peak are

then fragmented by either collision induced dissociation (CID) or electron transfer

dissociation (ETD), producing the MS/MS spectrum containing the product ions.

Analysis of the spectrum can often yield the sequence of the peptide that generated

the MS/MS spectrum.

The MS/MS spectrum of a peptide is determined by its sequence, its charge, and

its energy. The goal of peptide sequencing via MS/MS is to determine the peptide

that most likely produced the experimental spectrum.

6



Figure 2.1: MS and MS/MS spectra. A peak from the MS spectrum (left) is selected
for fragmentation, producing the MS/MS spectrum (right).

CID MS/MS Spectra

In CID a large number of peptides are ionized and fragmented. A peptide bond at

a random position is broken (cleaved) and each peptide is fragmented into two com-

plementary product ions: an N-terminal b-ion and a C-terminal y-ion. The pairwise

cleavage frequency between amino acids can vary depending on the N-terminal and

C-terminal amino acids, and peptide composition. Figures A.1,A.2,A.3, and A.4 show

the pairwise cleavage frequency for several motifs, which vary by peptide composition.

Numerous other types of ions are also produced during fragmentation (Figure

2.2). Detailed descriptions of peptide fragmentation can be found in the literature

[20, 21, 40, 45, 31, 23].
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The relative abundances of different ion types in MS/MS spectra depend on many

factors, including instrumentation, peptide structure, and collision energy. Lower-

energy CID tends to produce b-/y-ions, internal ions, and immonium ions, while

higher-energy CID tends to produce these and the additional additional c, d, v, w, x,

and z ion types. [45]

Variability in MS/MS spectra

Fragmentation characteristics are often highly instrument dependant. Different in-

struments can have different m/z ranges for ion detection. Ion abundance can vary

due to ion ion counting or shot noise, and is more pronounced for low intensity peaks

resulting in low signal-to-noise. These peaks can disappear unpredictably when they

fall below a certain detection threshold. Impurities in the precursor ion can occur

when multiple precursor ions fall within the instrument’s precursor ionm/z tolerance.

This results in unexplained peaks in a spectrum. Due to the variability in MS/MS

spectra any machine learning attempts to classify b-/y-ions based on fragmentation

characteristics will need to be trained on data similar to the instrument used for

testing.

The peptide sequence itself can also result in variability in the spectrum, e.g.,

different reaction pathways, different protonation motifs, and energy dependent rate

constants [45]. Sequence sources of variability can also be modeled through machine

learning but the high dimensionality of the problem causes approaches to suffer from

high complexity and overfitting issues.

2.2 Peptide Sequencing Approaches

There are three general approaches to solving the peptide sequencing problem via

MS/MS. Database methods, de novo sequencing, and tagging/hybrid approaches.

These approaches are briefly outlined below.
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Database Methods

Database methods are the most commonly used in industry and academia. These

methods work by treating the experimental spectrum as a fingerprint and comparing

it with theoretical spectra predicted for peptides present in a database. A database

comparison attempts to find the theoretical spectrum in the database that most

closely resembles the experimental spectrum. The resemblance measure is typically

a cross correlation function or some other alignment score. The peptide sequence

having the theoretical spectrum with the highest match score is considered to be

the most likely candidate peptide to have produced the experimental spectrum. SE-

QUEST [11] and Mascot [33] are two established database search algorithms. These

databases are generated by taking sequenced genomes, predicting expressed proteins

from coding genes, simulating digestion of the protein, and computing the theoretical

mass spectrum that would result from the fragmentation of the resulting peptide.

Despite the maturity of database methods they can only be effective when a

peptide of interest was produced by an organism whose genome has been sequenced

and is available in a database. This is especially problematic in the case of microbial

samples. It has been estimated that only 1%-10% of microbes in the environment

can be cultured, and thus their genomes have not been sequenced. There are also

countless other microbes that have yet to be identified and it would likewise be

difficult to analyze their novel peptides via MS/MS database methods. Even when

a microbial genome has been sequenced it is possible that a peptide will exhibit

post translational modifications. These modifications cannot be predicted from the

genome and can complicate comparisons between the experimental spectrum and the

theoretical spectrum.

9



De Novo Sequencing Overview

De novo peptide sequencing algorithms attempt to reconstruct the sequence using

only the information contained in the experimental spectrum, without the aid of a

database of theoretical spectra for comparison. De novo algorithms search the space

of all possible peptides that are consistent with peaks in the experimental spectrum

to find the peptide sequence that scores best. Modern approaches to solving this

problem map the peaks in the spectrum to a secondary data structure that is then

analyzed using dynamic programming. The two predominant structures used are

the mass array [26, 29] and the spectrum graph [9, 4, 25, 16, 12]. The spectrum

graph is the key computational technique behind de novo peptide sequencing[17]. In

the spectrum graph approach the vertices in the graph correspond to peaks, edges

correspond to mass differences consistent with the mass of an amino acid, and paths

through the graph correspond to peptide sequences.

Since de novo algorithms do not rely on information in a database they are the only

way to sequence the peptides of novel organisms, or the peptides of known organisms

that have undergone modification. However, state of the art de novo algorithms still

suffer from low accuracy when sequencing from low resolution instruments. In this

dissertation we will describe several algorithmic approaches that increase the accuracy

of de novo peptide sequencing.

Hybrid approaches

Frequently the peptide that produced a given MS/MS spectrum is not present in

a protein sequence database. This occurs when the expressed proteins differ from

proteins predicted from an organism’s genome due to post-translational modifica-

tions, or when an organism’s genome has not been sequenced. Despite the relatively

low accuracy of state of the art de novo algorithms, they can be combined with

database approaches to improve protein identification/sequencing results. To ac-

10



complish this, de novo algorithms predict short sequence tags that are used to filter

a protein database[28, 41, 18, 3], perform homology based error-tolerant database

searches[19, 37], validate database search results[44], construct spectral networks[2],

or perform shotgun protein sequencing[1]. Tagging has been shown to speed up

database searches by two orders of magnitude compared to conventional methods[14].

Homology based error-tolerant database approaches such as Spider[19] take advan-

tage of the fact that de novo sequencing errors have different probabilities compared

to evolutionary mutation probabilities, by aligning individual de novo sequences to a

database and treating unaligned portions as either de novo sequencing errors, muta-

tions, or post-translational modifications.

2.3 Sequencing Errors

Homeometric peptides, peptides with differing sequence but similar MS/MS spectra,

are a prominent source of sequencing errors in low precision MS/MS. There is a 30%

chance that an arbitrary peptide of length 10 will have at least one homeometric

peptide[17]. Homeometric peptides can occur if we switch two sequential residues in

a candidate peptide sequence, or if we switch between prefix and suffix vertices in the

spectrum graph. This problem is generally solved with higher precision instruments,

however no solution exists for low precision MS/MS. Another common source of se-

quencing errors is due to isobaric amino acids, where two or more amino acids have

similar or identical mass. The amino acids Leucine (L) and Isoleucine (I) have the

same mass (113.08Da), and the amino acids Lysine (K) (128.095Da) and Glutamine

(Q) (128.059Da) have similar mass, differing by only 0.036Da. K and Q are indis-

tinguishable in low precision MS/MS, and I and L are indistinguishable regardless of

precision.

In chapter 4 we discuss a solution to these sequencing errors that uses amino acid

usage–among other features–to rerank candidate peptides. In this reranking schema
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we leverage the existence of homologous sequences to give preference to one peptide

spectrum match over another, where the peptides may be homeometric, or contain

isobaric amino acids.
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Chapter 3

Peak Selection

3.1 Peptide fragmentation

Let Σ be the alphabet of 20 amino acids. A peptide P consists of a sequence of

amino acids (residues), P = a1a2 · · · an, where ai ∈ Σ. When an amino acid is

chained together with others as part of a (poly)peptide it is referred to as a residue.

Note that in what follows the terms residue and amino acid are considered equivalent.

The mass of an atom or molecule is represented by ‖ · ‖, e.g., the mass of an amino

acid is defined as ‖ai‖. The parent (or precursor) ion mass reported by the mass

spectrometer for peptide P is denoted pI, and it’s mass ‖pI‖ is defined as

‖pI‖ = ‖H‖+ ‖P‖+ ‖H‖+ ‖OH‖

where ‖P‖ =
n∑

i=1
‖ai‖. The first Hydrogen is attached to the N-terminal end of the

peptide, the second Hydrogen is the proton from CID, and the Hydroxyl (OH) is

attached to the C-terminal end of the peptide. The total residue mass can then be

calculated by subtracting the mass of a three Hydrogens and an Oxygen (19.023Da)

from the parent ion.

‖P‖ = ‖pI‖ − 19.023

Any errors in the reported parent ion mass can easily be corrected with available soft-

ware, and publicly available datasets typically have already run a correction algorithm

and report the correct mass.

When P is fragmented by MS/MS each prefix and suffix of the peptide will produce

several of the fragment ion types mentioned previously. Since we are focusing on
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Figure 3.1: Breakdown of peptide mass components.

CID spectra we expect b-/y-ions to be the most abundant in the spectrum. These

prefix and suffix ions in an ideally fragmented peptide will form two ladders. In

the case of b-ions, the ladder refers to the peaks corresponding to the prefix ions

observed sequentially in the spectrum (b1-ion, b2-ion, . . . , bn-ion) with each prefix

offset from the previous by the mass of an amino acid. Likewise, for the y-ion ladder

we expect to see suffix ions sequentially in the spectrum (y1-ion, y2-ion, . . . , yn-

ion). These prefix and suffix ions are complementary such that the prefix bi-ion and

the yn−i ions are complements and represent a cleavage between ai and ai+1 in the

peptide (Figure 3.1). We can use this knowledge to derive the peptide sequence. By

concatenating the amino acids corresponding to the sequential mass differences in

the b-ion ladder we construct the peptide sequence. Likewise, by concatenating the

amino acids corresponding to the sequential mass differences in the y-ion ladder we

construct the reverse peptide sequence.

Due to the nature of peptide fragmentation, the de novo peptide sequencing prob-

lem is that of identifying the subset of peaks in the spectrum that correspond to

the b-/y-ion ladder, then computing the peptides that are most consistent with the

ion ladder, and finally selecting the peptide that best “explains” the experimental
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spectrum. These three steps roughly correspond to the three main divisions in the

QuasiNovo algorithm, i.e., peak selection, candidate generation, and candidate scor-

ing.

Peak Selection An ideal tandem mass spectrum would be free of noise and contain

all possible prefix (N-terminal b-ion) and suffix (C-terminal y-ion) fragments, and only

these fragments. In reality, mass spectra are far from ideal and contain a complex

mixture of fragments and uninterpretable ‘noise’ peaks. Ions often produce two or

three mass peaks due to isotopic carbon atoms contained in the ion. An ion may also

produce peaks corresponding to neutral losses such as water or ammonia. Different

ion types such as a-, c-, x-, or z-ions may be produced if the breakage doesn’t occur

at the amide bond. Internal fragments, which occur when an ion undergoes a second

or third fragmentation, may also be present in the spectrum.

Since we prefer to sequence the peptide using a b-/y-ion ladder the spectrum is fil-

tered to select the ‘signal’ peaks that likely correspond to b-/y-ions. A careful balance

must be maintained between the precision and recall of peaks that are selected for

further processing and candidate peptide generation. If too many peaks are selected

the search space will be too large and the problem becomes intractable. If too few

peaks are selected cleavage sites will be missed, the resulting candidate peptides will

have large gaps, and sequencing results will be poor. For this reason pre-filtering of

MS/MS spectra and accurate selection of peaks for peptide candidate generation is

essential to any de novo peptide sequencing algorithm.

Peak selection is an important preprocessing step in de novo sequencing. As a

practical matter, it is important that the number of peaks be reduced so that the

candidate peptide search space is constrained. A reduction in the number of peaks

used to create the spectrum graph makes it possible to process spectra faster. It also

makes it possible to process longer peptides than would otherwise be impractical.
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Quality of search space is as important as reduction of search space. It is critical that

those peaks corresponding to b-/y-ions be identified so that the resulting candidate

search space contains the correct peptide. The results presented below demonstrate

that a staged neural network approach results in fewer peaks being selected. The

resulting search space is smaller.

The general approach used by other prominent de novo peptide sequencing algo-

rithms depends primarily on relative peak intensity. PepNovo+ uses a sliding window

of width 56 across the spectrum and keeps any peaks that are in the top 3 when ranked

by intensity[16]. ms2preproc uses the same sliding window approach, in addition to

other intensity based methods.[35] MSNovo selects peaks by using a sliding window

of width 100 and selects the top 6 peaks from each window[29]. PILOT keeps only

the top 125 peaks of highest intensity in the spectrum[10]. pNovo selects the top 100

peaks by intensity[5].

In our experiments we found that selecting peaks based on relative intensity alone

could miss a nontrivial portion of b-/y-ions. If the complex dynamics of peptide

fragmentation–including relative peak intensity–can be modeled and incorporated

into a predictive ion-type classifier, then the accuracy of peak selection will be supe-

rior to the accuracy of a peak classifier that uses peak intensity alone. We demon-

strate that this superior approach can be implemented via a staged probabilistic

neural network. A neural network approach was used because it allows us to con-

struct a predictive model that does not require the complete understanding of the

complex dynamics of peptide fragmentation. The Staged Neural Network (SNN) ion

classifier described below selects peaks with higher precision and recall than other

preprocessing and de novo peptides sequencing algorithms.

Increasing recall leads to better candidates in the candidate peptide search space.

If recall is held fixed and the precision is increased, then the result will be a signifi-

cantly smaller candidate peptide search space, without sacrificing the best candidate
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contained in the search space. Given the computational limits that all de novo algo-

rithms face, low precision can render any de novo algorithm computationally imprac-

tical. Low recall will result in missing peaks, which in turn will result in large gaps

in the spectrum graph. This in turn leads to an exploding combinatorial search as

permutations of residues consistent with these large gaps must be considered. It is

clear that a careful balance of improved precision and recall is important for peptide

candidate generation.

3.2 Methods

Two datasets were used in this study. The datasets were limited to doubly charged

peptides since this charge state is most common in MS/MS experiments. The first

dataset (NIJ) is a comprehensive full factorial LC-MS/MS benchmark dataset[43]

from the Nijmegen Proteomics Facility of Radbound University. NIJ consists of 59

LC-MS/MS analyses, in Mascot generic peak list format, of 50 protein samples ex-

tracted individually from Escherichia coli K12, yielding a total of 482 604 spectra. We

then filtered the dataset for peptides of length 8 to 20. NIJ consists of 59 separate

analyses (DNIJ = ∪59
i=1Di). The scans in each analysis set Di were randomly divided

into a training set (DT
i ) and an evaluation set (DE

i ). Each DT
i was trained separately,

and each DE
i was classified using the classifier yielded by DT

i . The classified scans in

each DE
i were then combined (DE

NIJ = ∪59
i=1D

E
i ) for calculating statistics. The same

scans in DE
NIJ were used to compute statistics for PepNovo+, pNovo, and ms2preproc.

The results of this comparison are presented in Figure 3.5.

The second dataset (PNL) came from Pacific Northwest National Laboratory.

PNL consists of 8 610 mass spectra from Salmonella Typhimurium,1. The dataset

was filtered for peptides 8 to 24, and then randomly divided in half for 2-fold cross

validation (DPNL = D1 ∪ D2). First, D1 was used for training (DT ← D1) and

1http://omics.pnl.gov/view/dataset_80292.html
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Figure 3.2: Distribution of peak intensity by ion type.

D2 for classification/evaluation (DE ← D2), and then the reverse (DT ← D2 and

DE ← D1). The results from each fold were averaged and are presented in Figure

3.6.

For each spectrum in the training dataset we first removed peaks with intensity

below an experimentally derived threshold, in this case 50, which dramatically sped

up the training of the neural network without sacrificing performance or accuracy.

Figure 3.2 shows the effect of this threshold. By removing all peaks with an intensity

below 50 (3.9 on the log scale), we remove half of the noise, but only a small percentage

of b-/y-ions.

Before the neural network can be trained DT
i must be transformed. Each peak

in DT
i is assigned its correct class label (target vector), either b-ion, y-ion, or u-ion

(unknown ion), each of which is a binary vector of length three. A virtual spectrum is

constructed based on known CID fragmentation [20, 45] of doubly charged peptides,

giving the expected b-/y-ion masses for the peptide. A peak within 0.2 Da of the

expected mass for a b-/y-ion is labeled accordingly and assumed to be ground truth.
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Algorithm 1 Staged Neural Network Training and Classification
net1 ← train(DTB , DTV )
DT ← classify(DT , net1) {peaks in DT now have b-/y-/u-ion probability esti-
mates}
net2 ← train(DTB , DTV )
DE ← classify(DE, net1)
DE ← classify(DE, net2)

For each peak in Di a feature vector (pattern) is generated that will later be presented

to the input layer of the neural network for training and classification. The features

used are described in Table 3.1 and the following section. DT
i is randomly divided

again such that 95% of the spectra were used for backpropagation (DTB
i ) and 5% of

the spectra for validation (stopping criteria) (DTV
i ). DTB

i is then filtered so that there

are an equal number of b, y, and u ions.

The training process of the neural network requires the use of an objective error

function. In our implementation the output (o) of the neural network represents an

estimate of the posterior probability that the input pattern belongs to the respective

class in the target vector (t). When interpreting the outputs as probabilities it is

appropriate to use the cross entropy error function[38].

network error = −
2∑

i=0
[tiln(oi) + (1− ti)ln(1− oi)]

The neural network is trained on all of the patterns in the backpropagation train-

ing set numerous times (epochs) until the network performance no longer improves.

This is determined by classifying the patterns in DTV after each epoch until the error

on DTV begins to increase, at which point the training terminates.

In our classifier, two neural networks are used in succession for peak classification.

We refer to this architecture as a staged neural network. Each network is trained in

the manner described above except for differences in the feature vector used. The

structure of each neural network consists of an input layer with as many nodes as

features in the pattern, a single hidden layer with twice as many nodes as the input
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layer, and an output layer with three nodes corresponding to the three possible classes.

A general formulation for training the neural networks is given in Algorithm 1. In the

first neural network, net1, the peak features are computed from data in the spectrum

alone as described below and in Table 3.1. In the second neural network, net2, the

outputs from net1 are leveraged as additional features in net2. This is described

in Table 3.1. In the net2 input pattern, the complement ion feature is modified by

replacing the feature value of the complementary peak with the maximum of the

b-/y-ion probability estimates in the output from net1 for the complementary peak.

In the net2 input pattern there are two additional features corresponding to flanking

residues on the N and C terminal sides of the current peak. We use “current peak”

to denote the peak for which the feature vector is being computed. The N-terminal

flanking residue feature is computed by taking the maximum b-/y-ion probability (as

estimated by net1) of any peak with a mass offset from the current peak equivalent

to the mass of an amino acid. The C-terminal flanking residue feature is computed

similarly. The reasoning for these ‘leveraged’ features is that if the current peak has

a complement or flanking peak with a high probability of being a b−/y−ion, then the

current peak has increased probability of being a b−/y−ion itself. Our experiments

show that leveraging the output from net1 to train a second neural network in this

way yields a higher recall than does classification with net1 alone.

3.3 Description of features

The features listed in Table 3.1 capture known fragmentation characteristics and

correlations between b-/y-ion peaks and other mass peaks produced by CID peptide

fragmentation. In the following exposition, let pI denote the parent ion mass, and

let I = 〈I0, I1, . . . Ik〉 be the MS/MS spectrum. For ion Ii in the spectrum, the m/z

value is denoted xi, and the intensity (or abundance) is denoted yi.

The intensity feature (Fintensity) is the normalized and discretized relative peak
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Figure 3.3: Topology of net1

Table 3.1: Pattern features: N denotes a normalized value, D denotes a discretized
value, B denotes a binary value, H denotes a histogram value, N denotes value
sampled from the normal distribution, and P denotes a probability estimate. Each
peak in the spectrum is classified by both neural networks in successive passes over
the spectrum. net2 features depend on the classification results of net1.

net1 pattern features net2 pattern features
feature value feature value
intensity N, D intensity N, D
strong peak B strong peak B
local intensity rank N local intensity rank N
global intensity rank N global intensity rank N
relative cleavage position N, D relative cleavage position N, D
principal isotope H principal isotope H
isotopologue B isotopologue B
complement N complement Pnet1

H2O neutral loss N, D H2O neutral loss N, D
NH3 neutral loss N, D NH3 neutral loss N, D
H2O-H2O neutral loss N, D H2O-H2O neutral loss N, D
H2O-NH3 neutral loss N, D H2O-NH3 neutral loss N, D
CO neutral loss (a-ion) N, D CO neutral loss (a-ion) N, D

N-term flanking ion Pnet1

C-term flanking ion Pnet1
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intensity of the current peak Ii, the peak for which a feature vector is being created.

Normalized intensities are computed by dividing each peak intensity by the maxi-

mum peak intensity in the spectrum. Given n discrete intensity bins, the normalized

discretized feature is defined as

Fintensity(Ii) = bn (yi/ymax)c /n

where the ymax is the most intense peak in the spectrum, and yi/ymax is the normalized

intensity for Ii.

The strong peak feature is a binary value that indicates whether or not the current

peak was selected as a ‘strong peak’ using a sliding window method; in this case the

top three peaks by intensity were selected in a sliding window of width 56 Da.

The local and global intensity ranks give the normalized rank by intensity of the

current peak within a local window, or globally. These first four peak intensity based

features are informative due to the fact that b-/y-ions tend to be of higher abundance

than other ion types in CID spectra.

The relative cleavage position is a categorical set of features defined as Fposition(Ii).

These categories reflect equally sized regions of the spectrum based on the mass of

the current peak relative to the parent ion mass (pI). For example, if we assume

the number of regions n = 5, the lowest mass peak in the spectrum would have

the feature value Fposition(I0) = 〈1, 0, 0, 0, 0〉, and the highest mass peak would have

the value Fposition(Ik) = 〈0, 0, 0, 0, 1〉. These features capture the variation in peak

intensity across the mass range of the instrument. Typically, peaks tend to be more

intense near the center of the peptide and less intense or missing near the terminal

ends. Fragmentation characteristics can also vary based on the relative cleavage

position. The input layer of the neural network has a node corresponding to each of

the categorical features, c = 0, 1, . . . , n−1, which are assigned either 0 or 1 as follows:

Fposition(Ii)c =


1 if c

n
6 xi/pI <

c+1
n

0 otherwise
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Figure 3.4: (a) The experimental mass offset (δ′) and relative intensity (y′) for the first
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for the first isotopologue of an unknown ion (not b-/y-ion). (c) The log-odds ratio
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where xi is the mass of Ii, and pI is the mass of the parent ion.

When a cleavage occurs between two amino acids, there are several other peaks

that are observed with high frequency. These peaks correspond to isotopologues,

neutral losses, doubly charged ions, and complementary ions. The remaining features

use relative intensity and mass offsets to compute feature values. Given the current

peak Ii, an expected offset δ, and a mass tolerance ε; the offset peak Ij is the maximum

intensity peak in the range [xi + δ − ε, xi + δ + ε]. The experimental offset is then

defined as δ′ = xi − xj + δ. For a given offset peak Ij the relative intensity is defined

as y′j = yj/yi.

The principal isotope feature is taken from a two dimensional histogram that

models the relative intensity and mass offset of the first isotopologue. This histogram,

shown in Figure 3.4, was computed by summing the frequency of mass offset and

relative intensity within bins of size 0.05 and 0.1, respectively, for b-/y-ions in the

dataset. The presence of a lower intensity isotopologue at offset δ = 1 serves as

positive evidence that the current peak is a b-/y-ion. This can be demonstrated by

building a histogram for peaks that are labeled u-ions, and then computing the log-

odds ratio between these two distributions, as shown in Figure 3.4. The principal

isotope feature value is sampled from this histogram based on the δ′ and y′ values of
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a candidate isotopologue of Ii. The isotopologue feature indicates the current peak

is an isotopologue of the peak at offset -1Da. If the current peak has been labeled

as an isotopologue, then the isotopologue feature value will be 1, and 0 otherwise.

Adding this feature increases precision without affecting recall. This is due to the

observation that, if a peak’s isotopologue feature is 1, it will most likely be classified

as a u-ion by the neural network.

If the current peak is a b-ion then we will often see the complimentary y-ion peak,

and likewise for the converse. It is tempting to use a 2D histogram to model this

feature. However performance degrades if we consider relative intensity since we do

not want to penalize a candidate complementary peak for having a non-average rel-

ative intensity. The complement feature in the net1 pattern is taken from a normal

distribution centered at the offset where a complementary ion is expected to be if

the current peak is a b-/y-ion. By constructing a one dimensional histogram of the

complementary ion mass offset, it was observed that the offset frequency is approxi-

mately Gaussian and can be modeled as X ∼ N (0, 0.1), where the 0 mean is centered

around the expected complementary ion mass xj = pI − xi + 1. The feature value

is then defined as

Fcomplement(Ii) = X(δc)

where δc is the difference between the expected and the experimental complementary

ion mass. In the case of the net2 pattern the complement feature gives the maximum b-

/y-ion probability estimate using net1 of any peak found at the expected complement

mass offset.

The H2O, NH3, H2O-H2O, H2O-NH3, and CO neutral loss features are computed

by summing the relative intensity and the Gaussian estimate of the offset frequency, as

described above. For example, given the neutral loss peak Ij at the offset δ = −18.015,

the feature value is defined as

F−H2O(Ii) = y′j +X(δ′)
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The N-term and C-term flanking ion features are the maximum b-/y-ion probability

estimates using net1 for any peaks that are found at a mass offset from the current

peak corresponding to the mass of a single amino acid. If the current peak is indeed

a b-/y-ion then we expect it to be part of an ion ladder, and thus we expect to find

other peaks that are likely b-/y-ions at mass offsets equivalent to the mass of an

amino acid. This feature value is the flanking peak’s net1 probability estimate, not

the mass difference, and therefore does not capture any sequence information.

3.4 Experimental Results

Results comparing precision and recall are shown in Figures 3.5 and 3.6. We com-

pared the performance of the staged neural network (SNN) peak selection with two

other prominent de novo peptide sequencing algorithms. The window method selects

peaks by choosing the 3 most intense peaks in a window of width 56 Da. We used

ms2preproc to implement this method, which Frank describes in the original Pep-

Novo publication[16]. Peak selection in PepNovo+ was subsequently improved. As

shown in this figure, the actual performance of PepNovo+ is substantially better with

respect to recall than the window method. The actual performance of PepNovo+ was

determined by modifying the source code to output the peaks from the raw spectrum

that are used to construct the spectrum graph.

Note that the SNN precision is consistently greater than that of PepNovo+. The

number of peaks selected has a direct impact on the size of the search space. This

effect can be seen when the search space of candidate peptide sequences is generated

using the peaks selected by the two algorithms (Figure 3.7). We implemented a

basic dynamic programming approach as described in Lu and Chen [25] to generate

candidate peptides using the peaks selected by PepNovo+ and the SNN. Keep in mind

that programs such as PepNovo+ use much more sophisticated approaches to generate

candidates from the spectrum graph. This allows them to avoid an exhaustive search
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of the implicit search space. The size of the candidate peptide search space generated

by the de novo algorithm using PepNovo+’s peak selection is larger than the size of the

candidate peptide search space generated by the de novo algorithm using SNN peak

selection. The difference in the size of the candidate peptide search space is shown

in Figure 3.7 for peptides of length 8 to 12. The size of the candidate peptide search

space is exponentially proportional to the number of edges in the spectrum graph.

Consequently we use this as a measure of search space to extend our results to longer

peptides by comparing the number of edges in the spectrum graphs produced by each

peak selection algorithm (Figure 3.8) without having to exhaustively enumerate the

candidate peptides.

It should be noted that on balance the b-/y-ion recall of the SNN peak selection

is greater for all peptide lengths included in our experiments. Thus on balance we

can expect that the top scoring candidate peptides that would be generated by these

spectrum graphs will be of higher quality. When we compare the number of edges in

the spectrum graphs we find that the number of edges generated by PepNovo+’s peak

selection contain on average approximately 300 more edges than the corresponding

SNN spectrum graph. The difference in edges increases as peptide length increases

resulting in smaller search spaces for larger peptides that can often be too large to

explore.
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Chapter 4

Candidate Generation

In the candidate generation step the peaks selected using the methods described in

the previous chapter are used to generate a set of candidate peptides that could have

produced the spectrum, i.e., a set of candidate peptide-spectrum matches. This step

is the focus of most de novo peptide sequencing algorithms, while peak selection and

candidate scoring are generally considered to be preprocessing and postprocessing

steps, respectively. It is during candidate generation that the effects of inadequate

peak selection become problematic and the space and time complexity of the problem

becomes apparent.

The goal of a de novo peptide sequencing algorithm is to find the peptide that

most likely produced the experimental spectrum. A global approach to candidate

generation would be to construct the search space of all peptides that sum to the

total residue mass, and then to select the peptide that scores best when compared to

the experimental spectrum. However a search space constructed this way is extremely

large and impractical to enumerate. As a result, de novo algorithms must construct

a search space in a bottom-up local fashion. In our approach a spectrum graph [4]

is used to construct the search space. A spectrum graph is a directed acyclic graph.

Vertices in the graph represent prefix fragment masses situated along a number line.

Typically, additional vertices are generated to allow each peak to be interpreted as a

b-ion regardless of its actual ion type, and vertices are subsequently merged within

some mass tolerance. Edges connect vertices that have a mass difference equivalent to

the mass of an amino acid, and the edge is labeled with that amino acid. Edges may
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also connect vertices with mass differences corresponding to pairs of amino acids–in

the case of a missing-peak interpretation–or mass differences corresponding to post-

translationally modified amino acids. Thus, a de novo peptide sequencing algorithm

using the spectrum graph approach is a special case of graph search where the peptide

sequence is generated by finding the highest scoring antisymmetric path in the graph

and concatenating the edge labels along the path. Antisymmetric means that a given

peak can only be used once in a path as either a b-ion or y-ion interpretation of the

original peak, but not both.

4.1 The Spectrum Graph

The construction of a spectrum graph is based on the work of previous authors [9, 4,

25]. Given an unknown peptide P with total residue mass ‖P‖, and k fragment ions

I1, . . . , Ik with masses ‖I1‖, . . . , ‖Ik‖ we construct a spectrum graph GS = (VS, ES)

as follows. Let m = 2k + 1.

0

v0

‖P‖

vm

Figure 4.1: Spectrum graph initialization.

On a number line we create vertices v0 and vm representing zero mass and the total

residue mass (nominal precursor ion mass) ‖P‖ respectively. The total residue mass

is equivalent to the precursor ion mass minus the masses of water and a Hydrogen

atom.

For each fragment ion Ii we are unsure whether or not it is a b-ion or a y-ion so we

must interpret the ion as both ion types and create a pair of vertices. The objective

is to take each interpretation of each fragment ion and create a vertex corresponding

to the nominal b-ion on the number line. If a b-ion is missing but the complementary

y-ion is present in the spectrum we will generate the missing b-ion. This will allow us
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to sequence the peptide from the N-terminus to the C-terminus. If an ion is in fact

a b-ion, then we can compute the nominal b-ion mass (total residue mass of a prefix

ion) ‖Ii‖b by subtracting the mass of a Hydrogen.

‖Ii‖b = ‖Ii‖ − ‖H‖

If an ion is in fact a y-ion, then we can compute the nominal y-ion mass ‖Ii‖y by

subtracting the mass of two Hydrogen and one Hydroxyl.

‖Ii‖y = ‖Ii‖ − (‖H‖+ ‖OH‖+ ‖H‖)

v0 vi

‖Ii‖

vm−i vm

Figure 4.2: Dual interpretation of fragment ion.

This leads us to the following two interpretations of an unknown ion fragment

shown in Figure 4.2. (1) We interpret the ion as a b-ion by adding vertex vi to

the number line at mass ‖Ii‖b. (2) We interpret the ion as a y-ion and create the

complementary nominal b-ion by adding vertex vm−i to the number line at mass

‖P‖ − ‖Ii‖y. If Ii is indeed a b-/y-ion then only one of these interpretations can be

correct.

If a peak exists in the experimental spectrum for each ion type for a given frag-

mentation event, then the dual interpretation of the ion as described above will result

in two vertices for the two interpretations of the peak, and there will be two such

pairs–one pair corresponding to the actual b-ion and another pair corresponding to

the actual y-ion. In other words, if a peak for each expected ion type exists in the

experimental spectrum, then the dual interpretation of the peaks will result in four

vertices on the number line as two overlapping pairs of vertices. For example, the

peptide GEEK (Figure 4.3) fragments between the amino acids EE, resulting in a pair
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Figure 4.3: Example peptide showing b-/y-ions for each possible cleavage event.

of peeks at 187Da and 276Da, corresponding to b2-ion GE and y2-ion EK, respec-

tively. Since we do not know a priori which is a b-ion and which is a y-ion, we create

vertices for each interpretation. The peak at 187Da yields vertices at 186Da and

275Da, and the peak 276Da yields vertices at 275Da and 186Da. The two pairs of

overlapping vertices are then merged, and of the resulting two vertices only one of

them corresponds to a correct b-ion interpretation.

4.2 Vertex Scoring Function

The vertex scoring function for a given vertex is derived from its respective ion (I) in

the experimental spectrum. A good vertex scoring function will typically estimate the

probability that a vertex/edge in the graph is part of the b-/y-ion ladder. This can be

accomplished through a correlation function based on known fragmentation patterns.

In our approach we use the log-odds of the staged neural network probability estimates

described in the previous chapter as our vertex scoring function during candidate

generation. Assume we are creating vertices vi and vm−i as shown in Figure 4.2
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where vi is created for the b-ion interpretation of ion Ii and vm−i is created for the

y-ion interpretation of Ii. The vertex score for each vertex is given below.

fSNN(vi) = ln

(
p(Ii = b-ion)
p(I = u-ion)

)
, fSNN(vm−i) = ln

(
p(Ii = y-ion)
p(I = u-ion)

)
(4.1)

Since the staged neural network estimates the probability that a given peak is either

a b, y, or unknown ion, this probability estimate is a logical and effective method for

scoring paths in the spectrum graph.

4.3 Graph Edges

v0 vi vj vm

Figure 4.4: Edge connecting vi and vj that differ by the mass of an amino acid.

If the mass difference between two vertices vi and vj is equivalent to the mass of

an amino acid, or pair of amino acid in the case of a missing peak, then a directed

edge connects vi and vj from low to high mass. The spectrum graph is then a directed

acyclic graph with vertices situated along the number line.

When we add an edge to the spectrum graph that corresponds to a pair of residues

we must verify that the edge is not redundant, e.g., Figure 4.5. In the case of a

redundant edge we remove the higher mass pair of residues in favor of the primary

edges that include along their path the vertex corresponding to the presumed missed

cleavage in the edge corresponding to the pair of residues. However we must be

careful to only remove edges that are truly redundant. In Figure 4.6 we have the

masses ‖A‖ = 71.0Da, ‖S‖ = 87.0Da, ‖AS‖ = ‖GT‖ = 158.1Da. Since ‖AS‖ is not

unique we cannot remove its edge. It is possible that vj is a random noise peak and

an interpreting it as a primary edge would cause us to eliminate the possibility that
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v0 vi vj vl vm

{‖C‖} {‖G‖}

{‖CG‖}

Figure 4.5: vi → vl is redundant; edge can be discarded.

v0 vi vj vl vm

{‖A‖} {‖S‖}

{‖AS‖, ‖GT‖, ‖TG‖}

Figure 4.6: vi → vl is not redundant; edge must be kept.

the mass difference between vi and vl actually corresponds to the pair GT with a

missing peak between G and T. Therefore we cannot remove vi → vl.

4.4 Suboptimal Solutions

Once the spectrum graph is constructed we wish to generate candidate peptides by

finding high scoring paths from v0 to vm. A feasible path (or solution) for the spectrum

graph is a path from v0 to vm that uses each ion from the spectrum at most once.

That is, for a given pair of vertices that result from the dual interpretation of a peak,

only one of those vertices can be used in the feasible path. Since vertex scores are

derived from ions, the following holds for a given vertex v that is constructed from

ion I.

fSNN(v) = fSNN(I)

A suboptimal solution is defined as follows: Assume that P is the top scoring path

for the spectrum graph, which can be found via depth-first-search. Let fmax = f(P ).
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Given a ratio α such that 0 < α ≤ 1, if a feasible path Q satisfies f(Q) ≥ α · fmax,

then Q is a suboptimal solution for the spectrum graph. Therefore, the suboptimal

de novo peptide sequencing problem is to find all α-suboptimal feasible paths given

a spectrum graph. In our implementation we used fSNN(v) as the vertex scoring

function. The details for how to implement the α-suboptimal dynamic programming

algorithm are given in detail in Lu’s publication[25]. The standard algorithm was

modified to map paths (solutions) to larger sets of candidate peptides, which are

then scored using a novel scoring function described in the next chapter.
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Chapter 5

Scoring Candidate Peptides

The peptide sequencing problem is defined as follows: Given a spectrum graph and

a vertex scoring function find a maximum scoring path from v0 to vm. Without

a good scoring schema random noise in the spectrum will generate numerous false

interpretations of vertices and edges in the spectrum graph. These spurious vertices

will dramatically increase the number of paths in the spectrum graph, and therefore

the number of candidate peptides that correspond to those paths. The objective of

a good vertex scoring function is to distinguish vertices that correspond to b-/y-ions

from vertices corresponding to noise or other ion types, and thus assign the highest

scoring path to the edges that corresponds to the actual peptide. The vertex scoring

function we use during candidate generation was described in the previous chapter,

and is given in equation 4.1.

During the candidate generation step the spectrum graph yields a set of candidate

peptide-spectrum matches. Naturally, we now turn to the task of scoring these can-

didate peptides. We have implemented a peptide-spectrum match (PSM) candidate

scoring function fP SM(·) that combines the information content of an amino acid

usage (AAU) model, the staged neural network, and an edge frequency score.

These three disparate sources of information represent three distinct scoring strate-

gies applied to candidate peptides: (1) The staged neural network model estimates

the probability that a fragment ion corresponds to a b-/y-ion by classifying the ion

based on its fragmentation pattern and parameters relevant to the ion’s fragmenta-

tion. In other words, it estimates the probability that an ion is a prefix or suffix ion
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R1 R2 R3 R4

Rn−L

R5 R6

Rn−1

R7

Rn

R8 R9

Figure 5.1: Conditional probability of residue n = 7 with tuple length L = 4; i.e.,
Pr(R7|R4R5R6)

based on information contained in the spectrum alone. (2) The amino acid usage

distribution estimates the probability that the candidate peptide represents a prob-

able sequence of amino acids given the amino acid usage distribution. Each residue

corresponds to an edge in the spectrum graph (vi,j), which corresponds to a mass

difference between two peaks in the experimental spectrum. (3) The edge frequency

score estimates the probability of a given edge (mass difference between two peaks)

in a given spectrum. The latter two scoring strategies are discussed below.

5.1 Amino Acid Usage Score

An amino acid usage (AAU) distribution is a univariate frequency distribution that

tabulates conditional probabilities derived from protein sequence data. It captures

the mutual information present in adjacent residues in the protein sequences. There

are three possible causes for mutual information (or statistical dependence) in protein

sequence. First, evolutionarily related proteins have similar sequences due to shared

ancestry. This similarity is called homology and it is captured by mutual information.

Second, organisms with similar GC content will have similar amino acid composition

[32, 39] that influences the AAU distribution. Third, there is some evidence that

α-helix secondary structure constraints weakly bias amino acid usage [24].

The AAU frequency distribution can be computed by conditioning on single amino

acids or tuples of length L > 1. A conditional probability for a tuple of length L is

defined as Pr(Rn|Rn−1
n−L), shown in Figure 5.1. Longer tuple lengths (L & 5) will yield

AAU distributions that are sparse and driven by sequence homology. It is difficult to
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collect enough peptide data to adequately populate a larger table. Even in the case

of tuples of length 6, not all combinations of length 6 are observed so it is necessary

to initialize those entries to some small epsilon value. The number of unique tuples is

exponential in the length of the tuple, i.e., 20L (since there are 20 amino acids). Thus

anything larger than 6 becomes unmanageable. Shorter tuple lengths (di-/tri-peptide

tuples) will yield AAU distributions that model the influence of GC content, any

known or unknown secondary structure bias, and weak sequence homology. We will

refer to models of long and short tuple length as strong and weak homology models

respectively. If the source protein is expected to have strong sequence homology

then the AAU component of the scoring function should use longer tuples and an

AAU distribution with the appropriate taxonomic resolution. If the source protein is

not expected to have weak sequence homology then the scoring function should use

shorter tuples and an AAU distribution with the appropriate GC content. It is not

yet clear how the determination of strong or weak homology should be made in a

high throughput setting. It will likely require that additional information about the

source organism be available, such as 16S rRNA analysis of the organism prior to

MS/MS analysis.

These distributions were created by selecting a number of proteomes from which

to compile a composite amino acid distribution. (In practice, we started with trans-

lations from genome sequences.) The proteins from the selected proteomes were

processed in the following manner. First, we chose a tuple length L. We then tab-

ulated the frequency of occurrence of each tuple using a sliding window of length

L. Let < R1R2 . . . Rn > be a contiguous sequence of n amino acids. There are

n− L+ 1 tuples of length L in this sequence: < R1R2 . . . RL >, < R2R3 . . . RL+1 >,

..., < Rn−L+1Rn−L+2 . . . Rn >. Finally, the frequencies are then normalized to give

the probability of each tuple in the composite set of peptides. From these 6-tuples

we derive conditional probabilities of the form Pr(Rn|Rn−1
n−L)
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Computing the AAU score for a given residue is straightforward:

fAAU(Ri) =


Pr(Ri) if i = 0

Pr(Ri|Ri−1
i−j ), j = max(1, i− L) otherwise

(5.1)

where Ri is a residue in the candidate peptide, and L is the tuple length.

We have already demonstrated the effectiveness of amino acid usage in ranking

candidate peptides in a previous conference publication [36], which is discussed in the

following chapter.

5.2 Edge Frequency Score

The edge frequency score, fEF (·), is is based on the realization that an edge having a

specific mass difference occurs frequently outside the context of the feasible path for a

candidate peptide. Recall that an edge connects two vertices that represent a pair of

cleavages N- or C-terminal to one or more consecutive residues in a candidate peptide,

A feasible path begins at the vertex corresponding to zero mass, and terminates at

the vertex corresponding to the parent ion mass. Each edge along the feasible path

connects two peaks with a mass difference equivalent to the mass of an amino acid

(or pair of amino acids), and the usage of each vertex along the path is antisymmetric

(as described in the previous chapter).

Let vi,j be an edge in the spectrum graph that has mass difference δi,j such that

δi,j = ‖a‖ = ‖Ij‖− ‖Ii‖ and a ∈ Σ. If we assume that vi,j corresponds to a true edge

in the spectrum graph, i.e., vi and vj are both true b-ions in the spectrum, then the

residue a is part of the correct candidate peptide. We can then assume that pairs

of peaks with the mass difference δi,j will be overrepresented in the spectrum, when

compared to pairs of peaks with the mass difference of a residue that is not part of

the correct candidate peptide. And so, edges having mass difference δi,j will occur

more frequently in the spectrum graph. This effect is expected due to neutral

losses, internal fragment ions, and to a lesser extent, isotopic peaks.
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v0 vk

‖Ii‖ − ‖H2O‖

vi

‖Ii‖
vl

‖Ij‖ − ‖H2O‖

vj

‖Ij‖
vm

Figure 5.2: The solid line corresponds to a feasible path through the spectrum, and
the dashed line corresponds to a neutral loss edge. The mass difference is the same
for edges vi,j and vk,l, but only vi,j is along a feasible path. The presence of edge vk,l

serves as positive evidence that vi,j corresponds to a true residue in the candidate
peptide since the neutral loss of water is common for b-ions. Note that this figure
assumes that each vertex is created from a b-ion interpretation of the ions as described
in the previous chapter.

Neutral losses are common in MS/MS data. For example, if we have an edge

corresponding to ‖Ij‖ − ‖Ii‖ in the spectrum, it is likely that there will be an edge

corresponding to (‖Ij‖ − ‖H2O‖) − (‖Ii‖ − ‖H2O‖) in the spectrum graph. This

relationship is shown in Figure 5.2. While the mass difference is obviously equivalent,

the position of the resulting vertex in the spectrum graph differ by ‖H2O‖. Since

the loss of water is common for b-ions, the presence of the edge corresponding to the

loss of water serves as evidence that the mass difference is due to a true residue in

the candidate peptide. Thus, a candidate peptide containing that amino acid should

receive a slight boost in its score.

Internal fragment ions occur when an ion fragments more than once. Consider the

following example based on the peptide AFDQIDNAPEEK. Assume we have created

vertices for cleavages between AP (vi) and PE (vj), and we have created the edge cor-

responding to residue P (vi,j). The vertex vi corresponds to the b-ion for AFDQIDNA,

and vj corresponds to the b-ion for AFDQIDNAP. If secondary fragmentations occurs,

say, between FD, then DQIDNA and DQIDNAP will be secondary internal fragment

ions in the spectrum with the respective vertices vk and vl created in the spectrum

graph, and the edge vk,l corresponding to residue P. The edge vk,l is not part of the

correct feasible path for the peptide, but it does correspond to a true residue in the
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v0 vk

‖DQIDNA‖

vi

‖AFDQIDNA‖
vl

‖DQIDNAP‖

vj

‖AFDQIDNAP‖
vm

‖AFDQIDNA‖ ‖P‖‖P‖ ‖EEK‖

Figure 5.3: The solid line corresponds to a feasible path through the spectrum, and
the dashed line corresponds to an internal fragment ion edge. The mass difference is
the same for edges vi,j and vk,l, but only vi,j is along a feasible path. The presence
of edge vk,l serves as positive evidence that vi,j corresponds to a true residue in
the candidate peptide since internal fragment ions are common. Note that this figure
assumes that each vertex is created from a b-ion interpretation of the ions as described
in the previous chapter. Also, note that for the sake of simplicity a single edge is
shown for the v0,i prefix ion ‖AFDQIDNA‖ and the vj,m suffix ion ‖EEK‖, which is not
permitted in the construction of a spectrum graph due to the large mass difference.

candidate peptide. Just as above in the case of neutral loss edges, this edge serves as

additional evidence that P is part of the correct candidate peptide sequence. Figure

5.3 visualized this example.

The edge frequencies used in the scoring function are computed for each spectrum

individually. For each spectrum we build a hash table, TEF , which relates the masses

of all tags (up to pairs of residues) to their edge frequency score. For clarity, we will

hereafter use the term tag, or the symbol R+ to refer to one or more amino acids.

During the construction of the spectrum graph we use TEF to count the frequency

of each edge (mass difference). For each edge in the spectrum graph, the value in

TEF with a matching mass (±0.25Da) has its count incremented accordingly. These

frequencies are then normalized by dividing each by the maximum edge frequency for

the given spectrum. Thus, the edge frequency score for a given edge is the normalized

frequency of that edge’s mass difference in the spectrum. The score fEF (R+) is

retrieved from TEF , which maps mass differences to normalized frequencies.

fEF (R+) = TEF (‖R+‖)

42



5.3 SNN Score

We have already demonstrated the effectiveness of a neural network for initial peak

selection. The neural network described in Chapter 3 is a predictive model that

doesn’t require the complete understanding of the complex dynamics of peptide frag-

mentation, but models the fragmentation nevertheless. The neural network outputs a

probability estimate that a peak is a b-/y-ion, which can be treated as the fragmenta-

tion model component of our vertex scoring function, fSNN(·). This implementation

is straightforward and follows the modular conception of the vertex scoring function

introduced by previous authors [9, 16]. Since we are scoring candidate peptides our

scoring function operates on the individual residues of a peptide. The appearance

of a peak in a spectrum is interpreted as a pairwise cleavage between two sequential

residues in a peptide. The neural network score for each peak, which is computed by

4.1, must then be mapped to individual residues in order to score candidate peptides.

This is not always possible since, in the case of a missing peak in the b-/y-ion ladder,

a vertex score may refer to more than one residue in the peptide. An edge vi,j in

the spectrum graph between two vertices maps to a tag in a candidate peptide, and

so the neural network score for a tag is equivalent to the neural network score for

the respective edge in the spectrum graph, which is equivalent to the neural network

score for the vertex with the higher mass (vj). This relationship is shown below and

in Figure 5.4.

fSNN(R+
i,j) = fSNN(vi,j) = fSNN(vj)

It is important to note that there is a one-to-many relationship between edges and

tags, as there may be numerous combinations of amino acids that sum to the same

mass. In other words, an edge may map to many tags, and each tag may have be

composed of one or more residues. Each combination of amino acids that make up

a unique tag for a given edge will have the same neural network score since this score
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v0 vi vj vm

vi,j → R+

Figure 5.4: An edge between vertex vi and vj corresponds to one or more residues
(R+). The neural network score for the residue(s) is equivalent to the neural network
score for vj.

is computed irrespective of the sequence of residues. The same holds true for the

edge frequency score, since this score is also computed from edges in the spectrum

graph.

5.4 Combined Scoring Function for Candidate Peptides

The edge frequency score is the normalized frequency of a mass difference in the

spectrum, and the neural network score is a probability estimate for an edge’s mem-

bership in the b-/y-ion ladder. Each of these edge scores map to one or more unique

tags. In practice we treat these edge scores as individual residue scores by applying

the tag score to its constituent residues. If a tag corresponds to a single residue then

this is a trivial task, the tag score is the residue score. If a tag corresponds to two

residues then the tag score is applied to each residue with a penalty since we wish to

discourage the use of longer tags when a single residue is sufficient to explain an edge.

The reasoning for this tag length restriction is due to the exponential combinatorial

explosion of unique tags that match a given mass difference if we allow three or more

residues to be used to construct a tag. Figures A.5 and A.6 illustrate the problem by

showing the frequency of unique tags for lengths up to two and three. If missed cleav-

ages occurred with high frequency then we would have to allow longer tag lengths in

order to insure that the correct tag is included in the candidate peptide, and we would

have to accept the combinatorial explosion along with it. However missed cleavages
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occur infrequently enough that we do not need to consider sequential pairs of missed

cleavages. This can be seen in Figures A.1,A.2,A.3, and A.4, which show the pairwise

cleavage frequencies for common sequence motifs.

The QuasiNovo scoring function for a candidate peptide C, consisting of residues

R1R2 · · ·Rn, combines the three scores into a single candidate peptide score via linear

combination as shown below.

fP SM(C) = α
|C|−1∑
i=0

fSNN(Ri) + β
|C|−1∑
i=0

fEF (Ri) + γ
|C|−1∑
i=0

fAAU(Ri) (5.2)

The scalar values for each of the three scores were determined through grid-search to

be α = 1.0, β = 10.0, and γ = 1.5.

5.5 Experimental Results

To evaluate the QuasiNovo scoring function we used the NIJ dataset described in

Chapter 3. We restricted the test set to peptides of length 8-12 and randomly selected

10 peptides for each length for a total of 50 peptides. For each MS/MS spectrum we

used the SSN described in Chapter 3 to compute ion-type probability estimates for

each peak, and then select peaks that likely correspond to b-/y-ions for generating

vertex scores in the candidate generation step. The methods described in Chapter 4

were then used to compute a search space of candidate peptides. For these results

the AAU score used tuples of length 5 (Pr(Ri|Ri−1
i−4)), and the AAU distribution was

constructed from 205 Gammaproteobacteria proteomes not including E. coli., yielding

approximately 23 million tryptic peptides. The candidate peptides were then scored

using the QuasiNovo scoring function described above, and the top scoring candidate

was used to generate the statistics presented below. We compared our results to what

is currently the state of the art de novo peptide sequencing algorithm, PepNovo+.

To measure the accuracy of our method we use the longest common subsequence

in-place (LCSIP) metric. This metric is identical to longest common subsequence,
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Figure 5.5: De novo results for peptides of length 8-16 comparing PepNovo+ and
QuasiNovo.

but with the added constraint that a residue must be at the correct mass offset from

either the N-terminus or the C-terminus to be considered correct (see Listing A.7).

From this it is natural to define prediction accuracy (PA) as:

prediction accuracy = LCSIP

length of correct peptide
.

When comparing the prediction accuracy we find thatQuasiNovo achieves 62.4% and

PepNovo achieves 68.8% for peptides of length 8 to 16. Results for each peptide length

are shown in Figure 5.5. The peptides used to compute these prediction accuracy

averages are given below in Table 5.1, along with comparisons between PepNovo+

and QuasiNovo top candidates for each peptide.
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Table 5.1: Results for randomly selected NIJ peptides showing (a) the correct peptide,
(b) the length of the correct peptide, (c) the top PepNovo+ candidate, (d/f) the
prediction accuracy for peptide P for the top candidate, and (e) the top QuasiNovo
candidate.

Correct peptide P (a) |P | (b) PepNovo+ (c) PA (d) QuasiNovo (e) PA (f)

QWFWQPPK 8 FGEKPPK 0.5 QWFWQPPK 1.0
TLFGDHER 8 TLFGDHER 1.0 TICTHDER 0.37
LGPVYSVR 8 GTVLVFVR 0.25 LGPVYDAR 0.75
LGSLQQAR 8 LGSLQQAR 1.0 IGSLQQAR 0.87
LADELCGR 8 LADELGCGR 1.0 IADELCGGR 0.87
FQDEEVQR 8 FQDEEVQR 1.0 FQDEEQVR 0.75
QGYPIGCK 8 EGYPLCNK 0.12 QGYQQGNK 0.5
GAIDMIVR 8 GALDMLVR 0.75 GAGSGGMD 0.25
AQHSLIHR 8 LSHSLLHR 0.62 AQHSLLHR 0.87
AAIEAAGGK 9 AALEAANK 0.66 AAIEAANK 0.77
VYQLPEATR 9 VYQLGSF 0.44 VYGALPEATR 0.88
IEEDLLGTR 9 LEEDLLGTR 0.88 IEEDLLGTR 1.0
VDAGFAITK 9 VDAGFGDLK 0.66 VSVGCTGGA 0.22
GVFNLVLGR 9 FNLVLGR 0.77 GVFNLVLGR 1.0
MFTINAEVR 9 VPLTASYLSK 0.0 DYYNHNVR 0.22
INQVYVVLK 9 LNQVYVVLK 0.88 INQVYVVLK 1.0
VTVQDAVEK 9 VTVQDAVEK 1.0 VTQVDAVTR 0.55
YLDLIANDK 9 YLDLLATQK 0.66 YLDLLATQK 0.66
SGMHQDVPK 9 THKDVPK 0.55 QFHQDVPK 0.66
STVTITDLAR 10 LLVGYSH 0.0 NLVFTLTLR 0.1
QQIIGLAEVR 10 QQLLGLAEA 0.6 QQLLGLSLVR 0.6
QQLPDDATLR 10 QQLPMVATLR 0.8 QQIPMVATLR 0.7
DHIVGLNCGR 10 DHLVGLNNCR 0.7 DHIVGLHHGR 0.8
CTEEHQAIVR 10 AEEHQALVR 0.7 CAVIAQAQALVR 0.5
LLSPEVANDK 10 LLSPLDAF 0.5 IISTHSNEGK 0.2
AGPTWTPTAK 10 AGPTGDDLRK 0.5 QPTGETTAPK 0.4
ANAYGHGIER 10 ANAYGHGLER 0.9 ANAYGHVAER 0.8
AVQEQVASEK 10 GLQEQVASEK 0.8 AVQEQVASEK 1.0
AGENVGVLLR 10 NVGVLLR 0.7 IGSGGVGVLL 0.5
MLTEANLNSLR 11 LTEANLNSLR 0.90 LMNEEVGNSLR 0.36
ELANVQDLTVR 11 ELANVKDLT 0.72 LEANVQDLTVR 0.81
GCYTGQEMVAR 11 YTGQEMVAR 0.81 NCYTGQEMVAR 0.90
DAWATGNPALR 11 WATGNPALR 0.81 WADATGNPALR 0.72
QALENVSTWVR 11 AQLENWTLTAR 0.45 AQLEATQTWVR 0.54
DLVESAPAALK 11 NNVESAPAALK 0.81 VEVESAPAALK 0.81
ELLTNDPFSSR 11 PLALVYTGVTSR 0.18 ELITNPDTGYR 0.45
FAAACEHFVSR 11 FAAAGCHEFVSR 0.81 FAAAFEHGSDSR 0.54
TMLFDAPLQMK 11 LFDAPLQMK 0.81 TMLFDAPLQMK 1.0
LYNDAGISNDR 11 LYNDAGLSNDR 0.90 LYNDQLSNDR 0.72
GDVLNYDEVMER 12 DGVLNYDEVME 0.75 VWVNYDEVMER 0.66
NQSSDWQQYNIK 12 NQSSDWQQYNLK 0.91 LESSDWQQYNLK 0.75
GVGQIHPIFADR 12 LHPLFWR 0.33 GHFHIQYHDR 0.25
NTSFAPGNVSIK 12 SFANPGVSLK 0.5 SQSFAGGPVGSLA 0.41
EPISVSSQQMLK 12 EPLSVSSQQMLK 0.91 ILLSVSSQGAMLK 0.66
GDIVLCGFEYGR 12 DNAQCEYGR 0.33 VWVLGCCTEYGR 0.58
TLAVVGESGCGK 12 TLAVVGES 0.66 TLAVVGESGCGA 0.91
VQSMPEINDADK 12 NLSMPELSSLKK 0.41 NISMCAVPADVVK 0.25
ITSVNVGGMAFR 12 DVSVNVGGMAFR 0.83 ITSVNVQDFTK 0.5
AAMSGMLSPELK 12 GMLSPELK 0.66 SWSGMLSLLLK 0.58
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Chapter 6

Reranking Candidate Peptides

By examining proteins and compiling amino acid usage (AAU) distributions it is

possible to characterize likely combinations of amino acids and better distinguish

between candidate peptides. In the previous chapter we used AAU in combination

with other scoring functions to score candidate peptides. In this chapter we use AAU

alone to score and rerank candidate peptides produced by other de novo algorithms,

and show that a scoring function that considers amino acid usage patterns is better

able to distinguish between candidate peptides. This in turn leads to higher accuracy

in peptide prediction.

6.1 Consideration of Amino Acid Usage

One important piece of information that is missing from current probabilistic and

cross-correlation scoring function is the prior distribution of amino acid usage. This

distribution describes the percentage of each amino acid as well as the probability of

combinations of amino acids in peptide sequences. It captures the mutual information

present in adjacent residues in the protein sequences from which the distribution was

derived. By leaving this information out, one is effectively using a flat prior that

treats all combination of amino acids as equally likely. NovoHMM is an interesting

exception. Although NovoHMM uses a hidden Markov model instead of likelihood

model, it implicitly incorporates information concerning amino acid usage by training

with spectrum/peptide pairs[12]. However, NovoHMM’s understanding of amino acid

usage is inherently limited since it is derived entirely from available spectrum/peptide
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training pairs.

Researchers have recognized that there is bias in the types of peptides that are

consistently observed by current MS/MS technology. These preferentially observed

peptides are called proteotyptic peptides[8, 42, 27]. In this case, the bias is not a

reflection of the proteome signature but of the experimental protocol and MS/MS

technology. PepNovo+ employs a ranking algorithm to rerank candidate peptides

produced by its fragmentation model. While the PepNovo+ ranking algorithm con-

siders sequence composition features, it is limited to amino acid triplets that are

compiled from proteotypic sequences. The result is a single distribution describing

the proteotypic character of triplets averaged over all such training sequences[15].

In contrast, the QuasiNovo AAU scoring function described in this chapter rec-

ognizes that amino acid usage can vary widely from organism to organism[13, 39].

Typically it is similar between closely related taxa but can be quite different when

taxa are distantly related. Consequently, QuasiNovo’s understanding of amino acid

usage is provided by several models. These models are derived from protein sequence

data alone. This data is much more plentiful and accurate than spectrum/peptide

pairs and leads to a more detailed and nuanced understanding of amino acid usage.

In this chapter we present results supporting the hypothesis that a scoring function

that takes amino acid usage into account can significantly improve the accuracy of

peptides derived via de novo sequencing.

6.2 Methods and Data

Our investigations were designed to evaluate the utility of a scoring function based

on amino acid usage distributions. The AAU distributions were created as described

in the previous chapter.

The amino acid distribution models amino acid usage and can be used to estimate

the probability of observing an amino acid sequence. This model is used to compute
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the probability of a peptide of n amino acids by taking the product of the probability

of the first tuple of length L−1 times the subsequent n−L+1 overlapping conditional

probabilities based on tuples of length L in the peptide, i.e.,

PAAU(P |MAAU) = p(P1,L−1)
n∏

i=L

p(Pi|Pi−L+1,i−1) (6.1)

In this equation p(P1,L−1) is the probability of the first L−1 residues in peptide P and

p(Pi|Pi−L+1,i−1) is the conditional probability of the ith amino acid given the preceding

L − 1 amino acids. The probabilities p(P1,L−1) and p(Pi|Pi−L+1,i−1) are defined by

the amino acid usage model MAAU , i.e., the normalized amino acid distribution.

If a de novo sequencing algorithm with this type of scoring function could be shown

to be competitive with existing de novo sequencing algorithms then one would expect

a model that combined a probabilistic fragmentation model with an amino acid usage

prior to perform substantially better than one using an implicit flat prior. To this

end, we selected the same data set of 280 spectra used by Frank and Pevzner[16].

They used this data set to compare PepNovo with Sherenga, PEAKS, and Lutefisk.

This data set comes from two sources, the ISB protein mixture data set[22] and

the Open Proteomics Database (OPD)[34]. In this data set, peptides average 10.5

residues in length. Frank and Pevzner demonstrated that PepNovo outperformed

Sherenga, Peaks and Lutefisk on this data set. This data set was also used by Fischer

et al. to compare NovoHMM with PepNovo, Sherenga, PEAKS, and Lutefisk[12]. In

their study NovoHMM outperformed its competitors. Consequently, the focus of our

evaluation was a comparison of the results of our scoring function versus PepNovo

and NovoHMM.

The 280 spectra in the Frank-Pevzner data set are comprised of spectra from

174 Escherichia coli peptides, 27 Mycobacterium smegmatis peptides, 67 Bos taurus

peptides, and 12 Homo sapiens peptides. The three major categories represented in

this data set are Gammaproteobacteria (E. coli), Actinobacteria (M. smegmatis), and

Mammalia (B. taurus and H. sapiens). Amino acid distributions were constructed
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Figures

Figure 1
x 0 1 2 3
PepNovo+ 12.85714286 23.92857143 38.21428571 50
PepNovo v1.03 14.64285714 26.42857143 42.14285714 55.35714286
NovoHMM 6.785714286 20.35714286 37.5 51.42857143
Quasinovo Reranking 50.71428571 53.92857143 66.42857143 73.21428571

Figure 2
x 0 1 2 3
PepNovo+ 36 40 62 72
PepNovo v1.03 47 48 80 83
NovoHMM 50 56 83 89
Quasinovo 45 51 65 75
Quasinovo Reranking 70 73 85 91
PILOT 0 0 87 95
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Figure 6.1: Results for set of 280 MS/MS test spectra comparing PepNovo+, Pep-
Novo, NovoHMM, and QuasiNovo AAU reranking.

for each of the 3 categories. E. coli and M. smegmatis peptides were specifically

excluded from their respective distributions to demonstrate the ability of sequencing

novel peptides. The Gammaproteobacteria distribution was constructed from ap-

proximately 23 million tryptic peptides from 205 gammaproteobacterial proteomes

not including E. coli. The Actinobacteria distribution was constructed from approx-

imately 7 million tryptic peptides from 57 complete actinobacterial genomes, not

including M. smegmatis. Similarly, two mammalian distributions were created, one

excluding H. sapiens and the other excluding B. taurus. The mammalian distribution

used to score H. sapiens peptides was constructed from the complete proteomes of

B. taurus, R. norvegicus, and M. musculus. The distribution used to score B. taurus

peptides was constructed from complete proteomes of H. sapiens, R. norvegicus, and

M. musculus.

6.3 Experimental Results and Discussion

Initial results are shown in Figure 6.1. The common practice in the de novo sequencing

literature of presenting results in terms of the number of predictions that are correct

within one, two, and three amino acids was followed. Each category is cumulative,
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e.g., the category correct within 3 residues also includes the number of peptides

with fewer errors. This figure depicts the accuracy of the top scoring candidate

as selected by each method. Both PepNovo and NovoHMM produce a single top

scoing candidate. In contrast, using default settings PepNovo+ produces 50 peptides

sorted by rank. The QuasiNovo AAU scoring function was used to rescore candidate

peptides produced by PepNovo, PepNovo+, and NovoHMM. For each spectrum, a set

comprised of the top 50 candidates produced by PepNovo+ and the single candidates

produced by PepNovo and NovoHMM was created. The QuasiNovo AAU scoring

function was then used to select the peptide that produced the highest resulting score

from this set. These results are labeled QuasiNovo Reranking in Figure 6.1. The

most striking feature of the results presented in Figure 1 is that the QuasiNovo AAU

Reranking scores significantly higher than do PepNovo, PepNovo+ and NovoHMM.

Recall that this reranking entails taking the 50 peptides suggested by PepNovo+

and the single peptides suggested by PepNovo and NovoHMM and then selecting the

peptide with the highest QuasiNovo AAU score. These results indicate that amino

acid usage carries conditioning information about protein sequences that provides

additional precision in mapping from the spectrum to the corresponding peptide.

A common alternative performance metric in the de novo sequencing literature is

to present results in terms of the percentage of correct contiguous subsequences[16, 12,

10]. Not all de novo sequencing algorithms predict complete peptides. Often the peaks

near the terminal ends are weak or missing. Consequently, the correct subsequences

tend to be in the middle of the peptide. Figure 6.2 presents the longest subsequence

results for the Frank-Pevzner dataset of 280 spectra. These results were derived by

first finding the longest correct subsequence in the data set for each algorithm and

then tallying the counts for each length. In this figure, the curve corresponding to

the QuasiNovo AAU reranking dominates the other curves by a significant amount

over all subsequence lengths of four and greater.
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Figure 6.2: Cumulative results for set of 280 MS/MS test spectra illustrating the
proportions of predictions that had a correct subsequence of length at least x, for
3 ≤ x ≤ 12.

DiMaggio and Floudas used 100 spectra from the Frank-Pevzner data set[16] to

compare PILOT with PepNovo, and EigenMS. In their study[12], the PILOT results

were slightly better than those of PepNovo and EigenMS. We evaluated QuasiNovo

AAU reranking of the peptides proposed by PepNovo+ and NovoHMM for this set

in order to see what effect the consideration of amino acid usage would have. The

results of the reranking are shown in Figure 6.3. Notice that the results for PILOT

only indicate the number of peptides (out of 100) that are correct within 2 amino acids

and within 3 amino acids. This is because DiMaggio and Floudas did not publish

results for completely correct peptides. It is instructive to note that the QuasiN

ovo AAU reranking of the PepNovo and NovoHMM results increase the number of

completely correct peptides from 47 and 50, respectively, to 72. Finally, even in the

53



0

20

40

60

80

100

0 1 2 3

Number of Incorrect Residues

%
 C

o
rr

e
c
t

PepNovo+

PepNovo v1.03

NovoHMM

Quasinovo Reranking

PILOT

Figure 6.3: Results for set of 100 MS/MS test spectra comparing PepNovo+, Pep-
Novo, NovoHMM, PILOT and QuasiNovo AAU reranking.

case of peptides considered correct within 3 amino acids where PILOT achieves 95

out of 100, the QuasiNovo AAU reranking results are 93 out of 100, i.e., comparable

results.

The results in Figure 6.3 assume isobaric residues to be equivalent since DiMaggio

and Floudas published these statistics but did not publish the actual peptides pro-

posed by PILOT for this data set. Specifically, this means that the pairs I/L and Q/K

are treated as identical amino acids. For example, the assignment of an isoleucine

in the candidate peptide where the actual peptide contains a leucine is considered

correct. This is a common practice since de novo sequencing algorithms that do not

take amino acid usage into account have no basis for distinguishing between isobaric

residues. Since QuasiNovo models amino acid usage, its scoring function is able to

distinguish among isobaric residues. Consequently, QuasiNovo selects the residue

with the highest probability in the context of a given peptide. Another weakness of

methods that do not consider amino acid usage lies in how they treat missing peaks.

This commonly occurs when the b1-ion (corresponding to the N-terminal amino acid)

is missing from the spectrum. Peaks corresponding to other b-/y-ions may also be

missing from the spectrum. Since peaks corresponding to b1-ion are frequently miss-

ing, more errors would be expected in the prediction of this terminal residue. If a
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Table 6.1: Comparison of Terminal Pair and Overall Accuracy
terminal ion pair complete peptide

algorithm b2-ion y2-ion
PepNovo+ 0.509 0.616 0.702
NovoHMM 0.523 0.759 0.735
QuasiNovo AAU Reranking 0.716 0.813 0.815

peak corresponding to a b1-ion is missing from the spectrum then a de novo sequenc-

ing algorithm must make a prediction based on the next peak in the ion ladder, i.e.,

the b2-ion. Table 6.1 shows the accuracy of the predictions made by PepNovo+,

NovoHMM, and the QuasiNovo AAU reranking for terminal ion pairs in the Frank-

Pevzner dataset of 280 spectra. Table 6.1 does not assume isobaric equivalence. The

values in the table were derived by tallying the number of correctly predicted terminal

pair residues. For example, the values in the b2-ion column were determined by sum-

ming the number of correctly predicted residues in the first two positions in the 280

peptides and then dividing by 560, i.e., 2 residues * 280 peptides. As shown in Table

6.1, the QuasiNovo AAU reranking results are superior to those of PepNovo+ and

NovoHMM for predicting the correct residue pairs corresponding b2-ions and y2-ions.

Notice that the accuracy of the amino acids predicted for the y2-ion for all algorithms

in Table 6.1 are closer to the accuracy for the complete peptide than they are to the

b2-ion. The y1-ion is not as frequently missing from the spectrum as the b1-ion.

When a peak is missing and can not be inferred, methods that do not model

amino acid usage are typically able to propose a combination of residues for that part

of the peptide. However, they are not able to specify the particular order in which

the combination of residues appear in the peptide. It is for this reason that it has

become common practice to present results in terms of percentage of predictions that

are correct within one, two, and three amino acids as shown in Figures 6.1 and 6.3.

In contrast, QuasiNovo uses its model of amino acid usage to distinguish between

possible permutations. On this basis it selects the permutation with the greatest
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Figures

Results for OPD76 with isobaric AA inequivalence

x 0 1 2 3
PepNovo+ 14.47368421 32.89473684 51.31578947 67.10526316
PepNovo v1.03 22.36842105 42.10526316 60.52631579 75
NovoHMM 9.210526316 30.26315789 56.57894737 72.36842105
Gammaproteobact 73.68421053 81.57894737 90.78947368 93.42105263
Actinobacteria 1.315789474 10.52631579 32.89473684 48.68421053
Mammalia 0 5.263157895 18.42105263 40.78947368

Figure 3

Results for OPD280 data set with isobaric AA inequivalence

x PepNovo+ PepNovo v1.0NovoHMM Quasinovo R Quasinovo
x=3 0.9 0.864 0.814 0.911 0.871
x=4 0.764 0.725 0.604 0.871 0.768
x=5 0.596 0.6 0.454 0.796 0.689
x=6 0.464 0.479 0.311 0.721 0.632
x=7 0.371 0.346 0.225 0.675 0.582
x=8 0.239 0.272 0.169 0.632 0.522
x=9 0.158 0.192 0.133 0.571 0.458
x=10 0.126 0.162 0.106 0.535 0.394
x=11 0.057 0.057 0.043 0.482 0.312
x=12 0.035 0.012 0 0.419 0.209

13 0 0 0 0.276 0.276

0

20

40

60

80

100

0 1 2 3

Number of Incorrect Residues

%
 C

or
re

ct PepNovo+
PepNovo v1.03
NovoHMM
Gammaproteobacteria
Actinobacteria
Mammalia

Page 2

Figure 6.4: Results for set of 76 MS/MS test spectra for E. coli peptides comparing
PepNovo+, PepNovo, NovoHMM, with three QuasiNovo scoring functions based on
amino acid distributions in Gammaproteobacteria, Actinobacteria, and Mammalia.

probability.

The results in Table 6.1 as well as the preceding figures demonstrate the utility

of integrating amino acid usage considerations in a scoring function. An obvious

question is what influence the choice of proteomes used to build the AAU distribu-

tions has on the accuracy of the peptide scoring function. The 280 spectra in the

Frank-Pevzner data set are comprised of 3 major categories: Gammaproteobacteria,

Actinobacteria, and Mammalia. The experiment shown in Figure 6.3 was repeated.

However, this time three different AAU-based scoring functions were used to evaluate

the subset of 76 E. coli peptides from the original 100 peptides. The scoring func-

tion labeled Gammaproteobacteria was compiled using only amino acid usage data

from Gammaproteobacteria proteomes. Similarly, the scoring functions labeled Acti-

nobacteria and Mammalia were derived exclusively from amino acid usage data from

Actinobacteria and Mammalia, respectively. Given that all 76 peptides are from E.

coli, it is no surprise that the results for the scoring function derived from gammapro-

teobacterial peptides are significantly higher than the other two scoring functions as

shown in Figure 6.4. This data hints at the sensitivity of the accuracy of the QuasiN

ovo AAU scoring function to the peptide data from which it is constructed. It should
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also be noted that the results shown in Figure 6.4 do not assume isobaric residues to

be equivalent. One of the strengths of considering amino acid usage is that it provides

a statistical basis for choosing between isobaric equivalent residues.

These results show that amino acid usage can be used as prior information to

improve significantly the accuracy of the scoring functions used by current de novo

sequencing algorithms. They also support the hypothesis that a significant additional

increase in sequencing accuracy could be attained by including consideration of amino

acid usage as an integral component of a scoring function.

The results of our investigations conclusively demonstrate two results. First, when

we use an AAU-based scoring function to re-rank a combination of PepNovo+’s,

PepNovo’s, and NovoHMM’s candidate peptides, the peptide that gets our highest

score demonstrates significant improvement in accuracy as compared to PepNovo+’s,

PepNovo’s, and NovoHMM’s first choice. Second, top-performing de novo sequencing

programs such as PepNovo+ are able to generate good quality candidate peptides. In

addition, they are able to compute candidate peptides very efficiently. For example,

DiMaggio and Floudas report that PILOT takes 5-20 seconds to evaluate a spectrum

on an Intel Pentium 4 3.0GHz Linux-based computer[10]. Even so, they are often not

able to correctly rank them. As a consequence, a suboptimal candidate is selected as

the highest ranking peptide and the accuracy is considerably lower than it should be.

Put simply, scoring functions that do not consider amino acid usage appropriately

are often not able to select the most correct peptide from a pool of candidates.

The comparison of amino acid usage models in Figure 6.4 shows that the choice of

amino acid usage model is important. Consequently, this is another important area

of investigation. The results of the Gammaproteobacteria model in Figure 6.4 are

impressive when compared with those of PepNovo, PepNovo+ and NovoHMM. The

Gammaproteobacteria amino acid usage model in Figure 6.4 was compiled by aggre-

gating data from the 205 proteomes from the Gammaproteobacteria class. Even the
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models constructed for mammalian peptides were not particularly focused, containing

data from H. sapiens, B. taurus, R. norvegicus, and M. musculus. It is reasonable

to expect that the accuracy of the scoring function will be improved by creating sta-

tistical models of amino acid usage that are closer to the AAU distribution of the

peptides under consideration. It is hypothesized that more focused models at the

level of family, and genus will demonstrate greater improvements in accuracy relative

to the results presented here.

One argument for pursuing de novo sequencing is the ability to sequence peptides

expressed from unsequenced genomes. In the case of such a peptide, it is not possible

to have the actual amino acid usage model. However in the case of bacteria, simple

physiological tests (e.g. Gram stain) for cultured organisms can help limit the data

set or limit the taxonomic categories under examination. For un-cultured single cells,

equivalent information may also be obtainable. In both cases, it is possible to use

universal primers to extract small subunit ribosomal RNA and sequence rRNA genes

without having to sequence the entire genome. SSU rRNA databases are already the

main source of microbial diversity information owing to rRNAs’ role as the gold stan-

dard for microbial identification[30]. While the high degree of conservation of rRNA

genes reduces their usefulness in resolving fine details at the strain or species level, it

nevertheless makes them useful for inference of deep phylogeny. This informaion can

be used to select the most appropriate available amino acid usage model.
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Chapter 7

Conclusion

One of the primary challenges faced by MS-based proteomics is how to perform faster

and more accurate automated data analysis. This includes eliminating the require-

ment of a sequence database which restricts analysis to organisms that have sequenced

genomes and spectral libraries. Towards this goal the field of proteomics needs bet-

ter de novo sequencing algorithms. While higher precision mass spectrometers have

somewhat improved the quality of de novo peptide sequencing, the world is still in

need of effective approaches to peptide sequencing that use common low precision

instruments and established laboratory protocols.

7.1 Impact of this Research

Accurate analysis of MS/MS data is a challenging process that relies on a complex

understanding of molecular dynamics, signal processing, and pattern classification–or

at the very least relies on modeling these aspects of MS/MS data. Our contribution

to the field of computational mass spectrometry is a complete peptide sequencing

software package called QuasiNovo that uniquely addresses these concerns and con-

tributes significantly to the field. In this dissertation we described the problem in

broad terms, divided the problem into its separable components, and described the

specific solutions we brought to bear on each step of the problem. The QuasiNovo

algorithm is summarized as follows:

First, we developed a novel peak classifier that used a staged neural network

to estimate the probability that a given peak is a b-/y-ion. Peak selection is an
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important preprocessing step in de novo sequencing. As a practical matter, it is

important that the number of peaks be reduced so that the candidate peptide search

space is constrained. A reduction in the number of peaks used to create the spectrum

graph makes it possible to process spectra faster. It also makes it possible to process

longer peptides than would otherwise be impractical since the resulting search space

is smaller. The staged neural network probability estimates for each ion type are used

to filter the raw MS/MS spectrum. The same probability estimates are then used

for scoring vertices in the spectrum graph, and then used in combination with other

scoring functions to score candidate peptides.

Second, a boilerplate approach to generating feasible paths in a spectrum graph—

originally conceived by Dancik et al. [9] and later improved by Lu et al. [25]—was

modified for our purposes to produce candidate peptide sequences.

Third, the candidate peptides are scored using the QuasiNovo scoring function.

The scoring function has three components: the SNN score which propagates from

the initial peak selection step, an amino acid usage score, and an edge frequency score.

Each of these scoring functions are novel in the field of de novo peptide sequencing.

Fourth—in what happens to be our earliest work—we explored reranking candi-

date peptides using amino acid usage distributions.

7.2 Future Work

As QuasiNovo continues to be developed there are some obvious improvements and

extensions that are anticipated. Much of this work serves as a proof of concept from

a software engineering perspective. A capable programmer could find several areas

of the software that could benefit from optimization. For example, much of the SNN

is written in the scripting language Ruby. While Ruby is an excellent language for

rapid prototyping, it is orders of magnitude slower than a compiled language, and so

this component of the software will be refactored accordingly to reduce runtime. The
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scoring and reranking components of the software are written in C++, however we

expect the memory footprint can be reduced dramatically during candidate genera-

tion, which would reduce the runtime due to the smaller set of candidates that need

to be scored and ranked.

The majority of the planned developments for the scientific aspects of the research

concern the creation and analysis of AAU distributions. While we have already

conducted several studies of different AAU distributions, it is important to continue

compiling and investigating AAU distributions at different taxonomic levels and of

varying composition. AAU distributions that vary according to GC content, protein

family, and proteotypic propensity will be explored, and various information theoretic

measures of the distributions will be studied.
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Appendix A

Additional Figures and Listings
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Figure A.1: Pair-wise cleavage probability for b-/y-ions from peptides that have no
internal K/R, and end in K/R, i.e., peptides matching the sequence motif regular
expression /∧[∧KR]∗[KR]$/. Black indicates a probability of zero, and white indicates
a probability of one.
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Figure A.2: Pair-wise cleavage probability for b-/y-ions from peptides that have no
internal K/R/H, at least one internal P, and end in K, i.e., peptides matching the
sequence motif regular expression /∧[∧HKR]∗P[∧HKR]∗[K]$/. Black indicates a prob-
ability of zero, and white indicates a probability of one.
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Figure A.3: Pair-wise cleavage probability for b-/y-ions from peptides that have no
internal K/R/H, at least one internal P, and end in R, i.e., peptides matching the
sequence motif regular expression /∧[∧HKR]∗P[∧HKR]∗[R]$/. Black indicates a prob-
ability of zero, and white indicates a probability of one.
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Figure A.4: Pair-wise cleavage probability for b-/y-ions from peptides that have no
internal K/R/H/P and end in K/R, i.e., peptides matching the sequence motif reg-
ular expression /∧[∧PHKR]∗[KR]$/. Black indicates a probability of zero, and white
indicates a probability of one.
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Figure A.5: Unique tag masses up to pairs (single missing peak in the b-/y-ion ladder)
that collide within 0.1Da.
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Figure A.6: Unique tag masses up to triplets (two sequential missing peaks in the
b-/y-ion ladder) that collide within 0.1Da.
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def longest_common_subsequence_in_place ( p1 , p2 , t o l =0.5 ,
i s o b a r i c _ e q u i v a l e n c e=fa l se )

return 0 i f p1 . l ength==0 or p2 . l ength==0
num = Array . new( p1 . l ength ){ Array . new( p2 . l ength )}
p1 . compute_parent_mass
p2 . compute_parent_mass
p1_mass_N = p1 . n_of f s e t
p2_mass_N = 0.0
p1_mass_C = p1 . mass
p2_mass_C = p2 . mass
i f i s o b a r i c _ e q u i v a l e n c e then

p1 = p1 . gsub ( / [ I ] / , ’L ’ )
p2 = p2 . gsub ( / [ I ] / , ’L ’ )

end
for i in 0 . . . p1 . l ength do

p1_mass_N += AA2MASS[ p1 [ i . . i ] ] #mass o f amino acid
p1_mass_C −= AA2MASS[ p1 [ i . . i ] ]
p2_mass_N = 0.0
p2_mass_C = p2 . mass
for j in 0 . . . p2 . l ength do

p2_mass_N += AA2MASS[ p2 [ j . . j ] ]
p2_mass_C −= AA2MASS[ p2 [ j . . j ] ]
i f p1 [ i . . i ]==p2 [ j . . j ] and (

( p1_mass_N−p2_mass_N ) . abs<=t o l or
( p1_mass_C−p2_mass_C ) . abs<=t o l )
i f i==0 or j==0

num[ i ] [ j ] = 1
else

num[ i ] [ j ] = 1+num[ i −1] [ j −1]
end

else
i f i==0 and j==0

num[ i ] [ j ] = 0
e l s i f i==0 and j !=0 # f i r s t i t h element

num[ i ] [ j ] = [ 0 , num[ i ] [ j −1 ] ] . max
e l s i f j==0 and i !=0 # f i r s t j t h element

num[ i ] [ j ] = [ 0 , num[ i −1] [ j ] ] . max
e l s i f i !=0 and j !=0

num[ i ] [ j ] = [num[ i −1] [ j ] , num[ i ] [ j −1 ] ] . max
end

end
end

end
return num[ p1 . length −1] [ p2 . length −1]

end

Figure A.7: Longest common subsequence in-place algorithm written in Ruby.
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