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Figure 2.6 The complex Morlet wavelet. 

 

2.3.5 COMPLEX MORLET WAVELET 

 In 1946, the use of Gaussian-windowed sinusoids for time-frequency 

decomposition was introduced from ideas in quantum physics. It provides the best trade-

off between spatial and frequency resolution. In 1984, it was modified to keep the same 

wavelet shape over octave intervals, offering the first formalization of the continuous 

wavelet transform [109]. 

The shift parameter, u , and the scale parameter, s , can be included within the 

definition of the complex Morlet wavelet given by Equation 2.22. The shifted and dilated 

version of the mother wavelet can be given by 
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As the wavelet is squeezed and stretched to half and double of its original width (shown 

in Figure 2.2b), its frequency increases and decreases to double and half of its original 

value. 

 

2.3.6 LINEARITY PROPERTY 

 One property of the continuous wavelet transform is its linearity. Given a multi-

component signal 
1

N
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x x


 , where  1ix i N  are signal components, and 

 1i i N   are scalar weightings, the linearity states that the CWT coefficients for the 

signal x  are equivalent to the sum of the CWT coefficients for each component of x . In 

fact, the CWT is a convolution of a signal with a set of wavelets. Therefore, the 

foundation of this property is actually the linearity of integration. The property can be 

derived from 
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Based on Equation 2.24, the CWT linearity property can be expressed as 
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It can be used to analyze the multi-component signal. The linearity is used in the periodic 

error compensation algorithm to obtain periodic error amplitudes (or weightings). 
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CHAPTER 3 

WAVELET-BASED ALGORITHM DESIGN 

 

In this chapter, the periodic error compensation algorithm, which is based on the 

continuous wavelet transform, is described by introducing all the aspects during design. 

In the CWT, the complex Morlet wavelet is chosen as the mother wavelet. The 

mathematical model of periodic error is provided, as mentioned in the Chapter 1. The 

CWT is discretized before using in the periodic error compensation. The important 

concepts in the CWT using the Morlet wavelet are also introduced. The identification 

methods for periodic error information (frequency, phase, and amplitude) are offered in 

sequence. Then all the information can be combined, aiming at compensating the periodic 

error in a certain constant or non-constant velocity motion profile. 

 

3.1 PERIODIC ERROR MODEL 

 According to the discussion about periodic error in the Section 1.5, each order of 

the periodic error can be described as a simplified mathematical model, a pure sine wave 

 sinA t , where t  is the time, A  is the amplitude, and   is the phase. For example, for 

a periodic error, which consists of only first and second order periodic errors, can be 

expressed as    1 1 2 2sin sinA t A t  . Figure 3.1 shows first and second order periodic 

errors in both the time and spatial (polar coordinate) domains. The frequency, 1f , of the
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 first order periodic error is half of the second order error frequency, 
2f . Thus, the phase, 

1 , of first order periodic error is half of the second order phase, 
2 . 

 Higher order periodic error holds the similar relationship to the first order periodic 

error. In general, for k
th

 order periodic error  sink kA t , the frequency, 1kf kf , and the 

phase 1k k  . 

 

 

Figure 3.1. First and second order periodic error in time and spatial domain. 

 

3.2 DISCRETE TIME CONTINUOUS WAVELET TRANSFORM 

 The data collected from real world is always digital signal. Measured 

displacement data by a heterodyne interferometer, for instance, is collected at a very high 

sampling rate (typically 50 – 100 kHz), but it is still discrete signal. For a discrete signal, 

the continuous wavelet transform shown in Equation 2.14 cannot be directly applied. 

Instead, it must be transformed to a discretized form. For a digital signal  1x M  which 
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has M  data points, the discrete time continuous wavelet transform (DTCWT) can be 

described as 

    
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' 1

'
, '
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n n t
Wx n s x n s t

s
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

   
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where  x n  is the n
th

 discrete data point, *  is the mother wavelet, M  is the number of 

total data points in the signal, and t  is the sampling time.  

 

3.3 EDGE EFFECT IN THE REAL-TIME ALGORITHM 

 When the algorithm is implemented to post-process a measured displacement 

signal, the entire signal can be directly analyzed with the DTCWT since it is already 

known. However, when applying the algorithm in real-time (that is, a new displacement 

data point is received at each sampling time), only the present and previous data points 

are known. The DTCWT coefficient of one data point is calculated with its neighboring 

points. When calculating the DTCWT at the last point of the signal, half of the wavelet is 

outside the signal as shown in Figure 3.2. Therefore, the DTCWT at the edges of the 

signal is not proportional to the DTCWT when the wavelet is almost entirely in the 

signal, resulting in an “edge effect”. 

There is no known method to eliminate this effect. However, many methods have 

been developed to partially resolve the issue on the edge of signals of finite extent: 1) 

adding a line of zero values (zero padding), a line of constant values equal to the last 
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    , ,abs n s Wx n s  and (3.2) 
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, arctan

Re ,

Wx n s
n s

Wx n s


 
  

 
 

, (3.3) 

where Im and Re represent the imaginary and real parts of the DTCWT coefficient, 

respectively. For the modulus  ,abs N s  at  'X N  along the scale array, the maximum 

value of the DTCWT coefficient or “ridge” can be extracted. The ridge is defined as the 

location where the modulus reaches its local maximum at scale 
ridges  [110]. When the 

modulus is maximal at the ridge, the frequency of the wavelet scaled by 
ridges  shows the 

greatest match with the convolved periodic error signal [111]. 

 This 
ridges  equals 

1s , which corresponds to the frequency of first order periodic 

error. Therefore, the phase  , ridgeN s  is the first order periodic error phase at  'X N . A 

phase array  1 N  is used to store this phase. A new point is added by completing two 

steps: 1) remove  1  and shift  2 N  forward to  1 1N   and 2) set 

   , ridgeN N s  . Subsequently, the array  1 N  has the first order periodic error 

phase information for the latest N data points. Based on the periodic error model defined 

in Section 3.1, with the phase array  1 N  and an assumed unit amplitude, the k
th

 

order periodic error is    sin sink kA k  . It is located at the scale 1 /ks s k  since its 

frequency is 1kf kf  and the scale is inversely related to the frequency. The k
th

 order 

periodic error for the latest N points is 

            1 sin 1 ,sin 2 , ,sinkr N k k k N   , (3.4) 
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Figure 4.4 The measured DTCWT ridge ( ). 

 

 The size of the array used in the DTCWT, i.e. the memory array , can 

also be justified. The choice of this size is based on the sampling rate and the frequency 

of periodic error, because the array needs to include several cycles of periodic error (at 

least 8 – 10 cycles), in order to identify the error with high accuracy. If the sampling 

frequency is too high or the frequency of periodic error is too low, the array needs to be 

enlarged to accommodate enough periodic error cycles for calculation to achieve high 

accuracy in periodic error compensation. For example, when 100N  , the ridge 

identification result is shown in Figure 4.5a. It can be clearly seen from Figure 4.5b that 

the detected ridge is no longer related to the first order periodic error but the second 
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order, which means that in this situation, the size of the memory array is not enough to 

identify the first order periodic error frequency. Figures 4.6 and 4.7 display the cases at 

200N   and 400N  , respectively, where both results are 190 1  for the ridge. 

Therefore, 200N   is used in the following simulations, also based on the consideration 

for saving hardware resource. 

 

4.3 AMPLITUDE DETECTION 

 For the simulations in this section, a simulated constant velocity motion (50 

mm/min) with first order periodic error amplitude of 4 nm and second order periodic 

error amplitude of 2.5 nm is used just as in Section 4.2. To identify the periodic error 

amplitudes under this constant velocity condition, two methods are compared at every 

sampling instant. The first method is a fast Fourier transform (FFT) method similar to [6-

8]. The FFT of the error is computed after detrending the nominal displacement stored in 

the displacement array  1X N  and applying a Hanning window. The second method 

is the DTCWT-based algorithm. This algorithm is applied to calculate first and second 

order periodic error amplitudes (Equation 3.8, where m = 2 because only first and second 

order periodic errors exist) after obtaining the modulus and phase information (Equations 

3.2 and 3.3) and determining the reference periodic errors (Equation 3.4). The measured 

amplitudes are displayed in Figure 4.8. The frequency domain approach result is 

smoother since windowing reduces the spectral leakage. The FFT assumes that the data is 

point each sampling interval. It actually measures the average amplitude over the signal. 

For first order periodic error, the true value of its amplitude is 4 nm. The average value 
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Figure 4.5 The measured DTCWT ridge ( 100N  ). 

 

(a) 

(b) 
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Figure 4.6 The measured DTCWT ridge ( 200N  ). 

 

Figure 4.7 The measured DTCWT ridge ( 400N  ). 
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from the FFT approach is 3.92 nm; the amplitude measured by the DTCWT approach is 

4.25 nm. For second order periodic error, the true value is 2.5 nm. The amplitudes 

measured by the FFT and DTCWT approaches are 2.34 nm and 2.31 nm, respectively. 

The two approaches show good agreement for amplitude measurement. 

 

Figure 4.8 The measured amplitudes for the FFT and DTCWT approaches. 

 

4.4 PERIODIC ERROR COMPENSATION 

 In these tests, the performance of the entire DTCWT algorithm (from receiving a 

new data point to providing a compensated data point) is examined. Again, the simulated 

50 mm/min constant velocity motion with superimposed periodic errors is used. The time 

domain periodic error compensation result is displayed in Figure 4.9. The root-mean-
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square error is reduced from 3.32 nm to 0.49 nm for both two methods. Figure 4.10 

displays the compensation result in the frequency domain. After compensation, the 

amplitudes of the first and second order periodic errors are reduced from 4 nm to 0.24 nm 

(0.27 nm for the FFT method) and from 2.5 nm to 0.30 nm (0.27 nm for the FFT 

method), respectively. These similar results indicate that the DTCWT algorithm has the 

capability to accurately compensate the periodic error. 

 

Figure 4.9 The result of periodic error compensation (both DTCWT and FFT approaches) 

in the time domain is displayed. 
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Figure 4.10 (a) The result of periodic error compensation in the frequency domain is 

presented. (b) Zoomed view of the compensation result for first order periodic error. 

(a) 

(b) 
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Figure 4.10 (continued) (c) Zoomed view of the compensation result for second order 

periodic error. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 

This chapter includes an overall conclusion to this work, from Chapter 1 to 4, and 

outlines directions for future research. 

 

5.1 CONCLUSIONS 

 This thesis introduces a novel wavelet-based periodic error measurement and 

compensation method that can be used to compensate periodic errors for both constant 

and non-constant velocity profiles in real-time. 

 Chapter 1 provides background of interferometry. Two types of interferometers 

are introduced. Error sources in heterodyne interferometry are analyzed, and the focus is 

on periodic error. The traditional frequency domain compensation approach for periodic 

error and its limitation are also given. 

 Chapter 2 introduces wavelet analysis, including DWT and CWT. For CWT, 

related equations, typical wavelets that could be used, and the linearity property are given. 

The complex Morlet wavelet is described in detail since it is used in the algorithm. The 

complex Morlet wavelet is suitable because it enables localization in both the time and 

frequency domains. The frequency of the periodic error signal is located at the scale with 

the maximum wavelet coefficient and the phase information can be extracted based on 

the real and imaginary parts of this coefficient.
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  Chapter 3 describes the entire algorithm design process. It starts from the 

simplified periodic error model, shows the discrete form of the CWT, and explains the 

edge effect and its reduction methods. The implementation of the algorithm consists of 

detrending the signal, applying the wavelet transform, identifying the ridge, phase and 

amplitude, and finally reconstructing and compensating periodic error. 

 Chapter 4 shows the simulation results using the wavelet-based algorithm. A 

linear displacement profile is used in the simulations. Identifications of ridge and 

amplitude, and the overall periodic error compensation result, are given. Factors which 

influence the compensation result are also discussed.  

The performance of this approach was compared to the traditional frequency 

domain approach under constant velocity conditions and demonstrated accurate 

compensation results, showing its capability to compensate periodic error accurately. 

 

5.2 FUTURE WORK 

 The algorithm presented in this work is designed to be executed on parallel 

hardware offering the potential application for real-time compensation of periodic error 

in heterodyne interferometers. In the future, the algorithm will be transplanted on the 

hardware, for instance, an FPGA board, to collect data and compensate the periodic error 

within the displacement. 

 Another investigation direction will be on high order periodic error compensation 

and compensation of periodic error with varying amplitudes at different orders. 
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