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Abstract

The strong CP problem in Quantum Chromodynamics (QCD), predicts the neutron

electric dipole moment to be a factor of 1010 larger than the observed upper bound

[15]. Roberto Peccei and Helen Quinn [58, 63] proposed an elegant solution to this

problem by introducing a global U(1)PQ symmetry that is spontaneously broken at

an energy scale fa. A consequence of this symmetry-breaking is that a new spin-zero

neutral pseudoscalar particle, the axion, is generated which is a Nambu-Goldstone

boson [70, 78]. The “invisible axion” models with fa >> fEW , typically KSVZ

and DFSZ models, have been proposed and recognized to be far-reaching because of

the prospect that these axions can be a candidate for dark matter in the universe

[59, 1, 27, 25] and the motivation that these axions can be searched for experimentally

[19, 12, 29]. Because the axion mass is inversely proportional to the energy scale fa,

invisible axions are very light, very long-lived and very weakly coupled to electrons,

photons, nucleons, and quarks, which makes them really difficult to detect directly.

CUORE (Cryogenic Underground Observatory for Rare Events) [10, 7] was orig-

inally designed to search for neutrinoless double beta decay (0νββ) using a very

low background low temperature bolometric detector. It can also be used to search

for solar axions and dark matter WIMPs. In this thesis, the potential sensitivity

of the CUORE detector to axions produced in the Sun through the Primakoff pro-

cess and 14.4 keV solar axions emitted by the M1 nuclear transition of 57Fe and

detected by the inverse coherent Primakoff process is calculated. The conversion

rate is calculated using density functional theory for the electron density and realis-

tic expectations for the background and energy resolution of CUORE. Monte Carlo
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calculations for 5 y×741 kg=3705 kg y of exposure are analyzed using the time cor-

relation of individual events with the theoretical time-dependent counting rate. It is

found that this exposure can lead to an expected limit on the axion-photon coupling

gaγγ < 3.83× 10−10 GeV −1 for axion masses less than 100 eV for the Primakoff pro-

cess and an expected model-independent limit on the product of the axion-photon

coupling and the axion-nucleon coupling gaγγg
eff
aN < 1.105 × 10−16 /GeV for axion

masses less than 500 eV for the M1 nuclear transition of 57Fe, with 95% confidence

level, respectively.
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can enjoy the music. But at what point is it impossible to distinguish the music
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the volume? This is what we used to perform the data analysis and extract useful

information from the background counting rate.
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Chapter 1

Standard Model and Strong CP Problem

1.1 U(1)A problem and the Strong CP problem

Quantum chromodynamics (QCD) is a theory of strong interactions that describes the

interactions between quarks and gluons, the force carrier that mediates and transmits

the strong force, from which composite particles are built . It predicted so many phys-

ical properties that no one doubted the completeness of this theory until the 1970’s,

when the puzzling U(1)A problem became particularly clear with the development of

QCD. It was found that the QCD Lagrangian for N flavors has a large global symme-

try U(N)V × U(N)A when quark masses vanish: mf → 0. Setting the quark masses

to zero for mu and md is reasonable because they are far smaller than ΛQCD ≈ 200

MeV. So these strong interactions should be approximately U(2)V ×U(2)A invariant,

where the subsripts V and A are vector symmetry and axial-vector symmetry, respec-

tively. Experiments demonstrate that the vector symmetry as a product of isospin

and baryon number U(2)V = SU(2)I×U(1)B is a good symmetry of nature, as shown

by the fact that nucleon and pion multiplets exist in the spectrum of hadrons. But it

is not true for axial symmetry because it is broken spontaneously since quark conden-

sates occur < ūu >=< d̄d >6= 0 [57]. Hence no approximate mixed parity multiplets

would be expected in the hadronic spectrum and it is evident that there is no lighter

state in the hadronic spectrum except mπ ≈ 135 MeV since m2
η >> m2

π. Weinberg

suggested that there was no U(1)A symmetry in the strong interactions [77]. ’t Hooft

[71] showed that the solution to the U(1)A problem by the chiral anomaly for axial

1



currents should use different boundary conditions and the QCD vacuum should have

a more complex structure, which makes U(1)A not a real symmetry of QCD although

it is when mf → 0.

One can easily understand this argument by considering the A0
a gauge and realizing

that the true vacuum (or θ-vacuum) associated to this gauge is a superposition of

n-vacua [57]

|θ >=
∑
n

e−inθ|n >

Then the difference in the winding numbers can be written as

N |t=+∞ −N |t=−∞ = g2

32π2

∫
dσµK

µ|t=+∞
t=−∞ (1.1)

where the integer N is the winding number and Kµ is the Bardeen current. One can

rewrite the vacuum to vacuum transition amplitude by using Eq. (1.1)

+ < θ|θ >−=
∑
M,N

eiMθe−iNθ + < M |N >−=
∑
v

eiV θ
∑
N

+ < N + V |N >− (1.2)

It can be shown that this difference in winding numbers V is

V = g2

32π2

∫
dσµK

µ|t=+∞
t=−∞ = g2

32π2

∫
d4xF µν

a F̃aµν (1.3)

Rewriting + < θ|θ >− in the path integral representation gives

+ < θ|θ >−=
∑
V

∫
σAeiSeff[A]σ

[
V − g2

32π2

∫
d4xF µν

a F̃aµν

]
(1.4)

where

Seff[A] = SQCD[A] + θ
g2

32π2

∫
d4xF µν

a F̃aµν

Accordingly, the solution to the U(1)A problem effectively adds to the QCD La-

grangian an extra term:

Lθ = θ
g2

32π2

∫
d4xF µν

a F̃aµν (1.5)

where θ is a phase parameter and should be of order unity. This term conserves

Charge conjugation (C) invariance but violates Parity (P) and Time reversal (T)

2



invariance. Hence CP invariance is violated by this term. To make the calculated

neutron electric dipole (NED) moment by QCD match the upper bound on NED put

by a current experiment[15], θ should be very small, i.e., ≈ 10−10. But why should

the angle θ be so small since it is a strong interaction parameter and should be of

order unity? This is known as the strong CP problem.

Another way to look at the strong CP problem is to examine the electric dipole

moment (d) and the magnetic moment (µ) of neutron and see how they behave under

three different transformations: 1. Charge conjugation, which changes particles to

anti-particles and vice versa. So a particle with charge changes to its anti-particle

under Charge conjugation (C → C∗); 2. Parity, which is said to be even if the state

is invariant under its mirror image (r → −r, t→ t); 3. Time reversal, is a symmetry

that descrbes how an event behaves both as time moves forward and backwards

(t → −t, r → r). Local Lorentz invariant quantum field theories like the Standard

Model should be symmetric under the product of the three. As shown in figure 1.1,

under the Parity transformation, d flips its direction as charges change their positions

to opposite ones while µ remains unchanged. µ changes its direction as axial current

goes backwards under Time reversal while d does not. Because T is violated, CP

must be violated to conserve the CPT symmetry.

A quantitative description of the strong CP problem can be performed by doing a

rough calculation on the neutron electric dipole moment. The length scale is ΛQCD ≈

1 fm. The electric dipole moment will be approximately dn ≈ θ × 1
3 × 10−15 ecm for

a quark with charge 1
3e, where θ here is a free parameter and 0 ≤ θ ≤ 2π. But the

current experimental bound on the neutron electric dipole moment is dn ≤ 2.9×10−26

ecm[15]. So θ should be on the order of 10−10 in order for the neutron electric dipole

moment predicted by QCD to match up the experimental one. But why should θ be

so small since it is a free parameter is known as the strong CP problem.

3



Figure 1.1: Schematic diagram of the electric dipole moment (d) and the magnetic
moment (µ) of neutron under different transformations. d changes its direction under
Parity transformation (P) while µ remains unchanged. µ flips its direction under
Time reversal (T) while d does not. Since T is violated, the product of Charge
conjugation and Parity, or CP should be violated too because CPT symmetry should
hold true for all physical phenomena.

1.2 Peccei-Quinn Mechanism

In 1977, Roberto Peccei and Helen Quinn devised an cogent solution to the strong CP

problem by introducing a new U(1)PQ global symmetry that is necessarily sponta-

neously broken at an energy scale fa, which is an order parameter associated with the

U(1)PQ symmetry breaking. As a consequence of this U(1)PQ symmetry breaking,

a new neutral spin-zero pseudoscalar particle (Nambu-Goldstone boson) replaces the

static CP violating term θ̄ (θ̄ = θ + Arg det M , M is the quark mass matrix) with a

dynamical CP conserving field, the axion.

Under the U(1)PQ transformation, the axion field a(x) transforms by [57]

a(x)→ a(x) + αfa (1.6)

The Lagrangian should be augmented by the axion interaction to make the La-

4



grangian of the Standard model U(1)PQ invariant:

Ltotal = LSM+θ̄ g2

32π2

∫
d4xF µν

a F̃aµν−
1
2∂µa∂

µa+Lint[∂µa/fa; Ψ]+ξ a
fa

g2

32π2

∫
d4xF µν

a F̃aµν

(1.7)

The last term in Eq. (1.7) is required to make the U(1)PQ current have a chiral

anomaly

∂µJ
µ
PQ = ξ

g2

32π2

∫
d4xF µν

a F̃aµν (1.8)

It also represents an effective potential for the axion field and its minimum is at

< a >= −fa
ξ
θ̄ [57]

<
∂Veff
∂a

>= − ξ

fa

g2

32π2 < F µν
a F̃aµν > |<a>=− fa

ξ
θ̄ = 0 (1.9)

Because the θ̄-term is cancelled out by this one at the potential minimum, this method

provides a dynamical solution to the strong CP problem.

Another way to understand the Peccei-Quinn solution to the strong CP problem

is notice that a periodic potential for the axion field, in the effective vacuum angle

θ̄ + ξ<a>
fa

, is generated when introducing the extra U(1)PQ symmetry [57]:

Veff ≈ cos[θ̄ + ξ
< a >

fa
] (1.10)

Differentiating this potential with respect to < a > gives the PQ solution

< a >= −fa
ξ
θ̄

So there will be no CP violating θ̄-term if the Lagrangian in Eq. (1.7) is written in

terms of areal = a− < a >. Hence the strong CP problem was solved dynamically

by the introduction of a global U(1)PQ symmetry. This solution, however, must be

tested experimentally by the direct observation of the axions.
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1.3 Solar Axions

Solar Axion Generation and Detection

Solar axions are generated by Primakoff conversion of photons, nuclear M1 transitions,

Compton scattering, Bremsstrahlung processes, electron atomic recombination, and

by atomic deexcitation. This thesis will focus on the first two processes: the Primakoff

effect, in which a photon couples to a virtual photon in the Coulomb field of the

nucleus in the solar plasma, producing an axion and the nulear M1 transitions[52, 37,

43]. In the first case the axions have a continuous spectrum with a maximum around

the mean energy of 4.2 keV, and die off quickly beyond 10 keV. Axions produced in

nuclear transitions are monoenergetic because their energies correspond to the energy

difference of specific nuclear transition and can be emitted and escape from the solar

core due to the weak interaction between the axion and matter. Solar axions are

searched for in magnetic helioscopes[69, 6, 8], by the inverse coherent Bragg-Primakoff

process[14, 18], resonant excitation of some nuclide in a laboratory[54, 44], and the

axio-electric effect in crystals[30, 48, 13].

Primakoff Conversion

The Primakoff conversion of a photon coupling to a charge through a virtual photon,

producing an axion as shown in Figure 1.2(a), has been extensively investigated.

While in the inverse Primakoff conversion, an axion couples to a charge via a virtual

photon, producing a photon shown in Figure 1.2(b). It has also been widely used

in searches for solar axions. Van Bibber et al.[73] carried out a detailed calculation

of the solar axion flux, which is similar to black-body radiation and can be well

approximated by the empirical form

dΦ
dE

=
√
λ

Φ0

E0
ϕ(E/E0) (1.11)
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Figure 1.2: (a) An axion is produced in the solar core by the Primakoff effect: A
photon couples to a virtual photon in the Coulomb field of the nucleus. (b) An axion
couples to a charge in the detector via a virtual photon in the Coulomb field of the
crystal producing a photon by the inverse Primakoff effect [14].

where

λ = (gaγγ × 108GeV )4 (1.12)

is a dimensionless parameter that uses gaγγ = 10−8 /GeV as a benchmark, Φ0 =

5.95×1014 cm−2s−1 and ϕ(E/E0) = (E/E0)3

exp(E/E0)−1 [24]. When helium and metal diffusion

are included, the core temperature of the solar model will be changed a little. To

take into account this small change, we use the adjusted value of E0 = 1.103 keV

[24]. Figure 1.3 shows the solar axion flux due to the Primakoff process with λ = 1.

Many solar axions search experiments use the inverse Primakoff conversion. When

the incident axions satisty the Bragg condition for a given crystalline plane, as shown

in Figure 1.4, coherent conversion of axions to photons can occur

Solar Axions from Nuclear Transitions

The stable isotope 57Fe is found in the solar core with a natural abundance of 2.2%

and mass fraction of 2.8 × 10−5. The first excited state of 57Fe is relatively low and

can be thermally excited in the interior of the sun (kT ≈ 1.3 keV). An excited 57Fe

nucleus relaxes to the ground state by emitting a photon with energy 14.4 keV or an

7
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Figure 1.3: Solar axion flux due to Primakoff effect [26]

Figure 1.4: Bragg condition

internal conversion electron. It is also possible for the nucleus to decay to the ground

state by emitting a 14.4 keV axion. Figure 1.5 is the low energy nuclear energy-level

diagram of 57Fe. The mixing ratio of E2 (electric quadrupole with δI = 2) and M1

(magnetic dipole with δI = 1) is 0.002, where I is the angular momentum. So the
57Fe nuclear transition is dominated by the M1 transition, hence emission of axions

from the M1 nuclear transition is possible. The search for the monoenergetic 57Fe

solar axions was given by Moriyama[52] and the flux was calculated by Haxton and
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Lee [36]

ΦFe = 4.56× 1027(geffan )2/m2/s (1.13)

where geffan is the axion-nucleon coupling constant.

1
2

3
2

5
2

Ground State

E2136 keV
M114.4 keV

Figure 1.5: Nuclear transiton of 57Fe

Other Axion Emission Processes

Solar axions can also be generated by Compton scattering, Bremsstrahlung processes,

electron atomic recombination, atomic deexcitation, and nuclear M1 transitions, all

of which are briefly introduced in the following section.

Compton Scattering Process

Figure 1.6 shows the Compton Scattering process. Similar to photon-electron comp-

ton effect, an incident phonon interacts with an electron, producing an axion

γ + e− → a+ e−

9
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Figure 1.6: Compton scattering.

Bremsstrahlung Process

Figure 1.7 shows a Feynman diagram of Bremsstrahlung emission of axions, the pro-

duction of axions in electron-nucleus collisions

e− + Ze→ e− + Ze+ a

Another two types of bremsstrahlung are the electron-ion bremsstrahlung (known as

Ze- Ze-

e- e-

a

Ze- Ze-

e- e-

a

Figure 1.7: Axion Bremsstrahlung.

free-free electron transitions)

e+ I → e+ I + a

and electron-electron bremsstrahlung

e+ e→ e+ e+ a

10



Electron Atomic Recombination

Electron atomic recombination, also known as free-bound electron transitions or elec-

tron capture, is shown in Figure 1.8

e− + I → I− + a

I

a

I-

e-

Figure 1.8: Electron Atomic Recombination [64].

Atomic Deexcitation

Atomic deexcitation, or bound-bound electron transitions, is shown in Figure 1.9

I∗ → I + a

Figure 1.10 shows a comparison plot of solar axion flux from different generation

processes. The blue line corresponds to the Primakoff flux with gaγγ = 10−12 /GeV. It

should be noted that the Primakoff flux is scaled up by a factor of 50 to make it visible.

The dot-dashed line is the electron-ion bremsstrahlung, or free-free (FF) electron

transition. The solid red line is composed of two parts: the atomic recombination

or free-bound (FB) electron transition and atomic deexcitation or bound-bound(BB)

electron transition. The black is the total solar axion flux.
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I *

a

I

Figure 1.9: Atomic Deexcitation [64].

Figure 1.10: The solar axion flux for different processes based on DFSZ model with
axion-photon coupling constant gaγγ = 10−12 /GeV and axion-electron coupling con-
stant gae = 10−13. The dot-dashed line is the free-free (FF) bremsstrahlung. The
solid red line is the atomic recombination (free-bound=FB) and atomic deexcitation
(bound-bound=BB). The blue line corresponds to the Primakoff flux that is scaled
up by a factor of 50 to make it visible. The black line is the total flux.[64]

Axion Bounds

At low energies, the PQ symmetry is explicitly broken because of instanton effects.

Consequently, the axion acquires a small mass through non-perturbation QCD effects

12



[61],

ma = z1/2

1 + z

fπmπ

fa
= 6.9 eV
fa/106 GeV

(1.14)

where z = mu/md is the mass ratio of up and down quarks, fπ = 93 MeV is the pion

decay constant andmπ = 135 MeV is the pion mass. The phenomenological properties

of axions are closely related to those of neutral pions. Although z can vary in the

range of 0.3 − 0.6[79], we stick to most common assumption in the axion literature

and take that z = 0.56[33, 46]. Early searches for axions have not been successful,

due to the assumption that the energy scale of the U(1)PQ symmetry breaking fa

is ralated to the electroweak scale, fa ≈ fEW = 250 GeV. These axions were called

“standard model axions” and this model was quickly ruled out by experiments[72,

66, 16, 42] in early searches. Models with fa >> fEW were quickly proposed[41, 68,

80] and recognized to be far-reaching because these axions can be a candidate for

dark matter in the universe[59, 1, 27, 25] and can be searched by experiments[69,

19, 12, 29]. Because the axion mass is inversely proportional to fa, these axions

are referred as “invisible” axions, which are very light, very long-lived, very weakly

coupled to photons, nucleons, electrons and quarks and accordingly very difficult to

detect directly. There are many models for “invisible axions”, all of which include at

least one electroweak singlet scalar that obtains a vaccum expectation value and thus

breaks the U(1)PQ symmetry, but only two are used as generic classes of “invisible”

axions in most of the literature, the KSVZ(Kim, Shifman, Vainshtein and Zakharov)

or hadronic axions [40, 68] and DFSZ (Dine, Fischler, Srednicki and Zhitnitskij) or

GUT axions [80, 28]. The main difference between the two axion models is that the

KSVZ axions do not couple to ordinary leptons and quarks at tree-level. In the KSVZ

model, new heavy, electrically neutral quarks carry U(1)PQ charges, leaving ordinary

leptons and quarks without tree-level axion couplings. While in the DFSZ model, at

least two Higgs doublets and ordinary leptons and quarks carry U(1)PQ charges.

The axion interaction scale can be related to that of π0 from fπ
fa

in Eq. (1.14).
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One generic property of axions is the two-photon, one-axion interaction that plays a

key role in most searches (the Primakoff process),

L = −1
4gaγγF

µνF̃µνa = −gaγγE ·Ba (1.15)

where L is the interaction Lagrangian, F µν is the electromagnetic field-strength

tensor, F̃µν its dual, E and B the electric and magnetic fields, a the axion field and

gaγγ the coupling constant. The axion-photon coupling constant can be written:

gaγγ = α

2πfa

(
E

N
− 2

3
4 + z

1 + z

)
= α

2π

(
E

N
− 2

3
4 + z

1 + z

) 1 + z√
z

ma

mπfπ
(1.16)

where E and N are the electromagnetic and color anomalies of the axial current

associated with the axion field, respectively. In the DFSZ model, E/N = 8/3, while

in the KSVZ model, E/N = 0 if the electric charge of the new heavy quark is taken to

be vanishing. Although these models are often treated as generic models, in general

E/N is unknown such that it is possible to have a broad range of gaγγ [21] for a fixed

value of fa. Taking into consideration the theoretical models and model-dependent

factors, we have the “axion band” in thema−gaγγ plane. Figure (1.11) shows a typical

exclusion band of axions with |E/N − 1.95| = 0.07 − 7 and constraints achieved by

previous experiments [45, 53, 14, 18, 39, 51, 2, 81, 5, 2, 9, 8].
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Figure 1.11: Exclusion limits on the gaγγ-ma plane by past experiments[45, 53, 14,
18, 39, 51, 81, 5, 2, 9, 8]. The shaded area is favored by the KSVZ [40, 68] and the
DFSZ [80, 28] axion models.
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Chapter 2

Theory for Direct Detection of Solar Axions:

Inverse Primakoff Effect

2.1 Interaction Lagrangian

Axion Field and Vector Potential

The Lagrangian density for electromagnetic and axion fields is

L = La + Lγ + Lint

Because axions and photons are bosons, their field operators and Hermitian conju-

gates, satisfy the canonical commutation relations. For the axion, which is a scalar

field, one has

[φ(r, t), π(r′, t)] = i~δ(r − r′) (2.1)

[φ(r, t), φ(r′, t)] = [π(r, t), π(r′, t)] = 0 (2.2)

where π(r, t) is the momentum density conjugate of the axion field and φ(r, t) is the

axion field. The axion field φ(r, t) can be written as

φ(r, t) = 1√
V

∑
p

√
~2c2

2Ea
eip·r

(
φ(p)e−

iEat
~ + φ†(−p)e

iEat
~
)

(2.3)

which has the dimension of
√
energy/length . For the photon, which has a vector

field, one has

[Aα(r, t), πβ(r′, t)] = i~δTrαβ(r − r′) (2.4)
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where Aα is the vector potential and δTrαβ(r − r′) is the transverse delta function

δTrαβ(r − r′) = 1
V

∑
k

(
δαβ −

kαkβ
k2

)
eik·(r−r

′)

and ∂αδTrαβ(r−r′) = 0. In order to derive the eletromagnetic field Lagrangian density,

one needs to express E and B in terms of potentials. Maxwell’s equations are

(1) ∇ ·E = 1
ε0
ρ, (2) ∇×E = −∂B

∂t
,

(3) ∇ ·B = 0, (4) ∇×B = µ0J + µ0ε0
∂E

∂t

(2.5)

The fields can be derived from the potentials by

E = −1
c

∂A

∂t
−∇φ

B = ∇×A
(2.6)

where φ and A are scalar potential and vector potential, respectively. The most

convenient choice is the radiation gauge[23] in this case,

φ = 0

∇ ·A = 0
(2.7)

So the Lagrangian density for the electromagnetic field in free space is

Lγ = 1
2

 1
c2

(
∂A

∂t

)2

− (∇×A)2


The vector potential can be written in terms of creation and annihilation operators

with momentum k and polarization λ

Ai(r, t) = 1√
V

∑
kλ

√√√√~2c2

2Eγ
εi(k, λ)eik·r

(
a(kλ)e−

iEγt

~ + (−1)λa†(−kλ)e
iEγt

~

)
(2.8)

so

Bi = i√
V

∑
kλ

(k × ε)i

√√√√~2c2

2Eγ
eik·r

(
a(kλ)e−

iEγt

~ + (−1)λa†(−kλ)e
iEγt

~

)
(2.9)

The interaction part can be expressed as

Lint = gaγγ~cE ·Bφ (2.10)
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which has the dimension of energy/volume. Finally, the Lagrangian density for the

inverse Primakoff conversion of an axion to a photon is

L = La + Lγ + Lint

= 1
2

(
∂µφa∂

µφa −
(
mc

~

)2
φ2
a

)
+ 1

2

 1
c2

(
∂A

∂t

)2

− (∇×A)2

− √~c
Mc2E ·Bφa

(2.11)

Matrix Element and Conversion Rate

Because Hint = Lint, only the interaction term should be considered for the matrix

element. In the initial state, one has an axion with momentum p and no photons.

While in the final state, one has a photon with momentum k, polarization ε and no

axions. So the matrix element for such a conversion of an axion with momentum p

and energy Ea and to a photon with polarization ε momentum k and energy Eγ is:

M = 〈kλ; 0|Hint|0;p〉 (2.12)

The atomic electric field E is given in terms of the charge density distribution ρ(r).

Performing a Fourier transform on both sides of ∇2Φ = −ρ gives

∫ ∞
−∞

e−iq·r∇2Φd3r = −
∫ ∞
−∞

e−iq·rρd3r

Integration by part twice one has∫ ∞
−∞

e−iq·r∇2Φd3r = ∂iΦe−iq·r|∞−∞ −
∫ ∞
−∞

∂iΦ∂ie−iq·rd3r

= 0 + iq
∫ ∞
−∞

∂iΦe−iq·rd3r

= iq
(

Φe−iq·r|∞−∞ + iq
∫

Φe−iq·rd3r
)

= −q2Φ̃(q)

= −ρ̃(q)

(2.13)
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so Φ̃(q) = ρ̃(q)
q2 . From E = −∇Φ, one can also get Ẽ = −iqρ̃(q)

q2 by using the same

method. So finally

E(r) = 1
V

∫
Ẽeiq·rd3q

= 1
V

∫ −iqρ̃(q)
q2 eiq·rd3q

= − 1
V

∑
q

i
q

q2 ρ̃(q)eiq·r

(2.14)

where in the last step integral is changed to summation. It should be pointed out

that ε0 = 1 since we use natural units here. The photon part of the matrix element

is

〈kλ|Hint|0〉 = 〈kλ|∇ ×A|0〉

= 〈kλ| i√
V

∑
k′ε′

(k′ × ε′)i

√√√√~2c2

2Eγ
eik
′·r

×
(
a(k′λ′)e−

iEγt

~ + (−1)λa†(−k′λ′)e
iEγt

~

)
|0〉

= i√
V

∑
k′ε′

(−1)λ
√√√√~2c2

2E ′γ
(k′ × ε′)ieik

′·r〈kλ|a†(−k′λ′)|0〉

= i√
V

√√√√~2c2

2Eγ
(k × ε)ie−ik·r

(2.15)

The axion part of the matrix element is

〈0|Hint|p〉 = 〈0| 1√
V

∑
p′

√√√√~2c2

2E ′a
eip
′·r
(
φ(p′)e−

iEat
~ + φ†(−p′)e

iEat
~
)
|p〉

= 1√
V

∑
p′

√√√√~2c2

2E ′a
eip
′·r〈0|φ(p′)|p〉

= 1√
V

√
~2c2

2Ea
eip·r

(2.16)
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So the matrix element becomes:

M = 〈kλ; 0|Hint|0;p〉

= gaγγ~c
∫  1

V

∑
q

−iqi
q2 ρ̃(q)eiq·r i√

V

√√√√~2c2

2Eγ
(k × ε)ie−ik·r

1√
V

√
~2c2

2Ea
eip·r

 d3r

= gaγγ~c
1
V 2

∑
q

~2c2

2Ea
q · (k × ε)

q2 ρ̃(q)
∫
V
ei(q−k+p)·rd3rδ(Ea − Eγ)

= gaγγ~c
1
V 2

∑
q

~2c2

2Ea
q · (k × ε)

q2 ρ̃(q)V δ(q − k + p)δ(Ea − Eγ)

(2.17)

Taking into account of the first delta function in the above equation one has

q · (k × ε) = ε · (q × k)

= ε · [(k − p)× k]

= −ε · (p× k)

(2.18)

So the matrix element becomes

M = gaγγ

√
~c
V

~2c2

2Ea
ε · (p× k)
(p− k)2 ρ̃(p− k)δ(Ea − Eγ)

= gaγγ

√
α

2V Ea
ε · (p× k)
(p− k)2 ρ̃(p− k)δ(Ea − Eγ)

(2.19)

Here the summation over q is performed and the fundamental unit of charge is re-

placed with the square root of the fine structure constant α = e2

~c so the charge density

is now measured in units of e. It should be pointed out that natural units ~ = c = 1

are used here for convenience. The lowest-order rate for the conversion of an axion

with energy Ea and momentum p to a photon with energy Eγ, momentum k and

polarization λ is

T (p,k) = 2π
~
|〈kλ; 0|Hint|0;p〉|2

= g2
aγγ

2πα
4V 2E2

a

|ε · (p× k)|2 |ρ̃(p− k)|2
|p− k|4

δ(Ea − Eγ)
(2.20)

Finally, one needs to sum over all photon final states. For very light axions the

energy delta function is equivalent to |p| = |k|. The sum over all final states of
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photons involves both a summation over polarizations ε(kλ) and an integral over the

wavevector k. Only one polarization vector is parallel to the vector of p × k, hence

the sum over polarizations gives us

∑
λ

|ε(kλ) · (p× k)|2 = |p× k|2 (2.21)

The sum over wavevectors of the photon can be replaced by an integral in the usual

way,

∑
k → V

(2π)3

∫
d3k

which gives us the total conversion rate of an axion with momentum p and a photon

with momentum k

T (p,k) = g2
aγγ

πα

2V E2
a

∫ d3k

(2π)3
|p× k|2

|p− k|4
|ρ̃(p− k)|2δ(Ea − Eγ) (2.22)

Fourier Transform of the Charge Density Distribution

In a crystal, the electron charge density distribution can be treated as the total charge

density distribution in a conventional unit cell repeated along lattice vectors

ρ(r) =
∑
R

ρc(r −R) (2.23)

where R is a lattice vector

R = n1a1 + n2a2 + n3a3 (2.24)

where a1, a2, a3 are lattice constants and ρc(r) is the charge density distribution inside

the unit cell at the origin. Note that this function by definition vanishes outside the

unit cell. The periodicity of the charge density is reflected in the Fourier transform

of the charge density distribution:

ρ̃(q) =
∫
vc

∑
R

ρc(r −R)e−iq·r d3r

=
(∑
R

eiq·R
)
ρ̃c(q)

(2.25)
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where ρ̃c(q) is the Fourier Transform of the charge density in a unit cell

ρ̃c(q) = 1
vc

∫
ρ(r)e−iq·r d3r

The sum ∑
R e

iq·R can be rewritten as

∑
R

eiq·R =
N1−1∑

0
ein1q·a1

N2−1∑
0
ein2q·a2

N3−1∑
0
ein3q·a3 (2.26)

where N1N2N3 = Nc, the number of unit cell. Let’s take a detour and derive an

important equation used here.
N−1∑
n=0

einx = 1− eiNx
1− e2iix

= eiNx/2

eix/2

sinNx
2

sinx
2

(2.27)

When N is approaching to infinity, Eq. (2.27) can be represented by a summation

over a series of delta functions,

lim
N→∞

∣∣∣∣∣
N−1∑
n=0

einx
∣∣∣∣∣⇒ √πN

+∞∑
k=−∞

δ(x− 2πk) (2.28)

where k is an integer. This function is called the “Dirac Comb”. Figure 2.1 shows of
sin Nx

2
sin x

2
with N = 100. If we take the modulus squared of Eq. (2.27), we have the Fejer

kernal ∣∣∣∣∣
N−1∑
n=0

einx
∣∣∣∣∣
2

=
sinNx

2
sinx

2

∼= 2πN
+∞∑

k=−∞
δ(x− 2kπ) (2.29)

Using this conclusion one has∣∣∣∣∣∣
N1−1∑

0
ein1q·a1

∣∣∣∣∣∣
2

= 2πN1

+∞∑
m1=−∞

δ(q · a1 − 2m1π) (2.30)

Hence ∣∣∣∣∣∑
R

eiq·R
∣∣∣∣∣
2

= (2π)3Nc

∏
i=1,2,3

mi=+∞∑
mi=−∞

δ(3)(q · ai − 2miπ) (2.31)

where m1, m2 and m3 are components ofm. Let ki = pjAji, where A can be written

as

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33


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Figure 2.1: A Plot of Dirac Comb

then

δ(3)(q ·A− 2mπ) =
∫ d(3)p

(2π)3 e
ip·(q·A−2mπ)

= 1
detA

∫ d(3)p

(2π)3 e
ik·(q−2A−1mπ)

= 1
detA

δ(3)(q − 2A−1mπ)

= 1
detA

δ(3)(q −G)

= 1
vc
δ(3)(q −G)

(2.32)

where detA = a1 ·(a2×23) = vc, the volume of the unit cell, and G = m1b1 +m2b2 +

m3b3 is a reciprocal lattice vector. The Fourier transform of the charge density is

then given by

|ρ̃(q)|2 = |ρ̃(G)|2 = (2π)3Nc

vc

∑
G

δ3(q −G) |ρ̃c(G)|2 (2.33)
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Delta Functionality

The conservation of momentum and energy for the inverse Primakoff process gives

two delta functions

δ(p− k −G)δ(k2 − p2 − m2
ac

2

~2 )

It should be pointed out that the following trick is useful in the delta integral

δ(a2 − b2) = δ ((a+ b)(a− b)) = δ (2a(a− b)) = 1
2aδ(a− b) (2.34)

By this trick,

δ(k + Ea
~c

) = (k − Ea
~c

)δ(k2 − E2
a

~2c2 )

= 2Ea
~c

δ(k2 − p2 − m2
ac

2

~2 )
(2.35)

The integral is then given by∫
d3kδ(p− k −G)δ(k2 − p2 − m2

ac
2

~2 ) = δ(|p−G|2 − p2 − m2
ac

2

~2 )

= δ[2p ·G−G2 + m2
ac

2

~2 ]

= 1
2p̂ ·Gδ[p−

G2 − m2
ac

2

~2

2p̂ ·G ]

= p

G2 − m2
ac

2

~2

δ[p−
G2 − m2

ac
2

~2

2p̂ ·G ]

(2.36)

Finally,

∫
d3kδ(p− k −G)δ(k − Ea

~c ) = 2pEa
~c(G2−m

2
ac

2

~2 )
δ[p− G2−m

2
ac

2

~2
2p̂·G ]

In the special case where the axion mass is zero(or at least negligible),

∫
d3kδ(p− k −G)δ(k − p) = 2p2

G2 δ(p− G2

2p̂·G)

Even for a mass as large as 10 eV the correction is only on the order of 2.58 × 10−5

of the zero-mass expression. For an axion with mass 100 eV, the correction is on the

order of 2.58 × 10−3. Therefore it is reasonable to ignore the mass of the axion and
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assume it is zero. Note that this is a quite different situation from what found in

CAST, where the axion mass causes a loss in coherence as the axion moves down the

length of the helioscope.

When the above equation is substituted into the rate one has

T (p) = g2
aγγ

4π2αNc

vcV

∑
G

|ρ̃c(G)|2 |p×G|
2

G6 δ(p− G2

2p̂ ·G) (2.37)

Meanwhile, the cross section is related to the rate by

T (p) = Φ(p)σ(p)

And the flux of a single axion is va
V
, where va is the speed of the axion. For very light

axions, va ≈ c, yielding

σ(p) = g2
aγγ

4π2αNc

vc

∑
G

∣∣∣∣∣ ρ̃c(G)
G2

∣∣∣∣∣
2 |p×G|2

G2 δ(Ea − Eγ)

= g2
aγγ~3c3 4π2αNc

vc

∑
G

|ρ̃c(G)|2 |p×G|
2

G6 δ(Ea − Eγ)
(2.38)

where p̂ is the unit vector from the Sun to the detector and E = ~cp. Note that in

the last step ~ and c are added back in. If we take gaγγ = 10−8 /GeV, then Eq. (2.38)

can be rewritten as

σ(p) =
√
λ~c

(108 GeV)2
4π2αNc

vc

∑
G

|ρ̃c(G)|2E2
a

|p̂×G|2

G6 δ(Ea − Eγ) (2.39)

where

λ = (gaγγ × 108 GeV)4 (2.40)

is a dimensionless parameter which uses gaγγ = 10−8 /GeV as a benchmark.

Solar Axion Conversion Rate

The solar axion flux due to the Primakoff conversion has been calculated by van

Bibber et al. [73] . This detailed numerical calculation can be well approximated by

the empirical form
dΦ
dE

=
√
λ

Φ0

E0
ϕ(E/E0) (2.41)
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where Φ0 = 5.95×1014 cm−2s−1 and ϕ(E/E0) = (E/E0)3

exp(E/E0)−1 . When helium and metal

diffusion are included, the core temperature of the solar model will be changed a bit.

To take into account this small change, we use the adjusted value of E0 = 1.103 keV,

which is the same value used in our previous paper [24]. The solar-axion spectrum is

similar to that of black-body radiation,
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Figure 2.2: Solar axion flux due to Primakoff conversion with gaγγ = 10−8 /GeV.

Figure 2.2 shows the solar axion flux due to the Primakoff process with gaγγ = 10−8

/GeV. For convenience, a good order of magnitude estimate for the counting rate can

be obtained from the combination of factors

dṄ0

dE
= NA

Φ0

E0
(~cgaγγ)2 λ = 1.12λ/keV/d (2.42)

where NA is the Avogadro’s number. The number of unit cells can be expressed in

terms of the mass of the detector m, and molar mass of the unit cell, µc

Nc = m

µc
NA (2.43)
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Coherent conversion of axions to photons is possible when the energy of the axion

and p̂, satisfies the Bragg condition,

ε(p̂,G) = ~c
G2

2p̂ ·G

where p̂ is the unit vector pointing from the core of the Sun to the detector. Taking

into account the fact that the detector has a certain energy resolution, we replace the

delta function in Eq. (2.38) with a Gaussian function W∆ with the same full width

at half maximum(FWHM)1 as the detector,

δ(E − ε)→ 1√
2πσ2

e−
(E−ε)2

2σ2

and finally we have the conversioin rate

dṄ

dE
= m~c

dṄ0

dE

4π2α

µcvc

∑
G

|ρ̃c(G)|2 |p×G|
2

G6 ϕ[ε(p̂,G)/E0]W∆[E − ε(p̂,G)]

= m
dṄ0

dE

4π2α

µcvc

∑
G

|ρ̃c(G)|2E
2
a

~c
|p̂×G|2

G6 ϕ[ε(p̂,G)/E0]W∆[E − ε(p̂,G)]
(2.44)

For the germanium detector used by SOLAX[14], σ ∼ 0.4 keV. CUORE will have

a characteristic low-energy resolution with FWHM=0.73 keV at 4.7 keV and a low

background counting rate [4]. Finally, integrating the total counting rate over a range

of energies of width ∆E=0.5 keV gives,

R(p̂, E) =
∫ E′+∆E

E′

dṄ

dE
(p̂, E ′)dE ′ (2.45)

2.2 Tellurium Dioxide Detectors

TeO2 Crystal Structure and Density Distribution

Tellurium dioxide(TeO2) has two mineral forms in nature, tellurite (orthorombic)

and paratellurite(α − TeO2). The latter is used by CUORE and has a tetragonal

symmetry with space group D4(422) and can be treated as a distorted rutile structure

1FWHM = λ+ − λ− = 2
√

2ln2σ ≈ 2.3548σ
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with lattice constants a = b = 4.8088 Å and c = 7.6038 Å [20]. TeO2 was chosen

by CUORE to study neutrinoless double beta decay using four criteria: First, TeO2

crystals have very low heat capacity at low temperature. Since CUORE will use

the bolometric technique, which determines the energy deposited in the crystal by

a radioactive decay by measuring the temperature increase, the heat capacity of the

crystal should be very low. According to the Debye law, at very low temperature, the

specific heat is proportional to (T/TD)3. For TeO2 crystals, TD = 232K[50], which

yields an extremely low heat capacity at low temperature and good energy resolution.

Second, the thermal expansion coefficient of TeO2 crystal[35] is close to that of copper

frame used as a mechanical support of the detector, resulting in less strain on the

crystals during the cooling process. Third, but not the most important, 130Te has

a very high natural abundance, 33.8%, which eliminates the need for expensive and

complicated enrichment processes. Finally, the α − TeO2(also used by CUORE) is

commercially produced on a large scale due to its useful acousto-optic properties can

can be grown into large high-quality single crystal, which further reduces the cost of

the detector.

Table 2.1: Relative coordinates of atoms in a conventional unit cell of TeO2 crystal
with respect to lattice constants a, a, c.

Element ar br cr
O 0.13933 0.24991 0.19288
O 0.86067 0.75009 0.69288
O 0.25009 0.63933 0.44288
O 0.74991 0.36067 0.94288
O 0.36067 0.74991 0.05712
O 0.63933 0.25009 0.55712
O 0.24991 0.13933 0.80712
O 0.75009 0.86067 0.30712
Te 0.01565 0.01565 0.0
Te 0.98435 0.98435 0.5
Te 0.48435 0.51565 0.25
Te 0.51565 0.48435 0.75
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Table 2.1 shows the relative coordinates of O and Te atoms in a conventional unit

cell of TeO2 with respect to lattice constants a, a, c. The front and top views of the

TeO2 crystal structure is shown in figure 2.3. And the contour of the charge density

distribution on the X-Y (z=0) plance can be seen from fiigure 2.4.

Figure 2.3: Front and top views of the TeO2 crystal structure, calculated with the
software VESTA.

The Fourier transform of the charge density distribution for a given reciprocal

lattice vector G can be calculated by density functional theory (DFT) or by using

the screened Coulomb approximation (SCA) [24]. Table. 2.2 shows the comparisons

between the two. It can be seen that |ρ̃(G)|2 calculated by SCA is larger than that

given by DFT, which means that SCA yields a higher conversion rate and thus a

higher counting rate. Consequently, it gives a more strict bound on the coupling

constant gaγγ in the case of a null result.
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Figure 2.4: Contour plot of TeO2 electron density distribution on z=0 plane.

2.3 Counting Rates

Position of the Sun

Mathematica was used calculate the altitude and azimuth for the Sun, (θ,ϕ). The

altitude is the angle between the vector from an observer to the Sun and the reference

2The integers (h, k, l) are the components of reciprocal lattice vectors G = 2π( h
a ,

k
a ,

l
c ).

3d is the distance between Bragg planes for a given G and d = 2π/G.

4E0 is the minimum energy for which a zero rest mass particle can Bragg scatter with momentum
transfer G.

5mult is the multiplicity, or the number of reciprocal lattice vectors in each family of planes.

6|ρ̃DF T
c (G)2| is the Fourier transform of the charge density distribution ρ calculated by WIEN2k

based on density functional theory.

7|ρ̃SCA
c (G)2| is Fourier transform of the charge density distribution ρ based on screening length

[24].
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Table 2.2: Selected reciprocal lattice vectors that contribute to the inverse Primakoff
conversion of solar axions in TeO2.

(h, k, l)2 d(Å)3 E0(keV)4 mult5 |ρ̃DFTc (G)2|6 |ρ̃SCAc (G)2|7
(1,1,1) 3.0889 2.01 8 72.53 118.98
(2,2,1) 1.6536 3.75 8 505.88 1021.16
(1,2,3) 1.6265 3.81 16 220.69 663.13
(4,2,0) 1.0723 5.78 8 10620.90 29125.90
(3,2,3) 1.1737 5.28 16 481.43 1988.35
(3,4,1) 0.9513 6.52 16 1280.11 3818.14
(3,3,3) 1.0296 6.02 8 435.17 2787.61
(2,3,4) 1.0842 5.72 16 363.21 114.08
(1,5,2) 0.9121 6.80 16 24.71 80.38
(4,2,4) 0.9304 6.66 16 9969.21 30530.90
(2,3,5) 0.9944 7.39 16 549.24 2118.81
(5,4,1) 0.7452 8.32 16 1641.36 5967.68
(5,3,3) 0.7811 7.94 16 2411.45 5240.20
(1,3,6) 0.9635 6.43 16 15.98 30.00
(3,4,5) 0.8076 7.68 16 3339.10 3984.78
(1,5,5) 0.7964 7.78 16 2271.45 4415.45
(6,1,4) 0.7265 8.53 16 243.03 117.57
(3,3,6) 0.8377 7.40 8 47.86 273.31
(7,2,2) 0.6487 9.56 16 13981.86 23033.10
(6,0,5) 0.7051 8.79 8 984.16 6131.84
(2,3,7) 0.8335 7.44 16 1540.88 2226.21
(1,1,8) 0.9021 6.87 8 11543.29 36814.40
(4,4,6) 0.7012 8.84 8 238.77 855.70
(7,2,4) 0.6514 9.98 16 765.01 622.35
(6,1,6) 0.6665 9.30 16 9789.80 27343.1
(7,0,5) 0.6230 9.95 8 1261.85 8147.2
(6,3,6) 0.6203 9.99 16 14051.54 25538.9

plane8,and the azimuth is the angle between the reference direction (North) and the

line from the observer to the Sun projected onto the same reference plane.

−π2 ≤ θ ≤ π

2 , 0 ≤ ϕ ≤ 2π

In the Cartesian coordinate system, the East direction of the reference plane is chosen

as the X-axis and North as the Y-axis. So the Z-axis is pointing upward. The position

8The observer’s local horizon or the surface of the sea
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of the Sun in this reference frame is R� (cosθsinϕ, cosθ cosϕ, sinθ), where R� is the

distance from the Earth to the Sun. Consequently, the unit vector from the Sun, p̂ is

p̂ = (−cosθsinϕ,−cosθ cosϕ,−sinθ) (2.46)

One could sample the position of the Sun every minute, or even every hour, then

calculate the instant counting rate at these sampling points and interpolate them to

get a continuous counting rate. If it is appropriate to choose a longer time interval to

sample the position of the Sun without losing much information, then a longer time

interval seems better, since it can shorten the calculation time. So it is interesting to

see how different sampling time intervals affect the counting rates. For comparison,

the counting rates for two energy bins with different sampling time intervals (2 mins, 5

mins, 10 mins and 15 mins) are calculated. Figure 2.5 and figure 2.6 show the counting

rates for different sampling time intervals. It is easy to see that longer sampling time

intervals tend to smooth peaks where there might exist higher instantaneous counting

rates, while for other regions, they overlay on each other so no information will be

lost.

So the only region where one might lose some counts is in the peaks. It is worth-

while to see how large the differences are by integrating these counting rates over

a single day. Table 2.3 shows the comparison of total counts over a single day for

different choices of sampling time intervals.

Table 2.3: Comparison of counts with different ∆t.

∆t(min) C/kg/d(2.5− 3.0keV ) C/kg/d(4.5− 5.0keV ) Total Counts for 16 bins
2 5.36936 20.6101 200.431
5 5.36937 20.6103 200.283
10 5.36932 20.5989 200.562
15 5.36925 20.6421 200.935

From these two comparison plots and the table, it is easy to conclude that 5-minute
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Figure 2.5: Comparison of rates with different ∆t

sampling time intervals are sufficiently small to ensure that not much information will

be lost. Accordingly, 5-minute sampling times were chosen to calculate the other rates

with different energies.

Will the distance from the Sun to the Earth affect the counting rate? This is

another question needed to be addressed here. The distance from the Earth to the

Sun is 1.496 × 108 km. The Solar radius is r� = 6.955 × 105 km and solar core is

0.2 ∼ 0.25r�, or 1.391 ∼ 1.739 × 105 km. So the solar core subtends an angle of

0.053◦ − 0.066◦ with respect to the Earth. Meanwhile, the Sun moves 0.25◦/min.

The speed of light is 2.99 × 105 km/s, so it takes axions 500 seconds to get to the

Earth. During this time, the Sun can move 2◦. Here a question arises. Is the position

of the Sun we record 500 seconds ago or is it instantaneously? The answer is if the

mass of the axion is relatively small, then it doesn’t matter. The following is the

approximation used to address this question. The energy of the axion is

E =
√

(pc)2 + (mc2)2 (2.47)
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Figure 2.6: Comparison of rates with different ∆t

The speed of axion is

V = ∂E

∂p
= pc2

E
(2.48)

so

pc =
√
E2 − (mc2)2 ≈ E[1− 1

2(mc
2

E
)2] (2.49)

The time it takes for the axion to reach to the Earth is

T = L

V
= L

c

c

V

= L

c

E

pc

= T0(1 + 1
2(mc

2

E
)2)

(2.50)

where T0 is the time a photon takes to get to the Earth. The energy of axions is in the

range of keV, if the mass of axion is 1 eV, then the second term in T is 0.5× 10−6T0,

which means it is negligible compared with T0. If the the mass of axion is 100 eV,

then 0.5 percent of T or 2.5 s is also small, but during this time, the Sun moves 0.01◦,

not negligible compared with the solar core size. However, axions with mass of 100

eV would be heavy axions.
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Energy-dependent Counting Rates with 16 Energy Bins

Starting from the counting rate expression in Eq. (2.45), and substituting all pa-

rameters in, the counting rates in the units of counts/kg/d over a range of energies

Ea = 2 ∼ 10 keV are calculated. Figure 2.7 shows the counting rates as a function of
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Figure 2.7: Expected counting rates R8(E, t) of photons produced by the inverse
Primakoff conversion of solar axions in the CUORE detector, which is located at the
Laboratori Nazionali del Gran Sasso(LNGS) in central Italy(42◦28′N 13◦33′E). The
rates were calculated for gaγγ = 10−8/GeV [26] .

time over a single day for several energy intervals. One way to understand the time-

dependent counting rate is that at any instant there might be one or more reciprocal

lattice vectors satisfying the Bragg condition. If one considers the contribution to the

counting rate of a single G, one can imagine isodetection contours projected on the

celestial sphere. Figure 2.8 shows the isodetection contours for axions with energies
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Figure 2.8: Isodetection contours projected on the celestial sphere for the G =
2π( 1

a
, 1
a
, 1
c
) plane. The cross at the center is the projection of the normal to the

(1,1,1) plane. The dotted trojectory represents the path of the Sun through that
region [26].

from 2.5 keV to 6.5 keV for G = 2π( 1
a
, 1
a
, 1
c
) in steps of 0.5 keV. The energy bin width

is chosen to be slightly larger than the resolution of the detector. The cross at the

center is the projection of G and the dotted trojectory represents a typical path of

the Sun through that region. To give the reader some quantitative feeling for the

angular size of the isodetection rings, the outermost ring at 6.5 keV has an angular

radius of 72◦ and the ring for 6.0 keV has a radius of 70.5◦, so the outermost annulus

is 1.5◦ wide. The counting rate in the energy bin 6.0 − 6.5 keV will rise when the

Sun passes through this annulus, which takes about six minutes because the Sun

angle moves 0.25◦/min. As the Sun continues along its path, the counting rate in the

next annulus, with energy 5.5− 6.0 keV, will increase, while the counting rate in the

previous annulus will drop [26].

From figure 2.7 one can see that the complexity and sharpness of the counting rate
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increases with energy. This is a geometric effect because, as is clear from figure 2.8,

the Sun spends more time in the annuli corresponding to lower energies than those

with corresponding to higher energy, and because there are many more reciprocal

vectors available satisfying the Bragg condition. So the daily temporal pattern is

dependent on how the Sun passes through those annuli. Figure 2.8 shows the Sun

passing along a diameter and through all eight annuli, so one could expect the peaks

to be seen in all energy bins in a symmetrical pattern. On the other hand the Sun

might pass at a grazing trajectory that crosses the outer rings without going through

the inner ones, so the patterns shown in one energy bin may not be seen in other

energy bins [26].

2.4 Bound on Axion Mass

Axion mass dependent solar axion flux

Raffelt [60, 32] derived a formula to calculate the transition rate of a photon to an

axion

Γγ→a =
T�κ

2g2
aγγ

32π2
|pγ|
Eγ

∫ |pγ × pa|2
q2 (q2 + κ2)dΩ (2.51)

where T� is the temperature of solar core and T� = 15.6× 106 K ⇒ 1.3 keV, κ is the

Debye −Hückel scale and is approximately 9 keV and q is the momentum transfer

given by q = pγ − pa. Vogel[76] has calculated the total rate with the result

Γγ→a =
T�κ

2g2
aγγ

32π2 × (m2
a − κ2)2 + 4E2

aκ
2

4Eapaκ2 log
[

(Ea + pa)2 + κ2

(Ea − pa)2 + κ2

]

−
T�κ

2g2
aγγ

32π2 ×
(

m4
a

4Eapaκ2 log
[

(Ea + pa)2

(Ea − pa)2

]
− 1

) (2.52)

For axions with negligible mass, pa ≈ Ea, the next to the last term vanishes and

Eq.(2.52) reduces to

Γγ→a =
T�κ

2g2
aγ

32π2

[(
1 + κ2

4E2

)
log

(
1 + 4E2

κ2

)
− 1

]
(2.53)
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The ratios of Eq.(2.53) over Eq.(2.52) as a function of the axion mass ma, for differ-

ent photon energies, are analyzed to determine the effect of the axion mass on the

transition rate, as shown in Figure 2.9. The change of the transition rate due to axion

mass is less than 3% for axion mass less than 1 keV.
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Figure 2.9: Ratio of Eq.(2.53) over Eq.(2.52) for different photon energies. It can be
used to determine the effect of the axion mass on the transition rate.

Decoherence length

The distance, over which the axion and photon remain coherent is given approxi-

mately by

(kγ − ka) · d ≈ π (2.54)

where kγ − ka is the momentum transfer. For an axion with energy E, mass m and

momentum ~ka, one has

E2 = (mac
2)2 + (~cka)2 (2.55)

which gives, for E >> mac
2,

~cka ≈ E − (mac
2)2

2E
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Substituting this back to Eq.(2.54), and assuming that the energy of photon is equal

to that of axion, gives

d = 2π~cE
(mac2)2 (2.56)

For an axion with energy 2 keV and mass 100 eV, the coherence length is (~c =

1.97 keV · Å)

d = 2π × 1.97 keV · Å× 2 keV
(0.1 keV )2

= 2475.58 Å
(2.57)

which is about 350 times bigger than the lattice constants (a = b = 4.8088 Å and

c = 7.6038 Å [20]). So decoherence will not be an issue. We take 100 eV as an

upper limit for the axion mass, which is somewhat arbitrary and conservative. The

Bragg conversion probability is not very sensitive to axion masses less than 100 eV,

and solar axion flux also varies very little. For axion masses of several hundred eV

the solar axion spectrum is distorted and decoherence begins to affect the conversion

probability.

2.5 14.4 keV solar axions emitted from the ground-state M1 transi-

tion of 57Fe nuclei

Using Eq. (2.39) and Eq. (2.43), the cross section for a conversion of an axion to a

photon by the inverse Primakoff effect is

σaγγ = m~3c3 4π2αNa

µcvc
g2
aγγ

∑
G

|ρ̃c(G)|2 |p×G|
2

G6 W∆[E − E(p̂,G)] (2.58)

For the solar axions emitted in the M1 transition of 57Fe nuclei, the flux is approxi-

mated by[6]

ΦFe = 4.56× 1027(geffan )2/m2/s (2.59)

where geffan is the axion-nucleon coupling constant. So the total conversion rate of

axions from M1 transition of 57Fe nuclei to photons detected by the inverse Primakoff
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conversion becomes

RFe = ΦFe × σaγγ

= 4.56× 1027(geffan )2 ×m~3c3 4π2αNa

µcvc
g2
aγγ

∑
G

|ρ̃c(G)|2 |p×G|
2

G6 W∆[E − E(p̂)]

= 4.56× 1027 × (geffan gaγγ)2m~c
4π2αNa

µcvc

∑
G

|ρ̃c(G)|2E2 |p̂×G|2

G6 W∆[E − E(p̂)]

(2.60)

Figure 2.10 shows the expected counting rate of the 14.4 keV solar axions as a function

of time over a single day.
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Figure 2.10: Expected counting rates R(t) of photons produced by the inverse Pri-
makoff conversion of 14.4 keV solar axions in the CUORE detector for gaγγgeffan =
1.105× 10−16 GeV −1.
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Chapter 3

The CUORE Project

3.1 Introduction to CUORE

CUORE, which means “heart” in Italian, is an acronym for Cryogenic Underground

Observatory for Rare Events, located in one of the the world’s biggest underground

laboratories focusing on subatomic particles. It is located at the Laboratori Nazionali

del Gran Sasso(LNGS) in central Italy, between Rome and Adriatic Sea. The labora-

tory is built underneath the Gran Sasso mountain which provides a shield from cosmic

radiation by 1400 meters of rock, or approximately 3650 meter water equivalent(3650

m.w.e). Consequently, the flux of cosmic rays, mainly muons and neutrons, can be

greatly reduced to 2.85 ± 10−8 µ/cm2/s and 4 × 10−6 n/cm2/s[17], respectively. In

addition, γ-rays with energies less than 3 MeV have a flux of 0.73 γ/cm2/s. Although

the primary goal of CUORE is to search for neutrinoless double beta decay(0νββ),

which could prove the Majorana nature of the neutrino, i.e., that the neutrino is its

own antiparticle(ν = ν̄)[11][38], it may also give information about the neutrino mass

hierarchy and absolute mass scale. CUORE also aims to be sensitive enough to search

for dark matter and solar axions.

3.2 CUORE Detector and Cryostat

The CUORE detector is composed of 19 closely packed towers designed to operate

at a very low temperature(10mK). Each tower has 13 floors, with four 5x5x5 cm3

TeO2 crystals (750 g each) on each floor, as seen in figure 3.1. There are 988 crystals
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with a total mass of 741 kg of TeO2 (204 kg of 130Te). Tellurium was selected for two

Figure 3.1: Drawing of the CUORE detector array: a cylindrical structure of 19
closely packed towers [22].

specific reasons: (1) it has a large natural abundance of the double beta decay isotope
130Te at 34.2%[49];(2) it has a relatively high Q-value at 2528 keV[65][67][62]. The

frame of the detector is made of an ultra-pure copper and the crystals are held by

polytetrafluoroethylene (PTFE) brackets. In order to validate the feasibility of this

ambitious project, two initial experiments, CUORICINO and CUORE-0 have been

conducted in Hall A of LNGS to measure the background rate and energy resolution

of the detector[34, 11].

Figure 3.2 shows a schematic of the CUORE cryostat. There are 6 thermal shields

at 300 K, 40 K, 4 K, 800 mK, 50 mK and 10 mK. The 300 K and 4 K shields are

vacuum chambers that allow the use of exchange gas in the inner vacuum chamber

during the initial stage of cooling. Cryostat flanges that are made of Cu-OFE or

Cu NOSV are fixed in place with a dedicated hoist system to lower and raise the

shields. The entire cryostat with 1 ton of detector, 8 tons of thermal shields and

flanges and 10 tons of the internal lead shielding, is suspended from a main support

plate. Independent suspension systems for the vessels, dilution unit and detector are

42



Figure 3.2: Schematic of the CUORE cryostat [22].

used to minimize vibrational noise of the detector.

Figure 3.3 shows the cold lead shieding with two parts: the top lead shield and the

lateral lead shield. Together with the external lead shield, it is designed to surround

the detector with 30 cm of lead in all directions. The top lead located below the

mixing chamber plate is made of modern lead (2745 kg) with 30 cm in thickness and

can shield the detector from the upper cryostat. In order to shield the detector from
210Pb in the top lead, a 10 cm thick ultra-pure copper disc is mounted below the top

shield. The lateral lead is composed of several 6 cm thick annular sections of ancient

Roman lead [3], which is salvaged from shipwrecks off the Sardinian coast and is ideal

for low background experiments because of the low activity of 210Pb (< 4 mBq/kg).

Figure 3.4 shows comparisons of spectra in the low energy region with shields made

with different types of lead [3]. Three cooling methods are used to cool down such a

large mass, pulse tube refrigerators, a dilution unit and a fast cooling system [22].
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Figure 3.3: Schematic of the top and lateral cold lead shielding of the CUORE
detector [22]

Figure 3.4: Spectra in the low energy region with shields made with different types
of lead. 1. Comman modern lead; 2. Modern lead with a certified content of less
than 20Bq kg−1 210Pb; 3. Roman lead from Oristano [3]

44



Figure 3.5: Schematic of a single CUORE bolometer [55]

3.3 Bolometric Technique

CUORE is a low temperature bolometric detector in which the source and the detector

are the same. This “source = detector” technique ensures a high detector efficiency.

A CUORE bolometer [74] is composed of two main parts, a TeO2 crystal (absorber)

and a neutron transmutation doped Germanium (NTD-Ge) thermistor. The TeO2

crystal is held in place by PTFE supports in a copper frame, which is connected

to the mixing chamber of a dilution refrigerator that keeps the bolometer at the

operating temperature of ∼ 10 mK. The thermistor is glued to the crystal and works

as a thermometer. Figure 3.5 and Figure 3.6 are two graphical representations of the

bolometer. As shown in Figure 3.5, an incident particle deposits energy in the form of

radiation in the crystal. The deposited energy is converted into phonons that cause

an increase in temperature, which is measured by the decrease in the resistance of

the thermistor. The thermistor is biased by a constant current and a change in the

voltage across it gives the signal [4]. When operating properly, all energy is converted

into heat and measured, giving a good energy resolution.

The bolometer technique is very sensitive to a tiny amount of energy deposited

in the crystal. When an incident particle interacts with the crystal, phonons will be
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Figure 3.6: Bolometer sketch

produced out of equilibrium. Phonons then interact with other particles in the crystal

and release their energy, resulting in a new distribution. The new distribution can be

measured by a thermister as a temperature change based on the following expression:

∆T = ∆E
C

e−t/τ (3.1)

where C is the heat capacity of the crystal and τ is the decay time constant for the

pulse signal. The heat capacity of TeO2 at low temperature T can be written as [31]

C(T ) = 12π2

5 kBNA

(
T

TD

)3

where kB is the Boltzmann constant and TD is the Debye temperature and for TeO2

TD ≈ 232 K. So C is very small because the operating temperature of the cryostat

is at around 10 mK. Hence even a tiny change in energy can result in a measurable

temperature change[55].

The bolometer technique can also give a fast signal response. Figure 3.7 shows a

typical shape of a bolometer pulse with energy at around 2615 keV [4]. The rise time

(from 10% to 90% of the maximum) is 0.04 s and the falling time (from 90% to 30%

of maximum) is 0.26 s.
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Figure 3.7: An example of a bolometer pulse with the energy of approximately 2615
keV [4]

In summary, the CUORE project and CUORE cryostat is specifically designed

to overcome three main challenges: reduction of background rate through strict se-

lection of location and cryostat materials, cooling down a large mass to the working

temperature of 10 mK, while reducing the vibrational noise transmitted to the detec-

tor to ensure a better energy resolution, and bolometric technique to ensure a high

detector efficiency and fast response.
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Chapter 4

Data Analysis and Results

4.1 Pseudo Data Generation

Let R(t) be the instantaneous counting rate at time t. We assume that the detector

runs from t0 to t + ∆t, where ∆t is a small increment around t. The probability of

no event during the time considered is

P0(t+ ∆t, t0) = P0(t, t0)× (1−R(t)×∆t)

where P0(t, t0) is the probability that no event occurs between the time interval t0

and t. Rearranging the above equation gives the differential equation for P0(t, t0)

dP0(t, t0)
dt

= −P0(t, t0)R(t)

So the probability of no event in the time interval (t0, t) is

P0(t, t0) = e
−
∫ t
t0
R(t′)dt′ (4.1)

The probability of an event occurring at time t1 is equal to the product of the prob-

ability of no event from t0 to t1 and one event in a small time interval ∆t around

t1:

P1(t1) = P0(t1, t0)R(t1)∆t = e
−
∫ t1
t0
R(t′)dt′

R(t1)∆t (4.2)

The probability of the next event occurring at t2 > t1 is

P2(t2) = P0(t2, t1)R(t2)∆t = e
−
∫ t2
t1
R(t′)dt′

R(t2)∆t (4.3)

Figure 4.1 shows a characteristic counting rate of solar axions over a single day in the

energy interval 2.5 keV ≤ E ≤ 3.0 keV. One wants to generate a random sequence of
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Figure 4.1: Characteristic counting rate of axion-photon conversion by the Primakoff
coherent conversion in the crystal.

events that follows the counting rate R(t). Now consider the function

F (t) = 1− e−
∫ t

0 R(t′)dt′ (4.4)

F (t) will be in the interval 0 ≤ F (t) ≤ 1. Suppose one can generate a pseudo-random

number ρ of uniformly distributed on the interval 0 ≤ ρ ≤ 1 and assign it to F (t).

The probability of choosing a random number ρ in a small interval ∆ρ is equal to the

probability of finding an event at t1 in a small time interval ∆t

∆ρ = P1(t1)∆t

Differentiating F (t) gives

∆F (t) = ∆ρ = P0(t, 0)R(t)∆t

Hence the time of the first event will be distributed correctly by solving F (t1) = ρ1,

the the time of the second event will be distributed correctly by solving F (t2) = ρ2 and

so on for a sequence of uniformly distributed random numbers {ρi, i = 1, 2, · · · , N}.
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Figure 4.2: Histogram of random numbers generated by F (t) with 20 bins overlaid
by the corresponding R(t)

Note that the starting time used to solve F (t) = ρ is t0, which is time the first event

occurs. In practice, ρ is generated by the software package used in our simulation,

Mathematica. Each time a pseudo random number is generated, or an event occurs,

the program calculates the time and sets it as the starting point for the next event

until it reaches to the end of the time of simulation. Figure 4.2 shows the histogram

event times generated by the above algorithm. Direct comparison of R(t) and the

histogram plot shows that there is a direct correlation between the two figures: the

number of events in an time interval ∆t is proportional to R(t)∆t.

In order to generate a time sequence with enough length and simulate the real

total counting rate, two modifications need to be performed. First, one needs to take

into consideration the background counting rate in Gran Sasso. This can be done by

adding in a constant number to the theoretical counting rate R(t). Second, one needs

to keep track of the position of the Sun for the time length used in the simulation.The
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total counting rate is:

R = RBG + λR8(t) (4.5)

whereRBG is the background counting rate which were taken to be 1 count/keV/kg/d[4],

λR8(t) is the theoretical counting rate of axions, and λ = (gaγγ × 10−8)4. For any

fixed value of λ, we generate pseudo data accordingly and use to Time Correlation

Method analyze the data set.

4.2 Time Correlation Method(TCM)

Assuming one has a set of data from the real experiment, which is composed of the

background counting rate RBG and the axion counting rate λR8, one wants to extract

useful information out of the entire data set and determine the real axion counting

rate. Hence it would be best if one can cancel the influence from the background

counting rate and make the instant that one gets a real event stand out at the same

time. This motivation can be realized by employing the weighting function, which is

subject to the following two constraints:

N∑
i=1

W (ti)∆t = 0,
N∑
i=1

W 2(ti)∆t <∞ (4.6)

or ∫ T

0
W (ti)dt = 0,

∫ t

0
W 2(t)dt <∞ (4.7)

when ∆t is sufficiently small.

Suppose we choose a time interval when the detector is on, 0 ≤ t ≤ T and divide

it into tiny increments of time width ∆t such that the expected number of events

in any one increment is always much less than one, R(t)∆t � 1. Define a random

variable n(ti) for the i-th time increment such that

〈n(ti)〉 = R(ti)∆t
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The probability distribution for n(ti) is Poisson, but by making the time interval very

small the number of events in each time interval is either 0 or 1. Let

χ =
N∑
i=1

W (ti)n(ti) (4.8)

where W (ti) is a weighting function. The expectation of χ will be

〈χ〉 =
N∑
i=1

W (ti)R(ti)∆t

=
∫ T

0
W (t)R(t)dt

(4.9)

The variance of χ becomes

∆χ2 = 〈χ2〉 − 〈χ〉2

=
∑
i,j

W (ti)W (tj)(〈n(ti)n(tj)〉 − 〈n(ti)〉〈n(tj)〉)

=
∑
i

W 2(ti)
[
〈n2(ti)〉 − 〈n(ti)〉2

]
=
∑
i

W 2(ti)〈n(ti)〉

=
∑
i

W 2(ti)R(ti)∆t

=
∫ T

0
W 2(t)R(t)dt

(4.10)

The third line of Eq.(4.10) follows from the statistical independence of events at

different times, 〈n(ti)n(tj)〉 = 〈n(ti)〉〈n(tj)〉 if i 6= j. The fourth line follows from the

fact that the number of events in the time interval at t = ti is governed by a Poisson

distribution, and for a Poisson distribution ∆n2 = 〈n〉. We also take the limit ∆t→ 0

in the last line of Eq. (4.10).

We want to choose the weighting function that maximizes 〈χ〉 subject to the

constraints in Eq. (4.7). Therefore we use the method of Lagrange multipliers to find

the unconstrained maximum of the functional

F = 〈χ〉 − µ1

∫ T

0
W 2(t)dt− µ2

∫ T

0
W (t)dt (4.11)
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Maximizing F with respect to W(t) gives us∫ T

0
(R(t)− 2µ1W (t)− µ2) dt = 0 (4.12)

where µ1 and µ2 are multipliers. So

W (t) = 1
2µ1

(R(t)− µ2) (4.13)

While µ2 can be determined by using the constraint that
∫ T

0 W (t)dt = 0∫ T

0
(R(t)− µ2)dt = 0⇒ µ2 = R̄

Since we can always adjust the value of µ1, we normalize the weighting function so

that

W (t) = R8(t)− R̄8(t) (4.14)

where R8(t) is the counting rate at gaγγ = 10−8 and R̄8(t) is the average counting

rate over the time considered . It can also be shown that this is the best weighting

function. Let us go back to our initial assumption, the total counting rate Eq. (4.5)

R(t) = RBG + λR8(t)

Assume that we have generated a certain amount of pseudo data based on this total

counting rate R(t). Using the weighting function Eq. (4.14) derived above we have

χ =
N∑
i=1

[R8(ti)− R̄8(ti)]× n(ti) (4.15)

The expected average of n(ti) over a small time interval ∆ti can be written as:

〈n(ti)〉 = (RBG + λR8(ti))∆ti (4.16)

Since we are doing the summations over the pseudo data and ∆ti is small, n(ti) is

essentially equal to 1 or 0. So

χ ≡
N∑
i=1

[R8(ti)− R̄8(ti)]× n(ti)

=
N∑
i=1

W (ti)n(ti)

=
∑
j

W (τj)

(4.17)
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where τj are the times when we have an event. The statistical average of χ is:

〈χ(λ)〉 ≡ 〈χ〉 =
N∑
i=1

W (ti)〈n(ti)〉

=
N∑
i=1

W (ti)[RBG + λR8(ti)]∆ti

=
N∑
i=1

W (ti)[RBG + λR8(ti)− λR̄8(ti) + λR̄8(ti)]∆ti

= λ
N∑
i=1

W 2(ti)∆ti

= λ
∫ T

0

(
R8(t)− R̄8(t)

)2
dt

(4.18)

In the last step we used the property of the weighting function that it has a zero

mean
N∑
i=1

W (ti)∆ti = 0

We also take the limit ∆ti → 0 so the summation can be changed to an integral. The

variance of χ is

(∆χ(λ))2 = 〈χ2〉 − 〈χ〉2

=
N∑
i=1

N∑
j=1

W (ti)W (tj)(〈n(ti)n(tj)〉 − 〈n(ti)〉〈n(tj)〉)

=
N∑
i=1

N∑
j=1

W 2(ti)(〈n2(ti)〉 − 〈n(ti)〉2)

=
N∑
i=1

N∑
j=1

W 2(ti)〈n(ti)〉

= RBG

∫ T

0

(
R8(t)− R̄8(t)

)2
dt+ λ

∫ T

0

(
R8(t)− R̄8(t)

)2
R8(t)dt

(4.19)

Note that the uncorrelated events are canceled out in the second step. We also used

the fact that those events satisfy Poisson statistics, so in the third step we have

〈n2(ti)〉 − 〈n(ti)〉2 = 〈n(ti)〉 (4.20)

The second term in ∆χ2 is negligible compared with the first term when λ is small,

so

∆χ2 = RBG

∫ T

0

(
R8(t)− R̄8(t)

)2
dt (4.21)
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Distribution Function for χ

The number of events in each time interval is statistically independent, so the prob-

ability distribution of χ for a given weighting function W (t) is

P (χ|W ) =
〈
δ

(
χ−

N∑
i=1

W (ti)n(ti)
)〉

(4.22)

The delta function can be represented by its Fourier transform,

P (χ|W ) = 1
2π

∫ ∞
−∞

e−iωχ
N∏
i=1

〈
eiωW (ti)n(ti)

〉
dω (4.23)

Let us define:

gi(ω) =
〈
eiωW (ti)n(ti)

〉
then

P (χ|W ) = 1
2π

∫ ∞
−∞

e−iωχ
N∏
i=1

gi(ω)dω (4.24)

If we expand gi(ω) in a Taylor series about ω = 0, we have

gi(ω) = 1 + iωW (ti)〈ni〉 −
1
2ω

2W 2(ti)〈n2
i 〉+ · · ·

= exp
[
iωW (ti)R(ti)∆t−

1
2ω

2W 2(ti)R(ti)∆t
]

This then gives

P (χ|W ) = 1
2π

∫ ∞
−∞

exp
[
−iω(χ− 〈χ〉)− 1

2ω
2∆χ2

]
dω

= 1√
2π∆χ2 exp

[
−(χ− 〈χ〉)2

2∆χ2

] (4.25)

where in the last step we completed the square. This shows that the probability

distribution for χ for a given weighting function W (t) is a Gaussian. And we just

proved the Central Limit Theorem(CLT), which states that quantities which are func-

tions of many small and uncorrelated random variables are approximately normally

distributed. In an experiment, each event is an independent random variable and un-

correlated with other events, so the distribution of χ should have the same expression

as Gaussian distribution. The log likelihood function for λ is

L(λ) ∝ −

(
χ− λ

∫
W (t)(R8 − R̄8)dt

)2

2RBG

∫
W 2(t)dt (4.26)
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The most probable value for λ is

λ̄ = 〈χ〉∫
W 2(t)dt (4.27)

The width of the likelihood function is

∆λ2 = RBG

∫
W 2(t)dt(∫

W (t)
(
R8(t)− R̄8

)
dt
)2 (4.28)

Taking the variational derivative with respect to W then gives

δ∆λ2

δW (t) ∝
W (t)

∫
W (t′)(R8(t′)− R̄8)dt′ − (R8(t)− R̄8)

∫
W 2(t′)dt′(∫

W (t)(R8(t)− R̄8)dt
)3 (4.29)

which vanishes if W = R8 − R̄8. With this choice of weighting function

∆λ =
√

RBG∫
W 2(t)dt (4.30)

If we choose the weighting function to be eq. (4.14), not only is 〈χ〉 maximized

but also ∆λ is minimized. The generalization to the case with several independent

energy bins is straightforward; eq. (4.27) becomes

λ̄ =
∑
k〈χk〉∑

k

∫
W 2
k (t)dt (4.31)

and eq. (4.30) becomes

∆λ =
√

RBG∑
k

∫
W 2
k (t)dt (4.32)

where k is the index for the energy bins. The relationship between ∆λ and time length

T can be calculated as following. From the previous weighting function calculation,

we have

∆λ = 1√
T

√√√√ RBG∫ 1
0 W

2(t)dt
(4.33)

which is what we expected: the longer time the detector is on, the more real events

we have, hence we can get a more accurate result.
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Simulation Results

From last section we have:

P (χ|W ) = 1√
2π∆χ2 exp

[
−(χ− 〈χ〉)2

2∆χ2

]

Maximizing P (χ) with respect to λ we can get the calculated λ. Table 4.1 is the

simulation result for λ = 1 with time length 10 days, 30 days and 90 days, respectively.

Table 4.1: 4.5− 5keV , λ = 1, TCM, 741 kg

T(d) Number of Events Calculated λ FWHM M
10 6682 0.9493 0.05874 1.0228× 108

30 20305 1.0047 0.04410 0.9913× 108

90 60592 1.0012 0.01947 0.9988× 108

In order to verify that the P (λ) at the calculated λ is maximized, we plot a

normalized graph of P (λ) VS λ. Figure 4.3 is the comparison plots with 10 days

counts, 30 days and 90 days, respectively. The error bar, ∆λ Eq. (4.33) can be
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Figure 4.3: Comparison between plots

written as:

∆λ = 1√
T

√√√√ RBG∫ 1
0 W

2(t)dt
(4.34)

For a given time length, this value is fixed. Table 4.2 shows the calculation results

for CUORE while keeping it runing for a whole year.

Figure 4.4 is a plot of simulated results of λs VS λ, where λs is the simulated

result of a given λ. The straight line besecting the first and third quadrants is the
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Table 4.2: Simulation results for 741 kg·year of exposure of the CUORE detector.

λ Numerical Value λs ∆λ
1
84 2.441× 10−4 5.56× 10−4 2.269× 10−3

1
94 1.524× 10−4 2.031× 10−4 2.269× 10−3

1
104 1.0× 10−4 1.752× 10−4 2.269× 10−3

1
114 6.83× 10−5 −8.72× 10−4 2.269× 10−3

1
124 4.82× 10−5 2.05× 10−4 2.269× 10−3

1
134 3.5× 10−5 1.2× 10−4 2.269× 10−3

ideal result with λs = λ, where λs is the simulated result. The error bar is calculated

based on Eq. (4.33) with T = 1 year. Figure 4.5 is a band plot of this simulation

result, which is more clear and readable compared with the error bar plot. The top

and bottom dashed lines represent plus or minus one sigma, ∆λ. The one nearest

to the origin is out of the band because of the length of time. Taking into account

of the statistical uncertainty, we can see that all simulations are in the range of the

error bar and our calculation is statistically reliable.
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Figure 4.4: Plot of λs VS λ.

Figure 4.6 and Figure 4.7 show us the simulation results as a function of a given

set of λ with increment of time length. The error bar shrinks and the error band

gets narrowers as we increase the time length, which is what we expected based
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Figure 4.5: Band plot of 741 kg·year of exposure for the CUORE detector.

on our calculation. But for a fixed length of time, there is a lower bound on λ

from simulations. This can be explained by the fact that the background radiation

dominates the total event rate and the ratio of real events to background radiation

will become smaller as we decrease the value of λ. So we need to operate the detector

on for a longer time if we want to be sensitive to a smaller value of λ, or we can

increase the mass of the detector, both of which will give us a sensitivity to smaller

λ, thus pushing down the limit on the coupling constant gaγγ.

4.3 Effect of Detector Rotations with Respect to Z-axis

When the crystals used by CUORE are grown and cut finally, we know crystal axes.

And crystals will be aligned properly when CUORE is constructed. When the Y-axis

is pointing east and Z-axis upward. So there is no need to place a constraint on

the conversion rate. But when the detector is rotated by a certain angle, will this

rotation cause any effect in our calculation? And how large is this effect? This is a

good question to ask.
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Figure 4.6: Simulation results for the CUORE detector with different exposure time
for a given set of λ.
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Figure 4.7: Band plot of the simulation results with respect to exposure time 1 year
and 3 year, respectively.

To determine the effect brought about by rotating the detector by mistake, we

calculated the counting rates with different degrees of rotations with respect to Z-
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axis. Note that rotating the detector is equivalent to shifting the Sun’s azimuthal

angle by the same amount, clockwise or counterclockwise, depending on the direction

of rotation. Then we calculated λ by using Time Correlation Method. It should be

pointed out that the weighting function used here is still the same weighting function

used before, which is different from these shifted counting rates. Below is the detailed

changes in the calculation:

W (t) = R(t)− R̄(t)→ W (t) = R(t)− R̄(t) (4.35)

χ =
∑
ti

(R(ti)− R̄(ti))× n(ti)→ χrt =
∑
ti

(R(ti)− R̄(ti))× nrt(ti) (4.36)

〈χ(λ)〉 =
∑
ti

W (ti)[RBG + λR(ti)]∆ti → 〈χrt(λ)〉 =
∑
ti

W (ti)[RBG + λRrt(ti)]∆ti

(4.37)

∆χ2(λ) =
∑
ti

W 2(ti)[RBG + λR(ti)]∆ti → ∆χ2
rt(λ) =

∑
ti

W 2(ti)[RBG + λRrt(ti)]∆ti

(4.38)

where the subscript “rt” designates the counting rates with rotated detector. The

detector is rotated intentionally by 0◦, 1◦, 3◦, 5◦, 10◦respectively. Then counting rates

are generated accordingly. The calculated λ and FWHM are shown in Table 4.3:

where φ is the azimuthal angle of the Sun and FWHM is the full width at half

Table 4.3: Rotated detector results.

φ λ FWHM
0◦ 1.00322 0.1606
1◦ 0.94815 0.1606
3◦ 0.66895 0.1606
5◦ 0.38572 0.1606
10◦ −1.88424 N/A

maximum. From these results it is easy to arrive at two conclusions. First, when the

detector is rotated by 10◦, we have a negative λ, which means that the counting rate

at 10◦rotation of detector is anti-correlated with our initial counting rate. Since the
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two rates are anti-correlated, this can explain why we couldn’t get a corresponding

FWHM. Second, the FWHMs are the same for the rest of rotated angles. This seems

bizarre at the first look, but if we go back to our ∆χ2 calculation:

∆χ2(λ) =
∑
ti

W 2(ti)[RBG + λR(ti)]∆ti (4.39)

when λ is small, the background counting rate dominates the result of ∆χ2(λ), so the

contribution from the second term is negligible. That’s why we could have the same

FWHM. Figure 4.8 shows the comparisons among different angles. Because ∆λ2 is
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Figure 4.8: Comparison of values of P(λ) for various angles of rotation of the detector.

inversely proportional to the integral of the weighting functions squared

∆λ2 = RBG∫ T
0 W 2(t)dt

(4.40)

Another way to understand the correlation between the counting rate with unrotated

detector and the one with rotated detector is to compare the weighting functions of

the two rates at different angles. We define

Ratio =
∫ 1

0 WoWϕdt∫ 1
0 W

2
0 dt

(4.41)
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where W0 is the weighting function for the unrotated detector and Wϕ the weighting

function for the rotated detector with rotation angle ϕ. Figure 4.9 shows a plot of

the “Ratio” as a function of detector angle rotation. The correlation between the two

drops down fast and reaches to a minimum at around 10◦, which in turn will give

us a significant change in the results calculated by the time correlation method and

hence make it impossible to use. However, detector rotated by 10◦ is very large and

the detector position in ϕ must be controlled to within 1◦.
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Figure 4.9: Comparison of Ratios given by Eq. (4.41) with different rotation angles
ϕ
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Chapter 5

Conclusion

The times produced by the pseudo-data generation process {ti, i = 1, · · · , N} are

used to calculate χ = ∑N
i=1W (ti), and from this we extract λ̄ and ∆λ as described in

previous chapters.

5.1 Coupling Constant gaγγ

Extensive Monte Carlo calculation have been carried out using the mass, energy

resolution and realistic background for the CUORE detector operating for 5 years.

The results show that the CUORE detector with 741 kg TeO2 in operation for 5 years

can set an upper bound on λ of

λ < 2.15× 10−6 (5.1)

which is equivalent to an upper limit on the axion-photon coupling constant gaγγ <

3.83 × 10−10 at 95% confidence level. To illustrate the resolving power of the time

correlation method, in five years with gaγγ = 3.83 × 10−10 there are approximately

600 events due to axion conversion and 5.5× 105 background events [26].

Figure 5.1 is an exclusion plot comparing this calculation with the best limits set

by CAST [81, 5, 8] on the gaγγ-ma plane. The lightly shaded area and dotdashed line

correspond to various theoretical axion models [40, 68, 80, 28]. Our predicted bound

is comparable to the newest CAST results for axions with mass less than 1.2 eV [8]

and will improve the bound for axion masses in the range 1 eV ≤ ma ≤ 100 eV 1,

1The upper limit of 100 eV is somewhat arbitrary and conservative. The Bragg conversion
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Figure 5.1: Exclusion limits on the gaγγ-ma plane. The shaded area is favored by the
KSVZ [40, 68] and the DFSZ [80, 28] axion models. The dotted line shows that with
3705 kg y of data, CUORE could exclude axions with gaγγ > 3.83×10−10 GeV −1 and
masses less than 100 eV [26].

indicated by the darker shaded region(green in color) [26].

Recently, the International Axion Observatory (IAXO), a new generation axion

helioscope searching for solar axions by Primakoff conversion in a strong magnetic

field, has been proposed (see recent work by J. K. Vogel et al. [75]). The predicted

sensitivity of IAXO to the coupling constant gaγγ is predicted to be on the order of

4× 10−12 GeV −1 for axion masses less than 0.1 eV. This is a great improvement over

all current experiments, narrowing down the search region for axions and dark matter

significantly. However, this excluded region of parameter space will not reach beyond

0.2 eV [26].

probability is not very sensitive to axion masses less than 100 eV, and solar axion flux also varies
very little. For axion masses of several hundred eV the solar axion spectrum is distorted and
decoherence begins to affect the conversion probability.
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5.2 Product of the axion-photon coupling and the axion-nucleon

coupling gaγγg
eff
aN

The time correlation of individual events with the theoretical time-dependent count-

ing rate is also used to calculate the sensitivity of the CUORE detector to gaγγgeffaN [26].

The limit on the axion mass ma is calculated by reevaluating δ(Ea−Eγ) in Eq. (2.19),

in which we assumed that the mass of the axion is negligible compared with its en-

ergy. And the momentum transfer p − k needs to satisfy p − k = G. The Bragg

condition

E(p̂,G) = ~c
G2

2p̂ ·G (5.2)

must be satisfied by the energy of the axion and direction to the Sun p̂ in order to

have coherent conversion of axions to photons. If the axion has a mass ma the Bragg

condition in Eq. (5.2) is modified to

E(p̂,G) =

√√√√~2c2

(
G2 −m2

2p̂ ·G

)2

+m2
ac

4 (5.3)

For axion masses less than 500 eV the shift in the Bragg peaks and the flux from the

Sun are changed by only 1.56 %. For axion masses approaching 1 keV these effects

become more pronounced, so we place an arbitrary and conservative limit on the

axion mass of 500 eV.

The Monte Carlo simulation for 741 kg y can set a model-independent upper

bound for the product of the axion-photon and the axion-nucleon coupling constants

gaγγg
eff
aN < 2.47×10−16 GeV−1. To illustrate the resolving power of the time correlation

method for the 14.4 keV solar axions, there are approximately 300 events due to axion

conversion and 1.05× 105 background events in one year with gaγγgeffaN = 2.47× 10−16

GeV−1. With five years of data, CUORE can set an upper bound of gaγγgeffaN <

1.105 × 10−16 GeV−1, which is slightly better than the current bound set by CAST

for ma < 0.03 eV, as shown in Figure 5.2. For ten years simulation, the upper bound

can be reached to gaγγgeffaN < 0.781×10−16 GeV−1 [47]. Figure 5.3 shows the excluded
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Figure 5.2: Exclusion limits one the gaγγgan −ma plane. The shaded region is that
which CUORE could exclude for axion masses less than 500 eV, that were not ex-
cluded by CAST [47].

region of the gaγγ −ma plane achieved by CAST assuming gan = 3.6× 10−6, which is

set by the requirement that the 57Fe solar axion luminosity should be less than 10%

of the solar photon luminosity(La < 0.1L�)[56]. The dotted line is a bound for gaγγ

that could be set by CUORE under the same assumption. Our simulation shows that

CUORE could eliminate a substantial part of the model space not yet touched by

other experiments.
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Figure 5.3: Predicted exclusion limits on the gaγγ −ma plane that could be placed
by CUORE. The dotted line is a relative limit on the gaγγ coupling constant with
gan = 3.6× 10−6 [6].
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