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Figure 6.2. Pixel-based classification of high-silica dome and basaltic mound. We 

used a pixel-based classification approach to map mafic and felsic lava flows along the 

Alarcon Rise. The classification resulted in splotchy classification of dome features due 

to smoothing scattered classification of single pixels at a 10 cell radius. Half of basaltic 

lava mounds were classified as felsic while part of the rhyolitic dome along the felsic 

ridge was classified as mafic.  
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Figure 6.3. Slope profile locations for felsic lava. We chose 5 locations to assess the 

frequency and amplitude of slope profiles. We used these profiles to identify patterns 

within slope data that may prove useful in determining inherent differences between 

felsic and mafic lava. All slope profiles for felsic lava were confined to the north end of 

the Alarcon Rise where felsic samples were collected in 2012 and 2015. 
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Figure 6.4. Locations of mafic lava slope profiles. 5 profile locations were chosen to 

assess slope patterns for mafic lava. We wanted a representative sample of mafic lava 

flow morphologies to find underlying characteristics inherent to all mafic lava erupted at 

oceanic spreading ridges. Our profiles included basalt domes (A-A’ and B-B’), sheet 

flows (C-C’ and E-E’), and a volcanic cone (D-D’). The profile locations were 

geographically distributed from 23° 24’ N to 23° 33’ N. 



 

33 

 
 

Figure 6.5. Slope profiles of 5 felsic lava flows. Each 600 m long profile shows a 

dominant and secondary wavelength for felsic lava at north Alarcon Rise. First order 

waves appear to have a wavelength of ~ 20 m. Second-order waves create the jagged 

shapes of high-silica lava flows in the 1 m bathymetry. Second-order wavelength is ~ 3 

m. The amplitude of second-order waves ~15°, oscillating between slopes of 10°-40°. 

Profile C-C’ contains the maximum slope recorded in these profiles at ~75°. 
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Figure 6.6. Slope profiles of mafic lava flows. Mafic lava flows exhibit longer 

wavelengths and smaller amplitudes for both first-order and second-order waves. Basalt 

domes and the volcanic cone (A-A’, B-B’, D-D’) all have first-order wavelengths on the 

150-200 m scale (red arcs). The slope profiles for sheet flows (C-C’ and E-E’) have first-

order wavelength of ~100 m. Second-order wavelength for all mafic lava is ~10 m. The 

amplitude of mafic lava slope is smaller than felsic lava. Amplitude is ~ 5° with a typical 

slope range of 10°-20°. The maximum slope recorded in these profiles was ~48°. 
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CHAPTER 7 

CONCLUSIONS 

We applied neuro-fuzzy classification methodology to classify areas of the 

seafloor with attributes derived from 1 m resolution multibeam bathymetry. We produced 

the first submarine lava composition map based on geomorphic characteristics for the 

Alarcon Rise, Gulf of California. We accurately classified 85% of the submarine volcanic 

samples MBARI collected in 2012 and 2015. The process of classifying felsic and mafic 

lava erupted at oceanic spreading ridges led us to identify some geomorphic 

characteristics inherent to differentiated submarine lava flows, especially rhyolites. These 

characteristics include: a.) formation of large, steep-sloping jagged domes, b.) eruption of 

blocky, angular lava that builds spires, c.) bumpy appearance in 1 m resolution 

bathymetry. Slope rate-of-change, wavelength, and amplitude also provide potential for 

further characterization of rhyolitic lava flows at oceanic spreading ridges. 

Despite the complexity of identifying submarine lava composition using lava flow 

geomorphology, we determined rhyolites, and some other submarine felsic rocks, exhibit 

distinctive morphologies from basalt. We can detect geomorphic differences using local 

slope and BPI at 0.5 km. We correctly identified the geomorphology of 95% of basaltic 

samples as mafic, and we distinguished a specific felsic geomorphologic fingerprint for 

60% of rhyolitic samples. We conclude that although not all basaltic andesites, andesites, 

dacites and rhyolites have distinctive submarine lava flow morphologies from basalt, if 

part of the spreading ridge is classified as felsic, there is a 94% probability that it will
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 have a differentiated composition. Therefore, our classification maps the minimum 

amount of felsic lava at the Alarcon Rise.  
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