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ABSTRACT 

Saltmarshes are among the most productive ecosystems globally. At North Inlet 

estuary, South Carolina, about one third of the primary production comes from benthic 

microalgae. During the tidal cycle, mobile microalgae vertically migrate through the 

upper 3 mm of sediment. At low tide, algae are vulnerable to a variety of grazers, 

including the mud snail, Ilyanassa obsoleta, which is abundant in tidal creeks. Many 

species of intertidal snails have been shown to significantly alter the community structure 

and density of microalgae within the sediment. The purpose of this study was to 

determine how I. obsoleta affects the benthic microalgae community in an intertidal 

mudflat. This study found that I. obsoleta moved at an average speed of 3.3 ± 1.4 cm 

min-1 and that it could cause a significant decrease in the concentration of total 

chlorophyll a when grazing an area with low snail density, but not in areas with high 

snail density. Areas where snails congregated were characterized by significantly higher 

moisture than low density snail areas. In the laboratory, snails were introduced to petri 

dishes with both grazed and ungrazed sediments. I. obsoleta spent more time on sediment 

that had been previously grazed by its conspecifics. When snail cues were introduced to 

both sides of the dish, snails showed no clear preference for location, indicating that I. 

obsoleta likely uses chemical cues to locate conspecifics and congregate towards them, 

despite the competition for food. Chemical cues and desiccation risk are therefore the 

likely driving factors for I. obsoleta distribution on the mudflat, rather than the 

availability of their benthic microalgae food source.  



vi 

TABLE OF CONTENTS 

DEDICATION ....................................................................................................................... iii 

ACKNOWLEDGEMENTS ........................................................................................................ iv 

ABSTRACT ............................................................................................................................v 

LIST OF FIGURES ................................................................................................................ vii 

LIST OF ABBREVIATIONS ................................................................................................... viii 

CHAPTER 1 ASSESSING THE EFFECTS OF THE MUD SNAIL, ILYANASSA OBSOLETA, ON THE  

 BENTHIC MICROALGAL COMMUNITY IN A PRISTINE SALTMARSH ..................................1 

 1.1 INTRODUCTION ......................................................................................................1 

 1.2 METHODS ..............................................................................................................5 

 1.3 RESULTS ..............................................................................................................12 

 1.4 DISCUSSION .........................................................................................................18 

REFERENCES .......................................................................................................................42 

  



vii 

LIST OF FIGURES 

Figure 1.1 Concentration of total chl a in the sediment of two microhabitats...................28 

Figure 1.2 Concentration of fucoxanthin in the sediment of two microhabitats ...............29 

Figure 1.3 Percent water of mudflat sediment by weight ..................................................30 

Figure 1.4 Concentration of total chl a in two mudflat microhabitats  

grazed and ungrazed sediments .........................................................................................31 

Figure 1.5 Concentration of fucoxanthin in two mudflat microhabitats,  

grazed and ungrazed sediments .........................................................................................32 

Figure 1.6 Percent difference between the concentrations of chl a in ungrazed  

and grazed sediments, normalized to the ungrazed concentration .....................................33 

Figure 1.7 Linear relationship between snail length and weight .......................................34 

Figure 1.8 Linear relationship between snail length and 24 hour straight-line distance ...35 

Figure 1.9 Linear relationship between snail weight and distance traveled in 24 hours ...36 

Figure 1.10 Concentration of total chl a in paired petri dishes ..........................................37 

Figure 1.11 Concentration of fucoxanthin in paired petri dishes.......................................38 

Figure 1.12 Average amount of time snails spent on different sediment treatments .........39 

Figure 1.13 Concentrations of total chl a in three sediment types  

with misting treatments ......................................................................................................40 

Figure 1.14 Concentrations of fucoxanthin in three sediment types  

with misting treatments ......................................................................................................41 

 



viii 

LIST OF ABBREVIATIONS 

BMA ...................................................................................................... Benthic microalgae 

HPLC .................................................................. High performance liquid chromatography 



1 

CHAPTER 1 

ASSESSING THE EFFECTS OF THE MUD SNAIL, ILYANASSA OBSOLETA, ON THE 

BENTHIC MICROALGAL COMMUNITY IN A PRISTINE SALTMARSH 

 

1.1 INTRODUCTION 

Estuaries are important transition zones that have diverse functions for coastal 

systems. These environments serve as nurseries for the juveniles of many species and 

play important roles in nutrient cycling. Vital ecosystem processes rely on primary 

productivity occurring within the marsh; estuaries on average have some of the highest 

primary productivity values of any ecosystem. This production comes primarily from the 

marsh grass, Spartina alterniflora, and the benthic microalgae (BMA) community, with 

other inputs from phytoplankton and macroalgae. North Inlet, a relatively pristine salt 

marsh estuary on the coast of South Carolina, has high primary productivity compared to 

similar systems. This estuary produces as much as 1059 g C m-2 yr-1, whereas other, 

especially more northern, marshes produce as little as 201 g C m-2 yr-1 (Dame et al., 

1986). Of the total, annual production, benthic microalgae account for 318 g C m-2 yr-1 at 

North Inlet (Dame et al., 1986). The microphytobenthos community accounts for a 

significant portion of the estuary’s total annual production, coming in at a close second 

only to S. alterniflora (Dame et al., 1986; Pinckney and Zingmark, 1993b). The marsh 

system has diverse habitat types, including intertidal sandflats and mudflats, shallow 

subtidal, and S. alterniflora zones. These habitats are defined by their physical 
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characteristics, including light availability, sediment type, and vegetation, all of which 

have the potential to influence the productivity of benthic microalgae.  

Benthic microalgae are important sources of fixed carbon and energy in estuarine 

systems. They also produce oxygen (O2) and facilitate nutrient cycling between the 

sediment and water column (Armitage et al., 2009). The microphytobenthos is composed 

of a variety of taxonomic groups, including cyanobacteria, euglenophytes, and 

chlorophytes, but primarily consists of diatoms (Paterson and Hagerthey, 2001). Mobile 

benthic microalgae vertically migrate through the upper 3 mm of sediment during each 

tidal cycle (Pinckney et al., 1994). This causes a noticeable change in sediment color, 

from gray to brown. During this time, many types of invertebrates graze on the BMA 

near the sediment surface. Benthic microalgae may be responsible for as much as 50% of 

the carbon assimilated by these benthic grazers (Sullivan and Currin, 2000). This grazing 

facilitates the transfer of energy and biomass up the estuarine food web. 

Mud snails (Ilyanassa obsoleta) are common grazers in sandflats, mudflats, and 

saltmarshes along the Atlantic Coast (Connor and Edgar, 1982). These snails spend most 

of their time on the sediment surface, where they are known to graze on the 

microphytobenthos, as well as on macroalgae and dead organic matter (Connor and 

Edgar, 1982). Gut content analyses have found that I. obsoleta stomach contents were 

enriched in chlorophyll and that mobile diatoms accounted for 40-45% of the content, 

whereas there was a near absence of meiofauna or animal remains (Feller, 1984; Connor 

and Edgar, 1982). Many feeding characterizations have been provided for I. obsoleta, but 

the current agreed upon dominant feeding mode is herbivory and detritivory; it is a 

facultative carrion feeder and is likely unimportant as a predator to benthic meiofauna 
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(Feller, 1984; Nichols and Robertson, 1979). While I. obsoleta individuals graze, they 

leave a trail behind them in the mud. A study on another intertidal snail species, Littorina 

littorea, found that the snails could create distinguishable spatial heterogeneity in the 

periphyton community due to their slow movement (Sommer, 1999).  A study by Alvarez 

et al. (2013) showed that the snail, Heleobia australis, negatively affected the microalgal 

assemblages within the intertidal mudflat. The H. australis selectively grazed on 

cyanobacteria, chlorophytes, and euglenophytes, and had a significant effect on the 

microphytobenthos structure and concentration. Armitage et al. (2009) also found that 

intertidal snails (Cerithidea californica) could have a significant effect on the benthic 

microalgal assemblage in an intertidal mudflat, specifically depleting the diatoms. It is 

clear that intertidal snails can impact the microphytobenthos and play an important role in 

the path of organic C and energy into the estuarine food web. 

This study assessed the effect of I. obsoleta grazers on the concentration of 

benthic microalgae in the surface sediment of the North Inlet estuary. I. obsoleta are 

common in the intertidal mudflats, and decrease in abundance as S. alterniflora cover 

increases. The mud snails show spatial heterogeneity in their distribution across the 

mudflat; they congregate in areas that tend to be moist, while avoiding higher, drier areas. 

Intertidal mudflats can be further subdivided into microhabitats based on snail density. 

Some areas have a very high concentration of snails, and will henceforth be referred to as 

“high density” mudflats, whereas regions with few snails will be referred to as “low 

density” mudflats. Differences in the physical and biological conditions between these 

two microhabitats may influence the benthic microalgae community, and therefore food 

availability for I. obsoleta.  
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H1: The concentration of benthic microalgal biomass will be significantly 

different between the “low density” and “high density” microhabitats. 

 

Previous studies indicate that measuring the chl a concentration in the top 5mm of 

estuarine sediments are suitable estimates of the BMA biomass available to grazers, 

including I. obsoleta (Pinckney and Zingmark, 1993a). A significant grazing effect would 

cause a shift in the abundance of the benthic microalgal community within grazed areas. 

 

H2: I. obsoleta will cause a significant decrease in the total benthic microalgal 

biomass within grazed pathways, compared to adjacent ungrazed areas.  

 

Mud snails tend to congregate in large groups rather than grazing independently in areas 

with less competition. This grouping behavior could signal a highly productive area of 

the mudflat or may indicate the use of chemical cues. Studies have shown that I. obsoleta 

follow the mucus trails of conspecifics, but not those of other distantly related snail 

species (Ng et al., 2013). There are many reasons that snails may follow conspecific 

trails; these include, but are not limited to, homing, mate location and communication, 

nutrition, and energy conservation (Ng et al., 2013). The innate ability to detect 

conspecific chemical cues may drive I. obsoleta distribution in the mudflats.  

 

H3: I. obsoleta will utilize conspecific chemical cues to choose grazing location.  
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Determining the impact of intertidal snail grazers in such a habitat will provide important 

estimates of benthic microalgal community composition for a pristine estuarine system. 

These findings can also help predict widespread fluctuations in the microphytobenthos 

throughout the marsh in response to variable rates of grazing by snails. 

 

 

1.2 METHODS 

1.2.1 Study site 

All data were collected in the North Inlet estuary at the Belle W. Baruch Institute 

for Marine and Coastal Sciences in Georgetown, SC. North Inlet is a small (3200 ha) 

Spartina dominated marsh system characterized by its numerous tidal creeks, intertidal 

mudflats, and sandflats (Pinckney and Zingmark, 1993b). Samples were collected in the 

intertidal mudflat near Oyster Landing (33°20'58"N and 79°11'34"). The mudflat is a 

mosaic of microhabitats; moist regions tend to have dense snail cover, while areas with 

drier sediment typically have fewer snails. These two microhabitats were analyzed in this 

study and will henceforth be referred to as “high density” and “low density” mudflats, 

respectively.  

1.2.2 Field estimates of microalgal community composition in mudflat microhabitats  

The community composition of benthic microalgae (BMA) was estimated by 

taking sediment samples at low tide from different areas in the intertidal mudflats. Fifteen 

surface sediment samples were collected for both the “high density” and “low density” 

mudflat microhabitats to estimate the average available BMA community biomass. 

Sediment samples were collected by pressing the lid of a 2 ml microcentrifuge tube into 



6 

the sediment surface. This method extracted a small core from the sediment surface, 7.8 

mm in diameter (47 mm2), and 3 mm deep (143 mm3). Excess sediment around the lid 

was removed so no extra volume was added to the sample. Samples were then closed into 

individual microcentrifuge tubes and covered to reduce light exposure. All sediment 

samples were analyzed for photosynthetic pigments, which can be used as an estimate for 

the microalgal abundance of different algal classes (Cartaxana et al., 2006). Samples 

were prepared for high performance liquid chromatography (HPLC) following the 

protocol outlined below under ‘Analytical Methods’. Preliminary analysis of HPLC data 

indicated that the BMA community primarily consisted of diatoms, as indicated by high 

concentrations of fucoxanthin. Therefore, this accessory pigment was selected for further 

examination. 

The concentration of total chlorophyll a (total chl a) and fucoxanthin per gram of 

sediment was tested for normality (K-S test) and homogeneity (Levene’s test) in the “low 

density” and “high density” mudflat samples. The pigment concentrations from the two 

mudflat microhabitats were compared using a single factor analysis of variance (α=0.05).  

1.2.3 Microhabitat sediment moisture  

The moisture content of the mudflat was estimated by taking surface sediment 

samples at low tide. To collect the samples, a small wooden frame (interior dimensions 

16.5x11.5 cm, area of 189.75 cm2) was placed randomly in each of the microhabitats of 

the mudflat. In the “high density” mudflat, snails were carefully removed from the 

sampling area after frame placement. The top 3 mm of sediment was then collected using 

a spatula and placed into a pre-weighed 50mL screw-top vial to prevent moisture loss. 

Five samples were taken in each of the two microhabitats. 
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Vials were weighed with the wet sediment, prior to being freeze dried for 24 

hours and weighed a final time. The percent water by weight was tested for normality and 

homogeneity in the “low density” and “high density” mudflat. The percent water was 

compared for the two microhabitats using an ANOVA to determine if there is a 

significant difference in sediment water content by location.  

1.2.4 Field estimates of I. obsoleta grazing effects 

To determine the effect of grazing snails on the BMA community, a surface 

sediment sample was taken in front of a grazing I. obsoleta and directly behind, within 

the grazed pathway. Fifteen grazing pairs were collected in the “high density mudflat” 

and 15 pairs were collected in the “low density” mudflat. Since snails were not typically 

present in the “low density” mudflat, a nearby active snail was selected and placed into 

the microhabitat. The snail was given an acclimation period to return to normal 

movement before any samples were obtained. Snail grazing sediment samples were 

collected using a small metal spatula to scoop up the thin surface layer of the sediment. 

Each sample was placed into its own 2 ml microcentrifuge tube, which was held with 

limited light exposure until returned to the lab. All samples were prepared following the 

methods outlined in ‘Analytical Methods’. Each snail used throughout the entire 

experiment was collected, weighed, and measured to the nearest hundredth of a mm with 

calipers. All snails were returned to the field after data were collected. 

The concentrations of total chlorophyll a and fucoxanthin were analyzed for 

normality and homogeneity for both mudflat microhabitats. The pigment concentrations 

were analyzed with a paired t-test for the samples collected in front of an individual snail 
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and from behind it in the “low density” mudflat. Another paired t-test compared the 

pigment concentrations for the snail pairs in the “high density” mudflat.  

1.2.5 Field estimates of I. obsoleta grazing rate 

A total of 10 snails, 5 on each of two days, were chosen from the mudflat at 

random and brought back to the lab for preparation. Each snail was rinsed, dried, and 

marked using a distinct color of acrylic paint and placed back into the field for an 

acclimation period of 30 sec. After this interval the snails had returned to normal 

movement and were filmed for 2 min. Snails were unmisted during this test, as there was 

sufficient moisture from the environment to elicit movement. During the analyses of the 

videos, each snail’s position was recorded every 10 sec to determine the distance traveled 

during the 2 min period. The width of the grazing path was measured to find the total area 

covered in the time interval. These values were used to determine the average grazing 

rate of each snail. 

In situ grazing rates on the mudflat were also measured.  On the first day of the 

procedure, the 5 marked snails were placed at a common starting point, marked by a 

stationary post in the mudflat. These individuals were left in the field for 24 h in order to 

determine the distance covered in that time period. The following day, as many snails as 

possible were located in the marsh and a tape measure was used to determine their 

straight-line distance from the post. At this time, the next 5 snails were placed at the same 

starting point and left for another 24 h. On the third day, as many as possible were 

located and their straight-line distances traveled were measured.  
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A census was taken to estimate the number of snails present in the marsh. A 

quadrat 0.5m x 0.5m was placed in the tidal mudflat at random and the snails within the 

area were counted. This census was conducted 10 times to find an average snail density.  

A linear regression was performed to determine the relationship between snail 

weight (cm) and snail length (g). Another linear regression was performed with the 

independent variable snail length (cm) and the dependent variable straight-line distance 

traveled in 24 hours (cm). A final linear regression analyzed the relationship between 

snail weight and the straight-line distance traveled in 24 h.  

1.2.6 Laboratory estimates of I. obsoleta grazing effects 

 An independent measure of snail grazing effects was conducted in the laboratory 

to estimate the proportion of the algal community consumed by snails in a given amount 

of time. Fourteen surface sediment samples were collected to a depth of approximately 

3mm, the depth over which BMA can vertically migrate (Pinckney et al., 1994). Each 

sample was homogenized and approximately equal masses were weighed and placed into 

two petri dishes. One snail was added to one of the dishes and allowed to graze for 30 

min, while the other matching dish remained ungrazed as a control. The plates were 

misted intermittently with filtered seawater to stimulate snail movement and compensate 

for evaporated water. After the grazing period, the snail was removed and the samples 

were transferred to individual 50 ml centrifuge tubes. Samples were held and prepared 

following the protocol prescribed in ‘Analytical Methods’.  

Concentrations of total chlorophyll a and fucoxanthin were analyzed for 

normality and homogeneity. Concentration of total chl a in the petri dish pairs was 
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analyzed with a paired t-test to determine if snails caused a significant decrease. A 

separate test compared the fucoxanthin concentration for the petri dishes.  

1.2.7 Grazing location preference by I. obsoleta  

 To determine if snails use chemical cues to select grazing location, eight samples 

of the top 3mm of sediment were collected from the marsh. Each sample was 

homogenized, a control sample taken, and similar masses spread into two petri dishes. 

One petri dish was left ungrazed, while the other petri dish was stocked with 10 I. 

obsoleta. The two dishes were left for 30 min to allow for grazing to occur. They were 

periodically sprayed with filtered seawater to compensate for evaporation and to promote 

snail movement. Once 30 min had passed, the snails were removed from the dish, the 

sediment samples were each homogenized, and a portion was transferred to a new petri 

dish. This third petri dish was divided in half, with one side randomly selected to hold the 

grazed sediment and the other the ungrazed sediment. A new snail was placed in the 

center of the divided petri dish, and allowed to graze for 5 min while being filmed. The 

snail was then removed from the dish and the ungrazed and grazed sediments were 

carefully collected, so as to prevent their mixing, and placed in their own 50 ml 

centrifuge tubes.  

 To determine if snails chose to graze on areas where other I. obsoleta had grazed, 

the same procedure described above was performed. However, during the 5 min grazing 

period on the third petri dish, the sediment was misted periodically with filtered sea water 

with snail chemical cues in it. The snail cue seawater was prepared by placing 20 snails 

in 200 ml of filtered seawater for 30 min. A total of 8 sets of samples were collected with 
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the snail cue addition. Samples were prepared following the methods outlined below in 

‘Analytical Methods’. 

Concentrations of chl a and fucoxanthin were independently analyzed for 

normality and homogeneity for each of the treatments. The concentration of total chl a 

was analyzed with an ANOVA comparing the control, the ungrazed, and the grazed 

samples with regular water misting during the individual snail grazing. Another ANOVA 

compared fucoxanthin concentrations for the petri dish sets with control water misting. 

The same analyses were performed for the datasets with snail cue seawater misting 

during the individual snail grazing periods.   

 The videos of snail grazing events were analyzed to determine the amount of time 

spent on each side of the petri dish. The times that snails spent on each side of the dish 

were analyzed for normality and homogeneity for both regular water misting and snail 

cue water misting. A paired t-test was performed on the times spent on each side of the 

dish with the control misting to determine if the snails spent significantly more time in 

the ungrazed or grazed side. Another paired t-test was performed on the time data 

collected from the experiment with the snail cue infused water, to determine if the snails 

are responding primarily to the cues of other snails.  

1.2.8 Analytical methods 

All samples for photopigment analysis were stored with limited light exposure in 

a -80oC freezer until they were prepared for HPLC analysis. Sediments were freeze dried 

for 24 h and prepared for HPLC analysis by adding 90% acetone and 50 µl of carotenal 

(used as an internal standard) per 1 ml of acetone to each sample. The solvent/sediment 

mixture was agitated vigorously and then held in a -20oC freezer for 24 h to allow for 



12 

pigment extraction to occur. After the allotted time, extracts were removed from the 

freezer and centrifuged at 13,400 RPM for 90 sec to decrease turbidity. A 3 ml syringe 

with a flat-tipped needle was used to decant the extract, which was then filtered through a 

0.45 µm filter. An aliquot of the sample was placed into the HPLC vial and ammonium 

acetate was added (250 µl per 1 ml of sample). The samples were then analyzed by 

HPLC. All sediments were retained, dried, and weighed for each sample to estimate the 

concentration of photosynthetic pigments per gram of dry sediment in the marsh.  

Filtered extracts (250 µl) were injected into a Shimadzu HPLC with a single 

monomeric column (Rainin Microsorb, 0.46 × 1.5 cm, 3 µm packing) and a polymeric 

(Vydac 201TP54, 0.46×25 cm, 5 µm packing) reverse-phase C18 column in series. A 

non-linear binary gradient consisting of solvent A (80% methanol : 20% 0.5 M 

ammonium acetate) and solvent B (80% methanol : 20% acetone) was used for the 

mobile phase (Richardson et al., 2006). Absorption spectra and chromatograms (440 ± 4 

nm) were obtained using a Shimadzu SPD-M10av photodiode array detector and pigment 

peaks were identified by comparing retention times and absorption spectra with pure 

standards (DHI, Denmark). The synthetic carotenoid β-apo-8’-carotenal (Sigma) was 

used as an internal standard. 

 

 

1.3 RESULTS 

1.3.1 Field estimates of microalgal community composition in mudflat microhabitats 

 A single factor analysis of variance was used to determine if there was a 

significant difference between the concentration of total chl a in the “high density” 
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mudflat compared to the “low density” mudflat. The data satisfied the major assumptions 

for ANOVA. There was no significant difference in total chl a between the two 

microhabitats (Figure 1.1; F1,13=1.384, p=0.249). Furthermore, a single factor ANOVA 

indicated that there was no significant difference in the fucoxanthin concentration of 

“high density” and “low density” mudflat sediments (Figure 1.2; F1,13=2.748, p=0.109). 

Thus there were no differences in total microalgal biomass or diatom biomass between 

the areas of high and low snail density in the mudflat.  

1.3.2 Microhabitat sediment moisture  

 An ANOVA was performed to determine if there was a significant difference in 

the sediment moisture by weight between the two microhabitats. There was a significant 

difference between the percent water in the “high density” and the “low density” mudflat 

(F1,8=32.205, p=0.000468). The “high density” sediment was on average 77.26±2.39% 

water by weight, whereas the “low density” microhabitat was 69.64 ± 1.83% water 

(Figure 1.3). Thus there is a significant difference between microhabitat moisture, which 

may be important for snail behavior.  

1.3.3 Field estimates of I. obsoleta grazing effects 

 Paired t-tests were used to determine if there were significant differences between 

the photosynthetic pigments in the sediment in front of a snail and within the grazed 

pathway behind it in the mudflat. Two outliers were removed to normalize the data 

pigment concentrations in the “high density” mudflat, leaving a total of 13 samples. 

There was no significant difference in the concentration of total chl a g-1 of dry sediment 

in the ungrazed and grazed areas in the snail trails on the high density mudflat (Figure 

1.4; t=0.289, df=12, p=0.777). There was also no significant difference between the 
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concentration of fucoxanthin in the “high density” mudflat (Figure 1.5; t=0.388, df=12, 

p=0.705). This indicated that snails do not significantly affect the microalgal biomass or 

diatom biomass during grazing in the high density mudflat. 

There was a significant difference in the concentration of total chl a between the 

grazed and ungrazed areas in the “low density” mudflat (Figure 1.4; t=2.200, df=14, 

p=0.045). There was significantly more chl a in the ungrazed areas in front of snails 

(166.69 ± 74.71 µg/g) than in their grazed pathways (127.89 ± 68.00 µg/g). There was no 

significant difference between the concentration of fucoxanthin in the grazed and 

ungrazed areas, however the probability only slightly exceeded the designated α level of 

0.05 (Figure 1.5; t=2.058, df=14, p=0.059).  Thus I. obsoleta can significantly decrease 

the microalgal biomass and substantially decrease the diatom biomass in areas with low 

snail density.  

The percent difference between the BMA concentration in front of a grazing snail 

and behind it was calculated for both the “high density” mudflat and the “low density” 

mudflat (Figure 1.6). In the “high density” mudflat there was a minimal mean difference 

between the BMA in ungrazed and grazed areas. However, in the “low density” mudflat, 

there was a substantially higher concentration of BMA in the ungrazed area in front of a 

snail compared to that in the grazed area behind it. This suggests that I. obsoleta can 

significantly decrease the BMA in areas with low snail density, but not in areas of high 

density.  

1.3.4 Field estimates of I. obsoleta grazing rate 

 In the intertidal mudflats of North Inlet, there are an average of 217.3 ± 130.99 

snails 0.25 m-1. A least-squares linear regression analysis of the dependent variable snail 
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length (cm) and the independent variable snail weight (g) indicated a significant linear 

relationship between the variables (n=9, adj r2=0.597, p=0.009) (Figure 1.7). The 

equation for the relationship was: 

(1) Snail weight= (1.026* snail length)-0.608 

Mud snails were capable of traveling a mean distance of 3.3 ± 1.4 cm min-1 and 

covering an area of 1.05±0.48 cm2 min-1. One snail was excluded from all analyses 

because it failed to move a detectable distance within the 2 min time interval allotted. If 

these values are extrapolated out over a 24 h period, assuming constant snail movement, 

then the average distance traveled is 4672.5 ± 2057.1 cm and the average area covered is 

1517.3 ± 696.1 cm2. However, in a 24 h period, mud snails traveled a straight line 

distance of 115.8 ± 82.1 cm, covering only 38.4 ± 29.9 cm2. After 48 h, they had traveled 

a straight-line distance of 211.5 ± 128.7 cm, covering an area of 77.0 ± 46.8 cm2. These 

values are substantially lower than those that would be expected when estimates are 

extrapolated from the distance per minute values above because those include path 

deviations from the straight line. This indicates that snails are inactive for a substantial 

period of the time, which could be due to diurnal cycles or the rise and fall of the tides.   

A linear regression of the relationship between snail length (cm) and the straight-

line distance traveled in 24 h (cm) indicated a significant linear relationship between the 

two variables (n=7, adj r2=0.682, p=0.014) (Figure 1.8). The equations for the 

relationship was: 

(2) Distance travelled in 24 hours= (-672.697 * snail length)+1150.956 

A least-squares linear regression analysis of the dependent variable of straight-

line distance travelled in 24 h (cm) and the independent variable of snail weight (g) 
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indicated a significant linear relationship between the two variables (n=7, adj r2=0.974, 

p=0.000023) (Figure 1.9). The equation for the relationship was: 

(3) Distance travelled in 24 hours= (-608.762* snail weight)+706.925 

1.3.5 Laboratory estimates of I. obsoleta grazing effects 

 A paired t-test was used to determine if there was a significant difference between 

the concentration of photosynthetic pigments in ungrazed petri dishes and dishes that had 

been grazed by a single snail for 30 min. There was no significant difference in the total 

chl a concentrations in the grazed and ungrazed petri dishes (Figure 1.10; t=0.946, 

p=0.361). Similarly, there was no significant difference in the concentration of 

fucoxanthin between the dishes (Figure 1.11; t=0.894, p=0.388).  This indicates that 

individual mud snails cannot cause a significant decrease in the biomass of benthic 

microalgae or diatoms in an area of 56.7 cm2 in 30 min.  

1.3.6 Grazing location preference by I. obsoleta  

 Mud snails were allowed to graze in a petri dish with heavily grazed and ungrazed 

sediment. The time spent in each side of the dish was analyzed with a paired t-test. When 

the snails were misted with regular sea water, they spent more time in the grazed side of 

the petri dish (185.71 ± 72.41 s) than in the ungrazed side (79.43 ± 70.91 s). When one 

outlier was removed, this difference was nearly statistically significant (Figure 1.12; 

t=2.292, p=0.062). However, when the snails were misted with seawater infused with 

snail cues, the mud snails did not show a clear preference for the grazed side of the dish 

(t=0.362, p=0.730). Therefore, I. obsoleta seems to prefer to spend more time on 

sediment with conspecific cues.    



17 

An ANOVA showed that there was nearly a significant difference in the 

concentration of total chl a between the two sides of the dish and their control during the 

experiment with regular seawater misting (Figure 1.13; F2,5=3.345, p=0.058). The grazed 

and ungrazed had similar concentrations of total chl a (228.95 ± 116.38 µg/g and 225.47 

±9 8.73 µg/g, respectively), whereas the control sample had a lower concentration 

(130.16 ± 63.89 µg/g). In a test of fucoxanthin concentrations under regular seawater 

misting conditions, there was a nearly significant difference between the control, grazed, 

and ungrazed (Figure 1.14; F2,4=3.410, p=0.055). One outlier had to be removed from 

that analysis to normalize the data. Again, the control had a lower concentration of the 

photosynthetic pigment (48.37 ± 21.77 µg/g) compared to the grazed and ungrazed, 

which were similar (96.78 ± 49.15 µg/g and 100.95 ± 48.68 µg/g, respectively).  This 

indicates that the inherent variation of BMA biomass in the sediment is greater than that 

caused by mud snail grazing.  

 The same analyses were completed for the sediments from the snail cue misting. 

An ANOVA showed that there was a significant difference between the concentrations of 

total chl a in the control, grazed, and ungrazed samples (Figure 1.13; F2,5=8.485, 

p=0.002). An R-E-G-WF post hoc analysis showed that the grazed and ungrazed samples 

were a homogenous group and that they were significantly different from the control.  

The grazed and ungrazed samples had total chl a concentrations of 146.79 ± 41.21 µg/g 

and 222.19 ± 134.84 µg/g, respectively, whereas the control had a total chl a 

concentration of 373.24 ± 133.15 µg/g. An ANOVA was also used to determine if there 

was a significant difference in the concentration of fucoxanthin between the three 

treatments with snail cue misting. With one outlier removed, there was a significant 
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difference between the three treatments (Figure 1.14; F2,4=16.842, p=0.000075). An R-E-

G-WF post hoc analysis again showed that the grazed and ungrazed were a homogenous 

group, with fucoxanthin concentrations of 61.93 ± 15.38 µg/g and 70.83±16.85 µg/g; the 

control sample group was significantly different, with a mean fucoxanthin concentration 

of 127.63 ± 32.61 µg/g. This leads to the conclusion that the inherent variation in BMA 

biomass is more significant than that caused by grazing mud snails. 

 

 

1.4 DISCUSSION 

In this study, the mudflats of North Inlet, SC were divided into two microhabitats 

based on the density of I. obsoleta grazers. Despite substantial spatial heterogeneity in the 

benthic environment, as shown in previous research and here, there was no significant 

difference between the “high density” mudflat BMA biomass and the “low density” 

sediment biomass (Figure 1.1). This indicates that the areas where the snails congregate 

are not chosen based on an abundance of their primary food source. A previous study 

found that chl a stimulated snail activity to a small extent, and only once they were 

already active (Orvain and Sauriau, 2002). Future studies should examine how responsive 

these snails are to their different potential food sources. It is unclear why the snails are 

congregating in these areas of relatively average food availability. It may be that food 

availability is too unpredictable on small spatiotemporal scales for a mechanism of 

detection to have evolved. It is also possible that food may be present at relatively similar 

levels through time and space, so there is no strong need to detect it. The similarities in 



19 

BMA biomass across the mudflat suggests that the spatial distribution of I. obsoleta is not 

driven by food availability, but rather by some other factor(s).  

Mud snail distribution could be driven by ecological factors, including the 

meiofaunal assemblage in the mudflat. Studies have shown that I. obsoleta does not prey 

directly on the meiofauna (Feller, 1984; Nichols and Robertson, 1979). However, 

exclusion experiments have found higher densities of both benthic diatoms and 

meiofauna in the absence of I. obsoleta (Nichols and Robertson, 1979). Future studies 

should examine how I. obsoleta interacts with the meiofauna and how strongly they 

impact meiofaunal distribution. Changes in community structure elicited by snail grazing 

are important for understanding the estuarine food web.  

Abiotic factors may also be a driving force for mud snail distribution. Areas of I. 

obsoleta congregation tend to be slightly lower in elevation and have increased water 

availability. An analysis of sediment moisture by weight indicated that the “high density” 

areas of the mudflat were significantly wetter than “low density” areas (Figure 1.3). A 

study by Coffin et al. (2008) indicated that I. obsoleta distribution and movement were 

both affected by tide pools on the mudflat. Mud snails tended to congregate in pools after 

the tide receded, reaching a density ~20 times higher in pools versus outside of them; 

snails in the tide pools also spent more time moving than those outside of the pools 

(Coffin et al., 2008). Other experiments have also shown that sediment moisture content 

influences snail behaviors and that only in the presence of seawater, would snails become 

active (Orvain and Sauriau, 2002). Desiccation is a known dominant factor affecting 

behavior and habitat selection in many snails, including another intertidal snail, Littoraria 

irrorata, which spends most of its time on plant stalks and hard surfaces (Gómez-
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Cornejo, 1993). I. obsoleta have a relatively small operculum compared to their shell 

apertures, and are thus subject to increased water loss (Hyman, 1967). For that reason, it 

seems likely that the behavior of this species is particularly driven by water availability.  

The relationship between snail activity and moisture level is supported by the 

seawater misting used during this study. Preliminary observations indicated that snails 

held in the laboratory would become inactive, even when placed on relatively damp 

sediment. Sediments lost moisture to evaporation between collection and use, as well as 

during laboratory experiments, likely resulting in the decreased snail activity. 

Additionally, unmisted sediment samples in petri dishes lost over 2% of their water by 

weight in a 30 min period. This loss was primarily from the surface that the snail was in 

contact with, exacerbating the drying effect on snail activity. When experimental snails 

were misted periodically with seawater, the sediment would become moister and the 

snails would resume activity quickly. For this reason, snails were misted with seawater 

during the laboratory experiments performed in this study. It is possible that misting had 

some unintended effect on snail activity beyond promoting movement. Future studies 

could examine how seawater misting affects snail behavior compared to natural moisture 

inputs. I. obsoleta used in field experiments of this study were not misted with seawater. 

In situ experiments have a natural addition of seawater from the tidal creeks that keeps 

the snails and sediments moist, so misting was not necessary. Both the sediment moisture 

analysis and misting results indicate that the distribution and activity of I. obsoleta is 

driven by the physiological need to maintain moisture, rather than the need to find food 

on the mudflat.  
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Individual snails can have a significant effect on the BMA biomass on small 

spatiotemporal scales. This study found that there was significantly higher BMA biomass 

in front of a grazing snail compared to that behind it in the “low density” mudflat (Figure 

4); however, this trend did not hold in the “high density” areas. It is unclear why there 

was no significant difference in the “high density” areas, but ideas have been proposed. It 

is possible that the BMA community composition in the “high density” areas is different 

than that in the “low density” microhabitat due to differences in grazing pressure or 

abiotic conditions. Previous studies have found that I. obsoleta shows grazing selectivity 

for the migratory diatoms found at the sediment-water interface (Connor and Edgar, 

1982). These migratory diatoms may be relatively more abundant in the “low density” 

mudflat and thus they would experience a more significant change with grazing. Benthic 

microalgae also have extended time to restore the surface community in the “low 

density” mudflat, as grazing pressure is minimal in these areas (Alvarez et al., 2013). 

This recovery period could amplify the observed grazing effect of I. obsoleta on the 

BMA community, as there may be relatively more desirable food and higher grazing 

rates. However, microalgal recovery also means that I. obsoleta grazing effects are 

relatively short-lived, as the BMA community can replenish the surface. Another possible 

cause for the difference in observed grazing effects is the “high density” mudflat has 

greater variability in BMA density (Figure 1.1), and a greater chance of re-grazing as 

snails are more likely to cross pre-grazed paths due to their abundance. This variability in 

the BMA biomass and high chance of re-grazing may decrease the effect I. obsoleta has 

in the “high density” microhabitat. Despite the fact that I. obsoleta individuals are 

capable of causing a significant decrease in the concentration of BMA, this likely 
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happens rarely and on a very small scale, as the snails are typically grouped together in 

“high density” areas where they are unable to elicit a significant change.  

Variations in abiotic factors have the potential to cause the disparity in I. obsoleta 

grazing effects between microhabitats. Imbalances in moisture between the two 

microhabitats may drive differences in BMA growth rate; wetter areas may have an 

increased BMA growth rate, leading to a faster recovery and decreased observed role of 

grazing I. obsoleta. Many grazers also have significant, indirect biochemical effects on 

the sediment as a result of bioturbation. The “high density” areas may have increased 

light availability due to bioturbation during grazing, which may enhance BMA growth. 

Studies have shown that intermediate grazing can stimulate BMA production by 

increasing the depth of the sediment photic zone by thinning the microalgal over-story 

and cropping away older cells (Alvarez et al., 2013). “High density” areas also have 

increased nutrient supply from fecal deposition and bioturbation, which could enhance 

BMA growth and diminish the grazer effect (Premo and Tyler, 2013). Alvarez et al. 

(2013) also found that grazing could stimulate BMA production by increasing nutrient 

availability. Future studies should examine how bioturbation and abiotic factors influence 

the rate of BMA growth, and how they in turn may affect grazers.  

Experiments performed in the laboratory indicate that individual I. obsoleta are 

not capable of causing a significant change in BMA biomass over larger spatiotemporal 

periods. When individual snails were allowed to graze a petri dish of sediment 

approximately 56.7 cm2 for 30 min, they were unable to cause a significant decrease in 

BMA biomass compared to the control, though the mean concentration of total chl a was 

lowered (Figure 1.10). When ten snails were allowed to graze a petri dish over a 30 min 
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period they were unable to significantly decrease the concentration of BMA significantly 

compared to the ungrazed dish, though they were able to reduce BMA biomass (Figure 

1.13). Another lab study also found that I. obsoleta could suppress benthic microalgal 

communities in the surface sediment, but not significantly compared to the control 

(McLenaghan et al., 2011). Hagerthey et al. (2002) found that another species of 

intertidal snail, Hydrobia ulvae, did not cause a significant decrease in benthic diatom 

biomass over a large area in a laboratory setting. Therefore, it can be concluded that 

intertidal snails, including I. obsoleta, may not have a significant, large-scale impact on 

the BMA biomass within the mudflat when compared to the rate of BMA growth.  

 Mud snails are typically most active in the moist conditions of the “high density” 

mudflat, moving at an average speed of 3.3 ± 1.4 cm min-1. Another study of I. obsoleta 

found the snails could move at an average speed of 2 mm s-1 (or 12 cm min-1) which is 

much faster than the speeds observed in this study (Dimock, 1985). The intertidal snail L. 

littorea found an average speed of 3.55 cm min-1, which is much closer to that of I. 

obsoleta observed here (Erlandsson and Kostylev, 1995). Snail speed may be dependent 

on a variety of factors, particularly seasonal cycles or environmental conditions. In other 

intertidal conditions, specifically around the base of Spartina stems, I. obsoleta are 

essentially inactive at low tide, potentially due to the increased risk of desiccation. From 

the grazing rate estimates in this study, it seems that I. obsoleta spends a substantial part 

of the day inactive. Snail inactivity may be driven by snail size. A linear regression 

showed that there was a significant relationship between snail length and the straight-line 

distance it traveled in 24 h (Figure 1.8), as well as the snail’s weight and the 24 h distance 

(Figure 1.9). While larger snails may have the competitive advantage over their smaller 
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counterparts, they do not seem move around the mudflat as much. This may be because it 

is more energetically costly for larger, heavier snails to travel, or they may have the 

competitive advantage locally. Larger snails may be able to extract more BMA from the 

sediment per unit area than smaller individuals, as they may be able to bioturbate deeper 

into the sediment to obtain food. Since the large snails would have increased access to 

BMA, they would not need to move great distances to obtain more food. Cheng et al. 

(1983) found that I. obsoleta tissue dry weight is a function of shell length, with longer 

shells having a smaller shell to tissue ratio than their smaller counterparts. This indicates 

that larger snails have relatively more body tissue, likely incurring higher metabolic 

costs, but also potentially permitting enhanced grazing capabilities. Future studies should 

determine if snail size influences bioturbation depth and nutrient acquisition.   

This study did not examine the daily routines of snail behavior, but periods of 

inactivity could occur during tidal inundation, when predatory crabs and fish are present, 

or at night, when snails were unobserved. However, previous studies have found wide 

ranges of mean distances traveled for I. obsoleta, which are not necessarily in line with 

this proposed inactivity. A study by Curtis (2005) found that the mud snails moved an 

average of 1.7 m per day, which is lower than the extrapolated values found in this study, 

but consistent with the 24 h straight-line distances. Another study found a mean daily 

displacement of 10.7 m for I. obsoleta, which far exceeds the findings here (Coffin et al., 

2008). The driving factors for the variations in snail displacement are unclear, but they 

may be controlled by differences in habitat, changes in sediment moisture with tidal 

cycle, concentration of predators, sediment type, or seasonal cycles. If I. obsoleta does 
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have relatively long periods of inactivity, this may limit their potential impacts of on the 

mudflat BMA biomass.  

In situ results from this study indicate that the mud snails are not exerting 

significant control over the BMA community in the intertidal mudflats. There was no 

significant difference in the BMA biomass between densely populated microhabitats and 

“low density” areas, as would be expected if the snails were having a strong grazing 

effect. Additionally, individual I. obsoleta were not able to cause a significant decrease in 

BMA biomass while grazing in the “high density” areas. However, when individual snail 

effects are scaled up to the larger scale, the effect of I. obsoleta grazers on the BMA 

community changes. Using the 24 h straight-line distance, individual mud snails cover an 

average of 38.4 ± 29.9 cm2 d-1. At the average observed density of 869.2 snails m-2 the 

snail population of one square meter can cover over 3.34 m2 d-1. This would indicate that 

the snails are either venturing away from their groups into “low density” areas, or they 

are crossing over the pathways of other snails. However, snail congregation areas were 

observed to be fairly constant with time, so the likely factor is re-grazing of pathways. 

This re-grazing would increase the overall snail effect on the BMA in a certain area, thus 

enhancing their impact. This study found that the concentration of BMA is approximately 

3.4*105 µg total chl a m2 in both high and low density microhabitats. Analysis showed 

that mud snails can decrease BMA biomass by an average of 19.43% in “low density” 

areas (Figure 1.6). If the snails were able to exert this control over BMA in all areas of 

the mudflat, they could decrease BMA biomass by approximately 20%. This can be 

easily recovered by the BMA, which reproduces at a rate of approximately one doubling 

per day. However, it is likely that the mud snails in one square meter are re-grazing a 
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given area more than three times in order to cover an area of 3.34 m2d-1. If this were the 

case, then the I. obsoleta population in one square meter could decrease that area’s BMA 

biomass by almost 60%. That rate of decrease cannot be matched by the growth rate of 

the BMA. Therefore, it is theoretically possible for the mud snail population to 

significant affect the BMA biomass in the surface mudflat. This is in contrast with the in 

situ results of this study, which show no significant difference in BMA biomass in “high 

density” compared to “low density” areas. If the snails did exert a significant grazing 

effect on the BMA, the two microhabitats would likely have significantly different BMA 

biomass. The homogeneity between microhabitats indicates that snails are probably 

inactive for a considerable period of time or that they are not grazing for a substantial part 

of the day. Future studies should examine the daily routines of snail behavior and 

grazing.  

 In addition to the physiological need to avoid desiccation, chemical cues seem to 

play an important role in determining the congregation and grazing behaviors of these 

mud snails. Previous studies have found that many species of snails, including I. 

obsoleta, are known to sense the chemical cues of their conspecifics, and often directly 

follow their mucus trails (Atema and Burd, 1974; Ng et al., 2013). There are many 

reasons that snails may follow conspecific trails; these include, but are not limited to, 

homing, mate location and communication, nutrition, and energy conservation (Ng et al., 

2013). In this study, when I. obsoleta were misted with regular sea water, they showed a 

clear preference for sediment that had been previously grazed by conspecifics. However, 

when the snails were misted with sea water infused with conspecific cues, individuals did 

not show a preference for either the previously grazed or ungrazed sediments. These 
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findings indicate that I. obsoleta can sense the presence of conspecifics and exhibits a 

positive response to their cues. Therefore, the snails are likely choosing their grazing 

location based on sediment moisture content and conspecific chemical cues, rather than 

on food availability or chemical cues from grazed BMA. 

 This study found that I. obsoleta does not cause large-scale, significant decreases 

in the concentration of benthic microalgae in a pristine saltmarsh mudflat. However, 

these snails are theoretically capable of having a strong, negative grazing effect on the 

BMA community. I. obsoleta congregate together on the mudflat, but not in areas with 

significantly higher productivity, as might be expected. Rather it seems that this grouping 

behavior is due to favorable physical conditions in these lower, moister areas, and that 

this behavior is guided by chemical communication between conspecifics. 

 



 

 

2
8
 

Figure 1.1 Concentration of total chl a in the sediment of two microhabitats. There is no significant difference between the 

concentration of total chl a in the “high density” and “low density” mudflat microhabitats (ANOVA, p=0.249). 
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Figure 1.2 Concentration of fucoxanthin in the sediment of two microhabitats. There is no significant difference between the 

concentration of fucoxanthin in the high density and low density mudflat microhabitats (ANOVA, p=0.109). 
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Figure 1.3 Percent water of mudflat sediment by weight. The “high density” mudflat has significantly higher water content than the 

“low density” mudflat (ANOVA, p=0.000468). 
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Figure 1.4 Concentration of total chl a in two mudflat microhabitats grazed and ungrazed sediments. There is no significant 

difference in the concentration of total chl a relative to grazing in the “high density” mudflat (paired t-test, p=0.777). There is a 

significant difference between total chl a in ungrazed and grazed areas in the “low density” mudflat (paired t-test, p=0.045). 
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Figure 1.5 Concentration of fucoxanthin in two mudflat microhabitats, grazed and ungrazed sediments. There is no significant 

difference in the concentration of fucoxanthin relative to grazing in the “high density” mudflat (paired t-test, p=0.705). Data is 

nearly significant difference in the “low density” mudflat, relative to grazing (paired t-test, p=0.059). 
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Figure 1.6 Percent difference between the concentrations of chl a in ungrazed and grazed sediments, normalized to the ungrazed 

concentration. There is a minimal mean difference in grazed and ungrazed total chl a in the “high density” mudflat, whereas there 

is significantly more total chl a in the ungrazed areas of the “low density” mudflat. 
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Figure 1.7 Linear relationship between snail length and weight. There is a significant, positive relationship between the two 

variables (p=0.009). 
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Figure 1.8 Linear relationship between snail length and 24 hour straight-line distance. There is a significant, negative relationship 

between snail length and distance traveled (p=0.014). 
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Figure 1.9 Linear relationship between snail weight and distance traveled in 24 hours. There is a significant, negative relationship 

between the two variables (p=0.000023). 
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Figure 1.10 Concentration of total chl a in paired petri dishes. There was no significant difference between total chl a in the grazed 

and ungrazed dishes (paired t-test, p=0.361).   
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Figure 1.11 Concentration of fucoxanthin in paired petri dishes. There was no significant difference between fucoxanthin in the 

grazed and ungrazed dishes (paired t-test, p=0.388). 
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Figure 1.12 Average amount of time snails spent on different sediment treatments. Snails spent more time on sediments that had 

been previously grazed by conspecifics when misted with regular seawater (paired t-test, p=0.062). There was no significant 

difference in time spent on each side when snails were misted with snail-cue infused seawater (paired t-test, p=0.730). 
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Figure 1.13 Concentrations of total chl a in three sediment types with misting treatments. For the No Cue misting treatment (misted 

with regular seawater), there was no significant difference in total chl a in the three sediment treatments (ANOVA, p=0.058). For 

the With Cue treatment (misted with snail-cue infused seawater), there are two homogenous groups: (1) the control and (2) grazed 

and ungrazed. There is a significant difference between groups 1 and 2 (ANOVA, p=0.002). 
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Figure 1.14 Concentrations of fucoxanthin in three sediment types with misting treatments. For the No Cue misting treatment 

(misted with regular seawater), there was no significant difference in fucoxanthin in the three sediment treatments (ANOVA, 

p=0.055). For the With Cue treatment (misted with snail-cue infused seawater), there are two homogenous groups (1) the control 

and (2) grazed and ungrazed. There is a significant difference between groups 1 and 2 (ANOVA, p=0.000075). 
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