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ABSTRACT 

In the early stages of ship design, engineers from many different disciplines need 

to have confidence that a design being produced converges across the electrical, 

mechanical, and thermal domains, and that the design meets the needs of the 

stakeholders, and, that a particular design performs better or more optimally than other 

designs produced to accomplish a mission. The tools currently available do not permit 

the engineering teams to gain this insight in a reasonable amount of time. In this thesis, 

we discuss the improvements that we have made to our existing ship design tools in the 

S3D environment, allowing for a more concurrent collaboration between the engineers 

from all disciplines in the ship design process. 

Incorporating the notion of time into our existing steady state solvers, we 

developed a controller class responsible for keeping track of time-related information 

and scheduling time-based events using the earliest deadline first algorithm. We have 

also incorporated Python script instructions in the form of an attribute inserted into the 

equipment models in order to allow Python scripts to represent the effects of system 

controls. Equipment models were also modified to provide information regarding time 

dependent metrics, such as fuel and energy, and in order to account for 

interdependencies between disciplines, they were also given the capacity to inform the 

mission analyzer tool about whether their dependencies have been satisfied. We 
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developed an algorithm that uses this information to efficiently find a solution such that 

all dependencies between disciplines are satisfied. Implementing this algorithm, the 

mission analyzer is able to simulate each of the disciplines for a specified time frame 

and provide results that indicate whether a ship design is able to complete a mission 

and the possible costs such as equipment failures, and fuel consumed. 

  



 
 

vi 

 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ....................................................................................................... iii 

ABSTRACT ............................................................................................................................ iv 

LIST OF FIGURES ................................................................................................................ viii 

LIST OF SYMBOLS ................................................................................................................. x 

LIST OF ABBREVIATIONS .................................................................................................... xii 

GLOSSARY .......................................................................................................................... xiii 

CHAPTER 1 INTRODUCTION ................................................................................................ 1 

CHAPTER 2 SOLVER DEVELOPMENT ................................................................................... 4 

2.1 SOLVERS – TIME DEPENDENCY ...................................................................... 4 

2.2 INITIAL STATE OF SOLVERS............................................................................. 8 

2.3 QUASI-STEADY STATE SOLVERS ................................................................... 10 

2.4 ADDITION OF TOOLS FOR DEFINING MODE TRANSITIONS .......................... 13 

CHAPTER 3 COMPONENT DEVELOPMENT ........................................................................ 16 

3.1 DISCRETE STATE AND TIME DEPENDENT MODIFICATIONS .......................... 16 

3.2 COMMUNICATION ACROSS DISCIPLINES ..................................................... 23 

CHAPTER 4 MISSION ANALYSER........................................................................................ 25 

4.1 CONVERGENCE ALGORITHM ....................................................................... 26 

4.2 MISSION ANALYZER WALK-THROUGH ......................................................... 28 

4.3 MISSION EXPLORER WALK-THROUGH ......................................................... 31 



 
 

vii 

4.4 MISSION EXAMPLE ....................................................................................... 34 

CHAPTER 5 CONCLUSION AND FUTURE WORK ................................................................ 40 

5.1 CONCLUSION ............................................................................................... 40 

5.2 FUTURE WORK ............................................................................................. 41 

REFFERENCES .................................................................................................................... 43 

APPENDIX A: DIFFERENCES BETWEEN POWER LOAD AND MNA ..................................... 45 

APPENDIX B: MULTI INPUT ATTRIBUTES .......................................................................... 48 

APPENDIX C: INTER-DISCIPLINE CONVERGENCY GENERALIZED EXAMPLE ....................... 49 

 

 



 
 

viii 

LIST OF FIGURES 

Figure 2.1 Component updates within a time segment ................................................... 11 

Figure 2.2 Stepping event example .................................................................................. 12 

Figure 2.3 Python script tool ............................................................................................. 14 

Figure 2.4 Python code system example .......................................................................... 15 

Figure 3.1 Electrical percent charging power SOC curve attribute .................................. 17 

Figure 3.2 Energy storage electrical model flow-chart ..................................................... 19 

Figure 3.3 Railgun electrical model flow-chart ................................................................. 20 

Figure 3.4 Tank model flow-chart ..................................................................................... 22 

Figure 3.5 Electrical discipline ........................................................................................... 24 

Figure 3.6 machinery discipline ........................................................................................ 24 

Figure 4.1 Resolving solver dependencies ........................................................................ 27 

Figure 4.2 Mission Analyzer principal page ...................................................................... 28 

Figure 4.3 Alignments setup ............................................................................................. 29 

Figure 4.4 Setting an alignment ........................................................................................ 29 

Figure 4.5 Output display window, current configuration ............................................... 31 

Figure 4.6 Changing message warning level ..................................................................... 31 

Figure 4.7 Mission setup ................................................................................................... 32 

Figure 4.8 Segment setup ................................................................................................. 33 

Figure 4.9 Full mission simulation output display window .............................................. 33 

Figure 4.10 Naval arc design ship representation ............................................................ 35 



 
 

ix 

Figure 4.11 Propulsion system schematic ........................................................................ 35 

Figure 4.12 Electrical system schematic ........................................................................... 36 

Figure 4.13 Thermal fluid system schematic .................................................................... 37 

Figure 4.14 Mission results ............................................................................................... 38 

Figure A.1 Difference between Newton-Raphson linear and quadratic convergence ..... 45 

Figure A.2 Representation of MNA computing into steady state .................................... 46 

Figure B.3 Spline curve of specific fuel consumption versus mechanical power ............. 48 

 



 
 

x 

LIST OF SYMBOLS 

Ci Worst-case time for ith step 

E Efficiency (%) 

Ec Current amount of energy stored (J) 

Esc Energy storage capacity (J) 

Ed Energy discharged during last step (J) 

Ep Amount of stored energy at tp (J) 

klf The number of iterations, using Newton-Raphson method 

kMNA Number of iterations per step, using MNA 

MFRate Net mass flow rate (Kg/s) 

mMNA Number of steps required to achieve steady state, using MNA 

n The number of calls to the solver by equipment software models inform the 
solver about when they need to be called is represented by n. 

Pc Power consumed (W) 

Pi Power injection (W) 

tc Current time (s) 

Ti Length of time to advance from the i-1th step to the ith step (s) 

TAddFuel Amount of fuel entering or leaving the tank 

TTFuel Total amount of fuel in the tank



 
 

xi 

tp Previous time (s) 

TStep Time step, amount of time to be advanced (s) 

U Utilization bound 



 
 

xii 

LIST OF ABBREVIATIONS  

EDF  ....... Earliest deadline first, a dynamic scheduling algorithm for placing a process in a 
priority queue [1].  

ESRDC  ............. The Electric Ship Research and Development Consortium, a collaborative 
research group that spans multiple universities including The Florida State University, 

Massachusetts Institute of Technology, Mississippi State University, Naval Post Graduate 
School, Purdue University, United States Naval Academy, University of South Carolina, 
and the University of Texas at Austin, for the purpose of advancing near-term to mid-

term research and technology that helps realize electric ships. 

MNA  ..... Modified nodal analysis is a method by which circuit equations are formulated. 
This method uses nodal-voltage analysis to determine the voltage equations and 

Kirchhoff’s current law is applied to each node other than the datum node, ground, to 
determine branch currents [2]. 

S3D  ............. Smart Ship System Design is an early stage concurrent, collaborative design 
environment which contain multiple discipline specific tools for early-stage ship design.   

SOC  ......... State of charge, available capacity as a percentage of energy storage capacity. 
Typically found on energy storage devices such as batteries. 

USV  .... Unmanned Surface Vehicles. A vehicle that is capable of operating autonomously 
without the direct intervention of a human.



 
 

xiii 

GLOSSARY 

Attributes  . Properties or features that help to define equipment. Example: rated power, 
efficiency, and rated voltage, can be used to help define the electrical properties of a 

generator. 

Continuous rate of fire  .......... The maximum sustainable rate of fire for a weapon. In this 
context the weapon is an electrical weapon and the limiting factors are typically the 

availability of electrical energy and the time required to dissipate the heat generated. 

Draining  ........ One of the three operating states used by the tank model to regulate flow 
direction when the tank is full. Only flow out of the tank is permitted; the tank inlet is 

closed, and the tank outlet is open. 

Discipline  ............... The specialized engineering fields referenced in the paper, electrical, 
machinery, thermal, and naval architecture. 
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CHAPTER 1  

INTRODUCTION  

The design of ships can be quite complicated as there are multiple disciplines 

involved and complex interdependencies between these disciplines, therefore, 

collaboration between engineers from fields such as Electrical, Naval Architecture, and 

Mechanical is required. For example, stakeholders first establish a list of requirements 

or identify a set of missions that a ship should be capable of accomplishing. This results 

in a set of mission payloads being identified and added to the ship design in order to 

provide the required capabilities. Once these high-level requirements and payloads have 

been identified, engineers from the various disciplines begin to build the required 

support systems which provide the necessary power and cooling. It is during this phase 

that cooperation between engineers is necessary. For instance, the electrical engineers 

design the electrical system to provide power to the propulsion system and mission 

loads, however, information needs to flow to the thermal management team such as 

the heat load produced by each electrical device and the amount of cooling that will be 

required. Conversely, the thermal management team will need to inform the electrical 

engineers of the amount of electrical power their pump and other electrical 

components require.
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Until the advent of collaborative design tools, information exchange between 

design teams had been conducted in a manual, error prone, and inefficient manner. 

Each project design needed to be interpreted, translated, and moved between tool sets 

across each discipline [4]. This process would be repeated multiple times in an attempt 

to finalize the design. Providing the design teams with a concurrent, collaborative design 

environment enables the information to readily flow between teams, and also allows 

the users to immediately see and better comprehend the impacts that design decisions 

have on other disciplines, dramatically reducing the time required to finalize the design.  

The Smart Ship System Design, S3D, project was created to allow groups of 

engineers to collaborate on their designs in real-time [5]. This is a project of the Electric 

Ship Research and Development Consortium, ESRDC, which is a combination of 

universities with the objective of advancing near-term to mid-term electric ship 

concepts [6]. The objective of the S3D design environment is to enable collaboration 

between engineers working on a single project, and with the help of the provided tools, 

users are able to create missions in order to simulate the performance of user-created 

ship designs and to compare those ship designs using the resulting metrics from each of 

those missions.  

In this thesis, we build upon the already existent S3D tools to allow the 

computation of time dependent metrics, integrate those changes into the simulation 

models, and create a tool capable of simulating complete missions. 

We talk about the challenges and changes necessary in order for time to be 

taken into account for changes of operating point in CHAPTER 2. A controller class was 
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created with the responsibility of informing every model about the current time, 

allowing simulation models to use time dependent metrics such as fuel and energy. This 

class is also responsible for requesting that the solver run an additional time in the case 

of a change in operating point. We also added a few tools to allow the user to define 

under what conditions mode transitions should occur. 

In CHAPTER 3, we cover the improvements made to the models to enable them 

to determine when a change in operating point will occur and inform the solver. We also 

discuss the modifications required to allow communication between equipment models 

from different disciplines of the same equipment, such as communication between the 

electrical model of a generator with the machinery model of the same generator. 

In CHAPTER 4, we discuss the creation of a new tool developed to allow users to 

evaluate performance of a design concept. This tool is able to simulate all of the 

disciplines’ alignments and solve every existing dependency between different models 

of the same equipment. A walkthrough and an example followed by a discussion on the 

results will then be used to show how each element comes together.   
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CHAPTER 2  

SOLVER DEVELOPMENT 

2.1 SOLVERS – TIME DEPENDENCY 

With the addition of time based metrics into the mission objectives, there was a 

need to provide the current solvers with the ability to take into account time -

dependent changes so that important changes in operating point would not be ignored. 

We will try to determine whether a quasi-steady state solver is preferable to use 

compared to a time dependent solver. 

For our type of simulation, we are interested in a solver that is capable of 

providing steady-state results as we expect long periods of time without operating point 

changes. For that reason, methods such as Spice Differentiation [7] and Power System 

Analysis Toolbox (PSAT) [8], even though they are popular solvers to use with most 

dynamic power systems, are not suitable for this environment.  

A suitable method for our simulation engine is the modified nodal analyses 

(MNA), a method that requires less information than nodal analysis, does not use 

constant stepping, and solves the system only up to its steady state value. Since we do 

not require a solver that is capable of analyzing the system transient response, the 

power flow solver can be considered.
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Both power flow and MNA solvers must solve a system of equations defining a 

circuit, typically using LU decomposition, an algorithm or solution time that scales at 

best, O(n2.376), using the Coppersmith-Winograd algorithm, where n is the number of 

equations to be solved [9] [10]. 

Load-flow models are simplistic models, what we call “ZIP” models (the Z 

represents constant impedance, the I represents constant current, the P represents 

constant power).  This means they will not typically require internal nodes.  However, 

we solve for both steady-state voltage magnitude and angle, which are separate 

variables in the matrix, so n is approximately twice the number of nodes. All else being 

equal, the solution of one operating point using a load-flow solver is therefore 5.191x 

slower than using MNA, since n is twice as large given our assumptions (22.376).  

2.1.1 Similarities between approaches 

In both cases, n is typically proportional to the number of nodes. Complex 

models in MNA will often have internal nodes to represent and solve for internal state 

variables, but we will assume the level of detail we are interested in warrants simplified 

models, and that n is approximately equal to the number of nodes.  

2.1.2 Differences between approaches 

Load-flow  

Load-Flow analysis is inherently non-linear.  The LU decomposition therefore 

must be performed multiple times during the course of an iterative algorithm such as 

the Newton-Raphson method. We will call the number of iterations klf.  

Modified nodal analyses 
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MNA is a time-domain method, and even if we are interested only in the steady-

state result, the transient solution must be computed from a known-state (typically at 

t=0, but alternatively starting from a previously computed operating point), until the 

state variables reach steady-state. The number of computations required to acquire the 

steady-state solution using MNA is therefore dependent on two variables:  the settling 

time Ts before the system reaches steady-state, and the time-step ts required to 

maintain mathematical stability during the solution.  These numbers are typically 

inversely related; a system with low settling-time is one with a low time-constant which 

requires a small time-step to maintain stability, while a system with high settling-time 

has a high time-constant that allows for a larger time-step.  We will therefore make the 

simplifying assumption that regardless of system response, approximately the same 

number of computations will be required in order to reach the steady-state solution. We 

will call this number mMNA. APPENDIX A contains additional information regarding this 

method. MNA may also require multiple iterations per time-step; we will call this 

number kMNA. 

If all models in the MNA system are represented by linear equations only, each 

time-step can be solved with a single iteration, and kMNA=1. 

If any one model in the MNA system requires non-linear equations, the entire 

matrix is non-linear, and an iterative method is required.  We assume the same method 

is used in both the load flow and transient solver implementations, so we can assume 

no performance difference with the algorithm, but since the equations being solved are 

different, kMNA will still differ from from klf, most likely. 
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2.1.3 Comparison between methods under different scenarios 

Without loss of generality, we may consider only the case where we are solving 

for the steady-state solution of a single operating point, and ignore the quasi steady-

state implementation of the load-flow solver.  We can do this because the total 

simulation time is proportional to the total number of operating points of interest in 

both solvers; the load-flow solver is simply performing another solution of the same 

system, while the settling time of for the transient solution will be equivalent given 

changing input.  Therefore, we have the following cases for comparison. 

MNA linearity 

Whether the load-flow solution is faster is entirely dependent on the ratio of the 

number of steps required to reach steady-state for the system (mMNA) to the number of 

iterations required to converge the load-flow system (klf), where 𝑚𝑀𝑁𝐴 ≅ 5 ⋅ 𝑘𝑙𝑓 is the 

break-even point. The proportionality value of 5 comes from the fact that the load-flow 

solver is 5.191x slower than using MNA. 

MNA non-linearity 

Newton-Raphson convergence is quadratic in most cases, or linear when the 

solution roots have multiplicity greater than 1. The break-even point occurs at equation 

(2.1).  Assuming the initial guess for the solution is roughly equally far away in both 

cases: 

𝑚𝑀𝑁𝐴 ⋅ 𝑘𝑀𝑁𝐴 ≅ 5 ⋅ 𝑘𝑙𝑓 (2.1) 

If convergence is linear in MNA, but quadratic in the Power-Flow, the break-even 

performance point occurs at  
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𝑚𝑀𝑁𝐴 ⋅ 𝑘𝑀𝑁𝐴 ≅ 5 (2.2) 

If convergence is quadratic in MNA, but linear in the Power-Flow, the break-even 

performance point occurs at equation (2.3), matching the case where MNA is linear. 

𝑚𝑀𝑁𝐴 ≅ 5 ⋅ 𝑘𝑙𝑓 (2.3) 

Assuming convergence speed in both solvers proceeds at the same rate, the 

number of iterations in both solvers will be roughly the same, klf and kMNA cancel each 

other out, and the break-even point is entirely dependent on mMNA, with the break-even 

point being at approximately 5 steps. 

Considering that our electrical discipline has components with complex 

impedances, the MNA is expected to require multiple steps before achieving steady 

state, and so the power flow solver is the best solver to use.  

An implementation of a power flow solver modified to take into account state 

changes has been used to calculate the power losses in a microgrid while taking into 

consideration the time associated with the charging and discharging cycles of the energy 

storages [12]. 

2.2 INITIAL STATE OF SOLVERS 

Initially in the project, we used two steady state solvers, a power flow solver to 

simulate electrical and machinery disciplines using Newton-Raphson or Gauss-Seidel 

methods to achieve a steady state, and a hybrid, modified nodal analysis solver in 

conjunction with a signal solver to simulate the thermal fluid disciplines [13]. 
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The power flow solver models the load flow models as sources, loads, or 

transformers. Sources will set the voltage and power supplied, loads will set the amount 

of power draw or impedance, and the transformers are used to change the base 

voltage. In the electrical discipline, components can only be modeled as three-phase for 

the AC [14], because only that way can we ensure that all three phases are balanced, 

and thus, the impedances in all three phases must be equal. Meanwhile, the DC 

electrical and the machinery models are single phase. 

The great advantage of using a power flow solver is that it does not depend on 

time, allowing it to provide the operating point while ignoring localized changes within 

the system. The disadvantages are that this solver does not take into consideration 

operating point changes, and that the power flow solver is not able to provide a solution 

for a system where a major voltage instability or voltage collapse has occurred. More 

details on solver limitations can be found in “Optimal Power Flow by Newton Approach” 

[14]. 

The hybrid cooling solver used by the cooling discipline, Thermal Fluid, consisted 

of a single step nodal analysis solver [3] communicating the fluid properties and 

directing the signal solver propagating the temperature. With this combination, the 

signal solver uses the nodal analysis solver to indicate the direction at which the 

temperature should move. The equipment models, as seen by the modified nodal 

analysis solver, comprise of flow sources, which can set the pressure or flow rate, and 

loads, which set a resistance to the flow. For the signal solver, the software models can 

be modelled as temperature sources, which set the initial temperature of the 
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simulation, and thermal loads, which are the models that add or remove heat in the 

system. Each engine calls both solvers before any result is determined.  

Similar to the power flow solver, the hybrid cooling solver provides the steady state 

solution and thus on its own is not able to determine metrics that are time dependent.  

2.3 QUASI-STEADY STATE SOLVERS 

In order to solve for time dependent metrics, a new class, controller class, was 

created. The new class is responsible for keeping track of time and requesting that the 

solvers determine the solution for the time interval of interest. In order to determine 

the length of time to step, the controller class collects information from every time 

dependent equipment and uses the EDF [1] algorithm for scheduling time events. The 

EDF can be defined by equation (2.4). 

𝑈 =  ∑
𝐶𝑖

𝑇𝑖
 ≤ 1

𝑁

𝑖=1

 
(2.4) 

n – The number of calls to the solver by equipment software models inform the 

solver about when they need to be called is represented by n. 

Ci – Worst-case simulation time for ith step 

Ti – Length of time to advance from the i-1th step to the ith step (s) 

U – Utilization bound  

The value of time in the new step is assessable by every component, so they can 

use it to recalculate their time dependent metrics, and, if necessary, request a new step. 

The flow chart seen in Figure 2.1 illustrates how the stepping and metric updating 

process functions within our solvers. 



 
 

11 
 

 

Figure 2.1 Component updates within a time segment  

The following example illustrates how the process works when in the presence 

of multiple time dependent equipment. 

E.g. Consider a system in which we have two energy storages providing power to 

a single load. In this example, we will consider two energy storages with different 

energy capacities and with instructions defining when changes between two of their 
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three modes, charging, discharging and offline, should occur within a single mission 

segment.    

 

Figure 2.2 Stepping event example 

Figure 2.2 illustrates the different calls made by each energy storage and the 

chosen stepping times. Initially, both energy storages are providing power to the load, 

and both inform the solver about the point in time that they need to change mode, 

ether for having depleted their energy storage, which for this example, means that the 

energy storage should move into charging mode, or because it has reached full capacity, 

which for this example means that the energy storage should change its mode to the 

discharge. For S1, step 1, the energy storage 2, ES2, requests the shorter amount of time, 

and so that is the chosen time to step, while the prospective time point of ES1 was a 

failed attempt, Ts1. Due to ES2 changing its mode to charging at S1, the ES1 had to 
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provide extra power to the load, causing its mode change time to occur earlier, while 

the ES2 charging time, Ts2, was discarded. S3 was then set to the point at which ES2 is 

fully charged and the attempted stepping point of ES1 at Ts3 was discarded. The next 

step, S4, is then chosen from ES1 for being the next earliest set time, while ES2 time at 

Ts4 is discarded. Since the Mission Segment time ends before the stepping times set by 

both energy storages, both times are discarded and the final step is set to end at the 

mission segment end time.  

2.4 ADDITION OF TOOLS FOR DEFINING MODE TRANSITIONS 

With our power flow solver and modified nodal analyses solver now able to 

incorporate time, it was possible to implement the ability to create a tool that could 

provide the user with ability to define mode transitions. Because VTB has a database 

containing control blocks using a signal solver [15], our first approach was to use block 

diagrams. It soon became clear that for the size and complexity of the systems used by 

ESRDC, control blocks were not enough, due to the rate of growth of the number of 

control blocks when trying to build a more complex control system.  

Due to this shortcoming of the block diagram approach, we instead created an 

approach where we are able to add software instructions directly into an equipment 

using the Python language. The idea of using Python was due to the fact that it was very 

simple to interface instructions written in Python within our framework. The addition of 

Python instructions provides one more option for users to define mode transitions in a 

systems. Because the written code is simulated together with a specific model, and it 

difficult to determine the solver call order between components, it is not advised to add 
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instructions that should immediately impact a different component, since, depending on 

the call order, the instructions may not be applied. This limitation restricts the Python 

approach to only rely on information provided by the same model for which it will be 

executed or information that does not change as the simulation proceeds. For example, 

the attributes associated with the limit value that some equipment has in the amount of 

power or current. 

In order to utilize the Python code, the user must first change the attribute 

“Python Script” to true and double click the equipment. Figure 2.3 shows the interface 

window that allows the user to insert the intended instructions. The code inserted 

under OnSimulationStart is only accessed at the beginning of each mission segment and 

is mostly used for initializations, while the code inserted under SignalStep is accessed by 

the model before each step. 

 

Figure 2.3 Python script tool 
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The Python script code in Figure 2.3 controls the firing mode of the Railgun seen 

in Figure 2.4. The railgun has three operating modes, firing, idle and offline. In this 

example, the Railgun is attempting to continuously fire for as long as enough power is 

provided to it. Because the electrical model used to represent the Railgun changes its 

mode to idle after each projectile fired, it is necessary to provide additional instructions 

in order to fire multiple projectiles in a single segment. In the Python script, we start by 

initializing the modes of the weapon to firing, which is done at OnSimulationStart. In the 

SignalStep section, the mode attribute value is read into the sFiring variable and it is 

determined whether the mode is set to firing. If it is not, we change the mode of the 

weapon back to firing. This script could be used to determine metrics such as the 

maximum rate of fire, continuous rate of fire, or the number of shots that could be fired 

using the current Generator. 

 

Figure 2.4 Python code system example
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CHAPTER 3  

COMPONENT DEVELOPMENT 

In order to take advantage of the fact that the solver is now able to track time 

and take into consideration operating point changes, most of the component models 

need to be altered; the exceptions are the models that do not have any parameters that 

can be changed during the mission, such as the cable, shaft, gear box, and pipes. With 

those changes, the component model is now able to provide information regarding time 

dependent metrics, to handle discrete state changes, and to allow communications 

between the different discipline models of an equipment. 

3.1 DISCRETE STATE AND TIME DEPENDENT MODIFICATIONS 

Operating point changes were incorporated in the solver with the help of a 

controller class, enabling software models to use time when calculating time-dependent 

metrics. In the case of an operating point change, the solver is requested to run a 

second time. In that additional run, it will consider the component’s new discrete state 

(3.1). An example can be seen with the behavior of a breaker, because the system can 

only know the amount of current passing through the breaker after it has been solved. 

One cannot obtain the answer of the system after the breaker has opened unless the 

system is solved a second time with the breaker tripped. The ability to define transition 

modes using Python code made it necessary to expand this behavior to not only all 
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equipment that can change its operating point, but also to some other attributes that 

could change the models operating state. The gate valve is such an attribute. We can 

change the value of the ‘Valve Level’ attribute in order to control flow. Instructions 

could be given to increase the flow to try to reduce the temperature in a certain branch.  

The electrical percent charging power SOC curve is an example of an attribute 

with which we use the relationship between two metrics to determine its operating 

point. In this attribute, the relationship between power and state of charge (SOC) is 

used to determine the amount of power consumed by the energy storage, considering 

the amount of charge it currently has. Figure 3.1 show the electrical percent charging 

power SOC curve attribute. For more about the definitions of those attributes, see 

APPENDIX B. 

 

Figure 3.1 Electrical percent charging power SOC curve attribute 
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Next, we will take a closer look at the components requiring the most changes: 

the energy storage, the railgun, and the tank. Those merit specific focus because they 

are the only components that currently set requests of time-dependent events. 

3.1.1 Energy storage 

In order to better represent the energy storage energy cycles, multiple changes 

were needed.  

With the help of equations (3.1) to (3.4), we are able to determine the amount of 

time left before the energy storage is depleted or becomes fully charged. The calculated 

time is then compared with the last time step, and if inferior, it becomes our new time 

step. 

To calculate energy storage charging time, 

𝐸𝑐 = 𝑃𝑐 ∗ (𝑡𝑐 − 𝑡𝑝) ∗ 𝐸 +  𝐸𝑝   (3.1) 

𝑇𝑆𝑡𝑒𝑝 = (
𝐸𝑠𝑐 − 𝐸𝑐

𝑃𝑐 ∗ 𝐸
) 

(3.2) 

 To calculate energy storage discharging time, 

𝐸𝑐 = 𝑃𝑖 ∗ (𝑡𝑐 − 𝑡𝑝) ∗ 𝐸 +  𝐸𝑝 (3.3) 

𝑇𝑆𝑡𝑒𝑝 = (
𝐸𝑐

𝑃𝑖 ∗ 𝐸
) 

(3.4) 
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Figure 3.2 Energy storage electrical model flow-chart 

Figure 3.2 is a flowchart illustrating how the energy storage electrical model 

determines if the energy storage is required to change mode and when a change of 

mode might be needed. The Python code is called at the beginning, so that changes can 

be made at the commencement of each step.  
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3.1.2 Railgun 

The railgun model is a model of a single shot energy gun with an internal energy 

storage. Because it has an internal energy storage, it has equivalent equations to those 

of the energy storage to calculate the time necessary to charge the gun. In addition to 

charging time, the railgun has an attribute named cool down time that ensures that the 

equipment had enough time to cool between shots.  

 

Figure 3.3 Railgun electrical model flow-chart 
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The flow chart of Figure 3.3 displays how the state and time to step are 

determined in the electrical model of a railgun. 

3.1.3 Tank 

The tank’s model, consists of one inlet and one outlet. The tank is responsible for 

setting the initial temperature of the fluid and the type of fluid used. Improvements 

were made to the tank in order to determine how much fluid has been used, and 

whether it contains enough fuel for a predetermined mission. In order to model tanks 

that able to be connected in series, we added the ability for the tank to be filling and 

draining simultaneously. In order to implement the unlimited fuel option, we gave the 

tank the ability of instantaneously refueling. Equations (3.5) to (3.7) were used to 

calculate the time necessary to empty or fill the tank. 

𝑇𝐴𝑑𝑑𝐹𝑢𝑒𝑙 = 𝑀𝐹𝑅𝑎𝑡𝑒 ∗ (𝑡𝑐 − 𝑡𝑝) (3.5) 

𝑇𝑇𝐹𝑢𝑒𝑙 = 𝑇𝑇𝐹𝑢𝑒𝑙 − 𝑇𝐴𝑑𝑑𝐹𝑢𝑒𝑙 (3.6) 

𝑇𝑆𝑡𝑒𝑝 =
𝑇𝑇𝐹𝑢𝑒𝑙

𝑀𝐹𝑅𝑎𝑡𝑒
 

(3.7) 
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Figure 3.4 Tank model flow-chart
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Figure 3.4, shows what questions the model representing the tank asks in order 

to determine if the tank is required to change mode and when the next event time will 

occur.  

3.2 COMMUNICATION ACROSS DISCIPLINES 

In order to make more realistic simulations where interdependencies between 

disciplines are accounted for, the different representations of each equipment had to be 

linked with each other. To be able to share information from different models of a single 

equipment a few modifications to the engines were necessary. In the electrical and 

machinery disciplines, every load now saves the power consumed, while every source 

saves the power provided, and in the cooling disciplines, the electrical dependent 

models save the value of electrical power that they require to function. Those attributes 

are used to determine a variety of quantities, such as the amount of fuel an engine 

requires, the amount of heat that is required to be dissipated, and the electrical power 

needed. 

In case any of the attributes change, where the value is shared between models 

of an equipment, a flag is thrown to inform the mission analyzer that the dependencies 

of the equipment have not been satisfied.  

Because the name of the equipment is unique across disciplines, it is easy to 

recognize each model being linked to a single equipment. The system shown, with 

Figure 3.5 representing the electrical discipline and Figure 3.6 representing the 

machinery discipline, was created to help understand such cross discipline 

communication. When both disciplines are simulated, a warning was thrown in the 
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machinery discipline by the motor. The exception ‘Insufficient electrical power provided’ 

warned the user that the motor did not receive enough electrical power, when the 

electrical discipline ran, to be able to provide the power requested by the motor. This 

occurred because the motor did not have the mechanical power required to turn the 

generator, due to not receiving any electrical power. 

 

Figure 3.5 Electrical discipline 

 

 

Figure 3.6 machinery discipline 
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CHAPTER 4  

MISSION ANALYSER 

The mission analyzer is a tool created to simulate and provide results for a 

mission, taking into account the pre-determined alignments for every discipline. With 

the help of the mission simulator, we can also use the mission analyzer to simulate any 

number of mission segments, providing a report on the success of the mission as well as 

certain metrics such as fuel consumed.  

The mission analyzer has two modes of operation, it can either run the current 

design alignments or a mission created using the mission simulator. The current design is 

the system alignment that is currently created at the user’s project design. The ability to 

simulate the current design allows the user to test the performance of a layout before 

deciding to use it in a mission. When solving the current design, the user is required to 

provide a time and duration of the mission as seen in Figure 4.5, whereas when using 

the mission analyzer tool to run a mission, those metrics are part of the mission 

segment. 

The mission analyzer provides a variety of messages to the user to inform them 

about changes of mode, warning advice, and information about failure events, such as 

the ship running out of fuel. Those messages are labeled with three distinct levels, 

information, warning and failure errors. The message type information is used to 
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provide information about events the user might know about such as a weapon firing or 

an energy storage changing mode from charge to discharge. Warnings are messages 

with the objective of alerting the user about a problem in the system, where the 

problem should not be major enough to compromise the mission, such as a weapon not 

being able to fire. A failure error is used to inform the user about a problem existent in 

the system which compromises the success of the mission. When in the presence of a 

failure error, the simulation is interrupted, the mission is aborted, and an alert about 

the cause of the error is provided to the user as we see in Figure 4.5. The user is 

provided with options to change any information level from any of the three level to 

another. 

4.1 CONVERGENCE ALGORITHM 

In order solve the interdependencies equipment of different disciplines, a 

convergence method capable of establishing the optimal order for solving each of the 

disciplines was needed. An algorithm designed to determine the installation order of 

software packages having dependencies on other packages in a Linux system was 

studied and adapted for our own use [16]. The chart from Figure 4.1 describes how the 

decision is made regarding which discipline needs to be solved next. An example of how 

the interdependencies are chosen can be seen in APPENDIX C. 

In order to implement this algorithm, every equipment having models in different 

disciplines were given the capacity of informing the mission analyzer tool about whether 

or not their dependencies have been satisfied. Section 3.2 provides more information 

on such communication across disciplines.  



 
 

27 
 

 

Figure 4.1 Resolving solver dependencies 
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4.2 MISSION ANALYZER WALK-THROUGH 

The user interface when first accessing the mission analyzer is seen in Figure 4.2, 

where an option between simulating a mission or the existing ship design configuration 

is given. This interface also provides the user with a list of possible missions to choose. 

When a mission is selected, a list of its segments is displayed.  

 

Figure 4.2 Mission Analyzer principal page 

If the option to simulate all disciplines against the current design is chosen, the 

tool will bring the user to a new window, Figure 4.3, where the user can view the 

operating state of each discipline. At this stage, the tool labels disciplines that are 

loaded and have every equipment placed in the system as green, and disciplines that 

either have not been loaded or have unplaced equipment as yellow. 
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The user is able to check for details to know the reason that a discipline 

alignment is labelled yellow, and if there is something that needs to be changed, the 

user can select Open Designer. This will allow the user to have direct access to the 

desired design (Figure 4.4) and have a chance to modify any operating state. The user 

can also ignore the warning and simply move into the simulation tab.  

 

Figure 4.3 Alignments setup 

 

Figure 4.4 Setting an alignment 
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Figure 4.5 shows the graphical interface of the mission analyzer that allows the 

user to run the simulation of the existing alignments without the need of defining a 

mission. In this window, the user is expected to provide the amount of time the design 

is expected to run, and the speed at which the ship should be travelling. In order to run 

the mission, the      symbol must be pressed, and the symbol to the right is used to open 

the interface seen in Figure 4.6. When the system has finished running a list of messages 

regarding information results, warnings, and possible errors is provided. The message 

levels are distinguished by color code: black for information, yellow for warnings, and 

red for failure errors. 

If the user wishes different model behavior during certain simulation events for a 

particular mission, he is able to edit the level of assignment. In Figure 4.6, we are 

changing the message level to information when the provided power by a generator is 

greater than its rated power. The user could want such behavior so that he could 

simulate the mission even if he had placed a generator that is not powerful enough to 

provide the power required to run the current electrical system. This can either be done 

to every equipment under the generator category, to that equipment type “-Generators 

liquid cooled,” or we could further expand and edit the change to a very specific 

equipment of that type. In the top right corner of the window, the tool displays the 

values of time simulated, fuel consumed, and distance traveled. 
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Figure 4.5 Output display window, current configuration 

 

Figure 4.6 Changing message warning level 

4.3 MISSION EXPLORER WALK-THROUGH 

The mission explorer is a tool used to define missions and mission segments. The 

mission explorer can be accessed for simulation for the user-defined ship designs. An 
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example of the mission explorer user interface can be seen in Figure 4.7. In this 

example, we have four missions created, Default, Demo, Demo Fuel Consumed, and 

Year Fuel Consumption. For each of those missions, we have created mission segments 

that can be accessed by expanding under the mission of interest. In this example, we are 

examining the Demo mission, which has 3 mission segments. When selecting a segment, 

we can define the duration of the segment and the ship speed, or we can use the map 

to select the desired distance and derive the speed from that. 

 

Figure 4.7 Mission setup 

Using the duration and speed provided by the mission explorer, the mission 

analyzer can now be used to define each alignment and compute the operating points. 

In Figure 4.8, we can see the mission analyzer in the mode of simulating a 

mission. When looking at missions, the user can simply load the current design, or 

manually edit the operating point of each equipment to the corresponding value for the 
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segment. If a segment does not have information about the operating point of every 

equipment for an alignment, the segment and mission will be underlined with a red 

color. If there are one or more alignments with unplaced equipment, they will be 

underlined yellow and if all equipment is placed and information on operating point is 

loaded, they are underlined green. 

The Simulation tab (Figure 4.9), is very similar to the one used to display the 

results from simulating all disciplines against the current design (Figure 4.5). 

 

Figure 4.8 Segment setup 

 

Figure 4.9 Full mission simulation output display window 
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4.4 MISSION EXAMPLE 

In this example, we will be looking at the system configuration defined in Figure 

4.10 through Figure 4.13. The system design starts at the Naval arc in which the hull, 

radars, weapons systems, and propeller are selected. For this example, we chose a USV, 

a single propeller, a bow mounted sonar, a phased array radar, and a CIWS weapon 

(Figure 4.10). 

Responding to this design specification, in the machinery discipline, we 

constructed a small system where an AC motor provides the power to the propeller 

(Figure 4.11). 

In the electrical discipline two gensets supply power to a 6.9KV DC bus, from 

which the loads take the necessary power, and an energy source provides the power to 

the weapon. Because of the varying voltages and current type in use, a few power 

converters were added (Figure 4.12). 

In the thermal fluid discipline, we created a fresh water loop cooled down by a 

heat exchanger that dissipates some of the heat into the sea with the help of a pump. 

The thermal fluid discipline also has a fuel tank that provides F76 fluid to both gensets 

(Figure 4.13). 
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Figure 4.10 Naval arc design ship representation 

 

Figure 4.11 Propulsion system schematic
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Figure 4.12 Electrical system schematic
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Figure 4.13 Thermal fluid system schematic 

Once the system is completed, we want to test it using the mission Demo seen in 

Figure 4.7. This mission contains three mission segments, Peacetime Cruise, Sprint to 

Station, and On Station. The Peacetime Cruise segment takes 10 days at a speed of 15 

knots, the Sprint to Station segment takes 5 days at a speed of 24 knots, and the On 

Station segment takes 15 days at a speed of 2 knots. In order to run the mission, we 

need to first set the operating point of each component at each individual mission 
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segment. The bow sonar will be online for the duration of the mission. The radar, 

modeled with three possible power outputs, will be at its maximum of 0.9MW during 

the Sprint to Station segment, at medium power of 0.5MW during the Peacetime Cruise 

segment, and minimum power of 0.1MW during the On Station segment. For this 

mission, the weapon does not need to fire. 

Because it is a very long mission, we will use the unlimited fuel option in order to learn 

about when the ship would require refueling. 

 

Figure 4.14 Mission results 
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Figure 4.14 shows the results from each segment as well as of the full mission 

fuel consumed, distance traveled, and duration. It also gave us information about events 

such as the tank needing to be refueled, and problems that occur during the mission 

such as the fact that we need an inverter with a higher power capacity to be connected 

with the motor in order to move the ship at 24knots.  

Looking into the information provided by the tank, we can find the relationship between 

the fuel consumed and power consumed by propeller and radar. Table 4.1 shows the 

relationship existent between the power utilized by the radar and the speed of the ship 

with time needed to deplete the fuel tank.    

Table 4.1 Power and fuel consumption 

Mission Segment Radar (MW) Speed (Knots) Tank (hours) 

On station .1 2 100.1 

Peacetime cruise .5 15 29.3 

Sprint to station .9 24 22.1 
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CHAPTER 5  

CONCLUSION AND FUTURE WORK 

5.1 CONCLUSION 

In this thesis, I presented three principal contributions to the field of ship design. 

They are the development of a controller class that allows steady state solvers to 

provide time-dependent information, the incorporation of operating point changes and 

time-dependent metrics at the component level, and the adaptation of a software 

installation ordering algorithm to develop a method for efficiently solving a system 

while satisfying the interdependencies between disciplines 

Steady state solvers are able to provide quick solutions to system simulations 

that are not dependent of time, but struggle when system components experience 

localized operating point changes. By developing a controller class responsible for 

keeping track of time and relaying the necessary time-dependent information to the 

solvers, we are able to determine solutions to time intervals of interest. In this way, we 

are able to handle time intervals where operating point changes occur, while still 

retaining the ability of the steady state solvers to quickly handle the long periods of time 

where no discrete state changes are occurring. Essentially, this allows the length of a 

mission to be partitioned into segments that can be solved quickly and accurately.
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With the solvers now able to utilize time-dependent information in order to 

track operating point changes within the system, we allow equipment to provide time 

dependent information and to undergo discrete state changes. By relaying such 

information to the controller class, the equipment is able to communicate across 

disciplines. This sharing of information allows for the solvers to take into account the 

interdependencies between disciplines when providing solutions. 

We gave every equipment having models in multiple disciplines the capability of 

informing our mission analyzer tool if their dependencies have been satisfied. This 

allowed us to implement an algorithm that determines the order for how the disciplines 

are solved such that their interdependencies are taken into account with minimal solver 

calls, providing accuracy and efficiency in our simulation. 

5.2 FUTURE WORK 

In order to propagate changes that occur between disciplines during a mission 

segment, we will need to run all of the disciplines simultaneously, under the same time 

step, exchanging information between each other at every step. This will improve the 

accuracy of the results and allow the user to better predict how some events that 

happen in one discipline can affect another discipline. 

A better method of implementing commands at a higher level is something we 

should strive to create. This should be a tool with a simple interface with every 

component that would allow for implementation of control systems and easy 

exportation of those same instructions into other similar ship designs. 
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We would also like to create a tool that allows the comparisons between 

multiple ship designs against a mission or segment. This tool should use the values 

calculated by the mission analyzer and, based on the metrics of interest, compare any 

number of designs in the project.  
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APPENDIX A: DIFFERENCES BETWEEN POWER LOAD AND MNA 

In order to examine the equations discussed in Section 2.1 , we need to first 

understand the difference in number of iterations between linear convergence and 

quadratic convergence when using Newton-Raphson. Figure A.1 illustrates the 

relationship between the number of iterations needed and how far the method is from 

the correct solution. The Y-axis, representing the distance between the calculated value 

and the convergence value, grows exponentially. In the example given by Figure A.1, we 

start at the same distance from the convergence value with regards to error. The 

quadratic system takes 5 iterations to converge while the linear system takes 25. From 

the graph, we determine that the relationship can be represented by 𝑋 iterations for 

linear convergence, and √𝑋 for quadratic.

 

Figure A.1 Difference between Newton-Raphson linear and quadratic convergence
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To refer to the number of iterations we used KMNA for MNA method and Klf for 

load flow, with exception being when the system lacks nonlinear equations. In that case, 

the MNA requires more than one computation before it finds the steady state solution 

of the system, and we use mMNA to refer to the number of computations. In Figure A.2, 

we see a representation of how the solution varies at each computation in MNA until a 

steady state solution has been reached. 

 

Figure A.2 Representation of MNA computing into steady state 

Looking at Section 2.1 we analyze three cases where MNA is non-linear. 

In the first case represented by equation (2.1), both methods, MNA and power-

load, achieve the same convergence, being linear or quadratic  𝑚𝑀𝑁𝐴 ⋅ 𝑘𝑀𝑁𝐴 ≅ 5 ⋅ 𝑘𝑙𝑓. 

In the second case, MNA is linear but power-flow is quadratic, so KMNA grows 

exponentially faster than Klf therefore we have 𝑚𝑀𝑁𝐴 ⋅
𝑘𝑀𝑁𝐴

2 

𝑘𝑙𝑓
≅ 5, and considering our 

initial assumption that KMNA ≈ Kif, we get equation (2.2),  𝑚𝑀𝑁𝐴 ⋅ 𝑘𝑀𝑁𝐴 ≅ 5. 

m1
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m3

m4
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MNA computations 
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In the third case, MNA is quadratic and power-load is linear, for this case Klf 

grows exponentially faster than KMNA, 𝑚𝑀𝑁𝐴 ⋅
𝑘𝑙𝑓

2 

𝑘𝑀𝑁𝐴
≅ 5, and we get equation  (2.3),  

𝑚𝑀𝑁𝐴 ≅ 5 ⋅ 𝑘𝑙𝑓
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APPENDIX B: MULTI INPUT ATTRIBUTES 

In order for our simulation to correctly simulate the behavior of certain metrics 

such as efficiency, fuel consumed, and charging power, we introduced an attribute type 

that allowed the input of multiple data points. Those attributes can use a variety of 

interpolation methods to connect the given points. Figure B.3 shows us how the spline 

function is being used to determine the specific fuel consumption versus power curve. 

 

Figure B.3 Spline curve of specific fuel consumption versus mechanical power  
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APPENDIX C: INTER-DISCIPLINE CONVERGENCY GENERALIZED EXAMPLE 

We shall examine a case in where all components get powered, and we have the 

following dependencies. In 𝐶𝑥
𝑦

 the subscript x, represents the discipline where the 

component belongs to, and superscript y represents the discipline the component can 

potentially affect.  The different discipline tools in S3D are currently composed of the 

following set of components: 

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 = { 𝐶𝑒
𝑚, 𝐶𝑒

𝑝, 𝐶𝑒
ℎ} 

𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 =  { 𝐶𝑚
𝑒 ,  𝐶𝑚

𝑝 ,  𝐶𝑚
ℎ } 

𝑃𝑖𝑝𝑖𝑛𝑔 = { 𝐶𝑝
𝑒} 

𝐻𝑉𝐴𝐶 = { 𝐶ℎ
𝑒} 

Therefore, each discipline contains the following dependencies on components 

from other disciplines. 

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 → { 𝐶𝑚
𝑒 ,  𝐶𝑝

𝑒 ,  𝐶ℎ
𝑒} 

𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 → { 𝐶𝑒
𝑚} 

𝑃𝑖𝑝𝑖𝑛𝑔 → { 𝐶𝑒
𝑝,  𝐶𝑚

𝑝 } 

𝐻𝑉𝐴𝐶 → { 𝐶𝑒
ℎ,  𝐶𝑚

ℎ } 

The stepping-order could be dynamically determined using the algorithm 

described in the flow-chart above, but for the purposes of this implementation, the 

stepping-order solution is constant.  In the future, as additional components are added 

which may cause additional dependencies, this algorithm may be implemented to 
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dynamically determine the best order.  The full steps to determine the current stepping 

order based on the existing S3D dependencies described above are: 

Since the machinery disciplines has the least dependencies we run the electrical 

discipline first to satisfy them.  We mark the machinery set with an asterisk because its 

dependencies are not actually satisfied by the electrical discipline, since its 

dependencies were not satisfied and the result is guaranteed to not have converged. 

𝐸 → { 𝐶𝑚
𝑒 , 𝐶𝑝

𝑒 ,  𝐶ℎ
𝑒} 

𝑀∗  → {∅} 

𝑃∗ → { 𝐶𝑚
𝑝 } 

𝐻∗ → {𝐶𝑚
ℎ } 

The machinery discipline has no dependencies, so we run the machinery 

discipline, and restore its dependencies on the electrical discipline, because that 

dependency was not fully resolved during this iteration. 

𝐸 → { 𝐶𝑝
𝑒 ,  𝐶ℎ

𝑒} 

𝑀 → { 𝐶𝑒
𝑚} 

𝑃∗∗ → {∅} 

𝐻∗∗ → {∅} 

The HVAC and the piping have no dependencies, so we run both disciplines, and 

restore the dependencies which were not fully resolved at the time they were run. 

𝐸 → {∅} 

𝑀 → { 𝐶𝑒
𝑚} 

𝑃 →  { 𝐶𝑒
𝑝,  𝐶𝑚

𝑝 } 
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𝐻 → {𝐶𝑒
ℎ,  𝐶𝑚

ℎ } 

The Electrical discipline has no dependencies, so we run the electrical discipline.  

Its dependencies do not need to be restored because at the time each of its 

dependencies were run, they were marked as having no dependencies of their won. 

𝐸 → {∅} ∶ 𝑑𝑜𝑛𝑒 

𝑀 → {∅} 

𝑃 →  {𝐶𝑚
𝑝

} 

𝐻 → { 𝐶𝑚
ℎ } 

The machinery discipline has no dependencies, so we run the machinery 

discipline. 

𝐸 → {∅} ∶ 𝑑𝑜𝑛𝑒 

𝑀 → {∅} ∶ 𝑑𝑜𝑛𝑒 

𝑃 → {∅} 

𝐻 → {∅} 

The HVAC and the piping have no dependencies, so we run both disciplines. 

𝐸 → {∅} ∶ 𝑑𝑜𝑛𝑒 

𝑀 → {∅} ∶ 𝑑𝑜𝑛𝑒 

𝑃 → {∅} ∶ 𝑑𝑜𝑛𝑒 

𝐻 → {∅} ∶ 𝑑𝑜𝑛𝑒 

* Dependency was satisfied by running a system whose dependencies were not 

satisfied. 
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