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ABSTRACT 
 

Since the advent of combination antiretroviral therapy (cART), pediatric HIV-1 

(PHIV) has evolved from a fatal disease to a chronic disease with children perinatally 

infected with HIV-1 surviving into adulthood. The HIV-1 transgenic (Tg) rat, which 

expresses 7 of the 9 HIV-1 genes constitutively throughout development, was used to 

investigate the early development of chronic neurological impairment in PHIV. Male and 

female Fischer HIV-1 Tg and F344N control rats, sampled from 35 litters, were 

repeatedly assessed during early development using multiple experimental paradigms, 

including somatic growth, locomotor activity, cross-modal prepulse inhibition (PPI) and 

gap-prepulse inhibition (gap-PPI). A rightward shift towards later eye opening was 

observed in HIV-1 Tg animals in comparison to controls. HIV-1 Tg animals exhibited 

delays in the development of the cholinergic inhibitory system, assessed using locomotor 

activity. Alterations in the development of the interstimulus interval (ISI) function were 

observed in HIV-1 Tg rats in comparison to control animals, assessed using PPI. 

Presence of the HIV-1 transgene was diagnosed with 91.4% accuracy using multiple 

behavioral assessments on PD 20 and 21.  Selective early behavioral alterations observed 

in the HIV-1 Tg rats provide an opportunity for the development of a clinical diagnostic 

screening tool, which may improve the long-term outcome for children perinatally 

infected with HIV-1. 
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CHAPTER 1 

INTRODUCTION 

Worldwide, approximately 39 million individuals have died from human 

immunodeficiency virus type-1 (HIV-1) and 35 million individuals are living with HIV-

1, including over 3.2 million children (≤15 years of age; CDC, 2013). Despite the 

dramatic decrease in mother-to-child transmission (MTCT), the predominant source of 

HIV-1 infection in children (Kourtis et al., 2001), 220,000 new cases of pediatric HIV-1 

(PHIV) were reported in 2014 (UNAIDS, 2015). Since the advent of combination 

antiretroviral therapy (cART), PHIV has evolved from a fatal disease to a chronic disease 

with children perinatally infected with HIV-1 surviving into adulthood (Smith & Wilkins, 

2015; Crowell et al., 2014). Despite decreased mortality rates, chronic neurological 

impairment is still commonly reported in children perinatally infected with PHIV 

(Franklin et al., 2005; Paramesparan et al., 2010). Therefore, given the prevalence of 

PHIV, understanding the early behavioral alterations may be vital for the development of 

a translational screening tool for neurological impairment in HIV-1 seropositive children.  

Progressive HIV-1 encephalopathy (PHE), which is often analogous to HIV-1 

associated dementia (HAD) in adults, was predominantly observed prior to the advent of 

cART, with prevalence rates as high as 50% (Chiriboga et al., 2005; Crowell et al., 2014; 

Shanhbhag et al., 2005). Common neurological manifestations of PHE include 

microcephaly, resulting from cerebral atrophy, developmental delays, and movement 

disorders (Belman et al., 1985; Epstein et al., 1985; Epstein et al., 1986) Furthermore, 
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neuroimaging analyses reveal calcification in the basal ganglia, and focal white matter 

lesions in children with PHE (Epstein et al., 1985; Epstein et al., 1986; Kauffman et al., 

1992). Currently, in the post-cART era, the prevalence rate of PHE is between 2-15% 

(Chiriboga et al., 2005; Shanbhag et al., 2005), however, chronic neurological 

impairment persists.  

High rates of chronic neurological impairment, including neurodevelopmental 

delays, are still being reported in HIV-1 seropositive children (Franklin et al., 2005; 

Paramesparan et al., 2010; review, Van Rie et al., 2007). Neurological assessments, 

including the Bayley Scales of Infant Development and Wechsler Intelligence Scale for 

Children-Revised, have previously been used to assess the effect of pediatric HIV-1 on 

neurodevelopment (Blanchette et al., 2002; Lindsey et al., 2007; Van Rie et al., 2008; 

Walker et al., 2013). Despite treatment with highly active antiretroviral therapy 

(HAART), HIV-1 infected children exhibit significant delays in cognitive development, 

motor skills and language expression in both high- (Lindsey et al., 2007) and low-

resource countries (Van Rie et al., 2008; Walker et al., 2013).   

Neurocognitive deficits in HIV-1 seropositive children, including disease 

progression, are poorly understood (Crowell et al., 2014), however, there is currently a 

wealth of knowledge on HIV-1 associated neurocognitive disorders (HAND) in adults 

evidenced in both clinical and preclinical studies (i.e. Heaton et al., 2010; Woods et al., 

2009). Neurocognitive assessments, including the Wisconsin Card Sorting Test and 

Stroop Color Word Test, have shown that HIV-1 seropositive individuals display 

significant deficits in set shifting (Carter et al., 2003) and response inhibition (Hinkin et 

al., 1999; Tozzi et al., 1999). Deficits in complex problem solving and abstraction have 
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been demonstrated using the Wisconsin Card Sorting Test and Tower of London- Drexel 

Version neurocognitive assessment (Cattie et al., 2012; Cherner et al., 2004). 

Furthermore, HIV-1 seropositive individuals display a greater impulsivity than control 

individuals on the Iowa Gambling Test (Hardy et al., 2006; Martin et al., 2004). 

The HIV-1 transgenic (Tg) rat, which expresses 7 of the 9 HIV-1 genes, has been 

used in preclinical studies to model neurocognitive deficits, including HAND, commonly 

observed in HIV-1 seropositive individuals (Moran et al., 2013a; Moran et al., 2013b; 

Moran et al., 2014a). Specifically, adult HIV-1 Tg rats exhibit significant deficits in 

executive functions, including attention, inhibition, and flexibility in comparison to 

controls (Moran et al., 2014a). Furthermore, significant alterations in temporal 

processing, a pre-attentive process, have been observed using prepulse inhibition (PPI) of 

the auditory startle response (ASR) in the HIV-1 Tg rat (Moran et al., 2013a). 

Specifically, we have shown that, on both visual and auditory prepulse trials, HIV-1 Tg 

rats exhibit an insensitivity to ISI duration, suggesting a lack of perceptual sharpening 

with age (Moran et al., 2013a). Preliminary gap-prepulse inhibition (gap-PPI) data 

suggest that HIV-1 Tg rats display alterations in the development of temporal processing, 

assessed using startle response and prepulse inhibition.  

Due to high rates of chronic neurological deficits in both HIV-1 seropositive 

children and adults, there is a critical need for accurate screening tools for the diagnosis 

of HAND. Early in the HIV-1 epidemic, two screening tools, the HIV Dementia Scale 

(HDS; Power et al., 1995) and the International HDS (IHDS; Sacktor et al., 2005), were 

developed to screen for HAD.  However, neither the HDS or the IHDS are able to 

accurately screen for milder forms of HAND, which are more common in the post-cART 
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era, affecting up to 40%-70% of HIV-1 infected individuals (Heaton et al., 2010; Heaton 

et al., 2011; Letendre et al., 2009; McArthur et al., 2010; Sacktor et al., 2005; Zipursky 

et al., 2013). Development of a screening tool, specifically for neurological impairment 

seen in PHIV has immense clinical significance and may have a significant impact on the 

lives of HIV-1 seropositive children and adults (Zipursky et al., 2013).  

Thus, the aim of the current study was to establish the early trajectory of 

behavioral deficits in the HIV-1 Tg rat. The HIV-1 Tg rat, which express 7 of the 9 HIV-

1 genes constitutively throughout development, provides a useful model for investigating 

the development of neurologic impairments in pediatric AIDS (Peng et al., 2010; Royal 

et al., 2012; Vigorito et al., 2015). Behavioral assessments, including locomotor activity, 

cross-modal PPI, and gap-PPI were conducted prior to weaning from postnatal day (PD) 

12 to PD 21. It was hypothesized that HIV-1 Tg rats would exhibit selective, early 

alterations in somatic growth, including body weight and eye opening, and behavioral 

measures, including locomotor activity, cross-modal PPI, and gap-PPI compared to non-

transgenic F344N controls. Understanding the early trajectory of behavioral deficits in 

the HIV-1 Tg rats may not only provide a translational screening tool, but is also vital to 

understanding the progression of neurocognitive deficits in children perinatally infected 

with HIV-1. 
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CHAPTER 2 

METHODOLOGY 

2.1 Animals 
 

Behavioral assessments were conducted on Fischer (F344/N; Harlan Laboratories 

Inc., Indianapolis, IN) rats (HIV-1 Tg, n=19 litters; control, n=16 litters) during early 

development beginning at PD 12. All rats were tested for motor movement, assessed 

using locomotor activity (PD 12, 16, 20) and temporal processing deficits, assessed using 

cross-modal prepulse inhibition (PPI) of the auditory startle response (PD 14, 17, and 21). 

Gap-PPI was conducted on PD 18.  

Animals were delivered to the facility between PD 7 and PD 9 over the course of 

one year. All animals were housed with their biological dam until PD 21 when animals 

were weaned and separated by sex. Subsequently animals were pair- or group-housed 

with animals of the same sex throughout experimentation. Rodent food (Pro-Lab Rat, 

Mouse, Hamster Chow #3000) and water were provided ad libitum throughout 

experimentation.  

Animals were maintained according to the National Institute of Health (NIH) 

guidelines in AAALAC-accredited facilities. The targeted environmental conditions for 

the animal facility were 21°± 2°C, 50% ± 10% relative humidity and have a 12-h 

light:12-h dark cycle with lights on at 0700 h (EST). The Institutional Animal Care and 

Use Committee (IACUC) of the University of South Carolina approved the project 

protocol as consistent with federal assurance (# A3049-01).
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2.2. Somatic Growth

Body Weight  

Body weight was assessed as a measure of somatic growth upon arrival at the 

facility between PD 8 and PD 10.  Body weight was assessed periodically throughout 

development.  

Eye Opening 

 Eye opening was assessed as a developmental milestone on PD 13-19. Eye 

opening was assessed separately for the right and left eye. A scale ranging from zero to 

two was used with a zero score indicating a closed eye, and a score of one indicating an 

open eye.  

2.3 Motor Movement 

Apparatus  

 Square (40 x 40 cm) (Hamilton Kinder, San Diego Instruments, San Diego, CA) 

activity monitors were used to assess locomotor activity. Clear Plexiglas inserts were 

added to convert the chambers into a round (~40 cm diameter) compartment. Free 

movement of animals was detected by infrared photocell (32 emitter/detector pairs) 

interruptions. Total locomotor activity was measured by assessing the number of 

photocell interruptions within a 60-minute period.  

Locomotor Activity  

Locomotor activity testing occurred on PD 12, 16, and 20. Testing occurred for a 

60-minute period between 700 and 1200h (EST) under dim light conditions, in the 

absence of direct overhead lighting (<10 lux). All activity monitors were located in an 

isolated room. 
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2.4 Temporal Processing 

Apparatus  

The startle platform (SR-Lab Startle Reflex System, San Diego Instruments, Inc., 

San Diego, CA) was enclosed in a 10 cm-thick double-walled, 81×81×116-cm isolation 

cabinet (external dimensions) (Industrial Acoustic Company, INC., Bronx, NY), instead 

of the 1.9 cm thick ABS plastic or laminate cabinets offered with this system. Sound 

attenuation of 30dB(A) was provided in the isolation chamber relative to the external 

environment. An ambient sound level of 22dB (A) was presented in the chamber without 

any stimuli presented. The high-frequency loudspeaker of the SR-Lab system (Radio 

Shack model#40-1278B), mounted inside the chamber 30 cm above the Plexiglas animal 

test cylinder, delivered all auditory stimuli (frequency range of 5k-16k Hz). The animal’s 

response to the auditory stimulus produced deflection of the test cylinder, which was 

converted into analog signals by a piezoelectric accelerometer integral to the bottom of 

the cylinder. The response signals were digitized (12 bit A to D) and saved to a hard disk. 

Response sensitivities were calibrated using a SR-LAB Startle Calibration System. Sound 

levels were measured and calibrated with a sound level meter (Kjaer Bruel 2203) with the 

microphone placed inside the Plexiglas cylinder. 

Cross-modal Prepulse Inhibition  

Both visual and auditory prepulse stimuli were used to test animals for PPI of the 

ASR on PD 14, 17 and 21. PPI was administered using a 30-min test session, beginning 

with a 5-min acclimation period in the dark with 70 dB (A) background white noise, 

followed by 6 pulse-only ASR trials with a 10s ITI.  A total of 72 trials, including an 

equal number of visual and auditory prepulse trials, were presented. Trials had an 
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interstimulus interval (ISI) of 0, 30, 50, 100, 200, and 4000 msec and were interdigitated 

in an ABBA order of presentation. The 0 and 4000 msec ISI trials were control trials. The 

intertrial interval (ITI) was variable from 15 sec to 25 sec. Inside the test cylinder, the 

pulse stimulus intensity was 100 dB(A) (20 msec duration). Mean peak ASR amplitude 

values were collected for analysis.  

Gap-Prepulse Inhibition  

Animals were tested for gap-PPI of the ASR on PD 18. Animals were tested for 

gap-PPI of the ASR with a preceding gap in background white-noise as a stimulus. A 20-

min test session began with a 5-min acclimation period in the dark with 70 dB(A) 

background white noise, followed by six pulse-only ASR trials, used for habituation, with 

a 10s intertrial interval (ITI). Thirty-six trials were presented using 6-trial blocks in an 

ABBA order of presentation.  A 20-msec gap in white noise preceded a startle stimulus 

presented at ISIs of 30,50,100, 200 and 4000 msec. Two control trials, the 0 and 4000 

msec ISI trials, were included to provide a reference ASR within gap-PPI. The startle 

stimulus intensity was 100 dB(A) (20 msec duration) measured inside the test cylinder. 

Mean peak ASR amplitude values were collected for analysis. All test sessions were 

conducted in the dark.  

2.5 Statistical Analysis  
 

Categorical data, including eye opening, an index of somatic growth, was 

analyzed using a chi-squared statistical technique. Eye opening data were assessed by 

individual pup. An alpha level of p≤0.05 was considered significant.  

Analysis of variance (ANOVA) techniques (SPSS Statistics 20, IBM Corp., 

Somers, NY) were used to analyze all continuous data. To account for the nested design 
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within the ANOVA analysis, individual observations were analyzed by using litter means 

and standard errors (Denenberg, 1984; Wears, 2002). Potential violations of sphericity of 

within-subjects variables (Winer, 1971) were corrected using the Greenhouse-Geisser df 

correction factor (Greenhouse & Geisser, 1959). An alpha level of p≤0.05 was considered 

significant for all statistical tests. 

Locomotor activity data was analyzed using a three-way mixed factor ANOVA. 

Cumulative photocell interruptions were used for analysis, with genotype (HIV-1 Tg vs. 

control) as the between-subjects factor, and time and age as the within-subjects factor. 

Cross-modal PPI data were analyzed using a four-way mixed-factor ANOVA for 

both prepulse modalities (auditory, visual). Mean peak ASR amplitude for the 0-4000 

msec ISIs were used for analysis, with genotype (HIV-1 Tg vs. control) as the between-

subjects factor, and age, ISI, and trial as the within-subjects factors.  

For gap-PPI, a three-way repeated measures ANOVA was performed on mean 

peak ASR amplitude for the 0-4000 msec ISIs, with genotype (HIV-1 Tg vs. control) as 

the between-subjects factor, and ISI and trial as the within-subjects factors. Gap-PPI 

testing began after 11 litters had arrived. The present analysis includes 24 litters (HIV-1 

Tg, n=13 litters; control, n=11 litters). 

An exploratory discriminant functional analysis was conducted to determine the 

diagnostic accuracy of early behavioral alterations and to determine which observed 

behavioral assessments were able to correctly identify animals in regard to their genotype 

(HIV-1 Tg vs. Control).  
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CHAPTER 3 

RESULTS 

3.1 HIV-1 Tg animals exhibit selective alterations in somatic growth 
 

Body weight measurements, obtained upon arrival (PD 8 to PD 10), were used to 

assess initial somatic growth. Upon arrival, there was not a significant difference in body 

weight between control (M=11.9g, SEM=0.7g) and HIV-1 Tg animals (M=12.5g, 

SEM=0.6 g).  

Selective alterations in somatic growth were evident in eye opening assessments, 

as illustrated in Figure 1. Eye opening was assessed from PD 13 to PD 19 as a measure of 

development. Eye opening started at PD 15 for both HIV-1 Tg and control animals. Eyes 

were fully open for all animals on PD 19.   

A χ2 revealed a statistically significant difference between eye opening in HIV-1 

Tg vs control animals [χ2(4)=34.4, p≤0.001]. A significant shift in the distribution from 

earlier eye opening to later eye opening was observed for the HIV-1 Tg rats in 

comparison to control animals. Therefore, the HIV-1 Tg rat displays selective alterations 

in somatic growth evident in eye opening, but not in body weight. 

3.2 HIV-1 Tg animals exhibit altered development of motor movement.  

 Differential progression of motor movement in the HIV-1 Tg rat, relative to 

control animals, was assessed using cumulative frequency for locomotor activity, 

illustrated in Figure 2a, 2b, and 2c. The development of motor movement is significantly
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altered in HIV-1 Tg animals relative to control animals.  The overall ANOVA for 

locomotor activity revealed a significant age x time x genotype interaction 

[F(22,726)=6.3, pGG≤0.004, ηp
2=0.16], age x time interaction [F(22,726)]=77.4, 

pGG≤0.001, ηp
2=0.70], time x genotype interaction [F(11,363)=12.1, pGG≤0.001, 

ηp
2=0.27], and age x genotype interaction [F(2,66)=6.9, pGG≤0.004, ηp

2=0.17]. Significant 

main effects of genotype [F(1,33)=6.1, p≤0.02, ηp
2=0.16], age [F(2,66)=103.9, 

pGG≤0.001, ηp
2=0.76] and time [F(11,363)=607.8, pGG≤0.001, ηp

2=0.95] were also 

observed.  

Separate analyses at each age were conducted to determine the locus of these 

interactions. Analyses revealed a significant time x genotype interaction at PD 20 

[F(11,363)=23.1, pGG≤0.001, ηp
2=0.41], but not at PD 12 [F(11,363)=1.5, pGG≤0.237] or 

PD 16 [F(11,363)=1.6, pGG≤0.217].  

Alterations in the development of motor movement, assessed using locomotor 

activity, are further evidenced by mean total ambulation, illustrated in Figure 3. A 

segmented first-order polynomial was the best fit for the total ambulation in HIV-1 Tg 

animals, while a second-order polynomial was the best fit for control animals. Therefore, 

both the time x genotype interaction at PD 20, as well as differences in the best fit for 

total ambulation, indicates altered development of motor movement in the HIV-1 Tg 

animals.   

3.3 HIV-1 Tg animals exhibit altered temporal processing development with a visual 
prepulse.  
 

Altered temporal processing development with a visual prepulse in the HIV-1 Tg 

rat, relative to control animals, is illustrated in Figure 4a and 4b.  The overall ANOVA on 

mean peak ASR amplitude revealed a significant age x ISI x genotype interaction 
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[F(10,330)=5.2, pGG≤0.001, ηp
2=0.14], a significant age x ISI interaction 

[F(10,330)=19.2, pGG≤0.001, ηp
2=0.37] and a significant ISI x genotype interaction 

[F(5,165)=12.0, pGG≤0.001, ηp
2=0.27]. Significant main effects of genotype 

[F(1,33)=19.8, p≤0.001, ηp
2=0.38], age [F(2,66)=48.2, pGG≤0.001, ηp

2=0.60], and ISI 

[F(5,165)=44.6, pGG≤0.001, ηp
2=0.58] were also observed. 

Differences in the development of temporal processing were further examined by 

separate analysis of each genotype. The overall ANOVA for control animals, illustrated 

in Figure 3a, revealed an age x ISI interaction [F(10,140)=4.3, pGG≤0.008, ηp
2=0.23]. 

Main effects of age [F(2,28)=6.6, pGG≤0.009, ηp
2=0.32] and ISI were also observed 

[F(5,70)=7.6, pGG≤0.001, ηp
2=0.35]. In contrast, the overall ANOVA for HIV-1 Tg 

animals only revealed a significant main effect of age [F(2,34)=7.0, pGG≤0.004, 

ηp
2=0.29]. The age x ISI interaction present in the control animals, but not the HIV-1 Tg 

animals indicates an altered development of the ISI function.  

Separate analyses at each age were also conducted, which revealed a significant 

genotype x ISI interaction on PD 17 [F(5,165)=4.6,  pGG≤0.003, ηp
2=0.12] and on PD 21, 

[F(5,165)=10.5, pGG≤0.001, ηp
2=0.24], illustrated in Figure 5a, but not on PD 14. The 

genotype x ISI interactions, observed on PD 17 and PD 21, provide additional evidence 

for the altered development of the ISI function in the HIV-1 Tg group.  

3.4 HIV-1 Tg animals exhibit altered temporal processing development with an 
auditory prepulse.   
  

HIV-1 Tg animals exhibit alterations in the development of temporal processing  

with an auditory prepulse, as illustrated in Figure 6a and 6b. Both HIV-1 Tg and control 

animals exhibited a shift in maximal inhibition (from 30 msec to 50 msec) on postnatal 

day 21. However, HIV-1 Tg animals exhibit altered development of the ISI function in 
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comparison to control animals. The overall ANOVA on mean peak ASR amplitude 

revealed a significant age x ISI x genotype interaction [F(10,330)=3.2, pGG≤0.021, 

ηp
2=0.09], a significant age x ISI interaction [F(10,330)=46.3, pGG≤0.001, ηp

2=0.59], and 

a significant ISI x genotype interaction [F(5,165)=17.6, pGG≤0.001, ηp
2=0.35]. Significant 

main effects of genotype [F(1,33)=24.2, p≤0.001, ηp
2=0.42], age [F(2,66)=34.8, 

pGG≤0.001, ηp
2=0.51], and ISI [F(5,165)=204.1, pGG≤0.001, ηp

2=0.86] were also 

observed.  

Separate analyses at each age revealed a significant ISI x genotype interaction at 

all ages (i.e., PD 14, PD 17, and PD 21), indicating an alteration in the development of 

ISI function in the HIV-1 Tg animals. Specifically, the alterations in the development of 

the ISI function on PD 21 are illustrated in Figure 5b.  

3.5 HIV-1 Tg and control animals both exhibit significant gap-PPI. 

 Both HIV-1 Tg and control animals exhibit significant inhibition with gap-PPI, 

illustrated in Figure 7. The overall ANOVA conducted on mean peak ASR amplitude for 

gap-PPI revealed that there was no genotype x ISI interaction. However, a significant 

main effect of genotype [F(1,22)=4.7, p≤0.05, ηp
2=0.18] and ISI [F(5,110)=9.4, 

pGG≤0.001, ηp
2=0.30] were observed. Furthermore, comparable peak inhibition was 

observed in both the HIV-1 Tg and control animals at the 30 msec ISI. Therefore, the 

significant main effects of genotype and ISI result from a downward shift in the mean 

peak ASR amplitude curve and not a deficit in temporal processing.  

3.6 Behavioral alterations accurately diagnose the presence of the HIV-1 Transgene. 

The diagnostic utility of early behavioral alterations in the HIV-1 Tg rat was 

further analyzed using an exploratory discriminant function analysis to determine which 
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behavioral assessments and ages were best able to identify group membership. 

Assessment of locomotor activity on PD 20 and cross-modal PPI on PD 21 best predicted 

group membership, as illustrated in Figure 8.  A stepwise discriminant function analysis 

selected four variables (Motor Movement (PD 20), Auditory Mean Peak ASR Amplitude 

Values at 50 msec (PD 21) and 100 msec (PD 21) and Visual Mean Peak ASR Amplitude 

Values at 50 msec (PD 21)) that maximally separated the HIV-1 Tg and control animals 

(canonical correlation of 0.831). Animals were classified (jack-knifed) with 91.4% 

accuracy (F approximation of Wilks’ λ of 0.309, F (4, 30) =16.8, p≤0.001). 
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Figure 3.1 Eye Opening. A significant shift in the population of eye 
opening is observed; HIV-1 Tg animals open their eyes significant 
later than control animals (χ2(4)=34.4,  p≤0.001), suggesting a 
selective alteration in somatic growth.  
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Figure 3.2 Cumulative Locomotor Activity. HIV-1 
Tg animals exhibit altered development of motor 
movement assessed using locomotor activity. 
Cumulative frequencies of gross motor movement 
are shown on postnatal day (PD) 12 (a), PD 16 (b), 
and PD 20 (c). A significant age x time x genotype 
interaction was observed, indicating that the HIV-1 
Tg animals exhibit alterations in motor movement 
both within a session and throughout development.  
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Figure 3.3 Total Ambulation in Locomotor Activity. HIV-1 Tg animals exhibit 
significantly altered development of motor movement, assessed using 
locomotor activity. A significant time x genotype interaction on PD 20 was 
observed, indicating altered development of motor movement in the HIV-1 Tg 
animals. Furthermore, a segmented first-order polynomial was the best fit for 
the total ambulation in HIV-1 Tg animals, while a second-order polynomial 
was the best fit for control animals. 
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Figure 3.4 Visual Prepulse Inhibition. Prepulse inhibition (PPI) 
with a visual prepulse across all three test ages. A significant age 
x interstimulus interval (ISI) interaction was present in control 
animals (a), but not in HIV-1 Tg animals(b) indicating that HIV-1 
Tg animals exhibit altered development of the ISI function with a 
visual prepulse.  
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Figure 3.5 Prepulse Inhibition on Postnatal Day (PD) 21. A 
significant genotype x ISI interaction was observed in visual PPI at 
PD 17 and PD 21 (a). A significant genotype x ISI interaction was 
observed at all ages (PD 14, PD 17, and PD 21) in auditory PPI (b).  
Results are indicative of altered development of the ISI function, 
regardless of modality, in the HIV-1 Tg group.   
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Figure 3.6 Auditory Prepulse Inhibition. Prepulse inhibition 
(PPI) with an auditory prepulse across all three test ages. A 
significant interstimulus interval (ISI) x genotype interaction 
was observed at all ages (i.e., PD 14, PD 17, and PD 21) 
indicating altered development of the ISI function in the HIV-1 
Tg group. 
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Figure 3.7 Gap-prepulse inhibition (gap-PPI). A significant main effect 
of age and ISI were observed. comparable peak inhibition was 
observed in both the HIV-1 Tg and control animals at the 30 msec ISI. 
Therefore, the HIV-1 Tg animals exhibit a downward shift in the mean 
peak ASR amplitude curve, but not a deficit in temporal processing. 
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Figure 3.8 Discriminant Function Analysis. Animal classification is 
illustrated as a function of the canonical variable representing the 
simplest linear function that best separated the HIV-1 Tg and control 
groups (canonical correlation 0.83) and correctly identified (jackknife 
classification) group membership with 91.4% accuracy (93.8% of 
controls, and 89.5% of HIV-1 Tg animals). 
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CHAPTER 4 

DISCUSSION 

Selective early behavioral alterations in the HIV-1 Tg rat were observed using 

multiple experimental paradigms, including somatic growth, locomotor activity, cross-

modal PPI, and gap-PPI. A rightward shift towards later eye opening was observed in the 

HIV-1 Tg animals in comparison to controls. HIV-1 Tg animals exhibit maximal 

spontaneous activity on PD 20, in comparison to PD 16 for control animals, indicating 

delayed maturation of the cholinergic inhibitory system. Alterations in the development 

of  the ISI function were exhibited by HIV-1 Tg animals with both a visual and auditory 

prepulse. Presence of the HIV-1 transgene can be diagnosed with 91.4% accuracy using 

multiple behavioral assessments. Selective early behavioral alterations observed in the 

HIV-1 Tg rat resemble alterations observed in PHIV, providing the potential for 

developing a translational screening tool for the early diagnosis of chronic neurocognitive 

impairment observed in children perinatally infected with HIV-1.  

4.1 Somatic Growth  

Selective alterations in somatic growth are observed in the HIV-1 Tg rat, assessed 

using body weight and eye opening.  No statistical differences were observed in initial 

body weight, assessed from PD 8 to PD 10, results which replicate those previously 

reported in male Sprague-Dawley rats stereotaxically injected with Tat and/or gp120, 

HIV1 viral proteins, on PD 1 (Fitting et al., 2008) and results previously reported in HIV-

1 infected children (Guillen et al., 2007; Parachure et al., 2015). Previous reports in 
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children with PHIV indicate that early initiation of antiretroviral therapy, and therefore 

subsequent virologic control, leads to normal growth (Guillen et al., 2007; Parchure et 

al., 2015).  The HIV-1 Tg rat, however, did exhibit selective alterations in somatic 

growth observed in eye opening measurements. Results of alterations in eye opening 

replicate those previously reported in male Sprague-Dawley rats stereotaxically injected 

with HIV-1 viral proteins (Moran et al., 2014b). Therefore, the HIV-1 transgene may 

alter the development of selective somatic growth measurements.  

4.2 Motor Movement  

HIV-1 Tg rats exhibit alterations in the development of motor movement, 

assessed using locomotor activity. Evidence for alterations in the development of motor 

movement was revealed using the cumulative frequency of gross motor movements. 

Specifically, significant differences were evident at PD 12 and PD 20, but not at PD 16. 

Additional evidence for the alterations in the development of motor movement were 

evidenced by total ambulation. A second-order polynomial was best fit for control 

animals, with maximal spontaneous activity exhibited on PD 16.  In contrast, a 

segmented first-order polynomial was the best fit for HIV-1 Tg animals. Therefore, HIV-

1 Tg animals fail to exhibit decreased levels of spontaneous activity on PD 20, suggesting 

delayed maturation in the development of the cholinergic inhibitory system. 

Alterations in the development of the cholinergic system in the forebrain may 

underlie early behavioral alterations in motor movement observed in the HIV-1 Tg rat. 

Campbell et al., (1969) studied the effect of amphetamine, an indirect dopamine (DA) 

agonist, and scopolamine, a forebrain anticholinergic agent on locomotor activity on PD 

10, 15, 20, 25, and 100. Administration of amphetamine increased activity during all 
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testing periods. In contrast, administration of scopolamine increased activity beginning at 

PD 20, suggesting that forebrain cholinergic inhibitory areas mature later than hindbrain 

structures (Campbell et al., 1969). Furthermore, saline control groups exhibited 

maximum activity on PD 15, followed by a dramatic decline, implicating that forebrain 

cholinergic inhibitory areas may also modulate activity in a novel environment (i.e., 

locomotor activity; Campbell et al., 1969). In the present study, control animals exhibited 

maximum spontaneous activity on PD 16, followed by a dramatic decline. In contrast, 

HIV-1 Tg animals exhibited maximum spontaneous activity on PD 20, suggesting 

delayed development of the forebrain cholinergic inhibitory areas.  

Results of alterations in the development of motor movement in the present study 

replicate those previously reported in the HIV-1 Tg rat (Moran et al., 2013b) and 

Sprague-Dawley rats stereotaxically injected with the HIV-1 viral proteins (Fitting et al., 

2008). In addition, developmental alterations in the HIV-1 Tg rat replicate those reported 

in HIV-1 infected children (Ferguson & Jelsma, 2009; Foster et al., 2006; Whitehead et 

al., 2014). Specifically, a longitudinal analysis of HIV-1 infected and sero-reverters in 

South Africa reported significant motor deficits in approximately 40% of HIV-1 infected 

children (Whitehead et al., 2014).  

4.3 Temporal Processing 

Altered temporal processing development, assessed with cross-modal PPI, was 

observed in HIV-1 Tg animals compared to control animals. In PPI with a visual 

prepulse, the ISI functions observed in the HIV-1 Tg and control groups were not 

significantly different at PD 14, but subsequently changed in different ways (i.e., PD 17 

and PD 21) indicating altered development of the ISI function. In addition, HIV-1 Tg 
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animals exhibit an alteration in the development of the ISI function observed in PPI with 

an auditory prepulse. Results in the present study replicate those previously reported in 

adult HIV-1 Tg animals (Moran et al., 2013a) and Sprague-Dawley rats stereotaxically 

injected with the HIV-1 viral proteins on PD 1 (Fitting et al., 2008; Fitting et al., 2006a; 

Fitting et al., 2006b). Both HIV-1 Tg and control animals exhibit significant inhibition in 

gap-PPI. Gap-PPI results in the present study are consistent with a preliminary 

longitudinal analysis conducted from PD 30 to PD 150.   

The brain neural circuitry mediating PPI, illustrated in Figure 1, has been 

established using lesioning (i.e., Leitner & Cohen, 1985) and electrical stimulation 

studies (i.e., Li et al., 1998; Li & Yeomans, 2000). Specifically, the serial circuit 

mediating PPI begins with auditory input relayed to the inferior colliculus (IC). Visual 

and tactile input, in contrast, are relayed to the superior colliculus (SC). Sensory input, 

regardless of modality, is then relayed from the SC to the pedunculopontine tegmental 

nucleus (PPTg), which ultimately triggers a cholinergic projection to the caudal pontine 

reticular nucleus (PnC; Fendt et al., 1994; Fendt et al., 2001; Koch et al., 1993; Koch & 

Schnitzler, 1997). Activation of the PnC is relayed to motor neurons causing a startle 

response.  

The role of dopamine in the circuit mediating PPI has been evidenced in previous 

behavioral and pharmacological studies (review, Geyer et al., 2001; Moran et al., 2009; 

Zhang et al., 2000). Administration of direct (i.e., apomorphine) and indirect dopamine 

(DA) agonists (i.e., amphetamine) have been used to manipulate dopamine, subsequently 

disrupting PPI (review, Geyer et al., 2001).  An insensitivity to the manipulation of ISI, 

assessed using cross-modal PPI, has also been observed in rats administered 
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apomorphine; results that are comparable to those observed in the HIV-1 Tg rat (Moran 

et al., 2009).  

4.5 The Dopamine System and Chronic Neurological Impairment 

Clinical and preclinical studies have implicated disruptions in the DA system as 

an important factor in chronic HIV-1 associated neurological impairment (review, Fitting 

et al., 2015; review, Ferris et al., 2008).  Significantly greater brain atrophy in HIV-1 

seropositive individuals has been reported in areas rich in dopamine, including the basal 

ganglia (Kumar et al., 2009), substantia nigra (Kumar et al., 2011), and caudate nucleus 

(Kumar et al., 2009). Furthermore, decreased DA transporter levels in HIV-1 seropositive 

individuals have been correlated with decreased performance on neuropsychological tests 

(Chang et al., 2008).  In vivo brain imaging studies replicate postmortem studies in HIV-

1 seropositive individuals, providing further evidence for a DA system disruption in HIV-

1 seropositive individuals (Purohit et al., 2011).  HIV-1 seropositive individuals had 

decreased brain volumetrics in the thalamus, hippocampus, and corpus callosum (Ortega 

et al., 2013). Positron emission tomography (PET) scans provide evidence of a 

progressive striatal dopamine deficit that occurs in as the HIV-1 Tg rat ages (Lee et al., 

2014).  Furthermore, in vitro studies have replicated the results presented in clinical and 

preclinical studies, which provide further evidence that the DA transporter is being 

targeted by Tat and gp120, two HIV-1 proteins (Aksenov et al., 2008; Midde et al., 

2013).   

Early behavioral alterations observed in the HIV-1 Tg rat may result from 

alterations in the development of the DA system. (review, Fitting et al., 2015). Preclinical 

studies in the HIV-1 Tg rat have previously implicated DA system impairments as an 
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underlying factor in chronic neurological impairment (Moran et al., 2012; Moran et al., 

2014b; Webb et al., 2010). Specifically, pharmacological assessments were used to 

examine alterations in the midbrain DAergic system in the HIV-1 Tg rat (Moran et al., 

2012; Webb et al., 2010). DAergic system dysfunction, assessed using Western blotting, 

was evidenced by alterations in phosphorylated tyrosine hydroxylase (pTH), dopamine 

transporter (DAT) mRNA, and/or monoamine oxidase A (MAO-A; Moran et al., 2012; 

Webb et al., 2010).   Although multiple neural systems, including the dopaminergic and 

cholinergic system, may mediate the early behavioral alterations observed in the HIV-1 

Tg rat, HIV-1 infection often affects DA system function, resulting in subsequent 

cognitive deficits (Di Rocco et al., 2000; review, Fitting et al., 2015; Wang et al., 2004).  

4.6 Conclusions  

The study of selective early behavioral alterations in the HIV-1 Tg rat is vital to 

the development of a diagnostic screening tool for chronic neurologic impairment 

observed in children perinatally infected with HIV-1. HIV-1 Tg rats used in the present 

study are a healthier derivation of those originally described (Reid et al., 2001), 

exhibiting no general wasting or pathological phenotypes. HIV-1 Tg litters used in the 

current study displayed no significant health disparities in comparison to F344 controls 

(i.e., similar initial body weight, similar litter size). Thus, the HIV-1 Tg rat provides a 

vehicle for investigating the development and underlying mechanisms involved in 

chronic neurologic impairments observed in PHIV (Vigorito et al., 2015).  

Selective early behavioral alterations observed in the HIV-1 Tg rat may provide a 

novel screening tool for the diagnosis of neurocognitive deficits in children perinatally 

infected with HIV-1. The potential utility of selective early behavioral alterations was 
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assessed using a discriminant function analysis, which correctly identified animals in 

regards to their genotype (HIV-1 Tg vs. control) with 91.4% accuracy. The presence of 

the HIV-1 transgene was best predicted using four variables at PD 20 and PD 21, brain 

development which approximates 2-3 years of age in humans (Review: Semple et al., 

2013). Therefore, selective early behavioral alterations observed in the HIV-1 Tg rats 

provide an opportunity for the development of a translational screening tool, which will 

allow early cART initiation, improving long-term outcomes for children perinatally 

infected with HIV-1 (Edwards et al., 2015; Kitahata et al., 2009).
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Figure 4.1. Hypothetical Serial Neural Circuitry of PPI. Adapted from Fendt et al. 

(2001) and Koch (1999). 
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