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Abstract

Survival analysis is an important branch of statistics that deals with time to event

data or survival data. An important feature of such data is that the survival time

of interest is usually not completely known but is censored due to the design of

the study or an early dropout. In this dissertation we focus on studying clustered

interval-censored data, a special type of survival data. Interval-censored data arise

in many epidemiological, social science, and medical studies, in which subjects are

examined at periodical follow-up visits. The survival (or failure) time of interest

is never exactly observed but is known to fall within an interval formed by two

examination times with changed status of the event of interest. Clustered interval-

censored data contributes another complication that the failure times within the same

cluster are not independent.

Chapter 1 of this dissertation provides a detailed description of interval-censored

data with several real data examples and reviews existing regression models and

approaches for clustered interval-censored data.

Chapter 2 proposes a novel frailty Probit model for analyzing clustered interval-

censored data. The proposed model has several appealing properties: (1) the marginal

covariate effects are proportional to the conditional effect and (2) the intra-cluster

association can be quantified in terms of several nonparametric association measures

in closed form. the proposed Bayesian estimation approach is easy to implement

because all parameters and latent variables have their full conditionals in standard

form. The approach has excellent performance in estimating the regression param-

eters and the baseline survival function and is also robust to misspecification of the
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frailty distribution.

Chapter 3 extends the frailty Probit model in Chapter 2 to allow modeling both

clustered and independent data through the adoption of a mixture distribution for

the frailty. The proposed approach provides tests of the existence of intra-cluster

association for each cluster via Bayes factors and can identify clusters with strong

(weak) correlation. Two different prior structures are considered in our approach,

and both lead to good estimation and testing results.

Chapter 4 studies a joint modeling of clustered interval-censored failure times and

the sizes of the clusters. The cluster size is modeled as an ordinal response using a

parametric Probit model, and a separate frailty semiparametric Probit model is used

to model the clustered failure times. The two submodels are connected through a

shared random effect. The performance of the proposed model is evaluated through

a simulation study.
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Chapter 1

Introduction

1.1 Interval-censored data

Survival analysis is a branch of statistics dealing with time to event data or failure time

data. When the failure time of interest is not observed exactly but known to fall within

an interval, interval-censored data arise. Interval-censored data occur naturally when

there are periodic follow-ups in clinical studies or medical studies. Below we provide

three real life examples to illustrate the structure of interval-censored data and discuss

the common research goals in analyzing interval-censored data.

1.1.1 Breast cosmesis data

Adjuvant chemotherapy improves the relapse-free and overall survival time in at least

some subgroups of patients treated by mastectomy. However, there is a concern

that acute skin reactions may be worse when patients are treated with adjuvant

chemotherapy with postoperative radiation or primary radiation for breast cancer.

A study was conducted to compare two types of treatments: radiotherapy alone and

radiotherapy with adjuvant chemotherapy. The study was interested in the cosmetic

effects of the treatments (Finkelstein 1985). The patients in the study had been

treated with either radiation alone or with the combined radiation and adjuvant

chemotherapy. Depending on the geographical location of the patients, they were

followed-up for every 4 to 6 months. Physicians recorded the cosmetic appearances

of the patients with respect to the overall cosmetic result. Breast retraction was one
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of the least subjective endpoints, therefore the time until breast retraction was used to

compare the effect of the two treatment groups. Table 1.1 displays a subset of the data

from the study. Each interval represents the time period the breast retraction first

appeared. For example, if an observed interval is (0, 5], the retraction was presented

at the first test at month 5. Since the retraction appeared before the first test, this

observation is left censored. Similarly, if an observation is (8, 12], the retraction did

not appear at month 8 but appeared by month 12. The breast retraction time is

interval censored. If an observation is (13,_], the retraction did not appear at the

last test at 13 months, the breast retraction time is called right censored.

Table 1.1: Interval of cosmetic deterioration for early breast cancer patients treated
with radiotherapy and chemotherapy vs radiotherapy alone.

Radiotherapy Radiotherapy and Chemotherapy
(45,_] (25, 37] (37,_] (8, 12] (0, 5] (30, 34]
(6, 10] (46,_] (0, 5] (0, 22] (5, 8] (13,_]
(0, 7] (26, 40] (18,_] (24, 31] (12, 20] (10, 17]

(17,_] (46,_] (24,_] (17, 27] (11,_] (8, 21]
(46,_] (27, 34] (36,_] (17, 23] (33, 40] (4, 9]
(7, 16] (36, 44] (5, 11] (24, 30] (31,_] (11,_]
(17,_] (46,_] (19, 35] (16, 24] (13, 39] (14, 19]
(7, 14] (36, 48] (25, 17] (13,_] (19, 32] (4, 8]

1.1.2 HIV data

The HIV data (De Wolf et al., 2001; Van Sighem et al., 2003 ) is another example of

interval censored data, and it has been used frequently in survival analysis literature.

The ATHENA database contains over 9000 HIV-infected patients in the Netherlands.

The data include information related to demographic information, antiretrovial ther-

apy (ART) information, and clinical measurements. Since 1987, antiretrovial therapy

(ART) was used as the treatment of HIV (Mocroft, 1998). The primary goal of the

treatment was to reduce the plasma viral load which results in substantial clinical
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benefits. The goal of this study was to identify the factors affecting the time to

suppression of plasma viral load after antiretrovial therapy (ART). Viral suppression

was defined to be less than 500 copies/ml. Patients were measured one month after

the ART treatment. Afterward, they were checked every three to four months until

the viral suppression was detected or the end of the study. About 50% of all patients

had their suppression of plasma viral load at the first measurement. Therefore, the

time to suppression is known to be less than the first check time, which results in

left-censored observations. About 35% of the patients had viral suppression between

two adjacent examinations, which results in interval-censored observations, and the

remaining 15% of the patients did not have viral suppression by the last scheduled

measurement, and their suppression times are greater than the time from the treat-

ment to their last check times, resulting in right-censored observations.

1.1.3 Dental data

The third example is a dental study conducted in Hong Kong. Children from eight

kindergartens participated in the study. Children with dentin caries in at least 1

primary anterior tooth were included in the study and were treated with 5 different

treatments. Follow up examinations were conducted every 6 months after the treat-

ment. The purpose of the study is to determine the effect of different treatments in

arresting dentin caries. A total of 375 children were included in the study, and 1483

surfaces with dentin caries from those children were included in the study. The study

was interested in the effect of different treatments on the time of arresting dentin

caries, which cannot be observed exactly. Therefore, the resulting data is interval

censored data. However, the data structure is slightly different from the previous

two examples since a hierarchical structure is presented. The subjects in the study

are the dentin caries. However, the dentin caries cannot be treated independently.

Those dentin caries come from the same child and share some common character-

3



istics, which induces natural correlation among those times to dentin caries. Thus,

this study yields clustered interval-censored data, where the time to dentin caries are

correlated within the same cluster.

1.2 Popular statistical models for interval censored data

In most studies, people are interested in estimating the survival function as well as the

covariate effects. Below we review a few popular statistical models in the literature

for modeling failure time or survival data. Let x denote the vector of covariates,

and T is the failure time of interest in the study. The most popular model is the

proportional hazards (PH) model introduced by Cox (1972). The PH model specifies

its hazard function as follows:

λ(t|x) = exp(x′β)λ0(t)

where λ0(t) is an unspecified baseline hazard function. The partial likelihood ap-

proach introduced by Cox (1975) allows one to estimate the regression parameter

without the need of estimating the unknown baseline hazard function, which makes

the PH model widely used in the literature.

Another popular model is the accelerated failure time (AFT) model. Under the

AFT model, the failure time can be modeled as follows:

log(T ) = x′β + e

Unlike the PH model, the AFT model assumes that the effect of the covariate is to

accelerate or decelerate the failure time by some constant. AFT model is a para-

metric model when the distribution of the error term is chosen, and the model is

fully specified. The AFT model can also be semiparametric if assuming unknown

distribution for e. Maximum likelihood can be applied for the estimation procedure.

Another popular model for modeling survival data is the proportional odds (PO)

model introduced by Bennett (1983). Instead of assuming the covariate effect is to

4



increase or decrease the hazard, the PO model assumes the effect of covariate is to

increase or decrease the odds of the event of interest:

1− S(t, x)
S(t, x) = 1− S0(t)

S0(t) exp(x′β)

where S(t|x) is the survival function given covariate x and S0(t) is the baseline survival

function.

Another semiparametric regression model is the Probit model. The Probit model

has gained its popularity recently in survival data literature. It is a good alternative

to the previous three models, and it is very easy to use. Probit model specifies its

cumulative distribution function of the failure time as follows:

F (t|x) = Φ(α(t) + x′β),

where Φ is the CDF of a standard normal random variable, and α(·) is a unknown

nondecreasing function.

1.3 Existing approaches

Semiparametric regression models are really popular for modeling survival data since

they usually do not specify the functional form of the baseline survival function.

The extra flexibility it provided compared to a fully specified parametric model is

desirable because in real life data can be complex and does not follow a pre-specified

distribution.

Under the PH model, Finkelstein (1986) treated the interval-censored observations

as incomplete observations from grouped response time data and fitted the PH model

with maximum likelihood estimation, and a generalization of log-rank test for testing

the covariate effects was provided. Huang (1996) considered simultaneous estimation

of regression parameters and a nonparametric maximum likelihood estimator of the

baseline survival distribution. Satten (1998) developed an imputation approach to
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convert the problem to a current status data problem. Cai (2003) provided a piecewise

linear spline for estimating the baseline hazard function. Pan (2000) provided a two

step imputation approach under PH model with the unspecified baseline survival

function.

Under the AFT model, Rabinowitz (1995) developed a class of score statistics for

estimating the regression coefficients and an estimator of the covariance of the scores is

derived. Xue (2006) proposed a sieve maximum likelihood method to simultaneously

estimate all the parameters. Tian (2006) used an efficient MCMC based resampling

method for obtaining simultaneously the point estimator and a consistent estimator

of its variance -covariance matrix.

Under the PO model, Huang (1997) used sieve maximum likelihood estimator to

estimate the finite dimensional regression parameters. Rabinowitz (2000) allowed one

to use conditional logistic regression routines in standard statistical packages to fit

the PO model.

Lin (2009) proposed a semiparametric probit model with monotone splines. Probit

model is well established for dealing with continuous data. But it is not commonly

used for modeling failure time data. In this dissertation, we show it can provide

very fast and efficient estimation from a Bayesian perspective due to the structure

of the model with the specific prior specifications. This dissertation studies three

important topics related to interval-censored failure time data using the extended

semiparametric probit models.

1.4 Topics to be studied

When the subjects in the study are hierarchically structured, with observation units

grouped in clusters, it is important to accommodate this feature into the analysis,

otherwise the estimation will be biased. Take the cow udder quarter infection data

(Goethals 2009) for an example: the interest of the study was to investigate the time

6



to infection for each udder quarter of a cow. Undeniably, four udder quarters from the

same cow share common characteristics. Ignoring such feature and treating all failure

times as independent will lead to biased estimation results. Goethals (2009) adapted

the frailty PH model with shared gamma frailty and used frenquetist approach to

find the MLE. Bellamy (2004) used weibull frailty model and obtaining the MLE with

Newton-Raphson technique. Wong (2005) adapted a Bayesian approach under the PH

model. Henschel (2009) provided a semiparametric PH model for interval censored

data with log-normal frailty terms. In Chapter 2, we provide an alternative approach

under a frailty Probit model with a normal frailty term to incorporate the cluster

effects. Our model enjoys several good features. First, the marginal distribution of

failure time is also a semiparametric Probit model under the structure of our model.

Second, the conditional covariate effects are proportional to the marginal covariate

effects. Third, the intra cluster association can be measured by two nonparametric

measures and can be easily calculated from the MCMC result.

The second problem of interest here is to provide a statistical test for the cluster

effect when the hierarchy structure is presented in the data. Bellamy (2004) developed

a score test for the variance of the frailty term under the weibull model with added

frailty term in order to determine over-dispersion from a frequentist perspective.

Wong (2005) used the same model and provided a formula to estimate the intra-cluster

correlation between the items within same cluster using a Bayesian methodology.

However, all those tests provide a global result with no implication for a specific

cluster if interested. In Chapter 3, we developed a Bayesian hypothesis testing via

Bayes Factor that can test cluster effects globally and locally. That is, our model

and approach can be used to identify which clusters are "real" clusters with strong

correlation and which clusters actually have weak or no correlation.

The third topic in this dissertation is motivated by a more complex setting when

the cluster size may have an influence on the outcomes, or vice versa, or possibly

7



they both are influenced by a third, unobserved latent variable. This is called the

informative cluster size problem in the literature. The problem is very common in

continous and binary response data in the literature and has been well addressed. In

volume-outcome studies (Panageas et al. 2007) specialized surgeons treating many

patients may have better outcomes than those treating few patients; in periodontal

studies (Williamson et al. 2003; Wang et al. 2011) patients with fewer teeth tend

to have a poorer condition for the still remaining teeth; in radiation toxicity studies

(Datta and Satten 2008), the number of measurements on successive measurement

on an individual depends on the number of radiation therapies, which in turn depend

on the underlying severity of cancer. When the cluster size is informative, Hoffman

(2001) proposed a within-cluster resampling method for unbiased estimation of the

covariate effect. Later Williamson (2003) developed a cluster weighted generalized

estimating equation by using the inverse weighting based on the cluster size. Chen

(2011) proposed a joint modeling of outcome and cluster size. The informative cluster

size problem can also occur for interval censored failure time data. One example is the

lymphatic filariasis study discussed by Williamson (2008). However, very few works

in the literature. Fan (2011) used marginal AFT model to adapt the informative

cluster size feature and proposed a simple adjustment through inverse cluster size

reweighting. Williamson (2008) also used cluster weighted approach under weibull

and Cox model. Zhang (2010) gave two procedures under parametric framework,

one being a weighted score function and the other making use of the within-cluster

resampling (WCR) idea. Kim (2010) proposed a joint modeling of failure times and

cluster size from frenquentist’s prospective. No research has been found on this topic

using Bayesian methods. In Chapter 4, we propose a joint modeling of failure times

and cluster size from Bayesian perspective. We proposed to use a semiparametric

Probit model for the interval censored failure time and an ordinal model for the

cluster size, and the two models are linked by a shared frailty. An efficient Gibbs

8



sampler is proposed based on a data augmentation. This project is on-going and the

performance of our approach will be reported in the near future.
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Chapter 2

Frailty Probit model for clustered

interval-censored failure time data

Clustered interval-censored data commonly arise in many studies of biomedical re-

search where the failure time of interest is subject to interval-censoring and subjects

are correlated for being in the same cluster. In this chapter, we propose a new frailty

semiparametric Probit regression model to study covariate effects on the failure time

by accounting for the intra-cluster dependence. The proposed normal frailty Probit

model enjoys several nice properties: (1) the marginal distribution of the failure time

is a semiparametric Probit model, (2) the regression parameters can be interpreted

as the conditional covariate effects given frailty or the marginal covariate effects up

to a multiplicative constant, and (3) the intra-cluster association can be summarized

by two nonparametric measures in simple and explicit form. A fully Bayesian esti-

mation approach is developed based on the use of monotone spline for the unknown

nondecreasing function and a data augmentation using normal latent variables. The

Gibbs sampler is straightforward to implement since all unknowns have standard form

of full conditional distributions. The proposed method performs well in estimating

the regression parameters and is robust to frailty distribution misspecification in our

simulation studies. Two real-life data sets are analyzed for illustration.
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2.1 Introduction

Interval-censored data arise naturally in many epidemiological and biomedical studies

in which subjects undergo examinations periodically. As a consequence, the failure

time of interest cannot be observed exactly but is known to fall within some time

interval (Sun, 2006). Furthermore, in many of such studies, subjects are correlated

because of sharing some common characteristics for being in the same cluster, leading

to clustered interval-censored data. Examples of clustered interval-censored data

studied in the literature include the diabetic retinopathy data (Ross, 1999; Lam et

al., 2010), the asthma data (Bellamy et al., 2004), the dental data (Wong et al.,

2005), the lymphatic filariasis data (Williamson et al., 2008), and the cow udder

infection data (Goethals et al., 2009). In those examples, clusters are naturally

formed when some subjects are coming from the same animal, person, or family, etc.

The intra-cluster correlation contributes additional complication to the analysis of

interval-censored data. Ignoring such intra-cluster association may lead to biased

estimation (Bellamy et al., 2004). In this chapter, we focus on estimating covariate

effects on the failure time subject to interval-censoring by taking into account of the

intra-cluster association among subjects.

There are some existing approaches for analyzing clustered interval-censored data.

Bellamy et al. (2004) proposed a normal frailty Weibull model and developed a

Newton-Raphson algorithm based on a numerically approximated likelihood with

Gaussian quadrature. Wong et al. (2005) developed a Bayesian method under the

normal frailty Weibull model and Wong et al. (2006) extended it to a frailty Cox

model and implemented the new method with WinBUGs. Goethals et al. (2009)

proposed a shared gamma frailty Weibull model and developed a Newton-Raphson

algorithm with all derivatives in explicit form. Zhang and Sun (2010) studied a

marginal Weibull survival model and developed an estimating equation-based ap-
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proach and a resampling-based approach to take into account the informative cluster

size. Lam et al. (2010) proposed a multiple imputation method based on gamma

frailty Weibull model. Kim (2010) proposed a joint modeling of the survival time and

the informative cluster size and used a frailty Cox model for the survival time. All

these approaches are within the proportional hazards model framework.

In this chapter, we propose a novel frailty semiparametric Probit model to analyze

clustered interval-censored data. The frailty Probit model specifies the conditional

cumulative distribution function (CDF) of failure time T given frailty ξ in the follow-

ing form,

F (t|x, ξ) = Φ{α(t) + x′β + ξ}, (2.1)

where Φ(·) is the CDF of a standard normal random variable, x is the covariate

vector, ξ ∼ N(0, σ2) is the frailty term, and α(·) is an unknown increasing function

with α(0) = −∞ and α(∞) = ∞. The unspecified function α makes model (1) a

semiparametric regression model. An equivalent form of model (1) is

α(T ) = −x′β − ξ + ε,

where ξ ∼ N(0, σ2) and ε ∼ N(0, 1). To see the equivalence clearly, we have Pr(T ≤

t|x, ξ) = Pr{α(T ) ≤ α(t)|x, ξ} = Pr(ε ≤ α(t) + x′β + ξ|x, ξ) = Φ{α(t) + x′β + ξ}.

While the proposed frailty Probit model has a simple form, surprisingly it is not

studied in the survival literature. The proposed normal frailty Probit model has sev-

eral appealing properties. First, the marginal distribution of T is a semiparametric

Probit model of Lin and Wang (2010), which indicates that marginal and conditional

CDF of T belong to the same family. Second, the conditional covariate effects given

the frailty are proportional to the marginal covariate effects. This allows one to esti-

mate the marginal covariate effects by fitting the frailty model (1) directly. Third, the

intra-cluster association can be simply summarized by two nonparametric association

measures in simple and explicit form. Details of these properties will be described
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in Section 2.2. It is worth noting that such nice properties are not pertained under

existing survival models in the literature.

Although the proposed frailty Probit model can be used to model other types

of survival data, we focus on its application to clustered interval-censored data and

develop an efficient Bayesian estimation approach in this chapter. We develop an

efficient Bayesian method for analyzing clustered interval-censored data under the

normal frailty Probit model. Specifically, we model the unknown increasing function

α(·) with monotone splines of Ramsay (1988) and estimate the regression parameters

and spline coefficients jointly. The proposed Gibbs sampler is promising and straight-

forward to implement because the full conditional distributions for all unknowns are

in standard form. Simulation results suggest that the proposed method works very

well in estimating the regression parameters as well as the intra-cluster association

and that its performance is robust to frailty distribution misspecification.

The remainder of the chapter is organized as follows. Section 2.2 discusses the

theoretic properties of the normal frailty Probit model. Section 2.3 presents our

estimation procedure in detail. Section 2.4 evaluates the proposed method using

simulation. Section 2.5 gives two real-life data applications. Section 2.6 concludes

with discussions.

2.2 The normal frailty Probit model

2.2.1 Marginal distribution and marginal effect

The frailty Probit model (1) is an extension to the semiparametric Probit model

of Lin and Wang (2010) by incorporating a normal frailty term that induces the

correlation among the subjects in the same cluster. The regression coefficients β in

(1) can be interpreted as the conditional covariate effects on the transformed failure

time given the frailty ξ. While this interpretation is appealing, it is conditioning

on the unobserved frailty. In this situation, marginal covariate effects are usually
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preferred when they are tractable.

Integrating out the normal frailty in the conditional CDF (1), we obtain the

marginal CDF of the failure time T in the following form,

F ∗(t|x) = Pr(T ≤ t|x) = Φ{α∗(t) + x′β∗},

where α∗(t) = cα(t), β∗ = cβ, and c = (1 + σ2)−1/2. This result first implies that the

failure time T follows a marginal semiparametric Probit model (Lin and Wang, 2010).

Second, there is a multiplicative relationship between the conditional covariate effects

β and marginal covariate effects β∗. The multiplicative constant is a deterministic

function of the normal frailty variance σ2. Due to this relationship, the regression

parameters β can be informally interpreted as marginal covariate effects up to a

constant, and the inferences based on β and β∗ will lead to the same conclusion.

This relationship also allows us to obtain the exact marginal covariate effects on the

failure time by just fitting the frailty model.

2.2.2 Intra-cluster association

The dependence among the subjects in the same cluster is induced by sharing a

common frailty in the cluster. The variance of frailties σ2 measures the correlation

among the subjects in the same cluster. In this following, we quantify the intra-cluster

association for clustered data in terms of two commonly used nonparametric associ-

ation measures: Spearman’s rank correlation coefficient ρs and median concordance

κ (Kruskal, 1958; Hougaard, 2000).

For illustration, let T1 and T2 denote the two correlated failure times for two

subjects in the same cluster. The two subjects can potentially have different covariates

x1 and x2. Spearman’s rank correlation coefficient (Kruskal, 1958) is defined as

ρs = 12
∫ 1

0

∫ 1

0
S(S−1

1 (u), S−1
2 (v))dudv − 3,
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where S(t1, t2) = P (T1 > t1, T2 > t2) is the joint survival function, S1 and S2 are the

marginal survival functions of T1 and T2, and S−1
1 and S−1

2 are the inverse functions

of S1 and S2, respectively.

Median concordance, also called quadrant measure by Kruskal (1958), is another

nonparametric measure of association between correlated random variables and is

defined as

κ = E[sign{(T1 −M1)(T2 −M2)}],

where sign(·) is the sign function taking 1, 0, and -1 for positive, zero, and negative

argument, respectively, and M1 and M2 are the population medians of T1 and T2,

respective.

Spearman’s rank correlation coefficient ρs and median concordance κ (Kruskal,

1958; Hougaard, 2000) have been widely used for modeling correlated responses, es-

pecially for non-survival data, due to the following nice properties. First, they are

nonparametric in the sense that their definitions do not rely on specific forms of the

distributions of the correlated responses. Second, both of them have a good interpre-

tation of the correlation. They take values between -1 and 1, with positive (negative)

values representing a positive (negative) relationship. Their magnitude measures the

degree of the correlation, a larger magnitude indicating a stronger correlation. They

both take 0 when the responses are independent. Third, both of the two measures

are invariant to marginal monotone transformations. Here by saying ρs is invariant

to monotone transformation, we mean ρs(T1, T2) = ρs(g1(T1), g2(T2)) for any two in-

creasing (decreasing) transformations g1 and g2. The following theorem summarizes

the intra-cluster association explicitly under the normal frailty Probit model (1) for

clustered survival or non-survival data.

Theorem 1: The intra-cluster association for clustered data under the normal frailty

Probit model (1) is characterized by Spearman’s correlation coefficient ρs and median
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concordance κ as follows,

ρs = 6π−1 sin−1(ρ/2) and κ = 2π−1 sin−1(ρ),

where ρ = σ2/(1 + σ2).

The proof of this theorem is sketched in the appendix. This theorem is promising

as it provides explicit expression of measures to quantify the intra-cluster association.

From Theorem 1, it agrees with the common sense that the association is determined

by the frailty variance and that a larger variance σ2 will lead to a stronger dependence

among the subjects within the same cluster. It is also clear that the intra-cluster

association is positive under model (1) since ρ is positive. This is expected because ξ

is a shared frailty in model (1) by all subjects in the same cluster. Another interesting

observation is that both ρs and κ are free of covariates, indicating that the intra-

cluster association does not depend on the covariates of the subjects.

Pearson’s correlation coefficient is widely used for describing linear correlation for

bivariate distributions, especially bivariate (multivariate) normal distribution. How-

ever, it seldom appears in survival literature because it usually does not have a simple

or explicit form under commonly used survival models. It is also the case under the

normal frailty model (1). The major reason of that is that Pearson’s correlation

coefficient is not invariant under marginal monotone transformations. Kendall’s con-

cordance τ is commonly used to measure the correlation between bivariate random

variables in the survival literature. It is a rank-based nonparametric measure and

is invariant under marginal transformation. However, Kendall’s τ does not seem to

be well defined for the clustered data because its definition requires two independent

pairs of correlated random variables.
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2.3 The proposed approach

2.3.1 Data and likelihood

Suppose there are n clusters in a survival study. Let Tij denote the failure time of

interest for the jth subject in the ith cluster and (Lij, Rij] the observed interval for

Tij, j = 1, ...,mi and i = 1, ..., n. The total number of subjects is M = ∑n
i=1 mi. We

rewrite the normal frailty Probit model at the subject level as follows,

α(Tij) = −x′ijβ − ξi + εij, (2.2)

where εijs are independent standard normal random variables, xij is the covariate

vector associated with the jth subject in cluster i, and ξi ∼ N(0, σ2) is the shared

frailty among all the subjects in cluster i. The observed data for clustered interval-

censored data are thus {(Lij, Rij),xij}, j = 1, ...,mi, i = 1, ..., n.

In this chapter, we assume that the failure time is independent of the observation

process that produces the observed interval conditioning on the covariates. This non-

informative censoring assumption is quite general and is commonly adopted in the

literature for studying interval-censored data. Under this assumption, the observed

likelihood can be written as

Lobs =
n∏
i=1

∫
σ−1φ(σ−1ξi)

mi∏
j=1
{F (Rij|xij, ξi)− F (Lij|xij, ξi)}dξi, (2.3)

where φ(·) is the density function of a standard normal random variable. The integrals

in the observed likelihood (3.1) do not have an explicit form when mi ≥ 2, and this

makes the observed likelihood difficult to use directly for estimating the unknown

parameters (β, σ2, α) using Bayesian methods. To alleviate such difficulty, we consider

the following conditional likelihood Lcon by treating all ξis as latent variables,

Lcon =
n∏
i=1

mi∏
j=1

F (Rij|xij, ξi)δij1{F (Rij|xij, ξi)− F (Lij|xij, ξi)}δij2

{1− F (Lij|xij, ξi)}δij3σ−1φ(σ−1ξi) (2.4)
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where δij1, δij2 and δij3 are the censoring indicators for the jth subject in cluster i

indicating left, interval, and right censoring, respectively. The introduction of these

censoring indicators is to distinguish the three censoring types and to help make clear

of our estimation procedure below.

2.3.2 Modeling α(·) with monotone splines

Estimating under the normal frailty semiparametric Probit model (1) is challenging

due to the existence of the infinite-dimensional parameter α. The same problem oc-

curs when analyzing interval-censored data under all other semiparametric regression

models because there does not seem to exist an appropriate partial likelihood that

does not contain the unspecified function. To reduce the number of parameters in

α while also maintain adequate modeling flexibility, we model α(t) with monotone

splines of Ramsay (1988) following the idea in Lin and Wang (2010),

α(t) = γ0 +
k∑
l=1

γlbl(t), (2.5)

where bl’s are monotone spline basis functions and {γl}kl=1 are nonnegative coefficients

to ensure the monotonicity of α. The spline basis functions bl’s are essentially piece-

wise polynomials, and each of the basis function has three stages: equal to 0 at the

first stage, increasing from 0 to 1 at the second stages, and then staying plateau at

the third stage. These stages and shape are determined by the knot placement and

the degree of the splines. Knots are usually a sequence of increasing time points in an

interval, within which one wish to estimate the unknown function. The degree con-

trols the overall smoothness of the basis functions, taking value 1 for piecewise linear,

2 for quadratic functions, and 3 for cubic functions, etc. Once the knots and degree

are specified, the spline basis functions are deterministic and can be obtained using

iterative formula. Our R function for calculating such basis functions is available

upon request.
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Under the monotone spline representation (2.5), the only unknown parameters

involved in α are the spline coefficients γl’s. The number k of spline coefficients,

i.e., the number of basis functions, is equal to the number of interior knots plus the

degree (Ramsay, 1988). In general, the more knots taken, the more modeling flexi-

bility, when using splines. However, using too many knots requires much additional

computational time and may cause over-fitting problems. Following Wang and Lin

(2011) and Wang and Dunson (2011) among others using the monotone splines, we

take a moderate number (10 ∼ 30) of equal-spaced knots to balance the computa-

tional burden and modeling flexibility. A shrinkage prior will be used for all spline

coefficients functioning to penalize large coefficients and shrink the coefficients for

unnecessary basis functions towards zero.

2.3.3 Prior specification and posterior computation

The conditional likelihood (3.2) is still complicated for sampling unknown param-

eters using Bayesian methods with any prior specifications. Although one can use

Metropolis-Hastings or adaptive rejection Metropolis sampling algorithms in this case,

we aim to develop a more efficient method that allows to sample all unknowns from

standard distributions. To this end, we adopt the following data augmentation mo-

tivated by Lin and Wang (2010),

zij ∼ N(α(tij) + x′ijβ + ξi, 1),

where tij = Rij1(δij1=1) +Lij1(δij1=0), i.e., tij takes the right end point of the observed

interval in the case of right censoring and takes the left end point otherwise for all i

and j. The augmented data likelihood function is,

Laug =
n∏
i=1

mi∏
j=1

φ{zij − α(tij)− x′ijβ − ξi}1Cij
(zij)

σ−1φ(σ−1ξi), (2.6)

where Cij is the constrained space of zij and takes (0,∞) if δij1 = 1, (α(Lij) −

α(Rij), 0) if δij2 = 1, and (−∞, 0) if δij3 = 1. Integrating out all zij’s in the above
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augmented likelihood leads to the conditional likelihood (3.2). The augmented like-

lihood (3.3) is very appealing because it leads to a normal distribution form for each

of the unknown parameters and latent variables.

We take the following prior specifications: a multivariate normal prior N(β0,Σ0)

for β, a gamma prior Ga(aσ, bσ) for frailty precision σ−2, a normal prior N(m0, ν
−1
0 )

for the unconstrained γ0, and independent exponential priors Exp(η) for all {γl}kl=1.

We further assign a gamma prior Ga(aη, bη) for η. The independent Exponential priors

for γl’s and Gamma prior for the hyperparameter η have been proved successful to

shrink the spline coefficients towards zero and prevent overfitting problems in Lin and

Wang (2010), Cai et al. (2011), Wang and Dunson (2011) among others. These priors

are natural and allow easy sampling of all the parameters from their full conditional

distributions in standard form. Combining these priors and the augmented likelihood

(3.3), we develop the following Gibbs sampler.

1. Sample zij from a truncated normal, N(α(tij) + x′ijβ + ξi, 1)1Cij
(zij), for each

j and i.

2. Sample γ0 from N(E0,W
−1
0 ) where W0 = ν0 +N and

E0 = W−1
0

ν0m0 +
n∑
i=1

mi∑
j=1

[zij −
k∑
l=1

γlbl(tij)− x′ijβ − ξi]
 .

3. Sample all γl’s for l = 1, ..., k. For each l ≥ 1, let Wl = ∑n
i=1

∑mi
j=1 b

2
l (tij).

(a) If Wl = 0, sample γl from the prior Exp(η).

(b) If Wl > 0, sample γl from N(El,W−1
l )1(γl>d

∗
l
), where

El = W−1
l

 n∑
i=1

mi∑
j=1

bl(tij)[zij − γ0 −
∑
l′ 6=l

γl′bl′(tij)− x′ijβ − ξi]− η
 ,

d∗l = max(c∗l , 0), and c∗l = max
{(i,j): δij2=1}

[
−zij −

∑
l′ 6=l γl′{bl′(Rij)− bl′(Lij)}
bl(Rij)− bl(Lij)

]
.
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4. Sample β from N(β̂, Σ̂), where Σ̂ = (Σ−1
0 + ∑n

i=1
∑mi
j=1 xijx

′
ij)−1 and

β̂ = Σ̂
Σ−1

0 β0 +
n∑
i=1

mi∑
j=1
{zij − α(tij)− ξi}xij

 .
5. Sample ξi from N(µi, σ2

i ) for i = 1, ..., n, where σ2
i = (mi + σ−2)−1 and

µi = σ2
i

mi∑
j=1
{zij − α(tij)− x′ijβ}

 .
6. Sample η from Ga(aη + k, bη + ∑k

l=1 γl).

7. Sample σ−2 from Ga(aσ + 0.5n, bσ + 0.5 ∑n
i=1 ξ

2
i ).

This Gibbs sampler is very appealing in that all the full conditional distributions are

standard distributions and easy to sample from. This property is not pertained in

most of the Bayesian methods for analyzing survival data. The Gibbs sampler enjoys

good mixing and fast convergence from our observation.

2.4 Simulation studies

Simulation studies were conducted to evaluate the performance of our method. We

considered the following model for failure time Tij involving both discrete and con-

tinuous covariates,

F (t|xij1, xij2, ξi) = Φ{α(t) + xij1β1 + xij2β2 + ξi},

where xij1 was generated from a standard normal distribution, xij2 was generated from

a Bernoulli distribution with probability of success 0.5, and ξi was generated from a

normal distribution with mean 0 and standard deviation 1. We took true α(t) = 1+t+

2 log(t), true β1 equal to 1 or 0, and true β2 equal to 1, 0, or −1, yielding 6 simulation

setups. We generated failure time Tij by solving equation F (Tij|xij1, xij2, ξi) = uij

numerically, where uij is a random number from uniform distribution U(0, 1) for

each i and j. We generated the observed interval (Lij, Rij] for the failure time Tij
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as follows. First we generated an observation process for each subject. We took a

random number of observational times for each subject so that subjects can have

different numbers of observational times. The random number was taken to be 1

plus a Poisson random variable with mean 3. The observation times were obtained

by generating the gap times between adjacent observation times independently from

an exponential distribution with mean 0.3. Then the observed interval for Tij was

determined by the two adjacent observation times (may include 0 or∞) that contains

Tij. The specification of the observation process was chosen so that none of the

censoring types dominates the others. For example, in the case of no covariates (i.e.,

β1 = β2 = 0), there are on average 23.58% left-censored observations, 54.69% interval-

censored observations, and 21.73% right-censored observations across all simulated

data sets. We generated 500 data sets for each setup and each data set contains 50

clusters with 4 subjects in each cluster.

To specify monotone splines, we used 2 for the degree to ensure adequate smooth-

ness of the splines and took 14 equally spaced interior knots between the minimum

and maximum values of the end points of the observed intervals excluding 0 and a

∞ for each data set. This leads to 16 basis spline functions in use throughout the

simulation. We adopted the following specifications of the priors for the unknown

parameters. We took m0 = 1 and ν0 = 0.1 leading to a normal prior for γ0 with a

large variance, aη = bη = 1 leading to a Ga(1, 1) prior for η, aσ = bσ = 1 leading

to a Ga(1, 1) prior for σ−2, and β0 = 0 and Σ0 = M(∑
i,j xijx

′
ij)−1 in the bivariate

normal prior for β = (β1, β2)′, where M = 200 is the total number of subjects in each

simulated data. The prior distribution of β is a g-prior with a unit information vari-

ance (Zellner, 1986). Fast convergence of the MCMC was observed in our simulation

and this is probably due to the fact that all the full conditional distributions are of

standard form in the proposed Gibbs sampler. We summarized results based on 5000

iterations of MCMC after discarding a first 1000-iteration as a burn-in. Convergence
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of MCMC was checked by using various convergence criteria in the R package CODA

(Plummer et al., 2006).

Table 2.1 shows the frequentist operating characteristics of the key parameter

estimates from the proposed Bayesian method: BIAS the difference between the

average of the 100 point estimates (posterior means) and the true value, ESD the

average of the estimated standard deviations of their posterior distributions across

the 500 data sets, SSD the sample standard deviation of the 500 point estimates, and

CP95 the 95% coverage probability, i.e., the proportion of the 95% credible intervals

from 500 data sets that include the true value of the parameter. As seen from Table

2.1, the proposed method works very well in estimating the regression parameters

and the standard deviation of frailty distribution σ with small bias in the point

estimates, ESDs being close to SSDs, and the 95% coverage probabilities being close

to 0.95 for all of the parameters. Table 1 also provides the estimation results of the

intra-cluster association in terms of Spearman’s correlation coefficient ρs and median

concordance κ using Theorem 1. These results suggest that our method can estimate

the intra-cluster association very accurately.

Our method is developed under an assumption that the frailty has a normal distri-

bution. To investigate how sensitive our method is to this assumption, we conducted

additional simulations to apply our method to some cases of non-normal frailties.

Two scenarios were considered when generating data: (1) a mixture of normal with

ξi ∼ 0.45N(0.5, 0.42) + 0.55N(−0.5, 0.182) and (2) a log-Gamma distribution, i.e.,

exp(ξi) ∼ Ga(1, 1). Everything else was kept the same as in the above simulations.

Table 2.2 shows the estimation results of regression parameters under the two sce-

narios based on 100 data sets, with each data set containing 50 clusters and each

cluster containing 4 subjects. The results are very promising with small bias in the

point estimates, ESD close to SSD, and CP95 close to 0.95. This suggests that our

method is robust to frailty distribution misspecifications. This robustness makes our
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Table 2.1: Performance of the proposed method in the case of using 50 clusters.
BIAS denotes the difference between the average of the 500 point estimates and the
true value, ESD the average of the estimated standard deviations, SSD the sample
standard deviation of the 500 point estimates, and CP95 the 95% coverage probability.

True BIAS SSD ESD CP95

β1=0 0.0035 0.1210 0.1122 0.922
β2=-1 -0.0540 0.2380 0.2400 0.948
σ = 1 0.0426 0.1935 0.1959 0.954
ρ = 0.48 0.0072 0.0839 0.0878 0.954
κ = 0.33 0.0100 0.0641 0.0666 0.954
β1=1 0.0072 0.0839 0.0878 0.954
β2=-1 -0.0550 0.2408 0.2469 0.956
σ = 1 0.0448 0.1985 0.1998 0.958
ρ = 0.48 0.0075 0.0863 0.0893 0.958
κ = 0.33 0.0104 0.0659 0.0677 0.958
β1=0 0.0016 0.1121 0.1123 0.952
β2=0 -0.0300 0.2228 0.2221 0.954
σ = 1 0.0365 0.1896 0.1961 0.968
ρ = 0.48 0.0045 0.0832 0.0884 0.968
κ = 0.33 0.0080 0.0634 0.0669 0.968
β1=0 -0.0018 0.1152 0.1152 0.948
β2=1 -0.0019 0.2628 0.2455 0.936
σ = 1 0.0305 0.1862 0.1992 0.962
ρ = 0.48 0.0016 0.0825 0.0902 0.962
κ = 0.33 0.0058 0.0627 0.0681 0.962
β1=1 0.0329 0.1612 0.1524 0.932
β2=0 -0.0226 0.2285 0.2278 0.958
σ = 1 0.0350 0.1911 0.1987 0.960
ρ = 0.48 0.0034 0.0839 0.0896 0.960
κ = 0.33 0.0072 0.0639 0.0678 0.960
β1=1 0.0311 0.1593 0.1560 0.944
β2=1 0.0044 0.2716 0.2512 0.920
σ = 1 0.0317 0.1928 0.2027 0.974
ρ = 0.48 0.0014 0.0856 0.0915 0.974
κ = 0.33 0.0058 0.0650 0.0692 0.974
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method more appealing and more applicable to handle complicated real life clustered

interval-censored data.

Table 2.2: Simulation results when the frailty distribution is misspecified. Scenario
1: ξi ∼ 0.45N(0.5, 0.42) + 0.55N(−0.5, 0.182) and scenario 2: exp(ξi) ∼ Ga(1, 1).

Scenario 1 Scenario 2

True BIAS ESD SSD CP95 BIAS ESD SSD CP95

β1=0 0.0014 0.1080 0.1144 0.934 -0.0068 0.1154 0.1146 0.960
β2=0 -0.0119 0.2142 0.2103 0.958 -0.0078 0.2272 0.2292 0.944
β1=0 0.0018 0.1078 0.1107 0.944 0.0079 0.1161 0.1157 0.950
β2=-1 -0.0690 0.2297 0.2272 0.944 -0.0359 0.2477 0.2449 0.948
β1=0 0.0024 0.1116 0.1133 0.948 0.0057 0.1172 0.1115 0.958
β2=1 0.0578 0.2380 0.2361 0.954 0.0079 0.2485 0.2461 0.962
β1=1 0.0787 0.1468 0.1542 0.926 0.0130 0.1541 0.1506 0.958
β2=0 0.0165 0.2201 0.2201 0.946 -0.0096 0.2319 0.2310 0.950
β1=1 0.0802 0.1461 0.1559 0.914 0.0285 0.1573 0.1634 0.956
β2=-1 -0.0942 0.2379 0.2453 0.934 -0.0409 0.2548 0.2587 0.950
β1=1 0.0766 0.1510 0.1654 0.914 0.0286 0.1583 0.1677 0.956
β2=1 0.0457 0.2420 0.2453 0.952 0.0050 0.2529 0.2627 0.940

2.5 Two real-life data applications

2.5.1 Mastitis data

Udder infections are known to be closely associated with reduced milk yield and

poor milk quality (Seegers et al., 2003). In a recent study of infectious mastitis, a

total of 100 cows were screened roughly monthly from the time of parturition until

the lactation period, although the gap between two adjacent screenings was longer

in the summer due to lack of personnel. The response of interest is the time to

udder infection for each udder quarter and is typically interval-censored due to the

periodic examinations. If no infection was found at a specific udder quarter at the

end of lactation or at the last examination of the cow’s follow-up, then the infection
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time was right-censored. Among a total of 400 udder quarters, 26 had left-censored

infection times, 291 had interval-censored infection times, and 83 had right-censored

infection times. In this study, a cow forms a natural cluster with four udder quarters in

each cluster, yielding clustered interval-censored data for the udder quarter infection

times.

There are two covariates: the number of calvings and the position of udder quarter.

The number of calvings is a cow level covariate and is shared by all udder quarters on

the same cow. Following Goethals et al. (2009), we categorize this variable into three

groups: cows with only one calving, cows with between two and four calvings, and

cows with more than four calvings. Two dummy variables x1 and x2 are introduced

for each udder quarter to distinguish these three groups, with x1 = x2 = 0 if the cow

has only one calving, x1 = 1 and x2 = 0 if the cow has two to four calvings, and

x1 = 0 and x2 = 1 if the cow only has more than four calvings. We define binary

variable x3 to denote the position of each udder quarter with 0 for front and 1 for

rear position.

We apply our method to this data set using degree 2 and 14 interior knots for

monotone splines, 20000 iterations were run with the first 5000 discarded as burn in,

Table 2.3 shows the posterior means and the corresponding 95% credible intervals

of the covariate effects. From Table 3, it seems that neither the position of the

udder quarter nor the number of calvings has a significant effect on the infection time

because both of their 95% credible intervals contain 0. Table 2.3 also listed the the

posterior means and 95% credible intervals for Spearman’s correlation coefficient ρs

and for median concordance κ by using Theorem 1. These results suggest that there

is a low to medium intra-cluster association among the udder quarter infections from

the same cow.

26



Table 2.3: Estimation results for the mastitis data: posterior mean and 95% credible
interval.

Mean 95% CI
β1 -0.2286 (-0.4624, 0.0036)
β2 -0.0316 (-0.3621, 0.3002)
β3 0.1402 (-0.0788, 0.3598)
σ 0.5300 (0.4079, 0.6673)
ρs 0.2102 (0.1364, 0.2954)
κ 0.1411 (0.0911, 0.1994)

2.5.2 Lymphatic filariasis data

Lymphatic filariasis is a disease caused by the parasite Wuchereria bancrofti and

transmitted by infectious mosquitoes. When people are bitten by infectious mosquitoes,

W. bancrofti larvae enter the skin of people and later grow to adult worms in the

lymphatic vessels of people (Williamson et al., 2008). Ultrasound is used to visualize

the move of those adult worms and determine their live status. To compare the effec-

tiveness of two treatments, DEC/ALB and DEC alone, in killing the adult worms, a

study involving 47 men with lymphatic filariasis was conducted in Brazil (Dreye et al.,

2006). These participants were randomized to receive either DEC/ALB combination

or DEC alone for their treatment. A total of 78 adult worms were detected among the

47 participants before treatment. Ultrasound examinations were then taken at 7, 14,

30, 45, 60, 90, 180, 270, and 365 days on each participant after treatment. The failure

time of interest is the time to clearance of a worm nest, which is not exactly observed

but is known to be larger than the last examination time of observing the live worm

and be smaller than the first examination time of observing the dead worm. Among

the 78 worms, 9 of their clearance times are left censored, 41 are interval-censored,

and 28 are right-censored. Also, the clearance times of those worms within the same

participant are naturally correlated, leading to clustered interval-censored data.

Effects of two cluster level covariates on the clearance time are of interest: the
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difference between treatments and age of participant. We use x1 = 1 for DEC treat-

ment group and 0 for DEC/ALB group and use x2 for standardized age in the model.

We apply our method to this data set using degree 2 and 14 interior knots for mono-

tone splines, 20000 iterations were run with the first 5000 discarded as burn in, and

the results are shown in Table 2.4. From Table 2.4, neither age or treatment group

shows a significant effect on the clearance time based on the conventional 95% cred-

ible intervals. This conclusion agrees with the findings in (Williamson et al., 2008).

However, there seems to be substantial evidence that DEC treatment is more effective

than DEC/ALB treatment in clearing the worms because the posterior probability

P (β1 > 0|Data) = 0.9554. This can be also observed from the estimated posterior

density function of β1 in Figure 2.1. Table 2.4 also lists the posterior means and the

corresponding 95% credible intervals for Spearman’s correlation coefficient ρs and

median concordance κ. These estimation results suggest that the clearance times of

the worms from the same person are strongly correlated.

Table 2.4: Estimation results for the lymphatic filariasis data: posterior mean and
95% credible interval.

Mean 95% CI
β1 1.1775 (-0.1779, 2.6091)
β2 0.2160 (-0.5250, 1.0018)
σ 2.1601 (1.2813, 3.3849)
ρs 0.7953 (0.6087, 0.9129)
κ 0.6064 (0.4312, 0.7436)

2.6 Discussion

In this chapter, we propose a normal frailty Probit model for analyzing clustered

interval-censored data. The proposed model enjoys several appealing properties.

First, this model is semiparametric since the nondecreasing function α(·) is unspeci-

fied. Second, the conditional CDF and the marginal CDF of the failure time belong
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Figure 2.1: Estimated posterior density of the treatment effect in Lymphatic filariasis
data.

to the same family. Third, the conditional covariate effects given frailty are propor-

tional to the marginal covariate effects. Forth, the intra-cluster association can be

summarized by two nonparametric association measures in simple and explicit form.

It is worth noting that the frailty Probit model can be used to model multivariate

survival data and that all those nice properties remain. In particular, Spearman’s

correlation coefficient ρs and median concordance κ have the same form as in Theorem

1 for describing the correlation between two correlated failure times. In this case,

Kendall’s τ is well defined and takes the same form as κ.

We develop a fully Bayesian method for analyzing clustered interval-censored

data. Our Gibbs sampler is straightforward to implement and enjoys fast conver-

gence mainly due to the fact that the full conditional distributions of all unknowns

are of standard form. Our method shows a good performance in estimating the

regression parameters and the intra-cluster association and is robust to the frailty

distribution misspecification as observed in our simulation studies.
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Chapter 3

A Bayesian approach to test cluster effects

for clustered interval-censored failure time

data under Probit model

In chapter 2 of this dissertation, it is shown that ignoring cluster effect may lead

to biased estimation when applying a marginal probit model to clustered interval-

censored data, where the cluster effect exists due to subjects coming from the same

family, animal, clinic center, or region of living. However, in many cases the cluster

effect may be very weak or even not exist. Applying the proposed method in chapter

2 may be problematic. To solve this issue, we propose two new frailty Probit models

for analyzing potentially clustered interval-censored data. Both models allow us to

test whether there is a global cluster effect. Our second model further allows to test

local tests in order to identify which clusters have strong local effects.

Efficient Gibbs samplers are developed under both models for posteriors computa-

tion. Bayes factor is used for evaluating the global and local tests. Simulation results

suggest both model perform well for the global test. Our second model also performs

well for the local tests.

Keywords: Clustered interval-censored data, Probit model, semiparametric regres-

sion, Gibbs sampler, Bayes factor, Bayesian hypothesis testing, global/local test.
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3.1 Introduction

In clinical studies, it is very common to have subjects coming from different groups

or locations. Although the effect of groups or locations is not of interest in the study

in most cases, ignoring such effect may lead to biased estimation and misleading

conclusion. This has been addressed in literature for both binary and continuous

response data (Agresti 2000, Localio 2001, Gould 1998.) as well as time to event

data (Hougaard 1994, Hunter 1989, Klein 1992, Lancaster 1979, Lancaster 1980,

Pickles 1994). In this chapter we focus on the latter when the response variable is

time to event data. Two well established approaches are commonly employed to deal

with time to event data with cluster effects. One way is to fit a proportional hazards

model with a fixed effect for each group (Klein 2003). Another way is to introduce a

frailty term into the model to incorporate the group effect (Klein 1992, Vaupel 1979,

Nielsen 1992). To test the group effects, in most studies, the proportional hazard

model are employed, and a Wald or likelihood ratio test is used to test the group

effects. In other cases, a score test of homogeneity is derived from the marginal

partial likelihood (Commenges 1995).

A more complicated situation in survival, which is not uncommon at all, is when

the time to event or time to failure is not observed exactly, but is known to fall within

some interval (Kalbfleisch 2002, Sun 2006). This type of data is called clustered

interval-censored data. In this situation, it is just as important as in the regular

survival data case to be able to test the cluster effects. However, very limited literature

addressed this issue and provided testing procedures for the cluster effect for interval-

censored data. Bellamy et al. (2004) developed a score test for the variance of the

frailty term under weibull model with added frailty term in order to determine over-

dispersion from a frequentist prospective. Wong et al. (2005) used the same model

and derived a way to estimate the intra-cluster correlation between the items within
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the same cluster using a Bayesian methodology.

The literature listed above solved the problem under a fully specified parametric

model. This does not provide enough flexibility, as in the real-life data the underlying

distribution is usually unknown. Furthermore, there is no literature available to test

cluster effect for individual clusters. In this chapter, we propose a semiparametric

Probit model to solve this problem and provide both a global test and local tests

simultaneously. To incorporate the potential cluster effects, a frailty term is added to

the survival function. Furthermore, we develop an efficient Gibbs sampler algorithm

for the posterior computation. To tackle the problem of testing the cluster effect, we

develop a Bayesian hypothesis testing approach via Bayes factor.

The remainder of this chapter is organized as follows. In section 3.2 we introduce

the proposed model to test the frailties globally. In section 3.3, we layout the second

model for testing the frailties locally for individual clusters. We evaluate our approach

through a simulation study in section 3.4. In section 3.5, our method is applied to

a real life application: lymphatic filariasis data. We conclude the chapter in section

3.6.

3.2 The proposed approach

3.2.1 Data and Likelihood

Suppose there are n clusters in the study. Let Tij denote the failure time of interest

for the jth subject in the ith cluster. The observed interval for Tij is (Lij, Rij),

j = 1, ...mi and i = 1, ..., n. Therefore, the total number of subjects is M = ∑n
i=1 mi.

We propose the following frailty semiparametric Probit model as follows:

α(Tij) = −x′ijβ − ξi + εij

where α(·) is an unknown increasing function with α(0) = −∞ and α(∞) =∞, ξi is

the frailty term for the ith cluster, xij is the vector of covariates for the jth subject
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in the ith cluster, and β is the vector of regression parameters.

The purpose of this study is to be able to detect whether the cluster effects

exist overall, and furthermore to assess how strong the specific cluster effect is. To

accomplish this goal, we consider the following prior setup with ξi follows a normal

distribution with mean 0 and variance σ2 if σ2 > 0, and ξi = 0 if σ2 = 0. We

propose the model the frailty variance σ2 with a mixture prior probability distribution

π(σ2) = pδ0 + (1 − p)IG(1, 1). The variance σ2 with probability p equals 0, and

otherwise follows a inverse gamma distribution. This will help to test the existence of

cluster effect globally, we layout the Bayesian hypothesis testing procedure via Bayes

factor. For the globally test, we need to test if the cluster effects exist in at least one

of the clusters, therefore, the hypothesis is setup as follows:

Ho : σ2 = 0

,

Ha : σ2 > 0

The null hypothesis indicates no frailties exists, i.e. ξi = 0 for all i, in the model.

First we need to derive the likelihood function. As mentioned in many literature, we

assume that the failure time is independent of the observation process that produces

the observed interval conditioning on the covariates. Under this assumption, the

observed likelihood can be expressed as

Lobs =
n∏
i=1

∫
π(ξi)

mi∏
j=1
{F (Rij|xij, ξi)− F (Lij|xij, ξi)}dξi, (3.1)

where φ(·) is the density function of a standard normal random variable. The above

likelihood does not have a closed form, therefore it is hard to estimate the unknown

parameter (β, σ2, α, p) directly. To overcome this difficulty, we treat all the ξ′is as
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latent variables and work with the following conditional likelihood

Lcon =
n∏
i=1

mi∏
j=1

F (Rij|xij, ξi)δij1{F (Rij|xij, ξi)− F (Lij|xij, ξi)}δij2

{1− F (Lij|xij, ξi)}δij3π(ξi) (3.2)

where δij1, δij2 and δij3 are the censoring indicators for the jth subject in cluster i

indicating left, interval, and right censoring, respectively. The purpose of introducing

these censoring indicators is to distinguish the three censoring types and to help

making clear of our estimation procedure later on.

3.2.2 Prior specification and posterior computation

The conditional likelihood (3.2) is still complicated for sampling unknown param-

eters using Bayesian methods with any prior specification. Although one can use

Metropolis-Hastings or adaptive rejection Metropolis sampling method in this case,

we developed a more efficient way that allows us to sample all unknowns from stan-

dard distributions. We adopted the following data augmentation motivated by Lin

and Wang (2010),

zij ∼ N(α(tij) + x′ijβ + ξi, 1),

where tij = Rij1(δij1=1) +Lij1(δij1=0), i.e., tij takes the right end point of the observed

interval in the case of left censoring and takes the left end point otherwise for all i

and j. The augmented data likelihood function is,

Laug =
n∏
i=1

mi∏
j=1

φ{zij − α(tij)− x′ijβ − ξi}1Cij
(zij)

 π(ξi), (3.3)

where Cij is the constrained space of zij and takes (0,∞) if δij1 = 1, (α(Lij) −

α(Rij), 0) if δij2 = 1, and (−∞, 0) if δij3 = 1. Integrating out all zij’s in the above

augmented likelihood leads to the conditional likelihood (3.2). The augmented like-

lihood (3.3) is very appealing because it leads to a normal distribution form for each

of the unknown parameters and latent variables.
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We take the following prior specifications: a multivariate normal prior N(β0,Σ0)

for β, a normal prior N(m0, ν
−1
0 ) for the unconstrained γ0, and independent expo-

nential priors Exp(η) for all {γl}kl=1. We further assign a gamma prior Ga(aη, bη) for

η. The independent Exponential priors for γl’s and Gamma prior for the hyperpa-

rameter η have been proved successful to shrink the spline coefficients towards zero

and prevent overfitting problems in Lin and Wang (2010), Cai et al. (2011), Wang

and Dunson (2011) among others. To avoid MCMC sample of σ2 being stuck at 0,

we introduce latent variable to reparameterize ξi and σ2 following the idea in Dunson

and Chen (2011) and Pan et. at. (2015). Let ρ = 1(σ = 0) be an indicator that

equals 1 if σ = 0 and 0 otherwise. For computational purpose, σ2 and ξi can be

expressed as follows:

σ = (1− ρ)σ̃ and ξi = (1− ρ)ξ̃i

where ξ̃i follows normal distribution with mean 0 and variance σ̃2 and σ̃2 follows

IG(1,1).

These priors are natural and allow easy sampling of all the parameters from their

full conditional distributions in standard form. Combining these priors and the aug-

mented likelihood (3.3), we develop the following Gibbs sampler.

1. Sample zij from a truncated normal, N(α(tij) + x′ijβ + ξi, 1)1Cij
(zij), for each

j and i.

2. Sample γ0 from N(E0,W
−1
0 ) where W0 = ν0 +N and

E0 = W−1
0

ν0m0 +
n∑
i=1

mi∑
j=1

[zij −
k∑
l=1

γlbl(tij)− x′ijβ − ξi]
 .

3. Sample all γl’s for l = 1, ..., k. For each l ≥ 1, let Wl = ∑n
i=1

∑mi
j=1 b

2
l (tij).

(a) If Wl = 0, sample γl from the prior Exp(η).

35



(b) If Wl > 0, sample γl from N(El,W−1
l )1(γl>d

∗
l
), where

El = W−1
l

 n∑
i=1

mi∑
j=1

bl(tij)[zij − γ0 −
∑
l′ 6=l

γl′bl′(tij)− x′ijβ − ξi]− η
 ,

d∗l = max(c∗l , 0), and c∗l = max
{(i,j): δij2=1}

[
−zij −

∑
l′ 6=l γl′{bl′(Rij)− bl′(Lij)}
bl(Rij)− bl(Lij)

]
.

4. Sample β from N(β̂, Σ̂), where Σ̂ = (Σ−1
0 + ∑n

i=1
∑mi
j=1 xijx

′
ij)−1 and

β̂ = Σ̂
Σ−1

0 β0 +
n∑
i=1

mi∑
j=1
{zij − α(tij)− ξi}xij

 .
5. Sample ξ̃i from N(0, σ̃2) if ρ = 1, otherwise , sample ξ̃i from N(µi, σ2

i ) for

i = 1, ..., n, where σ2
i = (mi(1− ρ)2 + σ̃−2)−1 and

µi = σ2
i

mi∑
j=1
{zij − α(tij)− x′ijβ}

 .
6. sample ρ from Bernoulli (π̃0), where

π̃0 = π0

π0 + (1− π0)C

where C = L(ξi = ξ̃i)/L(ξi = 0) and L(ξi = ξ̃i) = exp(−1/2 ∑n
i=1

∑mi
j=1{zij −

α(tij)−x′ijβ− ξ̃i}2) and L(ξi = 0) = exp(−1/2 ∑n
i=1

∑mi
j=1{zij−α(tij)−x′ijβ}2)

7. Sample η from Ga(aη + k, bη + ∑k
l=1 γl).

8. Sample σ̃−2 from Ga(aσ + 0.5n, bσ + 0.5 ∑n
i=1 ξ̃i

2).

9. updating σ−2 and ξi for i = 1, ..., n. according to the following:

σ = (1− ρ)σ̃ and ξi = (1− ρ)ξ̃i

To test the existence of frailty at the global level, the posterior probability of

ρ = 1 is calculated by averaging the value of ρ from the MCMC iterations. This is

equivalent to the posterior probability of the null hypothesis. Using a pre-determined

confidence level, one can make conclusion from the result of the test.
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3.3 Alternative method for global test and local test

3.3.1 proposed model

In this section, we introduce the second model we proposed. The first model in

section 3.2 can test the existence of the frailty term globally. One may also be

interested in testing the existence of frailty for the individual clusters. The second

model is proposed with the hope of solving this exact problem. To accomplish this

goal, we need to assign a prior probability distribution to the frailty term ξ′is from

α(Tij) = −x′ijβ − ξi + εij, so that for each individual cluster, the frailty term can

be zero or non zero. To allow such flexibility, we propose the frailty term with the

following mix probability distribution, π(ξi) = pδ0(ξi) + (1− p)N(ξi;µ, σ2). This set

up is very flexible since cluster effects can exist in some or all of the clusters or they

may not exist in any of the clusters at all. For the local test for cluster i, we need

to test H0 : ξ = 0 vs Ha : ξi 6= 0 conditioning on p from the semiparametric Probit

model:

3.3.2 Prior specification and posterior computation

We take the following prior specifications: a multivariate normal prior N(β0,Σ0) for

β, a gamma prior Ga(aσ, bσ) for frailty precision σ−2, a normal prior N(m0, ν
−1
0 ) for

the unconstrained γ0, and independent exponential priors Exp(η) for all {γl}kl=1. We

further assign a gamma prior Ga(aη, bη) for η. The independent Exponential priors

for γl’s and Gamma prior for the hyperparameter η have been proved successful to

shrink the spline coefficients towards zero and prevent overfitting problems in Lin

and Wang (2010), Cai et al. (2011), Wang and Dunson (2011) among others. A beta

prior Beta(a, b) for p. These priors are natural and allow easy sampling of all the pa-

rameters from their full conditional distributions in standard form. Combining these

priors and the augmented likelihood (3.3), we develop the following Gibbs sampler.
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1. Sample zij from a truncated normal, N(α(tij) + x′ijβ + ξi, 1)1Cij
(zij), for each

j and i.

2. Sample γ0 from N(E0,W
−1
0 ) where W0 = ν0 +N and

E0 = W−1
0

ν0m0 +
n∑
i=1

mi∑
j=1

[zij −
k∑
l=1

γlbl(tij)− x′ijβ − ξi]
 .

3. Sample all γl’s for l = 1, ..., k. For each l ≥ 1, let Wl = ∑n
i=1

∑mi
j=1 b

2
l (tij).

(a) If Wl = 0, sample γl from the prior Exp(η).

(b) If Wl > 0, sample γl from N(El,W−1
l )1(γl>d

∗
l
), where

El = W−1
l

 n∑
i=1

mi∑
j=1

bl(tij)[zij − γ0 −
∑
l′ 6=l

γl′bl′(tij)− x′ijβ − ξi]− η
 ,

d∗l = max(c∗l , 0), and c∗l = max
{(i,j): δij2=1}

[
−zij −

∑
l′ 6=l γl′{bl′(Rij)− bl′(Lij)}
bl(Rij)− bl(Lij)

]
.

4. Sample β from N(β̂, Σ̂), where Σ̂ = (Σ−1
0 + ∑n

i=1
∑mi
j=1 xijx

′
ij)−1 and

β̂ = Σ̂
Σ−1

0 β0 +
n∑
i=1

mi∑
j=1
{zij − α(tij)− ξi}xij

 .
5. Sample ξi from p∗δ0 +(1−p∗)N(µi, σ2

i ) for i = 1, ..., n, where σ2
i = (mi+σ−2)−1

and

µi = σ2
i

mi∑
j=1
{zij − α(tij)− x′ijβ}

 .
and

p∗ = pL(ξi = 0)
pL(ξi = 0) + (1− p)(mi + σ−2)−1σ−1

6. Sample p from beta{a+ ∑
i 1(ξi = 0), b+ ∑

i 1(ξi 6= 0)}

7. Sample η from Ga(aη + k, bη + ∑k
l=1 γl).

8. Sample σ−2 from Ga(aσ + 0.5n, bσ + 0.5 ∑n
i=1 ξ

2
i ).
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This Gibbs sampler is very appealing in that all the full conditional distributions are

standard distributions and easy to sample from. This is not common in Bayesian

methods for interval censored survival data. The Gibbs sampler enjoys good mixing

and fast convergence from our observation.

3.3.3 Bayes factor calculation

To calculate bayes factor (BF) for the global test, we need to find the posterior odds

and the prior odds respectively. Prior odds is defined the ratio of the probability of

the alternative hypothesis and the probability of null hypothesis i.e.,

Prior Odds = P (Ha)
P (H0) ,

where P (H0) = P (∩ni=1{ξi = 0}) = E(pn), P (Ha) = 1−P (∩ni=1{ξi = 0}) = 1−E(pn).

The value of prior odds is completely determined once the prior distribution is given.

In this study, we consider two different prior probability distributions for parameter

p, an equal prior probability setup and an unequal prior probability setup. In the

equal probability setup, we let the prior probability of the null hypothesis and the

alternative hypothesis of the global test to be the same, i.e. P (H0|prior) = 0.5. The

resulting prior odds is 1. To find a distribution beta(a, b) that will satisfy the above

condition, we need to solve the equation E(pn) = 0.5. By fixing a = 1, the equation

can be simplified as 2Γ(1 + b)Γ(n + 1) − Γ(b + n + 1) = 0, and b can be solved

numerically once n is determined. In the unequal probability setup, we let the prior

probability for p to be beta(1, 1). Therefore, the resulting prior odds equals n after a

simple calculation. The way of finding posterior odds is the same in both setups, the

key is to find the conditional expectation of pn given data which can be estimated

using posterior mean from MCMC. For the local test, to find the Bayes Factor for

cluster i, we take the MCMC chain for ξi from step 5, 1
J

∑J
1 1(ξi 6= 0)/ 1

J

∑J
i 1(ξi = 0)

provide an estimate of posterior odds. Therefore, the BF for cluster i can be found

easily.
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3.4 Simulation studies

The two proposed methods provide ways to test the existence of cluster effects, i.e.

whether the failure times within a cluster are independent or correlated.

To evaluate our method, a simulation study is conducted. Three simulation

scenarios are considered: (1) all of the cluster effects are nonzero (2) all of the

cluster effects are zero (3) cluster effects are generated in the following way: ξi ∼

pδ0 + (1 − p)N(0, σ2) where 0 < p < 1. It is clear that the subject within clusters

are not independent in the first case, independent in the second case and partially

independent in the third case. The purpose of having three different simulation sce-

narios is to show that our method can be applied to very general cases in real life.

Simulation performance will be evaluated in scenario 1 and scenario 2 for both mod-

els. The second model will also be evaluated in scenario 3. We also consider the two

different prior probability setups discussed in section 3.3.3 in an effort to demonstrate

the effectiveness of our method, we considered the following model for failure time

Tij involving both discrete and continuous covariates,

F (t|xij1, xij2, ξi) = Φ{α(t) + xij1β1 + xij2β2 + ξi},

where xij1 was generated from a standard normal distribution, xij2 was generated from

a Bernoulli distribution with probability of success equaling 0.5, ξ′is are generated

according to the three scenarios mentioned above. In scenario 1, all of the cluster

effects are not zero, ξi is generated from a normal distribution with mean 0 and

standard deviation 1. In scenario 2, all of the cluster effects are zero. ξi is set to zero.

For scenario 3, 20% of the cluster effects ξ′is are generated from standard normal

distribution and the rest were set to zero. Under each of the three scenarios, we take

true α(t) = 1 + t + 2 log(t), true β1 = 1 or 0, and true β2 = 1, 0, or −1, yielding 6

simulation setups in each of the three scenarios.
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We generated failure time Tij by solving equation F (Tij|xij1, xij2, ξi) = uij numer-

ically, where uij was a random number from uniform distribution U(0, 1) for each i

and j. We generated the observed interval (Lij, Rij] for the failure time Tij as fol-

lows. First we generated an observation process for each subject. We took a random

number of observational times for each subject so that subjects could have different

numbers of observational times. The random number was taken to be 1 plus a Poisson

random variable with mean 3. The observation times were obtained by generating

the gap times between adjacent observation times independently from an exponential

distribution with mean 0.3. Then the observed interval for Tij was determined by the

two adjacent observation times (may include 0 or ∞) that contains Tij. The way we

generated the observation times for each subject was very general that subjects were

not required to have the same number of observation times and the same observation

intervals. We generated 100 data set for each setup and each data set contained 50

clusters with 4 subjects in each cluster.

To specify monotone splines, we used 3 for the degree to ensure adequate smooth-

ness of the spline basis functions and took 14 equally spaced interior knots between

the minimum and maximum values of the end points of the observed intervals ex-

cluding 0 and a ∞ for each data set. This leads to 16 basis spline functions in use

throughout the simulation.

We adopted the following specifications of the priors for the unknown parameters.

We take m0 = 1 and ν0 = 0.1 leading to a normal prior for γ0 with a large variance,

aη = bη = 1 leading to a Ga(1, 1) prior for η, aσ = bσ = 1 leading to a Ga(1, 1)

prior for σ−2, and β0 = 0 and Σ0 = M(∑
i,j xijx

′
ij)−1 in the bivariate normal prior

for β = (β1, β2)′. The prior distribution of β is a g-prior with a unit information

variance (Zeller 1986). As discussed in the previous section, we use prior distribution

beta(1, 0.1582) for p in the equal prior probability setup, and we use beta(1, 1) for p

in the unequal prior probability setup,. Fast convergence of the MCMC was observed
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in our simulation and this is probably due to the fact that all the full conditional

distributions are of standard form in the proposed Gibbs sampler. We summarized

results based on 5000 iterations of MCMC after discarding a first 1000-iteration as

a burn-in. Convergence of MCMC was checked by using various convergence criteria

in the R package CODA (Plummer 2006).

The result of the regression parameter estimates are shown in Table 3.1, 3.2 and

3.3 which compares the result of the first and the second model. Both our models

performed equally well in terms of the regression parameter estimates. The point

estimates of the covariate coefficients are very close to the true values. ESD is the

average of the estimated standard deviations of the posterior distribution of the pa-

rameter across the 100 data sets. SSD is the sample standard deviation of the point

estimates from the 100 data sets. SSD and ESD are very close in all the setups for

all the parameters. CP95 is the 95% coverage probability, i.e. the proportion of the

95% credible intervals from each of the 100 data sets that include the true value of

the parameter. The results shows that all the parameter in all setups, CP95 are

very close to 0.95. The results in table 3.1 and 3.2 provide strong evidence that our

method performs very well in estimating the regression parameters.

Table 3.1: Scenario 1: all of the cluster effects are not zero.

First model Second model
True POINT SSD ESD CP95 POINT SSD ESD CP95
β1=0 0.0067 0.0867 0.0866 0.96 0.0086 0.0843 0.0851 0.95
β2=1 0.9941 0.1769 0.1842 0.96 0.0.9094 0.1962 0.1867 0.89
β1=0 0.0013 0.0863 0.0851 0.94 0.0109 0.0895 0.0837 0.94
β2=-1 -0.9874 0.1833 0.1786 0.93 -0.9642 0.2238 0.1839 0.94
β1=0 -0.0014 0.0861 0.0852 0.94 -0.0086 0.0846 0.0834 0.95
β2=0 -0.0149 0.1661 0.1680 0.95 -0.0001 0.1761 0.16450 0.96
β1=1 0.9970 0.1013 0.1090 0.96 0.9901 0.1437 0.1127 0.95
β2=0 -0.0164 0.1748 0.1718 0.94 -0.0164 0.1740 0.1713 0.96
β1=1 1.0007 0.1076 0.1113 0.96 0.9798 0.1416 0.1130 0.96
β2=1 0.9741 0.1721 0.1854 0.96 0.9537 0.2011 0.1880 0.94
β1=1 1.0086 0.1102 0.1093 0.97 0.9719 0.1472 0.1112 0.97
β2=-1 -0.1048 0.1825 0.1839 0.96 -1.0001 0.1803 0.1827 0.95

To evaluate the performance of the models in terms of the hypothesis testing, we
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summarize the result in table 3.4 and 3.5 respectively. For model 1, the posterior

probability of ρ are summarized in table 3.4. In scenario 1, for all 6 setups in at least

91 out of 100 datasets, we reject the null hypothesis and conclude the alternative

hypothesis is true which is the correct test results. A small probability P (ρ = 1)

indicates the probability of null hypothesis being true is low. In scenario 2, non

of the 100 datasets provide significant evidence to reject the null hypothesis. For

model 2, Bayes factor is computed for each data sets and are used to evaluate the

effectiveness of our methods in terms of successfully testing the existence of cluster

effects. Bayes factor that is less than 1 shows negative support of the alternative

hypothesis. Bayes factor that is greater than 100 shows decisive evidence against

null hypothesis (Jeffrey 1961). Results are shown in Table 3.4. In scenario 1, data

were generated with cluster effects for all the clusters. The bayes factor estimates

successfully confirms that with at least 92 and as high as 99 data sets having BF

greater than 100 in all simulation setups. In scenario 2, at least 93 out of 100 data

sets have BF less than 1 which provide very strong evidence that the cluster effects

does not exist. The purpose of having scenario 3 is to find out how our method

perform when the cluster effect exist in some clusters but not all. The results show

that when 80% true cluster effect does not exist, the BF that are greater than 100

is very rare. It is plausible to say our method provide a strong evidence when the

cluster effects is very strong or very weak.

Local tests are performed in scenario 3. For the convenience of tracking the

performance, we generate true cluster effect from N(0, 2) for cluster i = 1, ..., 10 and

assign it to be 0 for the rest of the cluster effects. Our results show that for cluster 11

to 50, those that does not have within cluster association, our test gives conclusion

correctly at least 98 out of 100 times. But for cluster 1 to 10, our tests are correct

only between 50% to 60% of the time. We suspect this is due to the fact that when

the cluster effect is too close to 0, the test is not able to differentiate it from 0, thus
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gives higher type II error rate.

3.5 Lymphatic filariasis data

Lymphatic filariasis is a disease caused by the parasite Wuchereria bancrofti and

transmitted by infectious mosquitoes. When people are bited by infectious mosquitoes,

W. bancrofti larvae enter the skin of people and later grow to adult worms in the

lymphatic vessels of people (Willianmson 2003). Ultrasound is used to visualize the

move of those adult worms and determine their live status. To compare the effec-

tiveness of two treatments, DEC/ALB and DEC alone, in killing the adult worms,

a study involving 47 men with lymphatic filariasis was conducted in Brazil (Dreyer

2006). These participants were randomized to receive either DEC/ALB combination

or DEC alone for their treatment. A total of 78 adult worms were detected among the

47 participants before treatment. Ultrasound examinations were then taken at 7, 14,

30, 45, 60, 90, 180, 270, and 365 days on each participant after treatment. The failure

time of interest is the time to clearance of a worm nest, which is not exactly observed

but is known to be larger than the last examination time of observing the live worm

and be smaller than the first examination time of observing the dead worm. Among

the 78 worms, 9 of their clearance times are left censored, 41 are interval-censored,

and 28 are right-censored. Also, the clearance times of those worms within the same

participant are naturally correlated, leading to clustered interval-censored data.

Effects of two cluster level covariates on the clearance time are of interest: the

difference between treatments and age of participant. We use x1 = 1 for DEC treat-

ment group and 0 for DEC/ALB group and use x2 for standardized age in the model.

We apply our method to this data set using degree 3 and 14 interior knots for mono-

tone splines. Table 3.7 shows the result. We compared result in both prior setups.

Neither age or treatment group show a significant effect on the clearance time based

on the conventional 95% credible intervals. This conclusion agrees with the findings
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Table 3.2: Scenario 2: all of the cluster effects are zero.

First model Second model
True POINT SSD ESD CP95 POINT SSD ESD CP95
β1=0 0.0067 0.0789 0.0787 0.95 0.0041 0.0796 0.0768 0.94
β2=1 0.9941 0.1720 0.1648 0.93 0.9666 0.1699 0.1605 0.95
β1=0 0.0074 0.0769 0.0788 0.94 -0.0075 0.0679 0.0753 0.97
β2=-1 -0.9790 0.2171 0.1614 0.92 -0.9017 0.1571 0.1531 0.99
β1=0 0.0021 0.0717 0.0785 0.97 0.0044 0.0698 0.0756 0.96
β2=0 -0.0070 0.1485 0.1518 0.97 0.0007 0.1470 0.1466 0.96
β1=1 1.0211 0.1093 0.0990 0.93 1.0113 0.0938 0.0953 0.94
β2=0 0.0030 0.1608 0.1557 0.94 -0.0130 0.1628 0.1519 0.93
β1=1 1.0263 0.1059 0.1013 0.94 1.0045 0.1094 0.0982 0.94
β2=1 1.0269 0.1748 0.1698 0.93 1.0115 0.1558 0.1653 0.99
β1=1 1.0308 0.1008 0.0991 0.94 1.0115 0.1064 0.0954 0.93
β2=-1 -1.0310 0.1723 0.1661 0.94 -1.0062 0.1458 0.1611 0.96

Table 3.3: Scenario 3: 20% of the cluster effects are generated from standard normal
distribution and the rest were set to zero.

First model Second model
True POINT SSD ESD CP95 POINT SSD ESD CP95
β1=0 0.0065 0.0862 0.0857 0.94 -0.0024 0.0853 0.0848 0.96
β2=1 0.9755 0.1922 0.1809 0.94 0.9577 0.1882 0.1805 0.94
β1=0 0.0002 0.0868 0.0845 0.94 -0.0094 0.0877 0.0836 0.95
β2=-1 -1.0050 0.1827 0.1769 0.95 -1.0239 0.1850 0.1785 0.93
β1=0 0.0012 0.0776 0.0840 0.97 -0.0079 0.654 0.0827 0.99
β2=0 0.0064 0.1616 0.1655 0.95 0.0038 0.1535 0.1623 0.97
β1=1 1.0011 0.1157 0.1078 0.94 0.9863 0.1192 0.1071 0.93
β2=0 -0.0142 0.1762 0.1694 0.95 -0.0271 0.1581 0.1689 0.96
β1=1 1.0050 0.1195 0.1096 0.93 0.9933 0.1117 0.1105 0.93
β2=1 0.9813 0.1806 0.1828 0.92 0.9986 0.1836 0.1841 0.96
β1=1 1.0223 0.1184 0.1089 0.94 1.0043 0.1265 0.1081 0.94
β2=-1 -1.0250 0.2084 0.1818 0.92 -0.9888 0.1876 0.1809 0.93

Table 3.4: Posterior probability of ρ = 1

True value of β1, β2 (1, 1) (1,−1) (1, 0) (0, 1) (1,−1) (1, 0)
Scenario 1 # of dataset with P (ρ = 1) < 0.05 92 91 93 92 94 96
Scenario 2 # of dataset with P (ρ = 1) < 0.05 0 0 0 0 0 0
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Table 3.5: Bayes factor estimates

True value of (β1, β2) (0, 1) (0,−1) (0, 0) (1, 0) (1, 1) (1,−1)

unequal prior
Scenario 1 BF > 100 99 97 92 98 97 99
Scenario 2 BF < 1 98 97 99 97 97 98
Scenario 3 BF > 100 2 0 1 4 4 6

Scenario 3 10 < BF < 100 6 8 4 13 15 6

equal prior
Scenario 1 BF > 100 96 98 93 99 97 99
Scenario 2 BF < 1 93 96 98 94 96 90
Scenario 3 BF > 100 11 8 3 6 9 9

Scenario 3 10 < BF < 100 14 18 9 15 23 25

in (Willianmson 2003). The results in Table 3.6 confirms that having different prior

setups has little effect on the parameter estimates. The log of Bayes Factor estimate

is 85 and 82 respectively, which is strongly in favor of the alternative hypothesis.

There is strong evidence to support the existence of cluster effects. Furthermore, we

rerun the model without the group effect and compare the result to ones from our

model. It is very clear that the model tend to underestimate the parameter, in fact,

the effect of treatment group become significant compare to our method. This result

suggest ignoring cluster effect lead to seriously biased estimates.

Local test has also been performed for the data. For the total of 47 clusters, the

Bayes factors are valued between 2 to 6. The result suggest the local cluster effects

are not very strong. This is due to the small sizes in this data set.

Table 3.6: Filariasis data: compare covariate effect estimates and CI for different
setups

unequal prior setup equal prior setup No group effects

β1
Mean 1.1352 1.1450 0.7210
95% CI (-0.2165, 2.4445) (-0.1451, 2.5002) (0.1852, 1.2692)

β2
Mean 0.2268 0.2068 0.0740
95% CI (-0.4946, 0.9896) (-0.5516, 0.9899) (-0.2009, 0.3425)

log(BF ) 85.09 82.57

46



3.6 Discussion

In this chapter, we proposed two Bayesian estimation approaches which allow to test

the cluster effects for clustered interval censored failure time data. In most literature,

statistical test for cluster effect can only provide the global test result, our method

can test the existence of individual cluster effect as well. The test result is given by

a Bayes factor which can be easily computed from the MCMC sample. Simulation

result show our test approach works well for the global test. For the local test, one

may encounter higher Type II error rate when the cluster effect is not strong enough.

Further research is required to improve the accuracy of the test for all cases.
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Chapter 4

Joint modeling of informative cluster size and

clustered interval-censored failure time data

4.1 Introduction

Clustered Interval-censored data arises commonly in medical studies. In most cases,

the cluster structure induces correlation among subjects within the same cluster.

Some of the examples are listed: the patients treated at the same medical center,

the bacterias come from the same host. When such data structure is presented, it

is very important to in cooperate it in the statistical models. For clustered interval-

censored data, common methods for analyzing such data do not assume correlation

between the failure time and the cluster size. However, in some cases the cluster size

is statistically correlated with the failure times which is called informative cluster size

in the literature. One famous example in the literature is the Lymphatic Filariasis

(LF) study discussed by Williamson et al. (2008) among others. The goal of the

study is to compare the effect of two different treatments in clearing the worms:

co-administration of diethylcarbamazine and albendazole (DEC/ALB) versus DEC

alone. There are 47 patients included in the study. One or more nests of adult filarial

worms were detected for the patients which result in a total of 78 worm counts. It

is shown in the study, in either treatment, it took longer to clear the worms in men

with multiple worms than in men with a single worm. In another example of a dental

study (Wong et al., 2005), the times to arrest dentin caries could be correlated with

the number of the active dentin caries from the same child.
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A common approach for this scenario is to use within cluster resampling (WCR)

technique that assigns equal sampling probabilities for all subunits (Williamson et

al., 2008; Zhang et al., 2010). Catalano and Ryan (1992) considered cluster size as

a covariate in the model for discrete and continuous response. Dunson et al. (2003)

proposed a Bayesian approach to joint modeling the cluster size and failure time

data. Kim (2010) proposed to joint modeling the cluster size and failure time for the

interval-censored data.

To deal with the informative cluster size problem in the context of the clustered

interval-censored data, we propose to joint modeling the cluster size and failure time

under the Probit model framework. The cluster size is modeled as an ordinal response

using a parametric Probit model, and a separate frailty semiparametric Probit model

is used to model the clustered failure times. The two submodels are connected through

a shared random effect. The idea is similar to Kim (2010), but both the proposed

models and the methods are quite different. The remaining of this chapter is organized

as follows: In Section 4.2, the notation and the proposed model are introduced. Prior

specification and the posterior computation is discussed in Section 4.3. A simulation

study is conducted to evaluate the proposed model in Section 4.4. In Section 4.5,

the proposed approach is illustrated with Lymphatic Filariasis (LF) data analysis.

Section 4.6 provides a brief discussion.

4.2 Proposed model

Consider a study that involves the clustered interval-censored data, there are a total

of n independent clusters. For each cluster i, there are mi subjects. Therefore, the

total number of subject in the study is N = ∑n
i=1 mi. The failure time, Tij, cannot be

observed exactly but is known to fall within an interval (Lij, Rij]. When Lij = 0, Tij

is left censored, when Rij =∞, it is right censored; otherwise, it is interval-censored

data. Let δij1, δij2 and δij3 be censoring indicator variables for the jth subject in
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cluster i indicating left-censoring, interval-censoring, and right-censoring respectively.

Let xi be a q-vector of cluster specific covariates and zij be a p-dimensional vector

of covariates for subject j in cluster i, i = 1, ..., n, j = 1, ...,mi. Therefore the

observed data for the study are {(Lij, Rij],xi,mi, zij, δij}, where δij = (δij1, δij2, δij3)′

j = 1, ...,mi, i = 1, ..., n

The proposed joint model includes two parts. A model for cluster size and a model

for the subunit failure time, and the two models are connected with a shared frailty.

It is assumed that the clustered size and the failure time s are independent given

the shared frailty. To model the cluster size, we adopt an ordinal regression model

regarding the cluster size. We treat m1, · · · ,mn as K category ordinal responses

with P (1 ≤ mi ≤ K) = 1, i = 1, ..., n. Given a random effect ui and cluster-specific

covariate xi, the model for the cluster size mi is given by:

P (mi ≤ k|xi, ui) = Φ(sk + x′iγ + ui), k = 1, ..., K (4.1)

where γ is a vector of regression coefficients and S = (s1, ..., sK) are ordered, category-

specific cutoff points or thresholds with sK = ∞. The random effects ui’s represent

the heterogeneity among clusters and are assumed to follow a normal distribution

with mean 0 and variance σ2
u.

The failure times model is specified as,

F (t|ui, vi) = Φ{α(t) + z′ijβ + ηui + vi} (4.2)

. where β is a vector of regression coefficients. Random effect vi is introduced to

induce the correlation among failure time of the subjects within the same cluster.

We assume vi follows a normal distribution with mean 0 and variance σ2
v . α(t) is a

unknown monotone increasing function with α(0) = −∞ and α(∞) =∞. (4.1) and

(4.2) accommodate dependency between the cluster size mi and the failure time Tij

in cluster i through the shared latent variable ui. The relationship of between failure

50



time and the cluster size is depending on the parameter η. We assume η follows a

two point probability distribution with probability p equals 1 and probability 1 − p

equals −1. The sign of eta indicates the relationship between the cluster size and the

failure times. For example, η = 1 indicates a positive relationship between a small

cluster size and earlier failure times, and η = −1 indicates that a larger cluster size

results in earlier failure times. The joint observed likelihood is given by:

Lobs =
n∏
i=1

∫ ∫
π(ui)π(vi)

mi∏
j=1

P (Lij ≤ tij ≤ Rij|zij, ui, vi)P (mi|xi, ui)duidvi (4.3)

where P (Lij ≤ tij ≤ Rij|zij, ui, vi) = Φ{α(Rij)+z′ijβ+ηui+vi}−Φ{α(Lij)+z′ijβ+

ηui + vi}, and P (mi|xi, ui) = Φ(mi + x′iγ + ui)− Φ(mi − 1 + x′iγ + ui).

The above integral does not have a closed form, therefore it is difficult to estimate

the parameters directly. To overcome this, we treat all the random effects ui’s and

vi’s as latent variables and work with the conditional likelihood below instead:

Lcon =
n∏
i=1

mi∏
j=1

P (Lij ≤ tij ≤ Rij|zij, ui, vi)P (mi|xi, ui)π(ui)π(vi) (4.4)

Finally, to deal with the unknown monotone increasing function α(t), we employ

the monotone splines for the modeling as in the previous chapters.

4.3 Prior specification and posterior computation

A Bayesian Gibbs sampler is employed for the estimation procedure. The above

conditional likelihood would not lead to closed form posterior distributions no matter

what prior distributions are used. Although Metropolis-Hastings or adaptive rejection

sampling algorithm can be used, great computation complexity and inefficiency result.

To facilitate efficient computation, we introduce two data augmentations to allow all

the unknowns to be sampled from standard distributions. Motivated by Lin and

Wang (2010), we adopt the following:

wij ∼ N(α(tij) + z′ijβ + ηui + vi, 1),
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where tij = Rij1(δij1=1) + Lij1(δij1=0), the right end point of the observed interval in

the case of right censoring and the left end point otherwise, for all i and j. The latent

variable wij is subjected to a constraint Cij which defines the space of wij. wij take

(0,∞) if δij1 = 1, (α(Lij) − α(Rij), 0) if δij2 = 1, and (−∞, 0) if δij3 = 1. Introduce

a normal latent variable for the cluster size model as follows,

qi ∼ N(−x′iγ − ui, 1)

, i = 1, ..., n, where qi is subject to a constraint: αmi−1 < qi < αmi
. The resulting

augmented likelihood can be written as
n∏
i=1

mi∏
j=1

φ(wij−α(tij)−z′ijβ−ηui−vi)1Cij(wij)φ(qi+x′iγ+ui)1(αmi−1 ≤ qi ≤ αmi
)π(ui)π(vi)

Integrating out all the wij and qi will lead to conditional likelihood (4.4). To utilize

Gibbs sampler algorithm, we assign conjugate prior to each of the unknown parame-

ters from the augmented likelihood. We specify the following prior distribution: as-

sign a normal prior N(γ̃0;m0, ν
−1
0 ) for the unconstrained γ̃0. We assign independent

exponential prior Exp(η̃) for all {γ̃l}hl=1. A gamma prior Ga(aη̃, bη̃) for the hyper-

parameter η̃. For the parameter coefficient β and γ, assign multivariate normal prior

N(β0,Σβ0
) and N(γ0,Σγ0

) respectively. Assign gamma prior Ga(av, bv) for σ−2
v and

a gamma prior Ga(au, bu) for σ−2
u . Finally, assign normal prior N(mη, ν

−1
η ) for η.

Based on the above prior specifications and the augmented likelihood. The Gibbs

sampler algorithm is given as the following:

1. Sample latent variables wij for i = 1, ..., n, j = 1, ...,mi.

(a) if δij1 = 1, sample wij from N(α(tij) + z′ijβ + ηui + vi, 1)1(wij>0).

(b) if δij2 = 1, sample wij from N(α(tij) + z′ijβ + ηui + vi, 1)1(α(Lij)−α(Rij)<wij<0).

(c) if δij3 = 1, sample wij from N(α(tij) + z′ijβ + ηui + vi, 1)1(wij<0).

2. Sample γ̃0 from N(E0,W
−1
0 ) where W0 = ν0 +N and

E0 = W−1
0

ν0m0 +
n∑
i=1

mi∑
j=1

[wij −
k∑
l=1

γ̃lbl(tij)− z′ijβ − ηui − vi]
 .
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3. Sample γ̃l for l = 1, ..., h. For each l ≥ 1, let Wl = ∑n
i=1

∑mi
j=1 b

2
l (tij).

(a) If Wl = 0, sample γ̃l from the prior Exp(η̃).

(b) If Wl > 0, sample γ̃l from N(El,W−1
l )1(γ̃l>d

∗
l
), where

El = W−1
l

 n∑
i=1

mi∑
j=1

bl(tij)[wij − γ̃0 −
∑
l′ 6=l

γ̃l′
′bl′(tij)− z′ijβ − ηui − vi]− η̃



d∗l = max(c∗l , 0)

and

c∗l = max
(i,j):δij2=1

[
−wij −

∑
l′ 6=l γ̃l′(bl′(Rij)− bl′(Lij))
bl(Rij)− bl(Lij)

]
.

4. Sample η̃ from ga(aη̃ + k, bη̃ + ∑h
l=1 γ̃l)

5. Sample β fromN(β̂, Σ̂), where Σ̂ = (Σ−1
0 + ∑n

i=1
∑mi
j=1 zijz

′
ij)−1 and

β̂ = Σ̂

Σ−1
0 β +

n∑
i=1

ni∑
j=1

(wij − α̃(tij)− ηui − vi)zij


6. Sample vi, for i = 1, ..., n, from N(µvi

, σ2
vi

) where σ2
vi

= (mi + σ−2
v )−1 and

µvi
= σ2

vi


mi∑
j=1

(wij − γ̃0 −
h∑
l=1

γ̃lbl(tij)− z′ijβ − ηui)

 .

7. Sample σ−2
v from Ga(av + n/2, bv + 1/2 ∑n

i=1 v
2
i ).

8. Sample qi from N(−x′iγ − ui, 1)1(αmi−1 ≤ qi ≤ αmi
) for i = 1, ..., n.

9. Sample ui from N(µui
, σ2

ui
) where σ2

ui
= (miη

2 + 1 + σ−2
u )−1 and

µui
= σ2

ui

[
η

∑mi
j=1(wij − α̃(tij)− z′ijβ − vi)− qi − x′iγ

]
for i = 1, ..., n.

10. Sample σ−2
u from ga(au + n/2, bu + 1/2 ∑n

i=1 u
2
i ).

11. Sample γ from N(γ̂, Σ̂γ) where Σ̂γ = (Σ−1
γ0

+ ∑n
i=1 xix

′
i)−1 and

γ̂ = Σ̂γ(Σ−1
γ0
γ0 + ∑n

i=1(qi − ui)xi)

12. Sample η from N(Eη,W−1
η ) where Wη = (∑n

i=1 miu
2
i + νη) and

Eη = W−1
η

[
mηνη + ∑n

i=1
∑mi
j=1(wij − α̃(tij)− z′ijβ − vi)ui

]
13. Sample αj, j = 1, ..., K − 1, from uniform(a, b) where a = max{max{qij :

mi = j}, αj−1} and b = min{min{qij : mi = j + 1}, αj+1})
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4.4 Simulation

In this section, we evaluate the proposed method via a simulation study. The goal is

to assess the performance of our approach primarily on parameter estimation and to

compare our method with a naive approach where the cluster size effect is ignored.

We generated 100 datasets. In each dataset, there are 100 clusters. We generated

the cluster specific covariate x = (x1, x2) in the following way: x1 was generate from

N(0, 1), and x2 was generated from Bernoulli distribution with probability 0.5.This

specification was chosen so that we can evaluate the proposed method with both

discrete and continuous covariates. Similarly, we generated the sub-unit specific co-

variate z = (z1, z2) from a standard normal distribution and a Bernoulli distribution.

The frailties u′is and v′is are generated from identically independent standard normal

distribution N(0, 1). For the covariate coefficients, true β1 was taken to be 1, and

true β2 was taken to be 1 or −1. The true γ1 was taken to be 1, and true γ2 was 1

or −1, which result in 4 different combination configurations for covariates.

To generate the cluster size for each cluster, we specified the thresholds α =

(α1, α2, α3) = (−2,−0.5, 1) for the ordinal model (4.1). Given the above setup of

parameter specification, we generate the cluster size from (4.1) the following way.

For cluster i, we evaluate Φ(sk + x′iγ + ui), k = 1, ..., 3. As a result, the interval

(0, 1) can be partitioned into 4 sub-intervals. A random number was generated from

uniform distribution, and the cluster size was determined by the order of the interval

that contained the random number. Cluster sizes ranged from 1 to 4 for all clusters.

Once the cluster size was generated, the total number of the subjects in the

dataset was known. The next step was to generate failure time for each subject. We

specified the true α(t) = 1+ t+2 log(t), which is a non-linear function. We generated

failure time Tij by solving equation F (Tij|xij1, xij2, ξi) = rij numerically, where rij

is a random number from uniform distribution U(0, 1) for each i and j. We then
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generated the observed interval (Lij, Rij] for the failure time Tij as follows. First

we generate an observation process for each subject. We took a random number of

observational times for each subject so that subjects can have different numbers of

observational times. The random number was taken to be 1 plus a Poisson random

variable with mean 3. The observation times are obtained by generating the gap times

between adjacent observation times independently from an exponential distribution

with mean 0.3. Then the observed interval for Tij was determined by the two adjacent

observation times (may include 0 or ∞) that contains Tij. The way we generate the

observation times was very general that subjects are not required to have the same

number of observation times and the same observation intervals.

We examines the estimates of the covariate coefficients as well as the variance of

the frailty terms and the thresholds for the ordinal model. The result are listed in

table 4.1. We summarized the frequentist operating characteristics of the parameter

estimates from the proposed Bayesian method. For each parameter configuration,

POINT is the average of the 100 point estimates (posterior mean). ESD is the

average of the estimated standard deviations of their posterior distributions across

the 100 data sets, SSD is the sample standard deviation of the 100 point estimates,

and CP95 is the 95% coverage probability, i.e. the proportion of the 95% credible

intervals from 100 data sets that included the true value of the parameter. In all 4

cases, the parameter estimates are all very close to the true value, the SSD and ESD

are very close which indicates a good convergence of the MCMC chain. The CP95

are close to 0.95. The results indicate that our model works very well in different

scenarios.

Furthermore, for comparison purpose, we consider the reduced model where the

dependence structure of the data between failure time and cluster size is ignored. The

reduced model is essentially two models without the shared frailty term ui. A Probit

model for the failure time as the one described in Chapter 2, and a Ordinal model
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Table 4.1: Performance of the proposed method in the case of using 100 clusters,
POINT denotes the average of 100 point estimates, ESD is the average of the es-
timated standard deviation, SSD is the sample standard deviation of the 100 point
estimates, and CP95 is the 95% coverage probability.

True POINT SSD ESD CP95
β1=1 0.9977 0.2129 0.2044 0.94
β2=1 0.9742 0.3560 0.3625 0.96
γ1=0.5 0.5155 0.1854 0.1670 0.91
γ2=0.5 0.5420 0.3074 0.3034 0.92
α1=-2 -2.1610 0.3323 0.3301 0.92
α2=-0.5 -0.5342 0.2435 0.2326 0.91
α3=1 1.0533 0.2872 0.2603 0.92
σu=1 1.0559 0.2001 0.1867 0.96
σv=1 1.0476 0.2287 0.2291 0.94
β1=1 1.0375 0.1965 0.2076 0.97
β2=-1 -1.0864 0.3721 0.3752 0.94
γ1=0.5 0.5279 0.1565 0.1688 0.97
γ2=0.5 0.5677 0.3034 0.3115 0.93
α1=-2 -2.1636 0.3793 0.3353 0.90
α2=-0.5 -0.5422 0.2288 0.2378 0.95
α3=1 1.0772 0.2776 0.2674 0.93
σu=1 1.0691 0.1564 0.1880 1
σv=1 1.0714 0.2176 0.2390 0.98
β1=1 1.0328 0.2178 0.2006 0.94
β2=1 0.9631 0.3237 0.3510 0.94
γ1=0.5 0.5426 0.1879 0.1732 0.92
γ2=-0.5 -5101 0.3150 0.3154 0.94
α1=-2 -2.2011 0.4765 0.3642 0.89
α2=-0.5 -0.5287 0.2856 0.2387 0.91
α3=1 1.0849 0.2896 0.2639 0.88
σu=1 1.0862 0.2087 0.1864 0.93
σv=1 1.0186 0.2122 0.2185 0.96
β1=1 1.0688 0.1960 0.2040 0.94
β2=-1 -1.1021 0.3408 0.3692 0.97
γ1=0.5 0.5410 0.2245 0.1742 0.88
γ2=-0.5 -0.5820 0.3288 0.3217 0.93
α1=-2 -2.2934 0.4327 0.3944 0.92
α2=-0.5 -0.5347 0.2639 0.2504 0.92
α3=1 1.0602 0.2710 0.2623 0.91
σu=1 1.0993 0.1620 0.1900 0.97
σv=1 1.0777 0.2217 0.2236 0.94
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with cluster size. The result is shown in table 4.2. The parameter estimates for the

failure time model is close to the true value. This reinforce the finding in Chapter

2 regarding the robustness of the Probit model. However, the parameter estimate of

the Ordinal model for cluster size are bias.

Table 4.2: Reduced model: Performance of the proposed method in the case of using
100 clusters, POINT denotes the average of 100 point estimates, ESD is the average
of the estimated standard deviation, SSD is the sample standard deviation of the 100
point estimates, and CP95 is the 95% coverage probability.

True POINT SSD ESD CP95
β1=1 1.0024 0.2025 0.1997 0.92
β2=1 0.9484 0.3398 0.3451 0.94
γ1=0.5 1.2308 0.3640 0.5045 0.65
γ2=0.5 1.2173 0.6365 0.7644 0.82
α1=-2 -6.4176 3.3400 1.8519 0.22
α2=-0.5 -1.4501 0.8725 0.7619 0.68
α3=1 3.4657 2.4202 1.2390 0.51
σu=1
σv=1 1.370 0.2523 0.2235 0.58
β1=1 1.0472 0.2034 0.1923 0.93
β2=-1 -1.0932 0.3246 0.3497 0.91
γ1=0.5 1.4356 0.3872 0.5219 0.59
γ2=0.5 1.2342 0.6382 0.7362 0.79
α1=-2 -6.5212 3.7543 1.9342 0.20
α2=-0.5 -1.3879 0.8462 0.7983 0.65
α3=1 3.2019 2.1093 1.9876 0.52
σu=1
σv=1 1.4024 0.2534 0.2345 0.55
β1=1 1.0123 0.2134 0.2018 0.94
β2=1 0.9694 0.3285 0.3489 0.92
γ1=0.5 1.5367 0.4027 0.5328 0.60
γ2=-0.5 -1.4256 0.6886 0.7352 0.82
α1=-2 -6.3893 3.0665 1.9078 0.20
α2=-0.5 -1.3984 0.8289 0.8034 0.68
α3=1 3.4272 2.1039 1.9983 0.49
σu=1
σv=1 1.3980 0.2234 0.2434 0.52
β1=1 1.0634 0.2234 0.2134 0.94
β2=-1 -1.1034 0.3343 0.3445 0.91
γ1=0.5 1.6033 0.3984 0.5324 0.57
γ2=-0.5 -1.4454 0.6984 0.7634 0.79
α1=-2 -6.4326 3.2355 2.0456 0.19
α2=-0.5 -1.4246 0.8046 0.8428 0.65
α3=1 3.3785 2.2894 2.1034 0.50
σu=1
σv=1 1.4022 0.2356 0.2455 0.50
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4.5 Data analysis

In this section, we apply the proposed approach to the Lymphatic Filariasis (LF) data.

The main purpose of the analysis is to study the effect of the co-administration of

DEC and ALB against DEC alone for the treatment of Lymphatic Filariasis worms.

Filariasis worms can be easily detected by ultrasound. The patients in this study

were followed for a year and periodically examined by ultrasound to determine the

clearance of the worms. The response variable or the outcome in the study is the time

from treatment administration to clearance of the worms. The worms from the same

study subject can be viewed from the same cluster, and therefore the cluster size is

the number of filariasis worms in each patient.In this study,it took longer to clear a

nest of worms with multiple worms than a nest with a single worm which indicates the

cluster size is informative. (shown in table 4.3) Among the total of 47 men included

Table 4.3: Percentages of nests cleared during 360 days in the lymphatic filariasis
study.

Number of nests Percentage cleared
1 81.8
2 62.5
3 50
4 or 5 33.3

in the study, 25 were in the DEC group and 22 were in the DEC/ALB group. The

number of worm nests detected from all individuals ranged from 1 to 5 which yeilded

a total of 78 adult worm nests. Effects of two cluster level covariates on the clearance

time are of interest: the treatment group x1 (DEC/ALB=0, DEC=1) and the age x2.

We apply the proposed model to this data. The result is shown in table 4.4. Even

though based on the 95% credible interval, the treatment effects is not significant.

However, we calculated the posterior probability of P (β1 > 0|Data) = 0.9453 which

provide substantial evidence that DEC treatment is more effective than DEC/ALB

treatment. The effect of age is not significant. The estimate of parameter η = 1
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which indicate the bigger the nest is, the smaller the clearance time is. This finding

is consistence with literature results (Kim, 2010).

Table 4.4: Filariasis data: compare covariate effect estimates and CI

Mean 95% CI
β1 1.0985 (-0.1761, 2.5191)
β2 0.1910 (-0.4817, 0.9282)
γ1 -0.4472 (-1.1226, 0.2201)
γ2 0.0718 (-0.2851, 0.4294)
α1 -0.8001 (-1.3036, -0.2931)
α2 0.6517 (0.0437, 1.3000)
α3 1.1211 (0.4272, 1.9186)
α4 1.6828 (0.7894, 2.7694)

4.6 Conclusion

In this chapter, we considered a more complexed situation than the previous chapter

where the cluster size could provide useful information for the failure times. We

proposed a joint modeling approach to deal with this problem. We used a ordinal

regression model for the cluster size and a Probit model for the failure time. The two

models are linked by a shared frailty term. A Bayesian Gibbs samplers is developed

for estimation. The results indicate that the join modeling approach works very well

in terms of estimating the covariate effects.
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Appendix A

Proof of Theorem 1

Proof: Let T1 and T2 denote the failure times of two subjects, with covariate x1 and

x2 respectively, in the same cluster. Under the normal frailty Probit model (2.1), it

is equivalent to write

α(Tj) = −xjβ − ξ + εj, j = 1, 2,

where ξ ∼ N(0, σ2) is the shared frailty, and ε1 and ε2 are independent standard

normal random variables. Define Yj = α(Tj) for j = 1 and 2. It is straightforward to

obtain that both Y1 and Y2 have a marginally normal distribution with variance 1+σ2

and their joint distribution is a bivariate normal. Pearson’s correlation coefficient

between Y1 and Y2 is thus

ρ = cov(Y1, Y2)√
var(Y1)var(Y2)

= σ2

1 + σ2 .

Theorem 1 follows directly by using the relationship among Pearson’s correlation

coefficient, Spearman’s correlation coefficient, and median concordance for bivariate

normal distribution as follows,

ρs = 6π−1 sin−1(ρ/2) and κ = 2π−1 sin−1(ρ);

see Kruskal (1958) and Houggard (2000) among others.
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Appendix B

Extension of the normal frailty to

nonparametric frailty distribution in Chapter 2

In chapter 2, we proposed to use normal distribution to model the frailty term under

the semiparametric Probit model. In real life data, the distribution of the frailty

is often unknown. Therefore, a natural extension of the proposed model is to use

nonparametric approach to model the frailty term. In this appendix, we will lay-

out the nonparametric approach as well as the estimation procedure along with the

simulation result.

We propose to use Dirichlet process (DP) prior for the frailty distribution. Dirich-

let process is very popular in nonparametric Bayesian modeling. It was first intro-

duced by Ferguson (1973). DP is specified by a base distribution H and a concentra-

tion parameter α which is a positive real number. The DP process draws distribution

around the base distribution in a way that a normal distribution draws value from its

mean. DP process is equivalent to a stick-breaking construction which is introduced

by Sethuraman (1994).

Under the proposed model (2.1) in chapter 2, we assign a Dirichlet process prior

for the frailty distribution, i.e.,

ξi|G
i.i.d.∼ G, and G ∼ DP (mH),

where m is the precision parameter and H is the base distribution of the Dirichlet
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process. It is equivalent to write the DP using the stick-breaking form:

G(·) =
∞∑
h=1

phδθh
(·),

where phs are random weights taking ph = vh
∏
l<h(1 − vl) for all h with vh being

independent Beta(1,m) random variables, θhs are random atoms sampled from H,

and phs and θhs are independent. Given the above setup, the marginal distribution

of the failure time is given by

F (t|ξ) =
∞∑
h=1

phΦ{α(t) + ξ′β + θh}.

This distribution is extremely flexible as a mixture of normals is used to model the

transformed failure time.

We assign a normal prior N(m0, v
−1
0 ) for µH , a Gamma prior Ga(a0, b0) for σ−2

H ,

and a Gamma prior Ga(am, bm) for m. Let N denote the number of clusters used in

the Dirichlet process and denote Ki as labeling variable for ξi with Ki = h if ξi = θh

for all i. It is difficult to allow the mean constraint using the Dirichlet process, here we

take the unconstrained Dirichlet process and force γ0 = 0 for identifiability purpose.

Gibbs sampler based on the augmented likelihood. With all the parameters being

sampled initially from their prior, the Gibbs samlper proceeds with the following

steps at each iteration:

1. Sample latent variables zij for i = 1, ..., n, j = 1, ..., ni.

(a) if δij1 = 1, sample zij from N(α(tij) + x′ijβ + φi, 1)1(zij>0).

(b) if δij2 = 1, sample zij from N(α(tij) + x′ijβ + φi, 1)1(α(Lij)−α(Rij)<zij<0).

(c) if δij3 = 1, sample zij from N(α(tij) + x′ijβ + φi, 1)1(zij<0).

2. Sample γ′ls for l = 1, ..., k. For each l ≥ 1, let Wl = ∑n
i=1

∑ni
j=1 b

2
l (tij).

(a) If Wl = 0, sample γl from the prior Exp(η).

(b) If Wl > 0, sample γl from N(El,W−1
l )1(γl>d

∗
l
), where

El = W−1
l

 n∑
i=1

ni∑
j=1

bl(tij)[zij −
∑
l′
γl′bl′(tij)− x′ijβ − φi]− η


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d∗l = max(c∗l , 0)

and

c∗l = max
i:δij2=1

[
−zij −

∑
l′ 6=l γl′(bl′(Rij)− bl′(Lij))
bl(Rij)− bl(Lij)

]

3. Sample β fromN(β̂, Σ̂), where Σ̂ = (Σ−1
0 + ∑n

i=1
∑ni
j=1 x

′
ijxij)−1 and

β̂ = Σ̂

Σ−1
0 β0 +

n∑
i=1

ni∑
j=1

(zij − α(tij)− φi)xij



4. Sample η from ga(aη + k, bη + ∑k
l=1 γl)

5. Sample Sample Vh from Beta(1 + ∑n
i=1 1(Ki=h),m+ ∑n

i=1 1(Ki>h))

6. Sample θh from θh from N(µ̃h, σ̃2
h) for h = 1, ..., N , where σ̃2

h = (σ−2
H +∑

(i:Ki=k) ni)−1 and µ̃h = σ̃2
h{µHσ−2

H + ∑
(i:Ki=h)

∑ni
j=1(zij − α(tij)− x′ijβ)}.

7. Sample ui from uniform distribution U(0, pKi
) for i = 1, ..., n.

8. Sample Ki for i = 1, ..., n. Let U∗ = max(u1, ..., un).

(1) If ∑N
h=1 ph > 1−U∗, SampleKi from aMultinormial distributionM{1, (qi1, · · · , qiN)}

for i = 1, ..., n, where

qih =
exp[−1/2 ∑ni

j=1{zij − α(tij)− x′ijβ − θh}2]1(ph > ui)∑N
h=1 exp[−1/2 ∑ni

j=1{zij − α(tij)− x′ijβ − θh}2]1(ph > ui)

(2) Otherwise, keep updating N = N + 1 and sampling vN , θN from their prior

distributions until ∑N
h=1 ph > 1− U∗. Then sample Ki as in (1).
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9. Update ξi = θKi
for i = 1, · · · , n

10. Sample µH from

N{(v0 + nσ−2
H )−1(v0m0 + σ−2

H

n∑
i=1

ξi), (v0 + nσ−2
H )−1},

11. Sample σ−2
H from Ga(a0 + n/2, b0 + 1/2 ∑n

i=1(ξi − µH)2)

12.Sample m from Ga(am +N, bm −
∑N
h=1 log(1− Vh))

To evaluate the performance of the proposed approach, we follow the simulation

setup discussed in chapter 2 and layout the result in the tables below. The result is

very similar to the result of normal frailty model. All the parameter estimates are

very close to the true value. ESE and SSD are very close to each other. CP95 are

close to 95%. The nonparametric approach works well for any true distribution of

frailties.

Table B.1: Simulation result: normal setup

True POINT ESE SSD CP95
β1=0 -0.0021 0.0972 0.1025 0.94
β2=0 -0.0168 0.1915 0.1644 0.95
β1=0 0.0044 0.0976 0.1044 0.92
β2=-1 -0.9725 0.2112 0.2394 0.99
β1=0 0.0028 0.0984 0.1001 0.96
β2=1 0.9818 0.2115 0.2242 0.95
β1=1 0.9800 0.1314 0.1430 0.95
β2=0 0.0509 0.1978 0.2055 0.91
β1=1 1.0095 0.1348 0.1198 0.96
β2=-1 -1.0027 0.2178 0.2158 0.97
β1=1 0.9839 0.1331 0.1381 0.91
β2=1 0.9492 0.2158 0.2389 0.94
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Table B.2: Simulation result: ξi ∼ 0.45N(0.5, 0.42) + 0.55N(−0.5, 0.182)

True POINT ESE SSD CP95
β1=0 0.0037 0.1024 0.1158 0.91
β2=0 0.0300 0.2000 0.1989 0.97
β1=0 0.0007 0.1028 0.0988 0.97
β2=-1 -0.9860 0.2214 0.2225 0.97
β1=0 0.0041 0.1019 0.1088 0.93
β2=1 0.9825 0.2184 0.2317 0.91
β1=1 0.9846 0.1398 0.1519 0.92
β2=0 0.0515 0.2036 0.2111 0.91
β1=1 0.9638 0.1358 0.1358 0.92
β2=-1 -0.9669 0.2212 0.2176 0.99
β1=1 0.9927 0.1392 0.1516 0.95
β2=1 0.9811 0.2220 0.2363 0.92

Table B.3: Simulation result: exp(ξi) ∼ Ga(1, 1)

True POINT ESE SSD CP95
β1=0 0.0006 0.1027 0.0946 0.98
β2=0 0.0139 0.2041 0.2179 0.97
β1=0 -0.0123 0.1053 0.1090 0.93
β2=-1 -1.0021 0.2287 0.2739 0.98
β1=0 -0.0003 0.1038 0.1124 0.93
β2=1 0.9916 0.2245 0.2209 0.97
β1=1 0.9716 0.1450 0.1407 0.96
β2=0 -0.0262 0.2070 0.1988 0.97
β1=1 0.9821 0.1453 0.1542 0.94
β2=-1 -0.9910 0.2309 0.2020 0.99
β1=1 0.9890 0.1466 0.1285 0.97
β2=1 0.9742 0.2297 0.2504 0.92

The nonparametric approach we proposed is very flexible. However, the flexibility

comes at the cost of computational intensity. It requires many more parameters being

samples from the Gibbs sampler algorithm compared to the normal frailty algorithm.

The performance from the simulation result shows that the normal frailty model is

very robust even when the frailty distribution is misspecified. Therefore, the normal

frailty model is preferred between the two due to the less complexity.
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Appendix C

Simulation result for the equal prior

probabilities setup in Chapter 3

Table C.1: Performance of the proposed method in the cases of using 50 clusters
under equal prior probabilities setup. POINT denotes the average of the 100
point estimates, ESD the average of the estimated standard deviations, SSD the
sample standard deviation of the 100 point estimates, and CP95 the 95% coverage
probability

Scenario 1 Scenario 2 Scenario 3
True POINT SSD ESD CP95 POINT SSD ESD CP95 POINT SSD ESD CP95
β1=0 0.009 0.086 0.086 0.96 0.002 0.064 0.077 0.98 -0.002 0.085 0.084 0.96
β2=1 0.938 0.154 0.182 0.95 0.937 0.162 0.161 0.92 0.957 0.188 0.180 0.94
β1=0 0.004 0.077 0.085 0.99 -0.004 0.064 0.075 0.99 -0.009 0.087 0.083 0.95
β2=-1 -0.994 0.208 0.178 0.92 -0.947 0.175 0.154 0.90 -1.023 0.185 0.178 0.93
β1=0 -0.005 0.074 0.084 0.98 0.002 0.055 0.077 1 -0.007 0.654 0.082 0.99
β2=0 -0.028 0.168 0.168 0.94 -0.007 0.149 0.150 0.96 0.003 0.1535 0.162 0.97
β1=1 1.005 0.095 0.109 0.99 1.004 0.094 0.095 0.95 0.986 0.119 0.107 0.93
β2=0 0.022 0.168 0.172 0.94 -0.015 0.169 0.152 0.92 -0.027 0.158 0.168 0.96
β1=1 0.982 0.111 0.110 0.93 1.020 0.108 0.098 0.93 0.993 0.111 0.110 0.93
β2=1 0.984 0.177 0.185 0.94 1.021 0.18 0.166 0.94 0.998 0.183 0.181 0.96
β1=1 0.983 0.100 0.107 0.95 1.023 0.101 0.096 0.94 1.0043 0.126 0.108 0.94
β2=-1 -0.973 0.181 0.183 0.97 -1.013 0.173 0.162 0.94 -0.988 0.187 0.180 0.93

Table C.2: Bayes factor estimates

True value of (β1, β2) (0, 1) (0,−1) (0, 0) (1, 0) (1, 1) (1,−1)

equal prior
Scenario 1 BF > 100 96 98 93 99 97 99
Scenario 2 BF < 1 93 96 98 94 96 90
Scenario 3 BF > 100 11 8 3 6 9 9

Scenario 3 10 < BF < 100 14 18 9 15 23 25
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