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Abstract

This dissertation discusses three important research topics on semiparametric regres-

sion analysis of panel count data and interval-censored data. Both types of data arise

commonly in real-life studies in many fields such as epidemiology, social science, and

medical research. In these studies, subjects are usually examined multiple times at

periodical or irregular follow-up examinations. For panel count data, the response

variable is the counts of some recurrent events, whose exact occurrence times are

usually unknown. For interval-censored data, the response variable is the time to

some events of interest, often called survival time or failure time, and the exact re-

sponse time is never observed but is known to fall within some interval formed by

two examination times. The primary goal for both types of data is to study effects

of covariates on the response variable and can be completed by regression analysis.

Chapter 1 of this dissertation provides some detailed descriptions about panel

count data and interval-censored data with several real-life examples. A literature

review is conducted on existing approaches and commonly used semiparametric re-

gression models for analyzing the two types of data. Some preliminary knowledge

used in our approaches such as monotone splines and EM algorithm is also presented

in this chapter.

In Chapter 2, we propose a gamma frailty non-homogeneous Poisson process model

for the regression analysis of panel count data to account for the within-subject cor-

relation. This topic is important because ignoring such within-subject correlation

results in biased estimation and may lead to misleading conclusions, and literature

is limited on this topic. We propose an efficient estimation approach based on an
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EM algorithm. Our approach is robust to initial values, converges fast, and provides

variance estimate in closed form. Our approach has shown an excellent performance

in estimating both regression parameters and the baseline mean function when there

is indeed within-subject correlation and can also be used when such correlation does

not exist. An R package PCDSpline has been developed and available on CRAN to

disseminate our approach.

In Chapter 3, we study regression analysis of case 1 interval-censored data, also

referred to as current status data, using the generalized odds-rate hazards (GORH)

models. The GORH models are a general class of semiparametric models and have

been widely used for analyzing right-censored data. However, their use for current

status data is not found in the literature. We propose an efficient estimation approach

with fixed ρ in the GORH models based on a novel EM algorithm. The proposed

method is robust to initial values, fast to converge and provides variance estimates

in closed form. A working model approach is proposed when true value of ρ is known

but does not require to fit the GORH models with different ρ values. The proposed

approach and working model strategy are evaluated and show good performance in

an extensive simulation study. They are illustrated by a large real-life data set.

In Chapter 4, we study the joint modeling of panel count data and interval-

censored failure time data motivated by a real-life data set about sexually transmitted

infections (STI). The failure time of interest is the time to get a new STI since

the enrollment, which has an interval-censored data structure. The other response

variable is the number of unprotected sex over time, which has a panel count data

structure. The proposed joint analysis based on an EM algorithm is more efficient

than the univariate analysis of panel count data and interval-censored data separately.

The proposed joint model and approach are applied to the STI data.
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Chapter 1

Introduction

1.1 Panel count data

The study that deals with repeated occurrences of the same event of interest on study

subjects are usually referred to as event history study. The resulting data are often

called event history data. In general an event history study can be classified into two

types. The first type of study monitors study subjects continuously, and consequently

all the occurrence times are observed producing recurrent event data. The second type

of study produces panel count data when subjects are monitored or examined only

at periodic observation times, and only the number of events that occur between

consecutive observation times is known. Panel count data arise naturally in many

fields, such as in demographical studies, epidemiological studies, medical follow-up

studies, oncology clinical trials, and reliability studies.

One famous panel count data example in the literature comes from the National

Cooperative Gallstone Study (NCGS). The NCGS was a 10-year, double-blinded,

placebo-controlled clinical trial of the use of the natural bile acid chenodeoxycholic

acid for the dissolution of cholesterol gallstones (Thall and Lachin, 1988; Sun and

Zhao, 2013). A total of 916 patients were randomized into three different groups,

placebo, low dose, and high dose and were treated up to two years. Among the

various types of symptoms occurred to patients in the study, nausea was commonly

associated with gallstone disease. Thall and Lachin (1988) focused on the incidence

of nausea during the first year of follow-up in the NCGS. The patients were scheduled
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to return for clinic observations at 1, 2, 3, 6, 9, and 12 months during the first year

follow-up. However, the actual visit times differ from patient to patient due to early

dropout or withdrawal etc. At each clinic visit, the patients were asked to report

the total number of each type of symptom that had occurred between consecutive

visits such as the number of the incidences of nausea. The observed data include

actual visit times and the number of occurrences of nausea between the consecutive

visits, therefore we have panel count data on the occurrences of nausea. One research

interest was to conduct regression analysis of these panel count data for treatment

comparison and estimation of some covariate effects.

When there are no covariates, many parametric approaches have been proposed.

Kalbfleisch and Lawless (1985) discussed the fitting of a finite state Markov model

to panel count data. Liang and Zeger (1986) and Thall and Vail (1990) presented

quasi-likelihood regression models with a generalized estimating equation (GEE) ap-

proach by treating panel count data as longitudinal count data. Many approaches

have been proposed to analyze panel count data based on the counting process tech-

niques. When no covariates are considered, inferences are focused on estimating the

mean function of the counting process and comparison of cumulative mean functions.

For the purpose of mean function estimation, Sun and Kalbfleisch (1995) constructed

an isotonic regression estimator. Wellner and Zhang (2000) proposed two estimators

by maximizing the pseudo-likelihood and likelihood functions under the nonhomoge-

neous Poisson process. Lu et al. (2007) proposed likelihood-based estimators with

the mean function being approximated by the monotone splines of Ramsay (1988)

and showed that their spline-based estimators are more efficient than those in Well-

ner and Zhang (2000). Regarding the comparison of the mean functions for different

populations, Sun and Fang (2003), Zhang (2006),and Balakrishnan and Zhao (2009)

proposed different nonparametric tests for univariate panel count data. Li et al.
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(2014) developed nonparametric tests for multivariate panel count data.

When covariates are available, semiparametric regression analysis is widely used

to examine the covariate effects on the response as well as the estimation of the

mean function. Among others, Sun and Wei (2000) developed estimation procedures

with time-dependent covariates on both observational and censoring processes. Zhang

(2002) proposed a pseudo-likelihood approach, and Wellner and Zhang (2007) studied

both pseudolikelihood and likelihood methods under the non-homogeneous Poisson

process model. Hu et al. (2003) proposed two estimation approaches with different

assumptions on the observational process. Lu et al. (2009) modeled the baseline mean

function with monotone B-splines and established the asymptotic properties of their

spline-based estimators. He et al. (2008) considered the regression analysis of mul-

tivariate panel count data. There are also many approaches developed for the cases

that the recurrent event process and the observational process are dependent. Huang

et al. (2006), Sun et al. (2007) and Zhao and Tong (2011) employed joint modeling

procedure by using some shared frailty models. Zhao et al. (2013) proposed a general

and robust estimation approach by relaxing the Poisson assumption on the obser-

vation process. In addition, semiparametric transformation models and dependent

terminal events were also considered for analyzing panel count data. For such work,

we refer to Sun and Zhao (2013) for a comprehensive review.

1.2 Interval-censored data

Time-to-event data is also referred to as failure time data, where the event of interest

can be a failure or a survival event, such as death and the occurrence of some diseases.

Time to event data often arise in medical studies, epidemiological studies, sociological

studies and reliability experiments. In such studies the failure time of an event is a

random variable of interest.
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Interval-censored data are a special case of time-to-event data, in which the fail-

ure time of interest is not exactly observed but is known to fall within some interval.

Interval-censored data arise naturally in epidemiological, financial, medical, and so-

ciological studies. Let T be a nonnegative random variable representing the failure

time to an event of a study subject. The random failure time T is interval-censored

if T falls into an interval (L,R] where 0 ≤ L ≤ R. Interval censoring contains left

censoring and right censoring as special cases, L = 0 denotes left censoring, R = ∞

represents the right censoring. Especially L = R suggests that the exact observation

is obtained. A well known example of interval-censored data is breast cancer data

came from a retrospective study on early breast cancer patients who were treated

at the Joint Center for Radiation Therapy in Boston between 1976 and 1980. One

objective of this study was to detect whether chemotherapy changes the rate of de-

terioration of the cosmetic state. This data set consists of 94 patients who were

assigned randomly into two treatments. 46 patients received radiation therapy alone

(RT) and 48 patients received radiation therapy plus adjuvant chemotherapy (RCT).

In this study, patients were scheduled to visit the clinic every 4-6 months. However,

actual visit times differed from patient to patient because of missing visits. At each

visit, physicians evaluated the cosmetic appearance of the patients such as breast

retraction, a response that has a negative impact on overall cosmetic appearance.

The failure time was defined as the time to breast retraction, which was not observed

exactly. We have interval-censored data available on time to breast retraction.

For the analysis of interval-censored data, people are often interested in estimating

a survival function, comparing survival functions or treatments and assessing covari-

ate effects on failure time. When no covariates are present, estimation of survival

functions is the main target in the analysis of failure time data. One possible rea-

son is that one may need to estimate survival functions to estimate some certain

4



survival probabilities to compare different treatments graphically, or to predict sur-

vival probabilities for future patients. Turnbull (1976) proposed the self-consistent

estimator based on an EM algorithm which has been widely used as the nonparamet-

ric maximum likelihood estimator (NPMLE) of the survival function. Several other

algorithms for deriving the NPMLE of a survival function have been discussed by

Groeneboom and Wellner (1992), Gentleman and Geyer (1994), Wellner and Zhan

(1997), Li et al. (1997), Huang and Wellner (1997). When multiple treatment groups

are available the primary objective of analyzing interval-censored data is to compare

survival functions, and most nonparametric test procedures can be classified into two

categories: rank-based ones and survival-based ones (Huang and Wellner, 1997; Fang

et al., 2002; Zhao and Sun, 2004; Sun et al., 2005; Sun, 2006).

When covariates are present, the primary interest for analyzing interval-censored

data is to investigate the influence of covariates on the failure time T . The propor-

tional hazards (PH) model is the most popular survival model in analyzing censored

data. Finkelstein (1986) was the first to apply the PH model for interval-censored

data and developed a Newton-Raphson algorithm. Alternative approaches under the

PH model include Satten (1996), Goggins et al. (1998), Cai and Betensky (2003)

and Wang et al. (2015). Several other semiparametric models have also been consid-

ered for regression analysis of interval-censored data, including the proportional odds

(PO) model, the accelerated failure time (AFT) model. Huang and Rossini (1997)

and Shen (1998) studied interval-censored data under the PO model by developing

sieve estimation procedures. The AFT model has been studied in Rabinowitz et al.

(2000) and Betensky et al. (2001) which developed proposing estimating equation

approaches for estimating the regression parameters. Sun (2006) and Zhang and Sun

(2010) provided comprehensive reviews of analysis of interval-censored data.
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Current status data

Current status data, also referred to as case 1 interval-censored data, is one spe-

cial case of interval-censored data. Current status data occur when each subject is

observed only once and the known information is whether the event of interest has

occurred no later than the examination time or not. The observed current status data

for one subject can be represented by {C, δ = I(T ≤ C)} where C denotes the obser-

vation time and I(·) is the indicator function. In consequence, the failure time is either

left- or right- censored. Current status data arise commonly in many epidemiological,

medical or tumorigenicity studies. For example, in tumorigenicity experiments male

rats are exposed to two different environments, conventional environment and germ-

free environment, to determine whether the environment accelerates the time until

tumor onset. Tumor onset time is not measured directly, mainly because the lung

tumor is non-lethal and tumor status can only be determined at the death time of the

animal. The time to tumor onset is only known to be less than or greater than the

observed time of death, therefore we have current status data on the time to tumor

occurrence.

Similar to the objectives of analyzing general interval-censored data, many esti-

mation and inference methods proposed for interval-censored data can be directly

applied to analyze current status data. When no covariates are present, a number of

authors, including Peto (1973), Turnbull (1976) and Groeneboom et al. (2010) have

introduced algorithms for the NPMLE of the cumulative distribution function of T

with current status data. As for the nonparametric comparison of survival functions

for current status data, several procedures have been proposed, such as Sun and

Kalbfleisch (1993) and Andersen and Ronn (1995). When covariates are present, the

PH model and the PO model have also been studied to fit current status data. Under

the PH model, among others, Huang (1996) and Huang and Wellner (1997) explored
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efficiency issues and established asymptotic results for the maximum likelihood esti-

mator of both the regression parameters and the baseline cumulative hazard function.

Huang (1995) and Rossini and Tsiatis (1996) investigated the current status data with

the PO model. McMahan et al. (2013) analyzed current status data under both the

PH and PO models using EM algorithm. In addition, Lin et al. (1998) and Shiboski

(1998) analyzed current status data with additive hazards model and generalized ad-

ditive models, respectively. In Chapter 2, we study current status data under a more

flexible semiparameteric model called generalized odds-rate hazards models.

1.3 Preliminaries

Several popular survival models

The Cox PH model is the most widely used model in the last four decades in the

survival analysis. The PH model relates hazard function λ(t|x) to a p × 1 covariate

vector x,

λ(t|x) = λ0(t) exp(x′β),

where λ0(t) is the unspecified nondecreasing baseline hazard function and β is a

p × 1 vector of regression parameters. The PH model implies that the hazard ratio

for two covariate sets remains constant as time changes. However, in reality, the

PH assumption may be violated. For remedy, one can stratify the data into some

subgroups and apply the PH model for each stratum. Another feasible solution is

to include the time-varying covariates in the model. Several other models can be

considered when the PH assumption does not hold, including the PO model, the

GORH models and the linear transformation model. Cox (1972) proposed the partial

likelihood approach for making inference about the regression parameters. The partial

likelihood is simple and efficient because the partial likelihood function is only a
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function of regression parameters β so that people do not have to deal with the

nonparametric part which is the baselihe hazard function λ0(t).

The PO model (Bennett, 1983) is another popular survival model. The PO model

specifies
F (t|x)

1− F (t|x) =
{

F0(t)
1− F0(t)

}
exp(x′β),

where F (t|x) and F0(t) are the cumulative distribution functions of the failure time

T for the treatment group with covariates x and the baseline group with x = 0,

respectively. The PO model assumes that the effect of covariates is multiplicative

on the odds of the survival functions. The PO model is an alternative model to

capture the non-proportionality. Unlike the PH assumption, the proportional odds

assumption is the hazard ratio between two sets of covariate values converges to unity

rather than staying constant as time increases.

Frailty models are commonly used to analyze clustered or multivariate survival

data. Clayton (1978) first proposed to use gamma frailty in modeling correlated fail-

ure times. A frailty model is a random effect for time-to-event data, where the frailty

has multiplicative effect on the baseline hazard function. The univariate gamma

frailty model extends the PH model such that

λ(t|x) = φλ0(t) exp(x′β),

where φ ∼ G(ν, ν) with mean 1 and variance ν−1. The purpose of using common shape

and rate parameters in the gamma distribution is to avoid the non-identifiability issue

between φ and λ0. This model will be used in Chapter 4 of this dissertation.

Expectation-Maximization algorithm

The Expectation-Maximization (EM) algorithm was originally proposed by Demp-

ster et al. (1977) to overcome the difficulties in obtaining the maximum likelihood
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estimates (MLE). For instance, when the observed likelihood is an integral without

having an explicit form, taking derivative of the observed likelihood does not provide

us closed-form solution. The EM algorithm can usually simplify the maximization

problem by augmenting the missing data into complete data with the goal that the

log-likelihood of the complete data is relatively easy to compute. EM algorithm is an

iterative algorithm that contains both an expectation step (E-step) and a maximiza-

tion step (M-step) in each iteration. Let Ycom = (Yobs, Ymis) be the complete data

where Yobs represents the observed data and Ymis stands for the missing data. Let

Lc(θ|Ycom) denote the complete likelihood function. Denote the expected complete

log-likelihood by Q(θ|Yobs,θt) = E{logLc(θ|Ycom,θt)} given the current estimate of

θt of θ. The E-step computes Q(θ|Yobs,θt) at the current step estimate, and the

M-step finds θ = θt+1 to maximize Q(θ|Yobs,θt):

E-step: Compute

Q(θ|Yobs,θt) =
∫
Lc(θ|Ycom)f(Ymis|Yobs,θt)dYmis,

where f(Ymis|Yobs,θt) is the probability density function of the missing data.

M-step: Obtain θt+1 = argmaxθ Q(θ|Yobs,θt).

The algorithm is iterated until ‖θt+1 − θt‖ is sufficiently small. Many algorithms

and formulas have been proposed for obtaining standard errors of parameter esti-

mates from the EM algorithm. Tanner (1996) introduced several variance estimation

methods, such as obtaining Hessian matrix numerically and Louis’s method (Louis,

1982). Due to its easy implementation and stability the EM algorithm has attracted

researchers’ attention across different disciplines. Firstly, it can be easily implemented

because it relies on complete-data computations: the E-step of each iteration only

involves taking expectations over complete-data conditional distributions and the M-

step of each iteration only requires complete-data maximum likelihood estimation, for

which simple closed form expressions are available. Secondly, it is numerically sta-
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ble, because each iteration is required to increase the log-likelihood in each iteration,

and if the log-likelihood is bounded, the sequence of the log-likelihood converges to a

stationary value.

Monotone splines

A spline function is a piecewise polynomial function where the individual polynomials

have the same degree and connect smoothly at join points. The abscissas of these

joint points are called knots which partition an interval into a number of subintervals.

The most common continuity characteristics imposed on the spline request that for

adjacent polynomials the derivatives up to order k − 2 match. A monotone spline

function (Ramsay, 1988), also called integrated splines or I-splines because they can

be constructed from I-splines by taking a nonnegative linear combination. I-splines

are the integrated functions of M-splines. We can write the M-splines in the form of

f = ∑n
i=1 ciMi. To construct the M-splines one needs to choose the degree d and set

up m′ interior knots ξ1 < · · · < ξm′ within [a, b]. Then one use the following recursive

formulas for construction: let s1 = a, s2 = ξ1, · · · , sm′+1 = ξm′ , and sm′+2 = b, then

for i = 1, 2, . . . ,m′ + 1

Mi(t|1) =


1

si+1−si , si ≤ t < si+1,

0, otherwise;

for d ≥ 2, let s1 = · · · = sd = a, sd+1 = ξ1, · · · , sd+m′ = ξm′ , and sm′+d+1 = · · · =

sm′+2d = b, then for d > 1 and i = 1, . . . ,m′ + d,

Mi(t|d) =


k[(t−si)Mi(t|d−1)+(si+d−t)Ml+1(t|d−1)]

(k−1)(si+d−si)
, sl ≤ t < sl+d,

0, otherwise.
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Each Ml(·|d) is a piecewise polynomial with nonzero only within [si, si+d) for i =

1, . . . ,m′ + d. Also we have
∫
Mi(x)dx = 1. Because of this localization a change

in coefficient ci will only effect the spline within this interval. Based on M-spline

one can construct two types of splines, B-splines and I-splines. The B-splines can be

constructed in this way, Bi = (ti+k − ti)Mi/d. One technique for defining monotone

splines is to employ a basis consisting of monotone splines. Because M-splines are

nonnegative, one obvious approach is to define the I-splines for the sake of brevity,

Ii(t|d) =
∫ x

L
Mi(u|d)du,

and this provides a set of splines which, when combined with nonnegative values of

the coefficients ci, yields monotone splines. The integrated basis function can be

constructed in the form of

Ii(t|d) =



0, i > j,

∑j
h=i

(sh+d+1−sh)Mh(t|d+1)
d+1 , j − d+ 1 ≤ i ≤ j,

1, i < j − d+ 1,

for each i = 1, . . . ,m′ + d. In general the shape of a spline function is not very

sensitive to knot placement.

Non-homogeneous Poisson process

A counting process {N(t) : t ≥ 0} is a stochastic process withN(0) = 0 andN(t) <∞

almost surely such that the path is right continuous with probability one, piecewise

constant, and has only jump discontinuities with jumps of size +1. A Poisson process

is a simple and widely used counting process for modeling the times at which arrivals

enter a system. Non-homogeneous Poisson process (NHPP) models are commonly

used to model recurrent events. The counting process {N(t) : t ≥ 0} is a non-

11



homogeneous Poisson process with intensity function λ(t), t ≥ 0 if 1) N(0) = 0;

2) For each t > 0, N(t) has a Poisson distribution with mean E{N(t)} = µ(t) =∫ t
0 λ(s)ds. 3) For each 0 ≤ t1 < t2 < . . . < tm, N(t1), N(t2) − N(t1), . . . , N(tm) −

N(tm−1) are independent Poisson random variables. When λ(t) is a constant, the non-

homogeneous Poisson process reduces to homogeneous Poisson process with intensity

λ. In chapter 2 and chapter 4, we adopt a conditional non-homogeneous Poisson

process given frailty for modeling the panel count response.

1.4 Outline

The rest of this dissertation contains three parts about Semiparametric Regression

Analysis of Panel Count Data and Interval-Censored Failure Time Data from Chapter

2 to Chapter 4.

In Chapter 2, we propose an maximum likelihood approach for panel count data

under gamma frailty non-homogeneous Poisson process model to allow for within-

subject correlation. An EM algorithm is proposed to estimate the baseline mean

function and the regression parameters jointly. The approach can be used to deal with

no-within subject correlation data as well. To make researchers apply our method

conveniently, we develop a companion R package PCDSpline which is available on

CRAN for public use.

Chapter 3 considers the regression analysis of current status data with the GORH

models. We investigate the non-identifiability issues associated with the GORH mod-

els and propose a computationally efficient estimation approach based on an EM

algorithm when ρ is known. When ρ is unknown, a working model strategy with

ρ = 1 is proposed based on our approach that provides valid inferences for testing the

significance of covariate effects and estimating survival functions of the true GORH

model.
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Chapter 4 considers joint modeling of panel count data and interval-censored data.

A frailty model is proposed and an EM algorithm is derived for parameter estimation.

The proposed joint model includes the gamma frailty non-homogeneous Poisson pro-

cess model for panel count data and the gamma frailty proportional hazards model

for interval-censored data. A computationally efficient estimation approach based on

EM algorithm is proposed. Simulation studies show that the proposed approach per-

forms well. The proposed model and approach are applied to a sexually transmitted

infections data set.
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Chapter 2

Semiparametric regression analysis of panel

count data allowing for within-subject

correlation

2.1 Introduction

Panel count data often arise in longitudinal prospective studies involving recurrent

events that are only detected and recorded at periodic observation/assessment times.

For each subject, observations are taken at finite discrete time points, and only the

number of events that occur between consecutive observation times is known. Further-

more, the set of observation times can vary from subject to subject. Areas that usu-

ally produce panel count data include demographical studies, epidemiological studies,

medical follow-up studies, oncology clinical trials, and reliability studies (Kalbfleisch

and Lawless, 1985; Sun and Kalbfleisch, 1995; Wellner and Zhang, 2000; Sun and

Zhao, 2013).

Many approaches have been proposed to analyze panel count data based on the

counting process techniques. When no covariates are considered, inferences are fo-

cused on estimating the mean function of the counting process. For this purpose,

Sun and Kalbfleisch (1995) constructed an isotonic regression estimator. Wellner

and Zhang (2000) proposed two estimators by maximizing the pseudolikelihood and

likeliood functions under the non-homogeneous Poisson process. Lu et al. (2007) pro-
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posed likelihood-based estimators with the mean function being approximated by the

monotone splines of Ramsay (1988) and showed that their spline-based estimators are

more efficient than those in Wellner and Zhang (2000). Regarding the comparison of

the mean functions for different populations, Sun and Fang (2003), Zhang (2006), and

Balakrishnan and Zhao (2009) proposed different nonparametric tests for univariate

panel count data. Li et al. (2014) developed nonparametric tests for multivariate

panel count data.

When covariates are available, semiparametric regression analysis is widely used

to examine the covariate effects on the response as well as the estimation of the

mean function. Among others, Sun and Wei (2000) developed estimation procedures

with time-dependent covariates on both observational and censoring processes. Zhang

(2002) proposed a pseudolikelihood approach and Wellner and Zhang (2007) studied

both pseudolikelihood and likelihood methods under the non-homogeneous Poisson

process model. Hu et al. (2003) proposed two estimation approaches with different

assumptions on the observational process. Lu et al. (2009) modeled the baseline

mean function with monotone B-splines and established the asymptotic properties

of their spline-based estimators. He et al. (2008) considered the regression analysis

of multivariate panel count data. There are also many approaches developed for the

cases that the recurrent event process and the observational process are dependent.

For such work, we refer to Sun and Zhao (2013) for a comprehensive review.

In this chapter, we study semiparametric regression analysis of panel count data

while taking into account within-subject correlation. Such within-subject correlation

naturally exists because panel counts are repeatedly measured from the same subject.

Ignoring such within-subject correlation may lead to serious problems as shown in

our simulation studies. Existing work allowing for within-subject correlation in panel

count data is limited. Zhang and Jamshidian (2003) proposed an EM algorithm based
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on the gamma frailty Poisson model but without incorporating covariates. Recently,

Hua and Zhang (2012) developed a spline-based semiparametric projected generalized

estimating equation approach and modeled the baseline mean function with monotone

cubic B-splines. Their method does not require the Poisson assumption, and their

estimating equation can be regarded as the score equation of the marginal likelihood

under the gamma frailty Poisson model when the frailty variance parameter is known.

Hua et al. (2014) essentially adopted the same computational algorithm as Hua and

Zhang (2012) under the gamma frailty Poisson model and established the asymptotic

properties of their spline-based estimators. Although their models allow for handling

within-subject correlation, none of the above papers derived or estimated such within-

subject correlations.

In this chapter, a maximum likelihood approach is proposed for analyzing panel

count data under the gamma frailty Poisson model when there is within-subject cor-

relation. The within-subject correlation is quantified by Pearson’s correlation coef-

ficient in an explicit form. Monotone splines of Ramsay (1988) is adopted to model

the baseline mean function, and all the parameters are estimated jointly through an

efficient EM algorithm. The EM algorithm is robust to initial values, converges fast,

and provides variance estimates of all parameters in closed form. Our approach has

a good performance under the gamma frailty model and can be also applied to panel

count data where there is no within-subject correlation. An R package PCDSpline

has been developed based on our method and is now available on R CRAN for public

use. Discussions on the differences between our method and that in Hua et al. (2014)

can be found in the later sections.

The remainder of the article is organized as follows. Section 2.2 presents some

notations, the model, the observed likelihood, and the modeling of the baseline mean

function with monotone splines. Section 2.3 gives details of our proposed approach
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including a data augmentation, the derivation of an EM algorithm, the variance

estimates, and also a brief discussion of a simplified version adapted for the case

where there is no within-subject correlation. Section 2.4 evaluates the performance

of our approach through simulations. Section 2.5 provides two real-life applications

from a skin cancer study and a bladder tumor study. Section 2.6 concludes with some

discussions.

2.2 The proposed model

Notation, model, and likelihood

Consider a study that consists of n independent subjects. We assume that the ob-

servational process and the recurrent event process are conditionally independent

given covariates. Let xi denote a vector of p × 1 time-independent covariates and

{tij, j = 1, . . . , Ki} denote the actual observational times for subject i, where Ki

is the number of observations and tiKi is the last observation time. Let Ni(t) de-

note the counting process for subject i, and this process is observed only at tij’s. In

order to account for the within-subject correlation, we propose a gamma frailty non-

homogeneous Poisson process model for the recurrent event processNi(t). Specifically,

conditional on φi, the frailty associated with subject i, Ni(t) is a non-homogeneous

Poisson process with mean function µ0(t) exp(x′iβ)φi, where µ0(t) is an unspecified

nondecreasing baseline mean function with µ0(0) = 0 and φi’s are independently

and identically distributed from Ga(ν, ν) with mean 1 and variance ν−1. This model

implies

Ni(t)|φi ∼ P{µ0(t) exp(x′iβ)φi}

for any t ≥ 0, where P(a) denotes the Poisson distribution with mean a. In this model

the mean constraint of the frailty distribution is made to avoid non-identifiability be-
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cause µ0(·) is unspecified. Under the proposed gamma frailty Poisson process model,

µ0(·) is the conditional baseline mean function of the recurrent event process given

the frailty but can also be interpreted as the marginal baseline mean function since

E{Ni(t)} = E[E{Ni(t)|φi}] = E{µ0(t) exp(x′iβ)φi} = µ0(t) exp(x′iβ).

Under the proposed model, the common frailty among the panel counts within the

same subjects induces within-subject correlation, while the panel counts for different

subjects are independent. The φi’s represent the heterogeneity not explained by the

covariates among the subjects, and the variance parameter ν attributes to the degree

of the within-subject association between the counts of recurrent events within non-

overlapping time intervals. To quantify such correlation, consider two non-overlapping

intervals (t1, t2] and (t3, t4], and let Z1 and Z2 denote the count of the recurrent events

within these two intervals, respectively, from the same subject with covariates x. As

shown in Appendix A.2, under the gamma frailty Poisson process model, Pearson’s

correlation coefficient between Z1 and Z2 takes the following form,

ρ(Z1, Z2) = {(1 + λ−1
1 ν)(1 + λ−1

2 ν)}−1/2, (2.1)

where λ1 = {µ0(t2) − µ0(t1)} exp(x′β) and λ2 = {µ0(t4) − µ0(t3)} exp(x′β) are the

mean numbers of the recurrent events occurring within (t1, t2] and (t3, t4], respec-

tively. It is clear from equation (2.1) that ρ depends not only on ν but also on the

mean numbers of recurrent events within the two considered time spans. However, in

general, the larger value of ν is (corresponding to a smaller variance of the frailties),

the smaller the within-subject association is. It is interesting to note two extreme

cases. As ν → ∞, ρ → 0 corresponds to the independent case where there is no

within-subject correlation. As ν → 0, ρ → 1 indicates a perfect linear correlation

between such counts.
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Define Zij = Ni(tij)−Ni(tij−1), the count of recurrent events within time interval

(tij−1, tij] for j = 1, . . . , Ki and i = 1, . . . , n. Define ti0 = 0 for each i for notation

convenience. By the properties of non-homogeneous Poisson process, all Zij’s are

conditionally independent given φi for all j, and Zij’s have a Poisson distribution

conditional on φi with

Zij|φi ∼ P [{µ0(tij)− µ0(tij−1)} exp(x′iβ)φi]

for each i. Thus, the observed likelihood given the observed dataD = {(tij, Ni(tij),xi)

: j = 1, . . . , Ki, i = 1, . . . , n} can be written as

Lobs =
n∏
i=1

∫ Ki∏
j=1

P (Zij|φi)g(φi)dφi,

where P (Zij|φi) is the conditional probability mass function of Zij given φi and g(φi)

is the gamma density function of φi with both the shape and rate parameters equal to

ν. It is straightforward to derive the following explicit form of the observed likelihood,

Lobs = ∏n
i=1

ννΓ(ν+Zi·)
Γ(ν){ν+µ0(tiKi ) exp(x′iβ)}ν+Zi·

∏Ki
j=1

[{µ0(tij)−µ0(tij−1)} exp(x′iβ)]Zij
Zij ! , (2.2)

where Zi· = ∑Ki
j=1 Zij is the total count of events for subject i, i = 1, . . . , n. The

unknown parameters of interest in the above likelihood are the regression parameters

β, the baseline mean function µ0(·), and the frailty variance parameter ν.

Monotone splines

Estimating the baseline mean function µ0(·) is challenging because it is infinitely

dimensional. The number of parameters involved in µ0 is on the order of sample size

when the observation times differ from subject to subject. To handle this situation,

we propose to approximate the baseline mean function µ0(t) with monotone spline of

19



Ramsay (1988) in the following manner,

µ0(t) =
L∑
l=1

γlbl(t), (2.3)

where bl’s are the integrated spline basis functions, each of which is nondecreasing

from 0 to 1, and γl’s are nonnegative spline coefficients. The monotone spline expres-

sion (2.3) is very flexible to approximate nondecreasing functions as seen in Ramsay

(1988), and Wang and Dunson (2011) among many others. There are two key com-

ponents in specifying monotone spline basis functions: knots and degree. Although

these two components work together to determine the spline basis functions, the de-

gree mainly controls the smoothness of functions, and the knot placement mainly

controls the shape of those functions. Once knot placement and degree are deter-

mined, the spline basis functions are deterministic. To construct the spline basis

functions, one needs to specify a sequence of increasing m time points as knots and

to specify a value d for the degree. The degree d could take on values 1, 2 and 3

for linear, quadratic, and cubic functions, respectively. The total number L of spline

basis functions, or the number of spline coefficients, is determined by L = m+ d− 2.

One major advantage of using monotone splines is that it leads to only a finite number

of parameters to estimate while maintaining great modeling flexibility.

The knot placement plays an important role in determining the shapes of the

monotone splines and may potentially affect the performance of an estimation ap-

proach. Ramsay (1988) recommended to use a few knots such as at the median or at

the quartiles, while Lin and Wang (2010) recommended to use 10∼30 equally-spaced

interior knots in their Bayesian methods to guarantee adequate modeling flexibility.

Following Rosenberg (1995) and McMahan et al. (2013), we propose to use different

numbers of equally-spaced knots within the time range and to select the “best" model

by using some model selection criteria such as Akaike information criterion (AIC) or

Bayesian information criterion (BIC). The same strategy can be used for determin-
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ing the best value for the degree. However, it is observed that using different values

for degree usually does not affect much of the performance of an estimation method

when using monotone splines (Lin and Wang, 2010; Wang and Dunson, 2011; Cai

et al., 2011). Hence, the degree was set to 2 to ensure adequate smoothing in all our

simulation studies and real data applications.

2.3 The proposed estimation approach

A data augmentation

Under the monotone spline expression (2.3), there are only a finite number of unknown

parameters θ = (β′,γ ′, ν)′ in the observed likelihood (2.2), where γ = (γ1, . . . , γL)′

are the spline coefficients. However, finding the maximum likelihood estimate of θ

by maximizing the observed likelihood (2.2) is challenging due to its complex form.

It is our experience that both general statistical routines and the Newton-related

algorithms fail to provide converged results because they are very sensitive to the

initial values of the spline coefficients. To solve this problem we develop an EM

algorithm based on the following data augmentation.

We first consider the following conditional likelihood by taking φi’s as missing

values,

Lcon(θ) =
n∏
i=1

Ki∏
j=1

P (Zij|φi)g(φi).

In order to take advantage of the Poisson likelihood and additive form of spline ex-

pression (2.3), we decompose Zij into the sum of L conditionally independent Poisson

latent variables {Zijl}Ll=1 given φi, for each i and j, such that

Zij =
L∑
l=1

Zijl, Zijl|φi ∼ P [γl{bl(tij)− bl(tij−1)} exp(x′iβ)φi], ∀ l = 1, . . . , L.
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The augmented data likelihood, given all Zijl’s and φi’s, has the following form,

Lc(θ) =
n∏
i=1

g(φi)
Ki∏
j=1

L∏
l=1

P (Zijl|φi),

where P (Zijl|φi) is the Poisson probability mass function of Zijl given φi. This aug-

mented data likelihood will serve as the complete data likelihood for the derivation

of our EM algorithm.

The EM algorithm

To derive the EM algorithm, we first take the expectation of logLc(θ) with respect to

the latent variables Zijl’s and φi’s conditional on the observed data D and the current

parameter value θ(d) = (β(d)′ ,γ(d)′ , ν(d))′. This yields Q(θ,θ(d)) = H1(β,γ,θ(d)) +

H2(ν,θ(d)) +H3(θ(d)), where

H1(β,γ,θ(d)) =
n∑
i=1

Ki∑
j=1

Zijx
′
iβ −

n∑
i=1

µ0(tiKi) exp(x′iβ)E(φi|D,θ(d))

+
n∑
i=1

Ki∑
j=1

L∑
l=1

E(Zijl|D,θ(d))log(γl),

H2(ν,θ(d)) = ν
n∑
i=1

E{log(φi)|D,θ(d)} − ν
n∑
i=1

E(φi|D,θ(d))

+nνlog(ν)− nlogΓ(ν),

and H3(θ(d)) is a function of θ(d) but free of θ. This suggests that one can separate

ν from (β,γ) in the Q function, and this will save the computation cost in the

maximization step. All the conditional expectations involved in the Q function have

closed forms as follows,

E(Zijl|D,θ(d)) = γ
(d)
l {bl(tij)− bl(tij−1)}
µ

(d)
0 (tij)− µ(d)

0 (tij−1)
Zij,

E(φi|D,θ(d)) = ν(d) + Zi·

ν(d) + µ
(d)
0 (tiKi) exp(x′iβ(d))

,

and
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E{log(φi)|D,θ(d)} = ψ(ν(d) + Zi·)− log{ν(d) + µ
(d)
0 (tiKi) exp(x′iβ)},

where ψ(·) = Γ′(·)/Γ(·) is the digamma function. These conditional expectations can

be easily derived by noting that the conditional distribution of φi given the observed

data D is Ga{ν + Zi·, ν + µ0(tiKi) exp(x′iβ)} and that the conditional distribution

of (Zij1, · · · , ZijL) given the observed data D is a multinomial distribution for j =

1, . . . , Ki and i = 1, . . . , n.

In the M-step one can find θ(d+1) = argmax
θ

Q(θ,θ(d)). Since H2 is the only func-

tion involving ν in the Q function and H2 does not involve β and γ, one can maximize

H2(ν,θ(d)) directly to obtain ν(d+1). To obtain β(d+1) and γ(d+1), we consider the fol-

lowing first partial derivatives of H1(β,γ,θ(d)) with respect to β and γl’s,

∂H1/∂β =
n∑
i=1

{
Zi· − µ0(tiKi) exp(x′iβ)E(φi|D,θ(d))

}
xi,

and

∂H1/∂γl = −
n∑
i=1

bl(tiKi) exp(x′iβ)E(φi|D,θ(d)) +
n∑
i=1

Ki∑
j=1

E(Zijl|D,θ(d))
γl

,

where l = 1, · · · , L. Setting ∂Q/∂γl = 0 leads to a closed-form solution for γl as a

function of β,

γl(β) =
∑n
i=1

∑Ki
j=1 E(Zijl|D,θ(d))∑n

i=1 bl(tiKi) exp(x′iβ)E(φi|D,θ(d))
, l = 1, · · · , L. (2.4)

We can plug the closed-form expressions of γl’s from (2.4) into the estimating equation

∂H1/∂β = 0 and solve it for β(d+1). Then we can update γ(d) using equation (2.4)

with β replaced by β(d+1).

Now we summarize our EM algorithm as below: initialize θ(d) = (β(d)′ ,γ(d)′ , ν(d))′

with d = 0 and repeat the following three steps until convergence.

1. Obtain β(d+1) by solving the following system of p equations

∑n
i=1

[
Zi· −

∑L
l=1

{
exp(x′iβ)E(φi|D,θ

(d)
){
∑n

c=1

∑Kc
j=1 E(Zcjl|D,θ

(d)
)}bl(tiKi )∑n

c=1 bl(tcKc ) exp(x′cβ)E(φc|D,θ
(d)

)

}]
xi = 0.
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2. Calculate γ(d+1)
l for l = 1, . . . , L using

γ
(d+1)
l =

∑n
i=1

∑Ki
j=1 E(Zijl|D,θ(d))∑n

i=1 bl(tiKi) exp(x′iβ(d+1))E(φi|D,θ(d))
.

3. Calculate ν(d+1) by maximizing H2(ν) directly.

At each iteration of the EM algorithm, the first step involves solving a system of

equations for the regression parameters, the second updates the spline coefficients in

closed form, and the third maximizes a univariate function. In step 1 the estimating

equations have a unique solution β(d+1) and thus θ(d+1) is a unique maximizer of

Q(θ,θ(d)); see the sketched proof in Appendix A.3. Convergence of the EM algorithm

is claimed when the maximum change of all unknown para meters is smaller than a

prespecified tolerance value ε. It has been our experience through extensive simulation

studies that the proposed EM algorithm converges fast and is robust to the initial

values. These properties are pertained in a large part due to the unique solution

of β(d+1) and the closed-form expressions of γ(d+1)
l ’s, which are easy to update and

also automatically satisfy the nonnegative constraints. Let θ̂ = (β̂′, γ̂ ′, ν̂)′ denote the

converged value of θ(d) from the EM algorithm, and θ̂ is the MLE of θ.

Asymptotic properties and variance estimation

The asymptotic properties of θ̂ could be studied under two different assumptions:

(1) the number and position of the knots are known a priori and do not depend

on the sample size; or (2) the cardinality of the knot set grows with the sample

size (e.g. as in Hua et al. (2014)). Proceeding under the first assumption implies

that the baseline mean function µ0(·) can be expressed as a linear combination of

monotone spline functions (2.3), while the second assumption allows for a consistent

estimate of µ0(·) under less stringent assumptions. For the purpose of this work

the asymptotic properties of the proposed estimator will be presented under the
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former setting. Consequently, the general theory of maximum likelihood estimation

guarantees, under the standard regularity conditions,

√
n(θ̂ − θ)→ N{0, I−1(θ)}, as n→∞,

where I(θ) is the usual Fisher information matrix.

To obtain the variance estimate of θ̂, we adopt Louis’s method (Louis, 1982).

Specifically the variance estimate of θ̂ is taken to be I−1(θ̂), where I(θ) is the observed

information matrix and takes the form

I(θ) = −∂
2Q(θ, θ̂)
∂θ∂θ′

− var
{
∂logLc(θ)

∂θ

}
.

All the quantities involved in ∂2Q(θ, θ̂)/∂θ∂θ′ and var{∂logLc(θ)/∂θ} have closed-

form expressions and can be evaluated easily from the output of our EM algorithm.

The details of the formula for these quantities are presented in the Appendix A.1.

The case of no within-subject correlation

The proposed gamma frailty non-homogeneous Poisson model reduces to the regular

non-homogeneous Poisson model studied by Wellner and Zhang (2007) and Lu et al.

(2009) when all φi’s are taken to be 1. This is the limiting case of the proposed model

when ν → ∞, where there is no within-subject correlation. It is worth noting that

the idea of our approach can be applied to this special case with much simplification.

The resulting EM algorithm associated with this reduced model involves only solving

a system of low-dimensional equations for the regression parameters and updating

the spline coefficients in closed form at each iteration. There are fewer terms in the

conditional expectations, covariances, and variances in this case because there are no

frailty terms in the corresponding complete likelihood.

To distinguish the two methods, we call the proposed approach under the gamma

frailty non-homogeneous Poisson model with monotone splines GFNPMS and name
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the simplified approach under the non-homogeneous Poisson model NPMS. These two

approaches are evaluated and compared on the simulated panel count data with and

without the within-subject correlation. We remark that NPMS is computationally

competitive to the approaches of Wellner and Zhang (2007) and Lu et al. (2009)

although it is not the main focus of this article.

2.4 Simulation evidences

Extensive simulation studies were carried out to evaluate the performance of the

proposed approach. Three different simulation scenarios were considered: (1) the

true cases where the data were generated from gamma frailty Poisson models; (2) the

independent case where the data were generated from the non-homogeneous Poisson

model without frailty; and (3) the misspecified cases where the frailty distribution

was misspecified in the gamma frailty Poisson model. We provided a general setting

for these simulation scenarios as below. To generate the observational process for

subject i, we first generated Ki from Poisson(6)+1 to ensure that there was at least

one observational time, and then generated Ki gap times independently from an

exponential distribution with a rate parameter 2. The counting process associated

with subject i was generated from the following model,

Ni(tij)−Ni(tij−1)|φi ∼ P [{µ0(tij)− µ0(tij−1)} exp(xi1β1 + xi2β2)φi],

where µ0(t) = log(1 + t) + t2, xi1 ∼ N (0, 0.52), xi2 ∼ Bernoulli(0.5), and the true

values of (β1, β2) took (-1, 1) or (1, -1). The distribution of φi was taken to be

different gamma distributions, a degenerated distribution at 1, and some misspecified

distributions in Scenarios 1, 2, and 3, respectively. In each simulation setup, we

generated 500 data sets, each with n = 100 subjects. The tolerance value ε for

claiming convergence was taken to be 10−4 for all simulations.
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Scenario 1 corresponded to the true model cases, where the φi’s were generated

from Ga(ν, ν) with ν taking 0.5, 1, 4, or 16. To apply GFNPMS and NPMS, we used 6

equally-spaced interior knots within the data range and took a degree of 2 for the

monotone spline specification. From our simulations, it took 142 seconds for GFNPMS

to converge per data set, while it only took 12 seconds for NPMS per data set. The

significant difference in the running times of two methods results from the fact that

GFNPMS involves an additional parameter ν than NPMS. It turns out that maximizing

H2(ν) in GFNPMS is time-consuming because H2(ν) has a flat region at the maximizer.

Table 2.1 summarized the simulation results on the estimation of (β1, β2, ν) from

the two methods in terms of relative bias, the difference between the average of

500 point estimates and the true value divided by the true value; SSD, the sample

standard deviation of 500 point estimates; ESE, the empirical standard error obtained

using the Louis’s method; and CP95, the 95% coverage probability based on Wald’s

confidence intervals.

As seen in Table 2.1, GFNPMS has an excellent performance in all parameter con-

figurations. The relative biases are all close to zero, indicating that our proposed

estimators are unbiased; the ESEs are close to the SSDs, indicating that the variance

estimates using Louis’s method are accurate; and the CP95 are close to 0.95, indi-

cating that the asymptotical normality is valid. In contrast, although NPMS yields a

small bias on average for each parameter configuration, the variation of those point

estimates is larger than that from GFNPMS by comparing the SSDs between the two

methods. More importantly, NPMS yields seriously underestimated variances, which

consequently leads to much lower coverage probabilities than the nominal level 0.95.

These results suggest that ignoring the within-subject correlation may lead to se-

riously inaccurate estimation and further misleading conclusions. The larger the

within-subject correlation, the more severe such problems are.
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It is interesting to observe in Table 2.1 that the variances of the regression pa-

rameter estimates from GFNPMS become smaller as the true value of ν increases. This

is not surprising because as ν increases, the frailty variance decreases, and this leads

to a decreased variation in the observed data, which further leads to the decreased

variances of the regression estimates.

Both GFNPMS and NPMS provide smooth estimates of the baseline mean function.

For comparison, we consider the adjusted mean squared error (AMSE) at each t

AMSE(µ̂0(t)) = 1
500

500∑
j=1

{µ̂(j)
0 (t)− µ0(t)}2

{µ0(t)}2 ,

where µ̂(j)
0 is the estimate of µ0 from the jth data set, j = 1, · · · , 500. This definition

differs from the usual MSE in that it adjusts for the scale of µ0(·) at different t’s.

Figure 2.1 plots the true baseline mean function and the average of the baseline mean

function estimates from both methods (left panel) as well as the AMSE curves from

both methods (right panel) when (β1, β2, ν) = (1,−1, 0.5). As seen in the left panel

of Figure 2.1, the averaged baseline mean estimates from GFNPMS essentially overlaps

with the true curve, while the one from NPMS shows some difference from the true

curve in the later time period. The right panel of Figure 2.1 indicates that the AMSE

from GFNPMS is smaller than that from NPMS for all t in the data range. These results

suggest that GFNPMS has an excellent performance in estimating the baseline mean

function while ignoring the within-subject correlation (i.e., NPMS) leads to inaccurate

estimates.
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Table 2.1 Simulation results from non-homogeneous Poisson process models with
gamma frailty (GFNPMS) and without frailty (NPMS) in scenario 1 where the data
were generated from the gamma frailty Poisson models. Summarized results include
the relative bias (RBias), the sample standard deviation of the point estimates
(SSD), the average of estimated standard errors (ESE), and the 95% coverage
probability (CP95).

GFNPMS NPMS
(β1, β2) ν Est RBias SSD ESE CP95 RBias SSD ESE CP95
(1,−1) 0.5 β̂1 -0.008 0.291 0.303 0.956 -0.045 0.423 0.031 0.114

β̂2 -0.007 0.297 0.291 0.952 -0.020 0.404 0.034 0.126
ν̂ 0.044 0.077 0.074 0.948 — — — —

1 β̂1 -0.008 0.228 0.213 0.926 -0.022 0.342 0.031 0.168
β̂2 0.005 0.220 0.209 0.948 0.011 0.305 0.034 0.164
ν̂ 0.051 0.163 0.154 0.958 — — — —

4 β̂1 0.014 0.119 0.115 0.944 0.007 0.172 0.031 0.32
β̂2 0.000 0.117 0.113 0.942 0.004 0.160 0.034 0.326
ν̂ 0.040 0.605 0.716 0.972 — — — —

16 β̂1 -0.004 0.068 0.069 0.956 -0.004 0.092 0.031 0.518
β̂2 0.000 0.067 0.067 0.942 0.001 0.080 0.033 0.602
ν̂ 0.068 2.625 3.915 0.974 — — — —

(−1, 1) 0.5 β̂1 0.014 0.306 0.294 0.942 0.003 0.468 0.019 0.064
β̂2 -0.008 0.285 0.285 0.952 0.004 0.412 0.021 0.090
ν̂ 0.046 0.072 0.069 0.936 — — — —

1 β̂1 0.011 0.199 0.209 0.948 0.003 0.326 0.019 0.096
β̂2 0.001 0.194 0.203 0.962 0.013 0.289 0.021 0.114
ν̂ 0.046 0.150 0.142 0.946 — — — —

4 β̂1 0.010 0.107 0.107 0.956 0.017 0.165 0.019 0.184
β̂2 -0.004 0.105 0.105 0.956 -0.005 0.141 0.020 0.216
ν̂ 0.049 0.550 0.643 0.982 — — — —

16 β̂1 0.001 0.061 0.059 0.956 0.002 0.086 0.019 0.336
β̂2 -0.001 0.059 0.059 0.944 -0.004 0.073 0.020 0.436
ν̂ 0.040 2.520 3.050 0.968 — — — —
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Figure 2.1 Left panel: the true baseline mean function and the average of the
estimated baseline mean curves under the non-homogeneous Poisson models with
gamma frailty (GFNPMS) and without frailty (NPMS). Right panel: the adjusted
mean squared error as a function of t from GFNPMS and NPMS.

Scenario 2 corresponded to the independent case, where the φi’s were all taken to

be 1. The true model is the non-homogeneous Poisson model without frailty, under

which NPMS is specifically developed. When applying GFNPMS, we specified a upper

bound M for ν in step 3 of the EM algorithm in Section 3.3, where M was a large

value taking 1,000 or 10,000 in the simulation. It was found that ν̂ always reached

the upper bound M . This makes sense because the corresponding true value of ν

is ∞ under the gamma frailty non-homogeneous Poisson model when there is no
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within-subject correlation. Table 2.2 presents the simulation results on the regression

parameters from GFNPMS and NPMS. It is clear that both methods perform very well

with very small relative biases in the point estimates, SSDs close to ESEs, and CP95

close to 0.95 for all parameter configurations. This suggests that GFNPMS works well in

estimating the regression parameters even when there is no within-subject correlation.

Table 2.2 Simulation results from GFNPMS and NPMS in scenario 2 when the
data were generated from non-homogeneous Poisson models. Summarized results
include the relative bias (RBias), the sample standard deviation of the point
estimates (SSD), the average of estimated standard errors, and the 95% coverage
probability.

NPMS GFNPMS
(β1, β2) Est RBias SSD ESE CP95 RBias SSD ESE CP95
(1,−1) β̂1 -0.001 0.032 0.031 0.954 -0.001 0.032 0.033 0.958

β̂2 0.003 0.035 0.034 0.956 0.003 0.034 0.035 0.968

(−1, 1) β̂1 -0.001 0.019 0.019 0.948 -0.001 0.019 0.021 0.968
β̂2 0.001 0.020 0.020 0.938 0.001 0.021 0.022 0.952

Scenario 3 corresponded to the misspecified cases of the frailty distribution, where

φi’s were generated from a lognormal distribution LN (−0.5, 1) with a shape pa-

rameter −0.5 and a scale parameter 1 or from a mixture distribution 0.4Ga(1, 1) +

0.6LN (−0.5, 1). The results from the proposed method were shown in Table 2.3.

From Table 2.3, our method produces underestimated variance estimates (ESEs less

than SSDs) and the coverage probabilities below the nominal level in these misspec-

ified cases. Thus, we conclude that the proposed model is not robust to frailty dis-

tribution misspecification, i.e., using our method may lead to misleading conclusion

when the gamma frailty assumption does not hold. This makes sense because there

are multiple counts from the same subjects which may provide adequate information

to estimate the frailty distribution accurately. Note that this conclusion is different

from that in Hua et al. (2014), which investigated different cases of frailty distribution
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misspecification.

Additional simulations were conducted to compare with the approach of Hua

et al. (2014) using their simulation settings. The two methods were found to have

comparable performance in all the true cases and misspecified cases. Summary results

on this comparison can be found in Appendix A.4.

Table 2.3 Simulation results from GFNPMS in scenario 3 when the frailty
distribution is misspecified. In this simulation the true frailty distribution is either
lognormal distribution LN (−0.5, 1) or a mixture of Gamma and lognormal
distribution 0.4Ga(1, 1) + 0.6LN (−0.5, 1).

Lognormal Mixture Gamma
(β1, β2) Est RBias SSD ESE CP95 RBias SSD ESE CP95
(1,−1) β̂1 -0.008 0.242 0.205 0.900 -0.005 0.183 0.160 0.924

β̂2 0.012 0.259 0.200 0.868 -0.003 0.185 0.156 0.910

(−1, 1) β̂1 -0.014 0.262 0.200 0.856 -0.005 0.190 0.154 0.882
β̂2 -0.018 0.260 0.192 0.828 0.005 0.178 0.150 0.910

2.5 Two illustrative real-life applications

The skin cancer study

In this section we apply the proposed method to the data from a skin cancer study

conducted by the University of Wisconsin Comprehensive Cancer Center in Madison,

Wisconsin (Li et al., 2013). The study was a double-blinded and placebo-controlled

randomized Phase III clinical trial. The primary objective of the trial was to evaluate

the effectiveness of 0.5 g/m2/day PO difluoromethylornithine (DFMO) in reducing

new skin cancers for patients with a history of non-melanoma skin cancers including

basal cell carcinoma and squamous cell carcinoma. The study consisted of 291 patients

who were randomized into two treatments for four to five years: placebo group and

DFMO group. These patients were scheduled to have examinations every six months,
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but the actual observational times varied from subject to subject. The numbers of

recurrences of the new skin tumors between the observation times were recorded.

Among the 291 patients, all were white except for one Hispanic. In our data

analysis, we excluded the only one Hispanic patient and one patient with missing

cancer information. Hence, the final analytic sample consisted of 289 patients, 147 in

the placebo group and 142 in the DFMO group. Let xi = (xi1, xi2, xi3, xi4)′ denote

the covariate vector for patient i, where xi1 = 1 if patient i was in the DFMO group

and 0 otherwise, xi2 and xi3 are the number of prior skin tumors and the age at

the enrollment of patient i, and xi4 = 1 if patient i is male and 0 otherwise. We

applied the proposed method to this data set using different numbers of equally-

spaced interior knots between 0 and 1, 880 days for the monotone spline specification

and obtained robust estimation results. The results can be found in the web-based

supplementary materials. The tolerance value ε for claiming convergence was taken to

be 10−8. The model fit with 3 equally-spaced knots was chosen for our final analysis

because it yielded the smallest AIC value. Table 2.4 shows the estimation results of

these covariate effects when using 3 equally-spaced knots. As seen in Table 2.4, the

DFMO treatment did not have a significant effect on the recurrence of the new skin

tumors. Also the age and gender of patients did not seem to be significantly related

to the tumor recurrence. However, the number of prior skin tumors had a significant

effect on the occurrence of new skin tumors. These conclusions are consistent with

those using the approaches of Zhang et al. (2013).

To give a specific illustration of the within-subject correlation, define Z1 and Z2

to be the random counts of skin tumors within the first six months and within the

next six month for a patient with the median number (x2 = 1) of skin cancer and the

median age (x3 = 62) at the enrollment. Using the expression (2.1), the Pearson’s

correlation coefficient between Z1 and Z2 was estimated to be 0.1168 (or 0.0933) if
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the patient was male (female) in the DFMO treatment group, and the same measure

was 0.1201 (or 0.0959) if the patient was male (female) in the placebo group. This

suggests a weak within-subject correlation.

Figure 2.2 shows the estimated mean functions of new skin tumors for male and

female patients in the DFMO and placebo groups, respectively, with the number of

prior skin tumors being 2 and the age at the enrollment being 62. As seen in Figure

2.2, there seems to be a substantial difference between the estimated mean functions

for different gender groups but little difference for the two treatment groups.

Table 2.4 Skin cancer data analysis from the proposed approach (GFNPMS).
Summarized results are the point estimates (Point), the standard errors (SE), and
the p-values for all the regression parameters and the frailty variance parameter ν.

Point SE 95% CI p-value
β̂1 -0.031 0.143 (-0.311, 0.249) 0.828
β̂2 0.116 0.015 (0.087 ,0.145) < 0.0001
β̂3 -0.0008 0.0065 (-0.014, 0.012) 0.902
β̂4 0.252 0.145 (-0.032, 0.536) 0.082
ν̂ 1.273 0.205 (0.871, 1.675) < 0.0001

The bladder tumor study

We also applied the proposed method to the most widely used panel count data

example in the literature, which arose from a bladder cancer study conducted by the

Veterans Administration Cooperative Urological Research Group (Byar et al., 1977).

In that study, 118 patients who had superficial bladder tumors were randomized into

one of three treatment groups: placebo, thiotepa, and pyridoxine. During the study

at each follow-up visit, new tumors since the last visit were counted, measured and

then removed transurethrally. The primary objective of the study was to determine if

any treatment could reduce the recurrence of bladder tumor. This data set has been

analyzed extensively using many different approaches in the literature.
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Figure 2.2 The estimated mean functions for different subgroups in the skin cancer
data analysis.

Following Wellner and Zhang (2007) and Lu et al. (2009), we focused on 116

patients in the study, who had at least one follow-up observation after the study

enrollment. Let xi = (xi1, xi2, xi3, xi4)′ denote the covariate vector for patient i,

where xi1 and xi2 represent the number of bladder tumors and size of the largest

bladder tumors for patient i at the beginning of the trial, and xi3 and xi4 are the

binary indicators whether patient i was assigned to the treatment of pyridoxine pills

and thiotepa installation, respectively. When applying the proposed method, we tried

different numbers of equally-spaced knots with the data range 0 ∼ 64 months for the

monotone spline specification. The tolerance value ε was taken to be 10−8 for claiming

convergence.

Table 2.5 shows the results from our method and from two competitive approaches:

Wellner and Zhang (2007) and Lu et al. (2009). The results from these two competi-
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tors are directly drawn from their papers. Both of these two competitive approaches

were likelihood-based approaches under the non-homogeneous Poisson model without

considering the within-subject correlation. As seen in Table 2.5, the results from our

method indicates that the number of initial bladder tumors was positively related

to the recurrence of the tumor while the size of the largest tumor at the enrollment

did not have a significant effect. It is found that the thiotepa instillation treatment

significantly reduced the recurrence rate of bladder tumors, while the treatment of

pyridoxine pills did not have a significant effect. These conclusions are consistent

with those made in Wellner and Zhang (2007) and Lu et al. (2009). However, the

proposed method seems to be more efficient than the two competitors in identifying

significant covarites based on the reported p-values. This is because the proposed

method accounts for the within-subject correlation, which seems not to be ignorable

as indicated below. Our estimation results are similar to those from V3 of the GEE

approach in Hua and Zhang (2012).

To quantify such within-subject correlation, we define Z1 and Z2 to be the random

counts of bladder tumors within the first six months and within the next six months

for a patient with the median number (x1 = 1) of bladder tumors and the median size

of the largest tumors at the enrollment. The Pearson’s correlation coefficient between

Z1 and Z2 was estimated to be 0.6993 if the patient was placebo group and was 0.4325

if the patient was in the thiotepa treatment group. This suggests a medium to large

within-subject correlation.

Figure 2.3 plots the estimated mean functions of bladder tumor counts for the

control and the two treatment groups. It is clear that the estimated mean functions

for the control and the pyridoxine treatment groups are close to each other and they

are different from the one for the thiotepa treatment group.
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Table 2.5 Bladder tumor data analysis from the proposed approach (GFNPMS),
the WZ approach in Wellner and Zhang (2007), and the LZH approach in Lu et al.
(2009). Summarized results are the point estimates (Point), the standard errors
(SE), and the p-values for all the regression parameters and the frailty variance
parameter ν.

GFNPMS WZ LZH
Point SE p-value Point SE p-value Point SE p-value

β̂1 0.336 0.106 0.002 0.2069 0.0778 0.0078 0.208 0.083 0.012
β̂2 0.012 0.120 0.920 -0.0355 0.0861 0.6801 -0.035 0.085 0.686
β̂3 -0.033 0.409 0.936 0.0664 0.4310 0.8775 0.063 0.414 0.879
β̂4 -1.140 0.435 0.009 -0.7972 0.3603 0.0269 -0.798 0.342 0.019
ν̂ 0.351 0.062 < 0.0001 — — — — — —
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Figure 2.3 The estimated mean functions for different groups for the bladder
tumor data analysis.

2.6 Discussions

In this chapter, we proposed a new estimation approach to analyze panel count

data accounting for the within-subject correlation under the gamma frailty non-
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homogeneous Poisson process model. We derived Pearson’s correlation coefficient

to quantify the within-subject correlation in closed form for subjects with arbitrary

covariates. The modeling of baseline mean function with monotone splines leads to

a finite number of parameters to estimate and thus save the computation effort. We

developed a computationally efficient EM algorithm based on a Poisson data augmen-

tation to jointly estimate all the unknown parameters. The EM algorithm is robust to

initial values, easy to implement, and converges fast from our observations. Also, our

approach provides variance estimates in closed form. The proposed method shows an

excellent performance of estimating the regression parameters and the baseline mean

function in both cases with and without the within-subject correlation in our simu-

lation studies. Our approach is available for public use via an R package PCDSpline

on CRAN.

Although studying the same topic with the same model, there are several differ-

ences between our approach and that in Hua et al. (2014). Firstly, our approach

adopts monotone splines of Ramsay (1988) to approximate the baseline mean func-

tion, and the spline coefficients are updated in an explicit form in the EM algorithm

where the nonnegative constraints of the spline coefficients are automatically satisfied.

In contrast, Hua et al. (2014) used monotone B-splines, updated their spline coeffi-

cients using Newton-Raphson algorithm, and an additional step of isotonic regression

was used to meet the ordering constraints for the spline coefficients. Secondly, we

estimate the regression parameters, the spline coefficients, and the frailty variance

parameter simultaneously, while Hua et al. (2014) developed a two-stage estimation

procedure to estimate the frailty variance parameter in the first stage and other

parameters in the second stage. Such two-stage estimation procedure may lead to

underestimated variances and coverage probabilities for the regression parameter es-

timates. Thirdly, unlike Hua et al. (2014), our approach provides an estimate of frailty
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variance and allows to estimate the within-subject correlation. Fourthly, our method

provides variance estimates of all parameters in closed form using Louis’s method.

Our variance estimates are easier to calculate than those in Hua et al. (2014). The

two approaches have a comparable performance from the simulation results shown in

Appendix A.4. Overall our approach has computational advantages over that in Hua

et al. (2014) in terms of easy implementation, and we have developed an R package

PCDSpline to disseminate our approach. On the other hand, Hua et al. (2014) estab-

lished the asymptotic results of their estimates under a more general assumption that

the cardinality of the knot set grows with sample size, while our theoretical results

are established under the assumption that the the number and position of the knots

are known a priori and do not depend on the sample size.

The gamma frailty assumption plays an important role in the proposed method,

and it is observed in the simulation studies that the estimation on the regression

parameters may be biased when the gamma frailty assumption does not hold. Our

future effort will be devoted to developing a goodness-of-fit test for checking the

validity of the gamma frailty assumption based on the proposed method. Also, our

approach is applicable for analyzing panel count data where there is a censoring

variable that is independent of the recurrent event process, in that case the observed

likelihood (2.2) still holds. The proposed approach does not apply directly when the

censoring is informative, and this topic will be investigated in our future work.
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Chapter 3

Regression analysis of current status data with

generalized odds-rate hazards models

3.1 Introduction

Generalized odds-rate hazards (GORH) models represent a general class of semi-

parametric regression models for analyzing time-to-event data(Banerjee et al., 2007;

Scharfstein et al., 1998) . The survival function of this family S(·|x) given covariates

x is specified as

S(t|x) = {1 + ρΛ0(t) exp(x′β)}−ρ−1
, t > 0, (3.1)

where Λ0(·) is an unspecified increasing function, β is p × 1 vector of regression

parameters denoting the covariate effects, and ρ is a positive constant. The GORH

models have strong connections with other semiparametric regression models in the

survival literature. For example, the limiting case of the GORH models when ρ →

0 reduces to the popular proportional hazards (PH) model, while it becomes the

proportional odds (PO) model when ρ = 1. Also, the accelerated failure time (AFT)

model is a special case of the GORH models when Λ0(t) = t for t > 0 (Banerjee et al.,

2007). Thus, the GORH family is more flexible than the PH model and PO model

by introducing an additional parameter ρ. Such modeling flexibility brings desirable

properties. For example, the GORH models allow time varying hazard ratios, while

the PH model requires constant hazard ratios, an assumption that is often unrealistic

in many real-life applications.
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In the literature the GORH models are also well recognized as a special class of

linear transformation models in the form of

gρ{S(t|x)} = α(t) + x′β,

with gρ(s) = log{ρ−1(s−ρ − 1)} for ρ > 0 and α(t) = log{Λ0(t)} or in the form of

α(T ) = −x′β + ε,

where exp(ε) follows a Pareto distribution with parameter ρ > 0. However, it is

worth noting that the linear transformation models in the literature do not contain

the additional parameter ρ in the transformation function g. The popular gamma

frailty PH models, which are commonly used for modeling multivariate or clustered

failure times, have the GORH models as the marginal distributions of the failure

times.

Many approaches have been proposed for analyzing right-censored data using the

GORH models. Among others, Harrington and Fleming (1982) proposed a Gρ statis-

tic for testing the regression parameters, and Dabrowska and Doksum (1988) studied

estimation and testing, both for a two-sample setting. Clayton and Cuzick (1985) pro-

posed a quasi-EM algorithm for the maximum likelihood estimators. Scharfstein et al.

(1998) studied efficient estimation problem and proved that their estimates attain the

semiparametric variance bound. Xu and Harrington (2001) studied the connections

of the estimated treatment effects among the GORH models, the time-varying coeffi-

cient PH model, and the gamma frailty PH model under k-sample settings. Banerjee

et al. (2007) proposed a Bayesian estimation approach using a piecewise constant

baseline hazard function. For right-censored data with a cured subgroup, Zeng et al.

(2006) proposed an efficient recursive algorithm for the maximum likelihood estimates

(MLEs), and Castro et al. (2014) proposed a Bayesian method for modeling correlated

survival events.
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Although the GORH models have been widely used to analyze right-censored

survival data, no research has been reported using the GORH models for studying

current status data or interval-censored data in the literature to our knowledge. In

this chapter, we study regression analysis of current status data under the GORH

models. Current status data occur naturally in many social science, epidemiological,

and biomedical studies. In such studies, subjects are only examined once for the

failure event of interest. Thus, only the status of the failure event, whether has

occured or not at the examination time, is known instead of observing the exact time

of the event. Current status data contain only left- or right-censored observations

and no exactly observed observations, which is quite different from the right-censored

data in the literature. The structure of current status data brings great challenges

in the regression analysis both computationally and theoretically. It was proved

that the maximum likelihood estimates of the baseline cumulative hazard function

(or the survival function) coverges to the true function at an n−1/3 rate under the

PH model (Huang, 1996) for current status data, which is much slower than the

corresponding rate for right-censored data. The main reason is that current status

data do not contain exactly observed failure times and thus have much less information

for estimating the unknown parameters.

Most of the approaches in the aforementioned papers for right-censored data have

assumed a fixed and known ρ. In particular, Hinkley and Runger (1984) commented

“it is unresolved issue as to whether the variability of β should be affected by the

selection of ρ”. Zeng et al. (2006) pointed out the non-identifiabilities of the GORH

models and discussed a few cases where ρmay be treated as unknown and be estimated

under their cure rate model. Hanson and Yang (2007) fitted the GORH model to a

real data application treating ρ as an unknown parameter using a Bayesian method

based on polya tree but did not study the performance of their approach under the
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GORH model because their paper focused on the PO model. Banerjee et al. (2007)

estimated ρ together with other parameters but observed large bias in the estimation

in their paper. These literature results naturally raise a question: are the parameters

in the GORH models identifiable?

In this chapter, the non-identifiability issues of the GORH models are investi-

gated, and it is found that the GORH models are non-identifiable in the case when

there are no covariates but are indeed identifiable in the usual regression settings

including the commonly seen two-sample or k-sample settings. However, the great

challenges reported in the existing research seem to indicate that right-censored data

contain little information about ρ in the GORH models. The same problems were

found in our own experience when attempting to estimate ρ for current status data,

which contain much less information than right-censored data. Following the conven-

tional idea of fixing ρ when using the GORH models in the literature, we propose a

computationally efficient estimation approach based on a novel EM algorithm for the

regression analysis of current status data. This approach is shown to be robust to

initial values, fast to converge, and provides variance estimates in closed form. We

also propose a working model strategy to make valid inferences when the true value

of ρ is unknown in the GORH models without losing much efficiency. Consequently,

using the working model strategy only requires one to implement our approach with

ρ = 1 but enjoys the great modeling flexibility of the whole GORH family.

The remainder of this chapter is organized as follows. Section 3.2 discusses the

identifiability issues of the GORH models. Section 3.3 introduces some preparation

work for the proposed approach including the notations and data likelihood, and the

use of monotone splines for modeling the unknown function Λ0. Section 3.4 gives the

details of the proposed approach when ρ is known, including a data augmentation,

the details of our EM algorithm, and the variance estimates. Section 3.5 proposes
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a working model strategy with the proposed approach for analyzing current status

data when ρ is unknown. The proposed approach and the working model strategy

are evaluated through extensive simulation studies in Section 3.6 and are illustrated

by a large size real-life data set from health care study in Section 3.7. Section 3.8

provides with some discussions.

3.2 Identifiability of GORH models

In this section we discuss the identifiability issues of the GORH models in (3.1). We

have the following results for the GORH models without covariates.

Fact 1: The GORH models with x′β = 0 are non-identifiable.

The case x′β = 0 occurs when there are no covariates. In this case, the parameters

in the GORH models are (ρ,Λ0). To prove the non-identifiability, one only needs to

find two different sets of parameters (ρ1,Λ01) and (ρ2,Λ02) such that the two models

have the same survival function. To this end, for fixed (ρ1,Λ01), we take an arbitrary

positive value of ρ2 with ρ2 6= ρ1 and define

Λ02 = ρ−1
2 [{1 + ρ1Λ01(t)}ρ2ρ

−1
1 − 1]. (3.2)

It is clear to see

S(t|x, ρ1,Λ01) = {1 + ρ1Λ01(t)}−ρ
−1
1 = {1 + ρ2Λ02(t)}−ρ

−1
2 = S(t|x, ρ2,Λ02).

This suggests that the two GORH models with different parameters (ρ1,Λ01) and

(ρ2,Λ02) yield the same survival function and thus are not identifiable.

Now consider regression settings. First we consider a simple case of a regression

setting: there is only one covariate and it is binary. This is also called two-sample

setting in the literature. We then study the general setting when there are a mixture

of continuous and binary covariates. Assume that the p covariates are not linearly
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correlated, which means not any covariate can be written as a linear combination of

the other covariates . We establish the following results.

Theorem 1: The GORH models defined in (3.1) are identifiable in the case of

one binary covariate .

Theorem 2: The GORH models defined in (3.1) are identifiable in general re-

gression settings.

The proofs of Theorems 1 and 2 are sketched in the Appendix B.1. These results

suggest that the GORH models are identifiable in the usual regression settings.

3.3 Observed likelihood and monotone splines

Data and observed likelihood

Let T denote the failure time of interest, x be a p × 1 vector of time-independent

covariates, and C the censoring variable. For current status data, T is never exactly

observed, but its status relative to C is known. That is, δ = I(T ≤ C) is observed,

where I(·) is an indicator function. Thus, current status data are a mixture of left-

and right-censored failure times. Throughout this article it is assumed that the failure

time T and the cesnoring time C are conditionally independent given covariates x, a

common assumption in the literature of current status data.

Let D = {(Ci, δi,xi), i = 1, . . . , n} be n independently and identically distributed

(i.i.d.) copies of (C,∆,x), where n is the total number of subjects in the study. Under

the conditional independence assumption, the observed likelihood can be written as

Lobs =
n∏
i=1
{1− S(Ci|xi)}δi {S(Ci|xi)}1−δi , (3.3)

where S(·|x) is the survival function of the failure time T given the covariate vector

x taking the form as in (3.1) under the GORH models. The main research interests

are to assess the covariate effects and to estimate the survival functions for differ-

45



ent subgroups for prediction purpose. These require one to estimate the unknown

parameters θ = (ρ,β,Λ0).

Estimating ρ under the GORH model has been regarded as a tough issue in the

literature for right-censored data as discussed and for current status data based on

our own experience as mentioned in the introduction section. Different strategies

are proposed for the cases whether or not ρ is treated as known in the estimation

procedure.

Modeling Λ0 with monotone splines

Another complication is to estimate the infinite-dimensional parameter Λ0 because

it is an unspecified increasing function. It is well known that under the PH model

the partial likelihood allows one to estimate the regression parameters without the

need of estimating the cumulative baseline hazard function Λ0 for right-censored data

(Cox, 1975). However, for current status data there does not seem to exist partial

likelihood under the PH model and one has to estimate Λ0 jointly with the regression

parameters. It has been shown that the maximum likelihood estiamtes of Λ0 has

a convergence rate of n−1/3 under the PH and PO models for current status data,

which is slower than the rate of the corresponding estimates when dealing with right-

censored data.

Using splines has been a popular way to model nonparameteric functions in the

literature. It leads to a finite number of parameters to estimate while maintain-

ing adaquate modeling flexibility by not assuming a specific shape for the unknown

functions. In this chapter, we propose to model Λ0(·) with the mononote splines of

Ramsay (1988) following McMahan et al. (2013) and Cai et al. (2011). Specifically,

Λ0(t) is approximated as a linear combination of monotone splines in the following
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form,

Λ0(t) =
L∑
l=1

γlbl(t), (3.4)

where bl’s are basis functions or integrated splines (Ramsay, 1988) and γl’s are non-

negative spline coefficients. These spline basis functions are piecewise polynomial

functions, taking 0 at first stage, increasing in the second stage, and staying plateau

in the third stage. To construct the spline basis functions, one needs to specify the

degree d of basis functions and choose an increasing sequence of m points as knots

within a time range. The degree controls the overall smoothness of the basis func-

tions; for instance, degree 1, 2, and 3 correspond to linear, quadratic, and cubic basis

functions, respectively. The placement of knots controls the overall shape of the basis

functions together with the degree. The number of basis functions L is determined by

the sum of the degree and the number of interior knots, i.e., L = d+m− 2 (Ramsay,

1988). Once the degree and knots are specified, the spline basis functions are fully

determined.

3.4 The proposed approach when ρ is known

A data augmentation

Throughout Section 3.4, we assume ρ is fixed and known and try to make inferences

on (β,Λ0). Although the observed likelihood in (3.3) looks simple, maximizing it

directly with respect to (β,Λ0) is challenging. Based on our experience the Newton-

Raphson or related algorithms often fail to converge when maximizing the observed

likelihood (3.3) directly. To tackle this problem, we propose a novel EM algorithm for

finding the maximum likelihood estimate of (β,Λ0). The following three-stage data

augmentation is essential for the derivation of our EM algorithm.
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The first stage of our data augmentation utilizes the relationship between the

GORH models and the gamma frailty PH models. By introducing gamma frailties

φi’s, one obtains an expanded data likelihood

Laug1(θ) =
n∏
i=1

[
1− exp

{
−Λ0(Ci) exp(x′iβ)φi

}]δi
× exp

{
−Λ0(Ci) exp(x′iβ)φi(1− δi)

}
g(φi), (3.5)

where φi’s are i.i.d frailties from g(·), the gamma density function with both the shape

and rate parameters equal to ρ−1.

In the second stage, we introduce conditionally independent Poisson latent vari-

ables Zi’s with Zi|φi ∼ P{Λ0(Ci) exp(x′iβ)φi} for i = 1, . . . , n. To connect with the

observed data and likelihood, we let δi = I(Zi > 0) for i = 1, . . . , n. Thus, knowing

Zi’s will determine all of the censoring indicators, and the augmented data likelihood

based on Zi’s is

Laug2(θ) =
n∏
i=1

{Λ0(Ci) exp(x′iβ)φi}Zi
Zi!

exp
{
−Λ0(Ci) exp(x′iβ)φi

}
g(φi)

×{δiI(Zi > 0) + (1− δi)I(Zi = 0)}.

It is straightforward to show that integrating out Zi’s in Laug2 leads to the augmented

likelihood (3.5) in the first stage.

In the third stage, we decompose each Zi as a sum of conditionally indepen-

dent Poisson random variables such that Zi = ∑L
l=1 Zil given φi with Zil|φi ∼

P{γlbl(Ci) exp(x′iβ)φi} for l = 1, . . . , L and i = 1, . . . , n. This augmentation takes

advantage of monotone spline representation of Λ0. The augmented likelihood based

on all Zil’s is given by

Lc =
n∏
i=1

g(φi)I
(
Zi =

L∑
l=1

Zil

){
δiI(Zi > 0) + (1− δi)I(Zi = 0)

}

×
L∏
l=1

exp{−γlbl(Ci) exp(x′iβ)φi}
{γlbl(Ci) exp(x′iβ)φi}Zil

Zil!
.
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Integrating out Zil’s subject to the constraints leads to the augmented likelihood Laug2

in the second stage. The resulting data likelihood is simply a product of Poisson

probability mass functions, and it is used as the complete data likelihood for the

derivation of our EM algorithm. The nice form of the complete likelihood is the key

factor for the promising features of our EM algorithm.

The proposed EM algorithm

Now we describe the derivation of our EM algorithm in detail. The derivation starts

with taking the conditional expectation of log-complete likelihood logLc(θ) with

respect to all the latent variables including φi’s, Zi’s and Zil’s given the observed

data D and the current parameter θ(d) = (β(d)′ ,γ(d)′)′ at dth iteration. This yields

Q(θ,θ(d)) = E{logLc(θ)|D,θ(d)} = H1(β,γ,θ(d)) +H2(θ(d)), where

H1(β,γ,θ(d)) =
n∑
i=1

E(Zi|D,θ(d))x′iβ −
n∑
i=1

Λ0(Ci) exp (x′iβ)E(φi|D,θ(d))

+
n∑
i=1

L∑
l=1

E(Zil|D,θ(d)) log(γl),

and H2(θ(d)) is a function of θ(d) but free of θ. The conditional expectations involved

in the Q function all have explicit forms as follows,

E(φi|D,θ(d)) = 1
1 + ρΛ(d)

0 (Ci) exp(x′iβ(d))
I{δi = 0}

+
1−

{
1 + ρΛ(d)

0 (Ci) exp(x′iβ(d))
}−ρ−1−1

1−
{

1 + ρΛ(d)
0 (Ci) exp(x′iβ(d))

}−ρ−1 I{δi = 1},

E(Zi|D,θ(d)) = Λ(d)
0 (Ci) exp(x′iβ(d))δi

1−
{

1 + ρΛ(d)
0 (Ci) exp(x′iβ(d))

}−ρ−1 ,

E(Zil|D,θ(d)) = γ
(d)
l bl(Ci) exp(x′iβ(d))δi

1−
{

1 + ρΛ(d)
0 (Ci) exp(x′iβ(d))

}−ρ−1 ,

49



where Λ(d)
0 (Ci) = ∑L

l=1 γ
(d)
l bl(Ci). These expressions are derived using the following

facts: (i) the conditional distribution of φi given the observed data is a gamma distri-

bution when δi = 0 and is a mixture of gamma distribution when δi = 1 based on the

augmented data likelihood (3.5) in the first stage of the data augmentation; (ii) the

conditional distribution of Zi given φi and the observed data is a degenerated distri-

bution at 0 when δi = 0 and is a truncated Poisson distribution when δi = 1 as seen

from the second stage of the data augmentation; and (iii) the conditional distribution

of (Zi1, · · · , ZiL) given Zi and the observed data is a multinomial distribution. The

law of iterated expectation is then used for the derivation of E(Zi|D) and E(Zil|D)

for each i and l.

The M-step of the EM algorithm requires to maximize Q(θ,θ(d)) with respect to

θ, and it is equivalent to maximize H1(β,γ,θ(d)). It can be shown that there is a

unique global maximizer of H1(β,γ,θ(d)). To find the maximizer, consider the partial

derivatives of H1(β,γ,θ(d)) with respect to β and γl’s, and one obtains the following

expressions,

∂Q(θ,θ(d))/∂β =
n∑
i=1

{
E(Zi|D,θ(d))− Λ0(Ci) exp(x′iβ)E(φi|D,θ(d))

}
xi,

∂Q(θ,θ(d))/∂γl = −
n∑
i=1

bl(Ci) exp(x′iβ)E(φi|D,θ(d)) + 1
γl

n∑
i=1

E(Zil|D,θ(d)),

for l = 1, . . . , L. Setting these partial derivatives to zero and solving the resulting

system of equations for θ yields θ(d+1), the maximizer of Q(θ,θ(d)). Note that solving

∂Q(θ,θ(d))/∂γl = 0 leads to a closed-form solution for γl, as a function of β,

γ∗l (β) =
∑n
i=1 E(Zil|D,θ(d))∑n

i=1 bl(Ci) exp(x′iβ)E(φi|D,θ(d))
, l = 1, . . . , L.

Thus, one can replace γl with γ∗l (β) for each l in the equation Q(θ,θ(d))/∂β = 0

and solve it for β(d+1). Then γ(d+1)
l is obtained as γ∗l (β(d+1)), for l = 1, . . . , L. The
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Appendix B.3 presents a proof that θ(d+1) = (β(d+1),γ(d+1)) is the unique global

maximizer of Q(θ,θ(d)).

Here is a succinct summary of the proposed EM algorithm. First, initialize θ(d) =

(β(d)′ ,γ(d)′)′ for d = 0, and then repeat the following two steps until convergence.

1. Obtain β(d+1) by solving the following system of p equations:

n∑
i=1

[
E(Zi|D,θ(d))−

{ L∑
l=1

γ
∗(d)
l (β)bl(Ci)

}
exp(x′iβ)E(φi|D,θ(d))

]
xi = 0,

where

γ
∗(d)
l (β) =

∑n
i=1 E(Zil|D,θ(d))∑n

i=1 bl(Ci) exp(x′iβ)E(φi|D,θ(d))
, l = 1, . . . , L.

2. Calculate γ(d+1)
l = γ

∗(d)
l (β(d+1)), for l = 1, . . . , L, and increase d by 1.

The convergence of the EM algorithm is claimed when the maximum change of all

elements of β and γl’s between successive iterations is less than a prespecified small

value ε, say 10−4. The system of equations in step 1 above have a unique solution and

can be easily solved using existing root-finding procedures in the literature. Step 2 is a

simple updating of the spline coefficients in closed form, which is an appealing point of

our algorithm. Moreover, the updated γ(d+1)
l ’s are guaranteed to be nonegative based

on the expressions, thus no extra effort is needed to take care of the nonnegative

constraints for γl’s.

Variance estimation

Let θ̂ denote the converged values of θ(d) = (β(d)′ ,γ(d)′)′, and it is known that θ̂

is a maximum likelihood estimate of θ. Louis’s method (Louis, 1982) is adopted to

find the variance estimate of θ̂ . Specifically, var(θ̂) is taken to be the inverse of the

observed information matrix I(θ̂), i.e., var(θ̂) = {I(θ̂)}−1, and I(θ) can be obtained
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using the missing information principle as follows,

I(θ) = −∂
2Q(θ, θ̂)
∂θ∂θ′

− var
(
∂ log{Lc(θ)}

∂θ

∣∣∣∣∣D, θ̂
)
. (3.6)

All the quantities involved to calculate the last two terms in expression (3.6) are find

to have closed from and the details are shown in the Appendix B.2. Those closed-form

expressions make the variance estimate easy to compute, which is another appealing

point of our approach.

3.5 Strategies when ρ is unknown

In Section 3.4, we propose an estimation approach for regression analysis of current

status data under the GORH model by assuming ρ is fixed and known. Although the

approach is valid for all possible positive values of ρ, the GORH model essentially loses

much of its flexibility and is only comparable to the usual semiparametric regression

models such as the PH model and PO model when ρ is known. In this section, we

discuss a few strategies in order to take advantage of the great modeling flexibility of

the GORH models when ρ is unknown.

The first strategy is to treat ρ as an unknown parameter and develop an esti-

mation approach to estimate ρ together with other parameters β and Λ0. We have

attempted this idea and generalized our approach in Section 3.4. The resulting EM

algorithm contains only one additional step of maximizing a concave function for

ρ and the variance estimates can be derived in closed form using Louis’s method.

However, the new EM algorithm encountered many numerical problems from our

simulation. For example, it fails to converge for many simulated data sets, and it

leads to serious biased estimation for both regression parameters β and ρ in some

setups. This observation is consistent with the existing results in the literature for

studying right-censored data when treating ρ as unknown in the GORH models. The
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main reason is that there is very little information about parameter ρ from the data.

Note that current status data have much less information about the failure time than

right-censored data.

A second strategy is to consider a set of candidate values of ρ and apply the

proposed approach for each ρ, and then conduct model selection to choose the model

with the best fit for the data using some model selection criteria, such as Akaike

Information Criterion (AIC). This strategy is widely used for analyzing right-censored

data when using the GORH models. The disadvantage is that one needs to implement

the esitmation approach many times for all of the candidate values of ρ before finding

the best model. Although it is workable and widely accepted, this strategy actually

has two limitations: (1) choosing the candidate values of ρ is subjective; (2) the finite

number of candidate values of ρ puts a restriction on the best model. Since the

parameter space of ρ is the positive real line, the real best model may never be found

using this strategy.

Motivated by these limitations and the fact that current status data have little

information about ρ, we propose a new strategy of using a working model with ρ = 1

when true ρ is unknown. In this strategy, we only need to implement the proposed

approach in Section 3.4 with ρ = 1 and then use the obtained parameter estimates

from the working model to construct estimates of the quantities of interest under

the true GORH model. Let ρ1, β1, and Λ01 denote the parameter values in the true

GORH model, and let β and Λ0 denote the parameters under the working GORH

model with ρ = 1. Let β̂ and Λ̂0 denote the maximum likelihood estimates of β and

Λ0 under the working GORH model, and β̂ and Λ̂0 can be obtained by applying the

proposed approach in Section 3.4. Suppose that one wants to estimate the unknown

baseline survival function S0(t) = P (T > t|x = 0). Since this function takes the

following two equivalent forms: S0(t) = {1 + ρ1Λ01(t)}−ρ−1
1 under the true GORH
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model and S0(t) = {1 + Λ0(t)}−1 in the working model, the baseline survival function

under the true model can be simply estimated by Ŝ0(t) = {1 + Λ̂0(t)}−1 using the

estimates from the working GORH model. In general, the survival function S(t|x)

with specific covariates x under the true GORH model can be approximated by

Ŝ(t|x) = {1 + Λ̂0(t) exp(x′β̂)}−1. These survival estimates allow one to predict the

failure times for subjects in specific subgroups.

Note that this working model strategy does not allow one to retrieve an estimate

of β1 under the true GORH model. However, it allows one to test H0 : β1j = 0 vs.

Ha : β1j 6= 0 under the true GORH model by testing H0 : βj = 0 vs. Ha : βj 6= 0

under the working model using β̂j since β1j and βj denote the effect of the jth

covariate on the failure time under two different GORH models. The powers of these

two tests should be close to each other for any covariate. This suggests that even

though the working model strategy can not provide estimates of the covaraite effects

under the true GORH model directly based on the estimates from the working model,

it does provide answers to the important question that study investigators have: which

covariates are significant risk factors?

To summarize, the working model strategy only needs to fit the working GORH

model with ρ = 1 once but allows one to produce valid estimates of survival functions

and to identify significant risk factors under other GORH models without the need

of fitting those models. The choice of working model with ρ = 1 is made because of

the simplicity in its survival function.

3.6 Simulation study

An extensive simulation study was conducted to assess the performance of the pro-

posed approach under GORH model. For each subject i the failure time Ti was
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generated from

F (t|xi) = 1− {1 + ρΛ0(t) exp(xi1β1 + xi2β2)}−ρ−1
,

where the baseline cumulative function Λ0(t) = log(1 + t) + t2, and the covariate

vector xi = (xi1, xi2)′ in which xi1 ∼ N(0, 0.52), xi2 ∼ Bernoulli(0.5), i = 1, . . . , n.

Both regression parameters β1 and β2 take on -1 and 1 and ρ takes the values of

0, 0.5, 1, 1.5 and 2. Note that ρ = 0 corresponds to a limiting case of the GORH

models where the failure time Ti was generated from the PH model with cumulative

distribution function F (t|xi) = 1 − exp{−Λ0(t) exp(xi1β1 + xi2β2)}. The censoring

time Ci was generated from a truncated exponential distribution E(1) with support

(0, 3), and the censoring indicator δi = I(Ti ≤ Ci) was obtained by sampling from a

Bernoulli distribution with success probability F (Ci|xi). One advantage of this data

generation mechanism is that it avoids generating the failure times Ti’s, which are

also unobserved in current status data. We generated 500 independent data sets, each

with a sample size of n = 200, for each parameter configuration.

For each data set, we ran the proposed approach in Section 3.4 under the GORH

model with the true value of ρ. In addition, we implemented the same method under

the working GORH model with ρ = 1 for each simulated data set in order to evaluate

the working model strategy in Section 3.5. Throughout the simulation study, we took

6 equally-spaced knots within the minimum and maximum of the observed censoring

times for each data set and took degree to be 3 for adequate smoothness for the

montone spline specification.

Scenario 1: when ρ is known

Table 3.1 presents the estimation results of the regression parameters from the pro-

posed approach when using the true values of ρ. The summarized results include the
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average of 500 point estimates (Point), the sample standard deviations of 500 point

estimates (SSD), the average of the 500 estimated standard errors (ESE), and the

95% coverage probability for each regression parameter based on 500 data sets in

each configuration. As seen in Table 3.1, all of the point estimates are close to their

corresponding true values with small biases; all SSDs are closed to the corresponding

ESEs, indicating that the variance estimates based on Louis’s method are accurate; all

CP95s are close to the nominal value 0.95, indicating that the asymptotic normality

of the regression parameter estimates are valid. It is also observed that the estimated

variances increases as ρ increases. This is expected because increasing ρ results in

less information about the failure time in the observed data. This fact can be seen

more clearly if one rewrites the GORH models as the gamma-frailty PH models in

which ρ is the frailty variance.

Table 3.2 presents the global mean and maximum squared errors of the estimated

survival functions from our approach under the true GORH models. Specifically, we

consider a set of time points and define a local mean squared error (MSE) of the

estimated survival function Ŝ(t|x) at time t as

MSE{Ŝ(t|x)} = 1
500

500∑
j=1
{Ŝ(j)(t|x)− S(t|x)}2, (3.7)

where S(t|x) is the true survival function under the GORH model and is known,

and Ŝ(j)(t|x) is the estimate of S(t|x) from our approach for the jth data set,

j = 1, . . . , 500. The global mean (maximum) squared error of Ŝ(t|x), denoted by

meanMSE (maxMSE), is taken as the mean (maximum) of the local MSEs of S(t|x)

over the set of time points. The smaller these global MSEs are, the better estimation

for the survival functions. Table 3.2 shows the global mean and maximum MSEs of

the estimated survival functions with different covariate combinations, x = (0, 0),

(0, 1), and (1, 0). From Table 3.2, all the global mean and maximum MSEs of sur-

vival estimates are very small for all parameter configurations, which suggests that
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our method provides accurate estimates of the survival functions.

It is worth noting that the results in Tables 3.1 and 3.2 were obtained from our

approach using 6 equally-spaced knots in the monotone spline specification. These

results are expected to be improved if a procedure of optimal selection on the number

of knots is performed.

Scenario 2: when ρ is unknown

Now we assume ρ is unknown and evaluate our working model strategy proposed

in Section 3.5. The same sets of simulated data from the previous simulation were

used again, and we implemented our approach under the misspecified working GORH

model with ρ = 1 on all those data sets. Table 3.3 summarizes the global mean and

maximum MSEs of the survival estiamtes under the misspecified working model. Let

θ∗ = (ρ∗,β∗,Λ∗0) denote the true values of the unknown parameters in a GORH

model, from which the failure times were generated. In calculating the local MSEs

using (3.7), note that Ŝ(j)(t|x) and S(t|x) have different forms here with

S(t|x) = {1 + ρ∗Λ∗0(t) exp(x′β∗)}−ρ∗−1

and

Ŝ(j)(t|x) = {1 + Λ̂(j)
0 (t) exp(x′β̂(j))}−1, j = 1, . . . , 500,

where β̂(j) and Λ̂(j)
0 are the MLEs of θ and Λ0 under the working GORH model with

ρ = 1 for the jth data set. As seen from Table 3.3, the global mean and maximum

MSEs are small and are very comparable with the corresponding MSEs in Table 3.2 for

all parameter configurations. This suggests that the working model strategy provides

accurate survival estimates under the true GORH model by fitting the working model.

To assess the ability of identifying significant risk factors using the misspecified

working model, we explored the power of the hypothesis testing of H0 : βj = 0 vs.
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Ha : βj 6= 0 for the jth covariate. For each data set, the proposed method were

implemented under two GORH models: the true model and the working model. The

null hypothesis was rejected if the resulting p-value based on the Wald test was smaller

than the level of significance 0.05 for each data set under each model, and the power

was calculated as the proportion of the data sets with rejected null hypotheses for

each method since all the true βj’s are non-zeros in our setups. It is observed that the

power of the test decreases as ρ increases under both models. This is not surprising

because more uncertainty about the failure time is observed as ρ increases. Also, it

is clear that from Table 3.4 using the working model leads to comparable powers of

tesing the significance of all covariate effects as using the true GORH model. Thus,

using the working GORH model lose little power in detecting significant covariates

even though it is a misspecified model.

58



Table 3.1 The estimation results on the regression parameters from the proposed
approach under the GORH models using the true values of ρ based on 500
replications. Point denotes the average of 500 point estimates, SSD the sample
standard deviations of 500 point estimates, ESE the average of the 500 estimated
standard errors, and CP95 the 95% coverage probability for each regression
parameter in each parameter configuration.

β̂1 β̂2

ρ β1 β2 Point SSD ESE CP95 Point SSD ESE CP95

0

-1 -1 -1.0725 0.3134 0.3003 0.952 -1.0632 0.2986 0.2875 0.946
-1 1 -1.0905 0.3271 0.3121 0.938 1.0733 0.3171 0.2991 0.944
1 -1 1.0783 0.3063 0.3018 0.966 -1.0496 0.3123 0.2908 0.936
1 1 1.0850 0.3470 0.3110 0.932 1.0720 0.3170 0.2950 0.928

0.5

-1 -1 -1.0873 0.3783 0.3425 0.946 -1.0420 0.3341 0.3319 0.966
-1 1 -1.0323 0.3592 0.3445 0.938 1.0536 0.3337 0.3279 0.948
1 -1 1.0452 0.3669 0.3425 0.932 -1.0645 0.3503 0.3341 0.94
1 1 1.0490 0.3598 0.3419 0.950 1.0464 0.3173 0.3295 0.960

1

-1 -1 -1.0687 0.3988 0.3936 0.944 -1.0522 0.3707 0.3829 0.940
-1 1 -1.0208 0.3856 0.3814 0.954 1.0157 0.3765 0.3761 0.954
1 -1 1.0193 0.3802 0.3845 0.970 -1.0125 0.3692 0.3758 0.950
1 1 1.0304 0.4020 0.3835 0.950 1.0472 0.3814 0.3751 0.952

1.5

-1 -1 -1.0556 0.4401 0.4276 0.964 -1.0496 0.4125 0.4222 0.944
-1 1 -1.0755 0.4173 0.4250 0.968 1.0571 0.4207 0.4139 0.950
1 -1 1.0283 0.4435 0.4254 0.946 -1.0422 0.4256 0.4222 0.940
1 1 1.0347 0.4267 0.4226 0.954 1.0365 0.4116 0.4157 0.942

2

-1 -1 -1.0566 0.4792 0.4798 0.952 -1.0248 0.4492 0.4673 0.946
-1 1 -1.0481 0.5051 0.4640 0.946 1.0066 0.4719 0.4532 0.936
1 -1 1.0798 0.4744 0.4712 0.952 -1.0425 0.4930 0.4642 0.940
1 1 1.0849 0.4654 0.4653 0.954 1.0500 0.4419 0.4534 0.956
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Table 3.2 The global mean and maximum MSEs (×10−3)of the estimates Ŝij of the
survival function Sij from the proposed method using the true value of ρ for each
parameter configuration. The three (i, j) combinations (0, 0), (0, 1) and (1, 0)
correspond to three different covariate combinations (x1, x2) = (0, 0), (0, 1), and
(1, 0), respectively.

meanMSE maxMSE

ρ β1 β2 S00 S01 S10 S00 S01 S10

0 -1 -1 2.3 6.0 10.4 6.3 11.8 18.2
1 2.4 1.3 13.6 6.4 8.1 33.5

1 -1 2.5 6.6 2.9 6.8 12.3 18.5
1 2.6 1.2 2.9 7.5 7.4 17.8

0.5 -1 -1 3.4 8.6 13.7 5.8 15.6 19.5
1 4.1 1.7 17.1 6.7 7.2 29.8

1 -1 3.7 8.7 3.9 6.5 16.2 17.3
1 4.0 1.7 3.6 6.3 6.7 13.8

1 -1 -1 4.7 10.0 14.7 5.6 24.7 27.2
1 5.8 2.7 18.0 7.5 6.2 35.1

1 -1 4.9 9.4 4.9 5.8 23.0 13.6
1 6.1 2.6 4.9 7.9 6.3 12.7

1.5 -1 -1 5.9 10.3 15.0 9.7 27.6 32.2
1 7.1 3.6 16.6 13.1 6.7 39.2

1 -1 5.8 10.5 6.3 9.4 27.8 13.5
1 6.7 3.6 6.3 12.9 5.8 13.2

2 -1 -1 6.3 9.7 14.2 12.8 29.7 33.6
1 7.9 4.7 17.9 17.6 7.9 42.7

1 -1 6.6 10.6 7.3 13.9 31.8 12.4
1 7.9 4.4 7.3 17.2 6.8 10.7
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Table 3.3 The global mean and maximum MSEs (×10−3) of the estimates Ŝij of
the survival function Sij from the proposed method under the working GORH
model with ρ = 1 for each parameter configuration. The three (i, j) combinations
(0, 0), (0, 1) and (1, 0) correspond to three different covariate combinations
(x1, x2) = (0, 0), (0, 1), and (1, 0), respectively.

meanMSE maxMSE

ρ β1 β2 S00 S01 S10 S00 S01 S10

0 -1 -1 2.9 5.5 9.4 6.9 10.2 18.2
1 2.4 1.6 13.0 7.7 10.9 34.4

1 -1 3.1 6.2 3.5 7.6 11.2 22.7
1 2.5 1.6 3.4 8.7 10.8 22.7

0.5 -1 -1 3.4 8.2 12.6 5.8 13.2 16.4
1 3.8 1.8 15.8 6.7 8.2 25.2

1 -1 3.7 8.2 4.2 6.3 13.7 18.7
1 3.7 1.8 3.7 7.0 7.1 15.4

1 -1 -1 4.7 10.0 14.7 5.6 24.7 27.2
1 5.8 2.7 18.0 7.5 6.2 35.1

1 -1 4.9 9.4 4.9 5.8 23.0 13.6
1 6.1 2.6 4.9 7.9 6.3 12.7

1.5 -1 -1 6.2 10.6 15.6 10.6 29.7 34.8
1 7.6 3.8 17.4 14.9 6.4 44.6

1 -1 6.2 10.9 6.7 10.5 30.1 14.0
1 7.2 3.8 6.6 14.5 5.6 12.7

2 -1 -1 7.2 10.5 15.4 15.8 34.9 39.6
1 8.9 5.3 18.9 21.7 8.7 50.8

1 -1 7.6 11.4 8.9 17.5 37.5 13.6
1 8.8 5.0 8.3 20.9 8.5 10.9
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Table 3.4 The estimated powers for testing H0 : βj = 0 vs. Ha : βj 6= 0 from the
proposed method using true ρ (True model) and using ρ = 1 (Working model). The
power is calculated as the proportion of rejected null hypotheses based on the Wald
tests for the 500 simulated data sets in each parameter configuration.

ρ β1 β2 True model Working model

0 -1 -1 0.964 0.976 0.946 0.964
1 0.968 0.980 0.952 0.964

1 -1 0.980 0.960 0.966 0.936
1 0.952 0.978 0.938 0.954

0.5 -1 -1 0.896 0.892 0.882 0.888
1 0.878 0.920 0.882 0.908

1 -1 0.878 0.894 0.874 0.890
1 0.876 0.914 0.874 0.906

1.5 -1 -1 0.720 0.724 0.722 0.704
1 0.736 0.714 0.732 0.718

1 -1 0.682 0.710 0.688 0.704
1 0.672 0.722 0.662 0.718

2 -1 -1 0.610 0.594 0.610 0.586
1 0.642 0.598 0.632 0.598

1 -1 0.634 0.614 0.642 0.604
1 0.644 0.666 0.654 0.648

3.7 An illustrative example

Sponsord by the National Cancer Institute, the Prostate, Lung, Colorectal and Ovar-

ian (PLCO) Cancer Screening Trial is a multicenter, randomized two-arm trial de-

signed to evaluate the effect of routine screening for PLCO cancers on disease-specific

mortality. The enrollment of the PLCO study started in 1993 and ended in 2001,

and eligible participants were aged 55-74 and did not have personal history of any

PLCO cancer. At the enrollment, participants reported their personal characteristics

and they were randomized into two arms: intervention arm and control arm based

on their age, sex, and center. Participants in the intervention arm received annual

screenings but participants in the control arm did not.

62



Our data set comes from the baseline data at the enrollment from the prostate

component of the PLCO study. The response variable of interest is the onset time

of diabetes, which is either left-censored or right-censored at the age of enrollment

depending on whether the participant had diabetes at enrollment. The considered

covariates include education level (binary with 1 for not having a college education),

hypertension (binary with 1 for yes), race (binary with 1 for others), aspirin (binary

with 1 for regular use), ibuprofen (binary with 1 for regular use), smoke (binary with

1 for yes), obesity (binary with 1 for obese), and group (binary with 1 for intervention

arm). After deleting the subjects with missing information in the response, age at

enrollment, or these covariates, there are 43,395 participants in our data set. The de-

tailed summary results about these variables can be found in Table 3.5. Among these

subjects, 4,129 (9.5%) have left-censored diabetes onset times and 39,400 (90.5%)

have right-censored diabetes onset times.

We applied our proposed approach to this data set with fixed ρ = 0, 1, and 2.

For each case, we specified the order of the monotone splines to be 3 and used m− 2

equally spaced interior knots within (49, 78) formed by thel observed minimum and

maximum ages at enrollment, withm taking 5, 7, and 9. The initial values were taken

to be 0.5 for all regression parameters and spline coefficients, and the convergence

was claimed when the maximum of changes in all parameters values was smaller than

10−5. It took about 2.5 minutes to run our approach on average for each combination

of m and ρ.

Table 3.6 presents the estimated covariate effects from the proposed method for

using different values of ρ and m. As seen in Table 3.6, the estimated covariate

effects and their estimated standard errors are essentially identical across different

values of m for any fixed ρ, which indicates that this analysis is robust to the number

of interior knots using our method. The AIC crieria shows that the method using 3
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Table 3.5 Summary information about the response and the covariates used in the
analysis of the PLCO data.

Variable Description Code Number Percentage
Diabetes Yes 1 4129 10%

No 0 39400 90%
Age Mean (SD)=62.7(5.3)

Max(Min)=78(49)
Education ≥ College 0 24856 57%

< High school 1 18673 43%
Hypertension Yes 1 15341 35%

No 0 28188 65%
Race White, non-Hispanic 0 38507 89%

Others 1 5022 11%
Aspirin Yes 1 24513 56%

No 0 19016 44%
Ibuprofen Yes 1 11547 27%

No 0 31982 73%
Smoke Yes 1 7857 18%

No 0 35672 82%
Obesity Yes 1 10766 25%

No 0 32763 75%
Group Intervention 1 21108 49%

Control 0 22421 51%

interior knots provides the best of fit for each ρ, and the model with ρ = 2 yields the

smallest AIC value than those with other considered values of ρ when taking m = 5.

More implementations of the proposed approach with different values of ρ and m will

have to be run if one wishes to find the model that provides the best fit based on the

AIC criteria. However, doing so is time consuming and is not needed based on our

working model strategy, and the reasons are illustrated below.

Table 3.7 provides the p-values associated with the hypothesis tests on whether a

covariate has a significant effect on diabetes from the proposed method with different

ρ when taking 5 interior knots. As seen in Table 3.7, the p-values associated with
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testing any covaraite effect are comparable for different ρ’s, which indicates using

the working model with ρ = 1 leads to the same conclusions as using other GORH

models in detecting sigificant covariates. It is clear from Table 3.7 that education,

hypertension, race, aspirin, smoke, and obesity all have a significant effect on diabetes,

while ibuprofen and group do not have a significant effect. It is not surprising that

group does not have a significant effect on diabetes since we are using the baseline

data at randomization.

Figure 3.1 plots the estimated baseline survival functions for non-obese and obese

participants controlling all other covariates to be 0 based on our method with different

ρ’s. The estimated survival functions show a clear difference between the two weight

groups, which is consistent with the results in Table 3.7. It is also clear that the

estimated survival functions obtained when using different ρ’s are very close for each

weight group, indicating using the working model with ρ = 1 yields accurate survival

estimates as other GORH models.

3.8 Discussions

In this chapter, we investigate the identifiability issues of the GORH models and

prove that all the parameters are identifiable in the usual regression settings. How-

ever, treating ρ as an unknown parameter and estimating it with other parameters

may lead to serious problems in practice when analyzing right-censored data from

existing literature research and when analyzing current status data based on our own

experience. The main reason is that data have too little information about ρ and the

observed likelihood as a function of ρ is quite flat. Note that this is different from

modeling multivariate or clustered failure times under the gamma frailty PH model

with the GORH model as the marginal distributions, where the dependence among

the failure times does provide adequate information for estimating ρ.
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Table 3.6 The estimated covariate effects and their corresponding standard errors
from the proposed approach using different values of ρ and numbers of knots m in
the analysis of the PLCO data. The Akaike Information Criterion (AIC) values
from these models are also presented.

Model Covariates m = 5 m = 7 m = 9

ρ = 0 Education 0.139 (0.032) 0.150 (0.031) 0.150 (0.031)
Hypertension 0.748 (0.032) 0.748 (0.032) 0.748 (0.032)
Race 0.671 (0.040) 0.671 (0.040) 0.671 (0.040)
Aspirin 0.209 (0.033) 0.209 (0.033) 0.209 (0.033)
Ibuprofen 0.037 (0.035) 0.037 (0.035) 0.037 (0.035)
Smoke -0.166 (0.045) -0.166 (0.046) -0.166 (0.046)
Obesity 0.690 (0.033) 0.690 (0.033) 0.690 (0.033)
Group -0.017 (0.031) -0.017 (0.031) -0.017 (0.031)

AIC 25546.29 25549.83 25553.62

ρ = 1 Education 0.154 (0.034) 0.154 (0.034) 0.154 (0.034)
Hypertension 0.800 (0.034) 0.800 (0.034) 0.800 (0.034)
Race 0.734 (0.044) 0.735 (0.044) 0.735 (0.044)
Aspirin 0.224 (0.035) 0.224 (0.035) 0.224 (0.035)
Ibuprofen 0.045 (0.038) 0.045 (0.038) 0.045 (0.038)
Smoke -0.175 (0.048) -0.176 (0.048) -0.176 (0.048)
Obesity 0.746 (0.036) 0.745 (0.036) 0.745 (0.036)
Group -0.017 (0.034) -0.017 (0.034) -0.017 (0.034)

AIC 25538.03 25541.64 25545.47

ρ = 2 Education 0.168 (0.036) 0.168 (0.036) 0.168 (0.036)
Hypertension 0.853 (0.036) 0.853 (0.036) 0.853 (0.036)
Race 0.795 (0.048) 0.795 (0.048) 0.795 (0.048)
Aspirin 0.239 (0.038) 0.238 (0.038) 0.238 (0.038)
Ibuprofen 0.052 (0.041) 0.052 (0.041) 0.052 (0.041)
Smoke -0.184 (0.051) -0.185 (0.051) -0.185 (0.051)
Obesity 0.800 (0.039) 0.800 (0.039) 0.800 (0.039)
Group -0.018 (0.036) -0.018 (0.036) -0.018 (0.036)

AIC 25532.32 25536.00 25539.85

Assuming ρ is known, we propose a new estimation approach for analyzing current

status data under the GORH models. Our approach is an generalization of McMahan

et al. (2013) under the PH model. Specifically our proposed method adopts mono-

tone splines of Ramsay (1988) to approximate the unknown nondecreasing function,
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Table 3.7 The p-values associated with testing the significance of each covariate
effect based on the Wald tests from the proposed method in the PLCO data
analysis. The proposed method was implemented under different GORH models
with ρ = 0, 1, and 2 using order 3 and 3 equally spaced interior knots for the
monotone spline specifications.

p-values
Covariates ρ = 0 ρ = 1 ρ = 2
Education < 0.001 < 0.001 < 0.001
Hypertension < 0.001 < 0.001 < 0.001
Race < 0.001 < 0.001 < 0.001
Aspirin < 0.001 < 0.001 < 0.001
Ibuprofen 0.290 0.240 0.203
Smoke < 0.001 < 0.001 < 0.001
Obesity < 0.001 < 0.001 < 0.001
Group 0.595 0.613 0.626

reducing the number of unknown parameters to finite, and an efficient EM algorithm

is derived based on a three-stage data augmentation. Our approach enjoys several

appealing properties, such as being easy to implement and robust to initial values,

converging fast, and providing variance estimates in explicit form. Simulation study

suggests that our approach performs well in estimating all the regression parameters

and survival functions.

Treating ρ as known restricts the flexibility of the GORH model. To tackle this

problem when ρ is unknown, we investigate a working model strategy which only

requires one to implement our approach under the GORH models with ρ = 1. The

results in our simulation study and real data application suggest that the use of the

working model with ρ = 1 does not lose accuracy in estimating survival functions or

power in detecting significant covariates even when it is a misspecified model. This

suggests that the use of our method under the working GORH model with ρ = 1 does

not actually restrict the great flexibility owned by the GORH models.
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Figure 3.1 The estimated survival curves for different weight groups (non-obese
and obese) controlling all other covariates at the baseline levels from the proposed
method under different GORH models with ρ = 0, 1, and 2.
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Chapter 4

Joint modeling of panel count data and

interval-censored data with application to

sexually transmitted infections

4.1 Introduction

Human sexual contacts are the primary path for spreading sexually transmitted infec-

tion (STI) diseases such as Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG),

and Trichomonas vaginalis (TV). The proportion of young people who are aged 15-24

of getting infected is nearly half of the new sexually transmitted infections population

in the United States (Tu et al., 2009), therefore it is meaningful to understand the

young people sexual behaviors for preventing the infections. Young Women’s Project

(YWP) is an epidemiological study that was designed for studying sexual behaviors of

young women. In the YWP, young women between 14 and 17 years old were recruited

from three urban primary care clinics from the inner city of Indianapolis, Indiana.

All the participants were required to visit the clinics every 3 months for up to over 6

years. At each visit the study subjects were queried about their sexual behavior such

as the occurrence of sexual intercourse, condom use, condom failures, etc in the past

3 months. Besides, at each visit they were tested for the presence of CT, NG, and

TV. If there was any of STI found, they would be treated promptly. In addition to

the quarterly clinic visits, the study subjects also completed daily behavioral diaries
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to record the subject’s daily sexual activities to supplement the diagnostic test results

obtained at pre-determined clinical visits. Intuitively, STI behavioral diaries contain

important information about the potential times of infection. In the YMP study,

the participated young women were examined for the presence of infections only at

their follow-up visits. Thus, the true infection time is not exactly observed but is

only known to fall within some interval that is formed by the last visit time without

infection and the first visit time with infection. Hence the time to get first infection

of any STI has the interval-censored data structure. In our analysis, we are interested

in the time to the first infection of any STI since the enrollment under consideration.

Harezlak and Tu (2006) proposed a multiple imputation method to resample true

infection times of STI and estimated survival functions using auxiliary behavioral in-

formation provided by daily diaries. Condom non-use has long been recognized as a

risk factor for STI acquisition. Hua et al. (2014) treated the number of condom non-

use as panel count response and proposed a gamma frailty non-homogeneous Poisson

process model for analyzing such data set. A lot of research work has been done about

this study, for example, Tu et al. (2009) studied the time between first intercourse and

first sexually transmitted infection with CT, NG and TV and time between repeated

infections. Li et al. (2015) proposed a model-based sexually transmitted infection

screening algorithm to identify individuals who are at increased STI risk. For more

details about this study, please refer to Yu et al. (2009), Ghosh and Tu (2009) and

Ott et al. (2011). Our research interest is to study the number of condom non-use

over time and the time to a new STI as two correlated responses and to investigate

the effects of the available covariates on these two types of responses. It is meaningful

to study the two responses jointly because they share the same observational process.

Joint modeling of longitudinal and survival data has been popular in the past two

decades. Tsiatis and Davidian (2004) reviewed the development of joint modeling of
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longitudinal and time-to-event data. Wu et al. (2012) gave a brief overview of joint

models for longitudinal and survival data and commonly used methods. In addition

to joint modeling of longitudinal and survival data, Huang and Wang (2004) proposed

a joint model of recurrent event processes and failure time. Cowling et al. (2006) an-

alyzed event counts and survival times jointly using a maximum likelihood approach.

Huang and Liu (2007) introduced a joint model for gap times and survival times fitted

by an EM algorithm. Lee et al. (2011) performed a joint analysis of longitudinal and

interval-censored failure time data using imputation method. However, there is no

work about the joint modeling of panel count data and interval-censored data to the

best of our knowledge.

In this chapter, we borrowed the idea of using non-homogeneous Poisson process

model for panel count data (Yao et al., 2016) and the idea of using PH model for

analyzing interval-censored data (Wang et al., 2015) to build a joint model to analyze

the two types of data simultaneously. It is reasonable to study the two types of data

jointly because the panel count response and failure time share the same observation

process. The non-homogeneous Poisson process model and the PH model can be

extended and connected via a shared gamma frailty. It is assumed that the panel

count response and the failure time are conditionally independent given the frailty and

covariates. Such modeling is very intuitive and allows one to construct the observed

likelihood easily. A maximum likelihood approach is proposed for analyzing panel

count data and interval-censored data under the proposed joint model. Monotone

splines of Ramsay (1988) is adopted to model the baseline mean function and the

baseline conditional cumulative hazard function, and all the parameters are estimated

jointly through an efficient EM algorithm. The proposed joint analysis is more efficient

than the corresponding univariate analysis of panel count data and interval-censored

data separately. The parameter variances are estimated by using Louis’s method
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and numerical approximation of observed information matrix. Finally, the proposed

model and approach are applied to the STI data set.

The remainder of this chapter is organized as follows. The methodological details

of the proposed model and technique are provided in Section 4.2. These details include

the use of monotone splines for approximating the baseline mean function and the

baseline conditional cumulative hazard function, the EM algorithm derivation, and

parameter variance estimation method. The performance of the proposed approach

is illustrated in Section 4.3 through an extensive simulation study. In Section 4.4 the

proposed method is used to analyze data from sexually transmitted infections study.

Section 4.5 provides a summary discussion.

4.2 Proposed method

Data, model, and observed likelihood

Consider n subjects are involved in the study. Let Ni(t) denote the recurrent event

process that results in panel counts for subject i where i = 1, . . . , n. The exact times

of the recurrent events would be known if subject i is under continuous monitoring.

However, Ni(t) is only observed at discrete times {tij, j = 1, . . . , Ki}. Thus, only

the number of the recurrent events between adjacent observations times are avail-

able, leading to panel count data. Let xi denote a vector of p × 1 time-independent

covariates associated with panel count data and {tij, j = 1, . . . , Ki} denote the ac-

tual observation times for subject i, where Ki is the number of observations and

tiKi is the last observation time. This counting process {Ni(t)} is observed only at

tij’s. We assume that the counting process is conditionally independent of the ob-

servational process given the covariates. Conditional on latent variable φi, Ni(t) is a

non-homogeneous Poisson process with mean function µ0(t) exp(x′iβ)φi, where µ0(t)
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is an unspecified nondecreasing baseline mean function with µ0(0) = 0. This model

implies

Ni(t)|φi ∼ P{µ0(t) exp(x′iβ)φi},

for any t > 0, where P(a) denotes the Poisson distribution with mean a, and β is a

p× 1 vector of regression parameters.

For the same subject i, let Ti denote the failure time of interest. Let x̃i denote a

q× 1 vector of time-independent covariates associated with the time-to-event process

for subject i. We assume that conditional on the covariates, the failure time is inde-

pendent of the observational process. Conditional on the same frailty φi used in the

non-homogeneous Poisson process model, the conditional hazard function is specified

as

λ(t|x̃i, φi) = φiλ0(t) exp(x̃′iα),

where λ0(t) is the unspecified and non-negative conditional baseline hazard function

and α is a vector of q×1 regression coefficients. The φi’s are assumed to be indepen-

dently and identically distributed from Ga(ν, ν) with mean 1 and variance ν−1. The

mean constraint made on gamma frailty is for avoiding the non-identifiability issue

because µ0(t) and Λ0(t) are both unspecified. In addition, we assume that conditional

on frailty and covariates, the panel count response is independent of the failure time.

Under the gamma frailty PH model the conditional CDF of the failure time is given

by F (t|x̃i, φi) = 1 − exp{−Λ0(t) exp(x̃′iα)φi}, where Λ0(t) =
∫ t

0 λ0(s)ds is the con-

ditional baseline cumulative hazard function. The resulting marginal model for the

failure time T is referred to as the generalized odds-rate hazards (GORH) models in

the literature with the following form for its survival function,

S(t|x) = {1 + ν−1Λ0(t) exp(x̃iα)}−ν .
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Zhou et al. (2016) studied the GORH model for interval-censored data. The observed

data is denoted by D = {(tij, (Li, Ri], Ni(tij),xi, x̃i), j = 1, . . . , Ki, i = 1, . . . , n},

where Li and Ri denote the left and right bounds of the observed interval for the ith

subject, respectively. Note that Li = 0(Ri =∞) indicates that the ith subject’s fail-

ure time is left- (right-) censored. Define Zij = Ni(tij)−Ni(tij−1) which is the number

of events occurred in the time interval (tij−1, tij] for all i’s and j’s. By the independent

increment property of Poisson model Zij|φi ∼ P [{µ0(tij)−µ0(tij−1)} exp(x′iβ)φi]. Un-

der the conditional independence assumptions, the observed likelihood contributed by

subject i is given by

∫ ∞
0

P (Li < Ti < Ri|φi)


Ki∏
j=1

P (Zij|φi)

 g(φi)dφi,

where

P (Li < Ti < Ri|φi) ∝ F (Ri|x̃i, φi)δi1{F (Ri|x̃i, φi)− F (Li|x̃i, φi)}δi2

×{1− F (Li|x̃i, φi)}δi3 ,

P (Zij|φi) = exp[−{µ0(tij)− µ0(tij−1)} exp(x′iβ)φi]

× [{µ0(tij)− µ0(tij−1)} exp(x′iβ)φi]Zij
Zij!

,

g(φi) = νν

Γ(ν)φ
ν−1
i exp(−νφi).

Note that δi1, δi2 and δi3 are indicator functions that distinguish the left censoring, the

interval censoring and the right censoring for the status of failure time Ti, respectively.

We have δi1+δi2+δi3 = 1. The observed likelihood Lobs for n subjects can be obtained
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in the following closed form by integrating out the latent variable φi,

Lobs =
n∏
i=1

∫ ∞
0

P (Li < Ti < Ri|φi)
Ki∏
j=1

P (Zij|φi)g(φi)dφi

=
n∏
i=1

ννΓ(ν + Zi·)
Γ(ν) ×

Ki∏
j=1

[{µ0(tij)− µ0(tij−1)} exp(x′iβ)]Zij
Zij!

×

 δi1
{ν + µ0(tiKi) exp(x′iβ)}ν+Zi·

+ δi2 + δi3
{ν + Λ0(Li) exp(x̃′iα) + µ0(tiKi) exp(x′iβ)}ν+Zi·

− δi1 + δi2
{ν + Λ0(Ri) exp(x̃′iα) + µ0(tiKi) exp(x′iβ)}ν+Zi·

,

where Zi· = ∑Ki
j=1 Zij is the cumulative panel counts for subject i. The unknown pa-

rameters in the observed likelihood include the regression parameters β and α, frailty

variance parameter ν, the baseline mean function µ0(·), and the baseline conditional

cumulative hazard function Λ0(·).

Modeling µ(·) and Λ(·) with monotone splines

Both the baseline mean function µ0(t) and the baseline conditional cumulative hazard

function Λ0(t) are unspecified nondecreasing functions in this project. Following

the previous chapters, monotone splines (Ramsay, 1988) is adopted to model them.

Specifically, µ0(t) can be expressed in the following form,

µ0(t) =
L∑
l=1

γlbl(t),

and Λ0(t) can be written in the following manner,

Λ0(t) =
M∑
m=1

γ̃mIm(t),

where bl(t)’s and Im(t)’s are integrated basis functions which can take values between

0 and 1, and γl’s and γ̃m’s are non-negative spline coefficients. To determine the
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integrated basis functions, one needs to specify the knots and the degree. Knots are

a sequence of increasing time points. The placement of knots determines the over-

all modeling flexibility, with more knots in a region for greater modeling flexibility

in that region. The degree controls the overall smoothness of the basis functions.

Degree equal to 1, 2 and 3 corresponds to linear, quadratic, and cubic basis func-

tions, respectively. Once the knots and degree are specified, the basis functions are

determined. The number of basis functions is the number of interior knots plus the

degree.

Data augmentation for EM algorithm

The EM algorithm is adopted to find the maximum likelihood estimate of the un-

known parameters θ = (β′,α′,γ ′, γ̃ ′, ν)′ where γ = (γ1, . . . , γL)′ and γ̃ = (γ̃1, . . . , γ̃M)′.

The EM algorithm can be constructed based on introducing some latent variables

to supplement the observed data. The discussion of two-stage data augmentation

is formulated based on the two proposed models, non-homogeneous gamma frailty

Poisson process model and gamma frailty PH model. This idea has been proposed in

(Lin et al., 2015).

Consider a gamma frailty non-homogeneous Poisson process Ñ(t) with cumulative

intensity function Λ0(t) exp(x̃′α)φ. The process Ñ(t) is constructed for monitoring

the occurrence of failure time T which can be considered as the time of the first

jump in the process, i.e., T = inf{t : Ñ(t) > 0|φ}. To show that T follows the

gamma frailty PH model with a cumulative distribution function F (t|x̃, φ) = 1 −

exp{−Λ0(t) exp(x̃′α)φ}, one should note that P (T > t|φ) = P{Ñ(t) = 0|φ} =

exp{−Λ0(t) exp(x̃′α)φ} = 1−F (t|x̃, φ), for any t, because Ñ(t) is a Poisson random

variable with mean parameter Λ0(t) exp(x̃′α)φ conditional on φ.

Let Ñi(t) denote the latent Poisson process for subject i, which has conditional
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cumulative intensity function Λ0(t) exp(x̃′iα)φi, for i = 1, . . . , n. For subject i de-

fine Wi1 = Ñi(t̃i1), where t̃i1 = Ri1(δi1=1) + Li1(δi1=0). When δi1 = 0 define Wi2 =

Ñi(t̃i2)− Ñi(t̃i1), where t̃i2 = Ri1(δi2=1) +Li1(δi3=1). Wi1 and Wi2 are Poisson random

variables with mean parameters Λ0(t̃i1) exp(x̃′iα)φi and {Λ0(t̃i2)−Λ0(t̃i1)} exp(x̃′iα)φi,

respectively. Note that Wi1 and Wi2 are independent conditional on φi when δi1 = 0.

Under this construction if Ti is left-censored then Li = 0 and t̃i1 = Ri, so

P (Ti ≤ t̃i1|φi) = P{Ñi(t̃i1) > 0|φi} = P (Wi1 > 0|φi) = 1 − P (Wi1 = 0|φi) =

1− exp{−Λ0(Ri) exp(x̃′iα)φi} = F (Ri|x̃i, φi). If Ti is interval-censored, then t̃i1 = Li

and t̃i2 = Ri,

P (t̃i1 < Ti < t̃i2|φi) = P{Ñi(t̃i1) = 0, Ñi(t̃i2) > 0|φi}

= P (Wi1 = 0,Wi2 > 0|φi)

= exp{−Λ0(t̃i1) exp(x̃′iα)φi}

×[1− exp{−{Λ0(t̃i2)− Λ0(t̃i1)} exp(x̃′iα)φi}]

= exp{−Λ0(t̃i1) exp(x̃′iα)φi} − exp{−Λ0(t̃i2) exp(x̃′iα)φi}

= exp{−Λ0(Li) exp(x̃′iα)φi} − exp{−Λ0(Ri) exp(x̃′iα)φi}

= F (Ri|x̃i, φi)− F (Li|x̃i, φi).

If Ti is right-censored, then t̃i1 = Li and t̃i2 = Li,

P (Ti > t̃i2|φi) = P{Ñi(t̃i2) = 0|φi}

= P (Wi1 = 0,Wi2 = 0|φi)

= exp{−Λ0(t̃i1) exp(x̃′iα)φi} exp{−{Λ0(t̃i2)− Λ0(t̃i1)} exp(x̃′iα)φi}

= exp{−Λ0(t̃i2) exp(x̃′iα)φi}

= exp{−Λ0(Li) exp(x̃′iα)φi}

= 1− F (Li|x̃i, φi).
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Based on the latent variables Wi1’s, Wi2’s and φi’s, the augmented likelihood can

be expressed as

Laug(θ) =
n∏
i=1

g(φi)PWi1(Wi1|φi)PWi2(Wi2|φi)δi2+δi3{δi11(Wi1>0)

+ δi21(Wi1=0,Wi2>0) + δi31(Wi1=0,Wi2=0)} ×
Ki∏
j=1
PZij(Zij|φi),

where PA(·) denotes the Poisson probability mass function for random variable A.

One can obtain the observed likelihood by integrating the Wi1’s, Wi2’s and φi’s out

of the above augmented likelihood Laug(θ).

To take advantage of monotone spline representation of µ0(t) and Λ0(t), we con-

sider a second stage of data augmentation. For each subject i, each of Wi1, Wi2 and

Zij can be decomposed as a sum of conditionally independent Poisson random vari-

ables, Wi1 = ∑M
m=1Wim1,Wi2 = ∑M

m=1Wim2 and Zij = ∑L
l=1 Zijl, where Wim1,Wim2

and Zijl are Poisson random variables having mean parameters γ̃mIm(t̃i1) exp(x̃′iα)φi,

γ̃m{Im(t̃i2) − Im(t̃i1)} exp(x̃′iα)φi and γl{bl(tij) − bl(tij−1)} exp(x′iβ)φi, respectively.

Note that t̃i1 and t̃i2 are different time points. The augmented likelihood associated

with the second stage of data augmentation is given by

Lc(θ) =
n∏
i=1

g(φi)


Ki∏
j=1

L∏
l=1
PZijl(Zijl|φi)


{

M∏
m=1
PWim1(Wim1|φi)PWim2(Wim2|φi)δi2+δi3

}
.

The augmented data likelihood can be regarded as the complete data likelihood with

all the Wi1’s, Wi2’s, Wim1’s, Wim2’s and Zijl’s being considered as missing data. One

can obtain the observed likelihood by integrating out all the latent variables from the

complete likelihood.

The EM algorithm

In the EM algorithm each iteration involves two steps, the expectation step and the

maximization step. We start the derivation of the EM algorithm by considering the
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expectation of the logarithm of the complete data likelihood with respect to the latent

variables (Wim1’s, Wim2’s, Zijl’s and φi’s) conditional on the observed data D and

the current parameter θ(d) = (β(d)′ ,α(d)′ ,γ(d)′ , γ̃(d)′ , ν)′. The logarithm of complete

likelihood is as follows,

logLc(θ) =
n∑
i=1

log g(φi) +
n∑
i=1

Ki∑
j=1

L∑
l=1

logP(Zijl|φi)

+
n∑
i=1

M∑
m=1

logP(Wim1|φi) +
n∑
i=1

M∑
m=1

(δi2 + δi3) logP(Wim2|φi).

It yields the Q function Q(θ,θ(d)) = E{logLc(θ)|D,θ(d)}, which can be expressed as

Q(θ,θ(d)) = H1(β,γ,θ(d)) +H2(α, γ̃,θ(d)) +H3(ν,θ(d)) +H4(θ(d)), where

H1(β,θ(d)) =
n∑
i=1

Zi·x
′
iβ −

n∑
i=1

µ0(tiKi) exp(x′iβ)E(φi|D,θ(d)),

+
n∑
i=1

Ki∑
j=1

L∑
l=1

E(Zijl|D,θ(d)) log(γl)

H2(α,θ(d)) =
n∑
i=1

M∑
m=1

[
{E(Wim1|D,θ(d)) + (δi2 + δi3)E(Wim2|D,θ(d))}{log(γ̃m) + x̃′iα}

−γ̃m exp(x̃′iα)E(φi|D,θ(d)){(δi1 + δi2)Im(Ri) + δi3Im(Li)}
]

+ L(θ(d)),

H3(ν,θ(d)) = ν
n∑
i=1

E{log(φi)|D,θ(d)} − ν
n∑
i=1

E(φi|D) + nν log(ν)− n log Γ(ν),

where H4(θ(d)) does not involve the unknown parameter θ. All the conditional ex-

pectations in the Q function have closed forms and evaluated at parameter values

of the current step d. To make the conditional expectations convenient to present,

some notations are introduced. Define ai = ν + Zi·, bi = ν + µ0(tiKi) exp(x′iβ),

ci = Λ0(Ri) exp(x̃′iα) and di = Λ0(Li) exp(x̃′iα) where i = 1, . . . , n, then the all

conditional expectations involved in the algorithm can be expressed in the follows,
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E(φi|D,θ(d)) = ai
bi + ci

1− (1 + ci/bi)ai+1

1− (1 + ci/bi)ai
δi1

+ ai
bi + ci

1− ( bi+ci
bi+di )

ai+1

1− ( bi+ci
bi+di )

ai
δi2 + ai

bi + di
δi3,

E(Zijl|D,θ(d)) = γl{bl(tij)− bl(tij−1)}
µ0(tij)− µ0(tij−1) Zij,

E{log(φi)|D,θ(d)} = ψ(ai)−
(bi + ci)ai log(bi)− baii log(bi + ci)

(bi + ci)ai − baii
δi1

−(bi + ci)ai log(bi + di)− (bi + di)ai log(bi + ci)
(bi + ci)ai − (bi + di)ai

δi2

−{log(bi + di)}δi3,

E(Wim1|D,θ(d)) = {Λ0(Ri)}−1γ̃mIm(Ri)E(Wi1|D,θ(d)),

E(Wim2|D,θ(d)) = {Λ0(Ri)− Λ0(Li)}−1γ̃m{Im(Ri)− Im(Li)}E(Wi2|D,θ(d)),

where ψ(·) = Γ′(·)/Γ(·) is the digamma function. The expected values of Wi1 and

Wi2 given D and θ(d) can be expressed as

E(Wi1|D,θ(d)) = aici
bi

{
1−

(
bi

bi + ci

)ai}−1

δi1,

E(Wi2|D,θ(d)) = ai(ci − di)
bi + di

{
1−

(
bi + di
bi + ci

)ai}−1

δi2.
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In the M-step one needs to find θ(d+1) = arg maxθ Q(θ,θ(d)). Consider the partial

derivatives of Q(θ,θ(d)) with respect to θ, which are given by

∂Q

∂β
=

n∑
i=1

[Zi· − µ0(tiKi) exp(x′iβ)E(φi|D)]xi,

∂Q

∂α
=

n∑
i=1

[
{E(Wi1|D) + (δi2 + δi3)E(Wi2|D)}

−{(δi1 + δi2)Λ0(Ri) + δi3Λ0(Li)} exp(x̃′iα)E(φi|D)
]
xi,

∂Q

∂γl
= −

n∑
i=1

bl(tiKi) exp(x′iβ)E(φi|D) +
n∑
i=1

Ki∑
j=1

E(Zijl|D)
γl

,

∂Q

∂γ̃m
=

n∑
i=1

[
γ̃−1
m {E(Wim1|D) + δi2E(Wim2|D)}

−{(δi1 + δi2)Im(Ri) + δi3Im(Li)} exp(x̃′iα)E(φi|D)],
∂Q

∂ν
=

n∑
i=1

E{log(φi)|D)} −
n∑
i=1

E(φi|D) + n log(ν) + n− nψ(ν).

Note that we do not need to calculate ∂Q/∂ν, since it does not involve any other

parameters, so we can just maximize H3(ν,θ(d)) directly in the M-step. Setting

∂Q/∂γl = 0, we find that the solution γl is a function of β, and the relation is as

follows,

γl(β) =
∑n
i=1

∑Ki
j=1 E(Zijl|D)∑n

i=1 bl(tiKi) exp(x′iβ)E(φi|D) .

Similarly, setting ∂Q/∂γ̃m = 0 leads to a closed form of the solution γ̃m as a function

of α, i.e.

γ̃m(α) =
∑n
i=1{E(Wim1|D) + δi2E(Wim2|D)}∑n

i=1{(δi1 + δi2)Im(Ri) + δi3Im(Li)} exp(x̃′iα)E(φi|D) .

Our EM algorithm is summarized as follows. First set d = 0 and initialize θ(d) =

(β(d)′ ,α(d)′ ,γ(d)′ , γ̃(d)′ , ν(d))′. Then repeat the following five steps until convergence.

1. Obtain β(d+1) by solving the following system of p equations,

n∑
i=1

[
Zi· −

L∑
l=1

γ
∗(d)
l (β)bl(tiKi) exp(x′iβ)E(φi|D,θ(d))

]
xi = 0,
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where

γ
∗(d)
l (β) =

∑n
i=1

∑Ki
j=1 E(Zijl|D,θ(d))∑n

i=1 bl(tiKi) exp(x′iβ)E(φi|D,θ(d))
.

2. Update γ(d+1)
l = γ

∗(d)
l (β(d+1)), for l = 1, . . . , L.

3. Obtain α(d+1) by solving the following system of q equations
n∑
i=1
{E(Wi1|D,θ(d)) + δi2E(Wi2|D,θ(d))}x̃i

=
n∑
i=1

M∑
m=1
{(δi1 + δi2)Im(Ri) + δi3Im(Li)}γ̃∗(d)

m (α) exp(x̃′iα)E(φi|D,θ(d))x̃i,

where

γ̃∗(d)
m =

∑n
i=1{E(Wim1|D,θ(d)) + δi2E(Wim2|D,θ(d))}∑n

i=1{(δi1 + δi2)Im(Ri) + δi3Im(Li)} exp(x̃′iα)E(φi|D,θ(d))
.

4. Update γ̃(d+1)
m = γ̃∗(d)

m (α(d+1)), for m = 1, . . . ,M .

5. Calculate ν(d+1) by maximizing H3(ν) directly.

Solving the system of equations in the step 1 and step 3 of the algorithm can be

accomplished using standard root finding routines, available in practically all existing

statistical software packages. The second and fourth step of the algorithm is a simple

updating of γ(d) and γ̃(d) in closed form. The step 5 maximizes an univariate function

which is flat. Thus, the implementation of the EM algorithm is straightforward and

computationally inexpensive.

Variance estimation

The proposed EM algorithm produces the point estimate θ̂ = (β̂′, α̂′, γ̂ ′, η̂′, ν̂)′ at

the convergence. We can obtain the variance estimate of θ̂ by taking inverse of the

observed information matrix I(θ̂), i.e.,

var(θ̂) =
{
−∂

2logLobs(θ)
∂θ∂θ′

∣∣∣∣∣
θ=θ̂

}−1

.

82



The observed information matrix can be obtained by using the missing information

principle (Louis, 1982),

−∂
2 logLobs(θ)
∂θ∂θ′

= −∂
2Q(θ, θ̂)
∂θ∂θ′

− var
{
∂ logLc(θ)

∂θ

}
.

All the quantities involved in ∂2Q(θ, θ̂)/∂θ∂θ′ and var{∂ logLc(θ)/∂θ} have closed-

form expressions and can be evaluated easily from the output of our EM algorithm.

The details of the formula for these quantities are presented in the Appendix C.

These expressions make the variance easy to compute, which is another appealing

characteristic of the proposed approach.

An alternative way to obtain I−1(θ̂) is that the observed information matrix can

be numerically approximated by

I(s, l) ≈ −h−2
n

[
log{Lobs(θ̂ + hn~es + hn~el)} − log{Lobs(θ̂ + hn~es)}

− log{Lobs(θ̂ + hn~el)}+ log{Lobs(θ̂)}
]
,

where ~es is a binary vector whose sth element is 1 with all others being 0 and hn is

a small tuning constant. In particular, as the tuning parameter hn goes to zero (i.e.

hn → 0) the approximation is expected to improve, although numerical instability

can be encountered if hn is taken too small. In general, hn should be selected to

be of order n−1/2, and we have found that selecting a decreasing sequence of hn and

approximating I(θ̂) at each allows one to establish a range of values for which the

tuning parameter performs well; i.e., a range of hn for which the approximation of

I(θ̂) is stable. Proceeding in this fashion provides a straightforward, reliable, and

computationally efficient method of estimating the variance-covariance matrix of θ̂.

In this project, we adopt this numerical approximation of observed information matrix

to obtain all parameter variances.
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4.3 Simulation study

We evaluate the performance of our proposed model and approach through simulation.

We generated data from different joint models and analyzed them by applying the

proposed approach. For comparison purpose, we performed two separate analysis

under the gamma frailty non-homogeneous Poisson process (GFNPMS) model for

panel count data and the GORH model for failure time data by using the same

simulated data.

To generate panel count data, the number of observation times Ki was generated

from Poisson(6)+1 to ensure that there was at least one observation time for subject

i, and the observation gap times were independently sampled from an exponential

distribution with a rate parameter 2. The counting process associated with subject i

was generated from the following model,

Ni(tij)−Ni(tij−1) ∼ P [{µ0(tij)− µ0(tij−1)} exp(xi1β1 + xi2β2)φi],

where the baseline mean function µ0(t) = log(1 + t) + t2, xi1 ∼ N (0, 0.52), and

xi2 ∼ Bernoulli(0.5). The failure time Ti was generated from the following gamma

frailty PH model,

F (t|x̃i, φi) = 1− exp{−Λ0(t) exp(xi1α1 + xi2α2)φi},

where the baseline conditional cumulative hazard function Λ0(t) = log(1 + t) + t1/2.

Note that non-homogeneous Poisson model and gamma frailty PH model share the

same covariates, that is, x̃i1 = xi1 and x̃i2 = xi2. Each Ti was generated by solv-

ing F (t|x̃i, φi) = ui numerically, where ui ∼ U(0,1). For interval-censored data, the

number of observation times for each subject was generated according to 1 plus a

Poisson random variable having mean parameter 6. The gap times between adjacent

observations were sampled according to an exponential distribution with rate 2. Each
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of the regression parameters took on values 1 or -1, with β1 = α1 and β2 = α2. The

gamma frailty φi’s were generated from Ga(ν, ν) with ν taking 0.5, 1 or 4. There

are 12 different parameter configurations. Five hundred data sets were generated,

and the size of each sample is 200. The average right-censoring rate varied from 8%

to 47% across the 12 parameter configurations. The tolerance value ε for claiming

convergence was taken to be 10−4 for all simulations. To fit the proposed model, the

degree of the monotone splines was specified to be 3 and a knot set consisting of 6

equally spaced knots. The initial values for the EM algorithm were specified to be

θ(0) = (β(0)′ ,α(0)′ ,γ(0)′ , γ̃(0)′ , ν(0))′ = (0.5′2,0.5′2,0.1′7,0.1′7, 0.01)′. To approximate

the observed information matrix, the tuning parameter hn was taken to be 0.001. We

tried some other hn values such as 0.1 and 0.01 which provide us similar and stable

results.

Table 4.1 presents the relative bias (RBias) of parameter estimates, the sample

standard deviations (SSD) of the 500 point estimates, the estimated standard errors

(ESE) obtained by the numerical approximation, and the 95% coverage probability

(CP95) for each parameter configuration.

As seen in Table 4.1, the proposed approach performs well in all parameter config-

urations. The relative biases are close to zero, indicating that our proposed estimators

are unbiased; the SSDs and ESEs are close, indicating that the variance estimates us-

ing numerical approximation are accurate; and the CP95s are close to 0.95, indicating

that the asymptotical normality is valid. As the value of frailty variance parameter

increases, the estimated standard errors of regression parameters decreases. Because

when ν increases, the frailty variance decreases, and this leads to less variation in

the observed data, which further leads to the decreased variances of the regression

estimates.

To see the performance of the baseline mean function estimation, we consider
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adjusted mean squared error (AMSE) at each observation time t,

AMSE{µ̂0(t)} = 1
500

500∑
j=1

{µ̂(j)
0 (t)− µ0(t)}2

{µ0(t)}2 ,

where µ̂(j)
0 is the estimate of µ0 from the jth data set, j = 1, . . . , 500. Here AMSE is

used to adjust the potentially large scale of µ0(t). All the AMSEs are small values,

indicating that the proposed approach performs well in terms of baseline mean func-

tion estimation. To see the performance of the marginal survival function estimation,

we consider the mean squared error at observation time t,

MSE{Ŝ(t|x)} = 1
500

500∑
j=1
{Ŝ(j)(t|x)− S(t|x)}2,

where S(t|x) is the true survival function and is known, and Ŝ(j)(t|x) is the estimate

of S(t|x) from our approach for the jth data set, j = 1, . . . , 500. The global mean

(maximum) squared error of Ŝ(t|x), denoted by meanMSE (maxMSE), is taken as

the mean (maximum) of the local MSEs of S(t|x) over the set of time points. The

smaller these global MSEs are, the better estimation for the survival functions. Table

4.2 also presents the global mean and maximum MSEs of the estimated survival

functions with different covariate combinations, x̃ = (0, 0), (0, 1) and (1, 0). From

Table 4.2, all the global mean and maximum MSEs of survival function estimates are

very small for all parameter configurations, which suggests that our method provides

accurate estimates of the survival functions.

In addition, we considered a simulation with larger sample size to see the perfor-

mance of the proposed approach, when the sample size n was increased from 200 to

400. The regression parameters (β1, β2) = (α1, α2) = (1,−1) and ν took the values of

0.5, 1 and 4.

Table 4.3 presented the results when the sample size n = 400. For each parameter

configuration, the relative bias of all parameter estimates decrease and the estimated
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Table 4.1 Simulation results from the joint analysis. Empirical relative bias
(RBias) and standard deviation (SSD) of the 500 estimates of θ, the average of the
estimated standard errors (ESE), and the empirical coverage probabilities associated
with 95% Wald confidence intervals (CP95).

ν = 0.5 ν = 1 ν = 4
Parameter Est RBias SSD ESE CP95 RBias SSD ESE CP95 RBias SSD ESE CP95
β1 = 1 β̂1 0.004 0.216 0.210 0.944 0.006 0.158 0.150 0.938 0.001 0.081 0.082 0.952
β2 = 1 β̂2 0.001 0.215 0.207 0.946 0.006 0.151 0.148 0.942 0.000 0.079 0.081 0.946
α1 = 1 α̂1 0.052 0.328 0.312 0.934 0.074 0.270 0.259 0.938 0.090 0.221 0.221 0.944
α2 = 1 α̂2 0.038 0.343 0.305 0.914 0.053 0.263 0.251 0.946 0.079 0.226 0.210 0.920

ν̂ 0.012 0.053 0.051 0.948 0.025 0.110 0.106 0.938 0.026 0.528 0.512 0.954
β1 = 1 β̂1 0.000 0.212 0.219 0.964 0.001 0.170 0.158 0.930 0.006 0.090 0.093 0.960
β2 = −1 β̂2 0.015 0.214 0.214 0.942 0.005 0.168 0.157 0.940 0.004 0.093 0.092 0.958
α1 = 1 α̂1 0.041 0.334 0.317 0.938 0.063 0.276 0.259 0.922 0.054 0.224 0.209 0.934
α2 = −1 α̂2 0.062 0.346 0.308 0.920 0.025 0.273 0.251 0.938 0.039 0.218 0.200 0.926

ν̂ 0.016 0.058 0.057 0.956 0.026 0.133 0.120 0.944 0.035 0.657 0.641 0.956
β1 = −1 β̂1 0.023 0.217 0.211 0.938 0.010 0.149 0.151 0.944 0.000 0.083 0.082 0.940
β2 = 1 β̂2 0.001 0.207 0.207 0.948 0.001 0.143 0.149 0.938 0.006 0.082 0.081 0.944
α1 = −1 α̂1 0.095 0.332 0.314 0.920 0.039 0.275 0.258 0.950 0.089 0.240 0.221 0.922
α2 = 1 α̂2 0.054 0.322 0.304 0.932 0.069 0.277 0.251 0.922 0.068 0.226 0.210 0.916

ν̂ 0.014 0.054 0.051 0.934 0.021 0.109 0.105 0.944 0.028 0.506 0.513 0.964
β1 = −1 β̂1 0.010 0.217 0.218 0.954 0.004 0.158 0.159 0.948 0.004 0.087 0.093 0.956
β1 = −1 β̂2 0.001 0.220 0.214 0.934 0.005 0.157 0.157 0.952 0.005 0.089 0.092 0.954
β1 = −1 α̂1 0.029 0.345 0.317 0.948 0.050 0.285 0.260 0.932 0.050 0.223 0.210 0.936
β1 = −1 α̂2 0.039 0.312 0.308 0.946 0.063 0.253 0.252 0.932 0.035 0.199 0.199 0.946

ν̂ 0.012 0.055 0.057 0.950 0.021 0.121 0.120 0.956 0.040 0.653 0.644 0.952

Table 4.2 The global mean and maximum AMSEs (×10−2) of the estimates of µ̂0 if
the baseline mean function µ0; the global mean and maximum MSEs (×10−3) of the
estimates of Ŝij of the survival function Sij. The three (i, j) combinations
(0, 0), (0, 1) and (1, 0) correspond to three different covariate combinations
(x̃1, x̃2) = (0, 0), (0, 1) and (1, 0), respectively.

meanAMSE maxAMSE meanMSE maxMSE
ν (β1, β2, α1, α2) µ0 µ0 S00 S01 S10 S00 S01 S10

0.5 (1,1,1,1) 2.6 3.5 2.5 1.5 2.8 5.0 2.5 6.0
(1,-1,1,-1) 2.3 4.5 2.3 3.1 2.9 4.1 7.3 7.1
(-1,1,-1,1) 2.2 3.0 2.6 1.6 6.9 5.1 2.6 12.3
(-1,-1,-1,-1) 2.5 5.1 2.3 2.8 6.8 3.9 7.1 10.8

1 (1,1,1,1) 1.3 2.3 2.2 0.8 1.4 3.6 2.8 6.5
(1,-1,1,-1) 1.5 3.6 1.7 3.3 1.4 3.7 6.7 7.0
(-1,1,-1,1) 1.1 1.9 1.9 1.0 7.6 3.1 2.8 12.7
(-1,-1,-1,-1) 1.3 3.8 1.9 3.3 7.2 3.5 8.2 11.7

4 (1,1,1,1) 0.4 1.4 1.1 0.0 0.0 3.1 2.7 6.0
(1,-1,1,-1) 0.6 3.4 1.0 3.8 0.0 4.2 8.1 7.3
(-1,1,-1,1) 0.4 1.4 1.2 0.0 10.3 3.2 2.6 16.7
(-1,-1,-1,-1) 0.6 3.2 1.0 3.3 7.1 4.1 6.9 10.3

standard errors of all parameter estimates decrease compared to the results from the

simulation study when the sample size n = 200.
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Table 4.3 Simulation results from joint analysis with larger sample size n = 400.
Empirical bias (Bias) and standard deviation (SSD) of the 500 estimates of θ, the
average of the estimated standard errors (ESE), and the empirical coverage
probabilities associated with 95% Wald confidence intervals (CP95). The regression
parameter values are (β1, β2, α1, α2) = (1,−1, 1,−1). The frailty variance parameter
ν takes the value of 0.5, 1 and 4.

ν = 0.5 ν = 1 ν = 4
Est RBias SSD ESE CP95 RBias SSD ESE CP95 RBias SSD ESE CP95
β̂1 0.003 0.157 0.152 0.948 0.011 0.113 0.111 0.944 0.001 0.063 0.065 0.942
β̂2 0.006 0.159 0.151 0.942 0.005 0.113 0.111 0.954 0.005 0.064 0.065 0.954
α̂1 0.038 0.244 0.219 0.930 0.035 0.193 0.181 0.934 0.029 0.157 0.146 0.926
α̂2 0.030 0.236 0.216 0.924 0.019 0.172 0.176 0.946 0.035 0.140 0.140 0.938
ν̂ 0.008 0.040 0.040 0.964 0.015 0.076 0.084 0.968 0.025 0.463 0.443 0.938

We applied the GFNPMS model (Yao et al., 2016) to the simulated panel count

data through using an R package PCDSpline and GORH model (Zhou et al., 2016) to

the interval-censored data through using an R package ICGOR, respectively. Note that

the frailty variance parameter ν in the GORH model cannot be estimated. We can

run different GORH models and select the “best” GORH model according to some

model selection criteria. Table 4.4 presents that, under the GFNPMS model, the

accuracy of regression parameter are comparable with those under the joint analysis.

However, for the frailty variance parameter estimate ν̂, GFNPMS model provides

larger estimated standard errors. That means joint analysis is more efficient than

GFNPMS model for using the panel count data alone. For the regression parameter

estimates under the GORH model, both the relative bias and the estimated standard

errors of all parameters are larger than those under the joint analysis. The CP95s

from the GORH model are smaller than those from the joint analysis. These results

indicate that joint analysis is more efficient than GORH model analysis.

4.4 Data application

After removing women who have no follow-up observations, there are 352 participants

included in the data analysis. The panel count response is the number of condom
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Table 4.4 Simulation results from the joint analysis, GFNPMS model and GORH
model where the data were generated from the joint models. Empirical bias (Bias)
and standard deviation (SSD) of the 500 estimates of θ, the average of the
estimated standard errors (ESE), and the empirical coverage probabilities associated
with 95% Wald confidence intervals (CP95).

Joint analysis GFNPMS model GORH model
RBias SSD ESE CP95 RBias SSD ESE CP95 RBias SSD ESE CP95

β1 = −1 0.010 0.217 0.218 0.954 0.008 0.217 0.219 0.950 – – – –
β2 = −1 0.001 0.220 0.214 0.934 0.001 0.223 0.214 0.932 – – – –
α1 = −1 0.029 0.345 0.317 0.948 – – – – 0.040 0.383 0.370 0.936
α2 = −1 0.039 0.312 0.308 0.946 – – – – 0.050 0.346 0.344 0.922
ν = 0.5 0.012 0.055 0.057 0.950 0.024 0.058 0.060 0.950 – – – –
β1 = −1 0.004 0.158 0.159 0.948 0.006 0.158 0.160 0.950 – – – –
β2 = −1 0.005 0.157 0.157 0.952 0.006 0.158 0.157 0.950 – – – –
α1 = −1 0.050 0.285 0.260 0.932 – – – – 0.050 0.317 0.289 0.926
α2 = −1 0.063 0.253 0.252 0.932 – – – – 0.080 0.281 0.272 0.934
ν = 1 0.021 0.121 0.120 0.956 0.031 0.129 0.126 0.964 – – – –
β1 = −1 0.004 0.087 0.093 0.956 0.003 0.088 0.093 0.952 – – – –
β2 = −1 0.005 0.089 0.092 0.954 0.006 0.090 0.092 0.954 – – – –
α1 = −1 0.050 0.223 0.210 0.936 – – – – 0.049 0.227 0.219 0.938
α2 = −1 0.035 0.199 0.199 0.946 – – – – 0.037 0.205 0.205 0.938
ν = 4 0.040 0.653 0.644 0.952 0.052 0.679 0.675 0.952 – – – –

non-use, and the failure time is the time to get first infection of any STI since the

enrollment. Of the 352 subjects women, 47 (13.4%) have left-censored failure times,

196 (55.7%) have interval-censored failure times, 109 (30.9%) have right-censored

failure times. The covariates of interest are the baseline age (x1, x̃1), the baseline STI

status (x2, x̃2), the age at first sex (x3, x̃3) and race (x4, x̃4). Specifically, the race

has two categories, African American (88.3%), others (11.7%). Table 4.5 presents

the STI data covariates information. The African American is the baseline race. To

model µ0 and Λ0, we took the degree to be 3 and the number of interior knots is 6.

The convergence tolerance is 10−4.

Table 4.6 presents the covariate effects (Point), estimated standard errors (ESE)

and P -values from the joint modeling, the GFNPMS model and the GORH model,

respectively. The baseline age has a positive significant effect on the number of

condom non-use, and the first sex age has a negative significant effect on the number

of condom non-use. The frailty variance parameter estimate ν̂ is significant, at the
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Table 4.5 Demographic and behavioral characteristics of the Young Women’s
Project participants.

Covariates Description Code

Baseline age Mean (SD)= 15.82(1.11)
Max (Min)= 18(14)

Baseline STI status No (64.8%) 0
Yes (35.2%) 1

First sex age Mean (SD)=13.98(1.75)
Max (Min)=20.3(10)

Race African American(88.3%) 0
Others (11.7%) 1

level of significance 0.05, which means there exists an association between the number

of condom non-use and the time to get first STI since the enrollment. The covariate

effects under the GFNPMS model and GORH model are comparable with those under

the joint model. However, there is some difference in the estimation of covariate effects

from the joint analysis and the GORH model. We will do more investigation on this

issue. In the future, we will run more models to choose the “best” one via comparing

the AIC or BIC values.

Table 4.6 Sexually transmitted infections data analysis results under the joint
model, GFNPMS model and GORH model. The frailty variance parameter ρ in the
GORH model used the ν̂−1 from the joint analysis.

Joint analysis GFNPMS model GORH model
Parameter Point ESE P -value Point ESE P -value Point ESE P -value

β1 0.537 0.043 < 0.001 0.540 0.062 < 0.001 – – –
β2 0.058 0.166 0.728 0.053 0.179 0.767 – – –
β3 -0.343 0.048 < 0.001 -0.345 0.052 < 0.001 – – –
β4 0.337 0.233 0.148 0.344 0.249 0.168 – – –
α1 0.016 0.084 0.851 – – – 0.155 0.128 0.279
α2 0.521 0.226 0.021 – – – 1.257 0.279 < 0.001
α3 -0.116 0.063 0.066 – – – -0.235 0.080 0.010
α4 -0.337 0.338 0.319 – – – -0.987 0.413 0.025
ν 0.547 0.038 < 0.001 0.476 0.034 < 0.001 – – –
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4.5 Discussion

In this chapter, we proposed a joint model for analyzing panel count data and interval-

censored data. The joint model includes the non-homogeneous Poisson process model

and the PH model which are connected via a shared gamma frailty. We developed

a computationally efficient EM algorithm based on a Poisson data augmentation to

jointly estimate all the unknown parameters. The proposed method is shown to work

well in our simulation studies and outperforms the univariate analysis of panel count

data and interval-censored failure time data separately. In the future, we aim to

propose a more general model to better fit the STI data. For example, we could add

a power to the frailty variable to make the model more flexible so that the frailty

variable can contribute differently to the panel count response and failure time.
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Appendix A

Chapter 2 Appendix and Supplementary

Materials

A.1 Formula of the quantities involved in var(θ̂)

The detailed expressions of the quantities involved Q(θ, θ̂) and var{∂logLc(θ)/∂θ}

are presented below in order to obtain the variance estimate of θ̂. First, the second

partial derivatives of Q(θ, θ̂) with respect to θ, i.e., ∂2Q(θ, θ̂)/∂θ∂θ′, are given by

∂2Q(θ, θ̂)/∂β∂β′ = −
n∑
i=1

µ0(tiKi) exp(x′iβ)E(φi|D, θ̂)xix′i,

∂2Q(θ, θ̂)/∂β∂γl = −
n∑
i=1

bl(tiKi) exp(x′iβ)E(φi|D, θ̂)xi,∀ l,

∂2Q(θ, θ̂)/∂γ2
l = −

n∑
i=1

Ki∑
j=1

E(Zijl|D, θ̂)
γl2

,∀ l,

∂2Q(θ, θ̂)/∂ν2 = n{ν−1 − ψ′(ν)},

∂2Q(θ, θ̂)/∂β∂ν = 0, ∂2Q(θ, θ̂)/∂ν∂γl = 0 for each l, ∂2Q(θ, θ̂)/∂γl∂γl′ = 0, for

l 6= l′, where ψ′(ν) is the trigamma function with expression ψ′(ν) = Γ′′(ν)/Γ(ν) −

{Γ′(ν)/Γ(ν)}2 and the conditional expectations are given explicitly in Section 3.2.
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Second, the necessary quantities in involved in var{∂logLc(θ)/∂θ} are given by

cov
(
∂logLc
∂β

,
∂logLc
∂β

|D,θ
)

=
n∑
i=1
{µ0(tiKi) exp(x′iβ)}2var(φi|D,θ)xix′i,

cov
(
∂logLc
∂β

,
∂logLc
∂γl

|D,θ
)

=
n∑
i=1

µ0(tiKi)bl(tiKi){exp(x′iβ)}2var(φi|D,θ)xi,

cov
(
∂logLc
∂β

,
∂logLc
∂ν

|D,θ
)

=
n∑
i=1

µ0(tiKi) exp(x′iβ)

×
{
var(φi|D,θ)− cov(φi, log(φi)|D,θ)

}
xi,

cov
(
∂logLc
∂γl

,
∂logLc
∂ν

|D,θ
)

=
n∑
i=1

bl(tiKi) exp(x′iβ)

×
{
var(φi|D,θ)− cov(φi, log(φi)|D,θ)

}
,

cov
(
∂logLc
∂γl

,
∂logLc
∂γl

|D,θ
)

=
n∑
i=1
{bl(tiKi) exp(x′iβ)}2var(φi|D,θ)

+ 1
γ2
l

n∑
i=1

Ki∑
j=1

var(Zijl|D,θ),

cov
(
∂logLc
∂γl

,
∂logLc
∂γl′

|D,θ
)

=
n∑
i=1

bl(tiKi)bl′(tiKi){exp(x′iβ)}2var(φi|D,θ)

+ 1
γlγl′

n∑
i=1

Ki∑
j=1

cov(Zijl, Zijl′|D,θ), l 6= l′,

cov
(
∂logLc
∂ν

,
∂logLc
∂ν

|D,θ
)

=
n∑
i=1

var(logφi|D,θ)− 2
n∑
i=1

cov(log(φi), φi|D,θ)

+
n∑
i=1

var(φi|D,θ),

where the conditional variance and covariance terms at the right hands have the
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following form,

var(φi|D,θ) = ν + Zi·
{ν + µ0(tiKi) exp(x′iβ)}2 ,

var(Zijl|D,θ) = γl{bl(tij)− bl(tij−1)}
µ0(tij)− µ0(tij−1)

[
1− γl{bl(tij)− bl(tij−1)}

µ0(tij)− µ0(tij−1)

]
Zij,

cov(Zijl, Zijl′ |D,θ) = −γlγl
′{bl(tij)− bl(tij−1)}{bl′(tij)− bl′(tij−1)}

{µ0(tij)− µ0(tij−1)}2 Zij, l 6= l′,

cov(φi, log(φi)|D,θ) = ν + Zi·
ν + µ0(tiKi) exp(x′iβ) {ψ (ν + Zi· + 1)− ψ (ν + Zi·)} ,

var(logφi|D,θ) = ψ′(ν + Zi·),

cov(φi, Zijl|D,θ) = cov(log(φi), Zijl|D,θ) = 0,

for all i, j, and l.

A.2 Derivation of the within-subject correlation.

Consider two non-overlapping intervals (t1, t2] and (t3, t4], and let Z1 and Z2 denote

the count of the recurrent events within these two intervals, respectively, from the

same subject with covariates x. Below we provide the derivation of Pearson’s correla-

tion coefficient between Z1 and Z2 under the proposed gamma frailty Poisson process

model.

Under the proposed model, it is known that Z1|φ ∼ P(λ1φ) and Z2|φ ∼ P(λ2φ)

conditional on frailty φ ∼ Ga(ν, ν), where λ1 = {µ0(t2) − µ0(t1)} exp(x′β) and λ2 =

{µ0(t4) − µ0(t3)} exp(x′β) are the mean numbers of the recurrent events occurring

within (t1, t2] and (t3, t4], respectively. First, using the law of iterated conditional

expectations, one obtains

E(Z1) = E{E(Z1|λ1φ)} = E(λ1φ) = λ1,

E(Z2) = E{E(Z2|λ2φ)} = E(λ2φ) = λ2,

var(Z1) = E{var(Z1|φ)}+ var{E(Z1|φ)} = E(λ1φ) + var(λ1φ) = λ1 + λ2
1ν
−1,
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var(Z2) = E{var(Z2|φ)}+ var{E(Z2|φ)} = E(λ2φ) + var(λ2φ) = λ2 + λ2
2ν
−1,

and

E(Z1Z2) = E{E(Z1Z2|φ)} = E{E(Z1|φ)E(Z2|φ)} = E{(λ1φ)(λ2φ)} = λ1λ2E(φ2)

= λ1λ2(1 + ν−1).

Then the correlation between Z1 and Z2 is

ρ(Z1, Z2) = cov(Z1, Z2)√
var(Z1)var(Z2)

= E(z1z2)− E(z1)E(z2)√
var(Z1)var(Z2)

= λ1λ2(1 + ν−1)− λ1λ2√
(λ1 + λ2

1ν
−1)(λ2 + λ2

2ν
−1)

= {(1 + λ−1
1 ν)(1 + λ−1

2 ν)}−1/2.

A.3 Prove β(d+1) is the unique global maximizer of Q(θ,θ(d))

Let

W (β) = ∑n
i=1

[
Zi· −

∑L
l=1

{
exp(x′iβ)E(φi|D,θ

(d)
){
∑n

c=1

∑Kc
j=1 E(Zcjl|D,θ

(d)
)}bl(tiKi )∑n

c=1 bl(tcKc ) exp(x′cβ)E(φc|D,θ
(d)

)

}]
xi

denote the estimating function in step 1 of the proposed EM algorithm in Section 3.2.

We now show that β(d+1) is the unique solution of W (β) = 0.

In the following, we write the conditional expectations E(φi) = E(φi|D,θ(d)) and

E(Zijl) = E(Zijl|D,θ(d)) for each i, j, and l. Also, define

ξl = ∑n
i=1 bl(tiKi) exp(x′iβ)E(φi) and ηl = ∑n

c=1
∑Kc
j=1 E(Zcjl)}bl(tiKi) for l = 1, · · · , L.

Note that ξl’s are all functions of β but ηl’s are all constants. Taking partial derivative
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of W (β) with respect to β, one obtains

V (β) = ∂W (β)
∂β

= −
n∑
i=1

L∑
l=1

ξ−1
l exp(x′iβ)E(φi)bl(tiKi)xix′i

+
n∑
i=1

L∑
l=1

ξ−2
l exp(x′iβ)E(φi)bl(tiKi)

n∑
c=1

exp(x′cβ)E(φc)bl(tcKc)xix′c

= −W1 +W2

where

W1 =
n∑
i=1

L∑
l=1

ξ−1
l exp(x′iβ)E(φi)bl(tiKi)xix′i

=
n∑
i=1

L∑
l=1

ξ−2
l exp(x′iβ)E(φi)bl(tiKi)xix′i

n∑
c=1

exp(x′cβ)E(φc)bl(tcKc)

and

W2 =
n∑
i=1

L∑
l=1

ξ−2
l exp(x′iβ)E(φi)bl(tiKi)

n∑
c=1

exp(x′cβ)E(φc)bl(tcKc)xix′c.

Notice that switching i and c does not change the values of W1 and W2. Thus,

one can write

W1 =
n∑
i=1

L∑
l=1

n∑
c=1

ξ−2
l exp(x′cβ) exp(x′iβ)E(φc)E(φi)bl(tcKc)bl(tiKi)xix′i

= 1
2

n∑
c=1

L∑
l=1

ξ−2
l exp(x′cβ) exp(x′iβ)E(φc)E(φi)bl(tcKc)bl(tiKi)(xix′i + xcx′c)

and

W2 =
n∑
i=1

L∑
l=1

n∑
c=1

ξ−2
l exp(x′cβ)E(φc)bl(tcKc) exp(x′iβ)E(φi)bl(tiKi)xix′c

= 1
2

n∑
i=1

L∑
l=1

n∑
c=1

ξ−2
l exp(x′cβ)E(φc)bl(tcKc) exp(x′iβ)E(φi)bl(tiKi)(xix′c + xcx′i).

Thus,

V (β) = −W1 +W2

= −1
2

n∑
i=1

L∑
l=1

n∑
c=1

exp(x′cβ)E(φc)bl(tcKc) exp(x′iβ)E(φi)bl(tiKi)(xi − xc)(xi − xc)′.
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Consider z′V (β)z for any z ∈ Rp, where p is the dimension of β. One obtains

z′V (β)z = −1
2

n∑
i=1

L∑
l=1

n∑
c=1

exp(x′cβ)E(φc)bl(tcKc
) exp(x′iβ)E(φi)bl(tiKi

)z′(xi − xc)(xi − xc)′z

= −1
2

n∑
i=1

L∑
l=1

n∑
c=1

exp(x′cβ)E(φc)bl(tcKc) exp(x′iβ)E(φi)bl(tiKi){z′(xi − xc)}2.

Since all the terms of exp(x′cβ)’s, E(φc)’s, bl(tcKc)’s are positive, z′V (β)z is always

non-positive. For nonzero z, z′V (β)z takes zero only when z′(xi − xc) = 0 for all

i and c, in which case all subjects have the same predictors. In that case, there

is nonidentifiability between the regression parameters and the unspecified baseline

mean function µ0(·). Thus, as long as the model is identifiable, z′V (β)z is always

negative for any nonzero z. In other words, V (β) is negative definite. This indicates

that there is a unique solution to the estimating equationW (β) = 0, and the solution

is β(d+1) following the definition of β(d+1).

Comment: A modified version of this proof can show that θ(d+1) is actually the

unique maximizer of Q(θ,θ(d)) by examining Q(θ,θ(d)) directly instead of examining

the estimating equation.

A.4 Numerical comparison of the proposed method to the approach

of Hua et al. (2014)

Hua et al. (2014) studied the same model for panel count data as ours and proposed a

two-stage estimation approach for inferences. Discussion about the difference between

their approach and ours can be found in Section 6 of the paper. Below we provide

the comparison of the two methods via simulations using the same simulation setups

in Hua et al. (2014).

The general simulation setups are as follows according to Hua et al. (2014). (i)

Suppose that six follow-up observations are scheduled at times t◦ = {t◦j : t◦j = 2j, j =

1, . . . , 6}. The actual observation times t◦ij are generated from a normal distribution,
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N(t◦j , 1/3), to allow for some deviation from the pre-scheduled times. Let ξij =

1[t◦ij−1<t
◦
ij ], for i = 1, . . . , 6 and t◦i0 = 0. (ii) Let δij = 1 indicating the jth visit

happens and zero otherwise with probability P (δij = 1) = 1/(1 + et
◦
ij−10), indicating

the probability of missing visit increases as follow-up proceeds which is likely the

case in many clinical follow-up studies. Hence the ith subject has Ki = ∑6
j=1 ξijδij

observations at ti = (ti1, ti2, . . . , tiKi). Ki’s could be different from subject to subject.

(iii) The covariate vector xi = (xi1, xi2, xi3) is generated by xi1 ∼ Uniform (0, 1),

xi2 ∼ N(0, 1) and xi3 ∼ Bernoulli(0.5). The true values of regression parameters β =

(β1, β2, β3)′ are taken to be (−1, 0.5, 1.5)′. (iv) Given the observed data (xi, Ki, ti),

the panel counts are generated using

Ni = (Ni(ti1), Ni(ti2), . . . , Ni(tiKi))

and the following three scenarios are considered for the counting process Ni(t).

Scenario 1. Data are generated from a gamma frailty nonhomogeneous Poisson

process model. The gamma frailties φ1, φ2, . . . , φn are randomly drawn from the

Gamma distribution, Ga(0.5, 0.5). Conditional on the gamma frailty φi and covariates

xi, the panel counts associated with subject i are generated from the following model,

Ni(tij)−Ni(tij−1)|φi ∼ P [2φi{(tij)1/2 − (tij−1)1/2} exp(x′iβ)]. (A.1)

This specifies the baseline mean function µ0(t) = 2t1/2 and true frailty variance

parameter ν = 0.5 in our model.

Scenario 2. Data are generated from a lognormal frailty nonhomogeneous Pois-

son process model. The frailties φi’s are generated from a lognormal distribution with

mean 1 and variance 2. Conditional on the frailty φi, the panel counts associated with

subject i are also drawn from a nonhomogeneous Poisson process as in A.1.
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Scenario 3. Data are generated from a mixture Poisson distribution. Generate

a discrete frailty term φi from {0.6, 1, 1.4} with probabilities 0.25, 0.5 and 0.25, re-

spectively. Given φi, the panel counts are generated from a nonhomogeneous Poisson

process model,

Ni(tij)−Ni(tij−1)|φi ∼ P [(2 + φi){(tij)1/2 − (tij−1)1/2} exp(x′iβ)].

In all scenarios, we generated 1000 data sets, each with 100 subjects. Note that

Scenario 1 corresponds to the true case and the other two scenarios correspond to

misspecified cases for our method and that in Hua et al. (2014). Table A.1 summa-

rizes the simulation results for the regression parameters in all scenarios from the

proposed method (GFNPMS) and the approach in Hua et al. (2014) method (HZT),

respectively. The summary results include their bias(Bias), Monte Carlo standard

deviation (MC-sd), the average of the estimated standard errors (ASE), and the 95%

coverage probability (CP95) based on the Wald 95% confidence intervals. The sum-

mary results for HZT were taken directly from Tables 1∼3 in Hua et al. (2014) with

some adjustment. We switched their summary results for β̂1 and β̂2 because there are

substantial evidences that the authors may have misplaced their results for β̂1 and

β̂2 in Hua et al. (2014), likely due to mislabeling x1 and x2 in their simulations. As

seen from Table A.1 here, the two methods produced comparative results in all these

setups.
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Table A.1 Simulation results from the proposed method (GFNPMS) and the HZT
approach in Hua et al. (2014). Bias is defined as the average of the point estimates
minus the true value, MC-sd the Monte Carlo standard deviation of the point
estimates, ASE the average of the estimated standard errors, and CP95 the 95%
coverage probability based on the Wald confidence intervals.

GFNPMS HZT
Scenario Est Bias MC-sd ASE CP95 Bias MC-sd ASE CP95
Scenario 1 β̂1 -0.0173 0.5630 0.5186 0.919 0.0016 0.5113 0.5755 0.941

β̂2 -0.0029 0.1498 0.1544 0.952 0.0028 0.1527 0.1425 0.921
β̂3 -0.0008 0.3042 0.2992 0.952 0.0029 0.3072 0.3017 0.916

Scenario 2 β̂1 0.0115 0.4830 0.3830 0.882 -0.0030 0.4833 0.4547 0.904
β̂2 -0.0033 0.1413 0.1154 0.893 0.0074 0.1412 0.1211 0.913
β̂3 0.0042 0.2776 0.2229 0.886 -0.0113 0.2783 0.2560 0.915

Scenario 3 β̂1 -0.0125 0.1666 0.1712 0.948 -0.0008 0.1375 0.1311 0.925
β̂2 -0.0011 0.0474 0.0503 0.960 0.0019 0.0442 0.0402 0.922
β̂3 0.0025 0.1074 0.1048 0.942 0.0013 0.0814 0.0788 0.945

A.5 Evidence of the robustness of the proposed approach to the

knot placement

Tables A.2 and A.3 present the estimation results from the proposed method using

different number of knots for the two data applications. From the results in these

tables, it is clear that the proposed method is robust to the number of equally-spaced

knots.
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Table A.2 Results of the bladder tumor data analysis from the proposed method
using different numbers (m) of equally-spaced interior knots. Summarized results
include the point estimates and their corresponding standard errors (in parenthesis)
for β1 ∼ β4 and ν as well as the AIC value in each model.

m β̂1 β̂2 β̂3 β̂4 ν̂ AIC
3 0.364 0.014 0.062 -1.146 0.356 1614.207

(0.105) (0.119) (0.409) (0.433) (0.063) —
4 0.356 0.016 0.039 -1.145 0.353 1598.330

(0.105) (0.119) (0.410) (0.434) (0.062) —
5 0.348 0.016 -0.003 -1.154 0.351 1589.554

(0.105) (0.119) (0.411) (0.435) (0.062) —
6 0.342 0.015 -0.031 -1.152 0.350 1578.834

(0.106) (0.120) (0.411) (0.436) (0.061) —
7 0.341 0.017 -0.029 -1.142 0.350 1576.821

(0.106) (0.120) (0.410) (0.435) (0.062) —
8 0.338 0.017 -0.026 -1.138 0.351 1571.158

(0.106) (0.120) (0.409) (0.434) (0.062) —
9 0.336 0.012 -0.033 -1.140 0.351 1564.837

(0.106) (0.120) (0.409) (0.435) (0.062) —
10 0.334 0.013 -0.028 -1.137 0.352 1564.231

(0.106) (0.120) (0.409) (0.434) (0.062) —
11 0.335 0.015 -0.034 -1.134 0.352 1568.283

(0.106) (0.120) (0.408) (0.434) (0.062) —
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Table A.3 Results of the skin cancer data analysis from the proposed method
using different numbers (m) of equally-spaced interior knots. Summarized results
include the point estimates and their corresponding standard errors (in parenthesis)
for β1 ∼ β4 and ν as well as the AIC value in each model.

m β̂1 β̂2 β̂3 β̂4 ν̂ AIC
3 -0.031 0.116 -0.0008 0.252 1.273 10454.39

(0.143) (0.015) (0.0065) (0.145) (0.205) —
4 -0.031 0.116 -0.0008 0.252 1.273 10457.54

(0.143) (0.015) (0.0065) (0.145) (0.205) —
5 -0.031 0.116 -0.0008 0.252 1.273 10464.82

(0.143) (0.015) (0.0065) (0.145) (0.204) —
6 -0.031 0.116 -0.0008 0.252 1.274 10461.64

(0.143) (0.015) (0.0065) (0.145) (0.205) —
7 -0.031 0.116 -0.0008 0.250 1.276 10470.23

(0.143) (0.015) (0.0065) (0.145) (0.205) —
8 -0.031 0.116 -0.0009 0.249 1.276 10493.35

(0.143) (0.015) (0.0065) (0.145) (0.205) —
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Appendix B

Chapter 3 Appendix and Supplementary

Materials

B.1 Proofs of Theorem 1 and Theorem 2

Proof of Theorem 1: Let θj = (ρj, βj,Λ0j) for j = 1, 2. Suppose S(t|x,θ1) =

S(t|x,θ2) for any t ≥ 0 and x. To show the identifiability, we need to prove θ1 = θ2.

First, by taking x to be 0 and 1 respectively in the equation S(t|x,θ1) = S(t|x,θ2),

one obtains

{1 + ρ1Λ01(t)}−ρ
−1
1 = {1 + ρ2Λ02(t)}−ρ

−1
2

and

{1 + ρ1Λ01(t) exp(β1)}−ρ
−1
1 = {1 + ρ2Λ02(t) exp(β2)}−ρ

−1
2 (B.1)

for any t ≥ 0. The first equation leads to (3.2)when there are no covariates. Plugging

(3.2) into (B.1), one obtains

{1 + ρ1Λ01(t) exp(β1)}−ρ
−1
1 =

(
1 + exp(β2)[{1 + ρ1Λ01(t)}ρ2ρ

−1
1 − 1]

)−ρ−1
2

(B.2)

for any t ≥ 0. Recall Λ01(t) → ∞ as t → ∞. For large t, the left side of (B.2)

has the order of ρ−ρ
−1
1

1 {Λ01(t)}−ρ−1
1 exp(−ρ−1

1 β1) and the right side has the order of

ρ
−ρ−1

1
1 {Λ01(t)}−ρ−1

1 exp(−ρ−1
2 β2). This leads to ρ−1

1 β1 = ρ−1
2 β2. On the other hand,

taking logarithm at both sides of equation (B.2) yields

ρ−1
1 log{1 + ρ1Λ01(t) exp(β1)} = ρ−1

2 log
(

1 + exp(β2)[{1 + ρ1Λ01(t)}ρ2ρ
−1
1 − 1]

)
(B.3)
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for all t > 0. Further taking derivative of both sides of (B.3) with respect to t, we

have

λ01(t) exp(β1)
1 + ρ1Λ01(t) exp(β1) = λ01(t) exp(β2){1 + ρ1Λ01(t)}ρ2ρ

−1
1 −1

1 + exp(β2)[{1 + ρ1Λ01(t)}ρ2ρ
−1
1 − 1]

(B.4)

for all t > 0 possibly except a zero probability set with countable values. Letting t→ 0

in the equation (B.4), one obtains exp(β1) = exp(β2). Thus, we have β1 = β2. Since

we already have ρ−1
1 β1 = ρ−1

2 β2, we get ρ1 = ρ2. In this case, equation (3.2) reduces

to Λ02(t) = Λ01(t) for all t ≥ 0. This suggests the GORH models are identifiable in

the regression setting of containing only a binary covariate.

Proof of Theorem 2: Without losing generality, assume that 0 and 1 are both

possible values for all covariates. This is reasonable and feasible to achieve through

reparameterization after standardizing continuous covariates and adopting multiple

binary covariates for categorical variables. Let p denote the number of covariates

and eh denote the vector with 1 for the hth element and 0 for other elements, for

h = 1, . . . , p. Let θj = (ρj,βj,Λ0j), j = 1, 2, be two sets of parameters under the

GORH models defined in (3.1). Taking x equal to 0 and eh in the equation of

S(t|x,θ1) = S(t|x,θ2) and using the same techniques as in the proof of Theorem 1,

we obtain β1h = β2h for all h = 1, . . . , p and further ρ1 = ρ2 and Λ01 = Λ02.

B.2 Formula of the quantities involved in var(θ̂)

For notation simplicity, we use E(Y ) to denote the conditional expection of a gen-

eral quantity Y conditional on the observed data D. Similarly, the covariances and

variances below refer to the conditional covariances and variances given the observed

data D. In Louis’s method, the quantities involved in ∂2Q(θ,θ(d))/∂θ∂θ′ have the
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following expressions,

∂2Q(θ,θ(d))/∂β∂β′ = −
n∑
i=1

Λ0(Ci) exp(x′iβ)E(φi)xix′i,

∂2Q(θ,θ(d))/∂β∂γl = −
n∑
i=1

bl(Ci) exp(x′iβ)E(φi|D)xi,

∂2Q(θ,θ(d))/∂γ2
l = − 1

γ2
l

n∑
i=1

E(Zil|D), for each l,

∂2Q(θ,θ(d))/∂γl∂γ′l = 0 for each l 6= l′,

and the quantities in var(∂ logLc/∂θ) are given by the following expressions,

cov
(∂logLc

∂β
,
∂logLc
∂β

)
=

n∑
i=1

[
var(Zi)− 2Λ0(Ci) exp(x′iβ)cov(Zi, φi)

+
{

Λ0(Ci) exp(x′iβ)
}2

var(φi)
]
xix

′
i,

cov
(∂logLc

∂β
,
∂logLc
∂γl

)
=

n∑
i=1

{
γ−1
l cov(Zi, Zil)− bl(Ci) exp(x′iβ)cov(Zi, φi)

}
xi

+
n∑
i=1

{
bl(Ci) exp(x′iβ)var(φi)

−γ−1
l cov(Zil, φi)

}
Λ0(Ci) exp(x′iβ)xi,

cov
(∂logLc

∂γl
,
∂logLc
∂γl

)
=

n∑
i=1

{
b2l (Ci)e2x′iβvar(φi)− 2γ−1

l bl(Ci) exp(x′iβ)cov(Zil, φi)

+γ−2
l var(Zil)

}
,

cov
(∂logLc

∂γl
,
∂logLc
∂γl′

)
=

n∑
i=1

{
(γlγl′)−1cov(Zil, Zil′)− γ−1

l′ bl(Ci) exp(x′iβ)cov(φi, Zil′)

−γ−1
l bl′(Ci) exp(x′iβ)cov(φi, Zil)

+bl(Ci)bl′(Ci) exp(2x′iβ)var(φi)
}
, l 6= l′.
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The conditional variance and covariance terms have the following forms,

var(φi) = ρ

{1 + ρΛ0(t) exp(x′iβ)}2 I{δi = 0}

+
 1 + ρ

{1 + ρΛ0(Ci) exp(x′iβ)}2
{1 + ρΛ0(Ci) exp(x′iβ)}ρ−1+2 − 1
{1 + ρΛ0(Ci) exp(x′iβ)}ρ−1 − 1

−E2(φi)
I{δi = 1},

var(Zi) = E(Zi)
{

1 + (1 + ρ)Λ0(Ci) exp(x′iβ)− E(Zi)
}
,

var(Zil) =
{
γlbl(Ci)Λ−1

0 (Ci)
}2
{var(Zi)− E(Zi)}+ γlbl(Ci)Λ−1

0 (Ci)E(Zi),

cov(Zi, φi) = {(1 + ρ)− E(φi)}E(Zi),

cov(Zi, Zil) = γlbl(Ci)Λ−1
0 (Ci){var(Zi) + E2(Zi)} − E(Zi)E(Zil),

cov(Zil, φi) = {(1 + ρ)− E(φi)}E(Zil),

cov(Zil, Zil′) = γlγl′bl(Ci)bl′(Ci)Λ−2
0 (Ci){var(Zi)− E(Zi)}, l 6= l′,

where the expressions of E(φi)’s, E(Zi)’s, and E(Zil)’s are given in Section 3.4.

B.3 Prove β(d+1) is the unique global maximizer of Q(θ,θ(d))

An EM algorithm involves two steps, the expectation step (E-step) and the maxi-

mization step (M-step). In the E-step of the algorithm one takes the expectation

of log-complete likelihood logLc(θ) with respect to all the latent variables including

φi’s, Z ′is and Z ′ils conditional on the observed data D and the current parameter

θ(d) = (β(d),γ(d)) at dth iteration. It yields that Q(θ,θ(d)) = E logLc(θ|D,θ(d)) =

H1(β,γ,θ(d)) +H2(θ(d)), where

H1(β,γ,θ(d)) =
n∑
i=1

E(Zi|D,θ(d))x′iβ −
n∑
i=1

Λ0(Ci) exp(x′iβ)E(φi|D,θ(d)) (B.5)

+
n∑
i=1

L∑
l=1

E(Zil|D,θ(d)) log(γl),

115



and H2(θ(d)) is a function of θ(d) but free of θ = (β,γ).

Setting ∂Q(θ,θ(d))/∂γl = 0, one obtains that the solution of γl is a function of β

in the following form,

γl(β) =
∑n
i=1 E(Zil)∑n

i=1 bl(Ci) exp(x′iβ)E(φi)
.

So it means that we only need to show that β(d+1) is a unique global maximizer. We

plug the γl(β) into H1(β,γ,θ(d)) so that H1(β,γ,θ(d)) can be rewritten as

H̃1(β,θ(d))

=
n∑
i=1

E(Zi)x′iβ −
n∑
i=1

L∑
l=1

{ ∑n
i=1 E(Zil)∑n

i=1 bl(Ci) exp(x′iβ)E(φi)

}
bl(Ci) exp(x′iβ)E(φi)

+
n∑
i=1

L∑
l=1

E(Zil) log
{ ∑n

i=1 E(Zil)∑n
i=1 bl(Ci) exp(x′iβ)E(φi)

}
,

Now our goal is to show that Hessian matrix ∂2H̃1(β)/∂β∂β′ is positive definite for

all β so that the solution of H1(β,γ,θ(d)) is unique global maximizer. For notational

convenience we define dil = E(Zil|D,θ(d)), dl = ∑n
i=1 dil = ∑n

i=1E(Zil|D,θ(d)), gil =

bl(Ci)E(φi) and fl = ∑n
i=1 bl(Ci) exp(x′iβ)E(φi) = ∑n

i=1 gil exp(x′iβ) for all i and l.

Using the defined notations Q(θ,θ(d)) can be expressed as

Q(θ,θ(d)) =
n∑
i=1

E(Zi)x′iβ −
n∑
i=1

L∑
l=1

(
dl
fl

)
gil exp(x′iβ) +

n∑
i=1

L∑
l=1

dil log
(
dl
fl

)
+H2(θ(d)),

where H2(θ(d)) is free of parameters. Note that fl is a function of β, but dil, dl and

gil are not free of β. The first partial derivative of H1(β) with respect to β is

∂H̃1(β)
∂β

=
n∑
i=1

L∑
l=1

dilxi +
n∑
i=1

L∑
l=1

(
dl
f 2
l

)
gil exp(x′iβ)

 n∑
j=1

gjl exp(x′jβ)xj


−

n∑
i=1

L∑
l=1

(
dl
fl

)
gil exp(x′iβ)xi −

n∑
i=1

L∑
l=1

(
dil
fl

) n∑
j=1

gjl exp(x′jβ)xj

 .
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The two terms in the middle of the above expression are canceled out because

n∑
i=1

L∑
l=1

dlf
−1
l gil exp(x′iβ)xi =

n∑
i=1

L∑
l=1

dlf
−2
l gil exp(x′iβ)xi

 n∑
j=1

gjl exp(x′jβ)xj


=

n∑
i=1

L∑
l=1

n∑
j=1

dlf
−2
l gilgjl exp(x′iβ) exp(x′jβ)xi

=
L∑
l=1

n∑
i=1

n∑
j=1

dlf
−2
l gilgjl exp(x′iβ) exp(x′jβ)xi

=
L∑
l=1

n∑
j=1

n∑
i=1

dlf
−2
l gjlgil exp(x′jβ) exp(x′iβ)xj

=
L∑
l=1

n∑
i=1

dlf
−2
l gil exp(x′iβ)

 n∑
j=1

gjl exp(x′jβ)xj



So one obtains that

∂H̃1(β)
∂β

=
n∑
i=1

L∑
l=1

dilxi −
n∑
i=1

L∑
l=1

(
dil
fl

) n∑
j=1

gjl exp(x′jβ)xj


=

n∑
i=1

L∑
l=1

dilxi −
n∑
i=1

L∑
l=1

dilf
−1
l

 n∑
j=1

gjl exp(x′jβ)xj


=

L∑
l=1

n∑
i=1

dilxi −
L∑
l=1

dlf
−1
l

 n∑
j=1

gjl exp(x′jβ)xj


=

L∑
l=1

n∑
i=1

dilxi −
L∑
l=1

n∑
i=1

dlf
−1
l gil exp(x′iβ)xi
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The second order partial derivative of H̃1(β) with respect to β,

∂2H̃1(β)
∂β∂β′

=
L∑
l=1

n∑
i=1

dlf
−2
l gil exp(x′iβ)xi

 n∑
j=1

gjl exp(x′jβ)x′j


−

L∑
l=1

n∑
i=1

dlf
−1
l gil exp(x′iβ)xix′i

=
L∑
l=1

n∑
i=1

n∑
j=1

dlf
−2
l gilgjl exp(x′iβ) exp(x′jβ)xix′j

−
L∑
l=1

n∑
i=1

dlf
−2
l gil exp(x′iβ)xix′i

 n∑
j=1

gjl exp(x′jβ)


=
L∑
l=1

n∑
i=1

n∑
j=1

dlf
−2
l gilgjl exp(x′iβ) exp(x′jβ)xix′j

−
L∑
l=1

n∑
i=1

n∑
j=1

dlf
−2
l gilgjl exp(x′iβ) exp(x′jβ)xix′i

Rewrite (1) and (2) as follows,

(1) =
L∑
l=1

n∑
i=1

n∑
j=1

dlf
−2
l gilgjl exp(x′iβ) exp(x′jβ)xix′j

=
L∑
l=1

n∑
j=1

n∑
i=1

dlf
−2
l gjlgil exp(x′jβ) exp(x′iβ)xjx′i

= 1
2

L∑
l=1

n∑
i=1

n∑
j=1

dlf
−2
l gilgjl exp(x′iβ) exp(x′jβ)xix′j

+1
2

L∑
l=1

n∑
j=1

n∑
i=1

dlf
−2
l gjlgil exp(x′jβ) exp(x′iβ)xjx′i

= 1
2

L∑
l=1

n∑
i=1

n∑
j=1

dlf
−2
l gilgjl exp(x′iβ) exp(x′jβ)(xix′j + xjx′i)

Similarly, one can obtain that

(2) = −1
2

L∑
l=1

n∑
i=1

n∑
j=1

dlf
−2
l gilgjl exp(x′iβ) exp(x′jβ)(xix′i + xjx′j).

Thus, the second order partial derivative of H1(β) with respect to β can be expressed
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as

∂2H̃1(β)
∂β∂β′

= 1
2

L∑
l=1

n∑
i=1

n∑
j=1

dlf
−2
l gilgjl exp(x′iβ) exp(x′jβ)(xix′j + xjx′i)

−1
2

L∑
l=1

n∑
i=1

n∑
j=1

dlf
−2
l gilgjl exp(x′iβ) exp(x′jβ)(xix′i + xjx′j)

= −1
2

L∑
l=1

n∑
i=1

n∑
j=1

dlf
−2
l gilgjl exp(x′iβ) exp(x′jβ)

(xix′i + xjx′j − xix′j − xjx′i)

= −1
2

L∑
l=1

n∑
i=1

n∑
j=1

dlf
−2
l gilgjl exp(x′iβ) exp(x′jβ)(xi − xj)(xi − xj)′

The Hessian matrix ∂2H̃1(β)/∂β∂β′ is negative definite if and only if

z′{∂2H̃1(β)/∂β∂β′}z < 0 where z ∈ Rp.

z′
∂2H̃1(β)
∂β∂β′

z = −1
2

L∑
l=1

n∑
i=1

n∑
j=1

dlf
−2
l gilgjl exp(x′iβ) exp(x′jβ)z′(xi − xj)(xi − xj)′z

= −1
2

L∑
l=1

n∑
i=1

n∑
j=1

dlf
−2
l gilgjl exp(x′iβ) exp(x′jβ){z′(xi − xj)}2

= −1
2

L∑
l=1

n∑
i=1

n∑
j=1

dlf
−2
l gilgjl exp(x′iβ) exp(x′jβ){

p∑
s=1
z′s(xis − xjs)}2

Since dl, fl, gil and exp(x′iβ), for all i and j are positive, ∂2H1(β)/∂β∂β′ is non-

positive definite. Note that z, z′{∂2H̃1(β)/∂β∂β′}z = 0 only when z′(xi − xj) = 0

for all i and j, which is only possible when all subjects have the same value for

a particular predictor. In that case, the corresponding regression parameters and

cumulative baseline hazard function Λ0(t) are not identifiable. In other words, as

long as the model is identifiable and proper, we have z′{∂2H̃1(β)/∂β∂β′}z < 0 for

all z ∈ Rp/{0}. Therefore ∂2H̃1(β)/∂β∂β′ is negative definite. This guarantees that

β(d+1) is the unique global maximizer of Q(θ,θ(d)).
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Appendix C

Chapter 4 Appendix and Supplementary

Materials

C.1 Formula of the quantities involved in var(θ̂)

The detailed expressions of the quantities involved Q(θ, θ̂) and var{∂ logLc(θ)/∂θ}

are presented below in order to obtain the variance estimate of θ̂. So the first part is

the second partial derivative of Q(θ, θ̂) with respect to θ.

∂2Q(θ, θ̂)
∂β∂β′

= −
n∑
i=1

µ0(tiKi) exp(x′iβ)E(φi|D, θ̂)xix′i,

∂2Q(θ, θ̂)
∂α∂α′

= −
n∑
i=1
{(δi1 + δi2)Λ0(Ri) + δi3Λ0(Li)} exp(x̃′iα)E(φi|D, θ̂)x̃ix̃′i,

∂2Q(θ, θ̂)
∂β∂γl

= −
n∑
i=1

bl(tiKi) exp(x′iβ)E(φi|D, θ̂)xi,∀l,

∂2Q(θ, θ̂)
∂α∂γ̃m

= −
n∑
i=1
{(δi1 + δi2)Im(Ri) + δi3Im(Li)} exp(x̃′iα)E(φi|D, θ̂)x̃i

∂2Q(θ, θ̂)
∂γ2

l

= −
n∑
i=1

Ki∑
j=1

E(Zijl|D, θ̂)
γ2
l

,∀l,

∂2Q(θ, θ̂)
∂γ̃2

m

= −
n∑
i=1

E(Wim1|D, θ̂) + (δi2 + δi3)E(Wim2|D, θ̂)
γ̃2
m

,

∂2Q(θ, θ̂)
∂ν2 = n{ν−1 − ψ′(ν)},

∂2Q(θ, θ̂)/∂β∂ν = 0, ∂2Q(θ, θ̂)/∂β∂γ̃m = 0, ∂2Q(θ, θ̂)/∂α∂ν = 0,

∂2Q(θ, θ̂)/∂α∂γl = 0, ∂2Q(θ, θ̂)/∂ν∂γl = 0, ∂2Q(θ, θ̂)/∂ν∂γ̃m = 0,

∂2Q(θ, θ̂)/∂γl∂γl′ = 0, ∂2Q(θ, θ̂)/∂γ̃m∂γ̃m′ = 0, for l 6= l′ and m 6= m′. ψ(·) and ψ′(·)
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are digamma function and trigamma function, respectively.

Next we are going to derive the necessary quantities involved in var{∂ logLc(θ)/∂θ}.

To make all the formulas clear to present, we define the following notations. Define

τi = {(δi1 + δi2)Λ0(Ri) + δi3Λ0(Li)} exp(x̃′iα), τim = {(δi1 + δi2)Im(Ri) + δi3Im(Li)} exp(x̃′iα).

Define pim = {Λ0(Ri)}−1γ̃mIm(Ri) and qim = {Λ0(Ri) − Λ0(Li)}−1γ̃m{Im(Ri) −

Im(Li)}, then

cov
(
∂ logLc
∂β

,
∂ logLc
∂β

)
=

n∑
i=1
{µ0(tiKi) exp(x′iβ)}2var(φi|D, θ̂)xix′i,

cov
(
∂ logLc
∂α

,
∂ logLc
∂α

)
=

n∑
i=1

[
var(Wi1|D, θ̂) + δi2var(Wi2|D, θ̂) + τ2

i var(φi|D, θ̂)

−2τi{cov(Wi1, φi|D, θ̂) + δi2cov(Wi2, φi|D, θ̂)}
]
x̃ix̃

′
i,

cov
(
∂ logLc
∂β

,
∂ logLc
∂γl

)
=

n∑
i=1

µ0(tiKi)bl(tiKi){exp(x′iβ)}2var(φi|D, θ̂)xi,

cov
(
∂ logLc
∂α

,
∂ logLc
∂γ̃m

)
=

n∑
i=1

[
γ̃−1
m {cov(Wi1,Wim1|D, θ̂) + δi2cov(Wi2,Wim2|D, θ̂)}

−τim{cov(Wi1, φi|D, θ̂) + δi2cov(Wi2, φi|D, θ̂)}

−γ̃−1
m τi{cov(Wim1, φi|D, θ̂) + δi2cov(Wim2, φi|D, θ̂)}

+τiτimvar(φi|D, θ̂)
]
x̃i,

cov
(
∂ logLc
∂β

,
∂ logLc
∂ν

)
=

n∑
i=1

µ0(tiKi) exp(x′iβ)

×
{
var(φi|D, θ̂)− cov(φi, log(φi)|D, θ̂)

}
xi,

cov
(
∂ logLc
∂α

,
∂ logLc
∂ν

)
=

n∑
i=1

[
cov(Wi1, log(φi)|D, θ̂)− cov(Wi1, φi|D, θ̂)

+δi2{cov(Wi2, log(φi)|D, θ̂)− cov(Wi2, φi|D, θ̂)}

+τi{var(φi|D, θ̂)− cov(φi, log(φi)|D, θ̂)}
]
x̃i,

cov
(
∂ logLc
∂γl

,
∂ logLc
∂ν

)
=

n∑
i=1

bl(tiKi) exp(x′iβ)
{

var(φi|D, θ̂)− cov(φi, log(φi)|D, θ̂)
}
,
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cov
(
∂ logLc
∂γ̃m

,
∂ logLc
∂ν

)
=

n∑
i=1

[
γ̃−1
m

{
cov(Wim1, log(φ)|D, θ̂)− cov(Wim1, φi|D, θ̂)

+δi2{cov(Wim2, log(φi)|D, θ̂)− cov(Wim2, φi|D, θ̂)}
}

+τim
{

var(φi|D, θ̂)− cov(φi, log(φi)|D, θ̂)
}]
,

cov
(
∂ logLc
∂γl

,
∂ logLc
∂γl

)
=

n∑
i=1
{bl(tiKi) exp(x′iβ)}2var(φi|D, θ̂)

+ 1
γ2
l

n∑
i=1

Ki∑
j=1

var(Zijl|D, θ̂),

cov
(
∂ logLc
∂γl

,
∂ logLc
∂γl′

)
=

n∑
i=1

bl(tiKi)bl′(tiKi){exp(x′iβ)}2var(φi|D, θ̂)

+(γlγl′)−1
n∑
i=1

Ki∑
j=1

cov(Zijl, Zijl′ |D, θ̂),

cov
(
∂ logLc
∂γ̃m

,
∂ logLc
∂γ̃m′

)
=

n∑
i=1

[
(γ̃mγ̃m′)−1{cov(Wim1,Wim′1) + δi2cov(Wim2,Wim′2)}

−γ̃−1
m τim′{cov(Wim1, φi|D, θ̂) + δi2cov(Wim2, φi|D, θ̂)}

−γ̃−1
m′ τim{cov(Wim′1, φi|D, θ̂) + δi2cov(Wim′2, φi|D, θ̂)

+τimτim′var(φi|D, θ̂)}
]
,

cov
(
∂ logLc
∂ν

,
∂ logLc
∂ν

)
=

n∑
i=1

var(log(φi)|D, θ̂)− 2
n∑
i=1

cov(φi, log(φi)|D, θ̂)

+
n∑
i=1

var(φi|D, θ̂)
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where the conditional variance and covariance terms have the following form,

var(φi|D, θ̂) =
[
ai(ai + 1)

b2
i

1−
(

bi

bi+ci

)ai+2

1−
(

bi

bi+ci

)ai
− E2(φi|D, θ̂)

]
δi1

+
[
ai(ai + 1)
(bi + di)2

1−
(

bi+di

bi+ci

)ai+2

1−
(

bi+di

bi+ci

)a − E2(φi|D, θ̂)
]
δi2 + ai

(bi + di)2 δi3,

var{log(φi)|D, θ̂} =
[
ψ′(ai) + {ψ(ai)− log(bi + ci)}2

+{ψ(ai)− log(bi)}2 − {ψ(ai)− log(bi + ci)}2

1−
(

bi

bi+ci

)ai

−E2{log(φi)|D, θ̂}
]
δi1 +

[
ψ′(ai) + {ψ(ai)− log(bi + ci)}2

+{ψ(ai)− log(bi + di)}2 − {ψ(ai)− log(bi + ci)}2

1−
(

bi+di

bi+ci

)ai

−E2{log(φi)|D, θ̂}
]
δi2

+
[
ψ′(ai) + {ψ(ai)− log(bi + di)}2 − E{log(φi)|D, θ̂}

]
δi3,

cov(φi, log(φi)|D, θ̂) =
[
ai

bi
×
ψ(ai + 1)− log(bi)−

(
bi

bi+ci

)ai+1
{ψ(ai + 1)− log(bi + ci)}

1−
(

bi

bi+ci

)ai

−E(φi|D, θ̂)E{log(φi)|D, θ̂}
]
δi1 +

[
ai

bi + di

×
ψ(ai + 1)− log(bi + di)−

(
bi+di

bi+ci

)ai+1
{ψ(ai + 1)− log(bi + ci)}

1−
(

bi+di

bi+ci

)ai

−E(φi|D, θ̂)E{log(φi)|D, θ̂}
]
δi2

+
[

ai

bi + di
{ψ(ai + 1)− log(bi + di)} − E(φi|D, θ̂)E{log(φi)|D, θ̂}

]
δi3,

var(Wi1|D, θ̂) =
[
aibici + ai(ai + 1)c2

i

b2

{
1−

(
bi

bi + ci

)ai
}−1

− E2(Wi1|D, θ̂)
]
δi1,
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var(Wi2|D, θ̂) =
[
ai(bi + di)(ci − di)− ai(ai + 1)(ci − di)2

(bi + di)2

×
{

1−
(
bi + di
bi + ci

)ai}−1
− E2(Wi2|D, θ̂)

]
δi2,

cov(Wi1, φi|D, θ̂) =
[
ai(ai + 1)ci

b2i

{
1−

(
bi

bi + ci

)ai}−1

−E(Wi1|D, θ̂)E(φi|D, θ̂)
]
δi1,

cov(Wi2, φi|D, θ̂) =
[
ai(ai + 1)(ci − di)

(bi + di)2

{
1−

(
bi + di
bi + ci

)ai}−1

−E(Wi2|D, θ̂)E(φi|D, θ̂)
]
δi2,

cov(Wi1, log(φi)|D, θ̂) =
[
aici{ψ(ai + 1)− log(bi)}

bi

{
1−

(
bi

bi + ci

)ai}−1

−E(Wi1|D, θ̂)E{log(φi)|D, θ̂}
]
δi1,

cov(Wi2, log(φi)|D, θ̂) =
[
ai(ci − di){ψ(ai + 1)− log(bi + di)}

bi + di

{
1−

(
bi + di
bi + ci

)ai}−1

−E(Wi2|D, θ̂)E{log(φi)|D, θ̂}
]
δi2,

cov(Wi1,Wim1|D, θ̂) =
[
pim

{
var(Wi1|D, θ̂) + E2(Wi1|D, θ̂)

}
−E(Wi1|D, θ̂)E(Wim1|D, θ̂)

]
δi1,

cov(Wi2,Wim2|D, θ̂) =
[
qim

{
var(Wi2|D, θ̂) + E2(Wi2|D, θ̂)

}
−E(Wi2|D, θ̂)E(Wim2|D, θ̂)

]
δi2,

cov(Wim1, φi|D, θ̂) =
[
pimai(ai + 1)ci

b2i

{
1−

(
bi

bi + ci

)ai}−1

−E(Wim1|D, θ̂)E(φi|D, θ̂)
]
δi1,
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cov(Wim2, φi|D, θ̂) =
qimai(ai + 1)(ci − di)

(bi + di)2

{
1−

(
bi + di
bi + ci

)ai}−1

−E(Wim2|D, θ̂)E(φi|D, θ̂)
δi2,

cov(Wim1, log(φi)|D, θ̂) =
pimaici{ψ(ai + 1)− log(bi)}

bi

{
1−

(
bi

bi + ci

)ai}−1

−E(Wim1|D, θ̂)E{log(φi)|D, θ̂}
δi1,

cov(Wim2, log(φi)|D, θ̂) =
qimai(ci − di){ψ(ai + 1)− log(bi + di)}

bi + di

×
{

1−
(
bi + di
bi + ci

)ai}−1

−E(Wim2|D, θ̂)E{log(φi)|D, θ̂}
δi2,

cov(Wim1,Wim′1|D, θ̂) = pimpim′{var(Wi1|D, θ̂)− E(Wi1|D, θ̂)}δi1, m 6= m′,

cov(Wim2,Wim′2|D, θ̂) = qimqim′{var(Wi2|D, θ̂)− E(Wi2|D, θ̂)}δi2, m 6= m′,

cov(Zijl, Zijl′ |D, θ̂) = −γlγl
′{bl(tij)− bl(tij−1)}{bl′(tij)− bl′(tij−1)}

{µ0(tij)− µ0(tij−1)}2 Zij,

var(Wim1|D, θ̂) = {pim(1− pim)E(Wi1|D, θ̂) + p2
imvar(Wi1|D, θ̂)}δi1,

var(Wim2|D, θ̂) = {qim(1− qim)E(Wi2|D, θ̂) + q2
imvar(Wi2|D, θ̂)}δi2.
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