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Abstract 

 

The management of saltmarshes requires detailed knowledge of the underlying 

processes driving their distribution in both time and space to make appropriate 

management decisions. With most of the world’s population living in the coastal zone 

and rising sea levels, one of our most important natural resources in the coastal zone 

faces increasing threat of collapse. This study uses the current state of Light Detection 

and Ranging (LiDAR) technology to model and predict saltmarsh distribution at a 

landscape-scale and provide evidence that a terrestrial laser scanner (TLS) can be used to 

estimate saltmarsh biomass for inclusion into existing models.  

Land cover classification of the dominant saltmarsh species, S. alterniflora and S. 

patens, of the Plum Island Estuary in Massachusetts indicate that when augmented by 

LiDAR, aerial imagery can spectrally discriminate these species allowing for the 

identification of species elevation range. A spatial ‘bathtub’ model of the estuary 

indicates that the saltmarshes will survive a 1m sea-level rise but not without a change in 

the dominant marsh plant species. These changes will occur at different rates along a 

latitudinal gradient owing to a difference in relative marsh tidal elevation. 

Although the numerical Marsh Equilibrium Model (MEM) was developed with 

data from North Inlet, South Carolina and has been coupled with spatial models to predict 

saltmarsh distribution, no such study exists for North Inlet. A stand-alone python model, 

MEM3D, was created to couple MEM with a Geographic Information System (GIS) and 
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analyze the future distribution of saltmarshes within North Inlet following a 1m sea-level 

rise in the next 100 yr. Results indicate that the saltmarshes will not survive sea-level rise 

of this magnitude, and the system will switch to mudflat dominance by the end of the 

simulation. 

A TLS was used to address the need to quickly and non-destructively estimate 

biomass. Results indicate that there exists an optimal resolution for collecting data in a 

saltmarsh and that contrary to airborne LiDAR systems, TLS can also penetrate the 

canopy to ground level. Predictive biomass equations are generated for S. alterniflora and 

J. roemerianus with R2 = 0.
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Chapter 1: Literature Review and Problem Identification 

 

The management of saltmarshes requires detailed knowledge of the underlying 

processes driving their distribution in both time and space to make appropriate 

management decisions. With most of the world’s population living in the coastal zone 

and anthropogenic climate change causing sea levels to rise, one of our most important 

natural resources in the coastal zone faces increasing threat of collapse (Kirwan & 

Megonigal 2013; McGranahan, Balk, & Anderson 2007; Morris et al. 2002; Small & 

Nicholls 2003). Saltmarshes provide a suite of ecosystem services ranging from carbon 

sequestration, biodiversity support, wave attenuation, and storm surge protection (Barbier 

2012; Chmura 2011; Gedan, Silliman, & Bertness 2009; Gedan et al. 2011;  Zedler & 

Kercher 2005). These services are valuable to the people inhabiting proximal locations as 

they support local economies and protect infrastructure. Despite the value of saltmarshes 

to civilization, anthropogenic modifications of the landscape coupled with natural 

processes lend varying degrees of sensitivity. The sensitivity of these valuable resources 

will vary depending on local rates of sea-level rise, mineral sediment supply, 

productivity, and availability to uplands (Craft et al. 2008; Stralberg et al. 2011). The 

hypothesis most often postulated with global climate change and sea-level rise is loss of 

saltmarshes (Feagin et al. 2010). Predicting the future distributions of stressed 

saltmarshes, therefore, is important for the identification and protection of the most stable 

samples. 
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Saltmarsh ecosystems are known to have maintained an elevation in equilibrium 

with sea level during the late Holocene either by accumulating organic and mineral 

sediments at a rate compensatory for sea-level rise or by migrating upslope (Brinson, 

Christian, & Blum 1995; Moorehead & Brinson 1995; Morris 2007; Redfield 1972).  The 

mechanism of saltmarsh maintenance is the tenet of the developed predictive models thus 

far. While many models of saltmarsh dynamics exist, they can be categorized as spatially 

distributed (Bartholdy, Bartholdy, & Kroon 2010; Bouma et al. 2007; French 2006; 

Temmerman et al. 2004) or zero-dimensional (Kirwan et al. 2010; Leonard & Croft 2006; 

Leonard & Luther 1995; Leonard & Reed 2002; Mudd, D’Alpaos, & Morris 2010; Nepf 

& Vivoni 2000; Peterson et al. 2004). 

Spatially distributed models are the simpler of the two types to implement. Major 

uses of these models consist of inundation/floodplain mapping and saltmarsh migration. 

Gesh et al. (2009) utilized a simple spatial model to identify and delineate areas 

vulnerable to sea level rise from a series of elevation datasets. Wu, Najjar, & Siewert 

(2009) used elevation datasets to determine the population and infrastructure at risk due 

to inundation caused by sea-level rise for the mid and upper Atlantic states. When 

analyzing saltmarsh vegetation, spatially distributed models project the distribution of 

saltmarshes as a function of elevation contours (Temmerman et al. 2004). These 

projections ignore vegetation and its feedbacks, which result in under or overestimates of 

wetland loss (Stralberg et al. 2011). A specific model, the Sea Level Affecting Marshes 

Model (SLAMM), has a vegetative feedback mechanism but utilizes a constant linear 

accretion per wetland classification, which results in biased estimates (Craft et al. 2008). 
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These models can be appropriate, however, if vertical accretion is outpaced by sea-level 

rise, land cover is considered, and elevation is accurate (Feagin et al. 2010).  

All models based on Krone’s (1985) differential equations are zero-dimensional 

(Bartholdy, Bartholdy, & Kroon 2010). Such models include the Marsh Elevation Model 

(Morris et al. 2002) and its derived family (Kirwan et al. 2010; Kirwan et al. 2012; Mudd, 

D’Alpaos, & Morris 2010). Unlike spatial models such as SLAMM, these models use a 

non-linear accretion rate due to the presence of vegetation and ignore space by working 

on a single location. Vegetation has been shown to change the physics of a water column 

flowing through its canopies, promoting particle settling (Leonard & Croft 2006; Leonard 

& Luther 1995; Nepf & Vivoni 2000; Peterson et al. 2004). The change in physics 

associated with vegetation creates non-linear accretion rates applied as a function of 

inundation depth. Inundation depth is determined by the astronomical tides. Elevations 

near the lower limit of the vegetative tolerance, such as creek banks, receive the highest 

inundation depth resulting in the highest rates of mineral sedimentation. Elevations 

approaching the upper limit of vegetative tolerance receive the least mineral 

sedimentation. Organic contributions to vertical accretion are directly proportional to 

biomass, which has a maximum value at the species equilibrium elevation (Morris et al. 

2002). Vegetative productivity has been proven a critical determinant of saltmarsh 

survivability. 

 Searching for key environmental factors that affect vegetation productivity has 

long been a major goal in biogeographical research (Kim, Cairns, & Bartholdy 2010). 

The spatial distribution of halophytic vegetation and productivity is not random nor 

spatially uncorrelated but exists in organized characteristic patches (Silvestri, Defina, & 
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Marani 2005). Environmental controls to productivity have been proposed to be salinity, 

sulfide levels, anaerobic conditions, nitrogen levels, and distance from tidal creek (Gross, 

Hardisky, & Klemas 1990; Silvestri, Defina, & Marani 2005). All of these controls, 

except the latter, are assumed to be a function of elevation as it determines the duration 

and frequency of tidal flooding, which in turn creates variability in the proposed controls 

(Morris et al. 2005; Rosso, Ustin, & Hastings 2006; Sadro, Gastil-Buhl, & Melack 2007; 

Silvestri, Defina, & Marani 2005). These controls lead to conditions promoting the most 

productivity at an equilibrium elevation within the tidal prism (Morris et al. 2002). 

Accurately measuring elevation is, therefore, an important process in predicting future 

wetland distributions.  

. Airborne light detection and ranging (LiDAR) technology has been recognized by 

the forest ecology community to remotely derive structural characteristics of biomass 

such as volume, carbon content, leaf area and angle, roughness, and height segmented 

density (Antonarakis et al. 2010; Garcia et al. 2010; Hopkinson et al. 2004; Lin et al. 

2010; Loudermilk et al. 2009; Popescu, Wynne, & Nelson 2003; Siedel et al. 2011). 

These uses, however, are significantly affected by properties of the LiDAR system and its 

interaction with vegetation. Typical airborne LiDAR systems have large footprints 

averaging to the decimeter scale resulting in posting densities of a few points per square 

meter at best. Vegetation characteristics, especially leaf dynamics, effect the penetration 

of the laser beam. Drake et al. (2003) found no generality of relationships between 

LiDAR and field derived structural metrics across species of tropical trees. Popescu, 

Wynn, & Nelson (2003) and Popescu, Wynne, & Scrivani (2004) suggest that airborne 

LiDAR can be used to estimate forest structural characteristics at the individual tree level. 
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Studies addressing the use of LiDAR technology in saltmarshes has only consisted of 

vertical error as a result of biomass (Sadro, Gastil-Buhl, & Melack 2007). Typical 

LiDAR error estimates are conducted by the vendor at easily assessable sites that usually 

are not in the salt marsh and vary drastically from such locations (Hodgson & Bresnahan 

2004). Positive error bias of LiDAR in southeastern USA salt marshes up to 0.17 m have 

been reported (Chassereau, Bell, & Torres 2011, Hladik & Albers 2012, Montane & 

Torres 2006; Morris et al. 2005). The error between GPS ground truth elevation and 

LiDAR falls within accepted ranges of error on the platform but consistently higher near 

creek networks (Chassereau, Bell, & Torres 2011; Montane & Torres 2006).  Advances 

in LiDAR technology, specifically Terrestrial Laser Scanning (TLS), show promise as a 

technique for non-destructive collection of biomass with canopy penetration. 

 TLS is a powerful ground based LiDAR system with a small footprint. These 

systems have millimeter scale footprints and are thus capable of achieving high posting 

densities. Additionally, these systems are designed to collect data up to a few thousand 

points per second and are highly mobile. Given these characteristics, TLS systems are 

ideal for collecting fine-scale canopy structure. Siedel et al. (2011) used a TLS system to 

monitor the total above ground biomass, leaf biomass and area, and stem biomass of 

greenhouse saplings. Their results suggest that TLS techniques agree with traditional 

techniques. Rosell et al. (2009) found a high correlation between field structure and TLS 

derived structure in citrus orchards. In a study of fuel bed dynamics in longleaf pine 

savanna ecosystems, Loudermilk et al. (2009) found that TLS performed better than field 

techniques. Their results suggest a correlation coefficient of 0.83 between TLS derived 
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vegetative volume and field observed biomass. With advances in LiDAR stemming from 

TLS technology, canopy biomass estimation is a future direction for research in the field.   

 Predicting the future distribution of saltmarshes requires attention to the identified 

limitations. These limitations are explored within three chapters. A spatially distributed 

model is used in Chapter 2 to explore topographic conditions, analyze the current 

distribution of saltmarsh vegetation, and predict their future distributions within the Plum 

Island Estuary (PIE). A spatial version of Morris et al’s. (2002) Marsh Equilibrium 

Model (MEM) is developed for Chapter 3 to explore the tradeoff between input spatial 

resolution and computer processing time, and employ the model for North Inlet, SC. The 

frequency distribution of terrestrial LiDAR point clouds over the saltmarsh canopy is 

analyzed in Chapter 4 to explore the correlation with standing above ground biomass 

from Spartina alterniflora and Juncus roemerianus plots. Ultimately this research is 

intended to aid the coastal and saltmarsh management communities in understanding the 

spatial patterns of saltmarsh response to sea-level rise.
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Chapter 2: Plum Island Estuary Long Term Ecological Research Reserve Saltmarsh 

Species Turnover and Migration during a Worst-Case Sea-Level Rise Event. 

 

Coastal ecosystems face an uncertain future as a result of sea-level rise and 

anthropogenic landscape modification. Saltmarshes, highly productive coastal 

ecosystems, provide a range of economically valuable ecosystem services, such as carbon 

sequestration, biodiversity support, wave attenuation, and surge protection (Barbier 2012; 

Chmura 2011; Gedan, Alteiri, & Bertness 2011; Gedan, Silliman, & Bertness 2009;  

Zedler &  Kercher 2005) but are highly susceptible to changes in mean sea level (MSL; 

Kirwan & Megonigal 2013). This susceptibility is problematic because global sea level 

has risen for the last 10,000 years with recent decadal rates recorded as 2-3 mm per year 

for the northeast United States (Nydick et al. 1995; Schmitt, Weston, & Hopkinson 

1998). Forecasts predict acceleration in current rates resulting in centennial (2100) MSL 

increases of 20-180 cm, with 100 cm being an average (Craft et al. 2008; Schile et al. 

2014). With over 53% of the US population living in the coastal zone, it is important to 

identify the mechanisms in which saltmarshes survive sea-level rise to predict and protect 

their future extent (Craft et al. 2008). This study classifies 2011 aerial imagery to define 

the composition, extent, and elevation range of saltmarsh species in a New England 

estuary and employs a ‘bathtub’ model to predict species turnover and distribution with 

sea-level rise. 
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The survivorship of saltmarshes with sea-level rise is contingent upon their ability 

to accrete vertically and/or migrate laterally (Cavatarta et al. 2003; Kirwan & Megonigal 

2013; Morris et al. 2002; Schmitt, Weston, & Hopkinson 1998). Coastal plain, or bar 

built lagoons, and fjords constitute a majority of estuaries in New England while drowned 

river valleys are present in low numbers (Roman et al. 2000). Deep coastal water 

combined with steep bedrock topography limit the lateral expansion of most New 

England saltmarshes (Warren et al. 2002). Drowned river valleys, however, with low 

sloping topography provide the greatest protection from wave energy and the shallowest 

coastal waters. Coupled with steady sea-level rise, the topography of drowned river 

valleys resulted in slow marsh development at MSL that vertically matched or slightly 

exceeded sea-level rise depending on availability to sediment (Morris, Schaffer, & 

Nyman 2013; Nydick et al. 1995; Orson, Warren, & Niering 1998; Redfield 1972; 

Schmitt, Weston, & Hopkinson 1998).  Saltmarshes in New England, however, are 

currently situated at an elevation approximating mean high-water (MHW) because of a 

large pulse of sediment input caused by century-long inland deforestation during the 

industrial revolution that led to rapid accretion of sediment and relative elevation increase 

(Gedan, Altieri, & Bertness 2011; Kirwan et al. 2011; Roman et al. 2000). This 

sedimentation altered spatial distribution of saltmarsh species because species 

composition within the marsh is dependent on elevation relative to tidal datum (Marani, 

Lio, & D’Alpaos 2013). 

The saltmarshes of New England are dominated by cordgrasses. Tides inundate 

the low marsh daily, resulting in increased anaerobic conditions and decreased salinities 

compared to the irregularly flooded high marsh (Bertness & Ellison 1987). The dominant 
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cordgrass of the low marsh is Spartina alterniflora while Spartina patens dominates the 

high marsh (Bertness & Ellison 1987; Nydick et al. 1995; Redfield 1972; Redfield and 

Ruben 1962; Schmitt, Weston, & Hopkinson 1998). The ability of these species to trap 

sediment is highly dependent upon the duration of inundation, which in turn is dependent 

upon the elevation within the tidal frame (Schmitt, Weston, & Hopkinson 1998). Thus, 

accretion rates vary by species. Suspended sediment concentrations are currently low in 

New England as a result of the re-growth of the once dominant forests (Morris, Schaffer, 

& Nyman 2013). Total suspended sediment (TSS) concentrations of ~4 mg/L are 

reported in a main river channel and associated estuary of New England with slightly 

higher concentration (~12-14 mg/L) within tidal creeks but no significant differences in 

marsh sedimentation rate with distance from source (Cavatarta et al. 2003; Schmitt et al. 

1998). Recent rates of vertical accretion for a New England saltmarsh are estimated to be 

0.22 cm/yr (Morris, Schaffer, & Nyman 2013). With current high marsh dominance and 

accelerating sea-level rise, these marshes are not in equilibrium with current rates of sea-

level rise (Cavatarta et al. 2003).  

Sea level rise will inundate lands currently above the tidal prism thereby 

providing accommodation space for saltmarsh lateral migration while simultaneously 

flooding the shoreward marshes. As sea levels rise, stable saltmarshes will transgress 

inland at a rate that reflects hinterland topography (Morris 2007; Townend et al. 2011). 

Submergence on the shoreward side of existing northeastern saltmarshes will change 

species distributions. The present distribution of cordgrasses, with large Spartina patens 

meadows fringed by Spartina alterniflora, is evidence of ongoing submergence due to 

sea-level rise (Nydick et al. 1995). It is important to identify potential accommodation 
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space and the way in which these marshes will change in order to direct management and 

protection measures of these areas.  

This study addresses how the species composition and distribution of saltmarshes 

in a New England estuary will change during predicted sea-level rise. A New England 

estuary is segmented topographically to test the hypotheses that 1) 2011 species 

composition and distribution is not uniform across the estuary and 2) species composition 

will turnover due to the effects of sea-level rise and their respective distributions will be 

spatially variable. The specific objectives of this study are to 1) use LiDAR to spatially 

segment a New England estuary, 2) augment aerial imagery with hydrological 

information to provide a supervised land cover classification, and 3) employ a ‘bathtub’ 

model to forecast species composition and distribution during sea-level rise. It is 

expected that LiDAR, when corrected for internal errors, can provide a quantitative 

method to spatially segment a New England estuary, and that coupling hydrological 

information with aerial imagery can provide high-accuracy species classification. The 

approach used in this study builds on the work of Millette et al. (2010). 

 

Methods 

Study Area 

 The Plum Island Estuary-Long Term Ecological Research Reserve (PIE-LTER; 

Figure 2.1) is located in Massachusetts and is characterized as a macro-tidal estuary with 

a maximum astronomical tide range of approximately 3 m. PIE is the largest wetland-

dominated system of the northeast USA containing saltmarsh cordgrass (Spartina 

alterniflora), marsh hay (Spartina patens), and tidal flats as the dominant intertidal land 
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cover types with deeply incised tidal creeks, pannes, and ponds (Millette et al. 2010). The 

high marsh platform, dominated by S. patens, has been extensively altered by drainage 

ditches dug for mosquito control and marsh hay production (Roman et al. 2000).  The 

system receives minimal sediment loads from the region’s major river systems.  

Watershed Delineation 

 The elevation layer used for watershed delineation in this analysis was 2011 

LiDAR obtained from the Woods Hole Marine Biological Laboratory (MBL) and 

referenced to the North American Vertical Datum of 1988 (NAVD88), a leveling 

network on the North American continent affixed to a stable location in Quebec (National 

Geodetic Survey 2016). The data used to define the boundary of PIE was reclassified 

2005 LiDAR as discussed by Millette et al. (2010). Data analysis consisted of the 

following steps: a) vertical elevation correction, b) image classification, c) watershed 

delineation and attribute enumeration, and d) flooding the landscape. All spatial data 

were processed in ESRI ArcMap, and all statistical analyses were performed in SAS.  

 The first step was standardizing the LiDAR elevations to mean sea level (MSL). 

Mean sea level at the National Oceanographic and Atmospheric Administration (NOAA) 

tide gauge 8443970 in Boston Harbor was determined at NAVD88 -0.09 m for the 1983-

2001 tidal epoch (NOAA Tides and Currents 2013A). Sinks and noise, or erroneous 

elevations, existed within the LiDAR data. Sinks were located and eliminated by raising 

the sink to the elevation of its nearest neighbor (Chang 2008; Jenson & Domingue 1988). 

A 3x3 local mean filter was used to process the LiDAR DEM identically to Millette et al. 

(2010) 2005 LiDAR processing, and update the focal pixel to the mean of the nine pixels, 

thereby smoothing the data. To test the accuracy of the data, LiDAR measurements are 
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compared against twelve Faststatic GPS measured Surface Elevation Table (SET) points 

(Figure 2.2; Table 2.1) obtained from Wood’s Hole Marine Biological Laboratory (MBL) 

staff and adjusted to reference 0m MSL.  

Image Classification 

 Land cover classification was conducted to provide estimates of current marsh 

species distribution and elevation range. A supervised maximum likelihood classification 

of 2010 4-band NAIP (USDA National Agricultural Imagery Program) was performed to 

derive land cover types of the study area. The data were collected July through August, 

2010, during maximum leaf-on growing season. Training points (n = 175; Figure 2.3) 

defining ground truth marsh vegetation (S. alterniflora, S. patens, Phragmites australis, 

and brackish/Typha sp.) were obtained from MBL and University of South Carolina Belle 

W. Baruch Institute for Marine and Coastal Sciences’ staff. An additional 291 training 

points representing anthropogenic structures, upland vegetation, water, ponds, and tidal 

flats/bare mud were digitized manually on the imagery. All training points were labeled 

by cover type and buffered 1 m to provide training polygons. Using the maximum 

likelihood classifier, each pixel of the imagery was assigned a land cover type based on 

spectral signatures. Input bands were red, green, blue, and near-infrared obtained directly 

from the imagery plus two developed bands: NDVI (Normalized Difference Vegetative 

Index) and a composite band. NDVI was calculated as described by Jensen (1996) to 

represent photosynthetic activity (Figure 2.4). A composite image was developed by 

changing the band directories of a standard red-green-blue image and later grey-scaling 

the image to further delineate differences in vegetative pigmentation (Figure 2.5; Liew 

2001). The band association is near-infrared as red, NDVI as green, and green as blue. 
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The result of the supervised classification was the creation of 4 land cover classes: a) 

marsh vegetation, b) upland trees, c) bare cover, and d) developed land. These classes 

were grouped as current marsh (a), accommodation space (b) and area unsuitable for 

marsh migration or development (c and d; Figure 2.6; Table 2.2).  

 To test the spectral classification and ecological zonation of the similar saltmarsh 

species, histograms of 2011 LiDAR elevations were developed. Image classification was 

insufficient to fully separate the saltmarsh vegetation and S. alterniflora was further 

classified. All pixels representing S. alterniflora with a class probability from the 

maximum likelihood classification less than 95 % were considered S. patens. Distance to 

nearest hydrological unit (Figure 2.7) was calculated for all remaining S. alterniflora 

pixels. All pixels beyond a threshold of 10 m were considered S. patens. The threshold of 

10 m was chosen because this is the location on the histogram (Figure 2.7) where 

frequencies begin to level off under 1% of total observations. Updated elevation statistics 

for the final histogram (Figure 2.8) were tested against 378 S. alterniflora and 334 S. 

patens ground truth elevations for statistical agreement, and agreement improved (Table 

2.3).  

Accuracy assessment of the classification was conducted by overlaying classified 

land cover against 1013 separate land cover ground-truth points obtained from MBL staff 

and random manual identification (Table 2.4). Kappa indices exceeding 75 % are 

satisfactory while those exceeding 85 % are exemplary (Fielding & Bell 1997; Foody 

2002; Landis & Koch 1977). Classification was considered a true positive if the reference 

was within 1 m of a correctly classified land cover pixel, assuming normal positional 
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accuracy of handheld GPS units. Classified land cover coupled with delineated 

watersheds allowed for identification of spatially explicit properties for PIE. 

Watershed Delineation 

 Delineation of watersheds was determined by defining flow paths, accumulation, 

and stream networks. It is difficult to assign flow paths in flat terrain typical of coastal 

environments, resulting in erroneous watersheds (Chang 2008). Consequently, 

topographic variability was artificially enhanced by adding 1m to the LiDAR elevations 

and then cubing them. The resulting watersheds were vectorized and all contributing sub-

watersheds of large drainage networks merged into a single watershed. The vectorized 

watersheds were clipped to areas above MSL as this represented the location of the 

existing marsh platform. 

Topographic Attributes 

 Current and future intertidal statistics were calculated for each watershed to 

provide data explaining 2011 topographic conditions. The tidal amplitude of MHHW, the 

assumed maximum elevation of marsh vegetation growth, was determined to be 1.55 m at 

tide gauge Boston Harbor (NOAA Tides & Currents 2013b). A simple reclassification 

was used to represent current and future intertidal area based the assumption of constant 

MHHW throughout PIE. The 2011 processed LiDAR dataset was clipped to all area 

between current MSL and future MHHW (0 - 2.55 m) assuming a 1 m SLR event to 

represent only the area that is expected to be currently covered by marsh or the area that 

is susceptible to marsh development under rising sea-level. To remove areas unsuitable 

for marsh migration or development, two steps were used. First the identified stream 

network was merged with a ditch drainage network delineated by Millette et al. (2010) 
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and buffered by 1 m to form polygons. Secondly, classified unsuitable land cover was 

used to remove all unsuitable cover. Watershed attributes describing the topography of all 

areas currently or susceptible to being intertidal were enumerated. 

Topography was used to identify the 2011 surface patterns of existing marshes 

and their expected accommodation space assuming a 1 m SLR. Topographic attributes 

(Tables 2.5 - 2.6) consisted of metrics that explained the physical shape and distribution 

of elevation within each watershed’s current and future intertidal landscape, respectively. 

Current intertidal area was calculated as the sum of the area of all pixels occurring within 

each watershed. Slope was calculated to identify the flatness of each watershed. The 

same metrics were calculated for accommodation space, assuming a 1 m SLR. All 2011 

current and future intertidal LiDAR elevations are converted to cell center points and 

exported for time-series analysis within SAS to track and update current and future marsh 

pixels. 

Change Statistics 

It was necessary to define a threshold elevation of species zonation to determine 

change in vegetation distribution and area due to SLR during the analysis period. The 

threshold elevation used to distinguish S. alterniflora and S. patens was 1.29 m. The 

threshold was derived from the intersection of the species elevation histograms (Figure 

2.8) located one standard deviation above the S. alterniflora mean elevation and one 

standard deviation below the S. patens mean elevation.  Elevations above this threshold 

were assigned S. patens while elevations below were assigned S. alterniflora. This 

threshold provides an elevation rule that can be used to update potential marsh vegetation 

as MSL increases. Mean sea level was modeled to accelerate to 1 m over the next century 
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(Figure 2.9). Rearranging Equation 2.1 with the desired 100 m global sea level rise 

(gSLR) in 100 years (t) and current linear trend of 0.0028 m/yr (A) observed at tide 

gauge Boston Harbor (NOAA 2013c) provides the accelerating coefficient (B: m/yr).  

gSLR = At + Bt2                                                             (2.1) 

Equation 1 was used in a time series with 2011 LiDAR to model the annual addition 

and/or loss of intertidal area within each watershed under the SLR scenario. Elevation 

points are representative of 1 m2 ground cover. The Spartina sp. elevation thresholds 

were used to model vegetation change in each watershed. Annual change of intertidal 

area and cover of Spartina sp. dominance was tracked and plotted during the 100 year 

scenario.  

 

Results 

Mean Absolute Error (MAE) between twelve SET locations and 2011 LiDAR 

(Table 2.1) was found to be -0.09 m with individual differences ranging from -0.01 m -

0.22 m and no discernible spatial pattern. 2011 NAIP PIE classification is presented in 

Figure 2.6. 2011. Distance to the nearest drainage feature for all S. alterniflora classified 

pixels exceeding 95 % confidence is presented in Figure 2.7. Overlapping histograms 

representing corrected S. alterniflora and S. patens are presented in Figure 2.8. Mean 

2011 LiDAR elevation for S. alterniflora was 0.92 +/- 0.37 m compared to 1.50 +/- 0.22 

m for S. patens. Classification accuracy is presented as a confusion matrix (Table 2.4) 

displaying ground truth versus classified land cover statistics. Unsuitable land cover was 

classified correctly 245 times out of 249 ground truth points for user accuracy of 98.39%. 

S. alterniflora was classified 309 times out of 378 ground truth observations for user 
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accuracy of 81.75 %. Upland trees were classified correctly 92.31 % while S. patens was 

classified correctly 95.51 %. Producer accuracy ranged from 86.45 % for S. patens to 

95.67 % for S. alterniflora. Overall accuracy was measured to be 90.92 % with a Cohen’s 

Kappa index of 86.89 %.  

Watershed results are presented for the riverine and tidal creek systems on the 

western boundary of Plum Island Sound. There were 57 sub-watersheds identified 

overall, which were merged into 6 larger watersheds (Figure 2.10). 2011 LiDAR derived 

intertidal topographic attributes of each watershed are presented in Table 2.5. Intertidal 

area varied from 0.66 km2 to 7.71 km2. Mean intertidal elevation across all watersheds 

ranged from 1.30 m to 1.39 m. Current intertidal slope increased from a low of 2.51° to a 

high of 3.06°. Mean elevation was used as a primary grouping rule for PIE watersheds. 

The northern region, defined by the cumulative extent of the watersheds of the Parker 

River, Merrimack-Plum Blush Creek, and a large tidal creek, had a mean 2011 elevation 

at 1.38 m and an average surface slope of 2.6°. The southern region, defined as the 

cumulative extent of the watersheds of the Ipswich River, Rowley River, and a smaller 

tidal creek, had a mean 2011 elevation at 1.31 m and an average surface slope of 2.79°.  

Intertidal topographic results for the modeled 1 m SLR are presented in Table 2.6. 

During a 1 m SLR in 100 years, the available accommodation space ranged from 0.15 

km2 to 4.33 km2. Mean elevation of the accommodation space was between 1.62 m and 

1.88 m with surface slope from 1.13° to 2.78° respectively. The northern region 

contained 8.09 km2 of accommodation space with a mean elevation of 1.76m and a 

surface slope of 1.82°. The southern region contained 4.06 km2 of accommodation space 

at a mean elevation of 1.77 m and a surface slope of 1.98°. The total amount of intertidal 
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area changed between 2011 and the 100 year model output as the result of a 1 m rise in 

sea level (Table 2.7). Watershed intertidal area increased between 12.12 % and 74.45 % 

while on a regional basis, intertidal area increased 21.54 % for the southern region and 

54.76 % for the northern region.  

Marsh vegetation coverage and distribution was different between 2011 and the 

100 year model output (Table 2.8). Regionally, S. alterniflora covered 16.54 % of the 

northern region and 30.39 % of the southern region in 2011 compared to 83.46 % and 

69.61 % for S. patens respectively. At the year 100 output, S. alterniflora covered       

96.97 % of the northern watersheds and 97.02 % of the southern watersheds compared to 

3.03 % and 2.98 % for S. patens, respectively. Time series vegetation analyses of the 100 

year 1 m modeled SLR are presented in Figure 2.11. Rate of change in intertidal area 

during the 100 year sea-level rise is presented in Figure 2.12. 

 

Discussion 

The approaches used in this study address the predictions that: 1) 2011 saltmarsh 

species composition and distribution is not uniform across the PIE estuary and 2) species 

composition will turnover due to the effects of sea-level rise and their respective 

distributions will be spatially variable. The study used watershed delineation of corrected 

LiDAR elevations and aerial imagery combined with distance to nearest hydrologic 

feature to meet the objectives of the study. Topographic attributes suggest that the PIE 

study site can be split into two distinct regions. It was found that in 2011, the northern 

region was dominated by a higher percentage of S. patens than the southern region. 
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Following a 1 m 100 year sea-level rise simulation, it was found that a species turnover 

occurred resulting in S. alterniflora dominance, which was highest in the southern region. 

Watershed delineation provided appropriate boundaries after errors within the 

2011 LiDAR were corrected and the variance in elevation artificially inflated. Use of a 

low-pass filter to correct for errors is acceptable because studies show smoothed data are 

highly correlated to reference ground elevation measurements (Hodgson & Bresnahan 

2004; Millette et al. 2010). To assess accuracy of smoothed 2011 LiDAR for PIE 

saltmarshes, known elevations from SET’s on the marsh platform were compared to 2011 

LiDAR elevations. The mean absolute error between datasets was 0.09 m, an acceptable 

error because it was within the vendor reported error. LiDAR errors can be very high in 

marshes due to dense vegetation cover obstructing the laser pulse from reaching the soil 

surface (Chassereau, Bell, & Torres 2011; Hladik & Albers 2012; Montane & Torres 

2006; Morris et al. 2005). The error of this data is small because the data were collected 

in early April during low tide with the marsh denuded of vegetation.  

The method used to increase the variance in 2011 LiDAR elevation proved 

satisfactory. Low relief landscapes, a characteristic of saltmarshes, are difficult to model 

hydrologically because of the inability of algorithms to appropriately identify surface 

flow, resulting in unusual boundaries (Chang 2008). The six delineated watersheds were 

topographically correct. The watersheds were characterized by expected non-linear 

boundaries following defined hydrological features and shared borders were found to 

occur on interfluves created by the method used to increase the variance in elevation. Of 

the six delineated watersheds, the Rowley River watershed was the most complex. The 

Rowley River watershed exists as a composite of a large intertidal creek and the Rowley 
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River (Figure 2.10). It was assumed during watershed delineation that similar properties 

of water during the tidal cycle (sediment concentration, velocity) would affect the 

associated saltmarshes in the same way. By virtue of this delineation method, a large 

portion of intertidal area and its creek network was connected to the Rowley River. It 

appears that this large creek, which exists between the Rowley and Ipswich Rivers, 

would have been defined as a tide creek watershed under the delineation without sea-

level rise. As sea levels have risen and tide creeks meandered, migrated, and formed, this 

entire section was connected to the Rowley River.  

Classification results for the desired saltmarsh species and potential 

accommodation space are satisfactory. Classification of species from remotely sensed 

imagery is a popular topic dependent on spectral signatures of individual species. 

Spectral signatures are not unique to plant types, but to evolutionarily similar populations 

(Artigus & Yong 2006). It was not surprising that ancillary data had to be used to 

discriminate S. alterniflora and S. patens, since the species belong to the same genus. 

Because S. alterniflora has been described to fringe large S. patens meadows, distance to 

nearest hydrological feature was used to further discriminate the species (Nydick et al. 

1995). Figure 2.7 is interpreted that within the initial classified S. alterniflora, some 

pixels beyond 10 m from the nearest hydrologic feature are not fringing and represent 

misclassified S. patens. The desired elevation frequencies after thresholding distance to 

hydrologic features are presented in Figure 2.8. S. alterniflora has been reported to have a 

mean elevation of 0.9 +/- 0.3 m for PIE, directly corroborating results of the S. 

alterniflora classification (Morris, Sundberg, & Hopkinson 2013). Elevations for 

classification of S. patens are, however, not in agreement with Morris et al. (2013) but are 
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in agreement with independent reference elevations provided by MBL staff. A potential 

explanation for this could be that the reference elevations were collected from a greater 

spatial range and are more representative of the S. patens population. The saltmarsh 

classification is appropriate for PIE as elevations for both species classifications are 

supported by external studies.   

 Overall accuracy places the classification as excellent. It is assumed that if a 

classified land cover occurs within 1 m of an identifying ground truth, a correct 

classification occurred. This assumption is warranted on the grounds of GPS horizontal 

accuracy, typically upwards of 5 m in open terrain (Wing, Eklund, & Kellogg 2005). This 

indicates that when overlying datasets, especially those collected from different sensors 

as is the case for NAIP imagery (aerial mounted GPS) and field collection (consumer 

grade hand-held units), it cannot be assumed that there is an exact overlap. While a 5 m 

buffer could be used, it is assumed that 5 m in a saltmarsh represents a distance in which 

micro topography can change rapidly, resulting in rapid change in saltmarsh vegetation. 

This scenario would inflate accuracy by increasing the probability that a classified land 

cover would be found within the buffer distance of a field observed land cover. While 

Cohen’s kappa is preferred over overall accuracy as it corrects for random chance 

agreement (Foody 2002), it is misleading such that producer, user, and overall accuracy 

are preferred (Pontius & Millones 2010). User accuracies were high, exceeding 90 % for 

all land cover classes except S. alterniflora (81.75 %). Similar results were found for S. 

patens (86.45 %) under producer accuracy. The findings suggest that although efforts 

were made to classify the species based on spectral signature coupled with distance to 

nearest hydrological unit, some S. alterniflora pixels were misclassified as S. patens. 
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Despite this continued but alleviated error, PIE classification, overall accuracy = 90.92 

%, is satisfactory to define species composition.  

Saltmarsh species composition and distribution is not uniform across the PIE 

estuary. The topographic analysis presented indicate that the delineated PIE watersheds 

can be quantitatively split into two regions: north and south. Mean intertidal elevation for 

the delineated watersheds fall within 2 ranges, thereby forming a grouping rule.  

Intertidal area of the southern watersheds exist at a slightly lower modal elevation (1.31 

m) and are more sloped than those in the northern group (1.38 m), which are nearly 0.1 m 

higher in the tidal prism exhibit a decreased surface slope up to 0.19°. Data displayed in 

Table 2.8 representing species composition at 2011 confirm that the PIE saltmarshes are 

spatially variable in species composition and distribution. S. patens dominated the 2011 

saltmarshes, comprising 83.46% of the northern region (13.24 km2) and 69.61 % of the 

southern region (12.44 km2). 2011 species composition data indicate that the southern 

marshes, existing slightly lower in modal elevation are presently exhibiting the early 

effects of an accelerating sea-level rise.  

Species composition in 2011 will turnover during sea-level rise and the changes in 

saltmarsh distribution will be variable by region. Time series analysis of the saltmarsh 

species composition by PIE region indicate a complete saltmarsh species turnover from 

2011 S. patens dominated to saltmarshes dominated by S. alterniflora in 2111. Following 

the 1 m sea-level rise, S. alterniflora compositions were 96.97 % and 97.02 % for the 

northern and southern regions respectively. The timing of saltmarsh species turnover was 

interpreted as an intersection in composition curves. Figure 2.11 displays saltmarsh 

composition within each region during the modelled sea-level rise. It is estimated that 
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species turnover will occur at approximately 25 years into the sea-level rise for the 

southern region and 35 years for the northern region. This places PIE saltmarsh species 

turnover occurring approximately 2036 and 2046, respectively, based on 2011 LiDAR.  

Analysis of the rate of change in intertidal area for each region indicates that 

saltmarshes existing in 2011 will expand and survive a 1 m sea-level rise in 100 years. 

The fact that no negative rates of change were observed (Figure 2.12) indicates that the 

saltmarshes of both regions experience a larger increase in area due to migration than 

losses due to submergence. Landward portions of S. patens saltmarshes, currently 

existing high in the tidal prism, will slowly migrate onto limited accommodation space 

while the shoreward portions will continue to lose relative elevation and shift to S. 

alterniflora saltmarshes. One hundred year increases in intertidal area were found to be 

54.76 % and 21.54 % for the northern and southern regions respectively. It is interpreted 

from Figure 2.12 that the northern region will increase at least 1 % in area from each 

previous year for approximately 20 years while the southern watersheds will only 

increase at approximately 0.4 % during the same time. Accommodation space statistics 

for each region corroborate this pattern. Total area of accommodation space is reported 

from Table 2.7 to be 8.09 km2 with an average surface slope of 1.82° for the northern 

region and 4.06 km2 with an average surface slope of 1.98° for the southern region at 

nearly similar modal elevations (1.76 m and 1.77 m respectively). The increased slope of 

the southern region is interpreted that the accommodation space butts the natural upland 

berm, thereby hindering the migration of the saltmarshes compared to the northern 

region.  
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It is predicted that although PIE saltmarshes will survive a 1 m 100 year sea-level 

rise, a species turnover from 2011 S. patens dominance to S. alterniflora dominance will 

occur with current suspended sediment concentrations. Ecological consequences of such 

a change a largely unknown and undocumented at the current time. Research, however, 

on estuarine community dynamics and food webs are being conducted within PIE 

(Johnson 2014; Johnson 2015; Nelson, Deegan, & Garrit 2015). Future research should 

focus on including vegetative feedback as described by Morris et al. (2002) plus large 

scale hydrodynamic models and sediment budgets beyond the capabilities of this 

analysis. Incorporating these improvements would likely shift the timing of species 

turnover further into the future as the marshes would be actively trapping sediment and 

increasing relative elevation.  

 

Conclusion 

Data provides evidence that PIE saltmarshes will survive a 1 m SLR but will 

undergo a species turnover event and that changes will occur differently on north-south 

delineation. Data reported from the classification indicate that in 2011, PIE was 

dominated by large S. patens meadows with a smaller coverage of fringing S. 

alterniflora. 2011 LiDAR statistics delineate 2 geographic regions within PIE: north and 

south. The northern region comprises the watersheds of the Parker River, Merrimack-

Plum Blush Creek, and a large multi-order tidal creek system. The Southern region 

comprises the watersheds of the Ipswich River, Rowley River, and a large multi-order 

tidal creek system. The northern region is found to exist at a higher modal elevation, 1.38 

m, and flatter, 2.60°, than the southern region (1.31 m, 2.79°). 2011 LiDAR based area 

http://pie-lter.ecosystems.mbl.edu/publications%20Johnson%202014;%20Johnson%202015
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for the regions are similar at 13.24 km2 and 12.44 km2 respectively. Accommodation 

space was found to be 8.09 km2 and 4.06 km2 at modal elevations of 1.76 m and 1.77 m 

respectively. Modelling an accelerating sea-level rise resulted in increases of intertidal 

area at 54.76 % and 21.54 % for the northern and southern regions respectively. The 

research suggests complete species turnover is expected to occur at 2025 and 2035 for the 

southern and northern regions.
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Table 2.1.  Fastatic GPS measured SET elevation vs 2011 LiDAR elevation.  

 

SET 

Name 

Latitude 

(°) 

Longitude  

(°) 

SET   

Elevation (m) 

2011 LiDAR 

Elevation(m) 

Absolute 

Error (m) 

Levine 1 42.727660 -70.852891 1.42 1.45 -0.03 

Levine 3 42.727678 -70.853661 1.44 1.50 -0.06 

HI1 42.731192 -70.826261 1.23 1.32 -0.09 

HI2 42.730583 -70.826725 1.32 1.48 -0.16 

MI1 42.729118 -70.834729 1.04 1.10 -0.06 

MI2 42.729238 -70.835457 0.99 1.09 -0.10 

MI3 42.729418 -70.836333 1.04 1.13 -0.09 

LP1 42.731573 -70.841493 1.28 1.23 0.05 

LP2 42.731250 -70.842197 1.29 1.30 -0.01 

FP2 42.728319 -70.850066 1.08 1.23 -0.15 

FP3 42.728383 -70.850162 1.32 1.54 -0.22 

OLT2 42.727904 -70.852571 1.32 1.52 -0.20 

  Mean Absolute Error (m) -0.09 
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Table 2.2. Land cover codes used in 2010 NAIP 4-band image classification.  

 

Training  

Code 

Training 

Land Cover Classification 

Final 

Classification 

Code 

Final Land Cover 

Classification 

1 S. alterniflora 1 S. alterniflora 

2 S. patens 2 S. patens 

3 P. australis 2 S. patens 

4 Water 4 Unsuitable 

5 Tidal flats/Bare mud 4 Unsuitable 

6 Wet Ponds 4 Unsuitable 

7 Upland Trees 3 Upland Trees 

8 Roads 4 Unsuitable 

9 Boats/Docks 4 Unsuitable 

10 Buildings 4 Unsuitable 

11 Brackish/Typha sp. 2 S. patens 
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Table 2.3. 2011 mean elevation and standard deviation of classified S. 

alterniflora and S. patens compared to ground-truth species mean and standard 

deviation.  

 

 S. alterniflora S. patens 

 Post Ground Truth Post Ground Truth 

 Mean Elevation (m) 0.92 1.25 1.50 1.48 

Standard Deviation (m) 0.37 0.32 0.22 0.10 

 

 

 

 

 

 

 

 

 

 

   



29 
 

Table 2.4. 2010 NAIP land cover classification confusion matrix.  

 Reference 

 Classified 

U
n
su

itab
le 

S
. a

ltern
iflo

ra
 

U
p
lan

d
 T

rees 

S
. p

a
ten

s 

R
o
w

 T
o
tal 

U
ser A

ccu
racy

 

(%
) 

C
o
m

m
issio

n
 

E
rro

r (%
) 

Unsuitable 245 0 4 0 249 98.39 1.61 

S. alterniflora 19 309 0 50 378 81.75 18.25 

Upland Trees 4 0 48 0 52 92.31 7.69 

S. patens 0 14 1 319 334 95.51 4.49 

Column Total 268 323 53 369 1013     

Producer Accuracy 

(%) 91.42 95.67 90.57 

86.4

5    

Omission Error (%) 8.58 4.33 9.43 

13.5

5    

Overall Accuracy (%) 90.92       

Kappa (%) 86.89       
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Table 2.5. 2011 intertidal above MSL topographic statistics for the delineated 

PIE watersheds and respective regions.  

 

Watershed  Area (km2) Mean Elevation (m) Mean Slope (°) 

(degrees) Merrimack  5.56 1.36 2.51 
Parker  6.01 1.38 2.68 

Tide Creek 2  1.67 1.39 2.61 

North 

Region 

13.24 1.38 2.60 

Tide Creek 1  0.66 1.32 3.06 
Rowley  7.71 1.30 2.78 

Ipswich  4.07 1.31 2.53 

South 

Region 

12.44 1.31 2.79 
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Table 2.6. 2011 LiDAR based accommodation space statistics for the 

delineated PIE watersheds and the respective regions.  

 

Watershe

d  

Area (km2) Mean Elevation (m) Mean Slope (°) 

Merrimac

k 

2.39 1.72 1.38 

Parker 4.33 1.80 2.29 

Tide 

Creek 2 
1.37 1.75 1.79 

North 

Region 

8.09 1.76 1.82 

Tide 

Creek 1 

0.15 1.62 1.13 

Rowley 2.72 1.80 2.02 

Ipswich 1.19 1.88 2.78 

South 

Region 

4.06 1.77 1.98 
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Table 2.7. Intertidal area change in PIE delineated watersheds following a 100 year 1 m 

sea-level rise.  

 

Watershed  

2011 Area 

(km2) 

Accommodation 

Space (km2) 

Area Lost 

(km2) 

2111 Area 

(km2) 

Percent 

Change 

Merrimack 5.56 2.39 0.33 7.62 37.05 

Parker 6.01 4.33 0.40 9.94 65.39 

Tide Creek 2 1.67 1.37 0.11 2.93 75.45 

North 

Region 13.24 8.09 0.84 20.49 54.76 

Tide Creek 1 0.66 0.15 0.07 0.74 12.12 

Rowley 7.71 2.72 0.96 9.47 22.83 

Ipswich 4.07 1.19 0.35 4.91 20.64 

South 

Region 12.44 4.06 1.38 15.12 21.54 
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Table 2.8: Current and future (in parentheses) saltmarsh vegetation cover by PIE 

delineated watershed and region.  

 

Watershed  

S. alterniflora 

 (km2) 

S. alterniflora 

% 

S. patens  

(km2) 

S. patens % 

Merrimack 0.98 (7.48) 17.63 (98.16) 4.58 (0.14) 82.37 (1.84) 

Parker 0.96 (9.57) 15.97 (96.28) 5.05 (0.36) 84.03 (3.62) 

Tide Creek 2 0.25 (2.82) 14.97 (96.25) 1.42 (0.11) 85.03 (3.75) 

North Region 2.19 (19.87) 16.54 (96.97) 11.05 (0.62) 83.46 (3.03) 

Tide Creek 1 0.19 (0.73) 23.79 (98.65) 0.47 (0.01) 63.51 (1.35) 

Rowley 2.44 (9.20) 31.65 (97.15) 5.27 (0.27) 68.35 (2.85) 

Ipswich 1.15 (4.75) 28.26 (96.74) 2.92 (0.16) 71.74 (3.26) 

South Region 3.78 (14.67) 30.39 (97.02) 8.66 (0.45) 69.61 (2.98) 
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Figure 2.1. Location of the Plum Island Estuary Long Term Ecological Research Reserve 

(PIE-LTER) in coastal northeastern Massachusetts in relation to the region’s major city, 

Boston, MA  
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Figure 2.2. Location of 13 Fastatic GPS measured SET sites within PIE overlain 2011 LiDAR.
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Figure 3.3. Example of training polygons located around the Rowley River overlain 2010 NAIP 

true color.

Rowley River 
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Figure 2.4: 2010 NAIP derived NDVI (unitless).  
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Figure 2.5: Vegetative composite image of PIE. 
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Figure 2.6. 2010 NAIP PIE land cover classification. 
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Figure 2.7. Raw classified S. alterniflora histogram of distance (m) to nearest hydrological feature.  
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Figure 2.8. 2011 LiDAR Elevation histogram for classified S. alterniflora (light shading; solid line) and S. patens (dark shading; 

dashed line) after thresholding distance to nearest hydrological feature. 
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Figure 2.9. 100 year accelerating 1 m sea-level rise.  
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Figure 2.10: Final watershed boundaries and grouping by region. Panel (A) depicts the location of the watersheds within the western 

boundary of PIE. Blues denote the northern defined watersheds vs. reds defining the southern defined watersheds.  Tide creek 2 (B) 

and 1 (C) are defined as receiving and draining a single large multi-order tidal creek.   Panels D-G represent PIE’s connection to the 

Merrimack River through Plum Blush Creek, the Parker River watershed rotated 90°, Rowley River, and Ipswich River respectively.  

All unsuitable landcover for marsh conversion has been removed.
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Figure 2.11. 100 year PIE vegetation change in species area by region (North = A, South = B) during an accelerating 1m SLR (purple 

circles denote S. patens vs blue triangles representing S. alterniflora).   
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Figure 2.12. Rate of change in intertidal area above MSL per year by PIE region (purple 

circles denote PIE south vs blue circles representing PIE north). 
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Chapter 3. Mapping Future Intertidal Landscapes through the Use of a Spatially 

Coupled Vegetative Feedback Model, MEM3D. 

 

The spatial redistribution of saltmarshes manifested by projected rates of sea-level 

rise is an important component of assessments of saltmarsh vulnerability and resilience, 

natural resource management, and property selection by numerous stakeholders. The 

purpose of this chapter is to predict changes in elevation and migration of the saltmarsh at 

North Inlet, South Carolina, by developing a spatial model based on the zero-dimensional 

Marsh Equilibrium Model (MEM) of Morris et al. (2002).  

Until recently, models of the effect of sea level rise in marshes predict only 

changes in boundaries of marshes as a result of only the change in water levels through 

time (Gesh et al. 2009; Temmerman et al. 2004; Wu, Najjar, & Siewert 2009), and 

neglect to incorporate the vegetative feedback that contributes to the vertical accretion of 

the surface in saltmarshes (Craft et al. 2008; Stralberg et al. 2011). The ubiquitous Sea-

Level Affecting Marshes Model (SLAMM) incorporates a steady state accretion term that 

is a function of wetland classification type (Craft et al. 2008), resulting in a biased, 

unrealistic estimate of the surviving saltmarshes. Several zero-dimensional models of 

saltmarsh evolution incorporate parameters that accommodate non-linear feedback 

mechanisms between vegetation and surface elevation changes (Kirwan et al. 2010; 

Kirwan et al. 2012; Krone 1985, Morris et al. 2002; Mudd, D’Alpaos, & Morris 2010),



  

47 
 

including the MEM (Morris et al. 2002). Throughout its existence the MEM has 

undergone several mutations based on the increasing availability of empirical datasets, 

each mutation improving the ability of MEM to accurately predict future elevations based 

on sea level rise rates. The MEM in its current form includes parameters for biomass 

distribution across elevation and sediment trapping efficiency, inorganic and organic 

suspended sediment concentrations, sediment organic content, tide datum and frequency, 

and rate of sea level rise.  

This study focuses on developing the spatial version of MEM for several reasons. 

First, the MEM was developed using one of the longest time series of observations for 

biomass and accretion and therefore has a strong theoretical basis for surface change in 

marshes as sea level rises. Second, the MEM is a series of equations that can be scripted 

into any programming language and is based on a single input elevation, introducing the 

capability of being projected across space with the use of digital elevation models.  

Digital elevation models allow for the use of multiple input elevations in a python 

program written to execute the MEM on multiple input values. As such, the MEM can 

accommodate pre-defined site-specific parameters of tidal datums, vegetation biomass, 

sediment organic content, suspended sediments in the water column, and rate of sea level 

rise. The adaptability of MEM coupled with the spatial power of a geographic 

information system (GIS) conveys the production of a single model capable of projecting 

MEM across space. 

The goal of this study is to develop a spatial version of MEM that predicts 

changes in elevation throughout a pre-defined area in order to understand the spatial 

dynamics of marsh evolution and migration during the unprecedented sea level rise that is 
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predicted for the upcoming century. The spatial version of MEM automates the 

computational processes in a single python program so that the only user interactions are 

specifying input data and manipulating output for deliverables. The specific objectives of 

the study are to 1) develop a computationally affordable MEM model to avoid back and 

forth transfers of data between programs; 2) suggest an optimal input DEM resolution 

that balances aesthetics, processing time, and quantitative output; 3) apply the developed 

model to analyze the spatial transition of saltmarshes of the North Inlet estuary; and 4) 

provide evidence for what the future landscape composition of North Inlet will consist of 

and when major changes will occur.  

 

Methods 

Study Site 

The study site is the North Inlet-Winyah Bay National Estuarine Research 

Reserve (NI-WB NERR, Figure 3.1) located east of Georgetown, South Carolina. The 

NI-WB NERR contains several undisturbed major coastal habitats ranging from upland 

longleaf pine savanna to an extensive and stable, high salinity marsh-estuary complex 

dominated by Spartina alterniflora. The complex is meso-tidal with an average MHW 

range of 0.64 m reported from NOAA tide gauge 8662245 (NOAA Tides and Currents 

2013d). Hydrologic input to the system is dominantly from the Atlantic Ocean through 

North Inlet. Freshwater input is from the Waccamaw River through Winyah Bay to the 

south but is a minor component of the hydrologic input. 
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Model Scripting 

 The three-dimensional Marsh Equilibrium Model (MEM3D) was written in the 

python programming language to allow for loose coupling of the parent model, MEM, 

with the spatial modeling power of Earth System Research Institute (ESRI) ArcMap. 

Input data consisted of two datasets and 22 variables stemming from four classes. The 

two input datasets were a raster representing a bare Earth LiDAR digital elevation model 

(gDEM) and a shapefile representing the boundary of the area of interest (mask). These 

datasets were defined as input datasets in the script. The four classes of variables were 

used to define batch size, tidal parameters, sea-level rise, and biological growth 

characteristics of the saltmarsh grass S. alterniflora. Batch size (N) was defined as the 

number of records the computer processed per iteration. Tidal parameters were the 

elevation, in meters, of mean high water (MHW), mean low water (MLW), and the tidal 

range (Trange). Sea-level rise variables were defined as total global sea-level rise 

(gSLR), in cm, the model simulation time in years (T), and the current rate of SLR (A), in 

cm, as inferred from the nearest tide gauge. An additional variable, B, representing an 

acceleration term in Equation 3.1, was calculated by the model and used as input.  

gSLR = AT + BT2                                              3.1 

Biological growth (Equation 3.2) consisted of 3 coefficients (a, b, and c) derived from the 

relationship between S. alterniflora biomass and absolute depth (D; Equation 3.3) below 

MHW described by Morris et al. (2002).  

                                   Biomass (BM) = maximum ((a*D + b*D2 + c), 0)                     3.2 

                               Depth (D) = (MHW – elevation) / (Trange)              3.3 
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Five additional coefficients (q=0.9 g/g, kr=0.05 g/g, m=21e-6 g/cm3, k1=0.088 g/cm3, and 

k2=1.91 g/cm3) were provided by Morris (personal communication) to define 

sedimentation properties and loss on ignition. Minimum and maximum vegetated 

elevations (MinE and MaxE) were calculated by solving the roots of the biomass 

parabola and re-arranging Equation 3.3 for elevation. A final variable, fE, representing 

the maximum elevation needed for model simulation, was calculated as the maximum 

vegetated elevation plus the total SLR. An array was created to hold time in years from 

the current time (T=0) to the end time plus 1 (T+1). Sea-level rise was simulated in a for-

loop that incremented MSL yearly by inserting the iteration number (i) in place of T in 

Equation 3.1. The magnitude of change in MSL, ySLR, between years was calculated as 

the difference between the latter and prior year’s location of MSL and stored in the array.  

 The script for MEM3D contains several different processing steps. The first step 

is to reduce the total amount of data necessary for processing and thus reduce the total 

processing time. This is done by removing data outside the area of interest and the data 

that will not experience any change in elevation because it exists above the maximum 

elevation for vegetation at the end of the study period. The input DEM was clipped to the 

input boundary mask and then reclassified to represent all potentially vegetated 

elevations during the SLR event. The reclassification produced two classes – one for 

elevations between the minimum vegetated elevation (minE) for S. alterniflora 

productivity and the maximum elevation for model simulation (fE) (given a value of 1) 

and all other elevations (given a value of 0).  

 The second step was to convert the spatial data to a text format that was input into 

the MEM3D. A raster to point tool in ArcPy, a module that connects ArcGIS to Python, 
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converted the raster data to point data with Cartesian coordinates representing the center 

of the raster and an elevation value for each cell. The result was the creation of a text file 

for input into MEM3D. 

 The third step in the script, and the most complex step, was the creation of 

multiple statements and nested for-loops to execute the equations that constitute the 

MEM. An initial ‘with open’ statement was employed to create a CSV file where all 

MEM output was permanently stored. Two empty dictionaries, E and E0, were created to 

temporarily store MEM input and output respectively. The dictionary ‘E’ was used to 

store the raw data columns as tuples with a unique key assignment set as the point’s 

Cartesian coordinates to serve as a spatial identifier. The dictionary ‘E0’ was used to 

store temporal data separately from the raw input data. 

 To avoid memory errors, a primary for-loop was used to obtain a number of 

records equal to the defined batch size for processing. All the remaining calculations for 

the MEM portion of the script were contained within this primary for-loop. A secondary 

nested for-loop was used to process each record of the batch into specific columns for 

longitude, latitude, and elevation. Input elevation was converted to cm to match the units 

of the input variables. A column for depth (D) was created to store unitless depth defined 

by Equation 3.3. Biomass (BM) was calculated from Equation 3.2 to represent the S. 

alterniflora above-ground standing biomass in g/cm2.  

An additional secondary nested for-loop was used to create an array with length 

equal to the time of the SLR event, 100 years in this study, and assign year 0 elevation, 

biomass, and the spatial identifier to a variable from the raw input dictionary. A tertiary 

nested for-loop was used to calculate elevation and depth for each spatial identifier over 
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time. Elevation (Z) at each time step (1 year in this study) was updated as described by 

Equation 3.4 through a combination of variables calculated from the previous year 

culminating in an accretion (DEDT) value (Equation 3.5) where f is the frequency of 

semi-diurnal tides per year. Absolute depth (absD) was calculated and set to a minimum 

of 0 m as described by Equation 3.6.  

                    Z[t] = [Z[t-1] + (DEDT- ySLR[t])]                3.4 

 DEDT = (q*m*f*(Dreal/2) + kr*B)*[LOI/k1 + (1-LOI) / k2]             3.5 

                        absD = max(MHW - elevation, 0)                                      3.6 

Real depth (Dreal) was initially set as equal to absolute depth and updated to the depth of 

MLW if the calculated elevation was below MLW. This constraint was created to limit 

elevation change in areas below which marsh vegetation cannot exist, i.e., elevations that 

are known to be mudflats based on empirical biomass distribution curves. Biomass was 

set to a minimum of 0 g/cm2 to avoid erroneous calculated values. Loss on ignition (LOI) 

was set as 0.1 and updated as described by Equation 3.7 if the calculated biomass was 

greater than 0 g/cm2.  

                  LOI = (kr*B/(q*m*f*(absD/2) + kr*B)                                3.7 

Limits were placed on the real depth and biomass to avoid negative accretion values. A 

remainder function was employed to export temporal elevation and biomass to dictionary 

‘E0’ by a 10 year interval. The product of these calculations was a CSV file with columns 

for biomass and elevation for each point at the specific time intervals, i.e., year 0, year 

10, year 20, …., year 100. Ten years was chosen as the temporal interval to reduce 

memory constraints associated with storing files.  
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 The final steps in the script were spatial processing procedures to create a point 

shapefile from the MEM output data. The point file was interpolated with the same cell 

size as the original input DEM and using the natural neighbor interpolation algorithm (a 

common interpolation method for LiDAR data). Final output DEMs were clipped to the 

extent of the potentially vegetated mask previously developed.  

 Several constraints were placed on terms and equations within the script to ensure 

that the model output was realistic. Change in elevation (Equation 3.5) is a function of 

mineral and organic components and controls the magnitude of loss within the simulation 

by offsetting the loss in elevation due to SLR. The maximum expected loss in elevation 

during the event was expected to be 1 m. Within the python script, if the magnitude of 

depth becomes too large, it can dominate the entire amount of accretion resulting in 

substantial errors for subtidal elevations to a point where new intertidal land would be 

encountered during the simulation, an unrealistic outcome. On the other end of the tidal 

prism, if depth is calculated as negative, or above the elevation of MHW, accretion would 

become negative thereby representing erosion. To adjust these errors, depth was limited 

to a maximum value to that of MLW and 0cm for all elevations above MHW. The 

organic component is controlled by S. alterniflora above-ground biomass, which has set 

values between 0 and 0.0928 g/cm2 for NI-WB. Values for the pure organic (k1) and 

inorganic (k2) coefficients for the calculation of LOI were empirically derived by Morris 

and set at 0.088 and 1.9 g/cm3 respectively. At elevations beyond the thresholds for 

vegetative production, LOI was set to a value of 0.01 to realistically include a minor 

portion of organic material. The limits imposed on depth, biomass, and LOI ensured that 

accretion occurs only within vegetated and intertidal elevations. The inclusion of these 
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constraints meant that testing of the Python script was necessary to verify that the code 

was written to produce the intended output.  

 Finally, in addition to creation of the script to run MEM3D, differences between 

input data spatial resolution were analyzed to determine the optimal resolution that save 

time but do not result in any loss of information. To provide alternative resolutions for 

analysis, the 1 m resolution DEM from 2007 (year 0) was aggregated to 5 m and 10 m by 

averaging. A processing timer was included in the script and began counting at the start 

of each MEM3D execution and stop at the conclusion of the final interpolation to track 

time to completion. The point shapefile for the 1m DEM, created by MEM3D, was 

imported into ArcMap to join the elevation of the 5m and 10m raster into a single tabular 

dataset. The dataset was loaded into SAS where change in elevation was calculated as the 

difference between the 1m elevation and each aggregated elevation. Descriptive statistics 

were produced to define the shape of each change in elevation frequency distribution. 

Area for each resolution was determined by multiplying the number of cells within the 

dataset by the cell area for the specific resolution. Maps for each resolution were 

compared and inspected for presentation quality aesthetics. The modeled extent of the 

optimal resolution for North Inlet-Winyah Bay was processed within SAS to provide 

spatial changes in the saltmarshes of the estuary during the SLR event. Biomass was 

summed for each 10 year iteration to create a total biomass variable. 

Model Processing at North Inlet 

 North Inlet-Winyah Bay was chosen as the estuary to model a 100 year 1m SLR 

event. Several site-specific parameters were used in the application of MEM3D at North 

Inlet-Winyah Bay. A 2007 1 m resolution LiDAR DEM referenced to NAVD88 was 
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obtained from NOAA through a non-disclosure agreement with the Georgetown County, 

SC GIS Department. The DEM was filtered and a mask drawn to approximate the 

boundary of the North Inlet-Winyah Bay National Estuarine Research Reserve (Figure 

3.1). Saltmarsh biological growth coefficients (a, b, c), were provided by Morris 

(personal communication) and were 0.0766 g/cm2, -0.313 g/cm2, and 0.09287 g/cm2 

respectively. Tidal parameters were obtained from the Oyster Landing tide gauge located 

within North Inlet. MEM3D was employed to identify the appropriate DEM resolution 

and quantify the changes in total biomass and area of coastal land cover classification 

during the SLR event.  

Maps for the current and the modeled 100 year estuary were produced for visual 

representation. The output DEMs were classified into six classes based on vegetative and 

tidal thresholds identified for S. alterniflora. Elevations below MLW were classified to 

represent water. Mudflat was defined as between mean low water and the minimum 

elevation for vegetation. Vegetated below mean sea level, or the area most likely to be 

devastated during sea level rise, was defined as between the minimum elevation for 

vegetation and MSL. The vegetated intertidal zone, the marsh area with greater biomass 

productivity, was defined as between MSL and MHW. Another zone between MHW and 

the maximum elevation for vegetation defined the limits of the vegetation zone above 

MHW. All elevations above the maximum vegetated elevation were defined as upland.  

The total area of each class was calculated by multiplying the number of 

observations within each class by the raster cell area. Land cover area was plotted against 

time to graphically track changes in the study site. Total marsh area, defined as the sum 

of all vegetated zones per 10 year interval, was plotted against time to track temporal 
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changes in raw marsh area. The analyses described allow for the identification of spatial 

patterns and how overall SLR will affect the saltmarshes of North Inlet-Winyah Bay. 

 

Results 

 Results show that the MEM3D model is capable of predicting spatial changes in 

the marsh at North Inlet during a 100-year, 1-m SLR event. Model outcomes suggest that 

the marsh is not capable of keeping up with sea level rise, as the amount of marsh area 

decreased substantially during the model duration. Furthermore, results show that there 

was a loss of information and computing time as a result of changing the spatial 

resolution for input DEMs. 

Descriptive statistics were used to compare the loss of information caused by 

aggregating the original 1 m LiDAR to 5 m and 10 m spatial resolutions (Table 3.1). The 

difference in elevations between the 1 m and aggregated 5 m LiDAR ranged between -1.9 

m and 2.15 m with an average of 0 m and standard deviation of 0.11 m. Skewness and 

kurtosis for the elevation difference of the 5 m resolution were 0.31 and 25.54 

respectively. Differences in elevation between the 1 m and the 10 m LiDAR were 

between -2.17 m and 2.53 m with a mean and standard deviation of -0.01 m and 0.18 m 

respectively. Skewness and kurtosis for the 10 m resolution were 0.43 and 17.06 

respectively. A visual comparison of the 3 LiDAR resolutions is presented in Figure 3.2. 

The number of cells, associated area, and time for MEM3D processing of each resolution 

are presented in Table 3.2. The 1 m LiDAR contains 2,825,827 cells for a total area of 

2.83 km2 compared to 114,096 cells and 2.86 km2 for the 5m LiDAR and 29,137 cells 

and 2.91 km2 for the 10 m LiDAR. Processing time is found to be 165.61 minutes, 4.73 
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minutes, and 1.20 minutes for the 1 m, 5 m, and 10 m LiDAR resolution respectively. 

Essentially, there was no loss of information in the 5 m spatial resolution and the 

computing time was significantly lower than the 1 m resolution data. Therefore, the 5 m 

resolution DEM was used in all future analyses. 

In order to assess change in the saltmarsh at North Inlet, six elevation classes 

were developed based on input tidal datums and the S. alterniflora above-ground biomass 

parabola (Table 3.3). There were substantial changes in each elevation class between 

2007 and the final modeled year, year 100 (Figure 3.3). In order to understand the 

behavior and dynamics of the North Inlet saltmarsh system through time, it was necessary 

to analyze step-wise changes in elevation classes at 10-year intervals (Table 3.4, Figure 

3.4). Water is found to only exist in year 100 at 0.03 km2. Areas classified as mudflat 

appeared in model year 40 at 0.01 km2 and increased to 1.18 km2 by year 100. The 

vegetated area below MSL was 0.18 km2 at the model onset and increased to a maximum 

of 0.98 km2 at the year 80 point, only to decrease to 0.71 km2 at the model termination at 

year 100. The vegetated area between MSL and MHW was 1.38 km2 in year 0 and 

increased to a maximum of 1.54 km2 in years 30-40 before decreasing to 0.59km2 in year 

100. The area of S. alterniflora above MHW was initially 0.68 km2 and steadily 

decreased to 0.35 km2 by the model termination. Total marsh area, defined as the sum of 

all S. alterniflora vegetated land cover classes, was initially 2.24 km2 and increased to a 

maximum of 2.46 km2 before decreasing to 1.65 km2 in year 100 (Figure 3.5). Upland 

area decreased from 0.62 km2 in year 0 to 0 km2 in year 100. Total marsh biomass for the 

North Inlet-Winyah Bay study site was 6.95x109  kg/km2 in year 0 (Figure 3.6). Biomass 
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increased to a maximum of 7.09x109 kg/km2 at year 30. After year 30, total S. 

alterniflora above-ground biomass decreased to 3.71x109 kg/km2 at year 100.  

 

Discussion  

 The development of a spatial version of the Marsh Equilibrium Model was 

accomplished using Python scripting and ArcGIS. The optimal input DEM resolution for 

the North Inlet-Winyah Bay study site that balances aesthetics, processing time, and 

quantitative output was 5 m. Execution of the new model, called MEM3D, shows that 

North Inlet-Winyah Bay will experience significant reductions in the amount of marsh 

area between 2007 and 2107, assuming current dynamics and sediment delivery systems 

remain the same.  

Resolution manipulations of the input LiDAR DEM suggest that a resolution of 

5m is sufficient for production of quantitative data. While the mean elevation difference 

between the 1 m and the 5 m and 10 m datasets is very small (0 m and -0.01 m, 

respectively), the minimum and maximum elevation differences is quite different (-1.9 m 

to 2.15 m for the 5 m resolution and -2.17 m to 2.53m for the 10 m resolution), such that 

the information in the 10 m resolution data is altered to a greater extent than the 5 m 

resolution data. It is not surprising that the mean differences in elevation are near 0m. 

Saltmarshes are inherently flat, with topographic relief generally occurring in the micro-

scale (Tonelli, Fagherazzi, & Petti 2010). Airborne LiDAR, with low posting densities 

(Hopkinson et al. 2004), are too coarse to accurately depict any micro-topography. These 

general properties of the dataset, when coupled together, create the conditions for a low-

relief DEM with similar elevations even at a 1m resolution.  
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Using the skewness and three standard deviations (99.7% of all observations) to 

identify outliers, the spread of the data and location of extreme elevation discrepancies 

can be identified. Skewness of the 5 m LiDAR was 0.31 while the skewness of the 10 m 

LiDAR was 0.43. Values for skewness indicate that the differences in elevation for each 

dataset are normally distributed around the mean with a slight bias towards 

underestimating the 1m elevation. The standard deviations indicate that while the mean 

differences between elevations were 0m, most of the data falls within 0.33m and 0.54m 

of the mean for the 5 m and 10 m resolutions respectively (Table 3.1). Outliers were 

identified as being outside of the 3 standard deviations and were responsible for the 

extreme elevation discrepancies of the minimum and mean. These outliers were located 

along the edges of tidal creeks and the major transition onto the upland are where these 

differences occur because there is a large relief over a short span (Figure 3.7). Elevations 

in the tidal creek and on the marsh platform are drastically different from each other; and 

as a result a resampled pixel covering a transition from creek to platform has an average 

value that does not accurately represent one or the other, but something in between. This 

simple condition explains the interaction between the spatial location of a cell and the 

influence of an edge to create large elevation discrepancies.  

A final metric, kurtosis, was used to further describe the data. The 5 m resolution 

data (kurtosis value = 25.54) have a more spiked, leptokurtic distribution around the 

mean compared to the 10 m resolution data (kurtosis value = 17.06). This means that the 

5 m resolution data are more concentrated around the mean of 0 m than the 10 m 

resolution data. Thus there is minimal loss of information in the 5 m resolution data, or 

the 5 m resolution data more accurately represent the 1 m resolution data than the 10 m 
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resolution data. Further considerations for landscape area and processing time should be 

considered to fully suggest an optimal input resolution. 

Another consideration to suggest an optimal input resolution is processing time. 

Processing time is directly proportional to file size. Processing time decreased from 

164.61 minutes for the 1 m resolution to 4.73 minutes for the 5 m and 1.2 minutes for the 

10 m. Processing was conducted on a standard PC with 16GB of RAM, and it is assumed 

that similar results will occur on other systems as long as the memory and processor are 

similar.  

The final consideration, and perhaps the most compelling for the creation of 

visual aids for community planner and managers, for suggesting a 5 m resolution for 

input into the MEM3D is the visual comparison of output data from the model (Figure 

3.2). In general, an increase in resolution causes a decrease in sharpness between 

topographic features and a loss of information. Important topographic features in 

saltmarshes, which are inherently flat environments, are the tidal creeks, marsh platform, 

uplands, and their respective transitions. Tidal creeks are easily identified in the 1 m 

resolution image and exist as individual topographic features within the marsh platform. 

The uplands are also clearly distinguished from the marsh platform. Increasing the 

resolution to 5 m, the described features become more subdued but are still evident. 

When the resolution is increased to 10 m, the important features become completely 

blended, resulting in a significant loss of information and a nearly incomprehensible 

graphic. Tidal creeks become merge with the marsh platform at NI-Winyah Bay and are 

visually diminished, some disappearing. As a result, the 10m resolution is unacceptable 

for the production of qualitative, presentation-quality graphics.  
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From the analyses of aesthetics, differences in elevation, physical attributes, and 

processing time it is suggested that the optimal resolution to input into MEM3D is 5m. 

Although the optimal resolution has been determined, results of a MEM3D simulation are 

purely topographic unless a classification is performed. 

Analysis of changes in elevation classes based on vegetative and hydrological 

boundaries indicates that the North Inlet-Winyah Bay estuary will shift from current S. 

alterniflora dominance to a mosaic of S. alterniflora and mudflat (Figure 3.3) thereby 

corroborating the instability of the marsh predicted by Morris et al. (2002). Based on the 

2007 LiDAR DEM, saltmarshes comprised 2.24 km2 of the 2.86 km2 study site, or 

78.32%. During the 100 year simulation, marsh area slowly increased to a maximum of 

2.46 km2, 86.01%, during year 60. The gradual increase in marsh area occurred as a result 

of steady SLR-induced inundation, converting 0.32 km2 of uplands to saltmarsh, 

drowning 0.1 km2 of saltmarsh drowning, and creating 0.22 km2 of mudflat. After year 60 

the area of saltmarshes rapidly declined to a year 100 minimum of 1.65 km2 (57.69%). 

During this time, the remaining 0.3 km2 of uplands became saltmarsh while 1.08 km2 of 

saltmarsh were lost to mudflat for a net loss of 0.78 km2. Year 60 represents a tipping 

point for the estuary. Before year 60 the saltmarsh is keeping pace with SLR by vertically 

accreting sediment and migrating onto newly available intertidal space provided by the 

inundation of uplands resulting in an expansion of marsh area. After year 60, there is no 

available upland for the marsh to migrate into, and conversion of marsh to mudflat 

dominate changes in this estuary.  

Based on the parabola describing the relationship between biomass and elevation 

relative to MSL, there is an optimal elevation for biomass production, below which the 
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marsh is incapable of accreting enough sediment and producing enough belowground 

biomass to maintain equilibrium with sea level rise (Morris et al. 2002). Thus, it is 

necessary to go beyond a simple analysis of total saltmarsh area and look at categories, or 

classes, of elevation based on vegetative characteristics. While changes in total marsh 

area indicated short term SLR mitigation with an increase in total saltmarsh area, trends 

in the distribution of each elevation class suggest that, even in year 0, the marsh at North 

Inlet-Winyah Bay is not poised to maintain equilibrium with sea level rise. Of the 2.24 

km2 at year 0, it was found that the vegetated intertidal class dominates, composing 

61.61% of all marsh area followed by the vegetated above MHW class at 30.35% and the 

vegetated below MSL class at 8%. By year 60 the vegetated intertidal and above MHW 

classes had decreased to 47.96% and 19.51% of the year 60 total marsh area respectively. 

During the same time vegetated below MSL class increased to 32.52% of total marsh 

area. Following the 100 year simulation, the vegetated intertidal class further decreased to 

35.76% and the vegetated above MHW class marginally increased to 21.21% of year 100 

total marsh area. The vegetated below MSL class increased further to 43.03%. This 

suggests that, although total marsh area increases for the first 60 years, inter-class transfer 

in area began immediately. Although upland area was converted to the vegetated above 

MHW class at a nearly constant rate, the gain was offset by slightly greater loss of marsh 

area to the vegetated intertidal class. The vegetated intertidal class gained more area from 

the vegetated above MHW class than it lost to the vegetated below MSL class for 40 

years, at which time the trend switched and the area of the vegetated below MSL class 

began increasing rapidly. The switch in trend was also associated with the appearance of 

mudflat which exhibited an exponential shape for the remainder of the simulation.  



  

63 
 

To corroborate the loss in elevation interpreted from intra-class transfers of area, 

change in total biomass was plotted against time (Figure 3.6). Biomass is a function of 

elevation and is therefore sensitive to any changes in relative elevation. Biomass clearly 

demonstrated the loss of relative elevation and the effect of SLR by exhibiting the shape 

of a logarithmic curve. It was interpreted that when the rate of SLR was low, the loss of 

biomass was gradual and that as SLR accelerated, the loss of biomass followed as depth 

rapidly increased below the elevation of maximum biomass. Tracking changes in intra-

specific transfer of area and total biomass indicated a directly proportional loss of relative 

elevation to MSL and the rate of SLR.  

The analysis of inter-class transfer and biomass have several important meanings 

for the NI-Winyah Bay study site. Assessing inter-class transfer revealed the fallacy with 

interpreting raw changes in total marsh area. The North Inlet-Winyah Bay study system is 

not stable in the short term, instead the entire system lost elevation relative to MSL 

during every 10 year interval. The total area identified threshold of 60 years representing 

the switch from marsh gain to loss is delayed 20 years compared to that identified by 

intra-class transfer. The threshold rate of SLR that NI-Winyah Bay marshes can 

withstand before large downward intra-class transfers and conversion to mudflat was 

found to be 0.86 cm/yr using Equation 3.1. Organic carbon content of total aboveground 

biomass that can be sequestered from the atmosphere has been estimated to be 

approximately 44% from southeastern USA saltmarshes (Alexander & Robinson 2006; 

Craft, Seneca, & Broome 1991; Gallagher 1975; Osgood & Zieman 1993; Tyler 1997). 

Assuming this percentage, the sequestration of carbon will decrease from a 2007 level of 

30.6 tonnes to 16.34 tonnes by 2107, a reduction of 46.6%. The end result of a 100 year 1 
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m SLR event for North Inlet-Winyah Bay will be a rapid ecosystem conversion from 

current saltmarsh dominance to one characterized by numerous mudflats once the rate of 

SLR exceeds 0.86 cm/yr.  

 

Conclusion 

The initial version of MEM3D has been demonstrated to meet the objectives of 

this study. The model is written in the freely available Python programming language 

with only a single external software license needed – ArcGIS. Input spatial data is kept to 

a minimum of any freely available LiDAR dataset and an associated boundary for 

analysis. The model produces satisfactory landscape-scale results clearly identifying 

temporal transitions in coastal land cover. Results from a 100 year 1m SLR event for NI-

Winyah Bay suggest the saltmarshes are migrating inland with SLR thereby expanding 

area. It was found that this areal expansion, however, is a false SLR mitigation as the 

saltmarshes are losing elevation relative to MSL within every 10 year iteration. Evidence 

corroborating the loss of elevation include the cascading biomass from the 2007 MEM3D 

interpreted value of 31,047.15 kg/km2 to the 2107 MEM3D predicted value of 22,505.38 

kg/km2 and the downward shift in area reported from the intra-class analysis. The data 

indicate the saltmarshes will reach a tipping point in approximately 40 years when SLR is 

expected to exceed 0.86cm/year. By the end of the simulation, the estuary will shift from 

current saltmarsh dominance to mudflat. The result of this ecosystem shift is currently 

unknown but predicted to be both environmentally and economically disastrous as 

current fisheries collapse. 
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The optimal resolution for input LiDAR DEM’s, assuming landscape-scale 

graphics, is 5 m. The resolution was found to possess the most accurate elevations (0 m 

mean, 0.11 m standard deviation) and area (+0.01%) when aggregated from 1m LiDAR. 

Future versions of the model should focus on how the marsh is allowed to 

migrate, the assumption of steady states, and the effect of vegetation on elevation 

measurment. Marsh migration has not been addressed in the literature. Currently, all 

marsh evolution models assume that if an elevation is within the tolerance range for a 

species, then it is vegetated. Studies using ‘least-cost’ distance analysis are becoming 

more common and focus on functional landscape connectivity for the spread of a species 

of interest (Adriaensen et al. 2003). There must exist a certain rate of lateral expansion 

that a species can migrate per year given soil properties, biotic competition, and slope, to 

name a few. Updating MEM3D to address migration would limit the rate of lateral 

expansion providing more realistic results.  

Steady states of tidal datum and tide channel network are interrelated within an 

estuarine environment and have been addressed in the literature independently. Luettich, 

Westerink, & Scheffner (1992) prove that the elevation of MHW is a function of 

bathymetry that varies across an estuary as it fills. The lunar nodal cycle has been 

described as an 18.6 year cycle that imposes a sinusoidal wave on the tidal amplitude 

(Baart et al. 2011). Channel networks have been modelled by Devauchelle et al. (2012) to 

be represented as a collection of paths that grow and bifurcate at specific angles with 

underlying topographic roughness. It can be expected that as the tidal volume grows, tidal 

creeks will meander and erode headword into the marsh platform (Hughes et al. 2009). 

This expansion would then be expected to alter the suspended sediment concentration 
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which would need to be updated. Adjusting these limitations will be challenging with 

current technology but will increase the validity of MEM3D.   

Vegetation affects the model when multiple species exist and its preclusion of the 

true ground elevation. The current version of the model only uses coefficients calculated 

for S. alterniflora, despite other saltmarsh species existing at proximal elevations. Other 

species can be modeled in MEM3D with specific ‘if’ statements imposed on elevation 

when coefficients are known. Overestimates of ‘bare earth’ in LiDAR datasets is a 

common problem in densely vegetated ecosystems. Chassereau, Bell, & Torres (2011) 

and Montane & Torres (2006) collected dense Real Time Kinematic Global Positioning 

System (RTK GPS) points for Madieanna Island in North Inlet and found average 

vertical errors of 0.06 – 0.07 m on the marsh platform. Future work should focus on 

collecting biomass, RTK, and distance to creek measurements to coincide with LiDAR 

missions such that correction factors can be identified and modeled onto the DEM before 

MEM3D analysis. 

 MEM3D shows promise as a user friendly model with minimal expert knowledge 

required but much needed updates as new modeling technology in estuarine circulation 

and sedimentary processes are developed. 
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Table 3.9. Elevation difference and statistics from 1m resolution. 

 

Resolution 

Mean 

(m) 

Standard 

Deviation Skewness Kurtosis 

Minimum 

(m) 

Maximum 

(m) 

5m  0.00 0.11 0.31 24.54 -1.90 2.15 

10m -0.01 0.18 0.43 17.06 -2.17 2.53 
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Table 3.10. Input raster number of cells, area, and 

MEM3D processing time by resolution. 

 

Resolution 

Number 

of Cells 

Total Area 

(km2) 

Time to 

Completion 

(min) 

1m 2825827 2.83 165.61 

5m 114096 2.86 4.73 

10m 29137 2.91 1.20 
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Table 3.11. Land cover classification thresholds as determined 

by the S. alterniflora biomass curve. 

 

Land Cover 

Classification 

Min. Elevation 

(m) 

Max. Elevation 

(m) 

Water < -0.76* -0.76 

Mudflat >  -0.76 -0.32 

Vegetated below MSL >  -0.32 -0.01 

Vegetated intertidal >  -0.01 0.64 

Vegetated above 

MHW >  0.64 1.25 

Upland >  1.25 2.25** 

* No minimum limit on elevation 

** Assumes data is limited to the value of gSLR above 

maximum vegetated elevation 
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Table 3.12. Temporal change in land cover area during a 100 year 1 m SLR event. Marsh area is defined as the 

sum of all S. alterniflora vegetated land cover classes. Biomass represents the cumulative biomass sum, output 

by MEM3D, of all S. alterniflora vegetated pixels.  

 

 

 

  

 Land Cover Classification Area (km2)  

Time 

(Years) Subtidal Mudflat 

Vegetated 

below 

MSL 

Vegetated 

intertidal 

Vegetated 

above 

MHW Upland 

Marsh 

Area 

Biomass 

(kg/km2) 

0 0.00 0.00 0.18 1.38 0.68 0.62 2.24 31047.15 

10 0.00 0.00 0.18 1.45 0.64 0.59 2.27 30945.25 

20 0.00 0.00 0.20 1.50 0.61 0.55 2.31 30662.19 

30 0.00 0.00 0.25 1.54 0.57 0.50 2.36 30084.03 

40 0.00 0.01 0.34 1.54 0.53 0.44 2.41 29224.11 

50 0.00 0.05 0.53 1.40 0.50 0.38 2.43 28275.0 

60 0.00 0.10 0.80 1.18 0.48 0.30 2.46 26573.38 

70 0.00 0.20 0.91 1.06 0.46 0.23 2.43 24658.64 

80 0.00 0.42 0.98 0.88 0.43 0.15 2.29 22774.85 

90 0.00 0.90 0.81 0.69 0.39 0.07 1.89 23298.89 

100 0.03 1.18 0.71 0.59 0.35 0.00 1.65 22505.38 
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Figure 3.13. Approximate boundary of the North Inlet-Winyah Bay NERR overlain 

natural color 8-bit imagery. 
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Figure 3.14 Zoomed in 1:15,000 scale comparison of the 3 LiDAR resolutions. Resolutions are ordered 1 (A), 5 (B), and 10 m (C) 

respectively.

A B C 
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Figure 3.15. Comparison of current, year 0, 5 m resolution classified LiDAR (A) to MEM3D year 100 5 m resolution classified output 

(B). 
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Figure 3.16. 5 m resolution MEM3D predicted area (km2) of NI-Winyah Bay classified 

land cover vs. time (years).  
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Figure 3.17. 5 m resolution MEM3D predicted NI-Winyah Bay total marsh area (km2) by 

time (years). Total marsh area represents the cumulative sum of all S. alterniflora 

vegetated pixels. 
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Figure 3.18. 5 m resolution MEM3D predicted total NI-Winyah Bay S. alterniflora 

above-ground biomass (g/m2) vs time (years).  
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Figure 3.19. Location of outliers resulting from the aggregation of 2007 1 m LiDAR to 5 

m resolution. 
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Chapter 4: Prediction of Saltmarsh Vegetative Above-Ground Biomass from a High 

Resolution Terrestrial Laser Scanner 

 

Saltmarsh vegetation above-ground biomass is vital to the ecosystem’s survival 

against accelerating sea-level rise. Leonard and Croft (2006), Leonard and Luther (1995), 

Nepf & Vivoni (2000), and Peterson et al. (2004) provide empirical results displaying 

non-linear sedimentation rates as result of changes in structural density of vegetative 

canopies in a water column. The authors’ results are contingent on traditional biomass 

measurements. The traditional method of vegetative biomass determination is to harvest 

live vegetation from pre-determined sample plots and to process the samples within a 

laboratory. This method is laborious, physically demanding, time consuming, and 

environmentally destructive (Baskerville 1972; Eitel, Vierling, & Magney 2013; Garcia 

et al. 2010; Lin et al. 2010; Loudermilk et al. 2009). These limitations have resulted in 

long term datasets of vegetative biomass to be infrequent and spatially limited to a single 

site or small set of sites. Numerical models, such as the Marsh Equilibrium Model 

(Morris et al. 2002), utilize above-ground biomass to forecast vertical accretion. The 

measurement of saltmarsh above-ground biomass, therefore, is an important component 

of vegetative structural morphology that is critical to appropriately model the future 

distribution of saltmarshes. There exists a need to develop rapid on-site saltmarsh 

vegetation biomass determination techniques that are environmentally friendly. Recent 

advances in LiDAR technology provide a promising approach to address this issue. 
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LiDAR became mainstream in the last quarter of the 20th century. Historically 

used within satellites for atmospheric research, the technology has become commonly 

used mounted on airplanes (i.e. Airborne Laser Scanning: ALS) for high accuracy 

measuring of topography and bathymetry (Wandinger 2005). Stemming from the need to 

develop efficient and accurate ways to quantify horizontal and vertical distributions of 

vegetation in forests, the technology has been introduced to, but limited in, biological 

applications (Loudermilk et al. 2009; Michel et al. 2008; Rossell et al. 2009). Drake et al. 

(2002; 2003), Lefsky et al. (1999), Means et al. (1999), and Nelson, Krabill, & Tonelli  

(1988) report positive correlations between LiDAR derived point cloud metrics and 

landscape-scale forest canopy biomass collected from traditional techniques. At the local-

scale, however, the relationship fails due to low posting densities (Eitel, Vierling, & 

Magney 2013; Hopkinson et al. 2004; Lin et al. 2010). The advancement of LiDAR 

technology in the direction of terrestrial systems is fostering new research at the micro-

scale.    

 Terrestrial laser scanning was developed to provide industrial and civil engineers 

a lightweight tool to generate dense point clouds at micro-scales (Dassot, Constant, & 

Fournier 2011). Current TLS systems allow users to collect thousands to millions of 

points per second at scales up to 100 m (Michel et al. 2008). In the last decade, TLS has 

advanced to become a common method for the optical measurement of the 3D extensions 

of distinct objects (Seidel et al. 2011). Accurate measurements of single tree and canopy 

metrics have been successfully estimated using tripod mounted TLS systems under forest 

canopies (Henning & Radthe 2006; Hopkinson et al. 2004; Tanaka, Yamaguchi, & 

Takeda 1998; Watt & Donoghue 2005).  Expansion of TLS technology into studies 
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involving fine-scale graminoid characteristics is limited (Rowell & Sceielstad 2012).  The 

absence of appropriate methods to use this data in a meaningful way coupled with the 

lack of sensitivity when estimating biomass strain further advancement (Garcia et al. 

2010; Michel et al. 2008). Loudermilk et al. (2009) provides evidence that micro-scale 

forest understory fuel volume can successfully be predicted using an elevated TLS. 

Studying dominant sagebrush species found within ecosystems of the western US, Olsoy, 

Glenn, and Clark (2014) utilized TLS to predict total and green biomass from a single 

study site. Exploring the use of TLS in a saltmarsh and deriving appropriate above-

ground biomass predictive models is needed to provide an avenue of research into these 

sensitive ecosystems.  

 This study provides an initial attempt to test the hypothesis that TLS can be used 

to measure vegetative above-ground biomass for two saltmarsh species: Spartina 

alterniflora and Juncus roemerianus. The hypothesis firmly depends on whether the TLS 

system used can penetrate the marsh canopy. It is predicted that there exists an optimal 

resolution to collect dense point clouds representative of the entire canopy, and that from 

this representation, specific attributes can be used to predict above-ground biomass. This 

research is needed to provide a method to quickly and non-destructively estimate 

saltmarsh vegetative above-ground biomass at locations where no such information 

exists.   
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Methods 

Leica ScanStation P20® 

 The TLS used to collect point clouds of saltmarsh vegetation biomass is the Leica 

ScanStation P20® (Leica Geosystems 2016a). Figure 4.1 represents the standard TLS 

scanning principal providing a right triangle to the laser beam at 10 m. Manufacturer 

specifications, Table 4.1, place the laser beam wavelength at 658 nm with a beam 

diameter at the front window of 2.8mm. To maximize the number of recorded 

observations, a trigometric function on the beam divergence at the scanner was solved. 

Since no knowledge of the hypotenuse was available, the beam divergence, in degrees, 

was the inverse tangent of the quotient between the resolution leg (O) and the distance 

leg (A). The beam divergence and the resolution leg (O) were held constant at the 

calculated degree and 2.8mm, respectively, to calculate critical distances (Table 4.2). A 

custom device (Figure 4.2) designed from stainless steel tubing and cables termed a 

‘boom’ or ‘howitzer’ was designed by the University of South Carolina College of Arts 

and Sciences Mechanical Prototype Facility (USC 2008) to allow the terrestrial laser 

scanner to be hoisted above the marsh surface.  The derivation of critical distances and 

custom equipment design allow for the collection of high-density LiDAR point clouds in 

a saltmarsh.  

Data Collection and Processing 

 Data collection consisted of collecting point clouds and vegetative biomass within 

0.25m2 white Polyvinyl Chloride (PVC) quadrats randomly assigned to Spartina 

alterniflora and Juncus roemerianus across the marsh platform. Random assignment 

consisted of throwing a single quadrat onto the marsh. Vegetation was carefully 
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maneuvered to either be within or outside the quadrat based on location of stalk 

protruding from the soil surface, thereby allowing it to rest on bare soil. Two additional 

quadrats were placed approximately 0.25m right and left of the initial quadrat forming a 

triplet to increase sample collection. The P20 terrestrial laser scanner was mounted on the 

‘howitzer’ in an inverted position and hoisted to be near the edge of the center quadrat. A 

single point cloud was collected at a resolution of 6.3mm @ 10m. The scanning angle, or 

area of collection from the scanner, was adjusted to 65° - 90° to decrease collection time 

and avoid sampling un-needed data outside of the quadrat triplet. Point cloud data were 

uploaded to Leica Cyclone®, Leica’s proprietary software required to use data collected 

with their products (Leica Geosystems 2016b). The PVC quadrats were located within 

the scan image and delineated based on sample ID. Delineated point clouds are 

horizontally cropped of all data remaining outside the quadrat to exclude neighboring 

point returns. All returns below the top of the PVC quadrat were removed assuming the 

location approximates the soil surface. The remaining point cloud is representative of 

sample vegetation within the PVC quadrat and is exported with Cartesian coordinates, 

elevation relative to scanner, and intensity to a 3D point file for further analyses within a 

statistical software package. 

All vegetation within the quadrat was clipped at ground level, and processed in 

the laboratory within 36 hours of collection to prevent errors associated with decay and 

regrowth. Stems of each plant were aligned and leveled where they were cut. Stems were 

cut into 10 cm subsamples and bagged for drying. All samples were placed in a drying 

oven at 64° C for 5 days to remove water weight. Dried samples were removed from the 

oven and weighed within 1 hr. to prevent absorption of water vapor. Biomass, recorded 
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as the difference between total weight and empty bag, was recorded for further 

manipulation.  

Biomass Model Derivation 

Sample point clouds were imported as individual datasets into SAS 9.4 for 

statistical analyses. Analyses were conducted independently for populations belonging to 

each species. Because raw data were collected below the scanner resulting in negative 

elevations, a means procedure was employed to derive the minimum elevation within 

each dataset and force all elevations positive referenced to 0m. All elevations above the 

99th percentile of elevations within each station were deleted from further analyses to 

reduce the effect of possible foreign debris collected in the point cloud. All samples were 

labeled and merged into a single species population dataset to conduct the remaining 

analyses. Successive bins were created to subsample the data by label and elevation to 

increase the number of samples used in statistical analyses. The bottom 10cm of data 

were deleted for each successive bin until the top of the canopy was encountered. 

Elevation was updated by subtracting 10cm from each succession to force the minimum 

elevation of the subsample to 0m. A final population dataset was created by merging the 

original dataset and each of the subsampled bins to store the data by species. A univariate 

procedure was employed to provide elevation descriptive statistics on the population 

dataset. All available SAS metrics were enumerated (Table 4.3) and exported to a dataset. 

Species’ above-ground biomass was successively binned to match the subsampled point 

clouds. Biomass for each bin was recorded as the cumulative biomass minus the biomass 

of the bottom 10cm. Binned above-ground biomass was merged with the statistical 

dataset to produce a final population dataset suitable for regression analyses. 
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An initial linear regression was attempted to test the multicollinearity and 

usefulness of the raw statistical measures in a predictive model. Principal components 

analysis (PCA) was employed to reduce the correlation between explanatory statistical 

variables and improve the predictive biomass model. Principal components were 

calculated from the set of explanatory elevation statistical measures. The minimum 

eigenvalue for component inclusion was set to 1 to identify the factors explaining more 

than 1% of the total variance within the explanatory biomass variable. An orthogonal 

matrix representing variance within the explanatory variables was set to be rotated such 

that the variance was maximized and correlation minimized between the factors resulting 

in variable assignment. Explanatory variables loading onto no factors or multiple factors 

were removed from further analyses assuming their contribution to the variance was 0 or 

were still correlated with other variables respectively. Standardized scoring coefficients 

were exported and used to enumerate the factor. Factors were regressed against biomass 

to produce preliminary diagnostics. Model diagnostics were inspected for significance to 

decide which factors were significant in a predictive model. Point clouds were filtered 

based on intensity to test the effects of edge returns. The 1st and 5th percentiles were 

identified for each species population and sequentially removed. The removal of each 

intensity was followed by the described procedure to determine the best fit linear 

predictive model.  

The single best predictive model for each species was tested against independent 

field data. Binned point cloud data were processed to provide statistical metrics and 

joined with binned biomass data for regression. Predicted biomass was calculated through 

the best fit predictive model and directly compared to that measured from the field. Mean 
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absolute difference (MAE) and root mean squared error (RMSE) were enumerated to 

identify the overall accuracy of the model in determining biomass from remotely sensed 

LiDAR data.  

 

Results 

 Results for the P20 beam divergence calculations are presented in Table 4.2. 

Beam divergence at scanner was found to be a maximum of 0.29° for the pre-set 

resolution of 50mm at 10m and a minimum of 0.005° for the 0.8mm at 10m resolution. 

Critical distance was found to vary from 0.55m for the 50mm at 10m resolution to 

32.09m for the 0.8mm at 10m resolution.  

 Collinearity among explanatory variables is presented in Tables 4.4 – 4.5. Table 

4.4 results originate from S. alterniflora while Table 4.5 results are from J. roemerianus. 

Data for the initial linear regression are presented in Table 4.6. All parameter estimates in 

the model were biased and insignificant at α=0.05. Variance inflation for the S. 

alterniflora variables was found to be a minimum of 4.67 for standard error of the mean. 

Variance inflation for J. roemerianus variables was found to be a minimum of 7.99 for 

the mode. 

 Principal component analysis factor properties are presented in Table 4.7. For the 

S. alterniflora data, the first 4 factors explaining 95% of the variance in the raw variables 

were retained and exhibit eigenvalues of 21.10, 3.00, 1.71, and 0.83 respectively.  The 

first 3 factors explaining 94% of the total variance were retained for J. roemerianus with 

eigenvalues of 22.06, 2.96, and 1.36 respectively. All retained factors for both species 

explain at least 2% of the variance independently.  The scree plot, Figure 4.3, displays 
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graphically the relationship between explanatory factors and their respective eigenvalues 

for each species. Variables loading significantly onto S. alterniflora factors are presented 

in Table 4.8. The 5th and 10th percentiles were found to load significantly onto multiple 

factors. Mode and standard error of the mean were the only variables found to switch 

factors while removing the bottom 5% of intensity returns. Mode switched from factor 4 

to 1 while the standard error of the mean switched from factor 3 to 4. All other variables 

remained on their respective factors regardless of intensity correction. Variables loading 

significantly onto J. roemerianus factors are presented in Table 4.9. The lower quartile 

and Uncorrected Sum of Squares were found to load onto no factors. Factor loadings 

were found to remain constant regardless of intensity correction.  

 Results of the regression of the retained factor scores against biomass are 

presented in Table 4.10. Regression analyses were employed on 3 intensity corrected 

simulations for each species: no intensity removal, clipping the bottom 1%, and clipping 

the bottom 5%. Factors 1 and 3 were found to be significant for all simulations while 

factor 4 was only significant while removing the bottom 5% of intensity returns. 

Removing the bottom 1% of intensity returns showed no significant improvement in 

biomass prediction while removing the bottom 5% of intensity returns increased the 

model R2 by 0.05 from 0.84 to 0.89. Intensity removal for J. roemerianus showed no 

significant improvements to the model. Factors 1 and 2 are significant in predicting 

biomass. 

 Model diagnostics for the S. alterniflora best fit biomass predictive model with 

the bottom 5% of intensity returns removed are presented in Figure 4.4. Outlier analysis 

provided no evidence of significant outliers in the model. A residual histogram and plot 
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of residuals vs quantile provided additional evidence that the residuals are normally 

distributed. J. roemerianus model results are presented in Figure 4.5 for the simulation 

with no intensity removal. Standardized scoring coefficients for the factors under each 

species’ best fit model are presented in Tables 4.11 and 4.12 respectively. Results for 

model verification are presented in Table 4.13.  The S. alterniflora model was found to 

overestimate biomass of 25 samples, an average of 10.39g/0.25 m2 with an associated 

RMSE of 20.33g/0.25 m2.  The J. roemerianus model was found to overestimate biomass 

of 28 samples, an average of 4.31g/0.25 m2 with an associated RMSE of 31.08g/0.25 m2. 

Graphs of biomass vs absolute error and biomass vs predicted biomass are presented for 

S. alterniflora in Figures 4.6 and 4.7 and J. roemerianus in Figures 4.8 and 4.9 

respectively.    

 

Discussion 

This innovative study addressed the hypothesis that saltmarsh above-ground 

standing biomass can be predicted as a function of the spatial distribution of high-

resolution LiDAR derived point clouds. Factory settings of a terrestrial laser scanner 

were analyzed to prove that there exists an optimal resolution and distance from object to 

maximize the point cloud. Point cloud returns were collected for the canopy of two 

saltmarsh species and indicated that the resolution used provides the density of points 

needed to penetrate an otherwise impassible canopy. Analyses of multicollinearity and 

principal components revealed that there are certain descriptive statistics of the point 

cloud that are important in predicting biomass. The quality of returns analyzed were 

found to have an effect on one of the two saltmarsh species modeled. Saltmarsh species 
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biomass has been proven capable of being rapidly measured non-destructively with the 

use of a terrestrial laser scanner.  

 The optimal TLS resolution for use in a saltmarsh exists as the trade-off between 

point cloud density and distance to object. Critical distances were calculated to identify 

the threshold minimum distance an object can be from the scanner that results in the 

densest point cloud. There is a minimum because in theory, a LiDAR system will collect 

invalid ‘ghost’ returns at a spacing smaller than the diameter of its laser beam (Baldwin 

& Newman 2012). With the minimum height needed over 8m, the 3.1, 1.6 and 0.8 mm @ 

10m resolutions are infeasible for saltmarsh studies. These resolutions would require tall 

and stable structures permanently mounted on the marsh platform to provide safe 

operation. Considering the beam divergence of the remaining resolutions and that plant 

height could approach 2m at an extreme, the lowest two resolutions are impractical. This 

is because the increased beam divergence causes a rapid point density decay with 

increasing distance. Of the remaining resolutions, 6.3mm @ 10m is the optimal 

resolution for saltmarsh studies. Using this resolution, the terrestrial laser scanner would 

need to be hoisted approximately 6m above the marsh canopy, clearing the assumed 2m 

maximum vegetative height. While the 12.5 mm @ 10 m resolution is viable, it is 

characterized as having a slightly larger beam divergence and expected to not produce the 

most dense point cloud at an approximate height of 6 m above the canopy.  

 Canopy penetration is a major issue for studies whose objective depends on 

measures of elevation. Hopkinson et al. (2004) reports from a review of multiple studies 

using LiDAR that single tree above-ground biomass is typically well under predicted. 

Using LiDAR in saltmarshes Chassereau, Bell, & Torres (2011), Hladik & Albers (2012), 
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Montane & Torres (2006), and Morris et al. (2005) have found positive error bias of 

LiDAR in southeastern USA saltmarshes up to 0.17 m. The literature indicates that 

LiDAR is poor at penetrating dense canopies due to its inherent low point cloud density. 

As the density of the canopy of interest increases, the probability of a laser beam 

penetration is directly proportional to the number of intercepts, or the point density. 

Terrestrial laser scanning, being a new technology, is not represented in the saltmarsh 

literature. The reported issues on the use of LiDAR in saltmarshes stem from the poor 

posting density of airborne systems. The fact that point cloud returns were recorded for 

every 10cm segment of the sample demonstrates the TLS is penetrating the canopy. 

Multicollinearity between variables impedes the identification of significance in 

regression models. The initial attempt to predict biomass through linear regression 

against statistical properties of the point cloud produced no significant results (Table 4.6). 

The results of insignificance from the initial regression attempt was not surprising 

because some of the metrics SAS reports are mathematically similar. The mathematical 

similarity allowed for the identification and removal of variables that were linear 

combinations of other variables. Interquartile range standard deviation, Gini’s standard 

deviation, median absolute difference about the median standard deviation, stdsn (a 

normalized alternative to median absolute difference about the median standard 

deviation), range, and the upper quartile of the elevation returns from S. alterniflora were 

found to be linear combinations of other explanatory variables (Table 4.4). Only 

interquartile range standard deviation, Gini’s standard deviation, and median absolute 

difference about the median standard deviation were found to be linear combinations of 

the remaining explanatory variables for J. roemerianus (Table 4.5). O’Brien (2007) 
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discusses that multicollinearity between independent variables increases the estimates of 

the parameter variance and that variance inflation factors (VIF) of more than 10 suggest 

extreme multicollinearity. Variance inflation is interpreted as the quotient of the observed 

variance and what would be expected if all other variables were removed. Variance 

inflation reported in Table 4.6 for all remaining variables after those with linear 

representations are removed indicate moderate to extreme multicollinearity. Of the 25 

explanatory variables for S. alterniflora, only the standard error of the mean (4.67) did 

not exceed the VIF threshold. A similar result was observed for J. roemerianus in that of 

the 28 variables, only the mode (7.99) did not exceed the threshold. Variance inflation 

indicates that the remaining explanatory variables for both species exhibit extreme 

multicollinearity and that the use of principal components is justified to combine 

correlated variables into a single variable.  

 Principal component analysis for the S. alterniflora and J. roemerianus point 

clouds reduced the explanatory variables into 4 and 3 factors respectively (Tables 4.7-

4.9). The eigenvalue for the fourth factor (0.83) of S. alterniflora was considered close 

enough to the accepted minimum of 1 for inclusion. It appears that 95% cumulative 

variance explained (Table 4.7) by the factors represents a critical threshold for inclusion. 

The fact that cumulative variance for the 4th variable for J. roemerianus was 97% and not 

significant for the model coupled with the 95% for the 4th S. alterniflora factor indicates 

that 95% represents a threshold. It is interpreted that this is because the majority of 

variables load significantly onto the first factor (Tables 4.8-4.9), with near equal loadings 

of the remaining variables on the next 2-3 factors. As the variable number is reduced with 

increasing factor number, the higher order factors would only contain a single variable as 
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evidenced by S. alterniflora factor 4 (Table 4.9), an exception that was only included by 

discretion. 

 Model diagnostics for 3 scenarios indicate that factors 1, 3, and 4 are significant 

for predicting S. alterniflora biomass while factors 1 and 2 are significant for predicting 

J. roemerianus biomass (Table 4.10). The quality of the point cloud returns were found to 

increase the predictive power of the S. alterniflora biomass but not J. roemerianus (Table 

4.10). The best fit J. roemerianus model was, therefore, determined without correcting 

for intensity. The model exhibited an adjusted R2 of 0.89 and significant F-value of 

132.26. Removing the bottom 5% of S. alterniflora intensity returns increased the 

adjusted R2 value by 0.05 to 0.89 with a significant F-value of 122.07. The reported 

significance in F-values suggests that there is strong evidence in both models that the 

enumerated factors contribute to estimating biomass and that the reported R2 values are 

reliable.  The increase in predictive power with removing intensity values for S. 

alterniflora is interpreted to be a function of plant morphology and resolution. Eiting, 

Vierling, & Long (2010) report that low intensity returns are the result of the laser beam 

being partially intercepted by the edge of an object. The result of such interceptions are 

two observations with erroneous elevations caused by the inability of the system to 

calculate time-of-flight distance. Obtaining the highest density point cloud possible (point 

spacing ~2mm) would increase the probability of edge effects for S. alterniflora and not 

J. roemerianus because of the shape of each species leaf. S. alterniflora leaves can be 

characterized as long and flat that generally slump over while J. roemerianus leaves can 

be characterized as cylindrical and stiff remaining erect for their entire length. It would 

therefore be expected that since S. alterniflora leaves provide more surface area and are 
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more widely distributed in the sample space, that there should be an increase in the 

probability of edge returns as compared to J. roemerianus.  

When inspecting variable loadings for the factors, a specific pattern could be 

interpreted: the shape of the distribution has no impact on biomass estimation. Factor 2 

for S. alterniflora and 3 for J. roemerianus are composed of the 3 dominant variables 

(skew, kurtosis, and coefficient of variation) describing the shape of the elevation 

frequency distribution. The insignificance of the shape of the distribution could be a 

product of elevation and biomass skew. If a standard elevation frequency across all 

samples exists such that the distributions are nearly identical, then the identical shape of 

the distribution would have negligible results in predicting biomass. This would also 

suggest further consideration as to how the canopy is being penetrated by the terrestrial 

laser scanner. 

Data presented in Table 4.13 suggest that S. alterniflora and J. roemerianus 

biomass can be predicted with high levels of certainty. Model error has been a topic of 

debate in the literature with no clear consensus on an appropriate metric for model 

validation (Chai & Draxler 2014). The RMSE has been presented as a suitable metric for 

model error by the geosciences community because it describes the spread of error (Chai 

et al. 2013; McKeen et al. 2005; Savage et al. 2013). Conversely, Willmott & Matsuura 

(2005) and Willmott et al. (2009) avoid the use of RMSE in favor of MAE as it assumes 

equal weight for all variances, thereby, insensitive to outliers. The authors report that in 

the presence of large outliers, RMSE can become misleading due to inflation. To address 

the lack of consensus, Chai & Draxler (2014) propose the use of both metrics in that the 
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magnitude of difference between them can address the distribution of variance better than 

a single use alone.  

The reported MAE (10.39) and RMSE (20.33) for S. alterniflora are similar and 

indicate that the variance in the model is fairly uniform. A graph of biomass vs absolute 

error for S. alterniflora (Figure 4.6) provides visual evidence for the uniform distribution 

of error. No correlation is observed between the magnitude or error and increasing 

biomass. This is an important finding as it suggests that the model distributes S. 

alterniflora biomass prediction error equally for data collected anywhere on the marsh 

platform as depicted by plotting field collected biomass vs model predicted biomass 

(Figure 4.7). Biomass for S. alterniflora is known to increase to a maximum at an 

equilibrium elevation for the species niche (Morris et al. 2002). It is a major finding that 

the model can be expected to appropriately predict S. alterniflora biomass within an 

average of 20.33g/0.25 m2. 

The reported MAE (4.31) and RMSE (31.08) for J. roemerianus exhibits a greater 

difference than that reported for S. alterniflora, indicating disproportional distribution of 

error. Graphing biomass vs absolute error (Figure 4.8) reveals this relationship. There 

appears to be a strong correlation between the magnitude of error and increasing biomass. 

It is demonstrated that as biomass increases, the model begins to fail at appropriately 

predicting J. roemerianus biomass. The trend is interpreted to be a function of plant 

morphology and distribution of biomass. J. roemerianus has been characterized has 

having cylindrical erect live leaves. Field and lab observation from the date of collection 

of verification samples place a thick layer of wrack and senescing J. roemerianus near 

the ground level. The laser beam most likely under-collected data below the elevation of 
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these obstructions. The result of this scenario is manifested in the distribution of error. 

Because the data were binned by sequentially removing the bottom 10cm of data, low 

biomass is representative of the live portion of the canopy above the described 

obstructions. Coincidentally, the model appropriately predicts this region with minimal 

error. High biomass is representative of the entire canopy, a portion of which would not 

have been collected below the elevation of the obstructions. When attempting to predict 

the biomass for the entire sample, it is demonstrated that the model begins to fail and is 

characterized by having increased error. Plotting biomass vs. predicted biomass (Figure 

4.9) further corroborates the disproportionate trend in error.  

 The approach used for this study is satisfactory for developing saltmarsh biomass 

predictive models with a particular caveat to J. roemerianus. Model results for J. 

roemerianus indicate that the model is most useful for predicting live vegetation, not the 

entire canopy. The study proves that TLS can be used to estimate S. alterniflora biomass 

from multiple locations within the marsh platform, thereby providing much needed data 

for numerical modelling that is currently hindered by the spatial limitation of long-term 

datasets.  Results from the study prove that TLS is a powerful LiDAR technology capable 

of penetrating the S. alterniflora canopy, a feat beyond the capability of airborne systems. 

It is demonstrated, however, that TLS still has difficulty in penetrating J. roemerianus 

canopies and this may be due to tidal conditions near the timing of final data collection. 

The findings of this study provide an opportunity to identify biomass specific correction 

factors for landscape-scale LiDAR. Future efforts should align with the collection of 

airborne LiDAR such that actual elevation and biomass can be collected via TLS in the 

saltmarsh simultaneously with an airborne LiDAR mission. Findings from such a study 
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can greatly enhance current modeling efforts by improving known issues with landscape-

scale LiDAR. A major benefit of the findings is they address how to quickly collect data 

without destructive harvesting. Future studies should focus on the morphology by bin and 

the addition or creation of other metrics. Biomass plays a critical role in sedimentation 

that the identification of morphological characteristics by elevation intervals can be a 

substantial contribution to sedimentation models and thus developing landscape-scale 

predictive models of saltmarsh survivability and distribution during sea-level rise 

scenarios.  

 

Conclusion 

 Data collected from a TLS provide satisfactory biomass predictive models for S. 

alterniflora and J. roemerianus. It was found that the optimal resolution for data 

collection in saltmarshes is 6.3 mm @ 10 m and that this resolution provides a density 

sufficient to penetrate all layers of the canopy. Analysis of collinearity indicated that six 

of the reported variables for S. alterniflora and three for J. roemerianus were linear 

representations of the other explanatory variables and thus unsuitable for predicting 

biomass. Multicollinearity results indicated that the variance of the remaining variables 

was highly inflated warranting a principle components procedure to identify significant 

components or factors. Principle components analysis indicate that there exists four 

significant factors for S. alterniflora and 3 for J. roemerianus. The quality of point cloud 

returns was found to effect the predictive power of S. alterniflora, not J. roemerianus. 

Linear regression of biomass against the scored factors indicate that the shape of the 

frequency distribution does not significantly contribute to biomass estimation for either 



  

96 
 

species. Final biomass predictors were found to exhibit high R2 values: 0.89 for both 

species. Verification of the models against independent data suggests S. alterniflora is 

underestimated an average of 10.39 g/0.25 m2 and J. roemerianus is overestimated an 

average of 4.31 g/0.25 m2.
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Table 4.1. Leica P20 TLS system specifications as described by Leica (2016a). 

Type Ultra-high speed time-of-flight enhanced 

by Waveform Digitizing (WFD) 

technology 

Laser wavelength 658 nm 

Laser beam diameter at front window 2.8 mm 

Range 
Max: 120 m 

Min: 0.4 m 

Scan rate Max.  1,000,000 points/s 

Scanning resolution 

7 pre-set point spacing (mm at 10 m) 

Spacing 

50 

25 

12.5 

3.1 

1.6 

0.8 

Field of view 
Horizontal: 360°  

Vertical: 270° 
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Table 4.2. Leica P20 scanning resolution 

beam divergence and critical distance.  

 

Point Spacing  

(mm @ 10 m) 
θ° 

Critical 

Distance (m) 

50 0.29 0.55 

25 0.14 1.15 

12.5 0.07 2.29 

6.3 0.04 4.01 

3.1 0.02 8.02 

1.6 0.01 16.04 

0.8 0.005 32.09 
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Table 4.3. Description of input model explanatory variables availabble as output from 

SAS and grouped by mathmatical calculation method.  

 

 Variable Descriptive Statistics 

CSS Corrected sum of squares 

CV Coefficient of variation 

kurt Kurtosis of the elevation frequency distribution 

max Maximum elevation return 

mean Average of all elevations 

mode Most frequent elevation 

obs Number of elevation returns 

range Range of elevation returns 

skew Skew of the elevation frequency distribution 

std Standard deviation of the elevation frequency distribution 

stdmean Standard error of the mean 

USS Uncorrected sum of squares 

var Variance of the elevation frequency distribution 

Robust Statistics 

gini Gini's mean difference 

mad Median absolute difference about the median 

sn Alternative to MAD 

stdgini Gini's standard deviation 

stdmad MAD standard deviation 

stdmean Standard error of the mean 

stdqrange Interquartile range standard deviation 

stdsn Sn standard deviation 

Quantile Statistics 

med Median of the elevation frequency distribution 

p1 1st percentile of the elevation frequency distribution 

p10 10th percentile of the elevation frequency distribution 

p5 5th percentile of the elevation frequency distribution 

p90 90th percentile of the elevation frequency distribution 

p95 95th percentile of the elevation frequency distribution 

p99 99th percentile of the elevation frequency distribution 

q1 Lower quartile of the elevation frequency distribution 

q3 Upper quartile of the elevation frequency distribution 

qrange Interquartile range of the elevation frequency distribution 
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Table 4.4. S. alterniflora highly correlated explanatory variables reported as linear combinations.  

 

Variable Linear combination of other variables 

Interquartile 

range standard 

deviation  = 

-423E-12 * mean + 18E-17 * uncorrected sum of squares - 731E-14 * 99th percentile + 0.7413 * inter-quartile range + 447E-12 * 

Gini's mean difference + 128E-12 * median absolute difference about the median - 621E-13 * alternative to MAD + 365E-18 * 

corrected sum of squares + 137E-12 * standard deviation - 137E-12 * 10th percentile - 161E-12 * lower quartile - 865E-13 * median 

+ 438E-14 * 90th percentile - 495E-14 * 95th percentile 

Gini’s standard 

deviation = 

-352E-12 * mean + 134E-18 * uncorrected sum of squares + 18E-12 * inter-quartile range + 0.88623 * Gini's mean difference + 

974E-13 * median absolute difference about the median - 448E-13 * alternative to MAD + 335E-18 * corrected sum of squares + 

148E-12 * standard deviation - 135E-12 * 10th percentile - 119E-12 * lower quartile - 808E-13 * median - 938E-14 * 90th percentile - 

131E-13 * 95th percentile 

MAD standard 

deviation = 

1.01E-9 * mean + 224E-18 * uncorrected sum of squares - 498E-14 * maximum - 147E-12 * 5th percentile - 895E-13 * inter-quartile 

range - 415E-12 * Gini's mean difference + 1.4826 * Median absolute difference about the median + 316E-13 * alternative to MAD + 

133E-17 * corrected sum of squares - 344E-13 * standard deviation - 182E-12 * variance+ 113E-12 * 10th percentile + 402E-12 * 

lower quartile + 261E-12 * median + 63E-12 * 90th percentile - 373E-14 * 95th percentile 

SN standard 

deviation = 

2.56E-6 * Intercept - 0.00223 * mean + 6.84E-6 * skewness + 1.64E-9 * uncorrected sum of squares - 2.45E-6 * kurtosis + 0.00001 * 

maximum - 0.00005 * 99th percentile - 0.00031 * 5th percentile - 0.00017 * inter-quartile range + 0.00002 * mode + 0.0027 * Gini's 

mean difference + 0.00076 * Median absolute difference about the median + 0.99954 * alternative to MAD + 4E-9 * 

corrected sum of squares + 1.21E-7 * coefficient of variation - 127E-14 * observations + 0.00009 * standard deviation - 0.01434 * 

standard error of the mean + 0.00033 * variance - 0.00023 * 1st percentile - 0.00116 * 10th percentile - 0.00061 * lower quartile - 

0.00058 * median + 0.00017 * 90th percentile + 0.00009 * 95th percentile 
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Table 4.4 continued 

 

range = -5.09E-6 * Intercept - 0.00145 * mean - 0.00003 * skewness + 16E-11 * uncorrected sum of squares + 9.81E-6 * kurtosis + 1.00001 * 

maximum - 0.00059 * 99th percentile + 0.00868 * 5th percentile - 0.00359 * inter-quartile range - 0.00009 * mode + 0.04157 * Gini's 

mean difference - 0.00598 * median absolute difference about the median - 0.00186 * alternative to MAD - 396E-14 * 

corrected sum of squares + 2.32E-7 * coefficient of variation + 418E-14 * observations + 0.02414 * standard deviation + 0.00679 * 

standard error of the mean + 0.00368 * variance + 0.00063 * 1st percentile + 0.00404 * 10th percentile + 0.00051 * lower quartile - 

0.00145 * median + 0.00295 * 90th percentile - 0.00018 * 95th percentile 

Upper quartile = -1.95E-9 * mean - 246E-18 * uncorrected sum of squares + 673E-14 * maximum + 116E-13 * 99th percentile + 221E-12 * 5th 

percentile + 1 * inter-quartile range + 816E-12 * Gini's mean difference + 349E-12 * Median absolute difference about 

the median - 96E-12 * alternative to MAD + 197E-17 * corrected sum of squares - 767E-13 * standard deviation - 342E-12 * 

variance + 258E-12 * 10th percentile + 1 * lower quartile + 486E-12 * median - 119E-12 * 90th percentile + 723E-14 * 95th percentile 
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Table 4.5. J. roemerianus highly correlated explanatory variables reported as linear combinations.  

 

Variable Linear combination of other variables 

Interquartile 

range standard 

deviation = 

4E-12 * Intercept - 27E-11 * variance + 369E-13 * mean + 337E-14 * skewness - 732E-15 * kurtosis - 382E-12 * 

maximum - 55E-13 * 99th percentile + 0.7413 * inter-quartile range - 1.17E-9 * Gini's mean difference + 127E-12 * 

median absolute difference about the median + 2.16E-9 * alternative to MAD + 2.21E-9 * Sn standard deviation - 641E-

17 * corrected sum of squares + 102E-15 * coefficient of variation + 697E-19 * observations - 386E-12 * range - 831E-

12 * std - 314E-12 * standard error of the mean - 211E-12 * 1st percentile + 624E-13 * median - 132E-12 * upper quartile 

- 62E-12 * 90th percentile - 195E-13 * 95th percentile + 258E-12 * 5th percentile + 766E-13 * 10th percentile 

Gini's 

standard 

deviation = 

-287E-13 * Intercept - 3.43E-9 * variance + 118E-12 * mean - 109E-13 * skewness + 318E-14 * kurtosis + 1.04E-8 * 

maximum + 113E-12 * 99th percentile - 123E-13 * inter-quartile range + 0.88623 * Gini's mean difference + 449E-12 * 

median absolute difference about the median + 2.1E-8 * alternative to MAD + 2.13E-8 * Sn standard deviation - 239E-

16 * corrected sum of squares - 244E-15 * coefficient of variation + 224E-18 * observations + 1.04E-8 * range + 3.32E-9 

* standard deviation + 563E-12 * standard error of the mean - 197E-12 * 1st percentile + 233E-12 * median + 192E-12 * 

upper quartile - 115E-13 * 90th percentile - 171E-12 * 95th percentile + 326E-12 * 5th percentile - 281E-12 * 10th 

percentile 

MAD 

standard 

deviation = 

248E-13 * Intercept + 1.86E-9 * variance - 161E-12 * mean + 121E-13 * skewness - 319E-14 * kurtosis - 7.47E-9 * 

maximum - 827E-13 * 99th percentile - 17E-12 * inter-quartile range - 3.56E-9 * Gini's mean difference + 1.4826 * 

median absolute difference about the median - 1.06E-8 * alternative to MAD - 1.08E-8 * Sn standard deviation + 605E-

17 * corrected sum of squares + 309E-15 * coefficient of variation - 435E-19 * observations - 7.47E-9 * range - 3.43E-9 

* standard deviation - 837E-12 * standard error of the mean - 233E-12 * 1st percentile - 963E-13 * median - 378E-12 * 

upper quartile - 847E-13 * 90th percentile + 87E-12 * 95th percentile + 211E-12 * 5th percentile + 242E-12 * 10th 

percentile 
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Table 4.6. Biomass regression results with remaining explanatory variables 

after removing linear variables. Reported Degrees of Freedom (DF) of ‘B’ 

implies that the estimate is biased and not unique. Probability values report 

significance while Variance Inflation (VI) measures the increase in variance. 

J. roemerianus results are displayed in grey.  

 

Variable DF Pr > |t| Variance Inflation 

Intercept B 0.61 0.92 0.00 0 

Mean B 0.38 0.37 794295.00   1922.92 

Skewness B 0.60 0.12 144.36 90348.00 

Uncorrected sum of 

squares 

B 0.21 . 9251.99 . 

Kurtosis B 0.39 0.70 80.67 849.00 

Maximum B 0.57 0.71 2068.86 692.61 

99th percentile B 0.53 0.81 11923.00 20051985.00 

5th percentile B 0.62 0.80 2268.32 1078.56 

Inter-quartile range  B 0.21 0.47 13795.00 12337.00 

mode B 0.27 0.50 92.16 7.99 

Gini's mean 

difference 

B 0.89 0.85 259489.00 266822.00 

Median absolute 

difference about the 

median 

B 0.78 0.34 18000.00 4374.51 

Alternative to MAD B 0.46 0.66 8151.59 2406367.00 

Sn standard deviation B . 0.65 . 2484727.00 

Corrected sum of 

squares 

B 0.32 0.47 10241.00 648.06 

Coefficient of 

variation  

B 0.73 0.56 57.23 446.34 

Observations B 0.13 0.35 33.34 620.28 

Range B . 0.81 . 20088189.00 

Standard deviation B 0.95 0.73 105253.00 110232.00 

Standard error of the 

mean 

B 0.02 0.42 4.67 80.86 

Variance B 0.62 0.10 939.06 329.63 

1st percentile B 0.33 0.12 101.71 7590.17 

10th percentile B 0.57 0.24 5642.09 42194.00 

Inter-quartile range B 0.54 0.98 32807.00 4929.47 

Median B 0.27 0.80 56113.00 1872.55 

Upper quartile B . 0.24 . 42194.00 

90th percentile B 0.26 0.25 37779.00 3202.81 

95th percentile B 0.76 0.19 12836.00 2888.24 
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Table 4.7. Eigenvalue properties  of the factor  matrix. 

Proportion reports the proportion of total variance explained by 

the factor while cumulative reports the cumulative proportion 

explained by the addition of factors. J. roemerianus results are 

displayed in grey.  

 

Factor Eigenvalue Proportion Cumulative 

1 21.10 22.06 0.75 0.79 0.75 0.79 

2 3.00 2.96 0.11 0.11 0.86 0.89 

3 1.71 1.36 0.06 0.05 0.92 0.94 

4 0.83 0.66 0.03 0.02 0.95 0.97 

5 0.55 0.37 0.02 0.01 0.97 0.98 

6 0.37 0.20 0.01 0.01 0.98 0.99 

7 0.16 0.19 0.01 0.01 0.99 0.99 

8 0.13 0.06 0 0 0.99 1 

9 0.09 0.04 0 0 1 1 

10 0.02 0.03 0 0 1 1 

11 0.01 0.02 0 0 1 1 

12 0.01 0.02 0 0 1 1 

13 0 0.01 0 0 1 1 

14 0 0.01 0 0 1 1 

15 0 0 0 0 1 1 

16 0 0 0 0 1 1 

17 0 0 0 0 1 1 

18 0 0 0 0 1 1 

19 0 0 0 0 1 1 

20 0 0 0 0 1 1 

21 0 0 0 0 1 1 

22 0 0 0 0 1 1 

23 0 0 0 0 1 1 

24 0 0 0 0 1 1 

25 0 0 0 0 1 1 

26 . 0 . 0 . 1 

27 . 0 . 0 . 1 

28 . 0 . 0 . 1 
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Table 4.8 . S. alterniflora rotated factor pattern. Symbols denote the explanatory 

variables that significantly load onto the respective factors. Greyed out variables 

are removed from the model due to no factor loading.  

 

Variable  Factor1 Factor2 Factor3 Factor4 

Corrected sum of squares * +^    

Coefficient of variation  *+^   

Gini's mean difference *+^    

Median  *+^   

Median absolute difference about the mean *+^    

Maximum *+^    

Mean *+^    

Median *+^    

Mode ^   *+ 

Observations   *+  

1st percentile   *+^  

10th percentile     

5th percentile     

90th percentile *+^    

95th percentile *+^    

99th percentile *+^    

Lower quartile *+^    

Inter-quartile range *+^    

Skewness  *+^   

Alternative to MAD *+^    

Standard deviation *+^    

Standard error of the mean   *+ ^ 

Uncorrected sum of squares *+^    

Variance *+^    

* = No Intensity Removal 

+ = Bottom 1% Intensity Removal 

^ = Bottom 5% Intensity Removal 
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Table 4.9. J. roemerianus rotated factor pattern. Symbols denote the explanatory 

variables that significantly load onto the respective factors. Grayed out variables 

are removed from the model due to no factor loading. 

 

Variable  Factor1 Factor2 Factor3 

Corrected sum of squares *+^     

Coefficient of variation     *+^ 

Gini's mean difference *+^     

Kurtosis     *+^ 

Median absolute difference about the median *+^     

Maximum *+^     

Mean *+^     

Median *+^     

Mode   *+^   

Observations *+^     

1st percentile   *+^   

10th percentile   *+^   

5th percentile   *+^   

90th percentile *+^     

95th percentile *+^     

99th percentile *+^     

Lower quartile       

Upper quartile *+^     

Inter-quartile range *+^     

Range *+^     

Skewness     *+^ 

Alternative to MAD *+^     

Standard deviation  *+^     

Standard error of the mean *+^     

Sn standard deviation *+^     

Uncorrected sum of squares       

Variance *+^     

* = No Intensity Removal 

+ = Bottom 1% Intensity Removal 

^ = Bottom 5% Intensity Removal 
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Table 4.10. Intensity corrected regression diagnostics by species (J. roemerianus in grey).  

 

Model Run 

Intercept 

Significant 

(Yes/No; 

α=0.05 ) 

Significant 

Factors 

(α=0.05) F^ Adj. R2 

No Intensity Removal Y 
Factor 1 
Factor 3 119.96^ 0.84 

Bottom 1% Intensity Removal Y 
Factor 1 
Factor 3 120.04^ 0.84 

Bottom 5% Intensity Removal Y 

Factor 1 
Factor 3 
Factor 4 122.07^ 0.89 

*No Intensity Removal Y 
Factor 1 
Factor 2 132.26^ 0.89 

*Bottom 1% Intensity Removal Y 
Factor 1 
Factor 2 132.26^ 0.89 

*Bottom 5% Intensity Removal Y 
Factor 1 
Factor 2 132.26^ 0.89 

^ Denotes significant F-Value (α=0.05) 
*Model dependent variable is square root transformed  

Boxcox Lambda (λ) = 0.5 
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Table 4.11. S. alterniflora standardized scoring coefficients for 

the 5% intensity reduction best fit linear model.  

 

Standardized Scoring Coefficients 

Variable Factor1 Factor2 Factor3 Factor4 

mean 0.04184 -0.01968 0.03289 0.01231 

skew -0.01832 0.32889 0.12010 0.01653 

USS 0.06414 -0.11397 -0.19980 -0.30547 

kurt -0.03743 0.29517 0.25207 0.00657 

max 0.09238 0.11832 0.00254 -0.01698 

p99 0.04751 0.05935 0.00165 0.01887 

qrange 0.13965 0.01757 -0.03962 0.15833 

mode 0.02534 -0.15835 0.00900 -0.17736 

gini 0.11047 0.06848 -0.06095 0.09114 

mad 0.10292 0.00224 -0.01404 0.13551 

sn 0.10984 -0.00188 -0.06801 0.05411 

CSS 0.06788 -0.07694 -0.20643 -0.28108 

CV 0.08282 0.27149 -0.48847 -0.06810 

obs 0.01082 0.02968 0.00823 -0.35864 

std 0.05474 0.04712 -0.02939 0.05012 

stdmean -0.00213 -0.00612 0.26753 0.68576 

var 0.07109 -0.01821 -0.15393 -0.08379 

p1 -0.12838 0.06588 0.90637 0.26146 

q1 0.04026 -0.07976 0.11203 -0.02869 

med 0.04014 -0.06351 0.02706 -0.02250 

p90 0.04929 0.02279 0.00180 0.04931 

p95 0.05034 0.04119 -0.00759 0.03782 
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  Table 4.12. J. roemerianus standardized scoring 

coefficients for the no intensity correction best fit 

linear model.  

 

Standardized Scoring Coefficients 

  Factor1 Factor2 Factor3 

mean 0.03630 0.02333 -0.01558 

skew 0.02022 0.06827 0.35006 

kurt -0.00721 0.14341 0.37660 

max 0.07777 -0.01677 0.09367 

p99 0.08536 -0.03073 0.09480 

qrange 0.14665 -0.13708 -0.14134 

mode -0.15380 0.38278 0.10570 

gini 0.19083 -0.17789 -0.03581 

mad 0.11072 -0.07037 -0.14323 

sn 0.06196 -0.04632 -0.06933 

stdsn 0.06165 -0.04591 -0.06971 

CSS -0.00723 0.11283 0.02382 

CV 0.08703 -0.15527 0.15555 

obs 0.02086 0.06767 0.03913 

range 0.07796 -0.01708 0.09381 

std 0.10248 -0.09071 0.01536 

stdmean -0.10149 0.06838 -0.13982 

var 0.07581 -0.04000 0.01499 

p1 -0.12918 0.34152 0.06852 

med 0.00433 0.07403 -0.02921 

q3 0.04155 0.00291 -0.04187 

p90 0.07974 -0.06783 -0.03840 

p95 0.08680 -0.06226 0.01239 

p5 -0.10816 0.30766 0.06598 

p10 -0.07763 0.25220 0.05464 
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Table 4.13. Predictive models and verification by species. 

 

Species Model MAE RMSE 

S. alterniflora 

Biomass = 46.22 + 28.73*F1 

 + 11.49*F3 -29.86*F4 

 

10.39 20.33 

J. roemerianus 
Biomass0.5 = 8.45 + 3.27*F1 

 + 1.52*F2 
4.31 31.08 

 

 



  

 
 

1
1
1

 

 

 

Figure 4.1: Principle of TLS data collection. Recorded points are the Cartesian XY center of the 2.8 mm laser footprint.  
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Figure 4.2: Depiction of the USC Protype Machine Shop developed ‘howitzer’ used to 

hoist the Leica P20 in the saltmarsh. 
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Figure 4.3. Scree plot of S. alterniflora and J. roemerianus factor number vs respective 

eigenvalue.  
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Figure 4.4: S. alterniflora model diagnostics for the best fit linear model after 

removing the bottom 5% of intensity returns. Residual behavior (A) and 

normalized residual behavior (B) compared against model predicted biomass 

estimates. Residual quantile plot (C) is provided to depict behavior of residuals 

as compared to a normal distribution (diagonal). Distribution of residuals (D) 

used to depict the histogram of residuals compared to a normal distribution. 

Model predicted biomass vs actual field measured biomass is depicted in Panel 

E.
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Figure 4.5: J. roemerianus model diagnostics for the best fit linear model 

removing no intensity returns. Residual behavior (A) and normalized 

residual behavior (B) compared against model predicted biomass 

estimates. Residual quantile plot (C) is provided to depict behavior of 

residuals as compared to a normal distribution (diagonal). Distribution of 

residuals (D) used to depict the histogram of residuals compared to a 

normal distribution. Model predicted biomass vs transformed actual field 

measured biomass is depicted in Panel E. Square root transformation of 

the dependent variable biomass justified from boxcox analysis (λ=0.5). 
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Figure 4.6. S. alterniflora biomass vs absolute error. 
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Figure 4.7. S. alterniflora biomass vs. predicted biomass. 
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Figure 4.8. J. roemerianus biomass vs absolute error.
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Figure 4.9. J. roemerianus biomass vs predicted biomass.
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Chapter 5: Conclusion 

 

The use of LiDAR technology in saltmarshes enables scientists to analyze the 

effects of climate change and sea-level rise during the next century in a variety of ways. 

The research presented herein demonstrates multiple ways that the use of LiDAR 

technology contributes to understanding saltmarsh dynamics. Landscape-scale elevation 

models provide high accuracy elevation corroborated by ground-based surface elevation 

tables, particularly when data is collected when vegetation is absent and is corrected for 

noise. These datasets, augmented with classified land cover, provide a detailed 

description of the elevation frequency distribution associated with zonal patterns 

observed in halophytic vegetation. This data provides the necessary information to model 

trends in species distributions as a function of sea-level rise. An additional contribution of 

landscape-scale LiDAR is the availability of georeferenced elevation for inclusion in 

zero-dimensional models accounting for vegetative feedback during modeled sea-level 

rise. The georeferenced elevation provides a means to link spatial procedures of a GIS to 

analyze marsh dynamics, specifically addressing the question of where saltmarsh change 

will occur. A final contribution of LiDAR technology to saltmarsh studies is 

demonstrated with the use of a terrestrial laser scanner (TLS) to produce estimates of 

saltmarsh biomass that are not the result of destructive harvesting.  

A spatial model was used with classified land cover to predict the current and 

future distribution of Plum Island Estuary (PIE), Massachusetts, salt marshes. This model
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was a bathtub model that disregarded any vegetative feedback mechanisms, such as 

capture of suspended solids. This was deemed appropriate for an initial assessment of the 

response of PIE to sea level rise as PIE is sediment-limited, with very small amounts of 

sediment entering the system. Data reported from a land cover classification indicate that 

in 2011 PIE was dominated by large S. patens meadows with a smaller coverage of 

fringing S. alterniflora. Modelling an accelerating sea-level rise of 1 m over 100 years 

resulted in increases of intertidal area with a complete species turnover to S. alterniflora 

dominance expected to occur by approximately 2030.  

An initial version of MEM3D has been written in the freely available Python 

programming language with only a single external software license needed – ArcGIS. 

The MEM3D includes vegetative feedback, by accounting for the accumulation of 

belowground biomass as well as vegetation capture of suspended solids, a mechanism 

ignored in other spatial models such as SLAMM. Input spatial data was kept to a 

minimum of any freely available LiDAR dataset and an associated boundary for analysis. 

The optimal resolution for input LiDAR DEM’s, assuming landscape-scale graphics, is 5 

m for the NI-Winyah Bay study site. This resolution has the most accurate elevations (0 

m mean, 0.11 m standard deviation) and area (+0.01%) when aggregated from 1 m 

LiDAR. Data indicate that the model produces satisfactory landscape-scale results clearly 

identifying temporal transitions in coastal land cover. Results from modelling a 1 m SLR 

this century for NI-Winyah Bay suggest the saltmarshes are migrating inland with SLR 

thereby expanding area. The expansion of area, however, is misleading as the saltmarshes 

are losing elevation relative to MSL within every 10-year model iteration. The 

saltmarshes will reach a tipping point in approximately 40 years when SLR is expected to 
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exceed 0.86 cm/year. By the end of the simulation, the estuary will shift from current 

saltmarsh dominance to mudflat. Total aboveground biomass decreased 27.51% from a 

2007 level of 31,047.15 kg/km2.  

Aboveground biomass is a critical component of MEM3D that contributes to 

increases in vertical elevation of the marsh platform through organic production and 

trapping of mineral sediment. Traditionally biomass is harvested through destructive 

means for lab analysis. With the recent development of terrestrial laser scanners it is 

possible to obtain this data in a quick and non-destructive method for salt marshes. 

Regression of aboveground standing biomass against TLS-derived point cloud statistics 

provides satisfactory biomass predictive models for S. alterniflora and J. roemerianus. It 

was found that the optimal resolution for data collection in saltmarshes is 6.3 mm at 10 m 

height and that this resolution provides a density sufficient to penetrate all layers of the 

canopy. Principle components analysis indicates that there exists four significant factors 

for S. alterniflora and 3 for J. roemerianus. The quality of point cloud returns was found 

to effect the predictive power of S. alterniflora, not J. roemerianus. Final biomass 

predictors were highly correlated (R2=0.89 for both species). Verification of the models 

against independent data suggests S. alterniflora is underestimated an average of 10.39 

g/0.25 m2 and J. roemerianus is overestimated an average of 4.31 g/0.25 m2. 

Results from the presented modelling analyses are dependent on the rate of sea-

level rise and can be described as conservative estimates. Although recent studies suggest 

global sea levels will rise 1 m in the next century (Craft et al. 2008; Schile et al. 2014), 

newly published studies suggest a higher rate exceeding several meters within the century 

(Hansen et al. 2016). Sea-level rise exceeding the modelled 1 m assumption would result 
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in quicker species turnover and saltmarsh collapse than reported from the findings. The 

presented models do not address topics such as erosion or tide creek expansion. While it 

is known that erosion increases and tide creeks expand with increasing tidal volume 

(Kirwan & Guntenspergen 2010), modelling these changes was beyond the scope of the 

analyses. Inclusion of these dynamics would ultimately increase the predictive power of 

the developed MEM3D. 

This thesis demonstrates the capacity for using LiDAR technology as a tool to 

assess landscape response to changes in sea level rise. Classified land cover should 

continue to be used with landscape-scale LiDAR to not only differentiate species 

elevation frequency distributions, but also provide estimates of vertical error associated 

with canopy structure. A TLS is capable of penetrating the dense canopy of saltmarsh 

vegetation to collect data representative of the entire vertical distribution of biomass. This 

finding provides the opportunity to model three-dimensional canopy structure that, when 

coupled with species classification and coincident with airborne LiDAR missions, can aid 

in the identification of species and biomass-dependent vertical error in the airborne 

dataset. Despite the limitations included within the presented analyses, the results provide 

direction for future research on the use of LiDAR technologies in saltmarshes and 

provide immediate tools for stakeholders in saltmarsh management. The methods used in 

this research are intended to be used to identify the most stable saltmarshes where limited 

resources can be directed to protect these valuable ecosystems.
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