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Abstract

Background. Diabetes is a widespread public health concern that alters the 

metabolism of adipocytes through high glucose stress and hormonal 

dysregulation. Under diabetic conditions there are excess nutrients available and 

subsequently an accumulation of tricarboxylic acid cycle intermediates such as 

fumarate. Fumarate can irreversibly react with protein cysteine residues to form 

S-2-succinocysteine (2SC, protein succination). Succinated proteins can be 

turned over by autophagy, a mechanism of removing damaged proteins and 

organelles that have accumulated due to metabolic stress.  

Purpose. The basal flux through autophagy in adipocytes matured in non-

diabetic and diabetic conditions was examined to determine the turnover of 

succinated proteins. Additionally, fumarase content was reduced using a shRNA 

lentiviral knockdown to elevate fumarate levels. This model of enhanced 

succination was used to assess autophagic flux and succinated protein turnover 

in the total homogenate and enriched fractions of the cytosol, mitochondria, and 

nucleus. 

Methods. 3T3-L1 fibroblasts were differentiated to adipocytes then matured in 

normal or high glucose conditions. Using total cell lysates, I assessed 2SC and 

autophagic flux via western blotting. Additionally, I knocked down fumarase (Fh 

k/d) in 3T3-L1 fibroblasts, differentiated them to adipocytes, and evaluated 
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differences in 2SC and autophagic flux both in the total homogenate and in 

individual cellular fractions.  

Conclusions. I conclude that succinated proteins are turned over by autophagy, 

but that flux through autophagy is reduced under high glucose conditions. 

Similarly, when succination is enhanced in adipocytes by Fh k/d, autophagic flux 

is reduced. Despite this, succinated protein turnover by autophagy occurs at a 

faster rate in the mitochondrial enriched fraction verses other fractions of Fh k/d 

adipocytes. These results provide insight on how metabolic dysregulation and 

protein modification may contribute to reduced autophagy under diabetic 

conditions and confirm the utility of 2SC as a marker for high glucose stress. 
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Chapter I 
 

INTRODUCTION  
 

1.1. Public Health Dilemma  

Metabolic syndrome is defined as the presence of at least three of the 

following: large waistline (≥ 40 inches for men or 35 inches for women), high 

triglycerides (≥ 150 mg/dL), low HDL cholesterol (≤ 40 mg/dL for men or 50 

mg/dL for women), high blood pressure (systolic ≥ 130 mm Hg or diastolic ≥ 85 

mm Hg), and high fasting blood glucose (≥ 100 mg/dL). The presence of these 

risk factors indicates increased risk for the development of heart disease, 

diabetes, and stroke. Type 2 diabetes mellitus (T2DM) and obesity are 

predominantly lifestyle-induced metabolic dysfunctions, derived from the 

combined effects of excessive caloric intake and increased sedentary behavior. 

Current Centers for Disease Control statistics show that 9.3% of the US 

population suffer from diabetes, 28.3% of adults are obese, and an additional 

35.5% of adults are overweight (CDC). The prevention and treatment of these 

conditions is a national health crisis that requires immediate attention. Since 

T2DM and obesity are systemic, their effects on metabolic dysfunction are 

observed in many organs including the adipose tissue, liver, and muscle. As the 

disease progresses, other organs including the kidneys, heart, and eyes are also 

affected by diabetic complications. Therefore, a detailed mechanistic 

understanding of the cellular processes contributing to dysregulated metabolism 
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in these organs is required. In particular, the importance of maintaining 

metabolically healthy adipose tissue has received increased attention 

considering its roles in energy storage and hormone production. 

1.2. Adipose Tissue 

Adipose tissue is a specialized tissue in which the body stores extra 

energy as triglycerides or releases free fatty acids in the presence of an energy 

deficit. This unique role allows cellular lipid droplet storage without lipotoxicity 

(Konige et al. 2014). This process is highly regulated by hormones that respond 

to the changing metabolic needs of the body. In the absence of immediately 

available nutrients, such as during the fasted state, glucagon and epinephrine will 

be released leading to lipolysis and the mobilization of energy-rich fatty acids. In 

contrast, during energy surplus, insulin antagonizes fuel mobilization and 

promotes the synthesis and storage of triglycerides in the adipocytes. The 

significant endocrine function of the adipocyte also contributes to the regulation 

of energy balance. Adipocyte hormones (adipokines) are secreted from the 

adipocyte and have roles in the regulation of satiety (leptin) and mediating insulin 

sensitive effects on muscle and liver (adiponectin) (Diez and Iglesias, 2003). 

Therefore, the combined actions of the adipocyte in the storage of surplus energy 

and systemic fuel utilization demonstrate its importance in systemic energy 

homeostasis.  

Adipocyte metabolism is altered in diseases states such as obesity and 

T2DM that compromise adipose tissue homeostasis. Obesity is a chronic state of 

nutrient excess that results in adipocyte enlargement. This adipocyte hypertrophy 
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eventually leads to cell death as well as lipid accumulation in non-adipose tissues 

such as muscle and liver (Giordano et al. 2013, Petersen et al. 2005, Sinha et al. 

2002). Dying adipocytes release fatty acids into the circulation that can be taken 

up by the liver, contributing to hepatic steatosis (Alkhouri et al. 2010). Treatment 

with PPARγ agonists, the thiazolidinediones (TZDs), induces adipogenesis and 

improves insulin action in both muscle and liver by promoting the redistribution of 

fat out of these tissues and into peripheral adipocytes. The induction of PPARγ in 

adipocytes alone is sufficient to improve whole-body insulin sensitivity (Lehmann 

et al. 1995, Mayerson et al. 2002, Sugii et al. 2009). 

The development of T2DM and reduced insulin sensitivity has been linked 

to metabolic stresses induced by nutrient excess, when the fuel supply exceeds 

the demands of the adipocyte (Keller and Attie, 2010). This results in increased 

intra-adipocyte stress in organelles such as the endoplasmic reticulum (ER) and 

the mitochondria. (Choo et al. 2006, Frizzell et al. 2012, Gregor and Hotamisligil 

2007, Lin et al. 2005). Mitochondrial stress is increased under high glucose 

conditions as adipogenesis is occurring (Frizzell et al. 2012, Nagai et al. 2007). 

These metabolic stressors produce oxidative stress that induces cellular 

dysfunction.  

Mitochondrial oxidative stress is believed to have an important role in 

mediating adipocyte dysfunction (Frizzell et al. 2012, Lin et al. 2005). These 

conditions of oxidative stress can lead to the post-translational modification of 

proteins, impairing their normal function. The carbonylation of adipocyte proteins 

by hydroxynonenal (HNE), a product of lipid oxidation, has been demonstrated in 
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adipocytes under diabetic conditions (Grimsrud et al. 2007, Tang et al. 2012). 

Recently, our laboratory has documented a new irreversible protein modification 

that is increased in adipocytes in high glucose conditions (see Section 1.3 

below). Overall, the investigation of the biochemical changes occurring in the 

adipocyte under developing diabetic conditions is necessary to understand the 

mechanistic changes that contribute to adipocyte dysfunction. A better 

understanding of these pathways will allow us to design better therapeutic 

approaches for the management of diabetes and its complications. 

1.3. Protein Succination 

Protein succination is a chemical modification produced following the 

reaction of fumarate with the sulfhydryl group of cysteine to produce a stable 

adduct; S-2-succinocysteine (2SC) (Alderson et al. 2006; Figure 1.1). Our 

laboratory has demonstrated that cellular stress induced by nutrient excess leads 

to an accumulation of succinated proteins. The excess glucose availability 

(glucotoxicity) in adipocytes induces mitochondrial stress and leads to the 

accumulation of ATP (Figure 1.2). This energy accumulation will feedback and 

inhibit oxidative phosphorylation through mitochondrial respiratory control. Since 

the membrane potential is elevated, the electron transport chain is inhibited so 

that NADH concentration is increased. This increase in NADH/NAD+ ratio inhibits 

the NAD+ dependent enzymes of the tricarboxylic acid cycle causing 

accumulation of metabolic intermediates such as fumarate and malate. Fumarate 

reacts with available cysteines to form succinated proteins. Hence, increases in 



5 

the NADH/NAD+ ratio appear to be a critical component contributing to elevated 

2SC levels. (Frizzell et al. 2012)  

Protein succination is increased on ~40 proteins in adipocytes in vitro and 

in vivo has been demonstrated to decrease the functionality of some of these 

proteins (Frizzell et al. 2009). Under diabetic conditions adiponectin is succinated 

and subsequently has impaired ability to oligomerize, preventing its secretion 

(Frizzell et al. 2009). This is significant given that high molecular weight forms of 

adiponectin are decreased in the plasma of T2DM patients and animal models 

(Pajvani et al. 2004). Additionally, an important mitochondrial enzyme, 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH), is irreversibly succinated 

under diabetic conditions (Blatnik et al. 2008). Succination has also been shown 

to target metabolic proteins in cancerous conditions such as aconitase, resulting 

in enzymatic inhibition (Ternette et al. 2013). While we have identified many 

succinated proteins and examined how succination may affect protein structure 

or function, we have yet to examine how succinated proteins can be turned over 

within the adipocyte.  

Succination appears to be unique to white adipose tissue. Using tissue 

samples from db/db and ob/ob diabetic mice we observed that succination 

increased in white adipose tissue but not in other tissues. Additionally, we did not 

observe an increase in succination in the presence of diet induced obesity and 

insulin resistance where mice were not diabetic yet. We concluded that 

succination is only markedly elevated after the onset of T2DM, not just a result of 

obesity and insulin resistance. Hence, 2SC may be a marker of the progression 



6 

to diabetes. We have confirmed that the limited oxidative demands of white 

adipose tissue make it uniquely susceptible to the accumulation of succinated 

proteins. (Frizzell et al. 2012, Thomas et al. 2012) 

1.4. Mechanisms of Protein Turnover  

Damaged proteins are removed from the cell via one of two catabolic 

pathways: the ubiquitin proteasome system (UPS) or the lysosomal degradation 

system known as autophagy. Protein degradation is highly regulated and occurs 

in response to cellular stress, such as nutrient deprivation, to provide the cell with 

amino acids, such as alanine, that can be used for gluconeogenesis. In a healthy 

cell these processes maintain levels of damaged and dysfunctional proteins 

below a specific threshold.  

The UPS is a process of degrading damaged proteins (Figure 1.3). 

Ubiquitin ligases E1, E2, and E3 will activate, conjugate, and then transfer 

ubiquitin to the unfolded or misfolded proteins. Once proteins are 

polyubiquitinated, i.e. have received multiple ubiquitin tags, they are targeted to 

the 26S proteasome. Ubiquitinated proteins are then degraded in an ATP-

dependent manner by the proteasome. The resulting amino acids are then 

reutilized by the cell for energy or the synthesis of new proteins. 

Autophagy is the process by which damaged proteins and organelles are 

degraded in the lysosome (Figure 1.4). Similar to the UPS, protein flux through 

autophagy occurs to ameliorate cellular stress induced by an accumulation of 

cellular debris. Autophagy induction usually occurs through the signaling cascade 

involving serine/threonine-protein kinase ULK1. Autophagy begins when the 
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autophagosome membrane encases the proteins and organelles to be degraded. 

Numerous autophagy related genes (Atg) are involved in the stages of 

membrane elongation and maturation. A critical component of autophagosome 

formation—and hence a commonly used marker of autophagy—is microtubule-

associated protein light chain 3 (LC3) (Geisler et al. 2010). LC3 in the cytosol is 

present as LC3-I which is activated through lipidation with the assistance of Atg7, 

a 78 kDa protein containing 20 cysteine residues, to form LC3-II (Tanida et al. 

2008, Glick et al. 2010, Weidberg et al. 2011). Active LC3-II formation is a 

necessary component of autophagosome membrane formation. Once the 

autophagosome has enclosed the proteins and organelles to be degraded, it 

fuses with the acidic lysosome and dispels its contents within the 

autophagolysosome (Klionsky et al. 2014, Qiao et al. 2015). Ultimately, cellular 

metabolites recovered from lysosomal degradation will be reutilized in the cell for 

energy or in protein synthesis. The process of autophagy is important for 

maintaining healthy organelle flux. If a cell is unable to properly regulate protein 

turnover and degradation under metabolically stressful conditions, it will undergo 

apoptosis (Jin, 2006, Mazure and Pouyssegur, 2010).  

1.5. Experimental Aims 

The purpose of this investigation is two-fold: (1) to examine the efficiency 

of autophagy in high glucose conditions and to determine if the autophagy 

regulator Atg7 is succinated; and (2) to determine the flux through autophagy of 

succinated proteins in several enriched organelle fractions in adipocytes. We 

hypothesized that succinated protein turnover by autophagy might be reduced in 
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diabetic conditions and that mitochondrial enriched fractions might have more 

succinated protein degradation through autophagy than other cellular fractions.  

In order to mechanistically examine how succinated proteins are turned 

over in the adipocyte we will use the 3T3-L1 fibroblast model. They are a pre-

adipogenic fibroblast cell line (Green and Kehinde, 1975) that can be 

differentiated and matured to adipocytes in the presence of insulin, 

dexamethasone, and 3-isobutylmethylxanthine. I will maintain matured 

adipocytes in 5 mM glucose to represent normoglycemic conditions or 30 mM 

glucose to represent poorly controlled diabetes. In order to enhance fumarate 

levels and succination in the 3T3-L1 adipocytes I have also employed a lentiviral 

strategy to knockdown fumarase using a shRNA (Chapter 2). 
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Figure 1.1. Mechanism of Protein Succination. Protein succination occurs by 
the reaction of the tricarboxylic acid cycle metabolic intermediate fumarate with 
the cysteine residue of a protein. This irreversible bond formation produces S-2-
succinocysteine (2SC).  
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Figure 1.2. Mitochondrial Stress Leads to Protein Succination. Glucotoxicity 
will induce cellular stress that results in elevated protein succination. Nutrient 
excess (glucotoxicity) will increase the ATP/ADP ratio resulting in an elevated 
mitochondrial membrane potential (∆Ψm), increased NADH levels, and 
subsequently the accumulation of the tricarboxylic acid cycle intermediate 
fumarate. Fumarate will then react with protein thiol groups to form a succinated 
protein (Protein-2SC).  
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Figure 1.3. Degradation of Proteins in the Proteasome. Proteasomal protein 
degradation occurs when proteins become polyubiquitinated, targeting them to 
the 26S proteasome to be degraded into metabolites.  
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Figure 1.4. Degradation of Proteins by Autophagy. Autophagy is the 
lysosomal degradation of proteins and organelles. The conversion of the initial 
phagophore to the autophagosome occurs with the assistance of multiple 
autophagy related genes (Atgs) and active microtubule-associated protein light 
chain 3 (LC3 in the form of LC3-II) to enclose the autophagosome. The 
autophagosome will then fuse with the acidic lysosome where its contents will be 
degraded and recycled by the cell.  
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Chapter II 
 

AUTOPHAGIC FLUX IN ADIPOCYTES DURING DIABETES 
 

2.1. Introduction 

Succination is an irreversible protein modification from the reaction of 

fumarate with cysteine to produce 2SC (Figure 1.1). When 3T3-L1 adipocytes 

are matured in high glucose (30 mM, diabetic conditions) for 8 days, they will 

accumulate succinated proteins to a greater extent than adipocytes matured in 

normal glucose (5 mM, non-diabetic conditions), as detected using a specific 

anti-2SC antibody (Nagai 2007; Frizzell 2009, 2012). However, if the adipocytes 

are removed from a high glucose environment for several days, succinated 

proteins are turned over and do not accumulate further (Frizzell et al. 2012; 

Figure 2.1, lanes 4-6 versus lanes 7-9). This suggests that when adipocytes are 

switched back to 5 mM glucose for a few days they can be rescued from the high 

glucose insult.  

Previous research in our laboratory has further investigated the 

pathways mediating succinated protein turnover by inhibiting the proteasome 

with MG132 (carbobenzoxyl-L-leucyl-L-leucyl-L-leucinal) or inhibiting autophagy 

with chloroquine (CQ, drug increases lysosomal pH). These treatments were 

added to the growth medium of adipocytes during the last 4 days of maturation 

when cells were switched from high to normal glucose conditions. The turnover 

of succinated proteins in normal glucose was unaffected by MG132 treatment, 
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suggesting that the proteasome did not play a major role in succinated protein 

turnover (unpublished data). In contrast, when adipocytes transitioning from high 

glucose to normal glucose were simultaneously treated with CQ the succinated 

proteins appeared to accumulate (unpublished data, Figure 2.1, lanes 7-9 versus 

lanes 10-12). These results suggest succinated protein turnover occurs through 

autophagy in the adipocyte. 

 A parallel investigation of specific succinated proteins in adipocytes 

matured in high glucose has revealed that Cathepsin B, an important lysosomal 

protease, can be modified by 2SC. Cathepsin B is succinated on Cys108 of the 

occluding loop that facilitates its peptidylpepdidase activity (Illy et al. 1997, 

Merkley et al. 2014). We hypothesized that succination of Cys108 might 

contribute to reduced Cathepsin B activity and we have since demonstrated that 

Cathepsin B activity is reduced in high glucose conditions. In addition, this 

reduction can be partially recovered when adipocytes are switched to a normal 

glucose environment (unpublished data). Therefore, it is possible that a reduction 

in lysosomal protease activity as a result of Cathepsin B succination contributes 

to the accumulation of succination in 30 mM glucose conditions, and why 

succinated protein turnover is enhanced when cells are switched back to 5 mM 

glucose conditions.  

While we understand that succinated proteins can be turned over when 

switched from high glucose back to normal glucose and that this occurs by 

autophagy over several days, we have not yet investigated the basal rates of 

autophagic flux in 3T3-L1 adipocytes in normal versus high glucose. This is 
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important as we have demonstrated that the activity of at least one lysosomal 

protease is decreased in high glucose. In addition, I would like to investigate 

another important regulator of autophagic flux, the autophagy protein ubiquitin-

like modifier-activating enzyme Atg7. Atg7 is essential for the lipidation, i.e. 

activation, of LC3, a protein that functions in autophagosome membrane 

formation (Figure 1.4). Atg7 is of interest because the active site contains a 

cysteine residue (Cys567), therefore succination of this site on Atg7 may reduce 

enzymatic efficiency and impair the autophagic process.  

Subsequently, I investigated (1) the profile of succinated proteins after 24 

hours of 25 µM CQ administration, (2) the rate of flux through autophagy in 5 mM 

and 30 mM glucose conditions, and (3) Atg7 levels and its succination. I 

hypothesized that the rate of autophagic flux may be lower in adipocytes cultured 

in 30 mM glucose versus 5 mM glucose, and that Atg7 may be more succinated 

in cells matured in high glucose conditions.  

2.2. Results 

 In line with our previous observations (Frizzell et al. 2012), protein 

succination in 3T3-L1 adipocytes is increased in high (30 mM) versus normal (5 

mM) glucose conditions (Figure 2.2, lanes 1-3 versus lanes 4-6). I observed 

consistent levels of succination with and without CQ treatment in both 5 mM and 

30 mM adipocytes (Figure 2.2, 2SC panel lanes 4-6 versus lanes 7-9 and lanes 

1-3 versus 10-12). The lack of marked 2SC accumulation following 24 hours of 

CQ treatment is not surprising since our unpublished observations demonstrate 

that succinated proteins are turned over slowly, accumulating in the cell after 4 
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days of CQ treatment (Figure 2.1). While CQ did not markedly alter the 

accumulation of succinated proteins, an investigation of autophagic flux at this 

time point is necessary to assess the basal rate of autophagy. LC3-II levels are 

normally below the threshold for detection in 5 mM or 30 mM glucose conditions. 

However, when the cells are treated with 25 µM CQ for 24 hours to inhibit 

autophagy, LC3-II accumulates and autophagic flux can be determined by 

subtracting LC3-II levels in the presence of CQ from LC3-II levels in the absence 

of CQ. I observed that LC3-II accumulates in 30 mM glucose conditions and to a 

greater extent in 5 mM glucose conditions (Figure 2.3, LC3 panel). Therefore, 

these data demonstrate that basal flux through autophagy is decreased in 

adipocytes matured in 30 mM glucose versus 5 mM glucose (Figure 2.3, graph).  

 The autophagy regulating protein Atg7 is essential for the conversion of 

LC3 to its active form LC3-II. An initial examination of total protein levels of Atg7 

suggests that Atg7 levels are reduced in adipocytes matured in 30 mM glucose 

versus 5 mM glucose (Figure 2.4), potentially related to the decreased lipidation 

of LC3 and reduced autophagic flux in 30 mM glucose conditions. In addition to 

this decrease, we also determined if modification of Atg7 by 2SC was occurring, 

potentially impairing its enzymatic activity. Enrichment of Atg7 from adipocyte 

whole cell lysates matured in 5 mM or 30 mM glucose by immunoprecipitation 

was performed. The enrichment of Atg7 was successful, as confirmed by 

immunoblotting with Atg7 (Figure 2.5, Atg7 panel), however, immunoblotting was 

unable to reliably determine if this protein is succinated as variable results were 

obtained, a representative image is shown (Figure 2.5, 2SC panel).  
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2.3. Discussion 

 Succinated proteins are elevated in adipocytes matured in high glucose 

conditions (Frizzell et al. 2012). Our results demonstrated that basal autophagic 

flux is reduced in cells cultured in 30 mM glucose versus those in 5 mM glucose 

(Figure 2.3). This inhibition of flux did not result in further accumulation of 

succinated proteins (Figure 2.2). We have previously illustrated that succinated 

protein turnover occurs slowly over several (~4) days in the presence of CQ 

(Figure 2.1). Therefore, these data combined with the reduced flux observation 

confirm that the turnover of succinated proteins is reduced in adipocytes under 

diabetic conditions. One possible explanation for this reduction is the succination 

of Cathepsin B. As described, Cathepsin B is succinated on an important 

cysteine residue in high glucose conditions and its enzymatic activity is reduced 

(Illy et al. 1997, Merkley et al. 2014, and unpublished data). It is possible that 

succination of additional metabolic enzymes occurs as well and contributes to a 

reduction in autophagic flux under high glucose stress.  

Considering that LC3-II levels were lower in adipocytes matured in high 

glucose, we examined Atg7, the cysteine rich enzyme mediating LC3-II lipidation. 

Our initial immunoblotting of total levels of Atg7 provides evidence that this 

critical protein involved in autophagy may have reduced expression in high 

glucose conditions (Figure 2.3). I proposed that succination of this protein may 

occur on Cys567 in the active site, potentially reducing its enzymatic efficiency. 

In this study we were not able to conclusively determine if this protein could be 

succinated; this will be an area of continuing investigation in the laboratory. While 
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these data may have provided additional information on the source of reduced 

LC3-II, the study still suggests that Atg7 levels are lower in high glucose.  

 The accumulation of succinated proteins in high glucose conditions is 

representative of the metabolic stress induced by a diabetic state. Collective 

insults to the adipocyte during diabetes such as impaired autophagic flux (as 

described above), succinated protein accumulation, and oxidative stress all 

contribute to metabolic dysfunction. Additional evidence suggests that under 

diabetic conditions autophagic flux is reduced (Soussi et al. 2015). This recent 

study described a measurable decrease in autophagic flux of ob/ob (obese) 

mouse tissue verses ob/+ controls. They also relate reduced autophagic flux in 

3T3-L1 adipocytes to decreased mRNA expression of death associated protein 

kinase 2 (DAPK2), a protein proposed to modulate autophagic flux but needing 

further investigation. Additionally, they propose autophagic flux in human diabetic 

adipose tissue is reduced, providing evidence that dysregulation of flux through 

autophagy under a high glucose insult should be clinically investigated. A lack of 

sufficient protein turnover as well as impairment of succinated protein turnover 

may further interfere with the process of adipose tissue expansion, a normal 

result of nutrient excess. These forms of amplified cellular stress in high glucose 

foster an unhealthy environment for adipocyte expansion and subsequently may 

lead to cellular death. Therefore, succination is a characteristic marker of this 

metabolic dysregulation.  

Since the turnover of damaged proteins is important for the health of the 

adipocyte, accumulation of succinated or oxidatively modified proteins in high 
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glucose conditions appears to contribute to adipocyte dysfunction. The metabolic 

stress induced by damaged protein accumulation is a potential source of adipose 

tissue inflammation. Inflammation in the adipose tissue has been linked to 

hypoxia (Halberg et al. 2009, Sun et al. 2013). Hypoxia has been noted as an 

early initiator of adipose tissue dysfunction since it is indicative of adipose tissue 

expansion that outpaces the growth of vasculature (Halberg et al. 2009). 

Additionally, hypoxia inducible factor 1 alpha (HIF-1α), a common marker of 

hypoxia, is decreased after weight loss (Cancello et al. 2005). In addition to high 

glucose stress, other factors may contribute to obesity-induced inflammation and 

reduced autophagic flux such as glycogen accumulation (Ceperuelo-Mallafré et 

al. 2016; Singh and Singh, 2015).  

Overall my results suggest that autophagic flux is decreased in 

adipocytes under high glucose stress. This decrease may be a result of 

increased succination of components of the autophagic machinery and may in 

part explain the inability of the adipocyte to adapt to metabolic stress during 

diabetes.   
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Figure 2.1. Mechanism of Succinated Protein Turnover. Succinated protein 
turnover occurs by autophagy. Adipocytes were matured in 5 mM or 30 mM 
glucose for 8 days. A subset of adipocytes were matured in 30 mM glucose for 4 
days and then switched to 5 mM glucose for the remaining 4 days of maturation 
(30→5) and treated with or without 25 µM chloroquine. Protein 40 µg was 
separated by 1-D PAGE and detection of protein succination was performed 
using a polyclonal anti-2SC antibody (2SC panel). MW markers are shown in 
kDa and β-Tubulin is shown to demonstrate equal protein loading. 
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Figure 2.2. Succinated Protein Turnover by Autophagy. Adipocytes matured 
in 5 mM or 30 mM glucose with and without 25 µM CQ for 24 hours were 
assessed for succination (2SC panel). Total cell lysates, 30 µg protein per lane, 
were separated by 1-D SDS PAGE (n=3 per group). Molecular weight markers 
(kDa) are indicated on left. 
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Figure 2.3. Flux through Autophagy in 3T3-L1 Adipocytes. Flux through 
autophagy in adipocytes grown in 5 mM or 30 mM glucose as measured by LC3-
II accumulation in the presence of CQ. LC3-II levels accumulate in the presence 
of CQ to a greater extent in 5 mM than 30 mM glucose conditions (LC3 panel). 
The rate of flux through autophagy is reduced in 30 mM glucose conditions 
compared to 5 mM glucose, as determined by the densitometric subtraction of 
LC3-II (-CQ) from LC3-II (+CQ) (Graph). Representative immunoblot using 10 µg 
of total cell lysate protein per lane (n=3 per group). Molecular weight markers 
(kDa) are indicated on left. 
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Figure 2.4. Atg7 Protein Levels. Total levels of Atg7 in adipocytes matured in 5 
mM or 30 mM glucose. The levels of Atg7 are decreased in 30 mM glucose 
compared to 5 mM (Atg7 panel). Total cell lysates, 30 µg protein per lane, were 
separated by 1-D SDS PAGE (n=3 per group). Molecular weight marker of 75 
kDa indicated on left. 
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Figure 2.5. Immunoprecipitation of Atg7. Immunoprecipitation of Atg7 (anti-
Atg7, Cell Signaling) from adipocytes matured in 5 mM or 30 mM glucose. 
Immunoprecipitation was successful in enriching relatively equal amounts of Atg7 
protein from all samples (Atg7 panel). The blot was stripped and re-probed with 
anti-2SC. No detection of succination in these Atg7 precipitates (2SC panel). 
Immunoprecipitated protein samples were separated by 1-D SDS PAGE (n=3 per 
group). Molecular weight marker of 75 kDa indicated on left. 
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Chapter III 
 

AUTOPHAGIC FLUX IN ADIPOCYTES FOLLOWING FUMARASE 
KNOCKDOWN 

 
3.1. Introduction 

Fumarase (FH) deficiency predisposes an individual for hereditary 

leiomyomatosis and renal cell cancers (HLRCC) (Pollard et al. 2005). Bi-allelic 

FH mutation, i.e. loss of the second copy of the FH gene, increases fumarate 

levels locally and is associated specifically with aggressive renal cell carcinomas 

(Pollard et al. 2005). Protein succination occurs when fumarate reacts with 

cysteine residues and results in the formation of 2SC (Alderson et al. 2006). This 

modification can be detected using immunohistochemistry with the anti-2SC 

antibody (Nagai et al. 2007). Since elevated levels of fumarate will increase 

protein succination, the detection of 2SC is a useful biomarker in the assessment 

of these FH deficient cancers (Bardella et al. 2011, Castro-Vega et al. 2014, 

Ternette et al. 2013, Zheng et al. 2015). Furthering our understanding of the 

specific metabolite and consequent protein changes induced by this fumarate 

accumulation may give rise to novel clinical interventions that target FH-deficient 

renal cell carcinomas. 

Our laboratory has previously investigated a model of maximal succination 

using murine embryonic fibroblasts (MEFs) derived from mice with Fh gene 

knocked out (Ashrafian et al. 2010). Analysis of the cell lysate fractions 
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demonstrated an accumulation of succinated proteins in the total cell 

homogenate, but by comparison mitochondrial enriched fractions appeared to 

have less succination (unpublished data, Figure 3.1, lanes 1-3 versus lanes 7-9). 

Considering fumarate is produced and accumulates in the mitochondria, this 

observation was surprising. Further investigation of these Fh-deficient MEFs with 

the autophagy inhibitor chloroquine (CQ) revealed that the mitochondria did 

contain succinated proteins but these were rapidly turned over by autophagy 

(Figure 3.1, lanes 7-9 versus lanes 10-12). These data are of interest but since 

these are immortalized cancer cells, they may have altered autophagic flux. 

Since our previous observations on autophagy in adipocytes in high glucose 

were in 3T3-L1 cells (Chapter 2), we also wanted to prepare 3T3-L1 adipocytes 

with fumarase shRNA knockdown (Fh k/d) to better understand the role of 

autophagy in succinated protein turnover within enriched cellular fractions. I will 

utilize Fh k/d adipocytes to assess if the metabolic alterations present in 

immortalized cells are synonymous with those present in adipocytes. 

To generate an adipocyte model of enhanced succination, 3T3-L1 

fibroblasts were transduced with a lentiviral vector containing either fumarase 

shRNA or a scrambled control vector. The cells that successfully incorporated 

the vector were selected using the puromycin resistance gene that had been 

incorporated in the vector; and the surviving cells were further propagated in the 

presence of puromycin until confluent. The fibroblasts were then differentiated 

and matured to adipocytes according to the normal procedure. These 3T3-L1 

adipocytes have reduced Fh protein levels but not complete knockout like the 
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immortalized MEF cells. Our laboratory has demonstrated that the accumulation 

of fumarate following Fh k/d results in increased succination of proteins when 

matured in normal (5 mM) glucose conditions (unpublished data). Subsequently 

succination increases independent of high glucose derived metabolic changes. 

The current experiment will likewise utilize Fh k/d adipocytes matured in 5 mM 

glucose to investigate succination and autophagy.  

To evaluate compartment specific alterations in succination and 

autophagy, I will administer 25µM CQ 24 hours before harvesting cells. I will 

investigate the accumulation of succinated proteins in the total homogenate and 

enriched fractions of cytosolic, mitochondrial, and nuclear proteins. Following this 

I will evaluate the rate of autophagic flux both in total homogenate and 

mitochondrial fractions. I hypothesize succinated proteins will accumulate in the 

mitochondria of Fh k/d adipocytes compared to scrambled controls. As described 

previously, autophagic flux represents the amount of lysosomal degradation of 

proteins within the cell lysates and is measured by the accumulation of LC3-II in 

the presence of CQ. We previously observed that cells matured in high glucose 

have reduced autophagic flux compared to those matured in normal glucose 

(Chapter 2). Therefore, I propose that flux through autophagy will be altered in Fh 

k/d cells compared to their respective scrambled controls.  

3.2. Results 

 Cells with Fh k/d have markedly more succination than those treated with 

a scrambled control virus (Figure 3.2, 2SC panel, lanes 1-6 versus 7-12). These 

total cell homogenates had no apparent change in protein succination upon 
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addition of CQ, though there was a slight increase in succination band density. 

Total cell lysates were then evaluated for Fh levels to demonstrate that the 

knockdown was efficient (Figure 3.2, Fumarase panel, lanes 1-6 versus 7-12). 

Next, the flux through autophagy was assessed by comparing adipocytes with 

and without CQ administration. The accumulation of LC3-II as a result of 

autophagic inhibition by CQ is a reliable measure of autophagic flux. These data 

demonstrate a trend for a decrease in autophagic flux in Fh k/d cells compared to 

scrambled controls (Figure 3.2, LC3 panel, lanes 4-6 minus 1-3 versus lanes 10-

12 minus 7-9 and graph of densitometric analysis). We previously showed that 

autophagic flux is reduced in adipocytes matured in high glucose compared to 

normal glucose (Figure 2.2). It appears that Fh-deficient adipocytes also have 

reduced autophagic flux compared to scrambled controls.  

 The cellular protein profile was then assessed for compartment specific 

differences in protein succination and autophagic flux by generating fractions 

enriched in cellular organelles. Fractionation was assessed using markers for 

mitochondria, cytosol, and nucleus to demonstrate enrichment of those 

compartments (Figure 3.3, voltage dependent anion channel 2 [Vdac2], α-tubulin, 

and histone H3 panels respectively). High levels of succination are evident in the 

cytosolic, mitochondrial, and nuclear compartments (Figure 3.3, 2SC panel, 

lanes 1-6 compared to 7-12 compared to 13-18), but only the mitochondrial 

compartment demonstrates increased succinated protein levels following 

treatment with CQ (Figure 3.3, 2SC panel, lanes 7-9 versus 10-12). This 

increased accumulation of succinated proteins when autophagy was inhibited 
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indicates these proteins were turnover by autophagy in the mitochondria at a 

faster rate than the two other fractions. These data suggest that mitochondria 

accumulate and turn over proteins at a faster rate. These observations align with 

previous data in Fh deficient MEF cultures (unpublished data, Figure 3.1). We 

additionally evaluated the levels of Atg7 and observed that it was present 

predominantly in the cytosolic fraction (Figure 3.3, Atg7 panel lines 1-6), possibly 

because Atg7 accumulates with CQ administration in this cytosolic fraction 

(Figure 3.3, Atg7 panel, lines 4-6 versus 1-3).  

To increase our understanding of the unique accumulation occurring in 

the mitochondrial enriched fraction, we further evaluated the Fh k/d lysates and 

compared them to scrambled control mitochondrial enriched fractions. We 

confirmed that Fh k/d lysates have markedly elevated succination compared to 

scrambled control (Figure 3.4, 2SC panel, lanes 7-12 versus 1-6). Additionally, 

the results clearly confirmed that mitochondrial enriched fractions accumulate 

more succinated proteins in the presence of CQ, demonstrating that these 

fractions contain more succinated proteins that are normally turned over more 

rapidly by autophagy (Figure 3.4, 2SC panel, lanes 10-12 versus 7-9). Despite 

this, assessment of flux through autophagy by evaluating mitochondrial LC3-II 

levels as above indicates that that there is a trend for a decreased rate of overall 

flux in Fh k/d cells compared to scrambled controls (Figure 3.5).  

Succinated protein accumulation occurs in the Fh k/d model due to the 

accumulation of fumarate. I speculated that cells with reduced fumarase levels 

might accumulate other protein modifications such as succinylation which occurs 
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when succinyl-CoA, a derivative of a Krebs cycle intermediate, reacts with 

protein lysine residues. Increased back pressure on the Krebs cycle may permit 

succinyl-CoA accumulation and hence elevate levels of succinylation. We have 

previously demonstrated that there are no significant increases in succinylation in 

high glucose conditions compared to normal glucose (Manuel and Frizzell, 2013). 

The Fh k/d model likewise demonstrates succinylated-lysine is unchanged in 

scrambled control versus Fh k/d adipocytes and unchanged by the inhibition of 

autophagy with CQ (Figure 3.6, Succinyl-K panel). This indicates succinylated 

proteins do not accumulate in this model of reduced Krebs cycle flux and 

suggests they are not turned over by autophagy in the way that succinated 

proteins are.  

3.3. Discussion 

Fumarate accumulation due to a reduction in the tricarboxylic acid cycle 

enzyme fumarase leads to an increase in protein succination. We hypothesized 

that flux through autophagy might be altered as a result of Fh k/d. Our 

investigation demonstrated that there is a trend for a decrease in autophagic flux 

in the total homogenate of Fh k/d cells compared to scrambled controls (Figure 

3.2). This trend is consistent with the reduced autophagic flux in high glucose 

conditions compared to normal glucose (Figure 2.2), suggesting that increased 

succination plays a role in decreasing normal levels of autophagic flux. Both 

these studies investigated 3T3-L1 adipocytes, but the Fh k/d cells may have 

alternative mechanisms of maintaining autophagic flux. As discussed in Chapter 

2, Cathepsin B has been shown by mass spectrometry to be succinated in high 
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glucose conditions but not in normal glucose (unpublished data). This succination 

results in a decrease in Cathepsin B activity in high glucose treated adipocytes. 

While we speculated that Fh k/d adipocytes would also have reduced Cathepsin 

B activity, a preliminary investigation suggests that Cathepsin B activity is not 

reduced in Fh k/d cells despite their elevation in succinated protein levels 

compared to scrambled controls (unpublished data). A potential explanation for 

these enzymatic differences is that Fh k/d adipocytes increase Cathepsin B 

protein levels to compensate for reduced activity as a result of succination. 

Alternatively, the Fh k/d adipocytes may depend more on the activity of other 

cathepsin enzymes (e.g. Cathepsin D) even if Cathepsin B were also succinated 

in this model, perhaps on a cysteine reside that is non-essential for activity. Since 

the Fh k/d adipocytes have elevated succination compared to high glucose 

adipocytes, Fh k/d may also induce more pronounced metabolic adaptations due 

to elevated cellular stress as a result of succination.  

Since mitochondria are the location of fumarate production, we predicted 

that succinated proteins would accumulate in the mitochondria of adipocytes. We 

previously demonstrated that succinated protein content was low in the 

mitochondria but accumulated in the presence of CQ in MEFs with Fh knock out 

(Figure 3.1). This indicates that succinated proteins in the mitochondrial rich 

fraction were turned over by autophagy. We then generated a 3T3-L1 adipocyte 

model of elevated succination by reducing Fh levels to investigate cellular 

fractions in a non-cancerous cell line. As anticipated, succinated proteins 

accumulate in the cytosolic and nuclear enriched fractions independent of CQ 
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administration (Figure 3.4, 2SC panel, lanes 1-6 and lanes 15-20). Additionally, 

Fh k/d adipocytes accumulate succinated proteins in the mitochondrial enriched 

fraction only in the presence of CQ as did the MEF cells (Figures 3.1 and 3.4). 

This heightened accumulation might be expected since mitochondria are the site 

of fumarate production. The rapid turnover in the mitochondria may mitigate 

mitochondrial damage and compensate for localized fumarate concentrations 

being high. Future experiments should delineate the role of the mitochondria 

further by investigating specific autophagy of the mitochondria, i.e. mitophagy 

(Lemasters, 2005, Kissova et al. 2004). Additionally, flux through autophagy is 

reduced in Fh k/d mitochondrial preparations compared to scrambled controls 

(Figure 3.5). Impairment of proper protein recycling through the lysosome leads 

to an accumulation of damaged cellular debris and may contribute to 

inflammation as described previously (Chapter 2). Our current results highlight 

that succinated proteins are turned over by autophagy in the mitochondrial 

enriched fraction of Fh k/d adipocytes, but it will be important to ensure that 

future fraction preparations are more organelle specific, separating mitochondria 

from any lysosomes or endoplasmic reticulum that may contaminate this fraction.  

Levels of succinylation were not different in scrambled control and Fh k/d 

adipocytes (Figure 3.6, Succinyl-K panel, lanes 1-5 verses lanes 6-10). Succinyl-

K was also unaltered when adipocytes were treated with the autophagy inhibitor 

CQ (Figure 2.6, Succinyl-K, lanes 1-2 verses 3-5 and lanes 6-8 verses 9-10). The 

lack succinylated protein accumulation in adipocytes is not surprising since 

succinyl-CoA levels are normally low in the mitochondria. Most work 
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documenting an increase has been observed in sirtuin (SIRT) 5 knockout models 

since SIRT 5 has been described as a desuccinylase (Park et al. 2013, Zhang et 

al. 2015). Succinyl-CoA levels may not accumulate even if the Krebs cycle was 

inhibited as long as the cells have a demand to produce GTP, favoring the 

hydrolysis of this this thioester. If succinylation accumulated it would have been 

interesting to determine if these modified proteins were turned over by autophagy 

similar to succinated proteins (in addition to the known turnover by SIRT 5). The 

lack of net change in succinylation in either cell type in the presence of CQ 

confirms that Fh k/d adipocytes uniquely increase succination without 

accumulating other acyl CoA derived protein modifications.  

We conclude that reducing the levels of Fh in adipocytes using shRNA 

will increase succination and reduce flux through autophagy. As in the cell culture 

diabetic model, adipocytes with Fh k/d have an accumulation of LC3-II in the 

presence of CQ indicating a reduction in autophagic flux. The turnover of 

succinated proteins by autophagy is most pronounced in mitochondrial enriched 

fractions likely because the mitochondria are the site of the tricarboxylic acid 

cycle where fumarate is produced. This model may have utility for more specific 

investigations of succinated protein turnover in the mitochondria to examine 

mitophagy, i.e. autophagy of the mitochondria.  
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Figure 3.1. Succinated Protein Turnover in MEF Mitochondria. Murine 
embryonic fibroblasts (MEFs) from fumarase knockout mice treated with 25 µM 
chloroquine (CQ) for 18 hours to inhibit autophagy. Lysates were fractionated 
then assessed for protein succination. Total cell lysates have consistent levels of 
protein succination with and without CQ administration (2SC left panel). 
Mitochondrial enriched fractions have markedly increased succination in the 
presence of CQ (2SC right panel). Cellular fractions were separated by 1-D 
SDS PAGE (n=3 per group, 30 µg protein per lane). Molecular weight markers 
(kDa) are indicated on left.   
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Figure 3.2. Fh k/d Protein Succination and Autophagic Flux. Adipocytes were 
transduced with scrambled control (scram) or fumarase knockdown (Fh k/d) 
shRNA and matured in 5 mM glucose conditions following selection with 
puromycin. Succination of proteins is markedly increased in Fh k/d cells 
compared to scram cells (2SC panel). Fumarase levels are reduced in the Fh k/d 
cells compared to the scram cells, confirming an effective reduction in fumarase 
levels (Fumarase panel). LC3-II accumulates in the presence of 25 µM CQ in 
both scram and Fh k/d samples (LC3 panel). GAPDH levels are indicated as a 
loading control (GAPDH panel). Flux through autophagy is quantified as the 
increase in LC3-II levels after CQ administration as determined by the 
densitometry (Graph). Total cell lysates, 30 µg protein per lane, were separated 
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by 1-D SDS PAGE (n=3 per group). Molecular weight markers (kDa) are 
indicated on left. 
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Figure 3.3. Fh k/d Protein Succination in Enriched Fractions. Cytosolic, 
Mitochondrial (Mito.), and Nuclear enriched fractions of fumarase knockdown (Fh 
k/d) adipocytes grown in 5 mM glucose with and without 25 µM CQ for 24 hours. 
Elevated levels of protein succination are present in all Fh k/d fractions. 2SC is 
increased markedly in the mitochondrial enriched fraction with CQ administration 
(2SC panel). Atg7 levels in the cytosolic fraction are increased in the presence of 
CQ (Atg7 panel). Vdac2 is indicated to demonstrate enrichment of mitochondrial 
fractions (Vdac2 panel). Tubulin is shown indicate total loading between groups 
(α-tubulin panel). Histone H3 is indicated to demonstrate enrichment of nuclear 
fractions (Histone H3 panel). Total cell lysates, 30 µg protein per lane, were 
separated by 1-D SDS PAGE (n=3 per group). Molecular weight markers (kDa) 
are indicated on left. 
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Figure 3.4. Fh k/d Protein Succination in Mitochondria. Mitochondrial 
enriched fractions of scrambled control (scram) and fumarase knockdown (Fh 
k/d) adipocyte samples with and without 25 µM CQ administration. Succination of 
proteins is present in the Fh k/d cells and increased in the presence of CQ (2SC 
panel). Reduced fumarase levels in the Fh k/d samples confirming the 
effectiveness of the shRNA knockdown (Fumarase panel). Citrate Synthase is 
shown as a mitochondrial loading control (CS panel). Total cell lysates, 30 µg 
protein per lane, were separated by 1-D SDS PAGE (n=3 per group). Molecular 
weight markers (kDa) are indicated on left.  
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Figure 3.5. Fh k/d Autophagic Flux in Mitochondria. Mitochondrial enriched 
fractions of scrambled control (scram) and fumarase knockdown (Fh k/d) 
adipocyte samples with and without 25 µM CQ for 24 hours. LC3-II accumulation 
after CQ administration is a measure of autophagic flux (LC3 panel). 
Quantification of autophagic flux indicates a trend for a decreased flux in 
adipocytes that have Fh k/d (Graph). Total cell lysates, 10 µg protein per lane, 
were separated by 1-D SDS PAGE (n=3 per group). Molecular weight markers 
(kDa) are indicated on left. 
  



40 

 

 
Figure 3.6. Succinylation in Fh k/d and Scrambled Control Adipocytes. 
Evaluation of protein modification by succinyl-CoA in fumarase knockdown (Fh 
k/d) adipocyte samples with and without 25 µM CQ administration. Succinylated 
lysine was assessed in total homogenate of scrambled control and Fh k/d 
samples. Protein modification by succinyl-CoA is not altered by CQ 
administration (Succinyl-K panel, n=2 or 3 per group). Total cell lysates, 30 µg 
protein per lane, were separated by 1-D SDS PAGE. 
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Chapter IV 
 

FUTURE DIRECTIONS 
 

 These results highlight the importance of understanding adipocyte 

metabolism in context with protein succination and autophagy. The reduction in 

autophagic flux, as measured by LC3-II accumulation, resulting from high 

glucose induced cellular stress is a representation of metabolic dysregulation in 

diabetic conditions. Further investigation of autophagy in the context of diabetes 

should assess adipocytes extracted from the adipose tissue of db/db (diabetic) 

mice or similar models. Linking diabetes-induced elevations in 2SC to reductions 

in autophagic flux would further support the utility of protein succination as a 

marker of metabolic stress under a high glucose insult.  

 Continued investigation of the crucial autophagic protein Atg7 and the 

cathepsin proteins will help divulge the precise mechanism of autophagy 

inhibition under high glucose conditions. Delineating the succination state of Atg7 

in high glucose conditions and assessing if its succination contributes to reduced 

autophagic flux. Since we know Cathepsin B is specifically succinated in high 

glucose when autophagic flux is reduced and that its activity levels are unaltered 

in Fh k/d adipocytes, further work should evaluate if Cathepsin B is succinated in 

the Fh k/d model. Additionally, measuring total protein levels of the major 

cathepsin proteins could assess for compensatory functions when Cathepsin B 

activity is reduced.  
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The 3T3-L1 adipocyte model of diabetes will continue to uncover 

metabolic pathways contributing to high glucose induced metabolic stress. An 

evaluation of succination and autophagic flux in cellular fractions of high glucose 

adipocytes can be used to understand the importance of the mitochondria in 

succinated protein turnover. In particular, preparation of cellular fractions that 

specifically separate the mitochondria from lysosomes and other organelles 

would ensure that 2SC accumulation in the mitochondrial enriched fraction is not 

due to accumulation within the lysosome in the presence of CQ. These 

investigations could ultimately be expanded to adipose tissue from diabetic 

patients to elucidate the connection between autophagic flux and accumulation of 

2SC. As research on diabetes and protein succination progresses, it is 

increasingly evident that 2SC is a valuable marker of adipocyte metabolic stress. 
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Chapter V 
 

MATERIALS AND METHODS 
 

5.1. Cell Culture  

3T3-L1 murine fibroblasts were purchased from American Type Culture 

Collection (Manassas, VA) and maintained up to 8 passages in DMEM 

containing 5 mM glucose, 10% Bovine Calf Serum (Thermo Scientific), 1% 

penicillin/streptomycin (CellGro) at 37oC with 5% CO2 and 95% humidity. Medium 

was changed every 2 days. At 70-80% confluence cells were trypsinized 

(Thermo Scientific), neutralized with excess medium and collected by 

centrifugation at 1,000 g for 5 min at 25oC. The cells were then re-suspended in 

medium for a new passage. 

3T3-L1 fibroblasts were seeded at densities of 50,000 and 100,000 

cells/well for 6-well plates and 10 cm2 petri dishes respectively. 3T3-L1 

fibroblasts were induced to differentiate 24 hours post-confluence (~3-4 days) in 

DMEM with 10% Fetal Bovine Serum (Atlanta Biologicals), 1% 

penicillin/streptomycin, insulin (10 μg/mL), dexamethasone (0.3 μM), 3-isobutyl-

1-methylxanthine (0.5 mM) and 30 mM glucose for 3 days. At day 0, 

differentiation medium was removed, cells were washed with PBS and 

maturation medium containing 5 mM/0.3 nM or 30 mM/3 nM glucose/insulin was 

applied. The medium was changed every 2 days and the adipocytes were 

matured in 5 mM or 30 mM glucose for 8 days. When the lysosomal inhibitor was 
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used, cells were treated with 25 µM chloroquine (Sigma Aldrich) at day 7 for 24 

hours before collection. Cells cultured in 5 mM glucose were supplemented with 

5 mM glucose daily and several hours prior to protein harvest to maintain glucose 

levels. 

5.2. Protein Extraction from Adipocytes  

All cellular protein was collected at day 8 by lysing the cells in 

radioimmunoprecipitation assay buffer (RIPA, Appendix A) and sonicated 3 times 

for 12-15 seconds each. Ice cold acetone, 9 x volume, was then added to the 

samples, vortexed, then allowed to sit on ice for 10 min. The samples were then 

vortexed again and centrifuged at 2,800 g for 10 min at 4oC. The acetone was 

decanted and the samples re-suspended in 0.5-1 mL of RIPA buffer and 

sonicated 3 times for 10 seconds each. The protein concentration was 

determined using the Lowry assay (Appendix B). 

5.3. Lentiviral Vector Production  

The lentiviral vectors were prepared by the University of South Carolina 

Viral Vector Facility. Briefly, TRC2 Fh1 shRNA, clone- TRCN0000246831 or 

SHC202 MISSION TRC2 pLKO.5-puro non-mammalian shRNA control plasmids 

(Sigma/Aldrich, St. Louis, MO) were used to generate the lentiviral vectors. The 

vectors also contained a puromycin resistance gene. 15 μg vector plasmid, 10 μg 

psPAX2 packaging plasmid (Addgene 12260, Cambridge, MA), 5 μg pMD2.G 

envelope plasmid (Addgene 12259, Cambridge, MA) and 2.5 μg pRSV-Rev 

plasmid (Addgene 12253, Cambridge, MA) were transfected into 293T cells. The 

filtered conditioned medium was collected and stored at -80°C until use. 
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Lentiviral vectors were generated using a transient transfection protocol, as 

described previously (Kantor, 2011). Briefly, 15 µg vector plasmid, 10 µg psPAX2 

packaging plasmid (Addgene #12260), 5 µg pMD2.G envelope plasmid 

(Addgene #12259) and 2.5 µg pRSV-Rev plasmid (Addgene #12253) were 

introduced into 293T cells by transfection. Vector particles were collected in 

filtered conditioned medium at 72 hour post-transfection. Vector and viral stocks 

were aliquoted and stored at -80 °C.  

5.4. Lentiviral Transduction 

3T3-L1 fibroblasts were grown in 1 g/L glucose DMEM with 10% FCS and 

1% penicillin streptomycin until 90% confluent on 10 cm2 petri dishes. The 

fibroblasts were incubated overnight with 5 mL of filtered conditioned medium 

containing 150 µL Fh-1 shRNA or control virus. Successfully transduced 

fibroblasts were selected using 2.5 µg/mL puromycin, supplemented in the 

medium every 48 hours. The selected fibroblasts were propagated until 

confluent, then differentiated to adipocytes and matured for 8 days in 5 mM 

glucose as described above. In some cases the adipocytes were treated with 25 

µM chloroquine for 24 hours before the cells were harvested into fractions as 

described below.  

5.5. Cellular Fractionation 

Mitochondrial enriched preparations were collected by harvesting cells in 

homogenization buffer (Appendix A). The cells were washed 3 times in ice-cold 

PBS prior to scraping in homogenization buffer. Each sample was homogenized 

on ice with a glass homogenizer 20 times, then passed through a 25 gauge 
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needle 5 times. 150 µL of total homogenate was collected in a separate tube, 

and then the remaining sample volume was centrifuged at 500 g for 10 min to 

generate the nuclear pellet. The supernatant was placed in a clean tube and 

centrifuged at 18,000 g for 20 min to generate the mitochondrial pellet. The 

resulting supernatant was then collected as the cytosolic fraction. Nuclear and 

mitochondrial pellets were re-suspended in RIPA buffer; then all fractions were 

processed and quantified as described above. 

5.6. Western Immunoblotting 

Samples were prepared using 10-30 µg protein with the addition of 4x 

Laemmli reducing buffer, boiled at 95oC, pulse centrifuged, loaded on 7.5%, 

12%, or 18% Tris-Glycine gel (TGX, Biorad), and electrophoresed at 200 V for 60 

min at room temperature. The protein was transferred to a PVDF membrane in 

transfer buffer at 250 mA for 100 min at 4 oC. The membrane was stained with 

Ponceau Red, and then blocked in 5% non-fat milk or 5% bovine serum albumin 

(BSA) according to the antibody manufacturer’s recommendations. Membranes 

were probed using primary polyclonal anti-2SC antibody, prepared as described 

previously (Nagai et al. 2007). The anti-Atg7 (#8558), anti-citrate-synthase 

(#14309), anti-fumarase (#4567), anti-LC3 (#2775), and anti-α-tubulin [DM1A] 

(#3873) primary antibodies used were from Cell Signaling (Cell Signaling, 

Beverly, MA). The anti-GAPDH (#FL-335) primary antibody was from Santa Cruz 

(Santa Cruz Biotechnology, Dallas, TX). The anti-Histone H3 (#05-928) primary 

antibody was from EMD Millipore (EMD Millipore, Darmstadt, Germany). The 

anti-VDAC2 (#GTX104745) primary antibody was from GeneTex (GeneTex, 
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Irvine, CA). Horse radish peroxidase (HRP) labeled secondary antibodies were 

used to detect the protein (Cell Signaling). Pierce® ECL 2 Western Blotting 

Substrate was used to detect a chemiluminescent signal on photographic film 

(Denville Scientific, Metuchen, NJ). ImageJ software (NIH) was used to quantify 

band intensity by densitometry and normalize to α-tubulin levels. 

5.7. Immunoprecipitation 

Atg7 was immunoprecipitated from 400 µg of 5 mM and 30 mM glucose 

treated cell lysates using a polyclonal anti-Atg 7 antibody (Cell Signaling #8558). 

Samples were diluted in 400 µL RIPA buffer with 2 µL protease inhibitors and 

pre-cleared with 10 µL Protein G magnetic beads (BioRad) on a Roto-Torque 

(Cole-Parmer, Vernon Hills, IL) for 30 min at room temperature. 10 µL Protein G 

magnetic beads were simultaneously incubated with 1.09 µg anti-Atg7 antibody 

for 30 min at room temperature on the Roto-Torque. Following centrifugation of 

the pre-cleared sample at 4000 x g for 2 min in a Heraeus Biofuge 13 

microcentrifuge (Thermo Fisher Scientific), the samples were placed in magnetic 

holder for 3 min. The supernatant was removed and added to the bead-antibody 

complex and placed on the Roto-Torque for 35 min at room temperature. The 

resulting bead-antibody-antigen complex was washed 3 times in 50 mM 

phosphate buffer, pH 7.4, then re-suspended in 30 µL water with 8 µL Laemmli 

loading buffer. The samples were boiled to separate the magnetic beads from the 

protein-antibody complex and the supernatant was analyzed using one-

dimensional SDS-PAGE as described above. The immunoblots were probed with 

polyclonal anti-2SC and anti-Atg7 antibodies.  
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5.8. Data Analysis 

Densitometric quantifications were performed in ImageJ (NIH). All graphs 

were generated in Microsoft Excel.  
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Appendix A 
 

BUFFER PREPARATIONS 
 

A.1. Homogenization Buffer 

The buffer was prepared in 50 mL stocks containing 10 mM Tris Base, 

10 mM MOPS, 1 mM EGTA, and 1 mM DTPA at pH 7.4 then 0.2 M sucrose was 

added. On day of use, 2 mM sodium orthovanadate, 2 mM sodium fluoride and 

protease inhibitor (1:1000) was added to the buffer. The buffer was stored at 4oC. 

A.2. RIPA Buffer 

The buffer was prepared in 200 mL stocks containing 50 mM Tris-HCl pH 

8, 150 mM NaCl, 1% Triton-X, 0.5% sodium deoxycholate, 0.1% SDS, and 2 mM 

EDTA. On day of use, 2 mM sodium orthovanadate, 2 mM sodium fluoride and 

protease inhibitor (1:1000) was added to the buffer. The buffer was stored at 4oC. 

A.3. Running Buffer 

One liter of 10x stock was prepared containing 250 mM Tris-HCl, 1920 

mM glycine and 10% (SDS). Working solution contains 100 mL of 10x stock 

diluted to 1 L with water.  

A.4. Transfer Buffer 

One liter of 10X stock was prepared containing 250 mM Tris-HCl, 1920 

mM glycine. Working solution for transfer process contains 1x transfer buffer with 

20% methanol. 

 



59 

A.5. Wash Buffer 

One liter of 10x stock was prepared containing 200 mM Tris-HCl, pH 7.4. 

Tween-20 was added at 0.05% to 1x was buffer. 
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Appendix B 
 

LOWRY ASSAY 
 

Pipette the specific amounts of reagents into the microplate in the order listed. All 

samples are prepared in duplicates. 

Table B.1: Preparation of BSA standard curve for the Lowry assay. 

Probe 

BSA 

(µL) 

H20 

(µL) 

Copper 

Reagent 

(µL) Incubation 

Folin-

Ciocolateu 

(µL) Incubation 

Blank 0 20 20 

 

60   

1 1 19 20 

  

60 

  

2 2 18 20   60   

3 3 17 20   60   

4 4 16 20   60   

5 8 12 20   60   

6 10 10 20   60   

7 20 0 20   60   

Sample 5 15 20   60   

   

Stock BSA: Dissolve 50 mg BSA (Bovine Serum Albumin) in 10 mL deionized 

water to get 5 mg/mL stock/working solution. 

Working Solutions: Dilute 400 µL of 5 mg/mL stock in 600 µL water to get 2 

mg/mL solution. 

20 minutes at 37oC 

30 minutes at 37oC 
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Table B.2: Preparation of copper reagent for Lowry assay. 

Stock Solution Working Solution 

Copper Sulfate 1% (w:v) 100 µL 

Sodium Tartrate 2% (w:v) 100 µL 

Sodium Carbonate 10% (w:v) in 0.5 M 

NaOH 2 mL 

 

Folin-Ciocolateu Phenol Reagent: Purchased as a 2 N stock solution. For 

working solution at 500 µL of stock solution to 5.5 mL of water 

Read absorbance at 660nm.
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Appendix C 
 

WESTERN BLOTTING 
 

C.1. Gel Electrophoresis 

1. After determining the protein content from the Lowry assay, 10-40 µg of 

protein was dissolved in water and 5 µL of Laemmli loading buffer was added. 

2. Boil the samples for 15 min at 95°C then flash centrifuge. 

3. Remove tape and comb from Bio-Rad pre cast Criterion gel and place in 

cassette. 

4. Fill the cassette tank and gel with Tris/Glycine/SDS running buffer. 

5. Load the samples into their individual lanes and 10 µL of marker into your lane 

of choice. 

6. Run the gel at 200 V for 60 min. 

 

C.2. Wet Transfer 

1. Remove the gel from the pre-cast and cut to size 

2. Soak the gel in Tris/Glycine/Methanol transfer buffer for 15 min. 

3. Charge the PVDF membrane for ~1 minute in methanol. Soak the 2 pieces of 
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blotting paper, 2 sponges, and the membrane in Tris/Glycine/methanol for 15 

min. 

4. Assemble the transfer apparatus, starting with the black side first. Keep all 

materials soaking in transfer buffer during the assembly. 

5. Place the sponge flat on the black side, followed by a piece of blotting paper. 

Next, place the gel on top followed by the PVDF membrane. Roll out any air 

bubbles between the gel and membrane using a roller. Finally, put the remaining 

piece of blotting paper on top of the membrane and the sponge on top. 

6. Assemble the apparatus and transfer at 250 mA for 100 min or 40 mA for at 

least 12 hours. 

7. Remove the membrane from the apparatus and wash with nanopure water.  

8. Place the membrane in ponceau stain for 5 min then wash with nanopure 

water to visualize the bands. Inspect the membrane for equal loading and where 

bubbles formed during the transfer process. Wash the ponceau stain off the 

membrane with Tris-HCl wash buffer. 

9. Block the membrane in 5% non-fat dry milk or 5% BSA for at least 1hr. 

 

C.3. Immunostaining 

1. Prepare 1% milk by diluting the 5% milk 1:4 in Tris-HCl wash buffer or prepare 

5% BSA.  
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2. Add antibody to the milk or BSA in a 1:2000-1:10,000 dilution, see 

manufacturer instruction. Incubate for at least 1 hour on the rocker. 

3. Pour off the antibody and wash the membrane 3 times in 1x wash buffer for 5 

min each. 

4. Add secondary antibody (anti-rabbit or anti-mouse) to 1% milk or 5% BSA in a 

1:500-20,000 dilution and incubate for 1hr at room temperature. 

5. Pour off the milk or BSA and was the membrane 3 times for 5 min each in 

wash buffer.  

 

C.4. Developing Film 

1. Prepare ECL solution by adding solution B to solution A and in a 1:40 dilution. 

2. Add the ECL to the membrane and incubate for 5 min. Place the membrane in 

the cassette and cover with plastic wrap. 

3. In the dark room, place a piece of X-ray film over the membrane then develop. 

Inspect the film after it has developed and adjust the exposure times accordingly. 
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