
University of South Carolina University of South Carolina

Scholar Commons Scholar Commons

Theses and Dissertations

6-30-2016

An Improved Ship Design Tool for Comparing Performance of An Improved Ship Design Tool for Comparing Performance of

Multiple Ship Designs across User-Defined Missions Multiple Ship Designs across User-Defined Missions

Helder Jose de Almeida Pais
University of South Carolina

Follow this and additional works at: https://scholarcommons.sc.edu/etd

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
de Almeida Pais, H. J.(2016). An Improved Ship Design Tool for Comparing Performance of Multiple Ship
Designs across User-Defined Missions. (Master's thesis). Retrieved from
https://scholarcommons.sc.edu/etd/3371

This Open Access Thesis is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of Scholar Commons. For more information, please contact
digres@mailbox.sc.edu.

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/etd
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F3371&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarcommons.sc.edu%2Fetd%2F3371&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/3371?utm_source=scholarcommons.sc.edu%2Fetd%2F3371&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu

An Improved Ship Design Tool for Comparing Performance of Multiple Ship
Designs across User-Defined Missions

by

Helder Jose de Almeida Pais

Bachelor of Science

University of South Carolina, 2011

Submitted in Partial Fulfillment of the Requirements

For the Degree of Master of Science in

Electrical Engineering

College of Engineering and Computing

University of South Carolina

 2016

Accepted by:

Roger Dougal, Director of Thesis

Andrea Benigni, Reader

Lacy Ford, Senior Vice Provost and Dean of Graduate Studies

ii

© Copyright by Helder Pais, 2016
 All Rights Reserved.

iii

ACKNOWLEDGEMENTS

The author would like to thank Dr. Roger Dougal for his efforts in guiding this

research and Dr. Andrea Benigni for assisting with the thesis review.

The author would like to thank Blake Langland, Rod Leonard and Ernie

Broughton for contributing to and supporting this research.

The author would like to thank Lillian Wanda for the support and guidance

provided during the process of writing this thesis.

iv

ABSTRACT

In the early stages of ship design, engineers from many different disciplines need

to have confidence that a design being produced converges across the electrical,

mechanical, and thermal domains, and that the design meets the needs of the

stakeholders, and, that a particular design performs better or more optimally than other

designs produced to accomplish a mission. The tools currently available do not permit

the engineering teams to gain this insight in a reasonable amount of time. In this thesis,

we discuss the improvements that we have made to our existing ship design tools in the

S3D environment, allowing for a more concurrent collaboration between the engineers

from all disciplines in the ship design process.

Incorporating the notion of time into our existing steady state solvers, we

developed a controller class responsible for keeping track of time-related information

and scheduling time-based events using the earliest deadline first algorithm. We have

also incorporated Python script instructions in the form of an attribute inserted into the

equipment models in order to allow Python scripts to represent the effects of system

controls. Equipment models were also modified to provide information regarding time

dependent metrics, such as fuel and energy, and in order to account for

interdependencies between disciplines, they were also given the capacity to inform the

mission analyzer tool about whether their dependencies have been satisfied. We

v

developed an algorithm that uses this information to efficiently find a solution such that

all dependencies between disciplines are satisfied. Implementing this algorithm, the

mission analyzer is able to simulate each of the disciplines for a specified time frame

and provide results that indicate whether a ship design is able to complete a mission

and the possible costs such as equipment failures, and fuel consumed.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iii

ABSTRACT .. iv

LIST OF FIGURES .. viii

LIST OF SYMBOLS ... x

LIST OF ABBREVIATIONS .. xii

GLOSSARY .. xiii

CHAPTER 1 INTRODUCTION .. 1

CHAPTER 2 SOLVER DEVELOPMENT ... 4

2.1 SOLVERS – TIME DEPENDENCY .. 4

2.2 INITIAL STATE OF SOLVERS... 8

2.3 QUASI-STEADY STATE SOLVERS ... 10

2.4 ADDITION OF TOOLS FOR DEFINING MODE TRANSITIONS 13

CHAPTER 3 COMPONENT DEVELOPMENT .. 16

3.1 DISCRETE STATE AND TIME DEPENDENT MODIFICATIONS 16

3.2 COMMUNICATION ACROSS DISCIPLINES ... 23

CHAPTER 4 MISSION ANALYSER.. 25

4.1 CONVERGENCE ALGORITHM ... 26

4.2 MISSION ANALYZER WALK-THROUGH ... 28

4.3 MISSION EXPLORER WALK-THROUGH ... 31

vii

4.4 MISSION EXAMPLE ... 34

CHAPTER 5 CONCLUSION AND FUTURE WORK .. 40

5.1 CONCLUSION ... 40

5.2 FUTURE WORK ... 41

REFFERENCES .. 43

APPENDIX A: DIFFERENCES BETWEEN POWER LOAD AND MNA 45

APPENDIX B: MULTI INPUT ATTRIBUTES .. 48

APPENDIX C: INTER-DISCIPLINE CONVERGENCY GENERALIZED EXAMPLE 49

viii

LIST OF FIGURES

Figure 2.1 Component updates within a time segment ... 11

Figure 2.2 Stepping event example .. 12

Figure 2.3 Python script tool ... 14

Figure 2.4 Python code system example .. 15

Figure 3.1 Electrical percent charging power SOC curve attribute 17

Figure 3.2 Energy storage electrical model flow-chart ... 19

Figure 3.3 Railgun electrical model flow-chart ... 20

Figure 3.4 Tank model flow-chart ... 22

Figure 3.5 Electrical discipline ... 24

Figure 3.6 machinery discipline .. 24

Figure 4.1 Resolving solver dependencies .. 27

Figure 4.2 Mission Analyzer principal page .. 28

Figure 4.3 Alignments setup ... 29

Figure 4.4 Setting an alignment .. 29

Figure 4.5 Output display window, current configuration ... 31

Figure 4.6 Changing message warning level ... 31

Figure 4.7 Mission setup ... 32

Figure 4.8 Segment setup ... 33

Figure 4.9 Full mission simulation output display window .. 33

Figure 4.10 Naval arc design ship representation .. 35

ix

Figure 4.11 Propulsion system schematic .. 35

Figure 4.12 Electrical system schematic ... 36

Figure 4.13 Thermal fluid system schematic .. 37

Figure 4.14 Mission results ... 38

Figure A.1 Difference between Newton-Raphson linear and quadratic convergence 45

Figure A.2 Representation of MNA computing into steady state 46

Figure B.3 Spline curve of specific fuel consumption versus mechanical power 48

x

LIST OF SYMBOLS

Ci Worst-case time for ith step

E Efficiency (%)

Ec Current amount of energy stored (J)

Esc Energy storage capacity (J)

Ed Energy discharged during last step (J)

Ep Amount of stored energy at tp (J)

klf The number of iterations, using Newton-Raphson method

kMNA Number of iterations per step, using MNA

MFRate Net mass flow rate (Kg/s)

mMNA Number of steps required to achieve steady state, using MNA

n The number of calls to the solver by equipment software models inform the
solver about when they need to be called is represented by n.

Pc Power consumed (W)

Pi Power injection (W)

tc Current time (s)

Ti Length of time to advance from the i-1th step to the ith step (s)

TAddFuel Amount of fuel entering or leaving the tank

TTFuel Total amount of fuel in the tank

xi

tp Previous time (s)

TStep Time step, amount of time to be advanced (s)

U Utilization bound

xii

LIST OF ABBREVIATIONS

EDF Earliest deadline first, a dynamic scheduling algorithm for placing a process in a
priority queue [1].

ESRDC The Electric Ship Research and Development Consortium, a collaborative
research group that spans multiple universities including The Florida State University,

Massachusetts Institute of Technology, Mississippi State University, Naval Post Graduate
School, Purdue University, United States Naval Academy, University of South Carolina,
and the University of Texas at Austin, for the purpose of advancing near-term to mid-

term research and technology that helps realize electric ships.

MNA Modified nodal analysis is a method by which circuit equations are formulated.
This method uses nodal-voltage analysis to determine the voltage equations and

Kirchhoff’s current law is applied to each node other than the datum node, ground, to
determine branch currents [2].

S3D Smart Ship System Design is an early stage concurrent, collaborative design
environment which contain multiple discipline specific tools for early-stage ship design.

SOC State of charge, available capacity as a percentage of energy storage capacity.
Typically found on energy storage devices such as batteries.

USV Unmanned Surface Vehicles. A vehicle that is capable of operating autonomously
without the direct intervention of a human.

xiii

GLOSSARY

Attributes . Properties or features that help to define equipment. Example: rated power,
efficiency, and rated voltage, can be used to help define the electrical properties of a

generator.

Continuous rate of fire The maximum sustainable rate of fire for a weapon. In this
context the weapon is an electrical weapon and the limiting factors are typically the

availability of electrical energy and the time required to dissipate the heat generated.

Draining One of the three operating states used by the tank model to regulate flow
direction when the tank is full. Only flow out of the tank is permitted; the tank inlet is

closed, and the tank outlet is open.

Discipline The specialized engineering fields referenced in the paper, electrical,
machinery, thermal, and naval architecture.

Equipment Refers to real-world devices for which abstract models will be created within
the simulation environment. Example a gas turbine is a real-world device that is

represented within the simulation environment with a machinery model and a thermal
model.

Event .. Represents an important change in the state of an object at a particular instance
of time. [3]

Filling . An operating state of the tank model used to regulate flow direction when a tank
is empty. Only flow into the tank is permitted; the tank inlet is open, and the tank outlet

is closed.

Genset The assembly of multiple equipment that is treated as a single piece of
equipment, one of which is a gas turbine engine and the other is an electrical generator.

Hybrid ... Default operating state that regulates flow for a tank model. Flow is allowed to
happen in both directions; the tank inlet and tank outlet are both open.

Maximum rate of fire The maximum rate and time which a weapon can fire. In this
context the weapon is an electrical weapon and the limiting factors are typically the

availability of electrical energy and the time required to dissipate the heat generated.

xiv

Mission The object used to define the general objective and total amount of time or
distance the ship is expected to operate within.

Mission Segment .. One part of a mission which includes a time interval and an operating
state for all equipment that is held essentially constant. A mission is typically made of

multiple missions segments.

OnSimulationStart .. A method used by the solver to inform all simulation models that all
attributes and variables used by the models should be initialized.

Settling time .. The time required for the response of the system to achieve steady state,
within a margin of error.

SignalStep A method used by the solver to call into each simulation model in order to
determine advance to a new operating points. During this method, simulation models

modify appropriate state variable and update metrics.

Steady State A stable condition in which the system state does not change over time,
𝑑𝑥

𝑑𝑡
= 0, where variable x denotes the state of the system.

Time step The length of the time segment for which the solver is advancing time. Within
a quasi-steady state solver as described in this thesis, it is either the total simulation

time, or the time remaining until a state change is required. Within a dynamic system, it
is the incremental change in time for solving the governing equations.

1

CHAPTER 1

INTRODUCTION

The design of ships can be quite complicated as there are multiple disciplines

involved and complex interdependencies between these disciplines, therefore,

collaboration between engineers from fields such as Electrical, Naval Architecture, and

Mechanical is required. For example, stakeholders first establish a list of requirements

or identify a set of missions that a ship should be capable of accomplishing. This results

in a set of mission payloads being identified and added to the ship design in order to

provide the required capabilities. Once these high-level requirements and payloads have

been identified, engineers from the various disciplines begin to build the required

support systems which provide the necessary power and cooling. It is during this phase

that cooperation between engineers is necessary. For instance, the electrical engineers

design the electrical system to provide power to the propulsion system and mission

loads, however, information needs to flow to the thermal management team such as

the heat load produced by each electrical device and the amount of cooling that will be

required. Conversely, the thermal management team will need to inform the electrical

engineers of the amount of electrical power their pump and other electrical

components require.

2

Until the advent of collaborative design tools, information exchange between

design teams had been conducted in a manual, error prone, and inefficient manner.

Each project design needed to be interpreted, translated, and moved between tool sets

across each discipline [4]. This process would be repeated multiple times in an attempt

to finalize the design. Providing the design teams with a concurrent, collaborative design

environment enables the information to readily flow between teams, and also allows

the users to immediately see and better comprehend the impacts that design decisions

have on other disciplines, dramatically reducing the time required to finalize the design.

The Smart Ship System Design, S3D, project was created to allow groups of

engineers to collaborate on their designs in real-time [5]. This is a project of the Electric

Ship Research and Development Consortium, ESRDC, which is a combination of

universities with the objective of advancing near-term to mid-term electric ship

concepts [6]. The objective of the S3D design environment is to enable collaboration

between engineers working on a single project, and with the help of the provided tools,

users are able to create missions in order to simulate the performance of user-created

ship designs and to compare those ship designs using the resulting metrics from each of

those missions.

In this thesis, we build upon the already existent S3D tools to allow the

computation of time dependent metrics, integrate those changes into the simulation

models, and create a tool capable of simulating complete missions.

We talk about the challenges and changes necessary in order for time to be

taken into account for changes of operating point in CHAPTER 2. A controller class was

3

created with the responsibility of informing every model about the current time,

allowing simulation models to use time dependent metrics such as fuel and energy. This

class is also responsible for requesting that the solver run an additional time in the case

of a change in operating point. We also added a few tools to allow the user to define

under what conditions mode transitions should occur.

In CHAPTER 3, we cover the improvements made to the models to enable them

to determine when a change in operating point will occur and inform the solver. We also

discuss the modifications required to allow communication between equipment models

from different disciplines of the same equipment, such as communication between the

electrical model of a generator with the machinery model of the same generator.

In CHAPTER 4, we discuss the creation of a new tool developed to allow users to

evaluate performance of a design concept. This tool is able to simulate all of the

disciplines’ alignments and solve every existing dependency between different models

of the same equipment. A walkthrough and an example followed by a discussion on the

results will then be used to show how each element comes together.

4

CHAPTER 2

SOLVER DEVELOPMENT

2.1 SOLVERS – TIME DEPENDENCY

With the addition of time based metrics into the mission objectives, there was a

need to provide the current solvers with the ability to take into account time -

dependent changes so that important changes in operating point would not be ignored.

We will try to determine whether a quasi-steady state solver is preferable to use

compared to a time dependent solver.

For our type of simulation, we are interested in a solver that is capable of

providing steady-state results as we expect long periods of time without operating point

changes. For that reason, methods such as Spice Differentiation [7] and Power System

Analysis Toolbox (PSAT) [8], even though they are popular solvers to use with most

dynamic power systems, are not suitable for this environment.

A suitable method for our simulation engine is the modified nodal analyses

(MNA), a method that requires less information than nodal analysis, does not use

constant stepping, and solves the system only up to its steady state value. Since we do

not require a solver that is capable of analyzing the system transient response, the

power flow solver can be considered.

5

Both power flow and MNA solvers must solve a system of equations defining a

circuit, typically using LU decomposition, an algorithm or solution time that scales at

best, O(n2.376), using the Coppersmith-Winograd algorithm, where n is the number of

equations to be solved [9] [10].

Load-flow models are simplistic models, what we call “ZIP” models (the Z

represents constant impedance, the I represents constant current, the P represents

constant power). This means they will not typically require internal nodes. However,

we solve for both steady-state voltage magnitude and angle, which are separate

variables in the matrix, so n is approximately twice the number of nodes. All else being

equal, the solution of one operating point using a load-flow solver is therefore 5.191x

slower than using MNA, since n is twice as large given our assumptions (22.376).

2.1.1 Similarities between approaches

In both cases, n is typically proportional to the number of nodes. Complex

models in MNA will often have internal nodes to represent and solve for internal state

variables, but we will assume the level of detail we are interested in warrants simplified

models, and that n is approximately equal to the number of nodes.

2.1.2 Differences between approaches

Load-flow

Load-Flow analysis is inherently non-linear. The LU decomposition therefore

must be performed multiple times during the course of an iterative algorithm such as

the Newton-Raphson method. We will call the number of iterations klf.

Modified nodal analyses

6

MNA is a time-domain method, and even if we are interested only in the steady-

state result, the transient solution must be computed from a known-state (typically at

t=0, but alternatively starting from a previously computed operating point), until the

state variables reach steady-state. The number of computations required to acquire the

steady-state solution using MNA is therefore dependent on two variables: the settling

time Ts before the system reaches steady-state, and the time-step ts required to

maintain mathematical stability during the solution. These numbers are typically

inversely related; a system with low settling-time is one with a low time-constant which

requires a small time-step to maintain stability, while a system with high settling-time

has a high time-constant that allows for a larger time-step. We will therefore make the

simplifying assumption that regardless of system response, approximately the same

number of computations will be required in order to reach the steady-state solution. We

will call this number mMNA. APPENDIX A contains additional information regarding this

method. MNA may also require multiple iterations per time-step; we will call this

number kMNA.

If all models in the MNA system are represented by linear equations only, each

time-step can be solved with a single iteration, and kMNA=1.

If any one model in the MNA system requires non-linear equations, the entire

matrix is non-linear, and an iterative method is required. We assume the same method

is used in both the load flow and transient solver implementations, so we can assume

no performance difference with the algorithm, but since the equations being solved are

different, kMNA will still differ from from klf, most likely.

7

2.1.3 Comparison between methods under different scenarios

Without loss of generality, we may consider only the case where we are solving

for the steady-state solution of a single operating point, and ignore the quasi steady-

state implementation of the load-flow solver. We can do this because the total

simulation time is proportional to the total number of operating points of interest in

both solvers; the load-flow solver is simply performing another solution of the same

system, while the settling time of for the transient solution will be equivalent given

changing input. Therefore, we have the following cases for comparison.

MNA linearity

Whether the load-flow solution is faster is entirely dependent on the ratio of the

number of steps required to reach steady-state for the system (mMNA) to the number of

iterations required to converge the load-flow system (klf), where 𝑚𝑀𝑁𝐴 ≅ 5 ⋅ 𝑘𝑙𝑓 is the

break-even point. The proportionality value of 5 comes from the fact that the load-flow

solver is 5.191x slower than using MNA.

MNA non-linearity

Newton-Raphson convergence is quadratic in most cases, or linear when the

solution roots have multiplicity greater than 1. The break-even point occurs at equation

(2.1). Assuming the initial guess for the solution is roughly equally far away in both

cases:

𝑚𝑀𝑁𝐴 ⋅ 𝑘𝑀𝑁𝐴 ≅ 5 ⋅ 𝑘𝑙𝑓 (2.1)

If convergence is linear in MNA, but quadratic in the Power-Flow, the break-even

performance point occurs at

8

𝑚𝑀𝑁𝐴 ⋅ 𝑘𝑀𝑁𝐴 ≅ 5 (2.2)

If convergence is quadratic in MNA, but linear in the Power-Flow, the break-even

performance point occurs at equation (2.3), matching the case where MNA is linear.

𝑚𝑀𝑁𝐴 ≅ 5 ⋅ 𝑘𝑙𝑓 (2.3)

Assuming convergence speed in both solvers proceeds at the same rate, the

number of iterations in both solvers will be roughly the same, klf and kMNA cancel each

other out, and the break-even point is entirely dependent on mMNA, with the break-even

point being at approximately 5 steps.

Considering that our electrical discipline has components with complex

impedances, the MNA is expected to require multiple steps before achieving steady

state, and so the power flow solver is the best solver to use.

An implementation of a power flow solver modified to take into account state

changes has been used to calculate the power losses in a microgrid while taking into

consideration the time associated with the charging and discharging cycles of the energy

storages [12].

2.2 INITIAL STATE OF SOLVERS

Initially in the project, we used two steady state solvers, a power flow solver to

simulate electrical and machinery disciplines using Newton-Raphson or Gauss-Seidel

methods to achieve a steady state, and a hybrid, modified nodal analysis solver in

conjunction with a signal solver to simulate the thermal fluid disciplines [13].

9

The power flow solver models the load flow models as sources, loads, or

transformers. Sources will set the voltage and power supplied, loads will set the amount

of power draw or impedance, and the transformers are used to change the base

voltage. In the electrical discipline, components can only be modeled as three-phase for

the AC [14], because only that way can we ensure that all three phases are balanced,

and thus, the impedances in all three phases must be equal. Meanwhile, the DC

electrical and the machinery models are single phase.

The great advantage of using a power flow solver is that it does not depend on

time, allowing it to provide the operating point while ignoring localized changes within

the system. The disadvantages are that this solver does not take into consideration

operating point changes, and that the power flow solver is not able to provide a solution

for a system where a major voltage instability or voltage collapse has occurred. More

details on solver limitations can be found in “Optimal Power Flow by Newton Approach”

[14].

The hybrid cooling solver used by the cooling discipline, Thermal Fluid, consisted

of a single step nodal analysis solver [3] communicating the fluid properties and

directing the signal solver propagating the temperature. With this combination, the

signal solver uses the nodal analysis solver to indicate the direction at which the

temperature should move. The equipment models, as seen by the modified nodal

analysis solver, comprise of flow sources, which can set the pressure or flow rate, and

loads, which set a resistance to the flow. For the signal solver, the software models can

be modelled as temperature sources, which set the initial temperature of the

10

simulation, and thermal loads, which are the models that add or remove heat in the

system. Each engine calls both solvers before any result is determined.

Similar to the power flow solver, the hybrid cooling solver provides the steady state

solution and thus on its own is not able to determine metrics that are time dependent.

2.3 QUASI-STEADY STATE SOLVERS

In order to solve for time dependent metrics, a new class, controller class, was

created. The new class is responsible for keeping track of time and requesting that the

solvers determine the solution for the time interval of interest. In order to determine

the length of time to step, the controller class collects information from every time

dependent equipment and uses the EDF [1] algorithm for scheduling time events. The

EDF can be defined by equation (2.4).

𝑈 = ∑
𝐶𝑖

𝑇𝑖
 ≤ 1

𝑁

𝑖=1

(2.4)

n – The number of calls to the solver by equipment software models inform the

solver about when they need to be called is represented by n.

Ci – Worst-case simulation time for ith step

Ti – Length of time to advance from the i-1th step to the ith step (s)

U – Utilization bound

The value of time in the new step is assessable by every component, so they can

use it to recalculate their time dependent metrics, and, if necessary, request a new step.

The flow chart seen in Figure 2.1 illustrates how the stepping and metric updating

process functions within our solvers.

11

Figure 2.1 Component updates within a time segment

The following example illustrates how the process works when in the presence

of multiple time dependent equipment.

E.g. Consider a system in which we have two energy storages providing power to

a single load. In this example, we will consider two energy storages with different

energy capacities and with instructions defining when changes between two of their

12

three modes, charging, discharging and offline, should occur within a single mission

segment.

Figure 2.2 Stepping event example

Figure 2.2 illustrates the different calls made by each energy storage and the

chosen stepping times. Initially, both energy storages are providing power to the load,

and both inform the solver about the point in time that they need to change mode,

ether for having depleted their energy storage, which for this example, means that the

energy storage should move into charging mode, or because it has reached full capacity,

which for this example means that the energy storage should change its mode to the

discharge. For S1, step 1, the energy storage 2, ES2, requests the shorter amount of time,

and so that is the chosen time to step, while the prospective time point of ES1 was a

failed attempt, Ts1. Due to ES2 changing its mode to charging at S1, the ES1 had to

13

provide extra power to the load, causing its mode change time to occur earlier, while

the ES2 charging time, Ts2, was discarded. S3 was then set to the point at which ES2 is

fully charged and the attempted stepping point of ES1 at Ts3 was discarded. The next

step, S4, is then chosen from ES1 for being the next earliest set time, while ES2 time at

Ts4 is discarded. Since the Mission Segment time ends before the stepping times set by

both energy storages, both times are discarded and the final step is set to end at the

mission segment end time.

2.4 ADDITION OF TOOLS FOR DEFINING MODE TRANSITIONS

With our power flow solver and modified nodal analyses solver now able to

incorporate time, it was possible to implement the ability to create a tool that could

provide the user with ability to define mode transitions. Because VTB has a database

containing control blocks using a signal solver [15], our first approach was to use block

diagrams. It soon became clear that for the size and complexity of the systems used by

ESRDC, control blocks were not enough, due to the rate of growth of the number of

control blocks when trying to build a more complex control system.

Due to this shortcoming of the block diagram approach, we instead created an

approach where we are able to add software instructions directly into an equipment

using the Python language. The idea of using Python was due to the fact that it was very

simple to interface instructions written in Python within our framework. The addition of

Python instructions provides one more option for users to define mode transitions in a

systems. Because the written code is simulated together with a specific model, and it

difficult to determine the solver call order between components, it is not advised to add

14

instructions that should immediately impact a different component, since, depending on

the call order, the instructions may not be applied. This limitation restricts the Python

approach to only rely on information provided by the same model for which it will be

executed or information that does not change as the simulation proceeds. For example,

the attributes associated with the limit value that some equipment has in the amount of

power or current.

In order to utilize the Python code, the user must first change the attribute

“Python Script” to true and double click the equipment. Figure 2.3 shows the interface

window that allows the user to insert the intended instructions. The code inserted

under OnSimulationStart is only accessed at the beginning of each mission segment and

is mostly used for initializations, while the code inserted under SignalStep is accessed by

the model before each step.

Figure 2.3 Python script tool

15

The Python script code in Figure 2.3 controls the firing mode of the Railgun seen

in Figure 2.4. The railgun has three operating modes, firing, idle and offline. In this

example, the Railgun is attempting to continuously fire for as long as enough power is

provided to it. Because the electrical model used to represent the Railgun changes its

mode to idle after each projectile fired, it is necessary to provide additional instructions

in order to fire multiple projectiles in a single segment. In the Python script, we start by

initializing the modes of the weapon to firing, which is done at OnSimulationStart. In the

SignalStep section, the mode attribute value is read into the sFiring variable and it is

determined whether the mode is set to firing. If it is not, we change the mode of the

weapon back to firing. This script could be used to determine metrics such as the

maximum rate of fire, continuous rate of fire, or the number of shots that could be fired

using the current Generator.

Figure 2.4 Python code system example

16

CHAPTER 3

COMPONENT DEVELOPMENT

In order to take advantage of the fact that the solver is now able to track time

and take into consideration operating point changes, most of the component models

need to be altered; the exceptions are the models that do not have any parameters that

can be changed during the mission, such as the cable, shaft, gear box, and pipes. With

those changes, the component model is now able to provide information regarding time

dependent metrics, to handle discrete state changes, and to allow communications

between the different discipline models of an equipment.

3.1 DISCRETE STATE AND TIME DEPENDENT MODIFICATIONS

Operating point changes were incorporated in the solver with the help of a

controller class, enabling software models to use time when calculating time-dependent

metrics. In the case of an operating point change, the solver is requested to run a

second time. In that additional run, it will consider the component’s new discrete state

(3.1). An example can be seen with the behavior of a breaker, because the system can

only know the amount of current passing through the breaker after it has been solved.

One cannot obtain the answer of the system after the breaker has opened unless the

system is solved a second time with the breaker tripped. The ability to define transition

modes using Python code made it necessary to expand this behavior to not only all

17

equipment that can change its operating point, but also to some other attributes that

could change the models operating state. The gate valve is such an attribute. We can

change the value of the ‘Valve Level’ attribute in order to control flow. Instructions

could be given to increase the flow to try to reduce the temperature in a certain branch.

The electrical percent charging power SOC curve is an example of an attribute

with which we use the relationship between two metrics to determine its operating

point. In this attribute, the relationship between power and state of charge (SOC) is

used to determine the amount of power consumed by the energy storage, considering

the amount of charge it currently has. Figure 3.1 show the electrical percent charging

power SOC curve attribute. For more about the definitions of those attributes, see

APPENDIX B.

Figure 3.1 Electrical percent charging power SOC curve attribute

18

Next, we will take a closer look at the components requiring the most changes:

the energy storage, the railgun, and the tank. Those merit specific focus because they

are the only components that currently set requests of time-dependent events.

3.1.1 Energy storage

In order to better represent the energy storage energy cycles, multiple changes

were needed.

With the help of equations (3.1) to (3.4), we are able to determine the amount of

time left before the energy storage is depleted or becomes fully charged. The calculated

time is then compared with the last time step, and if inferior, it becomes our new time

step.

To calculate energy storage charging time,

𝐸𝑐 = 𝑃𝑐 ∗ (𝑡𝑐 − 𝑡𝑝) ∗ 𝐸 + 𝐸𝑝 (3.1)

𝑇𝑆𝑡𝑒𝑝 = (
𝐸𝑠𝑐 − 𝐸𝑐

𝑃𝑐 ∗ 𝐸
)

(3.2)

 To calculate energy storage discharging time,

𝐸𝑐 = 𝑃𝑖 ∗ (𝑡𝑐 − 𝑡𝑝) ∗ 𝐸 + 𝐸𝑝 (3.3)

𝑇𝑆𝑡𝑒𝑝 = (
𝐸𝑐

𝑃𝑖 ∗ 𝐸
)

(3.4)

19

Figure 3.2 Energy storage electrical model flow-chart

Figure 3.2 is a flowchart illustrating how the energy storage electrical model

determines if the energy storage is required to change mode and when a change of

mode might be needed. The Python code is called at the beginning, so that changes can

be made at the commencement of each step.

20

3.1.2 Railgun

The railgun model is a model of a single shot energy gun with an internal energy

storage. Because it has an internal energy storage, it has equivalent equations to those

of the energy storage to calculate the time necessary to charge the gun. In addition to

charging time, the railgun has an attribute named cool down time that ensures that the

equipment had enough time to cool between shots.

Figure 3.3 Railgun electrical model flow-chart

21

The flow chart of Figure 3.3 displays how the state and time to step are

determined in the electrical model of a railgun.

3.1.3 Tank

The tank’s model, consists of one inlet and one outlet. The tank is responsible for

setting the initial temperature of the fluid and the type of fluid used. Improvements

were made to the tank in order to determine how much fluid has been used, and

whether it contains enough fuel for a predetermined mission. In order to model tanks

that able to be connected in series, we added the ability for the tank to be filling and

draining simultaneously. In order to implement the unlimited fuel option, we gave the

tank the ability of instantaneously refueling. Equations (3.5) to (3.7) were used to

calculate the time necessary to empty or fill the tank.

𝑇𝐴𝑑𝑑𝐹𝑢𝑒𝑙 = 𝑀𝐹𝑅𝑎𝑡𝑒 ∗ (𝑡𝑐 − 𝑡𝑝) (3.5)

𝑇𝑇𝐹𝑢𝑒𝑙 = 𝑇𝑇𝐹𝑢𝑒𝑙 − 𝑇𝐴𝑑𝑑𝐹𝑢𝑒𝑙 (3.6)

𝑇𝑆𝑡𝑒𝑝 =
𝑇𝑇𝐹𝑢𝑒𝑙

𝑀𝐹𝑅𝑎𝑡𝑒

(3.7)

2
2

Figure 3.4 Tank model flow-chart

23

Figure 3.4, shows what questions the model representing the tank asks in order

to determine if the tank is required to change mode and when the next event time will

occur.

3.2 COMMUNICATION ACROSS DISCIPLINES

In order to make more realistic simulations where interdependencies between

disciplines are accounted for, the different representations of each equipment had to be

linked with each other. To be able to share information from different models of a single

equipment a few modifications to the engines were necessary. In the electrical and

machinery disciplines, every load now saves the power consumed, while every source

saves the power provided, and in the cooling disciplines, the electrical dependent

models save the value of electrical power that they require to function. Those attributes

are used to determine a variety of quantities, such as the amount of fuel an engine

requires, the amount of heat that is required to be dissipated, and the electrical power

needed.

In case any of the attributes change, where the value is shared between models

of an equipment, a flag is thrown to inform the mission analyzer that the dependencies

of the equipment have not been satisfied.

Because the name of the equipment is unique across disciplines, it is easy to

recognize each model being linked to a single equipment. The system shown, with

Figure 3.5 representing the electrical discipline and Figure 3.6 representing the

machinery discipline, was created to help understand such cross discipline

communication. When both disciplines are simulated, a warning was thrown in the

24

machinery discipline by the motor. The exception ‘Insufficient electrical power provided’

warned the user that the motor did not receive enough electrical power, when the

electrical discipline ran, to be able to provide the power requested by the motor. This

occurred because the motor did not have the mechanical power required to turn the

generator, due to not receiving any electrical power.

Figure 3.5 Electrical discipline

Figure 3.6 machinery discipline

25

CHAPTER 4

MISSION ANALYSER

The mission analyzer is a tool created to simulate and provide results for a

mission, taking into account the pre-determined alignments for every discipline. With

the help of the mission simulator, we can also use the mission analyzer to simulate any

number of mission segments, providing a report on the success of the mission as well as

certain metrics such as fuel consumed.

The mission analyzer has two modes of operation, it can either run the current

design alignments or a mission created using the mission simulator. The current design is

the system alignment that is currently created at the user’s project design. The ability to

simulate the current design allows the user to test the performance of a layout before

deciding to use it in a mission. When solving the current design, the user is required to

provide a time and duration of the mission as seen in Figure 4.5, whereas when using

the mission analyzer tool to run a mission, those metrics are part of the mission

segment.

The mission analyzer provides a variety of messages to the user to inform them

about changes of mode, warning advice, and information about failure events, such as

the ship running out of fuel. Those messages are labeled with three distinct levels,

information, warning and failure errors. The message type information is used to

26

provide information about events the user might know about such as a weapon firing or

an energy storage changing mode from charge to discharge. Warnings are messages

with the objective of alerting the user about a problem in the system, where the

problem should not be major enough to compromise the mission, such as a weapon not

being able to fire. A failure error is used to inform the user about a problem existent in

the system which compromises the success of the mission. When in the presence of a

failure error, the simulation is interrupted, the mission is aborted, and an alert about

the cause of the error is provided to the user as we see in Figure 4.5. The user is

provided with options to change any information level from any of the three level to

another.

4.1 CONVERGENCE ALGORITHM

In order solve the interdependencies equipment of different disciplines, a

convergence method capable of establishing the optimal order for solving each of the

disciplines was needed. An algorithm designed to determine the installation order of

software packages having dependencies on other packages in a Linux system was

studied and adapted for our own use [16]. The chart from Figure 4.1 describes how the

decision is made regarding which discipline needs to be solved next. An example of how

the interdependencies are chosen can be seen in APPENDIX C.

In order to implement this algorithm, every equipment having models in different

disciplines were given the capacity of informing the mission analyzer tool about whether

or not their dependencies have been satisfied. Section 3.2 provides more information

on such communication across disciplines.

27

Figure 4.1 Resolving solver dependencies

28

4.2 MISSION ANALYZER WALK-THROUGH

The user interface when first accessing the mission analyzer is seen in Figure 4.2,

where an option between simulating a mission or the existing ship design configuration

is given. This interface also provides the user with a list of possible missions to choose.

When a mission is selected, a list of its segments is displayed.

Figure 4.2 Mission Analyzer principal page

If the option to simulate all disciplines against the current design is chosen, the

tool will bring the user to a new window, Figure 4.3, where the user can view the

operating state of each discipline. At this stage, the tool labels disciplines that are

loaded and have every equipment placed in the system as green, and disciplines that

either have not been loaded or have unplaced equipment as yellow.

29

The user is able to check for details to know the reason that a discipline

alignment is labelled yellow, and if there is something that needs to be changed, the

user can select Open Designer. This will allow the user to have direct access to the

desired design (Figure 4.4) and have a chance to modify any operating state. The user

can also ignore the warning and simply move into the simulation tab.

Figure 4.3 Alignments setup

Figure 4.4 Setting an alignment

30

Figure 4.5 shows the graphical interface of the mission analyzer that allows the

user to run the simulation of the existing alignments without the need of defining a

mission. In this window, the user is expected to provide the amount of time the design

is expected to run, and the speed at which the ship should be travelling. In order to run

the mission, the symbol must be pressed, and the symbol to the right is used to open

the interface seen in Figure 4.6. When the system has finished running a list of messages

regarding information results, warnings, and possible errors is provided. The message

levels are distinguished by color code: black for information, yellow for warnings, and

red for failure errors.

If the user wishes different model behavior during certain simulation events for a

particular mission, he is able to edit the level of assignment. In Figure 4.6, we are

changing the message level to information when the provided power by a generator is

greater than its rated power. The user could want such behavior so that he could

simulate the mission even if he had placed a generator that is not powerful enough to

provide the power required to run the current electrical system. This can either be done

to every equipment under the generator category, to that equipment type “-Generators

liquid cooled,” or we could further expand and edit the change to a very specific

equipment of that type. In the top right corner of the window, the tool displays the

values of time simulated, fuel consumed, and distance traveled.

31

Figure 4.5 Output display window, current configuration

Figure 4.6 Changing message warning level

4.3 MISSION EXPLORER WALK-THROUGH

The mission explorer is a tool used to define missions and mission segments. The

mission explorer can be accessed for simulation for the user-defined ship designs. An

32

example of the mission explorer user interface can be seen in Figure 4.7. In this

example, we have four missions created, Default, Demo, Demo Fuel Consumed, and

Year Fuel Consumption. For each of those missions, we have created mission segments

that can be accessed by expanding under the mission of interest. In this example, we are

examining the Demo mission, which has 3 mission segments. When selecting a segment,

we can define the duration of the segment and the ship speed, or we can use the map

to select the desired distance and derive the speed from that.

Figure 4.7 Mission setup

Using the duration and speed provided by the mission explorer, the mission

analyzer can now be used to define each alignment and compute the operating points.

In Figure 4.8, we can see the mission analyzer in the mode of simulating a

mission. When looking at missions, the user can simply load the current design, or

manually edit the operating point of each equipment to the corresponding value for the

33

segment. If a segment does not have information about the operating point of every

equipment for an alignment, the segment and mission will be underlined with a red

color. If there are one or more alignments with unplaced equipment, they will be

underlined yellow and if all equipment is placed and information on operating point is

loaded, they are underlined green.

The Simulation tab (Figure 4.9), is very similar to the one used to display the

results from simulating all disciplines against the current design (Figure 4.5).

Figure 4.8 Segment setup

Figure 4.9 Full mission simulation output display window

34

4.4 MISSION EXAMPLE

In this example, we will be looking at the system configuration defined in Figure

4.10 through Figure 4.13. The system design starts at the Naval arc in which the hull,

radars, weapons systems, and propeller are selected. For this example, we chose a USV,

a single propeller, a bow mounted sonar, a phased array radar, and a CIWS weapon

(Figure 4.10).

Responding to this design specification, in the machinery discipline, we

constructed a small system where an AC motor provides the power to the propeller

(Figure 4.11).

In the electrical discipline two gensets supply power to a 6.9KV DC bus, from

which the loads take the necessary power, and an energy source provides the power to

the weapon. Because of the varying voltages and current type in use, a few power

converters were added (Figure 4.12).

In the thermal fluid discipline, we created a fresh water loop cooled down by a

heat exchanger that dissipates some of the heat into the sea with the help of a pump.

The thermal fluid discipline also has a fuel tank that provides F76 fluid to both gensets

(Figure 4.13).

35

Figure 4.10 Naval arc design ship representation

Figure 4.11 Propulsion system schematic

3
6

Figure 4.12 Electrical system schematic

37

Figure 4.13 Thermal fluid system schematic

Once the system is completed, we want to test it using the mission Demo seen in

Figure 4.7. This mission contains three mission segments, Peacetime Cruise, Sprint to

Station, and On Station. The Peacetime Cruise segment takes 10 days at a speed of 15

knots, the Sprint to Station segment takes 5 days at a speed of 24 knots, and the On

Station segment takes 15 days at a speed of 2 knots. In order to run the mission, we

need to first set the operating point of each component at each individual mission

38

segment. The bow sonar will be online for the duration of the mission. The radar,

modeled with three possible power outputs, will be at its maximum of 0.9MW during

the Sprint to Station segment, at medium power of 0.5MW during the Peacetime Cruise

segment, and minimum power of 0.1MW during the On Station segment. For this

mission, the weapon does not need to fire.

Because it is a very long mission, we will use the unlimited fuel option in order to learn

about when the ship would require refueling.

Figure 4.14 Mission results

39

Figure 4.14 shows the results from each segment as well as of the full mission

fuel consumed, distance traveled, and duration. It also gave us information about events

such as the tank needing to be refueled, and problems that occur during the mission

such as the fact that we need an inverter with a higher power capacity to be connected

with the motor in order to move the ship at 24knots.

Looking into the information provided by the tank, we can find the relationship between

the fuel consumed and power consumed by propeller and radar. Table 4.1 shows the

relationship existent between the power utilized by the radar and the speed of the ship

with time needed to deplete the fuel tank.

Table 4.1 Power and fuel consumption

Mission Segment Radar (MW) Speed (Knots) Tank (hours)

On station .1 2 100.1

Peacetime cruise .5 15 29.3

Sprint to station .9 24 22.1

40

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 CONCLUSION

In this thesis, I presented three principal contributions to the field of ship design.

They are the development of a controller class that allows steady state solvers to

provide time-dependent information, the incorporation of operating point changes and

time-dependent metrics at the component level, and the adaptation of a software

installation ordering algorithm to develop a method for efficiently solving a system

while satisfying the interdependencies between disciplines

Steady state solvers are able to provide quick solutions to system simulations

that are not dependent of time, but struggle when system components experience

localized operating point changes. By developing a controller class responsible for

keeping track of time and relaying the necessary time-dependent information to the

solvers, we are able to determine solutions to time intervals of interest. In this way, we

are able to handle time intervals where operating point changes occur, while still

retaining the ability of the steady state solvers to quickly handle the long periods of time

where no discrete state changes are occurring. Essentially, this allows the length of a

mission to be partitioned into segments that can be solved quickly and accurately.

41

With the solvers now able to utilize time-dependent information in order to

track operating point changes within the system, we allow equipment to provide time

dependent information and to undergo discrete state changes. By relaying such

information to the controller class, the equipment is able to communicate across

disciplines. This sharing of information allows for the solvers to take into account the

interdependencies between disciplines when providing solutions.

We gave every equipment having models in multiple disciplines the capability of

informing our mission analyzer tool if their dependencies have been satisfied. This

allowed us to implement an algorithm that determines the order for how the disciplines

are solved such that their interdependencies are taken into account with minimal solver

calls, providing accuracy and efficiency in our simulation.

5.2 FUTURE WORK

In order to propagate changes that occur between disciplines during a mission

segment, we will need to run all of the disciplines simultaneously, under the same time

step, exchanging information between each other at every step. This will improve the

accuracy of the results and allow the user to better predict how some events that

happen in one discipline can affect another discipline.

A better method of implementing commands at a higher level is something we

should strive to create. This should be a tool with a simple interface with every

component that would allow for implementation of control systems and easy

exportation of those same instructions into other similar ship designs.

42

We would also like to create a tool that allows the comparisons between

multiple ship designs against a mission or segment. This tool should use the values

calculated by the mission analyzer and, based on the metrics of interest, compare any

number of designs in the project.

43

REFFERENCES

[1] G. Lipari, "Earliest Deadline First," Scuola Superiore Sant’Anna, Pisa-Italy, 2005.

[2] C.-W. Ho, P. A. Brennan and A. E. Ruehli, "The Modified Nodal Approach to Network

Analysis," IEEE Transactions on Circuits and Systems, vol. 22, no. 6, pp. 504-509, 1975.

[3] Association for Computing Machinery, "Modeling and simulation glossary," [Online].

Available: http://www.acm-sigsim-mskr.org/glossary.htm.

[4] B. Bras and F. Mistree, "Designing Design Processes in Decision-Based Concurrent

Engineering," SAE Transactions, Journal of Materials & Manufacturing, vol. 100, pp. 451-

458, 1991.

[5] R. A. Dougal and B. Langland, "Catching It Early," Marine Technology, pp. 63-69, January

2016.

[6] J. Chalfant, B. Langland, S. Abdelwahed, C. Chryssostomidis, R. Dougal, A. Dubey, T. E.

Mezyani, J. Herbst, T. Kiehne, J. Ordonez, S. Pish, S. Srivastava and E. Zivi, "A Collaborative

Early-Stage Ship Design," ESRDC Technical Report, 2012.

[7] M. Engelhardt, "SPICE Differentiation," ELECTRONICS WORLD, vol. 121, no. 1946, pp. 16-

21, 2015.

[8] F. Milano, "An Open Source Power System Analysis Toolbox," IEEE TRANSACTIONS ON

POWER SYSTEMS, vol. 20, no. 3, pp. 1199-1206, 2005.

[9] H. Anton and C. Rorres, in Elementary Linear Algebra: Applications Version, John Wiley &

Sons, 2010, pp. 477-486.

[10] D. Coppersmith and S. Winograd, "Matrix multiplication via arithmetic progressions.," in

Proceedings of the nineteenth annual ACM symposium on Theory of computing, New York,

1987.

[11] Y. Levron, J. M. Guerrero and Y. Beck, "Optimal Power Flow in Microgrids with Energy

Storage," IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 3226-3234, 2013.

[12] S. A. Nasar and F. C. Trutt, in Electric Power Systems, vol. 28, CRC Press, 1998, pp. 72-87.

44

[13] D. I. Sun, B. Ashley, B. Brewer, A. Hughes and W. F. Tinney, "OPTIMAL POWER FLOW BY

NEWTON APPROACH," IEEE Transaction on Power Apparatus and Systems, Vols. PAS-103,

no. 10, pp. 2864-2880, October 1984.

[14] X. Wu, H. Fugueroa and A. Monti, "Testing of Digital Controllers Using Real-Time Hardware

in the Loop Simulation," Power Electronics Specialists Conference, 2004. PESC 04. 2004

IEEE 35th Annual. Vol. 5. IEEE, 2004.

[15] D. Burrows, "Modelling and Resolving Software Dependencies," Conferenza Italiana sul

Software Libero (CONFSL 2010), 2015.

[16] C. Dufour, J. Mahseredjian and J. Bélanger, "A Combined State-Space Nodal Method for

the Simulation of Power System Transients," Power Delivery, IEEE Transactions, vol. 26, no.

2, pp. 928-935, 2011.

45

APPENDIX A: DIFFERENCES BETWEEN POWER LOAD AND MNA

In order to examine the equations discussed in Section 2.1 , we need to first

understand the difference in number of iterations between linear convergence and

quadratic convergence when using Newton-Raphson. Figure A.1 illustrates the

relationship between the number of iterations needed and how far the method is from

the correct solution. The Y-axis, representing the distance between the calculated value

and the convergence value, grows exponentially. In the example given by Figure A.1, we

start at the same distance from the convergence value with regards to error. The

quadratic system takes 5 iterations to converge while the linear system takes 25. From

the graph, we determine that the relationship can be represented by 𝑋 iterations for

linear convergence, and √𝑋 for quadratic.

Figure A.1 Difference between Newton-Raphson linear and quadratic convergence

1 2 3 4 5 6 7 8 9 10 11 12 13

Er
ro

r

Iteration

Error by Iteration

Quadratic Linear

46

To refer to the number of iterations we used KMNA for MNA method and Klf for

load flow, with exception being when the system lacks nonlinear equations. In that case,

the MNA requires more than one computation before it finds the steady state solution

of the system, and we use mMNA to refer to the number of computations. In Figure A.2,

we see a representation of how the solution varies at each computation in MNA until a

steady state solution has been reached.

Figure A.2 Representation of MNA computing into steady state

Looking at Section 2.1 we analyze three cases where MNA is non-linear.

In the first case represented by equation (2.1), both methods, MNA and power-

load, achieve the same convergence, being linear or quadratic 𝑚𝑀𝑁𝐴 ⋅ 𝑘𝑀𝑁𝐴 ≅ 5 ⋅ 𝑘𝑙𝑓.

In the second case, MNA is linear but power-flow is quadratic, so KMNA grows

exponentially faster than Klf therefore we have 𝑚𝑀𝑁𝐴 ⋅
𝑘𝑀𝑁𝐴

2

𝑘𝑙𝑓
≅ 5, and considering our

initial assumption that KMNA ≈ Kif, we get equation (2.2), 𝑚𝑀𝑁𝐴 ⋅ 𝑘𝑀𝑁𝐴 ≅ 5.

m1

m2

m3

m4
m5

MNA computations

47

In the third case, MNA is quadratic and power-load is linear, for this case Klf

grows exponentially faster than KMNA, 𝑚𝑀𝑁𝐴 ⋅
𝑘𝑙𝑓

2

𝑘𝑀𝑁𝐴
≅ 5, and we get equation (2.3),

𝑚𝑀𝑁𝐴 ≅ 5 ⋅ 𝑘𝑙𝑓

48

APPENDIX B: MULTI INPUT ATTRIBUTES

In order for our simulation to correctly simulate the behavior of certain metrics

such as efficiency, fuel consumed, and charging power, we introduced an attribute type

that allowed the input of multiple data points. Those attributes can use a variety of

interpolation methods to connect the given points. Figure B.3 shows us how the spline

function is being used to determine the specific fuel consumption versus power curve.

Figure B.3 Spline curve of specific fuel consumption versus mechanical power

49

APPENDIX C: INTER-DISCIPLINE CONVERGENCY GENERALIZED EXAMPLE

We shall examine a case in where all components get powered, and we have the

following dependencies. In 𝐶𝑥
𝑦

 the subscript x, represents the discipline where the

component belongs to, and superscript y represents the discipline the component can

potentially affect. The different discipline tools in S3D are currently composed of the

following set of components:

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 = { 𝐶𝑒
𝑚, 𝐶𝑒

𝑝, 𝐶𝑒
ℎ}

𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 = { 𝐶𝑚
𝑒 , 𝐶𝑚

𝑝 , 𝐶𝑚
ℎ }

𝑃𝑖𝑝𝑖𝑛𝑔 = { 𝐶𝑝
𝑒}

𝐻𝑉𝐴𝐶 = { 𝐶ℎ
𝑒}

Therefore, each discipline contains the following dependencies on components

from other disciplines.

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 → { 𝐶𝑚
𝑒 , 𝐶𝑝

𝑒 , 𝐶ℎ
𝑒}

𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 → { 𝐶𝑒
𝑚}

𝑃𝑖𝑝𝑖𝑛𝑔 → { 𝐶𝑒
𝑝, 𝐶𝑚

𝑝 }

𝐻𝑉𝐴𝐶 → { 𝐶𝑒
ℎ, 𝐶𝑚

ℎ }

The stepping-order could be dynamically determined using the algorithm

described in the flow-chart above, but for the purposes of this implementation, the

stepping-order solution is constant. In the future, as additional components are added

which may cause additional dependencies, this algorithm may be implemented to

50

dynamically determine the best order. The full steps to determine the current stepping

order based on the existing S3D dependencies described above are:

Since the machinery disciplines has the least dependencies we run the electrical

discipline first to satisfy them. We mark the machinery set with an asterisk because its

dependencies are not actually satisfied by the electrical discipline, since its

dependencies were not satisfied and the result is guaranteed to not have converged.

𝐸 → { 𝐶𝑚
𝑒 , 𝐶𝑝

𝑒 , 𝐶ℎ
𝑒}

𝑀∗ → {∅}

𝑃∗ → { 𝐶𝑚
𝑝 }

𝐻∗ → {𝐶𝑚
ℎ }

The machinery discipline has no dependencies, so we run the machinery

discipline, and restore its dependencies on the electrical discipline, because that

dependency was not fully resolved during this iteration.

𝐸 → { 𝐶𝑝
𝑒 , 𝐶ℎ

𝑒}

𝑀 → { 𝐶𝑒
𝑚}

𝑃∗∗ → {∅}

𝐻∗∗ → {∅}

The HVAC and the piping have no dependencies, so we run both disciplines, and

restore the dependencies which were not fully resolved at the time they were run.

𝐸 → {∅}

𝑀 → { 𝐶𝑒
𝑚}

𝑃 → { 𝐶𝑒
𝑝, 𝐶𝑚

𝑝 }

51

𝐻 → {𝐶𝑒
ℎ, 𝐶𝑚

ℎ }

The Electrical discipline has no dependencies, so we run the electrical discipline.

Its dependencies do not need to be restored because at the time each of its

dependencies were run, they were marked as having no dependencies of their won.

𝐸 → {∅} ∶ 𝑑𝑜𝑛𝑒

𝑀 → {∅}

𝑃 → {𝐶𝑚
𝑝

}

𝐻 → { 𝐶𝑚
ℎ }

The machinery discipline has no dependencies, so we run the machinery

discipline.

𝐸 → {∅} ∶ 𝑑𝑜𝑛𝑒

𝑀 → {∅} ∶ 𝑑𝑜𝑛𝑒

𝑃 → {∅}

𝐻 → {∅}

The HVAC and the piping have no dependencies, so we run both disciplines.

𝐸 → {∅} ∶ 𝑑𝑜𝑛𝑒

𝑀 → {∅} ∶ 𝑑𝑜𝑛𝑒

𝑃 → {∅} ∶ 𝑑𝑜𝑛𝑒

𝐻 → {∅} ∶ 𝑑𝑜𝑛𝑒

* Dependency was satisfied by running a system whose dependencies were not

satisfied.

	An Improved Ship Design Tool for Comparing Performance of Multiple Ship Designs across User-Defined Missions
	Recommended Citation

	tmp.1487956886.pdf.yqW9I

