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Abstract

Traditional frequentist quantile regression makes few assumptions on the form of

the error distribution and thus is able to accommodate non-normal errors. However,

inference on the quantile regression models could be challenging for the unknown error

distribution, though asymptotic or resampling methods were developed. Bayesian

literature on quantile regression with random effects is relatively limited. The quantile

regression approach proposed in this dissertation is founded on Bayesian probabilistic

modeling for the underlying unknown distributions. By adopting the error density

with a nonparametric scale mixture models, we developed Bayesian semiparametric

models to make an inference on any quantile of interest and to allow for flexible shapes

of the error densities.

In this dissertation, we aimed to develop Bayesian semiparametric quantile re-

gressions for both longitudinal data and clustered interval-censored data. We first

proposed a semiparametric quantile mixed effect regression for clustered data, which

relaxed normality assumption for both random effects and the error term. We then

developed a semiparametric accelerated failure time quantile regression for the clus-

tered interval-censored data. Both of the methods allow for estimates for the subgroup

specific parameters and the detection of heterogeneity in the random effects popu-

lation under nonparametric settings. Markov chain Monte Carlo (MCMC) methods

provide computationally feasible implementations of Bayesian inference and learning.

However, the speed of convergence can be challenging for highly complex and non-

conjugate models. Specifically, Gibbs sampling algorithm that employs the addition

of auxiliary parameters was used to speed up posterior sampling in our study. Sev-
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eral variations of the proposed model were considered and compared via the deviance

information criterion. The performance of the proposed methods was evaluated by

extensive simulation studies, and examples using data from Orthodontic clinics and

lymphatic filariasis drug studies were presented as illustration.
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Introduction

Linear mixed models are frequently used to describe longitudinal and repeated mea-

surements data where random effects serve to model the between-individual correla-

tion structure. One of the basic model assumptions of mixed model is the normality

of the random effects, which is chosen mainly for computational convenience. How-

ever, the normality assumption is typically made for the sake of convenience, rather

than from some theoretical justification, and might be inappropriate in some situa-

tions. Another troublesome fact, as noted by [Burr and Doss, 2005], is that random

effects, unlike error terms, cannot be checked (there are no residuals). Thus we are

totally dependent on this uncheckable model assumption. It is of potential interest to

model the error nonparametrically while accounting for the correlation of observations

within the same subject. Extensive work have been done on a more flexible, possi-

bly nonparametric distribution for random effects in both frequentist and Bayesian

methods, such as Dirichlet Process (DP) prior to model random effects [Bush and

MacEachern, 1996, Kleinman and Ibrahim, 1998b].

Most linear mixed models also assume that random errors are normally distributed

with constant variances. However, in some applications, the covariates may have dif-

ferent impacts at different locations of the response distribution. For instance, in a

birth weight study, Abrevaya and Dahl [2008] found that gender of the baby and the

mother’s prenatal-care visits have different effects at the lower and upper quantiles of

the infant birth weight distribution. In such scenarios, modeling the mean is limiting

and thus cannot accommodate population heterogeneity. Quantile regression extends

regression for the mean to the analysis of the entire conditional distribution of the
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outcome variable, by allowing the tail quantiles of the conditional distribution of the

response variable as functions of a set of covariates [Koenker and Bassett Jr, 1978].

By focusing on the conditional quantiles, quantile regression offers an alternative an-

alytic tool that can automatically capture the heterogeneity in covariate effects at

different quantiles of the response distribution without modeling the heteroscedas-

ticity. Quantile regression is free from the distributional assumptions and robust to

the presence of outliers and therefore quantile regression is appropriate with skewed

distributions.

The dissertation is organized as follows. We begin with an introduction of mixed

models, quantile regression and quantile regression for longitudinal data in chapter 1.

The use of asymmetric Laplace distribution (ALD) for the error distribution provides

a natural way to deal with the Bayesian quantile regression [Yu and Moyeed, 2001],

but lacks flexibility in error distribution. [Kottas and Krnjanić, 2009] proposed an

approach to inference for nonparametric quantile regression founded on probabilistic

modeling for the underlying unknown (random) distributions. The flexibility of such

inference under nonparametric prior models is attractive and can be incorporated

into mixed models for longitudinal data. Chapter 2 presents a Bayesian semipara-

metric approach to random effects model using Dirichlet process mixtures for the error

distribution. Two simulation results are presented and indicate that the presented

approach works well for practical situations. In chapter 3, we provide an overview

of interval-censored data and two common regression models, proportional hazard

model and accelerated failure time model, and discuss some existing approaches for

regression analysis of clustered interval-censored failure time data. We are interested

to explore a flexible quantile regression framework for analysing time-to-event data

that are randomly interval-censored in chapter 4. Quantile regression models the

conditional quantiles of the survival time directly and allows the covariates to have

different effects at different tails of the survival distribution and thus is able to cap-
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ture important population heterogeneity [Koenker, 2005]. We adopt an accelerated

failure time model with random effects to analyze clustered interval-censored data in

the nonparametric quantile regression framework. A nonparametric Dirichlet process

prior random effects component has been used to provide flexible distributional forms

to the random effects. In addition, a Bayesian quantile regression model for clustered

interval-censored data with parametric error distribution is also constructed for com-

parison. Lastly, chapter 5 provides some discussion and offer some recommendations

on how to proceed in this Bayesian nonparametric quantile regression with random

effects.
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Chapter 1

Background of Quantile Regression for

Longitudinal Data

Inference of quantile analysis has received increasing attention in recent years. Quan-

tile regression seeks to model each quantile of the response distribution, whether

separately or jointly, conditional upon covariates. It extends regression for the mean

to the analysis of the entire conditional distribution of the outcome variable. Regres-

sion quantiles are robust against the influence of outliers [Huber, 1981], and in many

regression examples, we might expect a different structural relationship for the higher

(or lower) responses than the average responses. In such applications, mean (or me-

dian) regression approaches would likely overlook important features that could be

uncovered by a more general quantile regression analysis.

The construction of infant and adolescent growth charts provides a motivating

application of applying quantile regression to longitudinal data [Wei et al., 2006].

It is of importance to construct reference growth charts that accurately represent

the conditional quantiles of the growth distribution without unduly constraining the

estimation process by unverifiable distributional assumptions.

1.1 Mixed Models with Heterogeneity in Random Effects

Longitudinal data are characterized by repeated measurements on the same subject

over time, as may be collected in clinical trials, panel research, epidemiological stud-

ies, etc. Linear mixed models are commonly used for longitudinal data analysis,
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where covariate effects are modeled parametrically and with-in subject correlations

are modeled using random effects [Laird and Ware, 1982]. Let yij denote the response

for ith subject and jth repeated measurements, the random effects model for yij is

given by

yij = Xijβ + Zijbi + εij, i = 1, . . . , n, j = 1, . . . , ni, (1.1)

where the subscript i would index individual subjects, and the subscript j would

index the ni distinct measurements made on the ith subject. yij is the outcome

for the jth measure on the ith subject, Xij is a 1 × p vector of fixed covariates;

β is a p × 1 parameter vector of regression coefficients, β = (β1, . . . , βp)T , referred

to as fixed effects in the models; Zij is typically a subset of Xij, 1 × q vector of

covariates for the q × 1 vector of random effects bi with q ≤ p, bi = (bi1, . . . , biq)T

is assumed to be normally distributed as Nq(0,D). Here D is a q × q positive-

definite covariance matrix. εij is usually assumed to be independent and normally

distributed as Nni(0, σ2I). The random effects component Zijbi can be considered

as the deviation from the population mean Xijβ. bi is a vector of individual specific

regression coefficients, which is assumed to be independently distributed from the

error terms εi. Marginalizing the random effects bi, we have

yij|β, D, σ2 ∼ N(Xijβ, ZijDZ
T
ij + σ2I) (1.2)

Inference for regression parameters can be done by generalized least squares, maxi-

mum likelihood methods or empirical Bayesian method.

The dominant paradigm in the random effects literature has been a Gaussian

structure in which covariates exert a pure location shift effect on the response vari-

able. McCulloch and Neuhaus [2011] argued that misspecifying the shape of a random

effects distribution does not matter as long as the assumed distributions are not quite

far from non-normality, not as extreme as a two-point, discrete distribution, indicat-

ing a high degree of robustness. But it is also of interest to explore various forms
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of heterogeneity associated with the covariates under less stringent distributional as-

sumptions, while still accounting for individual specific effects. Frequentist inference

regarding fixed effects should not be much affected asymptotically by changing the

distribution of the random effects since the first two moments of the marginal distri-

bution of the response variable do not depend on the normality of the distribution

of the random effects. In equation 1.2, the individual regression coefficients simply

result in a complex covariance structure. On the other hand, bayesian inference for

fixed effects will depend on (y, σ2, D), and this dependence will be sensitive to the

distributional form ascribed to the bi [Kleinman and Ibrahim, 1998b]. Verbeke and

Lesaffre [1996] shows that random effects may be badly estimated under normal error

while the true error distribution is not normally distributed, and the current methods

for inspecting the appropriateness of the model assumptions are not sound. A more

flexible and robust approach to solve the Gaussian restricted random effect distribu-

tion problem is to use a nonparametric distribution, such as Dirichlet process which

will be discussed in section 1.3.1. Such model has the potential to capture more types

of variability in those effects with the possible end result of more precise estimates of

the fixed effects.

1.2 Quantile Regression

Quantile regression has been used as an attractive analytic technique to examine

many situations including risk management, portfolio optimization and asset pricing

in econometrics. The use of quantile regressions is versatile with many advantages.

It allows us to study the impact of predictors on different quantiles of the response

distribution, and thus provides a complete picture of the relationship between the re-

sponse variable and the predictors. The entire conditional distribution of the depen-

dent variable can be characterised by using different values of τ . Median regression

methods can be more efficient than mean regression estimators in the presence of
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heteroscedasticity. Quantiles are invariant to monotonic transformations and are not

sensitive to outlier observations on the dependent variable. Finally, when the error

term is non-normal, quantile regression estimators may be more efficient than least

squares estimators since estimation and inference are distribution-free.

Basics of Quantile Regression

By extending the standard additive regression formulation, the τth quantile regression

model for (continuous) response observations yi, with associated covariate vectors xi,

i = 1, . . . , n, can be written as

yi = h(xi) + εi (1.3)

where the εi is the error term whose distribution (with density fτ (·)) is restricted to

guarantee the τth quantile of εi is zero, that is
∫ 0
−∞ fτ (εi)dεi = τ . The linear model

for the τth quantile is

yi = xTi βτ + εi (1.4)

where the τth quantile of εi is zero. Koenker and Bassett Jr [1978] specify the τ -th

conditional quantile function as

Qτ (yi|β,xi) = xTi βτ , i = 1, ..., n

where τ ∈ (0, 1), yi is a scalar response variable with conditional cumulative distri-

bution Fy, Qyi(·) ≡ F−1
yi

(·), βτ ∈ Rp is a column vector of unknown fixed parameters

with length p. One can trace the entire conditional distribution of the dependent vari-

able, conditional on the set of predictors, by increasing τ from 0 to 1. Conditional

quantile model specifies a different model for each quantile of the outcome distribu-

tion. Interpretation of βτ is straightforward: the intercept term simply represents

the baseline predicted quantile, while each slope can be interpreted as the rate of

change of the τth response quantile per unit change in the value of the corresponding

covariate (the others being fixed). It is flexible for modeling data with heterogeneous
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conditional distributions and makes no distributional assumption about the error

term in the model. However, there is no probability model for the response distribu-

tion in classical quantile regression, point estimation for β̂τ proceeds by solving an

optimization problem of the loss function

argminβ∈Rτ
n∑
i=1

ρτ (yi − xTi β) (1.5)

where ρτ (υ) = υ(τ − I(υ ≤ 0)) is the quantile loss function; see [Koenker and Bas-

sett Jr, 1978]. I(·) is an indicator function such that I(υ ≤ 0) = 1 if υ ≤ 0 and

I(υ ≤ 0) = 0, otherwise.

Asymmetric Laplace distribution provides a natural link between minimization of

the quantile loss function and maximum likelihood theory by assuming the error term

in equation (1.4) follows ALD. See [Koenker and Machado, 1999, Yu and Moyeed,

2001, Yu and Zhang, 2005] for more details. A random variable Y follows an ALD if

its corresponding probability density is

f(y|µ, σ, τ) = τ(1− τ)
σ

exp
{
−ρτ (

y − µ
σ

)
}

(1.6)

where ρτ (·) is the loss function, σ > 0 is the scale parameter and −∞ < µ < +∞ is

the location parameter.

Assume yi ∼ ALD(µi, σ, τ), µi = xTi βτ . The likelihood for N independent obser-

vations is

L(β, σ,y, τ) =
[
τ(1− τ)

σ

]N
exp

{
−

N∑
i=1

ρτ (
yi − xTi βτ

σ
)
}

(1.7)

Considering σ a nuisance parameter, the maximization of the likelihood in (1.7) with

respect to the parameter βτ is equivalent to the minimization of the loss function

in (1.5). The relationship between the loss function and ALD can be used to refor-

mulate the quantile regression method in the likelihood framework. By utilizing this

property, [Koenker and Machado, 1999] proposed a likelihood-based goodness-of-fit

test for quantile regression. Yu and Moyeed [2001] proposed a Bayesian approximate
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inference about the quantile regression by using asymmetric Laplace distribution to

form likelihood function, and Yu et al. [2003] studied the Bayesian estimation proce-

dure for the Tobit quantile regression model with censored data. Geraci and Bottai

[2007] and Yuan and Yin [2010] extend the asymmetric Laplace distribution idea for

longitudinal studies, which will be explained in the next section.

An Example

An example of the low birth weight study that was carried out by Koenker [2005]

will be used in this section. The data set used for this example is a subset of 50,000

observations. We are interested in investigating the relationship between infants?birth

weight (LBW: in grams) and only four predictors of interest, such as: the gender of

the infant, marital status of the mother, prenatal care, and smoking status of the

mother during pregnancy. The linear regression model for this example is:

LBW = α + β1 × Gender + β2 × Married + β3 × Prenatal care + β4 × Smoke

Linear regression is used to model the relationship between a set of predictor variable

and a response variable. It estimates the mean value of the response variable for

given levels of the predictor variables. The least square result and quantile regression

results are summarized in Table 1.1.

In each plot of Figure 1.1, the regression coefficient at a given quantile indicates

the effect on birth weight of a unit change in that variable, assuming that the other

variables are fixed, with 95% confidence interval bands.

The intercept can be interpreted as the estimated conditional quantile function of

the birth weight distribution of a girl born to an unmarried mother who didn’t smoke,

and had her first prenatal visit in the first trimester of the pregnancy [Koenker, 2005].

The least-square estimate present a birth weight of 3224 grams for a girl born to an

9



Table 1.1 Coefficients estimates for quantile regression and linear regression for the
birth weight example

Quantile regression
Characteristic Linear regression 5th 10th 50th 90th 95th

Intercept 3224 2353 2608 3252 3856 4031
Married 161.1 227 171 149 141 165
Boy 115.9 28 84 121 142 142

Prenatal Care -227.0 -536 -418 -164 -111 -57
Smoke -200.9 -255 -226 -190 -177 -199

unmarried mother who didn’t smoke, and had her first prenatal visit in the first

trimester of the pregnancy.

According to the linear regression model,the mean weight of boys are 115.9 grams
The SAS System 13:04 Wednesday, June 17, 2015 9
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Figure 1.1 Estimated parameters by quantile level
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heavier than girls. But the disparity is much smaller than 100 grams in the lower tail

and larger than 120 grams in the upper tail of the distribution. The marital status

of the mother seems to be associated with a rather large positive effect on birth

weight, especially in the lower tail of the distribution. The mean weight of babies

born to mothers with no prenatal care is −227 grams lower than that of babies born

to mothers who had a prenatal visit in the first trimester. The quantile regression

results indicate that the effect of no prenatal care has a larger negative impact on

the lower quantiles of birth weight. The 5-th quantile of birth weight for infants

born to mothers who had no prenatal care is 536 grams lower than for infants born

to mothers had a prenatal visit in the first trimester. The linear regression model

underestimates this effect at the 5-th quantile. The deleterious effect of smoking is

The SAS System 13:04 Wednesday, June 17, 2015 10

The QUANTREG Procedure

With 95% Confidence Limits
Estimated Parameter by Quantile Level for weight
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Figure 1.2 Estimated parameter smoking by quantile level

shown in Figure 1.2. Smoking during the pregnancy is associated with a decrease of

about 160− 180 grams in birth weight. The effect of smoking is quite stable over the

entire distribution, as the least-squares estimates of the mother smoking effect are

mainly overlapped with the quantile regression confidence band.

11



1.3 Quantile Regression for Longitudinal Data

Koenker [2004] first considered the penalized interpretation of the classical random

effects estimator in order to estimate quantile functions with subject specific fixed

effects. For a conditional quantile regression model with a random intercept, a `1

penalty is employed to shrink the random effects towards a common value. Koenker

[2004] propose to estimate αi and βτk at multiple quantile levels τk, k = 1, . . . , q by

minimizing the following penalized objective function:

q∑
k=1

n∑
i=1

ni∑
j=1

wkρτk(yij − αi −XT
ijβτk) + λ

n∑
i=1
|αi|,

where wk is the weight on the quantile level τk and λ is the regularization parameter

that controls the variation of αi and helps shrink bi towards a common value. As in

most regularization problems, the choice of the penalty parameter λ is crucial. For

λ→ 0 we obtain the fixed effect estimator by solving minα,β
∑q
k=1

∑n
i=1

∑ni
j=1 wkρτk(yij−

αi −XT
ijβτk); while for λ→∞ the α̂i → 0 for all i = 1, . . . , n and we obtain an esti-

mate of the model with only the fixed effects.

As mentioned in previous section, Geraci and Bottai [2007] and Yuan and Yin

[2010] extend the asymmetric Laplace distribution idea in Yu and Moyeed [2001] for

quantile regression with independent data to clustered data, where the conditional

distribution of the response is assumed to follow an asymmetric Laplace distribution

with the mean depending on the covariates and the skewness parameter depending on

the quantile level of interest. The conditional quantile regression model includes sub-

ject specific random intercepts to account for within−subject dependence in longitu-

dinal studies. But a model with random intercepts only cannot obviously account for

between−clusters heterogeneity associated with given explanatory variables. Geraci

and Bottai [2014] propose a class of models, called linear quantile mixed models

(LQMMs), which include both random intercepts and random slopes.

Consider longitudinal data with repeated measurements in the form (yij,xTij), for

12



j = 1, . . . , ni, i = 1, . . . , N , where yij is the jth measurement on the ith subject. For

a given τ ∈ (0, 1) ,a conditional quantile mixed model for continuous response yij is

defined by

Qyij |bi(τ |xij, bi) = xTijβ + zTijbi (1.8)

where zij denotes a q × 1 subset of covariates xij, bi is a q × 1 vector of random

effects. Qyij |bi(·) is the inverse of the cumulative distribution function of the response

conditional on a location-shift random effect bi. The expression 1.8 is equivalent to

yij = xTijβ + zTijbi + εij (1.9)

with Qεij(τ |xij, bi) = 0. The error term εij are assumed to be independently dis-

tributed as ALD and the random effect bi are also independent and follow a multi-

variate distribution. Usually bi and εij are independent of each other. The conditional

density function can be written as

f(yij|β, bi, σ) = τ(1− τ)
σ

exp
{
−ρτ (

yij − µij
σ

)
}
,

where µij = xTijβ + zTijbi is the linear predictor of the τth quantile. The random

structure above allows to account for between-individual heterogeneity associated

with given explanatory variables. A recent review of linear quantile regression mod-

els for longitudinal observations is provided by Marino and Farcomeni [2015]. The

majority of the econometrics literature that studies quantile regression models for

panel data with fixed effects propose inference procedures based on the assumption

that the number of periods goes to infinity when the sample size goes to infinity. This

assumption allows to estimate unobservable fixed effects. Canay [2011] introduces a

two-step estimator for panel data quantile regression models which gets rid of the

fixed effects under the assumption that these effects are location shifters. Lamarche

[2010] elaborates the asymptotic theory of penalized quantile regression estimators

for panel data by deriving an asymptotic approximation for the optimal value of the
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tuning parameter. Galvao [2011] studies a quantile regression dynamic panel model

with fixed effects.

Jang and Wang [2015] approximate the central density by linearly interpolating

the conditional quantile functions of the response at multiple quantiles and estimate

the tail densities by adopting extreme value theory. Through joint-quantile model-

ing, their method can yield the joint posterior distribution of quantile coefficients at

multiple quantiles and meanwhile avoid the quantile crossing issue.

1.4 Bayesian Nonparametric Modeling for Quantile Regression

Recently Bayesian nonparametric methods have been studied and developed exten-

sively, Müller and Quintana [2004] provide an overview of the respective methodolo-

gies. By modeling the response distribution and the regression function nonpara-

metrically, Bayesian nonparametric modeling provides a flexible framework for the

general regression problem. Instead of defining priors as probability distributions for

parameters in parametric Bayesian analysis, nonparametric Bayesian’s prior beliefs

are expressed as random probability measures assigned directly to the set of proba-

bility distributions. Dirichlet process (DP), which can be understood as an infinite

dimensional probability distribution over probability distributions, was originally for-

malized by Ferguson [1973] and Antoniak [1974]. And Dirichlet process mixtures are

used to model the joint distribution of response and covariates, from which full infer-

ence is obtained for the desired conditional distribution for response given covariates.

Many papers have been devoted to developing the practicality of using DP priors

[Escobar and West, 1995, MacEachern and Müller, 1998, Neal, 2000].

Yu and Moyeed [2001] propose a Bayesian approach by noting that minimizing

equation (1.5) is equivalent to maximizing a likelihood function under the asymmetric

Laplace error distribution. However, it has limitations regarding modeling skewness

and tail behavior because the same parameter determines both skewness and quantile
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level. Nonparametric error distributions based on Dirichlet process mixture models

will be discussed later in this section.

Dirichlet Process Mixture Models (DPMM)

Consider a model for joint distribution of the response, y, and the vector of covariates,

x, which in general comprises both continuous and categorical covariates. We use a

nonparametric mixture model for the joint density z = (y,x),

f(z;G) =
∫
k(z;θ)dG(θ)

with a parametric kernel density k(z;θ) and a random mixing distribution G that

is modeled non-parametrically by using an infinite dimensional Bayesian model. Fol-

lowing Ferguson [1973], a distribution G on Φ follows a Dirichlet process DP (αG0)

if, given an finite measurable partition, A1, ..., Ak of Φ, the joint distribution of

(G(A1), ..., G(Ak)) is Dirichlet (αG0(A1), ..., αG0(Ak)), where G(Ai) and αG0(Ai) de-

note the probability of set Ai under G and G0, respectively. The base distribution G0

has a parametric form on Φ and E(G(A)) = G0(A). G0 acts as a prior distribution

for component parameters in the DPMM discussed later in this section. The concen-

tration or precision parameter α > 0 controls the variance of the DP. As α increases,

a sample G is more likely to be close to base G0. A draw from the Dirichlet process is

a probability distribution. The most commonly used DP definition is its constructive

definition by Sethuraman [1994], the stick-breaking construction, which character-

ized DP realizations as countable mixtures of point masses. A random distribution

G ∼ DP (α,G0), then the stick-breaking representation of G is as the following

G =
∞∑
k=1

πkδθk ,

where δθk is a point mass at θk. The locations of the point passes θk arise iid from

G0. The weight πk arise from a stick breaking mechanism based on iid draws from a
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Beta(1, α) distribution

πk = βk
k−1∏
j=1

(1− βj)

This construction emphasizes that the samples from a DP are discrete with probability

one. The term stick-breaking comes from the interpretation of mixing proportion πk;

which is given by successively breaking a unit-length stick into infinitely many pieces.

Suppose in a hierarchical model, the data zi = (xi, yi : i = 1, . . . , n) are from a

parametric distribution f with latent mixing parameters θi, a DP prior can be placed

on the parameter distribution to ensure greater model flexibility and robustness.

The general Bayesian hierarchical model by linking DP to nonparametric Bayesian

modeling can then be written as:

zi|θi
ind∼ k(zi|θi), i = 1, . . . , n

θi
iid∼ G,

G ∼ DP (α,G0)

This is often called Dirichlet process mixture model (DPMM), that we use a DP prior

on the parameter and then complete the model by introducing a likelihood. Accord-

ing to the discreteness property of the DP and its stick-breaking representation, this

model implies zi ∼
∑∞
k=1 πkk(zi|θk), where θk are infinite samples from G0. Under this

formulation, the DPMM is interpreted as a flexible mixture model in which the num-

ber of components is infinite. The assumption of exchangeability [De Finetti, 1935]

makes sure that the joint distribution is invariant to the order in which observations

are assigned to clusters. Given the heterogeneity in random effects, we are also par-

ticularly interested in classifying individuals in clusters, a nonparametric Dirichlet

Process prior seems to be a reasonable alternative to place on random effects.
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Subgroup Identification through Dirichlet Process

There are two schemes in clustering: one produces a hierarchical sequence of par-

titions, and the other allocates observations into proposed clusters. The latter are

based on the concept that the observations come from a heterogeneous population

consisting of several clusters. Each cluster can be modeled by a distinct paramet-

ric distribution and a mixture of these clusters, a finite mixture model, is used to

model the heterogeneity of the overall population. More explicitly, given observa-

tions y = {y1, ..., yn}, assume that there are K clusters differentiated by θk, which

can be either a scaler or a vector. Let f(·|θk) be the density of cluster k; the finite

mixture model is of the form

f(x|θ) =
K∑
k=1

πkf(x|θk)

with πk ≥ 0, for k = 1, ..., K, and∑K
k=1 πk = 1. The probability πk also represents the

prior probability that an observation comes from each cluster k. One of the challenges

of using finite mixture model in clustering analysis is in determining the number of

clusters K.

The number of clusters is automatically learnt from data through DP mixture

models. DP mixtures models became popular in recent years because of the develop-

ment of simple and efficient MCMC algorithms for posterior computation [MacEach-

ern, 1994, Escobar and West, 1998, MacEachern and Müller, 1998]. It is a generaliza-

tion of mixture models to infinite components in a Bayesian framework. The Pólya

Urn scheme from Blackwell and MacQueen [1973], which most popular algorithms

rely on, integrates out the infinite dimensional G to obtain the conditional prior of

ϕi given ϕ(i) = (ϕ1, . . . , ϕi−1, ϕi+1, . . . , ϕn)′:

ϕi|ϕ(i) ∼ α

α + n− 1G0 + 1
α + n− 1

∑
j 6=i

δϕj ,

which generates new values from ϕi ∼ G0 with probability α
α+n−1 and otherwise sets
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ϕi equal to an element of ϕ(i) that is chosen by sampling from a discrete uniform

distribution.

The tendency of the DP to cluster subjects into groups have identical coefficients

is quite apparent from this structure. In particular, the n subjects are allocated to

K ≤ n distinct values, θ = (θ1, . . . , θK)′, with the induced prior on k stochastically

increasing with α and n [Antoniak, 1974]. Hence, although the expression is infinite,

we obtain a finite number of K clusters on integrating out the random weights and

random atoms. For this reason, DP methods are commonly used to allow uncertainty

in the number of mixture components and for clustering.

Flexible Error Distribution

Another focus in Bayesian nonparametric modeling is to find flexible error distribu-

tion. It is natural to extend a parametric class of distributions to a nonparametric

model through mixing. Kottas and Krnjanić [2009] develope two families of nonpara-

metric prior distributions based on Dirichlet process mixture models. The first model

is a general scale mixture of ALD to allow more flexible tail behavior but does not

affect the skewness of the kernel of the mixture. The second is a flexible scale mixture

of uniform densities which can capture the shape (skewness, tail behavior) of general

unimodal error densities fp(·), which is a representation of non-increasing densities

on the positive real line.

Specifically, a density fp(·) on positive real line (R+) is non-increasing if and

only if there exists a distribution function G on R+ such that f(t) ≡ f(t, G) =∫
θ−110,θ(t)dG(θ). This result can be employed to provide a mixture representation

for any unimodal density on the real line with pth quantile (mode) equal to zero,∫ ∫
kp(ε;σ1, σ2)dG1(σ1)dG2(σ2). Here G1 and G2 are general mixing distributions,
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supported on R+, and

kp(ε;σ1, σ2) = p

σ1
1(−σ1,0)(ε) + 1− p

σ2
1[0,σ2)(ε) (1.10)

with 0 < p < 1, and σr > 0, r = 1, 2. Assuming independent DP priors for G1 and

G2, we obtain the model for the error density
∫ ∫

kp(ε;σ1, σ2)dG1(σ1)dG2(σ2), Gr ∼

DP (αrGr0), r = 1, 2. In the context of quantile regression, this model is sufficiently

flexible to capture general forms of skewness and tail behavior [Kottas and Krnjanić,

2009].

Instead of posing a parametric likelihood, Reich et al. [2010] propose to model

the likelihood nonparametrically by an infinite mixture of quantile-restricted two-

component Gaussian mixtures and to accommodate error heteroscedasticity by speci-

fying its form parametrically. They followed location-shift model with random subject

effects bi,

yij = xTijβ + bi + xTijγeij,

where xTijγ > 0 for all xij. They defined the random error distribution as the infinite

mixture

h(e|µ,σ2) =
∞∑
l=1

plf(e|µl,σ2
l , ql),

where pl is the mixing proportion with∑∞l=1 pl = 1, and the base density f(e|µl,σ2
l , ql)

is the two component normal mixture

f(e|µl,σ2
l , ql) = qlφ(µ1l, σ

2
1l) + (1− ql)φ(µ2l, σ

2
2l)

where φ(µ, σ2) is the normal density with mean µ and variance σ2. The parameters

are chosen to ensure
∫ 0
−∞ f(e|µl,σ2

l , ql)de = τ , that is, to make the τ -th quantile of e

to be zero.

Learning about the Precision Parameters

The precision parameter, α, of the Dirichlet process is extremely important for the

model. When α is small, then G tends to concentrate on a few atoms of probability.
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When α is large, then G is a distribution with many support points and the nonpara-

metric model is ‘closer’ to G0, the baseline model. These features are to be borne in

mind when considering priors for α. Escobar and West [1998] discuss various effects

of the parameter α and then issues arising in learning about α within the MCMC

analysis in their book. They developed a Gibbs sampler wherein draws from the

conditional posterior distribution of α are computed by drawing successive samples

from relatively familiar distributions. In Escobar and West [1995]’s approach, prior

uncertainty in α is specified using a Gamma(a, b) distribution with fixed hyperpa-

rameters or a mixture of gamma distributions. In many cases the values of a and b

are simply varied over a range that is thought to be reasonable, Escobar and West

[1995] mentioned the possibility of using a Gamma(a, b) reference prior by letting

a → 0, b → 0. There are at two advantages of choosing a gamma prior, 1)the distri-

bution is proper so there is no need to prove posterior propriety. This is especially

important in models with many parameters where propriety may be difficult or im-

possible to prove; 2)the gamma prior leads to full conditional distributions that are

easy to sample. Gamma prior can sometimes be unstable, so a grid search should be

used to find a proper value for α.

Some researchers adopt an empirical Bayes approach wherein the maximum like-

lihood estimate (MLE) of α is computed and inferences about all other model pa-

rameters are made conditional on the MLE [Liu, 1996]. MLE of α is computed by

alternating between inference and estimation steps until convergence [Dorazio et al.,

2008]. The shortcomings are, 1) it fails to account for errors in estimating α; 2) the

empirical Bayes approach is computationally demanding, usually requiring repeated

applications of the Gibbs sampler or other Markov chain Monte Carlo algorithm; 3)

MLE of α can be unstable in some situations [Kyung et al., 2010].
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Chapter 2

A Bayesian Nonparametric Quantile Regression

for Repeated Measures with a Flexible Error

Distribution

In longitudinal studies, several repeated measurements or contaminated replicates are

often taken on the same subject with errors. Bayesian approach for the analysis of

repeated measures offers a flexible way of combining data with prior information and

inference can be always provided without the need for approximations using modern

computation methods. However, quantile regression is not equipped with a paramet-

ric likelihood, and therefore, Bayesian quantile regression for repeated measures is

challenging. As mentioned in 1.2.3, there exist several likelihood estimation methods

in parametric and semiparametric frameworks in literature. Approaches extended

from Yu and Moyeed [2001] are based on the asymmetric Laplace distribution for

the errors. Note that in ALD, the same parameter determines both skewness and

quantile level, hence limiting its flexibility in modeling skewness and tail behavior. In

this chapter, we propose a Bayesian nonparametric quantile regression for repeated

measures with error using a flexible distribution, which can capture the shape (e.g.,

skewness, tail behavior) of any unimodal error density. DP mixture models are fit

by marginalizing the random mixing distribution over its DP prior and using the

resulting Pólya urn representation for the latent mixing parameters in sampling from

the posterior.

The outline of this chapter is as follows. Section 2.1 describes the proposed method
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and prior specification. Section 2.2 discusses the computational details and posterior

inference. Simulation studies to assess the performance of the proposed method are

presented in Section 2.3. An application to a data set from orthodontic clinic is

illustrated in Section 2.4. Finally, conclusions and discussion are presented in Section

2.5. The technical details are given in Appendix A.

2.1 Model Setup

Suppose we observe the data in the form (yij, Xij, Zij), i = 1, . . . , n; j = 1, . . . , ni. yij

is the jth observation of the continuous response variable on the ith subject, Xij is

the p×1 covariate vector for fixed effects, and the first covariate is one corresponding

to the intercept. For a given subject, the covariates in Xi, for instance, gender, are

assumed to remain constant across the repeated measurements. Zij is the q × 1

covariate vector for random effects. A linear mixed model has the form

yij = Xijβ + Zijbi + εij, i = 1, . . . , n; j = 1, . . . , ni, (2.1)

where β = (β1, . . . , βp)T is the unknown regression coefficient vector associated with

p model covariates, bi = (bi,1, . . . , bi,q)T are i.i.d. random effects vectors associated

with q model covariates.

To allow more flexibility in Model 2.1 we assume that the true density of the regres-

sion errors ε belongs to a non-parametric scale mixture of uniform densities. Specifi-

cally, A density fp(·) on positive real line (R+) is non-increasing if and only if there

exists a distribution function G on R+ such that f(t) ≡ f(t, G) =
∫
θ−110,θ(t)dG(θ).

The result on the real line with pth quantile (mode) equal to zero,
∫ ∫

kp(ε;σ1, σ2)dG1(σ1)dG2(σ2).

Here G1 and G2 are general mixing distributions, supported on R+, and

kp(ε;σ1, σ2) = p

σ1
1(−σ1,0)(ε) + 1− p

σ2
1[0,σ2)(ε) (2.2)
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with 0 < p < 1, and σr > 0, r = 1, 2. With latent mixing parameters σ1i and σ2i for

each response, the model can be represented by

yi, yij|β, bi, σ1i, σ2i
ind∼ kp(yij −Xijβ − Zijbi;σ1i, σ2i), i = 1, . . . , n, j = 1, . . . , ni

The likelihood becomes

n∏
i=1

ni∏
j=1

p

σ1i
1(−σ1i,0)(yij −Xijβ − Zijbi) + 1− p

σ2i
1[0,σ2i)(yij −Xijβ − Zijbi) (2.3)

2.2 Prior Specification

Independent normal priors are given to fixed effect β. σ1i, σ2i are assigned indepen-

dent DP priors.

σri|Gr
iid∼ Gr, r = 1, 2, i = 1, . . . , n

Gr|αr, dr ∼ DP (αrGr0), r = 1, 2,

bi|Gb ∼ Gb, i = 1, . . . , n

Gb|αb, G0b ∼ DP (αbG0b)

Various noninformative prior distributions for σ have been suggested in Bayesian

literature and software, including an improper uniform density on σri [Gelman, 2006],

proper distributions such as p(σ2
ri) ∼ inverse-gamma. Many Bayesians have preferred

the inverse-gamma prior family, possibly because its conditional conjugacy suggested

clean mathematical properties. However, by writing the hierarchical model in the

above form, we see conditional conjugacy in the wider class of half-t distributions on

σri , which include the uniform and half-Cauchy densities on σri (as well as inverse-

gamma on σ2
ri as special cases. From this perspective, the inverse-gamma family

has nothing special to offer, and we prefer to work on the scale of the standard

deviation parameter σri, which is typically directly interpretable in the original model.

We consider uniform distributions Uniform(0, A) for Gr0. As illustrated in Gelman
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[2006], the choice of “noninformative” prior distribution can have a big effect on

inferences, especially for problems where the number of clusters (repeated measures)

is small or the cluster-level variance is close to zero. For a finite but sufficiently large

A, inferences are not sensitive to the choice of A. Random effects bi are assigned

independent DP priors. A normal base measure with zero mean is specified to G0b.

An assumed DP prior with zero mean may still imply a non-zero mean for random

effect distribution, to ensure that E(yi) = X iβ, the additional constraint E(bi = 0)

is needed. DP precision parameters play an important role and the optimal values of

αr, r = 1, 2, b are decided by the grid search.

2.3 Posterior Computation

Bayesian approach provides a flexible framework for representing the intricate nature

of the word and our knowledge of it, and the Monte Carlo methods provide a corre-

sponding flexible mechanism for inference within this framework. MCMC integration

methods, especially the Metropolis-Hastings algorithm and the Gibbs sampler have

emerged as extremely popular tools for the analysis of complex statistical models in a

short period of computers’ development. Properly defined and implemented, MCMC

methods enable users to successively sample values from values from a convergent

Markov chain, and reduce complex high-dimensional problems to a sequence of much

lower-dimensional ones. Details of MCMC methods can be found in [Geyer, 2011].

Markov Chain Sampling Methods for Dirichlet Process Mixture Models

Many different Markov chain Monte Carlo sampling techniques have been developed

for making posterior inferences from DP mixture models; Neal (2000) is a good ref-

erence. The posterior inference methods for DP mixture models we use in this study

is a combination of MCMC methods from Escobar and West [1995] and Neal [2000].

They are based on a marginalization of the random mixing distributions over their DP
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priors [Blackwell and MacQueen, 1973]. The discreteness of the DP priors [Blackwell

and MacQueen, 1973, Sethuraman, 1994] induces a clustering. We use θ = (θ1, ..., θn)

as illustrations. The most direct approach to sampling for DP mixture models is to

repeatedly draw values for each θi from its conditional distribution given both the

data and the θj for j 6= i (written as θ−i). This conditional distribution is obtained by

combining the likelihood for θi that results from yi having distribution F (θi), which

will be written as F (yi, θi) and since the observations are exchangeable, the prior

conditional on θ−i, which is

θi|θ−i ∼
α

α + n− 1G0 + 1
α + n− 1

∑
j 6=i

δ(θj)

When combined with the likelihood, this yields the following conditional distribution

for use in Gibbs sampling

θi|θ−i, yi ∼ riHi +
∑
j 6=i

qi,jδ(θj)

Here, Hi is the posterior distribution for θ based on the prior G0 and the single

observation yi with likelihood F (yi, θ). The values of the qi,j and of ri are defined by

qi,j = bF (yi, θj)

ri = bα
∫
F (yi, θ)dG0(θ)

where b is such that ∑j 6=i qi,j + ri = 1.

There are two main approaches for Dirichlet Process mixtures, MCMC and vari-

ational inference [Escobar and West, 1995, MacEachern and Müller, 1998, Blei and

Jordan, 2005]. Use of Dirichlet process mixture models has become computationally

feasible as the development of Markov chain methods for sampling from the posterior

distribution of the component distribution or of the associations of mixture compo-

nents with observations. In the Chinese restaurant prior, we can easily swap customer

i to the last customer to arrive by taking advantage of exchangeability, which yields

a straightforward formula for the conditional for Gibbs sampling. Methods based

25



on Gibbs sampling can be easily implemented for models based on conjugate prior

distribution. Lavine and West [1992] use the Gibbs sampling approach to calculate

normal mixture models. Such iterative resampling method is applied to the mixture

model by introducing the classification variables which identify data points with spe-

cific components. However, when non-conjugate priors are used, it is often difficult to

perform numerical integration in straightforward Gibbs sampling. Later, a Markov

chain method for sampling from the posterior distribution of a Dirichlet process mix-

ture model was presented, extended Gibbs sampling for the indicators specifying

which mixture component is associated with each observation by using a set of aux-

iliary parameters [MacEachern and Müller, 1998, Neal, 2000]. The method is simple

to implement and more efficient than previous ways of handling general Dirichlet

process mixture models with non-conjugate priors. Blei and Jordan [2005] presented

a variational inference algorithm, which is a class of deterministic algorithms that

convert inference problems into optimization problems.

Gibbs Samplig Algorithm with Auxiliary Parameter

MacEachern and Müller [1998] devised an approach to handle non-conjugate priors

that uses a mapping from a set of auxiliary parameter to parameters in use. Models

with non-conjugate priors can be handled by applying Gibbs sampling to a state

that has been extended by the addition of auxiliary parameters [Neal, 2000]. In

this approach, the auxiliary parameters are regarded as existing only temporarily;

this allows more flexibility in constructing algorithms. The permanent state of the

Markov chain will be x, but a variable y will be introduced temporarily and discarded

during Markov chain simulation. The implementation of our DP is performed using

a modified algorithm proposed in Neal [2000] (Algorithm 8), which is appropriate for

models with no closed form solutions and therefore applies Gibbs sampling with the

inclusion of auxiliary parameters.
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Let ci indicates the “latent class” associated with observation yi, with the num-

bering of the ci being of no significance. We can use this technique to update ci

for a Dirichlet process mixture model without having to integrate with respect G0.

The permanent state of the Markov chain consist of c = (c1, ..., cn) and φ = (φc :

c ∈ {c1, .., c2}). For each class, c, the parameters φc determine the distribution of

observations from that class; all such φc is denoted by φ When ci is updated, we

will introduce temporarily auxiliary parameters that represent potential values for θ

that are not associated with any other observations. We then update ci by Gibbs

sampling with respect to the distribution that includes these auxiliary parameters.

Figure 2.1 represents the conditional prior distribution for a new observation using

auxiliary parameters. In this setup, the number of auxiliary parameters m = 3. The

component for the new observation is chosen from among the four components as-

sociated with other observations plus three possible new components (m = 3), with

parameters, φ5, φ6, φ7, drawn independently from G0. The probabilities used for this

choice are shown at the top. The probability of ci being equal to a c in {1, . . . , k−}

will be n−i,c/(n−1 +α), where n−i,c is the number of times c occurs among the cj for

j 6= i. The probability of ci having some other value will be α/(n− 1 + α), which is

split equally among m = 3 components introduced. The dashed arrows illustrate the

possibilities of choosing an existing component, or a new component that uses one of

the auxiliary parameters in the figure.

To perform a Gibbs sampling update for ci in this representation of the posterior

distribution, ci must be either one of the components associated with other obser-

vations or one of the auxiliary components that were introduced, we can easily do

Gibbs sampling by evaluating the relative probabilities of these possibilities. Once a

new value for ci has been chosen, we discard all φ values that are not now associated

with an observation.

Let the state of the Markov chain consist of c = (c1, . . . , cn) and φ = (φc : c ∈
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Figure 2.1 Using auxiliary parameters to represent conditional prior distribution
for a new observation.

{c1, . . . , cn}). The algorithms can be summarized by repeated sampling as follows:

• For i = 1, . . . , n :, let k− be the number of distinct cj for j 6= i, and let

h = k− + m. Label these cj with values in {1, . . . , k−}. If ci = cj for some

j 6= i, draw values independently from G0 for those φc for which k− < c ≤ h. If

ci 6= cj for all j 6= i, let ci have the label k−+ 1, and draw values independetnly

from G0 for those G0 for those φc for which k− + 1 < c ≤ h. Draw a new value

for ci from {1, . . . , h} using the following probabilities:

P (ci = c|c−i, yi, φ1, . . . , φh) =


b n−i,c
n−1+αF (yi, φc) for 1 ≤ c ≤ k−,

b α/m
n−1+αF (yi, φc) for k− ≤ c ≤ h

(2.4)

where n−i,c is the number of cj for j 6= i that are equal to c, and b is the

appropriate normalizing constant. Change the state to contain only those φc

that are now associated with one or more observation.

• For all c ∈ {c1, . . . , cn}: Draw a new value from φc|yi such that ci = c by using

the Metropolis-Hastings algorithm to φc that leaves this distribution invariant.

The posterior distributions for σri and bi can be handled by applying Gibbs sam-

pling with auxilliary parameters described in this section. The likelihood of i-th

observation is F (yi,β, bi, σri) = ∏ni
j=1 p(yi|β, bi, σ1i, σ2i). When updating σri, we
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assume both β and bi are “known”. By placing a Uniform distribution to base dis-

tribution Gr0, the conditional distribution for σri is

p(σri|yi, Gr0) ∝ αr
αr + n− 1Unif(dr)F (yi, σri) + 1

αr + n− 1
∑
g 6=i

δ(σrg)F (yi, σri)

For each bi, suppose a Multivariate normal hyperprior for base distribution G0b

is Np(0, D), the conditional distribution

p(bi|yi) ∝ prior(bi|D)L(yi|bi)

∝ Np(0, D)p(yi|β, bi, σ1i, σ2i)

∝ 1
(2π)1/2 | D |1/2 exp

(
− 1

2(bi − 0)TD−1(bi − 0)
)

×
ni∏
j=1

p

σ1i
1(−σ1i,0)(yij −Xijβ − Zijbi) + 1− p

σ2i
1[0,σ2i)(yij −Xijβ − Zijbi)

Bayesian Computing for Other Parameters

Updating fixed effects β requires Metropolis-Hastings algorithms as full condition-

als distributions are not recognizable. Suppose the prior is a multivariate normal

distribution Np(0,Σ0), the conditional distribution of β is

p(β|yi) ∝ Np(0,Σ0)
n∏
i=1

p(yi|β, bi, σ1i, σ2i)

∝ 1
(2π)1/2 | Σ0 |1/2 exp

(
− 1

2(β − 0)TΣ−1
0 (β − 0)

)

×
n∏
i=1

ni∏
j=1

p

σ1i
1(−σ1i,0)(yij −Xijβ − Zijbi) + 1− p

σ2i
1[0,σ2i)(yij −Xijβ − Zijbi)

For the (t)-th iteration, update β by using the following Metropolis-Hastings algo-

rithm. Draw β∗ from the proposal distribution Np(βt−1, T0), and take

βt =


β∗ with probability min(r, 1),

βt−1 with probability1-min(r, 1),
(2.5)

where

r = p(β∗|yi)/J(β∗|βt−1)
p(βt−1|yi)/J(βt−1|β∗)
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since the jump distribution is symmetric, J(β∗|βt−1) = J(βt−1|β∗),

J(β∗|βt−1) = 1
(2π)1/2 | T0 |1/2 exp

(
− 1

2(β∗ − βt−1)TT−1
0 (β∗ − βt−1)

)

J(βt−1|β∗) = 1
(2π)1/2 | T0 |1/2 exp

(
− 1

2(βt−1 − β∗)TT−1
0 (βt−1 − β∗)

)

Lastly, we can directly sample the covariance matrix D using normal-inverse

Wishart conjugacy. Given the mean vector, the conjugate prior for D− is the Wishart

distribution, a generalization of the gamma distribution to p dimensions.

Wishartp(ν0,Φ0), with two parameters ν0 and Φ0, is

p(D−1|ν0,Φ0) ∝| D−1 |(ν0−p−1)/2 exp
(
− 1

2tr(Φ
−1
0 D−1)

)

The posterior distribution of D−1 can be derived from Bayes Theorem, Wishartp(n+

ν0,

(
Φ−1

0 +∑n
i=1 bibi

T

)−1

), with more details described in the Appendix.A.

p(D−1|bi) ∝
n∏
i=1

p(bi|D)p(D−1|ν0,Φ0)

D−1|bi ∼ Wishartp(n+ ν0,

(
Φ−1

0 +
n∑
i=1
bibi

T

)−1

)

2.4 Simulation Studies

We next access the performance of the proposed method through simulation studies,

under which the model’s superiority is reflected compared with traditional mixture

models and frequentist method.

Simulation Study I

We generate the simulation data from the model,

yij = β0 + ui + (β1 + νi)xij + β2zij + (1 + γxij)εij (2.6)
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Table 2.1 Simulation study scenarios

Model description (n,M) µ ν ε Γ
(1) location shift symmetric (5,50) N(0,5) - N(0,5) 0
(3) location shift symmetric (5,50) N(0,5) - t(3) 0
(5) location shift asymmetric (5,50) N(0,5) - χ2

2 0
(6) location shift asymmetric (5,50) t(3) - χ2

2 0
(14) heteroscedastic symmetric (10,100) N(0,5) - N(0,5) 0.25
(16) heteroscedastic asymmetric (10,100) t(3) - χ2

2 0.25
(19) location shift heavy-tailed (10,100) t(3) t(3) t(3) 0
cor(µ, ν) > 0
(23) location shift with (10,100) N(0,5) + - χ2

2 0
5% contamination N(0,50)

where i = 1, . . . ,M, j = 1, . . . , n, with a sample size of M subjects with n repeated

measures. β = (β0, β1, β2)′ = (100, 2, 1)′ , ui and νi are cluster-specific random effects,

xij = δi + ηij, δi ∼ N(0, 1), ηij ∼ N(0, 1) and zij ∼ Binom(1, 0.5). The model

setup follows an simulation study in Geraci and Bottai [2014] and we select eight

model scenarios from the paper to evaluate our proposed estimator under different

assumptions. We consider a sample size ofM = 50 and 100 subjects, and include both

symmetric and skewed measurement error scenarios. For symmetric errors, we use

Normal and heavy tailed (Student t) errors. For skewed cases, we let errors follow

χ2
2 distribution. Models with both homogenous errors and heteroscedasticity are

considered. The true random effects distribution is assumed to be symmetric, either

normal or t distribution. A summary for different data generating distributions and

sample sizes is given in Table 2.1.

In all cases, datasets were generated independently 300 times. Posterior can

be sampled by MCMC techniques for DP mixtures described before. For proposed

method BNQM, we do grid search to find the optimal combination of three precision
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parameters (α ∈ {0.1, 1, 5, 20}) and optimal values are chosen with the smallest DIC

(Deviance Information of Criterion). DIC is a Bayesian model comparison criterion

based on trade-off between the goodness of fit and complexity of the model. In

Gelman et al. [2014], for a likelihood p(y|θ)

DIC = 2D̂avg(y)−Dθ̂(y)

Based on the lowest DIC value, we set α1 = 0.1, α2 = 5 and αb = 20 for τ = 0.1 and

0.5, and for τ = 0.9, α1 = 20, α2 = 1 and αb = 20.

We evaluate the methods by using sample standard deviation (SSD), estimated

standard errors (ESE), the 95% coverage probabilities (CP) and mean squared errors

(MSE) of each model at the quantile coefficients. The SSD is calculated as the

standard deviation of the posterior means of the parameter estimates. On the other

hand, the ESE is the mean of the standard deviations of the parameter estimates.

The 95% CP is the posterior probability of the 95% CIs to include the true value.

The mean squared errors can be obtained by

1
N

N∑
m=1

(β̂mj − βj)2

where β̂mj , j = 0, 1, 2 are the parameter estimates in the mth simulation run. The

posterior means were used as the estimates.

To compare the results of our Bayesian nonparametric quantile mixed model

(BNQM) with other approaches, we also fit LQMMs that assumes asymmetric Laplace

error. The package ‘lqmm’ is available from the Comprehensive R Archive Network

(CRAN) to fit LQMMs, which were estimated with the gradient search algorithm de-

scribed in Geraci and Bottai [2014]. The default normal random effects assumption

leads to a Gauss-Hermite quadrature, while robust (Gauss-Laguerre) random effects

estimation is also provided. K = 11 nodes was used in model scenarios 1, 3, 5, and

6. For data generated under models 14, 16, 19 and 23, the number of nodes was set

to K = 17. The tolerance parameter and the maximum number of iterations were
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set to, respectively, 10−3 and 500 for the likelihood, and to 10−5 and 10 for the scale

parameter.

For each case, the simulation is run 300 times at quantile levels τ ∈ {0.5, 0.75, 0.9}.

In Table 2.2, the results are summarized for scenario (1), assuming homoscedastic

normal random errors with mean 0 and variance 5, εij ∼ N(0, 5) and normal random

effects, ui ∼ N(0, 5). Relative bias, averaged over the simulation realizations, was low

at all three quantiles. The parameters were estimated using the proposed model fairly

accurately with high coverage probabilities including the true values. The results are

very similar comparing to the LQMM estimator which indicates both methods work

well under normal assumptions.

The convergence was evaluated by a critical examination of the trace plots, and

by using Geweke’s method [Geweke, 1992]. With 4,000 MCMC samples, we discard

the first 2,000 samples as burn-in, and estimate parameters by averaging the posterior

means. A trace plot can be used to determine whether the chain is mixing well and

reached its stationary distribution. The trace plots for fixed effect coefficients β0, β1

and β2 and the random effects coefficients b0, b1, and b2 are shown in Figure 2.2. The

trace plots indicate very good convergence of the sample chains of the parameters.

The chains appear to be centered on their true parameter values with little variation.

Thus, we could conclude the chains have reached their stationary distributions and

inference can be drawn from them.

Geweke [1992]’s convergence diagnostic for Markov chain is based on a test of

equality of the means of the first and last part of a Markov chain (the first 10%

and the last 50% has been used in this dissertation). The Geweke’s statistic has

an asymptotically standard normal distribution and the corresponding P -value can

be obtained. If the P -value is greater than a certain significance level, say 0.05, we

conclude that the means of the first and last parts of the chain are equal and hence

the chain has reached its stationary distribution. Table 2.3 shows the Geweke’s
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Table 2.2 Simulation Results for Scenario (1)

p Method Coef Relative Bias SSD ESE CPs MSE
0.5 LQMM β0 0.000 0.496 0.489 0.93 0.247

β1 -0.002 0.177 0.196 0.98 0.031
β2 0.041 0.348 0.370 0.96 0.122

0.5 BNQM β0 -0.001 0.435 0.186 0.88 0.202
β1 -0.007 0.215 0.143 0.99 0.046
β2 0.095 0.425 0.277 0.94 0.189

0.75 LQMM β0 0.001 0.529 0.560 0.95 0.301
β1 -0.000 0.189 0.215 0.98 0.036
β2 0.048 0.372 0.410 0.96 0.140

0.75 BNQM β0 0.000 0.424 0.209 0.92 0.180
β1 -0.004 0.196 0.146 0.98 0.039
β2 0.023 0.383 0.272 0.91 0.147

0.9 LQMM β0 0.002 0.580 0.659 0.97 0.382
β1 -0.001 0.222 0.272 0.97 0.049
β2 0.016 0.424 0.515 0.98 0.179

0.9 BNQM β0 -0.003 0.455 0.306 0.90 0.305
β1 -0.006 0.203 0.172 0.98 0.041
β2 0.000 0.367 0.297 0.94 0.134

diagnostics for the fixed effect coefficients and the random effects. All the P -values

corresponding to the Geweke’s statistics are greater than significance level (0.05).

Therefore, we could conclude that there is no difference between the sample means

of the first 10% and the last 50% of the chains and the chains have converged well.

Results are summarized for scenario (3), (5), (6) in Table 2.4, 2.5, 2.6. Scenario

(3) assumes random errors to be t distribution with 3 degrees of freedom, and normal

random effect, N(0, 5). Scenario (5) assumes random errors to be χ2 distribution

with 2 degrees of freedom, and normal random effect, N(0, 5). Scenario (6) assumes
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Figure 2.2 Trace plot at quantile level 0.5 in Scenario (1)

Table 2.3 Geweke’s Statistics for Markov Chains of the Proposed Model in
Scenario (1)

Parameter Z score P -value
β0 -0.4607 0.3588
β1 0.2242 0.3890
β2 1.9751 0.0567
b0i 0.8343 0.2817
b1i 0.3882 0.3882
b2i 0.2026 0.2026

random errors to be χ2 distribution with 2 degrees of freedom, and random effect,

t(df = 3). All three scenario models have homoscedastic random errors. The relative

bias, averaged over the simulation realizations, sample standard deviations (SSD),

estimated standard deviations (ESD) and the corresponding 95% coverage probabil-

ities (CPs) for the fixed effect coefficients using the proposed model and LQMM are

presented. Estimation bias was low at all considered quantiles for one dimensional
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random-effects models. As expected, the performance of our proposed method was

satisfactory under symmetric and skewed measurement errors. Mixture distribution

of two uniform densities is sufficiently flexible to capture general forms of skewness

and tail behavior.

Scenario (14) and (16) have heteroscedastic random errors. Results are summa-

rized in Table 2.7 and Table 2.8. Scenario (14) assumes random errors to be N(0, 5),

and random effect, N(0, 5). Scenario (16) assumes random errors to be χ2 distribution

with 2 degrees of freedom, and random effect to be t(3). Overall, the performance

of both methods was satisfactory. In the context of quantile regression, our pro-

posed scale mixtures of uniform densities can capture the shape (e.g., skewness, tail

behavior) of any unimodal error density.

Scenario (19) assumes heavy tailed random error and correlated random effects

(Table 2.9). We observed that an increase of bias in the slope of x for LQMM esti-

mator that was also mentioned in Geraci and Bottai [2014], specifically the relative

bias is -0.213 when τ = 0.75, -0.182 when τ = 0.9; their corresponding variances

are inflated. According to the authors, random effects distributions characterized

by heavy tails may require using a larger number of nodes to reduce the estimation

bias. In our proposed method, flexible nonparametric prior models for the random

effects demonstrated the superiority of nonparametric mixture models over paramet-

ric models. Typically, this normality assumption for the random effects is made for

the sake of convenience, rather than from some theoretical justification, and may not

actually hold. Potentially, the parametric random effect assumption could be relaxed

by using a DP mixture for the unknown random effects distribution in generalized

linear mixed model [Kleinman and Ibrahim, 1998a]. Due to data sparsity in the tail

areas, estimates from quantile regression are often unstable at tails, especially for

heavy-tailed distributions.

Outlier contamination in the random intercept (scenario 23, Table 2.9) did not
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impact the estimation bias in both methods.

Table 2.4 Simulation Results for Scenario (3)

p Method Coef Relative Bias SSD ESE CPs MSE
0.5 LQMM β0 0.000 0.527 0.478 0.91 0.278

β1 0.000 0.135 0.146 0.98 0.018
β2 0.018 0.216 240 0.97 0.047

0.5 BNQM β0 -0.003 0.374 0.176 0.94 0.170
β1 -0.011 0.152 0.145 0.94 0.024
β2 0.095 0.282 0.225 0.90 0.079

0.75 LQMM β0 0.004 0.581 0.555 0.89 0.484
β1 0.005 0.142 0.167 0.97 0.020
β2 0.044 0.249 0.276 0.96 0.064

0.75 BNQM β0 0.004 0.792 0.193 0.91 0.842
β1 -0.005 0.138 0.120 0.91 0.019
β2 -0.046 0.227 0.212 0.93 0.054

0.9 LQMM β0 0.008 0.598 0.670 0.78 0.999
β1 0.004 0.188 0.219 0.97 0.035
β2 -0.007 0.321 0.377 0.98 0.103

0.9 BNQM β0 0.005 0.819 0.203 0.93 0.241
β1 -0.006 0.128 0.109 0.92 0.017
β2 -0.059 0.218 0.197 0.89 0.051

Simulation Study II

In this section, we compare our proposed method to Reich’s marginal random effects

model [Reich et al., 2010]. We consider a model 2.7 with one random effect to

coordinate with the marginal model.

Model 1 : yij = β0 + β1x1ij + β2x2ij + b0i + εij, i = 1, . . . , n, j = 1, . . . , ni (2.7)
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Table 2.5 Simulation Results for Scenario (5)

p Method Coef Relative Bias SSD ESE CPs MSE
0.5 LQMM β0 0.003 0.535 0.496 0.87 0.407

β1 -0.004 0.136 0.159 0.97 0.019
β2 -0.035 0.258 0.281 0.96 0.068

0.5 BNQM β0 0.003 0.363 0.193 0.88 0.222
β1 -0.009 0.105 0.104 0.95 0.011
β2 0.061 0.174 0.184 0.96 0.034

0.75 LQMM β0 0.005 0.561 0.561 0.87 0.539
β1 -0.001 0.191 0.205 0.96 0.036
β2 -0.007 0.375 0.381 0.94 0.140

0.75 BNQM β0 -0.002 0.510 0.182 0.91 0.291
β1 -0.010 0.129 0.112 0.91 0.017
β2 -0.050 0.194 0.189 0.94 0.040

0.9 LQMM β0 0.005 0.683 0.831 0.96 0.699
β1 -0.004 0.265 0.302 0.98 0.070
β2 -0.037 0.531 0.582 0.96 0.282

0.9 BNQM β0 -0.005 0.464 0.290 0.90 0.449
β1 -0.013 0.112 0.104 0.93 0.013
β2 -0.022 0.199 0.196 0.94 0.040

where x1ij ∼ N(5, 1), x2ij ∼ Binomial distribution (1, 0.5), a normal random effect

distribution for b0i ∼ Normal(0,1); εij is the random error from Gamma distribution

Gamma(2,2). The coefficients are (β0, β1, β2) = (1, 1, 1). A sample size of 100 with

10 repeated measures is applied, and the simulation is repeated 200 times at three

quantile levels, (0.1, 0.5, 0.9). We evaluate the methods by using sample standard

deviation (SSD), estimated standard errors (ESE), the 95% coverage probabilities

(CP) and mean squared errors (MSE) of each model at the quantile coefficients.

The results are summarized in Table 2.11. We notice that the coverage proba-
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Table 2.6 Simulation Results for Scenario (6)

p Method Coef Relative Bias SSD ESE CPs MSE
0.5 LQMM β0 0.003 0.318 0.332 0.90 0.167

β1 0.006 0.121 0.127 0.95 0.015
β2 -0.022 0.233 0.251 0.96 0.054

0.5 BNQM β0 0.002 0.321 0.173 0.97 0.148
β1 -0.004 0.095 0.091 0.95 0.009
β2 -0.028 0.161 0.165 0.95 0.027

0.75 LQMM β0 0.005 0.561 0.561 0.87 0.539
β1 0.001 0.191 0.205 0.96 0.036
β2 -0.007 0.375 0.381 0.94 0.140

0.75 BNQM β0 -0.002 0.388 0.180 0.96 0.183
β1 -0.011 0.117 0.100 0.91 0.014
β2 -0.004 0.187 0.177 0.94 0.035

0.9 LQMM β0 0.003 0.731 0.787 0.97 0.629
β1 0.005 0.263 0.280 0.96 0.069
β2 0.036 0.520 0.570 0.98 0.271

0.9 BNQM β0 -0.003 0.771 0.284 0.86 0.685
β1 -0.006 0.099 0.094 0.93 0.010
β2 0.002 0.198 0.183 0.92 0.039

bilities at τ = 0.9 for Reich’s method is relatively low, 0.49 for β0 and 0.52 for β1.

Coverage probabilities of 95% credible intervals are comparable for the two methods

at quantile τ = 0.1 and τ = 0.5. At quantile level τ = 0.1 and 0.9, SSD for β0 is

much higher for Reich’s method , which indicates the posterior means from simulated

data sets are spread apart. And it is not surprising to see their corresponding MSEs

are high, MSE = 0.330 when τ = 0.1 and MSE = 0.255 when τ = 0.9. There is

little difference when τ = 0.5. These imply Reich’s marginal random effects model

does not have a stable estimation in tail quantiles. Later, in [Smith et al., 2015], a
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Table 2.7 Simulation Results for Scenario (14)

p Method Coef Relative Bias SSD ESE CPs MSE
0.5 LQMM β0 0.000 0.370 0.381 0.95 0.136

β1 0.003 0.085 0.098 0.97 0.007
β2 -0.007 0.156 0.167 0.97 0.024

0.5 BNQM β0 -0.001 0.506 0.173 0.91 0.278
β1 -0.042 0.256 0.141 0.95 0.073
β2 0.082 0.392 0.240 0.93 0.160

0.75 LQMM β0 0.001 0.398 0.435 0.96 0.163
β1 -0.03 0.098 0.110 0.92 0.015
β2 -0.007 0.184 0.186 0.96 0.034

0.75 BNQM β0 -0.004 0.439 0.289 0.91 0.349
β1 0.004 0.369 0.244 0.97 0.136
β2 0.020 0.298 0.302 0.95 0.089

0.9 LQMM β0 0.003 0.368 0.476 0.95 0.205
β1 -0.065 0.122 0.128 0.71 0.046
β2 0.001 0.227 0.229 0.95 0.052

0.9 BNQM β0 -0.004 0.460 0.306 0.92 0.356
β1 -0.065 0.327 0.370 0.91 0.138
β2 0.022 0.331 0.270 0.91 0.110

simulation study on clustered data were conducted and it showed low coverages in

some quantiles. But it’s not clear whether difficulty in estimating tail quantile is the

cause from their averaged results. They used a copula model to resemble the usual

mixed model in that covariates affect both the marginal population distribution via

fixed effects and subject-specific distributions via random slopes. The copula ap-

proach maintains the marginal distributions of the population-level quantile effects

while accounting for within-subject dependence, enabling inference at the population

and subject levels. The use of marginal models for repeated measurements is often
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Table 2.8 Simulation Results for Scenario (16)

p Method Coef Relative Bias SSD ESE CPs MSE
0.5 LQMM β0 0.002 0.263 0.242 0.82 0.117

β1 -0.007 0.065 0.066 0.94 0.005
β2 -0.021 0.108 0.111 0.96 0.012

0.5 BNQM β0 0.001 0.244 0.142 0.88 0.074
β1 -0.069 0.099 0.095 0.98 0.036
β2 -0.067 0.173 0.171 0.92 0.034

0.75 LQMM β0 0.002 0.294 0.279 0.89 0.125
β1 -0.032 0.090 0.093 0.85 0.016
β2 -0.002 0.172 0.171 0.95 0.030

0.75 BNQM β0 -0.003 0.272 0.171 0.93 0.154
β1 0.070 0.248 0.161 0.87 0.097
β2 -0.035 0.185 0.175 0.92 0.035

0.9 LQMM β0 0.002 0.390 0.413 0.94 0.185
β1 -0.069 0.133 0.147 0.71 0.065
β2 -0.009 0.284 0.284 0.95 0.080

0.9 BNQM β0 -0.004 0.476 0.324 0.88 0.409
β1 0.015 0.240 0.291 0.98 0.060
β2 -0.020 0.202 0.184 0.92 0.041

discouraged [Lindsey and Lambert, 1998, Crouchley and Davies, 1999, Lee et al.,

2004] as predictions correspond to hypothetical individuals only. Lee et al. [2004]

stated that differences are mainly caused by the choice of unidentifiable constraints

on the random effects and they discuss the advantages of conditional models over

marginal models. Vaida and Blanchard [2005] argued that the conditional likelihood

should be used when the focus is on clusters and marginal likelihood should be used

if the research aim is population focused. Marino and Farcomeni [2015] provides an

overview distinguishing between these two approaches. For example, the interpre-
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Table 2.9 Simulation Results for Scenario (19)

p Method Coef Relative Bias SSD ESE CPs MSE
0.5 LQMM β0 -0.002 1.907 1.939 0.98 3.659

β1 -0.096 4.848 5.224 0.97 23.46
β2 -0.003 0.211 0.243 0.98 0.044

0.5 BNQM β0 -0.003 0.417 0.232 0.95 0.239
β1 -0.022 0.260 0.128 0.95 0.070
β2 0.061 0.204 0.213 0.93 0.045

0.75 LQMM β0 0.017 5.047 5.290 0.94 28.39
β1 -0.213 3.864 7.801 0.97 15.05
β2 -0.001 0.228 0.287 0.99 0.052

0.75 BNQM β0 0.006 0.216 0.125 0.91 0.455
β1 -0.000 0.239 0.077 0.98 0.057
β2 -0.059 0.178 0.157 0.87 0.035

0.9 LQMM β0 0.082 9.430 11.43 0.97 157.4
β1 -0.182 3.204 9.922 0.99 10.35
β2 0.035 0.323 0.398 0.99 0.105

0.9 BNQM β0 -0.003 0.383 0.518 0.91 0.241
β1 -0.004 0.270 0.474 0.94 0.073
β2 0.084 0.214 0.184 0.92 0.053

tation is different. In the marginal formulation, parameters describe the effect of

covariates on the τ -th population response quantile. On the other hand, in the con-

ditional framework, regression coefficients have an individual-specific interpretation

allow to describe sources of unobserved heterogeneity that influence the dependence

between longitudinal observations.

Trace plots for fixed effect coefficients for our proposed method are illustrated in

Figure 2.3. These trace plots indicate very good convergence of the sample chains of

the parameters and parameters estimates appear to be centered on their true values
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Table 2.10 Simulation Results for Scenario (23)

p Method Coef Relative Bias SSD ESE CPs MSE
0.5 LQMM β0 0.003 0.486 0.500 0.93 0.316

β1 0.005 0.083 0.099 0.99 0.007
β2 -0.001 0.122 0.141 0.98 0.015

0.5 BNQM β0 0.003 0.477 0.196 0.92 0.299
β1 0.010 0.113 0.102 0.95 0.013
β2 -0.051 0.183 0.181 0.92 0.036

0.75 LQMM β0 0.003 0.539 0.534 0.89 0.416
β1 0.003 0.109 0.132 0.98 0.012
β2 0.023 0.196 0.215 0.98 0.039

0.75 BNQM β0 -0.001 0.523 0.193 0.91 0.280
β1 -0.014 0.116 0.110 0.94 0.014
β2 -0.056 0.195 0.190 0.90 0.041

0.9 LQMM β0 0.004 0.730 0.640 0.84 0.725
β1 0.003 0.162 0.195 0.98 0.026
β2 0.039 0.309 0.359 0.97 0.097

0.9 BNQM β0 -0.003 0.828 0.294 0.87 0.771
β1 -0.013 0.108 0.103 0.95 0.012
β2 -0.044 0.206 0.195 0.92 0.044

with little variation. Comparisons between estimated and true errors are presented

in Figure 2.4. The solid black line is simulated error (from Gamma distribution),

and the colored dash curves are estimated errors at different quantile levels. We can

see how close the simulation results are to the true errors in Figure 2.5 by centering

errors at each quantile.
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Figure 2.3 Trace plots of Proposed method at quantiles: 0.1, 0.5, 0.9
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Figure 2.4 Errors of Proposed method at quantiles: 0.1, 0.5, 0.9
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Table 2.11 Summaries and coverage probabilities of 95% intervals: comparing
Reich’s marginal random effects model and the proposed method

p Method Coef Bias SSD ESE CPs MSE
0.1 Reich β0 0.101 0.551 0.149 0.87 0.330

β1 0.007 0.031 0.028 0.92 0.001
β2 0.003 0.035 0.032 0.96 0.001

0.1 BNQM β0 -0.059 0.113 0.083 0.85 0.018
β1 0.005 0.022 0.016 0.88 0.000
β2 0.017 0.035 0.033 0.93 0.002

0.5 Reich β0 0.041 0.210 0.145 0.82 0.046
β1 -0.007 0.041 0.028 0.85 0.002
β2 -0.005 0.044 0.035 0.90 0.002

0.5 BNQM β0 -0.009 0.171 0.189 0.95 0.029
β1 0.002 0.035 0.037 0.99 0.001
β2 0.006 0.078 0.079 0.98 0.006

0.9 Reich β0 0.090 0.498 0.166 0.49 0.255
β1 -0.011 0.099 0.032 0.52 0.010
β2 -0.020 0.103 0.077 0.84 0.011

0.9 BNQM β0 -0.011 0.129 0.173 0.97 0.018
β1 0.004 0.023 0.033 0.99 0.001
β2 0.001 0.041 0.069 0.99 0.002

Simulation Study III

We then investigate the performance of the proposed method under scenarios with

possible skewness and multimodality, particularly when normality assumption of ran-

dom effects distribution does not hold. Again, we consider the model (2.6) for gen-

erating the simulation data

yij = β0 + ui + (β1 + νi)xij + β2zij + (1 + γxij)εij
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Figure 2.5 Errors comparison of Proposed method at quantiles: 0.1, 0.5, 0.9

where i = 1, . . . ,m, j = 1, . . . , n, (β0, β1, β2) = (100, 2, 1), zij ∼ Binom(1, 0.5),

xij = δi + ηij, δi ∼ N(0, 1), ηij ∼ N(0, 1). A sample size of n = 100 subjects with

m = 10 repeated measures for each is applied for each scenario. The design is sim-

ilar as the previous scenarios except normal mixture random effects or random errors.

(a) ui ∼ 11
18N(−1.05, 0.2) + 7

18N(1.65, 0.15), ν = 0, εij ∼ N(0, 5), γ = 0.25. Intra-

class correlation of (a) is 0.28.

(b) ui ∼ 11
18N(−1.05, 0.2) + 7

18N(1.65, 0.15), ν = 0, εij ∼ χ2
2, γ = 0.25. Intraclass cor-

relation of (b) is 0.49.

(c) ui ∼ 11
18N(−0.35, 0.05) + 7

18N(0.55, 0.10), ν = 0, εij ∼ 0.7 × N(−1, 0.1) + 0.3 ×

N(1, 0.1), γ = 0.25. Intraclass correlation of model (c) is 0.22.
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The relative bias of posterior means, sample standard deviations (SSD), estimated

standard deviations (ESD) and the corresponding 95% coverage probabilities (CPs)

for the fixed effect coefficients using the proposed model are summarized in Table

2.12. In case (a) and case (b), we assume a binormal mixture distribution for random

intercept, ui. Overall, the performance of BNQM is satisfied. Estimation bias of

slope x of LQMM estimator is high, which may be caused by the violation of nor-

mal random effect assumption. The bias still exists using Gauss-Laguerre (type =

‘robust’) quadrature.

Model (c) assumes normal mixture errors, we use the random effect with smaller

variance to ensure a moderate ICC. Overall, the performance is satisfied. The bias

of tail quantiles is slightly higher than median for BNQM, which might be caused

by the fact that nonparametric approaches restrict the error densities to necessarily

have their modes at the quantile of interest. In Figure 2.6, we can see the estimated

errors is very close to the binormal mixture errors after centering at each quantile.

2.5 Orthodontic Growth Data

In this section, we analyze the Orthodontic data first reported in Potthoff and Roy

(1964). Investigators at University of North Carolina Dental School followed the teeth

growth of 27 children (16 males, 11 females) from age 8 until age 14. Every two years

they measured the distance between the pituitary gland and the pterygomaxillary

fissure, two points that are easily identified on x-ray exposures of the side of the

head. The data set is available in the package nlme and has been analyzed by

several random effect models [Sheather, 2009, Geraci, 2014]. We are interested in

applying our method to a subset (i.e. girls) of the data. Figure 2.7 shows a plot

of distance against age for each of the 11 girls. The model we consider for subject

i(i = 1, 2, . . . , 11) at age j(j = 1, 2, 3, 4) is as follows:

Distanceij = β0 + b0i + β1Agej + eij
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Table 2.12 Simulation Results (a), (b), (c)

p Model Coef Bias SSD ESE CPs MSE LQMM (Bias)
0.1 a β0 -0.007 0.482 0.524 0.70 0.735 -0.001

β1 -0.065 0.321 0.359 0.92 0.109 0.112
β2 -0.026 0.547 0.429 0.86 0.298 0.019

0.5 a β0 -0.001 0.520 0.445 0.83 0.282 0.000
β1 -0.014 0.238 0.180 0.85 0.057 0.001
β2 0.016 0.409 0.292 0.85 0.167 -0.020

0.9 a β0 -0.002 0.494 0.501 0.90 0.310 0.001
β1 0.049 0.266 0.384 0.99 0.088 -0.055
β2 -0.015 0.288 0.300 0.96 0.083 -0.020

0.1 b β0 -0.005 0.344 0.491 0.85 0.380 -0.002
β1 0.070 0.094 0.334 0.99 0.029 0.028
β2 0.072 0.211 0.402 0.90 0.050 -0.002

0.5 b β0 -0.001 0.262 0.126 0.84 0.080 0.002
β1 -0.027 0.128 0.085 0.99 0.020 -0.008
β2 -0.074 0.144 0.158 0.92 0.026 -0.020

0.9 b β0 -0.003 0.466 0.314 0.93 0.307 0.002
β1 -0.003 0.229 0.285 0.97 0.052 -0.066
β2 -0.049 0.186 0.176 0.92 0.037 -0.015

0.1 c β0 -0.001 0.116 0.042 0.91 0.032 -0.001
β1 0.088 0.046 0.031 0.89 0.024 0.015
β2 -0.018 0.113 0.052 0.94 0.013 0.005

0.5 c β0 0.001 0.144 0.059 0.96 0.040 0.001
β1 0.002 0.101 0.055 0.89 0.010 -0.004
β2 -0.034 0.111 0.086 0.92 0.014 -0.008

0.9 c β0 0.002 0.189 0.058 0.98 0.072 -0.001
β1 -0.095 0.191 0.055 0.88 0.083 -0.018
β2 -0.010 0.185 0.085 0.94 0.034 -0.001
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Figure 2.6 Errors in Scenario (c)
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Figure 2.7 Plots of Distance against Age for each female
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where the distribution of random effect b0i is assumed to have a Dirichlet Process

prior. The error term eij unspecified and we only know its τth quantile equal to 0.

The model is a random intercepts model since it assumes that the intercepts differ

randomly across the 11 female subjects but distance increases linearly with age at the

same fixed rate, and age is modeled as a fixed effect. Figure 2.8 shows the varying

intercepts among subjects. The model assumes correlation between two distance

measurements for the same child is constant no matter which ages they were taken.

For example the ith child, two measurements Di,j and Di,k are taken at age j and k.

Corr(Distancei,j,Distancei,k) = cov(Dij, Dik)
σijσik

= cov(bi + eij, bi + eik)
sd(bi + eij)sd(bi + eik)

= cov(bi, bi)√
σ2
b + σ2

e

√
σ2
b + σ2

e

= σ2
b

σ2
b + σ2

e

The correlations between two distances measurements for the same female subject

over each time interval range from 0.830 to 0.948. Thus, it seems the constant corre-

lation over time assumption is reasonable for female subjects.

We first find the optimal precision parameters and summarize the fixed effect

results at τ = 0.1, . . . , 0.9 in Table 2.13. Figure 2.9 presents a concise summary of

the quantile regression results. Figure 2.10 presents a concise summary of the quantile

regression results from LQMM. The solid line with filled dots represents the point

estimates, β̂0(τ), with the shaded gray area depicting a 95% pointwise confidence

band. Superimposed on the plot is a dashed line representing the ordinary least

squares estimate of the mean effect, with two dotted lines again representing a 95%

confidence interval for this coefficient. The intercept of the model may be interpreted

as the estimated conditional quantile function of the distance distribution of girl at

age 11 (Following the example in lqmm package, age is centered at 11 years so that
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Table 2.13 Coefficient estimates for Orthodontic data set at τ = 0.1, . . . , 0.9

τ

Coeff 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
BNQR estimates

β0(τ) 20.69 20.99 21.04 21.79 22.09 22.08 23.02 23.28 23.49
β1(τ) 0.45 0.46 0.45 0.43 0.45 0.49 0.49 0.49 0.48

LQMM estimates
β0(τ) 20.76 21.27 21.50 22.74 22.94 23.01 23.11 23.25 23.53
β1(τ) 0.25 0.42 0.50 0.41 0.44 0.42 0.46 0.50 0.54

Table 2.14 Quantile coefficient β0(τ = 0.5): fixed effect and random effect

Subjects F01 F02 F03 F04 F05 F06
LQMM 21.43 22.95 23.66 24.71 22.60 21.20
BNQM 20.97 22.47 23.10 24.30 22.35 20.88
Subjects F07 F08 F09 F10 F11
LQMM 22.95 23.30 21.20 18.74 26.11
BNQM 22.68 23.33 20.88 18.27 23.99

the cross-product between intercept and slope is zero). The rate of growth in girls is

around 0.43 to 0.49 mm per year at all nine quantiles, which is almost unchanged as

we assumed. Figure 2.11 and figure 2.12 are the trace plots and error comparisons,

respectively. The simulations converge well and the errors are comparable between

our proposed method and lqmm, and both have τth quantile equal to 0. We conclude

the chains have reached their stationary distributions and inference can be drawn from

them.

Combining with random effect, the intercept effect for each girl in two methods

are compared in 2.14. Both method show that F10 has the smallest quantile intercept

coefficient while F11 has the largest value.
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Figure 2.9 Regression quantiles for distance and 95% confidence intervals (shaded
area). Least squares estimates (dashed lines) and 95% confidence intervals (dotted
lines) are reported.
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 Figure 2.11 Trace plot for each quantile level
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Figure 2.12 Error plot for each quantile level
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Chapter 3

Clustered Interval-Censored Data and

Regression Methods

In survival data, subjects are followed over time for a event of particular interest. One

feature of survival data is censoring, which means the data is incomplete. But unlike

missing data, censored data provide partial information because an observed failure

time may fall into a certain range. There are usually three types of censored data,

right-, left-, and interval-censored data. The right-censored or left-censored data

mean that the failure times of interest are observed greater or less than censoring

times, respectively. The third type of censoring is interval-censoring [Finkelstein,

1986, Sun, 2007], which is commonly used to describe a type of sampling scheme or

incomplete data in medical studies that entail periodical follow-up. For instance in

the acquired immune deficiency syndrome (AIDS) studies that concern the human

immunodeficiency virus (HIV) infection and the AIDS incubation time (the time

from HIV infection to AIDS diagnosis), an individual due for the scheduled visits

may miss some visits and may return with a changed disease status, which gives rise

to “interval-censored data”. The time to emergence of a tooth in children is a typical

example. We only know the true emergence time is greater than the last observation

time at which the tooth has not emerged and less than or equal to the first observation

time at which the tooth has emerged, thus giving an interval that contains the true

(but unobserved) time of emergence of tooth. In such cases, the observed failure time

falls into a certain interval with the exact occurrence times being unknown.
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In multicenter clinical trials for HIV, some types of cancer, or other infectious

diseases, clustered interval-censoring has become increasingly common. Collecting

multiple observations on an experimental unit results in clustered data. The ob-

servations within a cluster are typically correlated. Mixed models can account for

within-cluster correlation by including cluster-specific random effects in regression

models. In this chapter, the context of the interval-censored data and statistical

inferences approaches is reviewed, with particular focus on modeling approach to

clustered interval-censored data.

3.1 Interval-Censored Data

We introduce three data-collection schemes of interval-censored data in this section.

To proceed, some notions are established first. Let T be within some random time

interval, denote U and V as the two examination times satisfying U ≤ V with prob-

ability 1. Assuming that each subject is observed twice, the observed data consists

of

{U, V, δ1 = I(T ≤ U), δ2 = I(U < T ≤ V ), δ3 = I(V < T <∞)}

Note that by taking U = V , case I interval-censored data can be described by this

formulation too. In this situation, each study subject is observed only once and the

failure time of interest is known only to be smaller or greater than the observation

time. In other words, the failure time of interest is either left- or right-censored and

such data are also called case I interval-censored data.

One example is the lung tumor data, there is of great interest in knowing whether

the environment accelerates the time to lung tumor [Dinse and Lagakos, 1983]. In this

paper, the 114 RFM mice with nonlethal lung tumors are assigned to two treatments,

conventional environment (CE) and germ-free environment (GE). The time to tumor

occurrence is only known to be smaller or greater than the observed time of death.
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That is, we only observe left- or right-censored failure times. As defined above, this

type of data is called current status data or case I interval-censored data.

In correspondence, general interval-censored data that are not current status data

are usually referred to as case II interval-censored data. Until the mid-1980s, many

articles about general interval-censored data began to appear. A study conducted be-

tween 1976 and 1980 in Boston on early breast cancer patients was usually considered

to be a good example [Finkelstein and Wolfe, 1985]. Physicians evaluated cosmetic

appearance including breast retraction of the patients after treatment every four or

six months. In the data set, patients who did not experience breast retraction are

right censored observations denoted by intervals with no finite right end points; inter-

vals are given by the last clinic visit at which breast retraction had not yet occurred

and the first clinic visit time at which breast retraction was detected.

A natural generalization of case II interval-censoring is case k interval-censoring

where there are k > 2 examination times for each individual. For each individual i

there is a sequence of examination time

0 < Yi1 < Yi2, . . . , < Yini <∞

i = 1, . . . , n. Yi = (Yi1, . . . , Yini). Let Ti be the ith individual’s unobserved event

time. The observations become

{Ui, Vi, δ1i, δ2i, δ3i, i = 1, . . . , n}

In practice, it is convenient to reduce case k interval-censoring to case II interval-

censoring by considering the following three possibilities:

1. If the event has occurred by the first examination. Denote Ui = Yi1, and let

Vi = Yi2. Furthermore, let δ1i = I(Ti ≤ Ui), δ2i = I(Ui ≤ Ti ≤ Vi), and

δ3i = I(Vi < Ti). Then δ1i = 1, δ2i = 0, δ3i = 0;

2. Ti is known to be between a range (YiL, YiR), where YiL is the last examination

time proceeding Ti, and YiR is the first examination time following Ti. Denote
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Ui = YiL, and let Vi = YiR. Similarly, let δ1i = I(Ti ≤ Ui), δ2i = I(Ui ≤ Ti ≤ Vi),

and δ3i = I(Vi < Ti). Then δ1i = 0, δ2i = 1, δ3i = 0;

3. At the last examination, the event has not occurred. Denote Vi = Yini , then

δ1i = 0, δ2i = 0, δ3i = 1.

Another generalization of the formulation is to assume that there exists a set of

observation time points, say U1 ≤ U2 · · · ≤ Uk, for each study subject, where k is a

random integer. The observed information then has the form

{(k, Uj, δj = I(Uj−1 < T ≤ Uj)), j = 1, . . . , k},

Both representations give rise to the same likelihood function [Sun, 2007]. There are

some other types of censoring data such as doubly interval-censored data which is

rare compared to others [Sun, 1995].

3.2 Regression Analysis for Interval-Censored Data

For the analysis of interval-censored failure time data in medical and health studies,

estimation of the cumulative distribution function (cdf) of survival time or the survival

function is perhaps the most important and common task.

Let T denote the survival time of interest in a survival study and F = Pr(T ≤ t)

its cdf. Suppose that observed data can be represented by {Ii}ni=1, where Ii = (Li, Ri]

is the interval known to contain the unobserved survival time associated with the ith

subject. If Li = 0, we have a left-censored observation and if Ri =∞, we have a right-

censored observation. In this section, we will discuss two common regression analysis

of interval-censored data. Other models such as the proportional odds regression

model, additive hazards model and the logistic model for discrete interval-censored

failure time data are discussed in [Sun, 2007].
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Proportional Hazards (PH) Model

In survival analysis, the most commonly used regression model is perhaps the Cox

proportional hazards (PH) model, which has the form

λ(t|X) = λ0(t)exp(X ′
β),

where λ0(t) denotes the unknown baseline hazard function and β the p-dimensional

vector of regression efficients. The coditional density and the survival function of T

given X has the forms

f(t;X) = λ0(t)exp(X ′
β)exp(−Λ0(t)exp(X ′

β))

S(t;X) = exp(−Λ0(t)exp(X ′
β)) = S0(t)exp(X

′
β)

For inference about β and the cumulative hazard function Λ0(t) =
∫ t

0 λ0(s)ds, full

likelihood approach maximizes L over β and Λ0(t) simultaneously [Finkelstein, 1986].

Consider a survival study that consists of n independent subjects and gives to

interval-censored data

{(Li, Ri],Xi; i = 1, . . . , n}

for the survival times of interest. (Li, Ri] is the interval within which the unobserved

survival event associated with the ith subject to occur. If Li = 0, we have a left-

censored observation and if Ri = ∞, we have a right-censored observation. Xi

represents the p dimensional vector of covariates associated with the ith subject and

assume that the censoring mechanism is independent of the covariates. let S(t;X)

denote the survival function for a subject with covariates X. Then the likelihood

contribution has the form

L =
n∏
i=1

[S(Li;Xi)− S(Ri;Xi)]

assuming that Li < Ri for all i = 1, . . . , n.

60



Under PH model, the log of likelihood function has the form

l(β, S0) =
n∑
i=1

log
{

[S0(Li)]exp(Xi
′
β) − [S0(Ri)]exp(Xi

′
β)
}

in terms of the regression parameter β and the baseline survival function S0(t).

For inference, the maximum likelihood approach first studied in Finkelstein [1986].

The likelihood depends on S0 only through its values at the different observation time

points. Thus one only needs to focus on estimating the values of S0 at these time

points. Let s0 = 0 < s1 < · · · < sm+1 =∞ denote the ordered distinct time points of

all observed interval end points {Li, Ri; i = 1, . . . , n} and αij = I(sj ∈ (Li, Ri]), j =

1, . . . ,m, i = 1, . . . , n. S0(sj) can be written as

S0(sj) =
j∏

k=1
exp(−exp(αk)) = exp(−

j∑
k=1

exp(αk)), j = 1, . . . ,m.

Then the log likelihood function l() can be rewritten as

l(β,α) =
n∑
i=1

log


m+1∑
j=1

αij

[
exp(−αj−1exp(Xi

′
β))− exp(−αjexp(Xi

′
β))

]
where αj = ∑j

k=0 exp(αk), α0 = −∞ and αm+1 =∞. To maximize the log likelihood

function above, the Newton-Raphson algorithm can be used by treating it as a log

likelihood function arising from a parametric model. Then the maximum likelihood

estimators of β and α can be determined by solving the score equations of β and α.

An alternative to the above full likelihood approach is the marginal likelihood

approach. This approach defines a marginal likelihood as the summation of the

probabilities of the ranking of the underlying and unobserved failure times that are

consistent with observed interval-censored data [Satten, 1996]. It does not require

estimation of the baseline cumulative hazard function, but it requires solving compli-

cated score equations and involves massive computational effort. The disadvantage is

that it does not have a simple and easily manageable form, resulting in the need for

great computational effort. [Satten, 1996] investigated this approach and proposed a
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Gibbs sampling procedure for generating underlying rankings and the use of stochas-

tic approximation for solving the score functions. Goggins et al. [1998] developed a

Monte Carlo EM algorithm for determination of regression parameter estimates under

the model. The marginal likelihood approach focuses only on the finite-dimensional

regression parameters, while full likelihood approach directly estimates the finite di-

mensional regression parameters and the infinite-dimensional nuisance parameter si-

multaneously.

Other semeparametric approaches have been developed for regression analysis of

interval-censored data under the proportional hazards (PH) model. Pan [1999] pro-

posed a generalized gradient projection method to estimate the regression coefficients

besides estimating the baseline hazard using the nonparametric maximum likelihood

estimation method. Applying the local likelihood and a penalized spline-based ap-

proach are proposed [Betensky et al., 2002, Cai and Betensky, 2003]. In these ap-

proaches, some finite-dimensional functions are used to approximate the log baseline

hazard function in the PH model. Cai and Betensky [2003] developed a penalized

likelihood approach and modeled the logarithm of the baseline hazard function with a

linear spline. Zhang et al. [2010] proposed a sieve maximum likelihood method adopt-

ing B-splines for the logarithm of the cumulative baseline hazard function. From a

Bayesian perspective, Sinha et al. [1999] used piecewise constant function for the base-

line hazard function and Çetinyürek Yavuz and Lambert [2011] modeled the baseline

density function with penalized B-splines, and Lin et al. [2014] approximated the

baseline cumulative hazard function with monotone splines. A comprehensive review

was given by Zhang and Sun [2010].

Accelerated Failure Time (AFT) Model

Cox proportional hazard model has been extensively used in medical research. How-

ever, the assumption of proportional hazard functions is strong and may be violated.
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One important alternative is the accelerated failure time (AFT) model. The AFT

approach is analogous to the classical linear regression approach. In such represen-

tation, the natural logarithm of the survival time Y = log(T ) is modeled. This is

the natural transformation made in linear models to convert positive variables to

observations on the entire real line. A linear model is assumed for Yi, i = 1, . . . , n ,

namely,

Yi = log(Ti) = µ+ β′Xi +Wi (3.1)

Ti denote the time to the event, X a vector of fixed time explanatory covariates and

Wi, i = 1, . . . , n is the error distribution. Common choices for the error distribution

include the standard normal distribution which yields a log normal regression model,

the extreme value distribution , which yields a Weibull regression model, or a logistic

distribution, which yields a log logistic regression model. One can also formulate a

nonparametric form for the errors using a mixture distribution.

The concept that covariates affect the failure time in the AFT model and the PH

model is similar but the way to affect survival function is different. Let S0(t) denote

the survival function of T = eY when X is zero, that is, S0(t) is the survival function

of exp(µ+W ).

Pr(T > t|X) = Pr(T > log(t)|X) = Pr(µ+W > log(t)− βTX|X)

= Pr(exp(µ+W ) > texp(−β′X)|X) = S(texp(−β′X))

Notice that the effect of the explanatory variables in the original time scale is to

change the time scale by a factor exp(−β′X). Depending on the sign of β′X, the

time is either accelerated by a constant factor or degraded by a constant factor. Note

that the hazard rate of an individual with a covariate value Z for this class of models

is related to a baseline hazard rate h0 by

h(t|X) = h0(texp(−β′X))exp(−β′X)
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The underlying assumption for AFT models is that the effect of covariates is mul-

tiplicative (proportional) with respect to survival time. In other words, the effect is

to change the timescale and therefore to accelerate or decelerate the time to failure.

Although the PH model specifies that the effect of covariates on the hazard is mul-

tiplicative, it does not give a direct relationship between X and T because h0(t) is

arbitrary. In contrast, the model 3.1 specifies a linear relationship between log T and

X.

Maximum likelihood approach is relatively hard on AFT model. The main diffi-

culty is that the regression parameter and the nuisance function are tangled in the

likelihood function [Sun, 2007], though Huang and Wellner [1997] prove that the

consistency of the maximum likelihood estimators of those two, no asymptotic distri-

bution theory for the estimators is available yet, even for the case of current status

data. Linear rank statistics can be used to estimate regression parameters. For

AFT models, inferences about the regression parameter are based on approximate

likelihood or estimating equations. For these approximate likelihood or estimating

equation approaches, one needs to investigate their efficiency, which is usually more

challenging than developing the approximate likelihood or estimating equations [Sun,

2007]. References include Betensky et al. [2001], Pu and Li [1999], Li and Pu [2003],

Rabinowitz et al. [1995], Xue et al. [2006].

3.3 Accelerated Failure Time Model with Random Effects

The concept of frailty was originally introduced by Vaupel [1976] to characterize the

heterogeneity among clusters in survival analysis. The frailty component is often

assumed to have a parametric distribution such as gamma or log-normal distribu-

tions. Goethals et al. [2009] modele interval-censored clustered cow udder quarter

infection times under the Gamma frailty PH model. Zhang and Sun [2010] propose

weighted score functions where the weight depends on cluster size or a within-cluster
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resampling procedure to avoid the correlation issue within clusters. Kim [2010] model

failure times and cluster size jointly using the PH model with normal random effect

and a mixed ordinal regression model. Li et al. [2012] propose frailty additive hazards

model for clustered interval-censored data. Pan et al. [2015] propose a multiple frailty

proportional hazards model, not only accounting for the baseline heterogeneity and

effect variation across clusters for predictors, but also quantifying the probabilities

of the existence of such frailties. Most of those methods have focused on one shared

frailty or equivalently one random intercept term to account for variation in baseline

risk across clusters. However, the frailty PH model has some important drawbacks.

First, the implied correlation structure is too simple, e.g., in the analysis of the multi-

center clinical trials only the center effect and not the center by treatment interaction

can be controlled for. Second, the choice of the frailty distribution can have a crucial

impact on the results for the regression parameters of interest [Hougaard, 2012].

In contrast to the PH model, neglected covariates in the AFT model do not cause

bias in estimating the regression parameters for the included covariates [Hougaard,

1999]. Komárek and Lesaffre [2007] propose a Bayesian accelerated failure time model

whose error distribution is modelled in a flexible way as a finite normal mixture.

An advantage of the full Bayesian approach is the fact that a general random effect

vector can be easily included in the model. An extension of the AFT model, the mixed

effects accelerated failure time (MEAFT) model, takes into account the within-cluster

correlations explicitly by including random effects in the regression expression, as in

a classical linear mixed model of Laird and Ware [1982].

Let Tij be the exact event time of interest that cannot be observed, β = (β1, . . . , βp)T

is the unknown regression coefficient vector, Xij is the covariate vector for fixed ef-

fects, bi = (bi,1, . . . , bi,q)T are i.i.d. random effects vectors. Zij is the covariate vector

for random effects, εij are i.i.d. error random variables with a density kτ (εij) as in
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equation (2.4), i = 1, . . . , n, j = 1, . . . , ni . For the jth subject in the ith cluster,

log(Tij) = yij = βTXij + bTi Zij + εij (3.2)

The (i, j)th true log-event time yij is only known to lie in the interval (yLij, yRij ]. Gen-

erally, a single observation (δij1, δij2, δij3, yLij, yRij , Xij) has the conditional likelihood of

jth observation in ith cluster given by

Lij =
{
F (yRij)

}δij1{
F (yRij)− F (yLij)

}δij2{1− F (yLij)
}δij3 (3.3)

where F (·) is the conditional cumulative distribution function of Tij. We define

Fτ (x) =
∫ x
−∞ f

2
τ (x;G1, G2)dx. The likelihood contribution of the ith cluster is given

by

Li =
∫
Rq
{
ni∏
j=1

∫ yUij

yLij

f(y − βTxij − bT zij)dy}g(b)db,

Due to multiple integration in the likelihood above, it is rather cumbersome to use

maximum-likelihood based methods for the model (4.2) with interval-censored obser-

vations, even with error and random effects being parametrically specified. Stochastic

versions of standard estimation techniques can be used; Komárek and Lesaffre [2007]’s

Bayesian approach avoids full parametric assumptions (like normality) concerning the

error density, while still being computationally tractable for both interval-censored

data and a general covariate vector zij. They specify the density of the error term εij

in (4.2) as

f(ε) =
k∑
j=1

wjψ(ε|µj, σ2
j ),

with ψ(·|µj, σ2
j ) is density of N(µj, σ2

j ). Note that k is the number of mixture com-

ponents and unknown, as well as the mixture weights w = (w1, ..., wk)T , means

µ = (µ1, ..., µk)T , and variances σ2 = (σ2
1, ..., σ

2
k)T . For the actual implementation of

the reversible jump MCMC algorithm, Gibbs sampler was conducted and the auxil-

iary variable (AV) method was employed.
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Chapter 4

Bayesian Quantile Analysis of Clustered

Interval-Censored Data

We are interested to explore a flexible quantile regression framework for analysing

time-to-event data that are randomly interval-censored. Unlike hazard regression,

quantile regression models the conditional quantiles of the survival time directly.

Therefore, the results are easier to interpret. More importantly, quantile regression

allows the covariates to have different effects at different tails of the survival distribu-

tion and thus is able to capture important population heterogeneity Koenker [2005].

In Section 5.1, a quantile regression with parametric error distribution is constructed

to analyze clustered interval-censored data. Then in Section 5.2, a nonparametric

error distribution is applied to the same Bayesian AFT model with random effects.

We run simulations to compare these two methods and apply our method to a real

data set.

4.1 Quantile AFT Model for Clustered Interval-Censored Data

The accelerated failure time (AFT) model with random effects can be used to model

correlated survival data in the mixed model framework. The asymmetric Laplace

distribution is commonly used for parametric Bayesian quantile regression since its

τ -th quantile is zero; the double exponential distribution is a special case of the

asymmetric Laplace distribution with τ = 0.5.

Let Tij be the exact event time that cannot be observed, β = (β1, . . . , βp)T is
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the unknown regression coefficient vector, Xij is the covariate vector for fixed effects,

bi = (bi,1, . . . , bi,q)T are i.i.d. random effects vectors. Zij is the covariate vector

for random effects, εij are i.i.d. error random variables with a density kτ (εij) as in

equation (2.4), i = 1, . . . , n, j = 1, . . . , ni . For the jth subject in the ith cluster,

log(Tij) = yij = βTXij + bTi Zij + εij (4.1)

The (i, j)th true log-event time yij is only known to lie in the interval (yLij, yRij ]. As-

suming yij ∼ ALD, covariate vectors Xij = {Xij1, ..., Xijp}, i = 1, ..., n, j = 1, ..., ni,

β = {β1, ..., βp} are fixed effects and bi are random effects. The response distribution

can be written as

f(yij|β, bi, σi, τ) = τ(1− τ)
σi

exp
{
−ρτ (

yij −Xijβ − Zijbi
σi

)
}

The likelihood function for β, bi and σi is as follows

L(β, bi, σi;yi, τ) =
ni∏
j=1

f(yij|β, bi, σi, τ)

∝ 1
σnii

exp

−
ni∑
j=1

(
yij −XT

ijβ − Zijbi
σi

)(
τ − I(yij −Xijβ − Zijbi

σi
≤ 0)

)
The prior distributions for σi, β and bi

σi|G
iid∼ G, i = 1, . . . , n

G|α, d ∼ DP (αG0)

β ∼ Np(µ0,Σ0)

bi|Gb ∼ Gb, i = 1, . . . , n

Gb|αb, G0b ∼ DP (αbG0b)

where µ0 and Σ0 are hyper parameters assumed to be known. G0 has a uniform prior,

and G0b ∼MVN(0,D).
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We want to generate data from a truncated distribution over interval (yLij, yRij ].

f(yij|β, bi, σi, τ) = τ(1−τ)
σi

exp
{
−ρτ (yij−Xijβ−Zijbiσi

)
}
, εij = yij −Xijβ − Zijbi,

fτ (εij;σi) =


τ(1−τ)
σi

exp
{

1−τ
σi
εij
}

if εij < 0
τ(1−τ)
σi

exp
{
− τ
σi
εij
}

if εij ≥ 0

Taking integral of the density, the CDF is Fτ (εij;σi) =
∫∞
−∞ fτ (εij;σi) is as follows

Fτ (εij;σi) =


τe

1−τ
σi

εij if εij < 0

1− (1− τ)e−
τ
σi
εij if εij ≥ 0

We can use the inverse CDF algorithm to generate εij from a truncated distribution

over interval (yLij −Xijβ−Zijbi, yRij −Xijβ−Zijbi]. For a distribution Fτ (εij;σi), we

generate uniform random variate U on the interval (Fτ (yLij−Xijβ−Zijbi;σi), Fτ (yRij−

Xijβ − Zijbi;σi)] and then apply the inverse CDF,

F−1
τ (U ;σi) = σ

1− τ log
U

τ
1(0,τ)U −

σ

τ
logU − 1

τ − 1 1[τ,1)U

the resulting value εij follow the Fτ (εij;σi) distribution truncated to (yLij − Xijβ −

Zijbi, y
R
ij −Xijβ − Zijbi], which is the same as yij truncated on (yLij, yUij ].

4.2 Nonparametric Quantile AFT model

Here, we develop the Bayesian nonparametric model of DP mixture implied condi-

tional regression to the context of quantile AFT model with random effects. The

data consist of a set of covariate vectors X and corresponding responses that cannot

be observed. Let Tij be the exact event time of interest that cannot be observed, Xij

is the covariate vector for fixed effects, β = (β1, . . . , βp)T is the unknown regression

coefficient vector, bi = (bi,1, . . . , bi,q)T are i.i.d. random effects vectors. Zij is the co-

variate vector for random effects, εij are i.i.d. error random variables with a density

kτ (εij) as in equation (2.4), i = 1, . . . , n, j = 1, . . . , ni . For the jth subject in the ith

cluster,

log(Tij) = yij = βTXij + bTi Zij + εij (4.2)
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The (i, j)th true log-event time yij is only known to lie in the interval (yLij, yRij ].

The density of the error term εij is specified as

kτ (εij;σ1i, σ2i) = τ

σ1i
1(−σ1i,0)(εij) + 1− τ

σ2i
1[0,σ2i)(εij)

Assuming independent DP priors for the mixing distributions G1 and G2, we obtain

the error density as f 2
τ (ε;G1, G2) =

∫ ∫
kτ (ε;σ1, σ2)dG1(σ1)dG2(σ2), and it is defined

that
∫ 0
−∞ f

2
τ (ε;G1, G2)dε = τ .

In the presence of interval-censoring, the unobserved (log) event time is within an

interval: yij ∈ (yLij, yRij ]. Because −σ1i < yij−Xijβ−Zijbi < σ2i, yij can be randomly

sampled from (max(yLij, Xijβ + Zijbi − σ1i),min(yRij , Xijβ + Zijbi + σ2i)]. Thus, the

likelihood contribution of subject j in cluster i is given by

∫ yRij

yLij

kτ (y −Xi,jβ − Zi,jbi;σ1,i, σ2,i)dy

Similarly, we need to generate data from a truncated distribution over interval (yLij, yRij ].

Taking integral of the density kτ (εij;σ1i, σ2i) = τ
σ1i

1(−σ1i,0)(εij) + 1−τ
σ2i

1[0,σ2i)(εij), the

CDF Fτ (εij;σ1i, σ2i) =
∫∞
−∞ kp(εij;σ1i, σ2i) is as follows

Fτ (εij;σ1i, σ2i) =



0 if εij ≤ −σ1i

τ(εij+σ1i)
σ1i

if −σ1i < εij < 0

τ + (1−τ)εij
σ2i

if 0 ≤ εij < σ2i

1 if εij ≥ σ2i

We can use the inverse CDF algorithm to generate εij from the mixture distribution,

which is a truncated distribution over interval (yLij−Xijβ−Zijbi, yRij −Xijβ−Zijbi].

For a distribution Fτ (εij;σ1i, σ2i), we generate uniform random variate U on the in-

terval (Fτ (yLij −Xijβ−Zijbi;σ1i, σ2i), Fτ (yRij −Xijβ−Zijbi;σ1i, σ2i)] and then apply

the inverse CDF,

F−1
τ (U ;σ1i, σ2i) = (U − τ)σ1i

τ
1(0,τ)(U) + (U − τ)σ2i

1− τ 1[τ,1)(U)
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the resulting value εij follow the Fτ (εij;σ1i, σ2i) distribution truncated to (yLij−Xijβ−

Zijbi, y
R
ij −Xijβ−Zijbi], which is the same as yij truncated on (yLij, yUij ]. With latent

mixing parameters σ1i and σ2i for each response yi, the full Bayesian model has the

hierarchical structure

yij|β, bi, σ1i, σ2i
ind∼ kττ (yij −Xijβ − Zijbi;σ1i, σ2i), truncated on (yLij, yUij ]

i = 1, . . . , n, j = 1, . . . , ni

σri|Gr
iid∼ Gr, r = 1, 2, i = 1, . . . , n

Gr|αr, dr ∼ DP (αrGr0), r = 1, 2,

β ∼ Np(µ0,Σ0)

bi|Gb ∼ Gb, i = 1, . . . , n

Gb|αb, G0b ∼ DP (αbG0b)

4.3 Posterior Computation

Here, we present the MCMC method for posterior inference under the model devel-

oped in Section 4.2. Detailed expressions for the algorithm follow in Section 2.3.

Posterior computing details for QAFT can be found in Appendix.B

As presented in the Bayesian hierarchical modeling in section 4.2, DP priors are

given to both scale parameters, σ1i and σ2i, and the random effects vector bi. The

appeal of DP priors in this method owes much to the Pólya urn formulation for

the posterior predictive distribution as a mixture of point masses on the observed

data and the underlying prior base measure αG0. α1, α2, αb correspond to precision

parameters for σ1i, σ2i, and bi respectively. The optimal values of αr, r = 1, 2, b,

are decided by the grid search. G0 is a probability distribution that is the mean

of the process. We adopt a uniform distribution for Gr0 [Gelman, 2006]. A normal

base measure with zero mean is specified to G0b. An assumed DP prior with zero

mean may still imply a non-zero mean for random effect distribution, to ensure that
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E(yi) = X iβ, the additional constraint E(bi = 0) is needed. As noted before, the

error yij −Xijβ − Zijbi must be within (−σ1i, σ2i) for all i. X i is an ni × p matrix,

Zij = Xij. β is a 1 × p regression coefficient vector. Due to the nature of the error

distribution, yij − Xijβ − Zijbi is restricted to be within [−σ1i, σ2i] when updating

each parameter.

Independent p−dimensions multivariate normal distribution are given to fixed

effect β, β ∼ Np(µ0,Σ0). The posterior distribution of β can be written as

p(β|Y ) ∝ prior(β)
n∏
i=1

ni∏
j=1

p(yij|β)

∝ Np(µ,Σ0)
n∏
i=1

ni∏
j=1

p(yij|β, bi, σ1i, σ2i)

∝ 1
(2π)p/2 | Σ0 |1/2 exp

(
− 1

2(β − µ0)TΣ0
−1(β − µ0)

)

×
n∏
i=1

ni∏
j=1

τ

σ1i
1(−σ1i,0)(yij −Xijβ − Zijbi) + 1− τ

σ2i
1[0,σ2i)(yij −Xijβ − Zijbi)

We use M-H algorithm to sample posteriors for β. we suppose the proposal(jump)

distribution for β is multivariate normal with covariance matrix T0,

J(β∗|βt−1) = 1
(2π)p/2 | T0 |1/2 exp

(
− 1

2(β∗ − βt−1)TT−1
0 (β∗ − βt−1)

)

J(βt−1|β∗) = 1
(2π)p/2 | T0 |1/2 exp

(
− 1

2(βt−1 − β∗)TT−1
0 (βt−1 − β∗)

)

Since the jump distribution is symmetric, J(β∗|βt−1) = J(βt−1|β∗), we compute

acceptance ratio

r = p(β∗|Y )/J(β∗|βt−1)
p(βt−1|Y )/J(βt−1|β∗)

= p(β∗|Y )
p(βt−1|Y )

=
1

(2π)p/2|Σ0|1/2

1
(2π)p/2|Σ0|1/2

×
exp

(
− 1

2(β∗ − µ0)TΣ0
−1(β∗ − µ0)

)∏n
i=1

∏ni
j=1 p(yij|β∗, bi, σ1i, σ2i)

exp
(
− 1

2(βt−1 − µ0)TΣ0
−1(βt−1 − µ0)

)∏n
i=1

∏ni
j=1 p(yij|βt−1, bi, σ1i, σ2i)
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We accept a given proposal with the acceptance probability which is the outcome of

the acceptance function described above. Operationally, we draw a random number

uniformly between 0 and 1, and if logr is larger than the random number, we accept

the proposal; otherwise we reject it.

logr = log[p(β∗|Y )]− log[p(βt−1|Y )]

= log
(

n∏
i=1

ni∏
j=1

p(yij|β, bi, σ1i, σ2i)
)
− 1

2(β∗ − µ0)TΣ0
−1(β∗ − µ0)

−
(
log
( n∏
i=1

ni∏
j=1

p(yij|βt−1, bi, σ1i, σ2i)
)
− 1

2(βt−1 − µ0)TΣ0
−1(βt−1 − µ0)

)

Prior specifications and posterior computation for bi

We write the prior distribution for the random effect vector bi as follows, to indicate

that a DP prior is used for the random distribution Gb. It involves hyper priors αb

and G0b.

bi|Gb ∼ Gb, i = 1, . . . , n

Gb|αb, G0b ∼ DP (αbG0b)

Since random effects do not have to be positive and are usually considered to be

normal, we assume the base G0b to be a multivariate normal distribution Nq(0,D).

Instead of placing a gamma prior on the DP precision parameter, we use fixed values

by grid selection from several possible values.

We can draw values for each bi from its conditional distribution given both the

data and the bi for g 6= i ( which is written as b−i).

Conditional prior has this form,

bi|b−i ∼
αb

αb + n− 1G0b(bi) + 1
αb + n− 1

∑
g 6=i

δ(bg)
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Sampling from posterior distributions for each bi, suppose D is known:

p(bi|yi) ∝ prior(bi|b−i)×
ni∏
j=1

p(yij|β, bi, σ1i, σ2i)

∝
(

αb
αb + n− 1G0b(bi) + 1

αb + n− 1
∑
g 6=i

δ(bg)
)

ni∏
j=1

p(yij|β, bi, σ1i, σ2i)

∝ αb
αb + n− 1Nq(0,D)×

{
ni∏
j=1

τ

σ1i
1(−σ1i,0)(yij −Xijβ − Zijbi) +

1− τ
σ2i

1[0,σ2i)(yij −Xijβ − Zijbi)
}

+

1
αb + n− 1

∑
g 6=i

δ(bg)×
{

ni∏
j=1

τ

σ1i
1(−σ1i,0)(yij −Xijβ − Zijbi) +

1− τ
σ2i

1[0,σ2i)(yij −Xijβ − Zijbi)
}

which can be written as riHi + ∑
g 6=i qi,gδ(bg), Hi is the posterior distribution for bi

based on the G0b and cluster i, with likelihood F (yi, bi) = ∏ni
j=1 p(yij|β, bi, σ1i, σ2i).

The values of the qi,g and of ri are written as follows, where b is such that ∑g 6=i qi,g +

ri = 1.

riHi ∝
αb

αb + n− 1Nq(0,D)F (yi, bi)

ri = bαbi

∫
F (yi, bi)dG0b(bi)

Hi = G0b(bi)F (yi, bi)

= 1
(2π)n/2 |D |n/2 exp

(
− 1

2

n∑
i=1

(bi − 0)TD−1(bi − 0)
)
F (yi, bi)

qi,g = bF (yi, bg), g = 1, . . . , i− 1, i+ 1, . . . , n

Update Φc using M-H sampler for all c ∈ c1, . . . , cn: draw a new value from Φc|yi

such that ci = c: we suppose the proposal(jump) distribution for bi is multivariate

normal with covariance matrix T1, bi∗ is the proposed candidate, bit−1 is the current

vector value.

J(bi∗|bit−1) = 1
(2π)p/2 | T1 |1/2 exp

(
− 1

2(bi∗ − bit−1)TT−1
1 (bi∗ − bit−1)

)
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J(bit−1|bi∗) = 1
(2π)p/2 | T1 |1/2 exp

(
− 1

2(bit−1 − bi∗)TT−1
1 (bit−1 − bi∗)

)

Since the jump distribution is symmetric, J(bi∗|bit−1) = J(bit−1|bi∗), we compute

acceptance ratio

r = p(bi∗|yi)/J(bi∗|bit−1)
p(bit−1|yi)/J(bit−1|bi∗)

= p(bi∗|yi)
p(bit−1|yi)

=

1
(2π)p/2|D|1/2 exp

(
− 1

2(bi∗ − 0)TD−1(bi∗ − 0)
)
Fci=c(yi, bi∗)

1
(2π)p/2|D|1/2 exp

(
− 1

2(bit−1 − 0)TD−1(bit−1 − 0)
)
Fci=c(yi, bit−1)

logr = log[p(bi∗|yi)]− log[p(bit−1|yi)]

= logFci=c(yi, bi∗)−
1
2(bi∗ − 0)TD−1(bi∗ − 0)

−
(
logFci=c(yi, bit−1)− 1

2(bit−1 − 0)TD−1(bit−1 − 0)
)

Then, we can directly sample D using a Wishart conjugate prior, D−1 is usually

used and D−1 ∼Wishartd(ν0,Φ0)

p(D−1|ν0,Φ0) ∝ |D−1 |(ν0−d−1)/2 exp
(
− 1

2tr(Φ
−1
0 D

−1)
)

The posterior can be written as

p(D−1|bi) ∝
n∏
i=1

p(bi|D)p(D−1|ν0,Φ0)

∝ 1
(2π)n/2 |D |n/2 exp

(
− 1

2

n∑
i=1

(bi − 0)TD−1(bi − 0)
)

× |D−1 |(ν0−d−1)/2 exp
(
− 1

2tr(Φ
−1
0 D

−1)
)

∝ |D−1 |(n+ν0−d−1)/2 exp
(
− 1

2
(
tr(Φ−1

0 D
−1)− 1

2tr(D
−1

n∑
i=1
bibi

T )
))

∝ |D−1 |(n+ν0−d−1)/2 exp
(
− 1

2
(
tr(Φ−1

0 D
−1 +

n∑
i=1
bibi

TD−1)
))

Thus, we can directly sample from the conjugate posterior

D−1|bi ∼ Wishartd
(
n+ ν0,

(
Φ−1

0 +
n∑
i=1
bibi

T
)−1)
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Prior specifications and Posterior computation for σri

Because σri depends on yij through β and bi, and β and bi is supposed to be known.

In other words, l(yij|σri)p(σri) is equivalent to l(yij)p(β|σri)p(bi|σri)p(σri). The like-

lihood of i-th observation is F (yi, σri) = ∏ni
j=1 l(yij|σri)

p(σri|yij, Gr0) ∝ F (yi, σri)prior(σri)

∝ F (yi, σri)prior(σri)

∝ αr
αr + n− 1Gr0(σri)F (yi, σri) + 1

αr + n− 1
∑
g 6=i

δ(σrg)F (yi, σri)

∝ αr
αr + n− 1Unif(dr)F (yi, σri) + 1

αr + n− 1
∑
g 6=i

δ(σrg)F (yi, σri)

which can be written as riHi + ∑
g 6=i qi,gδ(θg), Hi is the posterior distribution for σr

based on the prior Gr0 and the single observation i, with likelihood F (yi, σri). The

values of the qi,g and of ri are written as follows, where b is such that∑g 6=i qi,g+ri = 1.

riHi ∝
αr

αr + n− 1Unif(dr)F (yi, σri)

ri = bαr

∫ 1
dr
F (yi, σri)dσri

Hi = 1
dr
F (yi, σri)

qi,g = bF (yi, σrg), g = 1, . . . , i− 1, i+ 1, . . . , n

M-H to all c ∈ c1, . . . , cn, update Φc|yi such that ci = c: we suppose the proposal

density is lognormal, so σ∗rc ∝ logNormal and X = logσ∗rc ∝ Normal

f(X) = 1√
2πτ 2

e−(x−µ)2/(2τ2)

f(σ∗rc) = 1√
2πτ 2

e−(σ∗rc−µ)2/(2τ2)

σ∗rc

The ratio

r = p(σ∗rc|y)/J(σ∗rc|σt−1
rc )

p(σt−1
rc |y)/J(σt−1

rc |σ∗rc)

J(σ∗rc|σt−1
rc ) = 1√

2πτ 2σ∗rc
e−(logσ∗rc−logσt−1

rc )2/(2τ2)
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J(σt−1
rc |σ∗rc) = 1√

2πτ 2σt−1
rc

e−(logσt−1
rc −logσ∗rc)2/(2τ2)

logr = log[p(σ∗rc|y)]− log[p(σt−1
rc |y)] + logσ∗rc − logσt−1

rc

where p(σ∗rc|y) = ∏
i∈cHi

4.4 Simulation Study

In order to evaluate the proposed model, we analyze simulated data with comparison

to a parametric model, QAFT, under two scenarios: errors from ALD and a bimodal

normal mixture distribution. A sample size of 50 subjects with 10 repeated measures

for each is applied for each scenario. The logarithm of the uncensored times log(Tij) =

yij are generated using a linear mixed model log(Tij) = yij = βTXij + bTi Zij + εij, i =

1, . . . , 50, j = 1, . . . , 10. The fixed covariate vector is Xij, Xij = (1, X1ij, X2ij)′. We

generated continuous covariate X1ij from Unif(−2, 2), binary covariate X2ij from

Bernoulli(0.5). β = (β0, β1, β2)T is the regression coefficient vector for fixed effects.

β1 = β2 = 1, β0 are set to be 1, 2 and 3 at quantile 0.3, 0.5 and 0.75. bi =

(bi,1, . . . , bi,q)T are i.i.d. random effects vectors. We set a normal random effect

distribution, b0i ∼ Normal(0, 0.1) and a bimodal normal mixture distribution b1i ∼

1/2N(−0.1, 0.01)+1/2N(0.1, 0.01), and b2i as 0. Zij is the covariate vector for random

effects, and we assumed Zij = Xij.

The random error εij is with a density kτ (εij) as in equation (2.4). Two types of

error densities are considered, first εij is distributed as an ALD with three parameters,

location, scale and skewness. we can write it as εij ∼ ALD(0, 0.2, τ); second, we

assume εij is distributed as a mixture of two normal densities, and write it as εij ∼

3/5N(−0.3, 0.02) + 2/5N(0.2, 0.03). For model QAFT, we gave DP prior for scale

parameter and random effects, thus there are two precision parameters unknown.

For model BNQAFT, there are three precision parameters unknown since there are
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two scale parameters. We do grid search to find the optimal combination of three

precision parameters and optimal values are chosen with the smallest DIC.

For the jth subject in the ith cluster, the exact event time of interest, Tij, cannot

be observed and is only known to lie in the interval (yLij, yRij ]. Thus, we used a Poisson

distribution with mean 25 to randomly generate intervals within ranges sampled from

U(0, 20). Censoring indicators were created based on the cummulative time intervals

for each observation. The Possion distribution parameters are revised a little bit for

each quantile level such that data censoring types consisted of about (10−15%) right

censoring, (10− 15%) left censoring, and (70− 80%) interval-censoring observations.

Here we show the traceplots and Gewke’ diagnostic for regression coefficients

β0, β1, β2, from the first simulated dataset. We used tests in the ‘coda?package in

R to test if the chains appear to be converged. The Geweke’ diagnostic produces a

Z-score for a test of equality of means between the first 10% and last 50% parts of

the chain. Based on the Z-score, a corresponding p-value can be calculated. Table

4.1 and Table 4.2 present the Z-scores and P-values for the Geweke’ tests for MCMC

chains of the QAFT model parameters under ALD errors and normal mixture errors.

Geweke’ convergence diagnostic for MCMC chains of the proposed BNQAFT model

parameters are shown in Table 4.3 and Table 4.5. All the p-values are greater than

0.05. Based on both graphic and non-graphic diagnostics, it seems that the MCMC

chains mix well and converge.

Each simulation is repeated 500 times at three quantile levels, 0.3, 0.5 and 0.75.

Table 4.6 summarized the 500 simulated datasets results for both QAFT and BN-

QAFT models under ALD errors, the bias of posterior means, sample standard de-

viations (SSD), estimated standard deviations (ESD) and the corresponding 95%

coverage probabilities (CPs) for the fixed effect coefficients are presented. The pa-

rameters were estimated using the proposed BNQAFT model fairly accurately, while

estimation in QAFT model have larger bias under all three quantile levels though CPs
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Figure 4.1 Traceplots of posteriors for MCMC chains of the model parameters
with ASL errors

are quite high. It can be noted that the ESD is much larger than SSD in the QAFT

and ESD in BNQAFT models. The ESD is the mean of the standard deviations of

the parameter estimates, which indicates QAFT model’s parameter estimates have

large standard deviations such that the variations in MCMC chains are larger than

the variations in BNQAFT model. In BNQAFT model, SSD and ESD are compa-

rable with each other. For the 500 simulated datasets using Normal Mixture errors,

the bias of posterior means, sample standard deviations (SSD), estimated standard

deviations (ESD) and the corresponding 95% coverage probabilities (CPs) for the
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Figure 4.2 Error comparison for QAFT model with ALD errors

fixed effect coefficients using the proposed model and the QAFT are summarized in

Table 4.7. The parameters were estimated using the proposed model fairly accurately

with high coverage probabilities including the true values. The parameters were es-

timated using the proposed BNQAFT model fairly accurately, while estimation in

QAFT model have larger bias under 0.3 and 0.5 levels. Again, the ESD in QAFT is

very large which indicates some problem in estimation in QAFT models. We can say

BNQAFT model outperforms QAFT model in these two simulation scenarios.
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Figure 4.3 Traceplots of posteriors for MCMC chains of the model parameters
with Normal mixture errors
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Figure 4.4 Error comparison for QAFT model with Normal mixture errors

4.5 Analysis of Lymphatic Filariasis Data

The proposed method is applied to the lymphatic filariasis study conducted in Recife,

Brazil [Dreyer et al., 2006]. The goal is to compare the effectiveness of two treat-

ments, co-administration of diethylcarbamazine and albendazole (DEC/ALB) (new

treatment) versus DEC alone (standard treatment) for the treatment of lymphatic

filariasis (adult Wuchereria bancrofti infection). The study consists of 47 subjects

aging from 16 to 66. Among the 47 study subjects, 22 received co-administration

of DEC and ALB while the remaining 25 were given DEC alone. Ultrasound ex-

aminations were done to detect worm deaths at 7, 14, 30, 45, 60, 90, 180, 270 and 360
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Table 4.1 Geweke’s convergence diagnostic for MCMC chains of the QAFT model
parameters with ALD errors

τ = 0.3 τ = 0.5 τ = 0.75

Parameter Z score P -value Z score P -value Z score P -value
β0 -0.0436 0.9652 0.9273 0.3538 -0.7706 0.4409
β1 0.2848 0.7758 0.3864 0.6992 0.5179 0.6046
β2 0.3633 0.7164 0.1369 0.8911 0.3153 0.7525

Table 4.2 Geweke’s convergence diagnostic for MCMC chains of the QAFT with
Normal mixture errors

τ = 0.3 τ = 0.5 τ = 0.75

Parameter Z score P -value Z score P -value Z score P -value
β0 -1.1069 0.2683 -0.5479 0.5838 -0.5479 0.5838
β1 0.7577 0.4487 0.9359 0.3493 0.9359 0.3493
β2 0.6158 0.5380 1.1677 0.2429 1.1677 0.2429

Table 4.3 Geweke’s convergence diagnostic for MCMC chains of the BNQAFT
with ALD errors

τ = 0.3 τ = 0.5 τ = 0.75

Parameter Z score P -value Z score P -value Z score P -value
β0 0.2852 0.7755 -0.2312 0.8171 1.3499 0.1770
β1 -0.8427 0.3994 -0.5075 0.6117 0.6830 0.4946
β2 -1.0528 0.2924 -1.2749 0.2023 -0.5075 0.6118

days. The response variable of interest is the extinction time of nests. In total, 78

adult worm nests were detected by ultrasound; there was a range of 1 ∼ 5 nests per

patient. In this study, a patient represents the cluster, and cluster size is number of

adult worms nests.
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Figure 4.5 Traceplots of posteriors for proposed method MCMC chains of the
model parameters with ALD errors

Table 4.4 Geweke’s convergence diagnostic for MCMC chains of the BNQAFT
with Normal Mixture errors

τ = 0.3 τ = 0.5 τ = 0.75

Parameter Z score P -value Z score P -value Z score P -value
β0 0.2194 0.8263 -1.6914 0.0908 1.5080 0.1315
β1 -1.0033 0.3157 0.7030 0.4821 -0.7420 0.4581
β2 0.2901 0.7717 1.6399 0.1010 -1.6327 0.1025
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Figure 4.6 Error plot for proposed method each quantile level with ALD errors

Table 4.5 Geweke’s convergence diagnostic for MCMC chains of the BNQAFT
with Normal mixture errors

τ = 0.3 τ = 0.5 τ = 0.75

Parameter Z score P -value Z score P -value Z score P -value
β0 0.2852 0.7755 -0.2312 0.8171 1.3499 0.1770
β1 -0.8427 0.3994 -0.5075 0.6117 0.6830 0.4946
β2 -1.0528 0.2924 -1.2749 0.2023 -0.5075 0.6118
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Figure 4.7 Traceplots of posteriors for proposed method MCMC chains of the
model parameters with mix errors

This data set has been analyzed by Williamson et al. [2008], Zhang and Sun [2010],

Kim [2010], Pan et al. [2015] using different modeling methods and under different

assumptions. Thus their analysis suggest that the time-to-clearance of a nest may

depend on cluster size in the corresponding patient. Williamson et al. [2008] inves-

tigate the estimation of the marginal distribution for multivariate survival data with

informative cluster size using cluster-weighted Weibull and Cox proportional hazard

model. They found that, as cluster size (i.e. the number of nests) increased, the

proportion of nest clearance decreased. Figure 4.9 shows the estimated survival func-

tions according to treatment groups based on the nonparametric maximum likelihood
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Figure 4.8 Error plot for proposed method each quantile level with mix errors

estimates (NPMLEs) using the Turnbull algorithm [Turnbull, 1976]. This plot does

not take account of cluster size and the survival curves indicate that there is insuffi-

cient evidence to conclude that there is treatment difference in time to nest clearance.

The survival curve for the DEC/ALB treatment is not separated from that for the

DEC treatment, which suggests adding ALB does not improve the extinction of worm

nests.

The main purpose is to compare the effectiveness of two treatments, DEC/ALB

and DEC alone, on the eradication of adult worm nests. We fit our proposed model

to the survival data with two covariates: treatment group (DEC/ALB=0, DEC=1)

and age in years. The outcome variable is the nest-specific time when all the adult
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Table 4.6 Simulation Results for two models with ALD errors

τ Method Bias SSD ESE CPs MSE
0.3 QAFT β0 0.11 0.026 0.078 0.85 0.014

β1 0.07 0.026 0.057 0.89 0.006
β2 0.09 0.032 0.099 0.99 0.009

0.3 BNQAFT β0 0.02 0.028 0.022 0.81 0.001
β1 0.01 0.016 0.014 0.88 0.000
β2 0.00 0.035 0.027 0.89 0.001

0.5 QAFT β0 0.10 0.038 0.084 0.98 0.011
β1 0.12 0.048 0.084 0.77 0.017
β2 0.12 0.036 0.130 0.99 0.016

0.5 BNQAFT β0 0.02 0.033 0.021 0.78 0.001
β1 0.01 0.021 0.013 0.80 0.001
β2 0.01 0.037 0.027 0.84 0.001

0.75 QAFT β0 0.08 0.020 0.089 0.99 0.007
β1 0.04 0.022 0.077 0.99 0.002
β2 0.06 0.027 0.121 0.99 0.004

0.75 BNQAFT β0 0.00 0.025 0.022 0.94 0.001
β1 0.01 0.017 0.014 0.93 0.000
β2 0.02 0.034 0.026 0.79 0.002

worms are cleared in the particular nest. In previous analysis, Williamson et al. [2008]

and Kim [2010] reported the influence of age is insignificant on the failure times, but

Zhang and Sun [2010]’s results suggest that it took a longer time for old patients to

have their worms cleared than for young patients.

To make sure the MCMC chains converge to the stationary distribution, we show

the traceplots (Figure 4.10) and Geweke diagnostic in the CODA package in R for

regression coefficients β0, β1, β2 for three quantile levels, 0.25, 0.5 and 0.75. We ran

10000 posterior samples and treated the first 5000 samples as burn-in. Table 4.8
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Table 4.7 Simulation Results for two models with Normal Mixture errors

τ Method Bias SSD ESE CPs MSE
0.3 QAFT β0 0.08 0.031 0.081 0.98 0.007

β1 0.07 0.029 0.060 0.93 0.005
β2 0.08 0.042 0.106 0.99 0.008

0.3 BNQAFT β0 0.02 0.034 0.030 0.79 0.002
β1 0.01 0.019 0.018 0.94 0.000
β2 0.01 0.042 0.035 0.92 0.002

0.5 QAFT β0 0.02 0.021 0.059 0.99 0.001
β1 0.09 0.021 0.062 0.88 0.009
β2 0.11 0.033 0.103 0.99 0.012

0.5 BNQAFT β0 0.02 0.039 0.032 0.82 0.002
β1 0.01 0.023 0.019 0.88 0.001
β2 0.01 0.094 0.041 0.89 0.009

0.75 QAFT β0 0.01 0.035 0.106 0.99 0.001
β1 0.04 0.029 0.085 0.99 0.003
β2 0.07 0.052 0.141 0.99 0.008

0.75 BNQAFT β0 0.03 0.048 0.041 0.78 0.003
β1 0.02 0.030 0.031 0.92 0.001
β2 0.03 0.069 0.065 0.93 0.006

presents the z-scores for tests of equality of means and corresponding P -values for

the Geweke tests. All the P -values are greater than 0.05. Based on both graphic and

non-graphic diagnostics, it seems that the MCMC chains mix well and converge.

In Table 4.9, we have presented the fixed effects of treatment and age from our

proposed model. We ran 5000 iterations for each quantile level. After 4000 burn-

ins, 1000 iterations were used to calculate estimated parameters. The estimates of

treatment group in three quantile levels are 1.240, 1.568 and 1.587, respectively.

That is to say, the estimated acceleration factors are exp(1.240) = 3.46, exp(1.568) =
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Figure 4.9 Survival curves by treatment group

4.80, exp(1.587) = 4.89, which suggest that the DEC alone is effective for delaying

nest extinction by stretching survival time by a factor of 4.80 for median level.

Overall, our estimation results suggest that DEC/ALB combination accelerates

the extinction of nests than DEC alone. The treatment effect is not consistent with

previous studies. For example, in Zhang and Sun [2010]’s analysis with a weighted

estimating procedure, there is essentially no difference on adding ALB to DEC for the

LF treatment. According to Kim [2010], they found that nests with treatment DEC

alone have faster failures using a proportional hazard frailty model. The difference

between results based on previous studies and those given here is due to the method

of modeling and the assumption made. In previous approaches, the cluster size was
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Figure 4.10 Traceplots of posteriors for MCMC chains of the model parameters in
the lymphatic filariasis data

regarded as weights and weighted estimating procedures were used to estimate param-

eters. Besides, they have strong proportional hazard assumption. The relationship

between the number of nests and clustered interval-censoring nest-extinction time is

also an interesting topic but not explored in this study. Given that the true distri-

butions of the random effects and error density are unknown, our model provide the

capability of estimating the survival and random effect distributions nonparametri-

cally.
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Table 4.8 Geweke’s convergence diagnostic for MCMC chains of the model
parameters in the lymphatic filariasis data

τ = 0.25 τ = 0.5 τ = 0.75

Parameter Z score P -value Z score P -value Z score P -value
Intercept -0.9937 0.8398 0.2832 0.6115 -2.0185 0.9782
Treatment 1.5457 0.9389 0.3878 0.6509 0.3212 0.6260

Age -0.6846 0.7532 -0.6473 0.7413 -0.4615 0.6778

Table 4.9 Estimates of parameters in the lymphatic filariasis data

τ Parameter Estimate Standard Deviation 95 % CI
0.25 Intercept 1.338 0.292 (0.766, 1.910)

Treatment 1.240 0.176 (0.890, 1.584)
Age 0.102 0.015 (0.073, 0.131)

0.5 Intercept 1.933 0.336 (1.474, 2.392)
Treatment 1.568 0.321 (1.139, 1.997)

Age 0.051 0.021 (0.014, 0.088)
0.75 Intercept 2.245 0.222 (1.810, 2.680)

treatment 1.587 0.253 (1.091, 2.083)
Age 0.042 0.020 (0.002, 0.081)
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Chapter 5

Concluding Remarks

In this dissertation, we build a model-based, fully inferential framework for semipara-

metric quantile regression for clustered data. In particular, we place emphasis on

quantile regression models that allow the error density to change non-parametrically

with the covariates. A mixture of two uniform densities is used for the error term in

quantile regression for longitudinal data and clustered interval-censoring data. The

performance of the proposed method was accessed under different error scenarios,

such as normal, heavy-tailed, skewed or bimodal mixture distributions. Although

capturing more general forms of skewness and tail behaviors, these nonparametric

approaches also restrict the error densities to necessarily have their modes at the

quantile of interest, particularly when modeling extreme quantiles. In practice, di-

rect quantile estimates at the tails are often unstable due to data sparseness. Based

on the extreme value theory, Wang et al. [2012] develop extrapolation methods for es-

timating the high conditional quantiles associated with heavy-tail distributions. An-

other drawback of our method is, if more than one quantile regressions are needed,

the particular model need to be fitted separately at each quantile level. Through

joint-quantile modeling, Jang and Wang [2015]’s method can yield the joint posterior

distribution of quantile coefficients at multiple quantiles and meanwhile avoid the

quantile crossing issue. They approximate the central density by linearly interpo-

lating the conditional quantile functions of the response at multiple quantiles and

estimate the tail densities by adopting extreme value theory.

The classical assumption for random effects is a Normal distribution [Molenberghs,
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2000, Ruppert et al., 2003]. While this choice is mathematically convenient, it is often

questionable in practice for several reasons. The normal distribution is symmetric,

unimodal and has light tails. Since the distributional assumption is made on unob-

served quantities, it is typically hard to validate. Possible skewness and multimodal-

ity (i.e. unconsidered groups in the data) may be masked when checking the normal

distribution in terms of estimated random effects. A finite mixture of normal distri-

butions as a random effects distribution suggested by Verbeke and Lesaffre [1996],

Molenberghs [2000] is much more flexible. A data driven choice of the number of mix-

ture components is desirable and could be achieved by a penalization of the mixture

weights. Dirichlet process mixture for the random effects distribution is naturally

considered. The main advantage of Dirichlet processes is its clustering property that

we obtain a clustering of components automatically. Therefore, subgroup identifica-

tion is possible. Dirichlet process priors for random effects has been mainly used in

the Bayesian inference for density estimation and random effects models after being

proposed by Kleinman and Ibrahim [1998a] and with the development of MCMC

methods for sampling from the posterior distribution of Dirichlet process mixture

models, which has enabled the application of nonparametric Bayesian methods to a

variety of practical data analysis problems.

The proposed Bayesian quantile approach for inferences on clustered interval-

censored failure time data has been proven to have good performance through our

simulation study. This approach is especially useful in multi-center clinical trials for

cancer or infectious diseases, since the detection of cancer progression or infection is

normally made through periodic lab examinations. Since current literature for clus-

tered interval-censored data are mainly involving shared-frailty PH models [Goethals

et al., 2009, Zhang and Sun, 2010, Kim, 2010, Li et al., 2012, Pan et al., 2015], our

developed model provides a new way to analyze this type of data.
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Appendix A

Posterior Sampling under Nonparametric error

distributions

The posterior distributions for each parameter are derived one by one. Models with

non-conjugate priors can be handled by applying Gibbs sampling with auxilliary

parameters. We use this technique to update ci for a Dirichlet process mixture model

without haveing to integrate with respect G0.

A.1 Sampling from posterior distribution for σri

Because σri depends on yij through β and bi, and β and bi is supposed to be known.

In other words, l(yij|σri)p(σri) is equivalent to l(yij)p(β|σri)p(bi|σri)p(σri). The like-

lihood of i-th observation is F (yi, σri) = ∏ni
j=1 l(yij|σri)

p(σri|yij, Gr0) ∝ F (yi, σri)prior(σri)

∝ F (yi, σri)prior(σri)

∝ αr
αr + n− 1Gr0(σri)F (yi, σri) + 1

αr + n− 1
∑
g 6=i

δ(σrg)F (yi, σri)

∝ αr
αr + n− 1Unif(dr)F (yi, σri) + 1

αr + n− 1
∑
g 6=i

δ(σrg)F (yi, σri)

which can be written as riHi + ∑
g 6=i qi,gδ(θg), Hi is the posterior distribution for σr

based on the prior Gr0 and the single observation i, with likelihood F (yi, σri). The
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values of the qi,g and of ri are written as follows, where b is such that∑g 6=i qi,g+ri = 1.

riHi ∝
αr

αr + n− 1Unif(dr)F (yi, σri)

ri = bαr

∫ 1
dr
F (yi, σri)dσri

Hi = 1
dr
F (yi, σri)

qi,g = bF (yi, σrg), g = 1, . . . , i− 1, i+ 1, . . . , n

M-H to all c ∈ c1, . . . , cn, update Φc|yi such that ci = c: we suppose the proposal

density is lognormal, so σ∗rc ∝ logNormal and X = logσ∗rc ∝ Normal

f(X) = 1√
2πτ 2

e−(x−µ)2/(2τ2)

f(σ∗rc) = 1√
2πτ 2

e−(σ∗rc−µ)2/(2τ2)

σ∗rc

The ratio

r = p(σ∗rc|y)/J(σ∗rc|σt−1
rc )

p(σt−1
rc |y)/J(σt−1

rc |σ∗rc)

J(σ∗rc|σt−1
rc ) = 1√

2πτ 2σ∗rc
e−(logσ∗rc−logσt−1

rc )2/(2τ2)

J(σt−1
rc |σ∗rc) = 1√

2πτ 2σt−1
rc

e−(logσt−1
rc −logσ∗rc)2/(2τ2)

logr = log[p(σ∗rc|y)]− log[p(σt−1
rc |y)] + logσ∗rc − logσt−1

rc

where p(σ∗rc|y) = ∏
i∈cHi

A.2 Sampling from posterior distributions for β

p(β|yi) ∝ prior(β)
n∏
i=1

L(yi|β)

∝ Np(0,Σ0)
n∏
i=1

p(yi|β, bi, σ1i, σ2i)

∝ 1
(2π)1/2 | Σ0 |1/2 exp

(
− 1

2(β − 0)TΣ−1
0 (β − 0)

)
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×
n∏
i=1

ni∏
j=1

p

σ1i
1(−σ1i,0)(yij −Xijβ − Zijbi) + 1− p

σ2i
1[0,σ2i)(yij −Xijβ − Zijbi)

M-H: we suppose the proposal(jump) distribution for β is multivariate normal

with covariance matrix T0,

J(β∗|βt−1) = 1
(2π)1/2 | T0 |1/2 exp

(
− 1

2(β∗ − βt−1)TT−1
0 (β∗ − βt−1)

)

J(βt−1|β∗) = 1
(2π)1/2 | T0 |1/2 exp

(
− 1

2(βt−1 − β∗)TT−1
0 (βt−1 − β∗)

)

Since the jump distribution is symmetric, J(β∗|βt−1) = J(βt−1|β∗), we compute

acceptance ratio

r = p(β∗|yi)/J(β∗|βt−1)
p(βt−1|yi)/J(βt−1|β∗)

logr = log[p(β∗|yi)]− log[p(βt−1|yi)]

A.3 Sampling from posterior distributions for each bi, suppose D is

known

p(bi|yi) ∝ prior(bi|D)L(yi|bi)

∝ Np(0, D)p(yi|β, bi, σ1i, σ2i)

∝ 1
(2π)1/2 | D |1/2 exp

(
− 1

2(bi − 0)TD−1(bi − 0)
)

×
ni∏
j=1

p

σ1i
1(−σ1i,0)(yij −Xijβ − Zijbi) + 1− p

σ2i
1[0,σ2i)(yij −Xijβ − Zijbi)

M-H: we suppose the proposal(jump) distribution for bi is multivariate normal with

covariance matrix T1,

J(bi∗|bit−1) = 1
(2π)1/2 | T1 |1/2 exp

(
− 1

2(bi∗ − bit−1)TT−1
1 (bi∗ − bit−1)

)

J(bit−1|bi∗) = 1
(2π)1/2 | T1 |1/2 exp

(
− 1

2(bit−1 − bi∗)TT−1
1 (bit−1 − bi∗)

)
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Since the jump distribution is symmetric, J(bi∗|bit−1) = J(bit−1|bi∗), we compute

acceptance ratio

r = p(bi∗|yi)/J(bi∗|bit−1)
p(bit−1|yi)/J(bit−1|bi∗)

logr = log[p(bi∗|yi)]− log[p(bit−1|yi)]

Then, we can directly sample D using conjugate prior, D−1 ∼Wishartp(ν0,Φ0)

p(D−1|ν0,Φ0) ∝ | D−1 |(ν0−p−1)/2 exp
(
− 1

2tr(Φ
−1
0 D−1)

)

p(D−1|bi) ∝
n∏
i=1

p(bi|D)p(D−1|ν0,Φ0)

∝ 1
(2π)n/2 | D |n/2 exp

(
− 1

2

n∑
i=1

(bi − 0)TD−1(bi − 0)
)

× | D−1 |(ν0−p−1)/2 exp
(
− 1

2tr(Φ
−1
0 D−1)

)

∝ | D−1 |(n+ν0−p−1)/2 exp
(
− 1

2
(
tr(Φ−1

0 D−1)− 1
2tr(D

−1
n∑
i=1
bibi

T )
))

∝ | D−1 |(n+ν0−p−1)/2 exp
(
− 1

2
(
tr(Φ−1

0 D−1 +
n∑
i=1
bibi

TD−1)
))

D−1|bi ∼ Wishartp(n+ ν0,

(
Φ−1

0 +
n∑
i=1
bibi

T

)−1

)

A.4 Posterior Sampling of QAFT for clustered-interval data

The posterior distributions for each parameter are derived one by one. Models with

non-conjugate priors can be handled by applying Gibbs sampling with auxilliary

parameters. We use this technique to update ci for a Dirichlet process mixture model

without haveing to integrate with respect G0.
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Table A.1 Determination of precision parameters by DIC at quantile level 0.1

α1 α2 αb DIC α1 α2 αb DIC
0.1 0.1 0.1 1416.809 5 0.1 0.1 1339.026
0.1 0.1 1 1214.19 5 0.1 1 1277.33
0.1 0.1 5 1136.512 5 0.1 5 970.2703
0.1 0.1 20 1125.866 5 0.1 20 936.0066
0.1 1 0.1 1438.607 5 1 0.1 1343.849
0.1 1 1 1161.708 5 1 1 1209.962
0.1 1 5 1059.156 5 1 5 1182.65
0.1 1 20 932.935 5 1 20 1023.581
0.1 5 0.1 1380.349 5 5 0.1 1217.745
0.1 5 1 1194.234 5 5 1 1148.787
0.1 5 5 869.5041 5 5 5 957.5466
0.1 5 20 872.2571 5 5 20 1162.559
0.1 20 0.1 1409.015 5 20 0.1 1312.906
0.1 20 1 905.8409 5 20 1 1137.531
0.1 20 5 974.3051 5 20 5 1129.593
0.1 20 20 1139.726 5 20 20 848.4808

Sampling from posterior distribution for σi

Because σi depends on yij through β and bi, and β and bi is supposed to be known.

In other words, l(yij|σi)p(σi) is equivalent to l(yij)p(β|σi)p(bi|σi)p(σi). The likelihood

of i-th observation is F (yi, σi) = ∏ni
j=1 l(yij|σi)

p(σi|yij, G0) ∝ F (yi, σi)prior(σi)

∝ F (yi, σi)prior(σi)

∝ α

α + n− 1G0(σi)F (yi, σi) + 1
α + n− 1

∑
g 6=i

δ(σg)F (yi, σi)

∝ α

α + n− 1Unif(d)F (yi, σi) + 1
α + n− 1

∑
g 6=i

δ(σg)F (yi, σi)
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Table A.2 Determination of precision parameters by DIC at quantile level 0.1
(continued)

α1 α2 αb DIC α1 α2 αb DIC
1 0.1 0.1 1404.649 20 0.1 0.1 1423.355
1 0.1 1 1015.794 20 0.1 1 1194.149
1 0.1 5 776.7351 20 0.1 5 1125.351
1 0.1 20 1031.909 20 0.1 20 1256.755
1 1 0.1 1310.01 20 1 0.1 1322.58
1 1 1 1241.487 20 1 1 1194.209
1 1 5 916.3833 20 1 5 1160.246
1 1 20 805.5571 20 1 20 1239.188
1 5 0.1 1348.073 20 5 0.1 1364.133
1 5 1 1260.412 20 5 1 1138.306
1 5 5 989.2601 20 5 5 1239.804
1 5 20 1047.878 20 5 20 1057.974
1 20 0.1 1444.808 20 20 0.1 1226.757
1 20 1 1173.077 20 20 1 1234.787
1 20 5 1005.932 20 20 5 1225.193
1 20 20 1066.801 20 20 20 1096.868

which can be written as riHi + ∑
g 6=i qi,gδ(θg), Hi is the posterior distribution for σ

based on the prior G0 and the single observation i, with likelihood F (yi, σi). The

values of the qi,g and of ri are written as follows, where b is such that∑g 6=i qi,g+ri = 1.

riHi ∝
α

α + n− 1Unif(d)F (yi, σi)

ri = bα
∫ 1
dr
F (yi, σi)dσi

Hi = 1
d
F (yi, σi)

qi,g = bF (yi, σg), g = 1, . . . , i− 1, i+ 1, . . . , n

M-H to all c ∈ c1, . . . , cn, update Φc|yi such that ci = c: we suppose the proposal
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density is lognormal, so σ∗rc ∝ logNormal and X = logσ∗c ∝ Normal

f(X) = 1√
2πτ 2

e−(x−µ)2/(2τ2)

f(σ∗c ) = 1√
2πτ 2

e−(σ∗c−µ)2/(2τ2)

σ∗c

The ratio

r = p(σ∗c |y)/J(σ∗c |σt−1
c )

p(σt−1
c |y)/J(σt−1

c |σ∗c )

J(σ∗c |σt−1
c ) = 1√

2πτ 2σ∗c
e−(logσ∗c−logσt−1

c )2/(2τ2)

J(σt−1
c |σ∗c ) = 1√

2πτ 2σt−1
c

e−(logσt−1
c −logσ∗c )2/(2τ2)

logr = log[p(σ∗c |y)]− log[p(σt−1
c |y)] + logσ∗c − logσt−1

c

where p(σ∗c |y) = ∏
i∈cHi

Sampling from posterior distributions for β

p(β|yi) ∝ prior(β)
n∏
i=1

L(yi|β)

∝ Np(0,Σ0)
n∏
i=1

p(yi|β, bi, σi)

∝ 1
(2π)1/2 | Σ0 |1/2 exp

(
− 1

2(β − 0)TΣ−1
0 (β − 0)

)

×
n∏
i=1

1
σnii

exp

−
ni∑
j=1

(
yij −XT

ijβ − Zijbi
σi

)(
τ − I(yij −Xijβ − Zijbi

σi
≤ 0)

)
M-H: we suppose the proposal(jump) distribution for β is multivariate normal

with covariance matrix T0,

J(β∗|βt−1) = 1
(2π)1/2 | T0 |1/2 exp

(
− 1

2(β∗ − βt−1)TT−1
0 (β∗ − βt−1)

)

J(βt−1|β∗) = 1
(2π)1/2 | T0 |1/2 exp

(
− 1

2(βt−1 − β∗)TT−1
0 (βt−1 − β∗)

)
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Since the jump distribution is symmetric, J(β∗|βt−1) = J(βt−1|β∗), we compute

acceptance ratio

r = p(β∗|yi)/J(β∗|βt−1)
p(βt−1|yi)/J(βt−1|β∗)

logr = log[p(β∗|yi)]− log[p(βt−1|yi)]

Sampling from posterior distributions for each bi, suppose D

is known

p(bi|yi) ∝ prior(bi|D)L(yi|bi)

∝ Np(0, D)p(yi|β, bi, σ1i, σ2i)

∝ 1
(2π)1/2 | D |1/2 exp

(
− 1

2(bi − 0)TD−1(bi − 0)
)

× 1
σnii

exp

−
ni∑
j=1

(
yij −XT

ijβ − Zijbi
σi

)(
τ − I(yij −Xijβ − Zijbi

σi
≤ 0)

)

M-H: we suppose the proposal(jump) distribution for bi is multivariate normal with

covariance matrix T1,

J(bi∗|bit−1) = 1
(2π)1/2 | T1 |1/2 exp

(
− 1

2(bi∗ − bit−1)TT−1
1 (bi∗ − bit−1)

)

J(bit−1|bi∗) = 1
(2π)1/2 | T1 |1/2 exp

(
− 1

2(bit−1 − bi∗)TT−1
1 (bit−1 − bi∗)

)

Since the jump distribution is symmetric, J(bi∗|bit−1) = J(bit−1|bi∗), we compute

acceptance ratio

r = p(bi∗|yi)/J(bi∗|bit−1)
p(bit−1|yi)/J(bit−1|bi∗)

logr = log[p(bi∗|yi)]− log[p(bit−1|yi)]
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Lastly, we can directly sample D using a conjugate prior, D−1 ∼Wishartp(ν0,Φ0)

p(D−1|ν0,Φ0) ∝ | D−1 |(ν0−p−1)/2 exp
(
− 1

2tr(Φ
−1
0 D−1)

)

p(D−1|bi) ∝
n∏
i=1

p(bi|D)p(D−1|ν0,Φ0)

∝ 1
(2π)n/2 | D |n/2 exp

(
− 1

2

n∑
i=1

(bi − 0)TD−1(bi − 0)
)

× | D−1 |(ν0−p−1)/2 exp
(
− 1

2tr(Φ
−1
0 D−1)

)

∝ | D−1 |(n+ν0−p−1)/2 exp
(
− 1

2
(
tr(Φ−1

0 D−1)− 1
2tr(D

−1
n∑
i=1
bibi

T )
))

∝ | D−1 |(n+ν0−p−1)/2 exp
(
− 1

2
(
tr(Φ−1

0 D−1 +
n∑
i=1
bibi

TD−1)
))

D−1|bi ∼ Wishartp(n+ ν0,

(
Φ−1

0 +
n∑
i=1
bibi

T

)−1

)
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